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for the potential for adiposity levels to perturb the physiological 
milieu in which genetic variants in insulin signaling pathways oper-
ate. Adiposity may also hinder the identification of genetic variants 
influencing insulin resistance by introducing variance in the outcome 
that is not attributable to genetic variation5, suggesting that adjust-
ment for adiposity per se may be necessary.

A joint test that investigates the association between an outcome 
and a genetic variant, while allowing for possible effect modifica-
tion by an environmental variable, has been proposed13. Moreover, 
a statistical method was developed that extends this joint test to a 
meta-analysis context14. This enabled us to simultaneously test both 
the main genetic effect, adjusted for BMI, and potential interaction 
between each genetic variant and BMI. This joint meta-analysis 
(JMA) approach can provide increased power for detecting genetic 
loci when underlying interaction effects are suspected but unknown13, 
and, notably, as shown in simulation studies, this approach does not 
reduce power to detect the main genetic effects in the absence of 
interaction14. Within the Meta-Analyses of Glucose- and Insulin-
related traits Consortium (MAGIC), we implemented this approach 
and performed a genome-wide JMA to search for SNPs significantly 
associated with glycemic traits, while simultaneously adjusting for 
BMI and allowing for interaction with BMI. Using this method, we 
successfully identified loci that are associated with fasting insulin 
levels at genome-wide significance levels.

RESULTS
Study overview
As a first phase, we conducted a discovery genome-wide JMA of the 
main effects of SNPs and of SNP by BMI (SNP × BMI) interaction 
for four diabetes-related quantitative traits: fasting insulin levels,  
fasting glucose levels and surrogate measures of β-cell function  
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In contrast to recent progress in the discovery of genetic variants under-
lying T2D pathophysiology and β-cell function, the understanding  
of the genetic basis of insulin resistance remains limited1. Partly 
because early case-control studies of T2D were designed to maximize 
the likelihood of detecting variants that directly increase T2D risk 
rather than those that affect risk through the mediation of adiposity, 
most of the associated loci discovered in these studies mapped to 
genes related to β-cell dysfunction2. More recently, we have shown 
that the genetic architectures of quantitative indices of β-cell function 
and of insulin resistance differ markedly: given the same individuals, 
sample sizes and biochemical measurements, we described a larger 
number of signals for β-cell function than for insulin resistance3,4. 
Although this observation is consistent with the higher reported  
heritability of insulin secretion compared to resistance, overall  
heritability estimates of insulin resistance in individuals of European 
ancestry of 25–44% suggest that many loci remain to be discovered 
and that new strategies are required for their identification5.

Obesity is an important determinant of insulin resistance6. It was 
postulated that adiposity might modulate the genetic determinants of 
insulin resistance and contribute to the heterogeneity of T2D etiology. 
It has been shown that the heritability of insulin resistance increases 
with higher BMI7, and some candidate gene studies have observed 
that genetic effect size varies with adiposity level8–10, findings that are 
compatible with the presence of an underlying interaction between 
BMI and genetic variants for insulin resistance. Furthermore, the 
adipokine hormones and proinflammatory cytokines that are pro-
duced by adipose tissue can influence insulin signaling via diverse 
mechanisms11,12, and these processes may interact with genetic vari-
ants influencing insulin resistance pathways. Therefore, to identify 
variants associated with insulin resistance, it may also be important 
to account for gene variant by BMI interaction, which would allow 
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(HOMA-B) and insulin resistance (HOMA-IR)15. Measures of fasting 
insulin, HOMA-B and HOMA-IR were log transformed.

The discovery-stage JMA for fasting insulin levels of approximately 
2.4 million SNPs in 51,750 non-diabetic individuals from 29 studies 
(Supplementary Table 1) showed previously reported associations 
of variants in IGF1 and GCKR with fasting insulin at genome-wide 
significance (Fig. 1a and Supplementary Table 2) and identified 31 
previously unreported loci tentatively associated (P < 1 × 10−5) with 
fasting insulin (Fig. 1a, Supplementary Fig. 1 and Supplementary 
Table 3a)3. The discovery JMA for fasting glucose in 58,074 individu-
als showed association of 16 loci previously described in MAGIC 
meta-analyses of fasting glucose levels (Fig. 1b, Supplementary 
Fig. 1 and Supplementary Table 2) and identified 20 previously unre-
ported loci tentatively associated with fasting glucose (P < 1 × 10−5)  
(Fig. 1b and Supplementary Table 3b). The JMA approach identi-
fied an excess of previously undetected signals relative to the number 
expected by chance (Supplementary Fig. 1). The SNPs that showed 
association at P < 1 × 10−5 in the discovery JMA for HOMA-IR and 
HOMA-B largely overlapped with those identified for fasting insulin  
and fasting glucose levels, without identifying additional loci. We 
therefore focused all subsequent analyses on fasting insulin and 
fasting glucose levels. Results for associations with HOMA-IR and 
HOMA-B are provided (Supplementary Table 4).

At each locus that reached P < 1 × 10−5 in the discovery JMA, we 
chose an index SNP to represent the association signal in the cor-
responding genomic region. We selected a total of 50 SNPs (30 SNPs 
associated with fasting insulin levels, 19 SNPs associated with fasting 
glucose levels and 1 SNP associated with both) for the second, follow-
up phase of analysis. The follow-up analysis included 23 studies with 
fasting glucose data, 22 of which also had measurements of fasting 
insulin levels, and comprised up to 38,422 and 33,823 individuals  

for fasting glucose and fasting insulin analyses, respectively 
(Supplementary Table 1). We combined study-specific results from 
both the discovery (phase 1) and the follow-up (phase 2) studies 
for the 50 index SNPs (Supplementary Table 3) for total sample 
sizes of 96,496 for fasting glucose levels and 85,573 for fasting insulin 
levels. In the combined JMA, we identified six loci associated with 
fasting insulin levels and seven loci associated with fasting glucose 
levels at genome-wide levels of significance (P < 5 × 10−8), includ-
ing PPP1R3B, which was associated with both fasting insulin and 
fasting glucose levels (Fig. 1, Table 1 and Supplementary Table 3). 
Descriptions of noteworthy genes around each association signal are 
given (Boxes 1 and 2).

As the JMA simultaneously tested both main genetic effects and 
interaction effects, in order to further characterize the association 
signals observed using the JMA, we performed additional analyses 
examining main effects and interaction effects separately. These 
additional analyses included meta-analysis of regression models of 
the main effects, with and without adjustment for BMI, univariate 
meta-analysis of interaction effects using continuous BMI and meta-
analyses of the main effects of SNPs in strata defined by a BMI cutoff 
of 28 kg/m2, which was chosen on the basis of the median BMI of 
the largest cohorts included in our discovery stage JMA (BMI strata 
were categorized as leaner, where BMI <28 kg/m2, and heavier, where 
BMI ≥28 kg/m2).

Associations with fasting insulin levels
The loci examined in follow-up analysis that associated with fast-
ing insulin levels (natural log transformed) at genome-wide levels 
of significance in the combined JMA are presented in Table 1 and 
described in Box 1. The rs7607980 SNP, located near COBLL1-GRB14, 
provided the strongest signal for fasting insulin levels, with a JMA  
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Figure 1  Genome-wide association plots of the discovery JMA. Association results are shown for fasting insulin (a) and fasting glucose (b) levels. We 
observed 17 loci with known associations (red) and took 50 loci forward to follow-up analysis (light and dark blue). Of these loci, 12 reached genome-
wide significance in the combined discovery and follow-up JMA (dark blue). The P values of these 12 loci from the models fit in the combined discovery 
and follow-up analyses are shown below the plots: red, JMA; orange, main genetic effects, adjusting for BMI; green, interaction, with continuous BMI; 
blue, interaction, with dichotomous BMI. *G6PC2 JMA P = 1.7 × 10−113; **GCK JMA P = 8.3 × 10−56; ***MTNR1B JMA P = 4.38 × 10−105.
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P value of 4.3 × 10−20. Analyses performed to characterize this asso-
ciation further showed that the significant association of rs7607980 
with fasting insulin levels was driven primarily by a BMI-adjusted 
main genetic effect (P = 1.7 × 10−16) and showed some suggestion 
of interaction with BMI (P for interaction = 1.6 × 10−4; Fig. 2 and 
Supplementary Table 3a). Modeled from the combined JMA, the 
estimated effect size of the genetic variant was greater at a BMI of  
30 kg/m2 (JMA β = 0.039) compared to at a BMI of 25 kg/m2 (JMA  
β = 0.023) (Table 1). These estimates were supported by BMI-stratified  
analyses: the genetic effect was larger in heavier (main genetic effect 
β = 0.041, P = 2.98 × 10−10) than in leaner (main genetic effect  
β = 0.018, P = 1.77 × 10−5) individuals (P value for the difference 
between strata = 0.02; Fig. 2).

In addition to COBLL1-GRB14, the combined JMA showed five 
loci to be associated with fasting insulin (IRS1, PPP1R3B, PDGFC, 
LYPLAL1 and UHRF1BP1) at genome-wide significance levels 
(Table 1 and Supplementary Fig. 2). For these loci, the additional 
models to characterize association showed that the JMA association 
signals were largely driven by main genetic effects adjusted for BMI 

(P < 5.5 × 10−9) and showed little evidence of interaction (P > 0.02; 
Supplementary Fig. 3 and Supplementary Table 3a). Additionally, 
the combined JMA at the PEPD locus showed evidence suggestive of 
association, albeit just below the conventional significance thresh-
old (P = 8.69 × 10−8). The results of the JMA and the additional  
meta-analyses for all loci included in the follow-up (phase 2) analysis 
are presented (Supplementary Table 3a).

As we were interested in identifying loci associated with insu-
lin resistance, we investigated associations between variants that 
were associated with genome-wide significance and other traits 
related to insulin resistance in genome-wide meta-analysis results 
provided by other consortia, including the Diabetes Genetics 
Replication And Meta-analysis (DIAGRAM) Consortium4, the 
Genomewide Investigation of ANThropometric Measures (GIANT) 
Consortium16,17 and the Global Lipid Genetic Consortium (GLGC)18 
(Table 2). At five out of six loci associated with fasting insulin, the 
insulin-raising allele was associated with both lower HDL choles-
terol and higher triglycerides, a dyslipidemic profile typical of insu-
lin resistance. The alleles associated with increased insulin levels 

Table 1  Genetic loci associated at genome-wide significance (P < 5 × 10−8) with fasting insulin or glucose level from the JMA in the 
combined discovery and follow-up analysis
Fasting insulin levels

Alleles
Stage 1: discovery (26 cohorts)  

n = 51,750
Stage 2: follow-up (22 cohorts)  

n = 31,450
Combined (48 cohorts)  

n = 83,116

Nearest  
gene Index SNP R (freq.) O (freq.)

BMI = 25 
effect (SE)

BMI = 30 
effect (SE)

JMA P  
(Phet)

BMI = 25 
effect (SE)

BMI = 30 
effect (SE)

JMA P  
(Phet)

BMI = 25 
effect (SE)

BMI = 30 
effect (SE)

JMA P  
(Phet)

COBLL1- 
GRB14

rs7607980 T (0.88) C (0.12) 0.021 
(0.004)

0.04 
(0.005)

6.1 × 10−14 
(0.25)

0.026 
(0.006)

0.039 
(0.008)

4.9 × 10−7 
(0.04)

0.023 
(0.003)

0.039 
(0.004)

4.3 × 10−20 
(0.06)

IRS1 rs2943634 C (0.66) A (0.34) 0.018 
(0.003)

0.026 
(0.004)

1.7 × 10−12 
(0.62)

0.018 
(0.008)

0.021 
(0.010)

3.6 × 10−3 
(0.53)

0.018 
(0.003)

0.025 
(0.004)

2.5 × 10−14 
(0.70)

PPP1R3B rs4841132 A (0.10) G (0.90) 0.02  
(0.004)

0.031 
(0.006)

1.4 × 10−7 
(0.50)

0.034 
(0.013)

0.032 
(0.016)

7.3 × 10−4 
(0.45)

0.021 
(0.004)

0.031 
(0.006)

1.7 × 10−10 
(0.52)

PDGFC rs4691380 C (0.67) T (0.33) 0.016 
(0.003)

0.021 
(0.004)

1.5 × 10−8 
(0.36)

0.017 
(0.008)

0.020 
(0.010)

7.2 × 10−2 
(0.31)

0.016 
(0.003)

0.021 
(0.004)

5.3 × 10−9 
(0.37)

UHRF1BP1 rs4646949 T (0.75) G (0.25) 0.016 
(0.003)

0.021 
(0.004)

5.9 × 10−8 
(0.08)

0.0009 
(0.008)

0.009 
(0.010)

1.6 × 10−1 
(0.24)

0.014 
(0.003)

0.020 
(0.004)

3.7 × 10−8 
(0.05)

LYPLAL1 rs2785980 T (0.67) C (0.33) 0.016 
(0.003)

0.017 
(0.004)

7.7 × 10−8 
(0.03)

0.011 
(0.009)

0.018 
(0.010)

9.7 × 10−2 
(0.20)

0.016 
(0.003)

0.017 
(0.004)

2.0 × 10−8 
(0.03)

Fasting glucose levels

Alleles
Stage 1: discovery (29 cohorts)  

n = 58,074
Stage 2: follow-up (23 cohorts)  

n = 38,422
Combined (52 cohorts)  

n = 96,496

Nearest  
gene Index SNP R (freq.) O (freq.)

BMI = 25 
effect (SE)

BMI = 30 
effect (SE)

JMA P  
(Phet)

BMI = 25 
effect (SE)

BMI = 30 
effect (SE)

JMA P  
(Phet)

BMI = 25 
effect (SE)

BMI = 30 
effect (SE)

JMA P  
(Phet)

ARAP1 rs11603334 G (0.83) A (0.17) 0.025 
(0.004)

0.033 
(0.005)

4.4 × 10−11 
(0.25)

0.016 
(0.005)

0.026 
(0.007)

2.2 × 10−4 
(0.004)

0.022 
(0.003)

0.030 
(0.004)

2.4 × 10−14 
(0.01)

FOXA2 rs6048205 A (0.95) G (0.05) 0.044 
(0.007)

0.033 
(0.009)

7.1 × 10−10 
(0.14)

0.033 
(0.009)

0.023 
(0.012)

1.4 × 10-3 
(0.03)

0.040 
(0.005)

0.029 
(0.007)

1.6 × 10−12 
(0.03)

DPYSL5 rs1371614 T (0.25) C (0.75) 0.020 
(0.004)

0.026 
(0.005)

2.9 × 10−9 
(0.19)

0.019 
(0.005)

0.015 
(0.006)

2.1 × 10−4 
(0.47)

0.020 
(0.003)

0.022 
(0.004)

2.3 × 10−12 
(0.23)

PCSK1 rs13179048 C (0.69) A (0.31) 0.021 
(0.003)

0.016 
(0.004)

1.6 × 10−9 
(0.24)

0.028 
(0.010)

0.027 
(0.013)

2.2 × 10−2 
(0.16)

0.022 
(0.003)

0.018 
(0.004)

1.6 × 10−10 
(0.18)

PDX1 rs2293941 A (0.22) G (0.78) 0.022 
(0.004)

0.015 
(0.005)

1.3 × 10−8 
(0.47)

0.013 
(0.005)

0.016 
(0.006)

7.8 × 10−3 
(0.04)

0.019 
(0.003)

0.016 
(0.004)

5.3 × 10−10 
(0.10)

PPP1R3B rs4841132 A (0.10) G (0.90) 0.026 
(0.005)

0.028 
(0.007)

7.9 × 10−7 
(0.94)

0.033 
(0.015)

0.054 
(0.021)

3.1 × 10−3 
(0.02)

0.027 
(0.005)

0.030 
(0.007)

7.6 × 10−9 
(0.55)

OR4S1 rs1483121 G (0.86) A (0.14) 0.027 
(0.005)

0.022 
(0.006)

6.5 × 10−8 
(0.70)

0.014 
(0.006)

0.006 
(0.008)

3.4 × 10−2 
(0.42)

0.021 
(0.004)

0.015 
(0.005)

1.6 × 10−8 
(0.56)

Directly genotyped and imputed SNPs were tested for association with fasting glucose or fasting insulin level by JMA of the SNP and SNP × BMI effects. The effect estimates 
presented are derived from the JMA for the specified BMI (in kg/m2). A test of heterogeneity (Phet) was performed for each locus. From the discovery analysis, 50 loci were taken 
forward to the follow-up analysis (31 for fasting insulin and 20 for fasting glucose levels; PPP1R3B was followed up in both traits). R, trait-raising allele; O, other allele; freq., 
allele frequency; SE, standard error, n, sample size presented is the maximum observed among the SNPs presented here.np
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near COBLL1-GRB14, LYPLAL1 and PPP1R3B were also associ-
ated with a greater waist-to-hip ratio (WHR; adjusted for BMI). 
Individuals carrying alleles associated with higher fasting insulin 
levels at the index SNP in or near COBLL1-GRB14, LYPLAL1, IRS1 
or PDGFC were at increased risk for T2D, albeit with relatively small 
odds ratios (Table 2).

Associations with fasting glucose levels
Genetic variants associated with fasting glucose levels at genome-
wide significance in the combined JMA are presented in Table 1 

and described in Box 2; index SNPs were in or near ARAP1, PCSK1, 
FOXA2, DPYSL5, OR4S1, PDX1 and PPP1R3B. The combined JMA 
results for the index SNP near GRB10 showed suggestive association 
with fasting glucose levels, but the P value did not reach genome-wide 
significance (P = 8.3 × 10−8). Of note, a SNP in GRB10 (rs2237457) 
was previously found to be associated with T2D (P = 1.1 × 10−5) in 
the Old Order Amish19.

Additional analyses revealed that main genetic effects were 
the primary contributors to these associations (P < 3.6 × 10−8) 
(Supplementary Table 3b), with little evidence observed for  

Box 1  Genes of biological interest within 500 kb of SNPs associated with fasting insulin index 

COBLL1-GRB14: The index SNP (rs7607980) identifies a coding variant that induces an amino-acid change (p.Asn939Asp) in cordon-bleu protein-like 1,  

encoded by COBBL1. Cordon-bleu is a protein involved in neural tube development31. The allele associated with increased fasting insulin levels at the index 

SNP was associated with higher expression of COBLL1 (P = 0.02) in skeletal muscle in the Malmö Exercise Study (personal communication, O. Hansson).  

A SNP at this locus (rs10195252) is associated with waist-hip-ratio17 but is in low linkage disequilibrium (LD) with the index SNP (r2 = 0.148). GRB14  

encodes growth factor receptor–bound protein 14, which inhibits signaling of the insulin receptor (MIM 601524)32. In addition to being associated with  

triglyceride levels33, rs10195252 is reported to have a cis-acting association with GRB14 transcript level in omental fat (P = 1.0 × 10−13)18.

IRS1: IRS1 encodes insulin receptor substrate 1, a critical docking protein in the insulin signaling cascade, which, when phosphorylated by the insulin receptor, 

activates downstream signaling pathways34. SNPs in or near IRS1 are associated with T2D, HOMA-IR, fasting insulin and coronary artery disease (CAD)3,35,36 

but have not previously been shown to be associated fasting insulin at the genome-wide significance. The index SNP reported here (rs2943634) is the same 

intergenic SNP associated with CAD36 and is in LD with the nearby rs2943641 SNP that is associated with insulin resistance3 and T2D4 (r2 = 0.782) and the 

rs7578326 SNP associated with T2D (r2 = 0.815). The variant identified by the lipid GWAS (rs2972146; associated with both triglycerides and HDL) is also 

reported to have a cis-acting association with IRS1 transcript level in omental adipose tissue (P = 2.0 × 10−8)17, and this SNP is in strong LD with the index 

SNP (r2 = 0.751). Furthermore, the index SNP (rs2943634) is in moderate LD (r2 = 0.438) with three SNPs (rs1849878, rs2673148 and rs2713547) that tag 

a known copy-number variant (CNV) (CNVR1152.1) (r2 = 0.51, 0.52 and 0.51, respectively).

PPP1R3B-TNKS: This locus is associated with both fasting insulin and fasting glucose in the present study. PPP1R3B encodes protein phosphatase 1 regulatory 

(inhibitor) subunit 3B, which prevents glycogen breakdown by regulating the interaction of phosphorylase protein 1 (PP1) with glycogen metabolism enzymes 

(MIM 610541)32. Two SNPs in or near PPP1R3B are also associated with lipids18,37 (rs9987289 and rs2126259) and C-reactive protein (rs9987289)21, and 

these are both in strong LD with the index SNP (r2 = 1.0 and 0.803, respectively). rs9987289 is also reported to have a cis-acting association with PPP1R3B 

transcript level in human liver (P = 1 × 10−14)18. In the present study, we observed that rs19334, associated with expression of PPP1R3B (P = 2.34 × 10−12)  

in a liver eQTL data set38, is in low LD with the index SNP (r2 = 0.001) but showed moderate association with fasting insulin in the discovery sample (P = 2.87 ×  

10−4). TNKS encodes TRF1-interacting, ankyrin–related ADP-ribose polymerase, which interacts with telomeric repeat–binding factor 1 (TRF1) to regulate  

telomere length39, and also interacts with insulin-responsive amino peptidase (IRAP) in GLUT4 vesicles (MIM 603303)40. Tankyrases are also thought be 

involved in the Wnt signaling pathway41.

PEPD-CEBPA-KCTD15: PEPD encodes peptidase D, an enzyme responsible for the recycling of proline and likely essential for collagen production (MIM 

613230)42. A SNP in PEPD (rs731839) is associated with adiponectin levels (B. Richards, personal communication) and is in strong LD with the index SNP 

(r2 = 0.77). The index SNP is associated with PEPD expression in the adipocyte eQTL data set (P = 9.96 × 10−10)43, but, most likely, this association is driven 

by the association between rs17226118 and PEPD expression (P = 2.2 × 10−55), despite the weak LD between the index SNP and rs17226118 (r2 = 0.145). 

CEBPA encodes CCAAT/enhancer-binding protein α (C/EBPα), which may control the expression of leptin, an adipokine implicated in weight regulation (MIM 

116897)44. KCTD15 encodes potassium channel tetramerisation domain–containing 15. A SNP in or near this gene (rs29941) is associated with BMI16 but is 

in very low LD with the index SNP (r2 = 0.015).

UHRF1BP1-PPARD: UHRF1BP1 encodes ubiquitin-like containing PHD and RING finger domains 1 (UHRF1)-binding protein 1. UHRF1 is a protein that 

influences DNA methylation (MIM 607990)45. The index SNP in UHRF1BP1 (rs4646949) is in strong LD (r2 = 0.724) with a SNP (rs2293242) that causes 

a nonsense change in ANKS1A. The same index SNP is in moderate LD (r2 = 0.363) with a coding SNP that results in a missense change in UHRF1BP1 

(encoding p.Met1098Thr) that is considered damaging on the basis of analysis of homologous sequences46 (Supplementary Table 7). Index SNP rs4646949 in 

UHRF1BP1 is in strong LD (r2 = 0.95) with two perfect proxies (rs2477508 and rs2814922) for a known CNV (CNVR2857.1). In a liver tissue eQTL data set, 

rs12173920 was associated with UHRF1BP1 and STEAP4 (encoding six transmembrane epithelial antigen of prostate 4) expression levels (P = 9.56 × 10−6 

and 2.91 × 10−8, respectively) and is in moderate LD (r2 = 0.334) with the index SNP38. Another SNP in the region, rs2814944, is associated with HDL levels 

and has been reported to have a cis-acting association with the transcript level of UHRF1BP1 in both omental (P = 3.0 × 10−25) and subcutaneous (P = 2.0 × 

10−18) adipose tissues18. PPARD encodes peroxisome proliferator-activated receptor-δ, a protein involved in the breakdown of fat (MIM 600409)47.

PDGFC-GLRB: PDGFC encodes platelet-derived growth factor C, a ligand that binds to specific PDGF receptors (α-α and α-β) and has a growth factor domain 

homologous to VEGF (MIM 608452)48. Tyrosine phosphorylation is activated by the binding of these growth factors to receptors. GLRB encodes glycine receptor 

β, a subunit of glycine receptors (neurotransmitter-gated ion channels) that are likely involved in glycine receptor structure (MIM 138492)49.

LYPLAL1-SLC30A10: LYPLAL1 encodes lysophospholipase-like 1, a protein that may be involved in adiposity and fat distribution17,50–52. A SNP near LYPLAL1 

(rs4846567) is associated with WHR and is in strong LD with the index SNP (r2 = 0.796). Furthermore, a variant in this vicinity (rs3001032) is associated with 

adiponectin levels (B. Richards, personal communication) and is in strong LD with the index SNP (r2 = 0.828). SLC30A10 encodes solute carrier family 30, 

member 10 of the zinc transporter subfamily of cation-diffusion facilitators that allow for the outward flow of zinc from cells (MIM 611146)53.
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interaction at these loci (P values for interaction >0.06;  
Supplementary Fig. 3). The combined results of the JMA and the addi-
tional meta-analyses for all loci included in the follow-up (phase 2)  
analysis are presented (Supplementary Table 3b).

In contrast to associations observed at fasting insulin loci,  
SNPs associated with the fasting glucose index did not have  
compelling associations with metabolic traits related to insulin 
resistance (Table 2), but alleles associated with increased fasting  
glucose levels near PCSK1 and PPP1R3B showed nominal  

associations with lower levels of glucose 2 h after a glucose  
tolerance test (2-hour glucose) (Supplementary Table 4).

Functional exploration, the results of expression and expression 
quantitative trait locus (eQTL) searches and conditional analyses 
using available databases are presented (Supplementary Table 5 and 
Supplementary Note).

DISCUSSION
Our study shows that loci associated with insulin resistance exist 
and can be identified when appropriate analysis methods are used 
to control for the influence of adiposity on insulin resistance. In a 
discovery data set that was approximately 35% larger than that for 

Box 2  Genes of biological interest within 500 kb of index SNPs associated with fasting glucose levels 

PCSK1: PCSK1 encodes proprotein convertase, subtilisin/kexin-type 1. This protein initiates proinsulin processing to insulin. The expression of this protein  

is regulated by glucose (MIM 162150)54. The nonsynonymous variant rs6232 (encoding p.Asn221Asp) and rs6234 and rs6235 (a pair of variants  

encoding p.Gln665Glu and p.Ser690Thr) have been shown to be associated with obesity in children and adults55. The index SNP is in strong LD with rs6234  

(r2 = 0.814). A report from MAGIC showed that rs6235 in PCSK1 is associated with proinsulin levels at a genome-wide level of significance29.

OR4S1-PTPRJ: OR4S1 encodes olfactory receptor, family 4, subfamily S, member 1. This family of receptors sets off neuronal responses for smell perception. 

PTPRJ encodes protein tyrosine phosphatase (PTP), receptor type J. By hindering phosphorylation, this protein is thought to inhibit T-cell receptor signaling.

ARAP1-INPPL1-STARD10: A SNP in this region, rs1552224, is associated with T2D4 and is in perfect LD with the index SNP (r2 = 1.0). The genetic variant 

associated with increased risk of T2D is also associated with lower fasting proinsulin levels (adjusted for insulin levels), suggesting that the variant might cause 

a defect in the early steps of insulin production29. ARAP1 encodes ankyrin repeat and pleckstrin homology domains–containing protein 1 that controls ARF-, 

RHO- and CDC42-dependent cell functions56. INPPL1 encodes inositol polyphosphate phosphatase like–1. In vivo mouse studies indicated that this protein is a 

negative regulator of insulin signaling and sensitivity (MIM 600829)57. STARD10 encodes StAR-related lipid transfer (START) domain containing 10, a protein 

thought to be involved in sperm cell maturation but highly expressed in liver and pancreas tissues58 (NF Expression Atlas 2 Data from U133A and GNF1H 

Chips). Levels of STARD10 expression are higher in pancreatic and islet tissues than in any other human tissue type29.

FOXA2: FOXA2 encodes forkhead box A2, a DNA-binding protein that regulates the expression of key genes active in glucose sensing in β cells (MIM 600288). 

When FOXA2 was continually activated in mice, this led to increases in neuronal MCH and orexin expression, insulin sensitivity, food consumption and metabo-

lism59. It has previously been suggested that mutations in FOXA2 may affect glucose homeostasis60.

GRB10: GRB10 encodes growth factor receptor–bound protein 10 (MIM 601523). This protein forms a complex with insulin receptors and inhibits their signaling61. 

This protein also interacts with Grb10-interacting GYF proteins (GIGYFs) to regulate insulin-like growth factor receptor 1 signaling62. The risk allele at rs2237457 

showed an association with T2D (P = 1.1 × 10−5) and glucose excursion during an oral glucose tolerance test (OGTT) (P = 0.001) in the Old Order Amish Study19.

DPYSL5-KHK-PPM1G: DPYSL5 encodes dihydropyrimidinase-like 5 and is thought to be involved in directing neuronal growth cones in development (MIM 

608383). KHK encodes ketohexokinase and is the first enzyme that acts in the breakdown of fructose (MIM 229800). PPM1G encodes protein phosphatase, 

magnesium-dependent 1, which carries out a dephosphorylation event essential for forming the spliceosome (MIM 605119)63. There is moderate LD  

(r2 = 0.404) between the index SNP in DPYSL5 (rs1371614) and a SNP (rs2384572) that causes a missense change (encoding p.Ile116Met or p.Ile20Met, 

depending on the transcript) in CGREF1 (which encodes cell growth regulator with EF-hand domain 1) that is considered damaging based on analysis of  

homologous and orthologous sequences46 (Supplementary Table 7).

PDX1: PDX1 encodes pancreatic and duodenal homeobox 1 and is responsible for the development of the pancreas, determining maturation and differentiation 

of common pancreatic precursor cells (MIM 600733). As pancreatic morphogenesis proceeds, PDX1 action is eventually restricted to β and δ cells of the islets, 

where it seems to regulate expression of the INS (encoding insulin) and SST (encoding somatostatin) genes, respectively. A deletion and missense changes in 

PDX1 (causing p.Glu164Asp and p.Glu178Lys alterations) are associated with pancreas agenesis64. Whereas the deletion causes pancreas agenesis in  

homozygotes, heterozygosity is associated with maturity-onset diabetes of the young, type 4 (MODY4)65. The p.Glu224Lys variant was also shown to cause 

MODY4 (ref. 66). Other variants were suspected to result in increased risk for T2D in some family studies.

PPP1R3B-TNKS: see summary in Box 1.
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Figure 2  Regional plot of the COBLL1-GRB14 genomic locus. Left, 
discovery JMA P values are shown in the background. For the SNP taken 
forward to follow-up analyses (rs7607980), the color-coded P values 
for the different analyses are shown: dark red, discovery JMA; light red, 
combined discovery and follow-up JMA; orange, main effects, adjusting 
for BMI; green, interaction, with continuous BMI; blue, interaction, with 
dichotomous BMI. Right, effect estimates with 95% confidence intervals 
of the allele associated with increased trait levels in the two BMI strata. 
Effect = β estimates from regression models of ln(fasting insulin), 
adjusting for age, sex and other study-specific covariates. 
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our previous meta-analysis, we describe six loci not previously known 
to be associated with fasting insulin levels, adding substantially to 
the two loci that were observed using standard association analyses 
without adjustment for BMI. We also describe seven additional loci 
associated with fasting glucose levels. Further, we detected all previ-
ously reported associations for fasting glucose (16 loci) and insulin 
(2 loci) levels (Supplementary Table 2)3. With the initial explosion 
in the number of loci found to be associated with T2D1, we expected 
to discover similar numbers of loci implicated in insulin resistance 
and secretion, which has not been the case until now. Our approach 
was successful at identifying loci implicated in insulin resistance in 
numbers proportional to those implicated in insulin secretion. Our 
results underscore the importance of taking adiposity into account 
in understanding the heterogeneity of T2D etiology.

The association of fasting insulin levels with the genetic variant 
located at the COBLL1-GRB14 locus is of particular interest because 
of its concomitant and directionally consistent association with insu-
lin resistance–related traits and its plausible mechanism of action. 
GRB14 is a tissue-specific negative regulator of insulin receptor sig-
naling (Box 2). The risk allele at the rs7607980 index SNP is asso-
ciated with higher triglyceride and lower HDL cholesterol levels, 
which constitute a dyslipidemic profile that is characteristic of the 
insulin-resistant state, suggesting a putative role in insulin resistance 
pathways. Furthermore, this pattern of association was observed for 
nearly all index SNPs associated with fasting insulin levels, increas-
ing our confidence that our approach identified genetic loci involved 
in insulin resistance pathogenesis. As shown in a previous GIANT 
report17, risk alleles at COBLL1-GRB14 and LYPLAL1 were also asso-
ciated with increased WHR adjusted for BMI (Table 2), suggesting 
that they could influence the regulation of adipose tissue distribution 
to induce insulin resistance. In line with plausible biological actions 
in adipose tissue, eQTL results in omental adipose tissue showed that 
expression of GRB14 is associated with the rs10195252 SNP (r2 = 0.17 
with the rs7607980 index SNP) in the report from GLGC18.

Our results suggest a SNP × BMI interaction with fasting insulin  
levels at COBLL1-GRB14, with a larger genetic effect estimate in 
heavier individuals, which is compatible with the notion that some 

genetic variants implicated in insulin resistance pathways are more 
likely to be found when studying genetic effects in an ‘obesogenic’ 
environment characterized by high levels of energy intake and low 
levels of expenditure that promote a positive energy balance and the 
accumulation of excess adiposity. Our observation supports findings 
from the TwinsUK study reporting greater heritability estimates for 
insulin resistance traits at higher BMI7. Moreover, some candidate 
gene studies showed that genetic variants implicated in insulin signal-
ing pathways are more readily observable in heavier populations20. It 
was proposed that higher BMI potentiates the effect of genetic variants 
on insulin resistance pathways and suggested that this effect could 
be due to tissue-specific response to the obesogenic environment5.  
It is currently unknown how a genetic variant could contribute to a 
different response to an obesogenic exposure within specific tissues  
(liver, muscle, adipose or even central nervous system), but our  
data add to the current literature by identifying one potential  
example and argue for functional studies to pursue the previously 
proposed hypothesis5.

Among the other loci, PPP1R3B is likely to act via hepatic 
metabolism to influence fasting insulin and glucose levels, as well 
as the lipid profile (HDL, low-density lipoprotein (LDL) and total 
cholesterol) and C-reactive protein (CRP) levels21. PEPD encodes 
peptidase D and is likely to have a role in adipokine biology, an idea 
that is supported by eQTL data in adipose tissue (Supplementary 
Table 6) and an observed association with adiponectin levels 
(ADIPOgen Consortium; B. Richards, personal communication). 
Adiponectin is suspected to act as an insulin sensitizer, with low 
levels conferring T2D risk only among individuals who are also 
insulin resistant22; the independent PEPD associations with this 
adipokine are consistent with a direct role in insulin resistance. 
Additionally, other genes located near the reported loci (Table 1) 
also represent plausible biologic candidates for factors involved in 
various processes related to insulin resistance (Box 1).

The JMA approach has the potential to identify genetic variants 
whose effects differ depending on levels of adiposity, with interactions 
being tested in either direction. As noted previously, a search for 
T2D-associated genes in leaner populations is more likely to identify 

Table 2  Associations with T2D, lipid profile and anthropometric measures for loci significantly associated with fasting insulin or fasting 
glucose level

Lipid profile Anthropometric measures

T2D TC LDL HDL Triglycerides BMI (kg/m2) WHR (adjusted BMI)

Trait
Index  
SNP

Nearest  
gene(s)

Alleles  
R/O OR P Dir. P Dir. P Dir. P Dir. P β SE P β SE P

FI rs7607980 COBLL1- 
GRB14

T/C 1.08 0.02 + 0.09 + 0.05 − 3.9 × 10−10 + 4.1 × 10−8 −0.016 0.007 0.03 0.031 0.007 2.7 × 10−5

FI rs2943634 IRS1 C/A 1.09 2.7 × 10−5 + 0.91 + 0.14 − 2.3 × 10−9 + 5.2 × 10−8 −0.014 0.005 0.01 0.005 0.005 0.33

FI/FG rs4841132 PPP1R3B A/G 1.04 0.24 − 2.2 × 10−19 − 1.5 × 10−12 − 8.4 × 10−23 + 0.017 0.007 0.008 0.40 0.020 0.008 0.02

FI rs4691380 PDGFC C/T 1.05 0.03 − 0.14 + 0.70 − 1.4 × 10−4 + 0.008 −0.005 0.005 0.34 0.007 0.005 0.17

FI rs4646949 UHRF1BP1 T/G 1.04 0.13 − 0.09 − 0.04 + 0.37 + 0.81 −0.009 0.005 0.09 0.008 0.005 0.14

FI rs2785980 LYPLAL1 T/C 1.04 0.05 + 0.22 + 0.05 − 9.0 × 10−4 + 0.0023 −0.007 0.005 0.19 0.030 0.005 2.3 × 10−9

FG rs11603334 ARAP1 G/A 1.13 7.8 × 10−6 − 0.87 − 0.97 + 0.32 − 0.28 −0.012 0.006 0.07 0.001 0.006 0.83

FG rs6048205 FOXA2 A/G 1.05 0.39 + 0.07 + 0.15 + 0.16 + 0.21 −0.020 0.012 0.09 0.007 0.011 0.55

FG rs1371614 DPSYL5 T/C 0.98 0.32 − 0.29 + 0.51 − 0.11 − 5.5 × 10−4 −0.008 0.006 0.13 0.001 0.005 0.84

FG rs13179048 PCSK1 C/A 1.02 0.34 − 0.09 − 0.09 + 0.64 − 0.44 −0.011 0.005 0.03 0.006 0.005 0.25

FG rs2293941 PDX1 A/G 1.01 0.76 + 0.48 − 0.97 + 0.02 − 0.34 −0.007 0.006 0.23 0.006 0.006 0.28

FG rs1483121 OR4S1 G/A 1.00 0.91 − 0.14 − 0.05 − 0.77 + 0.23 0.017 0.007 0.02 0.004 0.007 0.63

Associations with T2D were assessed in the DIAGRAM meta-analysis of up to 8,130 cases and 38,987 controls. Associations with lipid profile were performed using publicly  
available data and included up to 99,900 individuals. Associations with anthropometric measures were performed in the GIANT data set including up to 123,685 individuals.
R/O alleles, trait-raising allele/other allele; TC, total cholesterol; LDL, LDL cholesterol; HDL, HDL cholesterol; OR, odds ratio; dir., direction of effect; SE, standard error;  
FI, fasting insulin; FG, fasting glucose.
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genes implicated in β-cell function by focusing on pathophysiological  
mechanisms independent of adiposity and insulin resistance23.  
As a corollary of this observation, genetic loci previously shown to be 
associated with β-cell function in non-diabetic individuals may show 
stronger effect sizes in lean compared to obese participants, although 
our results provided no evidence to support this for fasting glucose 
levels (Supplementary Table 2).

There have been few previous efforts investigating SNP × BMI 
interaction and its impact on the risk for T2D or related glycemic 
traits at a genome-wide level. Genetic variants associated with T2D 
in the Wellcome Trust Case Control Consortium were investigated 
by dividing the cases into strata of obese and non-obese individu-
als: in addition to TCF7L2 (of larger effect in non-obese cases), the 
only other signal they detected and replicated was the well-known 
obesity-mediated FTO association with T2D in the obese strata24. 
As expected, we did not detect an association between FTO and fast-
ing insulin or glucose levels because the JMA approach included an 
intrinsic adjustment for BMI.

The major strengths of our study are that we used a large sample  
size, that all cohorts were composed of individuals of European descent 
and, notably, that we used a validated statistical approach and success-
fully applied it at a genome-wide level for the first time. We identified 
all previously described associations with fasting insulin and glucose 
levels, which highlights the usefulness of the JMA approach, even in 
the absence of underlying gene-environment interaction.

We used a two-phase analytical approach with the conventional P < 
5.0 × 10−8 significance threshold in combined analyses to determine 
genome-wide significance for the identified SNPs. This approach has 
been shown to have greater power when the size of the follow-up 
sample is smaller than that of the discovery phase25,26 and has pre-
viously been successful applied by our group27–29 and others30. All  
12 loci described in Table 1 showed consistent directions of effect 
in the follow-up phase. However, in employing a replication strat-
egy that declares statistical significance on the basis of the follow-up 
phase alone, only 4 of the 12 loci would have reached conventional 
statistical significance after accounting for multiple testing (P < 
0.05/51 = 0.00098; with significance threshold of α/N1, where N1 is 
the number of associations tested based on 50 SNPs taken forward for  
replication including 1 SNP associated with both fasting glucose and 
insulin levels).

Only 12 significantly associated loci were identified after the sec-
ond stage, despite the fact that 50 loci were taken forward from the 
discovery stage and that only 2 or 3 associations at P < 0.00001 would 
be expected per trait under the hypothesis of no association. Among 
the reasons for the fewer than expected significant associations, the 
size of the follow-up sample is most noteworthy. To maximize sample 
size, we took advantage of studies that offered either de novo genotyp-
ing or access to genome-wide SNP arrays or had performed genotyp-
ing on the Metabochip. Although our study represents the largest 
effort of its kind, it should be acknowledged that the follow-up sample 
size was still approximately one-half of the size of the discovery sam-
ple, and false negatives might remain among those loci not reaching 
genome-wide significance.

We used the JMA as the primary model and further characterized 
only those loci that reached genome-wide significance in additional 
models. However, consideration of results from the follow-up stage 
alone showed that the interaction term at the COBBL1-GRB14 locus 
did not reach statistical significance in additional models, although we 
observed consistency in direction and effect size in phases 1 and 2.

Our main JMA model assumes a linear interaction, where the 
per-allele effect of a SNP changes across the continuous spectrum 

of BMI. If the interaction effect is nonlinear or a threshold effect 
exists, in which case the association would only be present in one 
extreme of the BMI distribution, the results of the interaction test 
with continuous BMI might not agree with those from a model with 
dichotomous BMI distribution. This could explain the inconsistencies 
of the interaction results for IRS1, PCSK1 and OR4S1, for which we 
did observe some suggestions of interaction in the stratified models, 
which were not supported by models including BMI as a continuous 
variable (Supplementary Fig. 3).

We used the JMA approach to test for the main genetic effects of 
SNPs with adjustment for BMI and to allow for interaction between 
BMI and SNPs, but the results we observed might be due to one 
of many factors that are correlated with BMI, including lifestyle. 
Additionally, although we identified genes that highlight potential 
new pathways to insulin resistance and T2D development, we recog-
nize that we have not localized the associations to specific genes.

Previous attempts to identify loci associated with insulin resist-
ance have been hindered in part by methodological limitations. In 
the present study, by using the newly developed JMA approach, we 
observed six additional loci associated with fasting insulin levels and 
other insulin resistance–associated traits. We used the JMA approach, 
as we hypothesized that the degree of adiposity might mask, posi-
tively confound or modify the associations between genetic variants 
and insulin resistance traits. Although the associations we observed 
resulted mainly from adjustment for BMI, the JMA method allowed 
the flexibility and power to observe these main effect–driven asso-
ciations, while allowing us to simultaneously test our hypothesis of 
interaction. The identification of these loci offers the potential to 
further characterize the etiology and causality of T2D and the role of 
insulin resistance in that process.

URLs. Quicktest, http://toby.freeshell.org/software/quicktest.
shtml; METAL, http://www.sph.umich.edu/csg/abecasis/Metal/; 
International HapMap Project, http://hapmap.ncbi.nlm.nih.gov/; 
SNPper, http://snpper.chip.org/; SNAP, http://www.broadinstitute.
org/mpg/snap/ldsearch.php; SIFT dbSNP, http://sift.jcvi.org/www/
SIFT_dbSNP.html; OMIM, http://www.ncbi.nlm.nih.gov/omim; 
GeneCards, http://www.genecards.org/; Microarray data, http://
genome.ucsc.edu/cgi-bin/hgNear; R, http://www.rproject.org/; 
SAS, http://sas.com; ProbABEL, http://www.genabel.org/packages/
ProbABEL.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Cohorts. We recruited 29 studies involved in MAGIC for the first phase of 
discovery analysis, totaling up to 58,070 individuals of European ancestry. 
Many of these studies were involved in the previous MAGIC effort on fasting 
glucose and fasting insulin levels3. In the second phase, follow-up included 
23 cohorts with fasting glucose data and 22 cohorts with fasting insulin data, 
comprising up to 38,422 and 33,823 non-diabetic individuals of European 
ancestry, respectively (detailed discovery and follow-up cohort characteris-
tics are presented in Supplementary Table 1). We excluded individuals with 
T2D on the basis of known T2D or anti-diabetic treatment and/or a fasting 
glucose level of ≥7 mM, so as to remove their influence on misclassification 
of trait levels67. Local research ethic committees approved all studies, and all 
participants gave informed consent to each original study.

Phenotypes and quantitative traits. Fasting glucose and fasting insulin levels 
were measured from whole blood, plasma or serum using assays specific for 
each cohort (Supplementary Table 1). Homeostatic model assessment indi-
ces HOMA-B and HOMA-IR were derived from fasting glucose and fasting 
insulin measures15. Fasting insulin, HOMA-B and HOMA-IR measures were 
log transformed for analyses. Anthropometric measurements, such as BMI 
(kg/m2), were obtained in each cohort, following standardized procedures. 
Trait values were not imputed, and outliers were not excluded.

Phase 1 discovery genotyping. All cohorts included in the discovery phase 
had genome-wide arrays performed, the details of which are specified 
(Supplementary Table 1). We implemented the following quality control 
inclusion criteria for the SNPs in all cohorts: (i) Hardy-Weinberg equilib-
rium P value of >1 × 10−6; (ii) minor allele frequency of >1% and (iii) SNP 
call rate of >95%. Imputation was performed using MACH68,69 (r2 >0.3) or 
IMPUTE70,71 (proper_info > 0.3) on the basis of the HapMap Utah residents 
of Northern and Western European ancestry (CEU) population (Build 36). 
Both genotyped and imputed SNPs were used in the analysis, with priority  
given to genotyped SNPs when both were available. Consequently, up to  
2.4 million SNPs (genotyped or imputed) were included in the discovery phase 
meta-analyses.

Phase 2 follow-up genotyping. Studies were invited to participate in the  
follow-up phase of the analysis through either in silico searches with existing 
genotype data or de novo genotyping. A large percentage of the follow-up  
cohorts used the Illumina Cardio-Metabochip. Study-specific details for  
follow-up genotyping are described (Supplementary Table 1).

Statistical models. Each study submitted regression summary statistics for 
the meta-analyses, all of which assumed an additive genetic effect and were 
adjusted at a minimum for age, sex and study-level covariates (Supplementary 
Table 1). The first regression model included SNP, BMI and SNP × BMI terms 
to allow for SNP × BMI interaction effects (model 1). This regression model 
was used in the JMA and is considered the primary analysis. Meta-analyses 
were performed on additional regression models solely to characterize the 
associations observed in the JMA as being driven by either SNP main effects 
or by SNP × BMI interactions. Main effects models estimating the effect of 
each SNP on the dependent variables were performed, both with (model 2) 
and without (model 3) adjustment for BMI. Additionally, the continuous BMI 
measure was dichotomized at 28 kg/m2; this cutoff was chosen on the basis of 
the median BMI in of the largest cohorts included in our discovery analysis. An 
interaction model using the dichotomized BMI was fit (model 4), and strati-
fied models were used to obtain stratum-specific estimates in leaner (BMI < 
28 kg/m2; model 5) and heavier (BMI ≥ 28 kg/m2; model 6) individuals. For 
models 1 and 4, both the SNP and SNP × BMI regression coefficients and their 
covariance matrix were reported by each study, and robust variance estimates 
were used to correct the observed inflation of the false positive rate for the 
interaction P value72.

In phase 1, models 1–3 were performed across the genome, whereas models  
4–6 were performed on SNPs with discovery JMA P values of <1 × 10−5. 
For phase 2, models 1–6 were performed using SNPs taken forward to the  
follow-up stage. Regression statistics were obtained with R, SAS, Quicktest 
or ProbABEL73 (Supplementary Table 1).

The models were fit as
Model 1. Y = β0+ βC × Cov + βSNP × SNP + βBMI × BMI + βSNP × BMI × SNP × 
BMI + ε (BMI as continuous variable)
Model 2. Y = β0+ βC × Cov + βSNP × SNP + ε
Model 3. Y = β0+ βC × Cov + βSNP × SNP + βBMI × BMI + ε
Model 4. Y = β0+ βC × Cov + βSNP × SNP + βBMI dichotomous × BMI + βSNP  
× BMI dichotomous × SNP × BMI + ε (BMI as a dichotomous variable)
Model 5. Y = β0+ βC × Cov + βSNP × SNP + ε (in individuals of BMI < 28)
Model 6. Y = β0+ βC × Cov + βSNP × SNP + ε (in individuals of BMI ≥ 28), 
where Y is the continuous outcome,  Cov is a matrix of covariates, such as age, 
sex and additional study–specific adjustments, and SNP is a single-nucleotide 
polymorphism with additive genetic coding. 

Meta-analyses in phases 1 and 2. Our objective was to identify genetic loci 
associated with fasting insulin, as a surrogate for insulin resistance, which may 
be masked by variation in or interaction with BMI. In the primary analysis, 
we performed a JMA of both the SNP effect and the SNP × BMI interaction 
effect from model 1, using a recently developed method14. The JMA is an 
effective screening tool when the underlying interaction model is unknown 
and, notably, retains power when there is no interaction effect. The JMA pro-
vides estimates of βSNP and βSNP × BMI and allows for a 2-degree-of-freedom 
joint test of the null hypothesis H0: βSNP = βSNP × BMI = 0, as well as a test of 
heterogeneity of regression coefficients. Additionally, the JMA detects associa-
tion in the presence of either a significant SNP effect, adjusted for BMI, or a 
SNP × BMI interaction effect. We implemented the JMA method in METAL  
(v. 2010-02-08, with a provided patch14). SNPs that reached a discovery signi
ficance threshold in the JMA of P < 1 × 10−5 with Phet > 0.001 and were 
available in at least one-third of the total sample size were taken forward to 
follow-up analyses. In order to characterize the association signals observed in 
the JMA, additional meta-analyses were performed that examined main effects 
and interaction effects separately. Inverse-variance weighted meta-analysis74  
and the heterogeneity test75 were applied in the univariate meta-analyses of 
the SNP main effects in models 2, 3, 5 and 6 and the SNP × BMI interaction 
effect from models 1 and 4.

In each genomic region identified from the JMA, the index SNP was cho-
sen as the SNP with the strongest association (lowest P value) unless the 
region contained a SNP known to be associated with a metabolic condition 
or trait (with P < 1 × 10−5), in which case the latter SNP was selected. In case 
a follow-up cohort was not able to provide results for an index SNP, several 
proxy SNPs were chosen using LD information from HapMap and the 1000 
Genomes Project76. SNPs identified by the JMA but which had previously 
reported associations with diabetes and/or diabetes-related quantitative 
traits in MAGIC were not selected for follow-up analyses and are reported 
in Supplementary Table 2.

Models 1–6 were performed within each follow-up study, and meta-analyses 
of the SNPs were performed within the follow-up cohorts and in a combined 
meta-analysis including the discovery cohorts. Meta-analyses were performed 
with proxy SNPs if the index SNP was not available. A SNP was considered 
to be significantly associated if the JMA in the combined sample yielded  
P < 5 × 10−8. Described effect estimates (Supplementary Table 3) were 
obtained from a combined meta-analysis that excluded proxy SNPs.

Two of the index SNPs (near CHL1 and TUBA3C) showed significant asso-
ciations in the discovery JMA. We excluded these loci from the combined 
analysis because we observed low Phet values and because neither the main 
effects nor the interaction models supported the associations observed in the 
JMA at these loci.

Conditional analyses. We conducted conditional analyses for index SNPs 
that were within approximately 1 Mb of established SNPs (known associations 
with T2D or glycemic traits). We conditioned on the established SNPs for a  
chromosome-specific analysis in the Framingham Heart Study, one of the larg-
est cohorts in the meta-analyses in which the associations of both the estab-
lished SNPs and the index SNP were observed. If the SNP retained nominal 
significance in the conditional analysis, we considered the association signal 
to be not solely caused by LD with the established SNP. Because only one study 
was involved in this conditional analysis, we used a significance threshold of 
0.05 to account for the limited power.
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Associations with related metabolic traits. As we were interested in the effect 
of the index SNPs on insulin resistance–related traits, associations of each 
index SNP with related glycemic traits and T2D were sought using results from 
previous DIAGRAM and MAGIC meta-analyses for T2D4, 2-hour glucose27 
and glycated hemoglobin28. We also performed searches of these SNPs in pub-
licly available data from previous meta-analyses of lipid quantitative traits18. 
Associations with BMI16 and WHR adjusted for BMI17 were also sought in 
published GIANT meta-analyses.

Functional exploration. To determine whether any index SNPs were in LD 
with nearby functional coding variants, we used SNPper77 to extract all SNPs 
that fell within 500 kb of the index SNP (1 Mb total). From this list, we chose 
all coding SNPs and used SNAP to determine whether any of these coding 
SNPs were in LD with the index SNP (CEU, 1000 Genomes Project; 500-kb 
distance). We used the online tool SIFT dbSNP to predict potential damage 
to the protein.

To establish whether index SNPs were in LD with known CNVs, we used a 
database of 7,411 SNPs that map to 3,188 CNVs from the Wellcome Trust Case 
Control Consortium (WTCCC)78 in addition to a list of 422 SNPs mapping to 
261 deletions79. All known SNPs in LD with these marker SNPs were retrieved 
using the SNAP tool (CEU, 1000 Genomes; within 500 kb). We determined 
whether any index SNPs were in LD with those SNPs mapping to CNVs.

Expression studies and eQTLs. We searched for genes potentially implicated 
in glycemic regulation and insulin resistance in the flanking regions 500 kb 
on each side of the index SNPs (1 Mb total). Functions of these genes were 
investigated using online resources, such as Online Mendelian Inheritance in 
Man (OMIM) or GeneCards V3.

We examined expression levels of candidate genes nearest the index SNPs 
and within 500 kb of the index SNPs using available online microarray expres-
sion data (Genomics Institute of the Novartis Research Foundation (GNF) 
Expression Atlas 2 Data from U133A and GNF1H Chips). Potential candidates 
for association with fasting insulin levels were further pursued with eQTL 
studies in available data sets.

We queried all SNPs in the 1-Mb region surrounding the index SNPs for 
fasting insulin levels to see whether they were associated with expression levels 
of any genes in a liver tissue gene expression database38, which used a sample 
size of 427 subjects of European ancestry and where SNPs with association  

P values less than 0.003 were listed. We used the SNAP tool to determine 
whether eQTLs were in LD with index SNPs for fasting insulin. Index SNPs 
for fasting insulin were also queried in the Multiple Tissue Human Expression 
Resource (MuTHER) expression database43 to determine whether any were 
eQTLs in subcutaneous adipose tissue (n = 776). Further eQTL searches were 
performed for top eQTL findings for any SNPs located within 1 Mb of each 
index SNP (P < 1 × 10−3). Data were analyzed in GenABEL and ProbABEL73. 
A genome-wide false discovery rate of 1% corresponded to a P-value threshold 
of 5.1 × 10−5, and data were corrected for multiple testing.
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