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Abstract: The aim of this paper is to infer the effects that change on human mobility had on the
transmission dynamics during the first four months of the SARS-CoV-2 pandemic in Costa Rica,
which could have played a role in delaying community transmission in the country. First, by
using parametric and non-parametric change-point detection techniques, we were able to identify
two different periods when the trend of daily new cases significantly changed. Second, we explored
the association of these changes with data on population mobility. This also allowed us to estimate
the lag between changes in human mobility and rates of daily new cases. The information was then
used to establish an association between changes in population mobility and the sanitary measures
adopted during the study period. Results showed that during the initial two months of the pandemic
in Costa Rica, the implementation of sanitary measures and their impact on reducing human mobility
translated to a mean reduction of 54% in the number of daily cases from the projected number,
delaying community transmission.
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1. Introduction

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has produced an unprecedented global sanitary crisis that has deeply disrupted
societies and decimated economies.

After attempts to contain the virus failed and COVID-19 spread to practically every
country in the world, nations implemented an arsenal of public health measures in an
effort to avoid or at least delay community transmission. Such measures included a diverse
range of lockdown-type interventions and different forms of business restrictions, which
basically aim at limiting population mobility and therefore reducing physical contact
among individuals outside their family nucleus [1,2].

As the pandemic unfolded, these measures had been lifted, reimposed, and modified
multiple times in an effort to avoid the collapse of health services and to mitigate the
number of deaths, at the same time allowing the return of different degrees of personal
freedom and giving a break to struggling economies. In this ongoing effort to balance these
two often opposing sides of the equation, the effectiveness of specific sanitary measures in
controlling the spread of COVID-19 has been largely disputed [3–5]. The concurrence of
numerous simultaneous sanitary measures, added to countless societal variables, makes
determining the effect of every individual measure a nearly impossible task.
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One way to study whether sanitary measures or sets of measures had a significant
impact on disease transmission is through establishing their association with changes in
population mobility and determining the impact of these changes in the speed of disease
transmission.

Studies on the issue of human mobility were first focused on restrictive measures
to avoid the geographic spread of SARS-CoV-2 in China [6,7] and on demonstrating
associations in theoretical models [8,9].

Badr et al. [10] used United States mobile phone data to study this issue outside
China. They were able to correlate mobility patterns with COVID-19 case growth rates.
More recently, Cot et al. [11] showed strong decreases in infection rates using Google and
Apple mobility data. The study focused on the effect of social distancing at the beginning
of the pandemic in Europe and the United States. Cazelles et al. [12] reached similar
conclusions in the period between the first and second waves in Europe using the effective
reproduction number.

Costa Rica represents a distinctive setting to test these assumptions. In this particular
Central American country, an initial effective control of the pandemic allowed avoiding
community transmission for the first four months—between March and July 2020—when
the virus was rapidly spreading in neighboring countries and almost across the whole
Americas [13]. Moreover, Costa Rica never imposed a total lockdown but rather imposed
restrictions to vehicular circulation combined with several restrictions to commercial
activity, public gatherings and school closures [14]. This situation allowed us to test our
hypotheses before community transmission was established and the detection of new cases
became more challenging.

2. Materials and Methods
2.1. Data. The Analysis Uses Three Different Sources of Information

• Epidemiological data: The number of daily confirmed COVID-19 cases in Costa Rica
from 6 March 2020 to 2 July 2020 was obtained from the Ministry of Health [14]. The
data covers 4023 laboratory-confirmed cases from 82 municipalities across the country.
On March 6, Costa Rica became the 89th country to confirm a COVID-19 patient within
the national territory, a 49-year-old woman visiting from New York [14]. During
the initial months of the pandemic, the growth of confirmed cases was relatively
stable in Costa Rica, and the majority of patients had a known chain of transmission.
Two months into the pandemic, the country was even highlighted as having the
lowest COVID-19 case fatality rate in the region [15]. However, by the second week
of June 2020, the daily new cases began a progressive growth. On 2 July 2020, with
4024 total confirmed cases, a 14-day case notification rate of 40.3 cases per 100,000
population and 17 deaths, the Ministry of Health declared community transmission
in the Greater Metropolitan Area after being unable to establish the epidemiological
nexus to 65% of all new positive cases detected over the last five days [14]. This region
comprises about 50% of the national population.

• Google’s Community Mobility Reports [16]: This data contains relative changes of
mobility according to Google’s applications with respect to the data observed on
a certain baseline. The baseline day is the median value using a five-week period in
January and February 2020. The relative changes are computed using the following
categories: Retail and Recreation, Parks, Transit stations, Residential, Grocery and
Pharmacy, and Workplaces.

• Sanitary measures: Since the first reported case of COVID-19 in Costa Rica, an inter-
institutional and comprehensive approach has guided the country’s response to mit-
igate the impact of the COVID-19 pandemic. One of the first measures aimed to
promote and facilitate physical distancing took place on 10 March 2020, with the
cancellation of all massive events and the instruction of working from home [14]. In
the days to come, the country restricted the capacity of public meeting spaces to 50%,
closed schools and universities, all air and land borders, bars, beaches, churches, gyms,
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theaters, and cinemas [14]. By 23 March 2020, with a total of 158 confirmed cases
spread across 30 municipalities (from a total of 82), public health authorities imposed
the first restriction to vehicle circulation, beginning with a nighttime restriction to cir-
culate from 10 p.m. to 5 a.m. [14]. The opening, closure, and allowed capacity for both
commercial activities and social gathering places, as well as the vehicle restrictions,
have been adjusted throughout the pandemic.

2.2. Methods

The methodological purpose of the study is three-fold. First, we determined significant
changes in the speed of disease transmission before the community transmission started
in Costa Rica. Second, we attempted to determine the validity of the association between
population mobility within the national territory and the speed of disease transmission
using a Bayesian approach in order to measure the impact of the detected changes. Third,
we identified which measures were adopted when those changes in mobility occurred in
order to explore the effectiveness of such sanitary measures in the control of the disease
using MANOVA.

The estimation of time points where the series of newly infected cases changed in
terms of trend, variability, or more distributional properties, can give an insight of the
approximate days where a certain intervention measure, or a combination of several
measures, impact the underlying behavior of the transmission dynamics. Those time points
are commonly referred to in the statistical literature as change-points. In this effort, the
detection of single and multiple change-points in the time series of new cases has been
a way to infer the impact of interventions in different countries. For example, Dehning et al.
combined Bayesian inference with compartmental models to identify plausible change-
points on the COVID-19 spreading rate in Germany [17], and Jiang et al. used a novel
combination of algorithms to detect multiple change-points in the series of confirmed cases
and deaths of COVID-19 over more than 30 countries [18]. Recently, Coughlin et al. showed
an interesting application of change-point detection in COVID-19 using the information of
new cases in 20 individual countries (excluding Costa Rica) and the European Union in
an aggregated way [19]. They were able to identify change-points in trend and variability
using a Bayesian Change Point model together with a B-spline procedure. In order to
estimate where those changes probably occurred in the series of newly infected cases,
we use non-parametric and parametric change-point detection techniques. In the case of
non-parametric, we used the Change Point model (CPM) for sequential multiple change
detection introduced in [20,21], implemented in [22–24] and broadly used in different
environmental applications, for example [25–28]. We used several hypothesis tests to
apply the non-parametric procedure on the Change Point model detection: Mood [29],
Lepage [30], and the well-known Kolmogorov–Smirnov, Mann–Whitney, and Cramer–von-
Mises tests. In the case of a parametric sequential detection of phase changes through
outlier identification according to [31] (Chen-Liu). The change-points detected are likely
due to the impact of mobility restrictions or allowances on the days before the effect was
quantified. A cross-correlation analysis among the rate of change of new cases and Google’s
Mobility Trends allowed us to determine which lags are more significant under a Pearson
hypothesis test.

To determine the association between changes detected in disease transmission and
population mobility, we used a Bayesian Structural Time (BST) series model fitted with a
Markov chain Monte Carlo (MCMC) sampling algorithm. The model was then combined
with data from Google’s Community Mobility Reports to infer the cumulative difference
between the observed and expected number of the projected cases after the change- points
were detected. In this way, we attempt to combine the above information to infer the causal
impact of the mobility preceding each change-point. Here we use a certain type of BST
model called the Bayesian structural time-series model [32] with a set of K lagged covariates
with significant association with respect to the dependent variable. The covariate lags can
be determined by means of cross-correlation analysis. Two advantages of this model are
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that: (1) it is able to keep the temporal association in the modeling process without using
the restrictive assumption of independence in observations and (2) the Bayesian approach
combined with a state-space structure assures a natural way to propagate the uncertainty
along the model hierarchy. In our case, the BST model can be written as:

yt = µt + xT
t β + σyεt

µt = µt−1 + σµηt
(1)

where yt are the new infections due to COVID-19 at day t, xT
t = (M(1)

t−l1, M(2)
t−l2, M(K)

t−lK
) are

lagged mobility covariates with their respective lags lk(k = 1, . . . , K), β = (β1, . . . , βK)
T , σy

and σµ are parameters, µt is a latent variable indicating the trend behavior of yt, and εt and
ηt are normally-distributed white noises.

We use the MCMC algorithm to fit the model according to Equation (1), using the
available data before each change-point occurred and assuming for the subsequent change-
point that the data starts immediately after the previous change-point happened. The
parameter set θ = (β, σy, σµ) is assumed to follow a spike-and-slab prior according to
Equation 2.8 in [32]. The MCMC is performed with the R package CausalImpact [32],
where posterior samples of the observed series and model parameters θ are computed.
For each model, the time period can be divided into two different sets: a pre-intervention
period containing the time before the change-point occurs and where the MCMC process is
performed and a post-intervention period, where the MCMC process gives estimates of the
observed series that we then compare with real values in order to approximate the causal
effect of interventions.

In general, BST models provide methodological alternatives to include different
sources of information together with a hierarchical structure of latent variables and error
terms [33]. The BST approach during the estimation process provides a natural way to
combine prior and sample information in the specification of the posterior distributions
of both latent variables and parameters. In this sense, the MCMC algorithm helps to
obtain those posterior distributions with many computational advantages. Bayesian and
frequentist structural models have been widely used in epidemiological and environmental
applications [34–37].

To explore associations between the variations detected in population mobility and
the sanitary measures adopted by the health authorities, we identify all sets of measures
imposed from March through June 2020, just before the appearance of the COVID-19
community transmission in Costa Rica. For simplicity, we assume that each set of measures
is represented by an indicator at a unique date, chosen as the midpoint of the period where
the set of measures is valid. We then apply a MANOVA model among the four mobility
series (Retail and Recreation, Parks, Transit stations and Residential) and two temporal
components: (1) a weekly seasonal effect and (2) a conditional effect of the set of measures
given that the time of the previous set is taken as the start of the fitting set of observations.
Finally, we apply a Pillai test to infer the effect of each individual set of measures given
its preceding set to quantify its conditional impact on the mobility series. In this way, we
were able to associate the set of measures with the mobility information to deduce their
qualitative impact on the number of cases of COVID-19.

3. Results

Using the change-point for sequential multiple change detection, we detected sig-
nificant points with the non-parametric Mood [29] and Lepage [30] tests using the series
of log-differences of newly infected cases as a way to quantify the rate of change of the
overall series. Figure 1 shows the series of new infected COVID-19 cases with the estimated
change-points with the available methodologies.
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Figure 1. Estimated change-points (vertical lines) of new COVID-19 infected cases, comparing between the three methods.

Note that all the procedures were able to identify at least three different periods
where the distributional properties of the newly infected cases significantly changed. Since
the methods detect different elements, the periods identified are not the same, but when
combined, they show a larger consensus that the series of newly infected cases experiences
change-points in dates between 14 April 2020 and 18 April 2020 and between 3 June 2020
and 19 June 2020. For ease of analysis, we chose 18 April 2020 and 19 June 2020 as the
estimated dates where the change-points occurred.

A cross-correlation analysis among the rate of change of new cases during mid-April
and mid-June 2020 and Google’s Mobility Trends allowed us to determine that seven-to-
eight-day lags are more significant under a Pearson hypothesis test, as shown in Table 1.

Table 1. Significant cross-correlation lags under a Pearson test. The remaining categories show
no-significant lags.

Categories Notation in (1) Lag (Days)

Retail and Recreation M(1)
t 7

Parks M(2)
t 7

Transit stations M(3)
t 7

Residential M(4)
t 8

We then fit two BST models. The first one assumes that 18 April 2020 is a change point,
and the second one does the same with 19 June 2020, using the MCMC procedure with
1000 samples. We used the set of Google’s mobility series along with their lags as covariates.

The upper panels of Figure 2 contain the Bayesian estimation of the observed process
for both periods together with their respective 95% predictive regions. The lower panels
contain the posterior estimation of the cumulative effect of the intervention along the
post-intervention period.
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Figure 2. Upper panels: Bayesian estimation (green line and green shaded 95% credible region) of the observed number of
COVID-19 cases (black line) during the study periods: 14 March–2 June 2020 (left) and 18 April–2 July 2020 (right). Lower
panels: the estimated cumulative effect of the measures taken before 18 April 2020 (left) and 19 June 2020 (right).

The upper-left panel in Figure 2 shows the Bayesian estimation of the causal ef-
fect using 14 March 2020 through 18 April 2020 data as the pre-intervention period and
19 April 2020 through 2 June 2020 as the post-intervention period. We remark that be-
tween 342 and 697 cases represent a 95% confidence interval of the cumulative effect
on 2 June 2020 of the set of interventions before 18 April 2020, with a mean value of
526 cases. This mean value approximately represents 47% of the observed cumulative cases
on 2 June 2020. The daily difference between the expected (under the pre-intervention
conditions) and the observed number of cases is between 6 and 15 cases with the same
confidence level, with a mean difference of 11 cases. In relative terms, there is a mean
reduction of 54% in the number of daily cases with a confidence interval of (35%, 71%)
approximately.

The upper-right panel in Figure 2 shows the fitting with 19 April 2020 through
19 June 2020 as pre-intervention period and 20 June 2020 through 2 July 2020 as post-
intervention period. In this case, the effect is the opposite. There is a mean cumulative
difference between observed and estimated cases of 1965 cases on 2 July 2020. This repre-
sents 48.8% of the observed cumulative cases on the same date. The daily difference among
the observed and the expected number of cases (under the pre-intervention conditions)
is between 109 and 131 cases with the same confidence level, with a mean difference of
120 cases. In relative terms, there is a mean increase of 387% in the number of daily cases
with a confidence interval of (351%, 423%) approximately.

Table 2 contains the sets of measures from 10 March 2020 to 21 June 2020, just before
the community transmission started in Costa Rica. The conditional effect of each set of
measures is shown in the fourth column, measured by the p-value of the Pillai test. Note
that all the sets cause a significant effect on the group of mobility covariates when we
consider the weekly effect of mobility patterns. However, the effect of mobility with respect
to sanitary measures varies across time periods. The first two sets are expected to show
a larger effect because of the abrupt change in mobility behavior during March 2020 (see
Figure 3). In these initial periods, although sanitary measures greatly impacted human
mobility, they are not expected to correlate with significant changes in disease transmission
because infected cases were still too low. Afterward, the conditional effect of additional
measures is smaller, but set 4 shows a larger impact due to the general mobility restriction
during the period between April 8 and 12 (Holy Week in Costa Rica). Starting from set
5, the subsequent mobility openings had a significant impact on Google’s indices, and
the effect tends to decline by the end of June 2020. That is, the effect of lifting sanitary
measures significantly increased the mobility in the period associated with an increase in
newly reported cases.
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Table 2. Sanitary and mobility measures from March through June, 2020. The p-value of the Pillai test is shown in the
fourth column.

Set Date Measures Pillai Test

1 3/10–3/22
Cancellation of massive events and work from

home instructions; closure of bars and casinos; Government declares National Emergency;
Closure of all schools and borders; Closure of movies, theaters, and gymnasiums, malls at 50%.

<2.2 × 10−16

2 3/23–4/2

Closure of beaches, churches, and national parks;
Start of vehicle restrictions from 10 p.m. to 5 a.m.; Vehicle restriction on weekends from 8 p.m.

to 5 a.m.; Closure of non-essential commercial activities starting at 8 p.m. and during the
weekend.

8.94 × 10−14

3 4/3–4/7
Daytime vehicle restriction from 5 a.m. to 5 p.m.,

with plate distribution and nighttime vehicle restriction from 5 p.m. to 5 a.m.; Restriction of
long-distance public transportation; Closure of non-essential commercial activities.

2.38 × 10−3

4 4/8–4/12 The circulation of vehicles and public transportation was suspended. 2.71 × 10−11

5 4/13–4/30

Day-time vehicle restriction from 5 a.m. to 7 p.m.
with plate distribution; Total nighttime vehicle restriction from 7 p.m. to 5 a.m.; On weekends,

total vehicle restriction (with exceptions to access to essential services); Commerce may
function from 5 a.m. to 7 p.m., weekends delivery only.

9.65 × 10−10

6 5/1–5/15 The first phase of gradual reopening of commercial activities; Vehicle restriction from 5 a.m. to
7 p.m. with plate distribution; Total night-time restriction from 7 p.m. to 5 a.m. 2.01 × 10−7

7 5/16–5/31
The second phase of the gradual reopening

of commercial activities; Vehicle restriction from 5 a.m. to 10 p.m. with plate distribution; Total
nighttime restriction from 10 p.m. to 5 a.m.

2.03 × 10−5

8 6/1–6/19

The third phase of the gradual reopening of
commercial activities; Vehicle restriction from 5 a.m. to 10 p.m. with plate distribution; Total

nighttime restriction from 10 p.m. to 5 a.m.; Differentiated vehicle restriction in municipalities
located near the northern border area of Costa Rica.

8.84 × 10−4

9 6/20–6/21 Total vehicle restriction with circulation only
to essential services; Closure of non-essential commercial activities. 8.84 × 10−4

Figure 3. Google mobility indices (solid lines) along with the sets of sanitary and mobility measures (dashed lines). The sets
of measures are defined in Table 2. Abscissa: Time (Days), Ordinate: Daily Google Mobility Index.
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4. Discussion

As the transmission of the SARS-CoV-2 virus has progressed around the world, a pri-
mary focus of decision-makers has been to implement comprehensive public health mea-
sures adapted to each country’s unique capacities and context [38]. Our findings show
several conclusions that may prove useful to inform on the effectiveness of some of such
measures to slow down the transmission of the disease or the role that they may have had
in delaying community transmission.

First, through the use of change-point detection algorithms, we were able to identify
two periods where the tendency of cases significantly varied. Then BTS models found
a direct association between human mobility and this reduction in the transmission rate of
the disease. After the first detected change-point on 18 April 2020, we were able to estimate
a mean reduction of 54% in the number of daily cases from the projected number. We
identified an association between some sanitary measures and this significant variation in
human mobility patterns. Based on the estimated lag period of seven days and the high
correlation estimated by the Pillai test, this reduction in the number of cases can be traced
back to the set of sanitary measures taken by the health authorities during Holy Week,
from 3 April 2020 to 12 April 2020 [14], in which the circulation of vehicles and public
transportation was suspended. This finding proves wrong arguments against restrictions
in vehicular circulation as not effective at reducing the transmission of SARS-CoV-2 in
Costa Rica.

During March and April 2020, the epidemiological context of the country was led
by well-established clusters of cases and a slow increase in the number of daily cases.
However, the country was also in a race to increase hospital capacity, mainly for intensive
care units. This health crisis drove the Ministry of Health to implement restrictive measures
in order to flatten the curve of new cases, to avoid the saturation of health care services, and
to give time to health officials to increase the human resources, hospital beds, ventilators,
and personal protective equipment necessary to care for the patients.

It is also noteworthy that the effect of these restrictions was significant even compared
to the previous period, when human mobility was already reduced due to major sanitary
measures, such as the cancellation of massive events, school closures, and restrictions on all
non-essential commercial activities. Indeed, in 2021, Costa Rica has seen the largest surge
in cases and hospital admissions so far; this led to health authorities imposing restrictions
in commercial activity and school closures. In light of the research presented in this article,
the consideration of adopting restrictions in the circulation of vehicles may be supported
by findings in this study.

The epidemiological context and results of the second detected change-point was
vastly different from the first period. The analysis showed an increase of 387% in the
number of new daily cases with respect to the projection by the BTS analysis. Before
20 June 2020, the country started the gradual reopening of commercial activities, as the
number of new cases was stabilizing, and health officials had started to increase hospital
capacity. These measures started on 1 May 2020 [14], divided into periods of 14 days each
and involved the gradual opening of businesses such as gymnasiums, movie theaters,
beauty salons, hotels, as well as the opening of beaches with restrictive schedules, and
national parks [14].

Overall, during this second period of the analysis, although mobility dynamics were
positively correlated with easing public health measures, the results of the Pillai test showed
a weaker conditional effect compared to the first period of analysis. This can be expected
due to the complex interaction of the other social, economic, and behavioral factors in this
period. For example, besides the gradual reopening of commerce, the country was also
starting to witness an increase in the number of new cases detected in areas located near
the northern border of Costa Rica with Nicaragua. The cases were mostly linked with
clusters being reported in locations with agricultural activities and processing factories [14],
which typically receive a significant number of migrant workers who cross illegally, despite
the border being closed. These phenomena may have limited the capacity of the models
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to accurately associate the increase in daily new cases with the public health measures
implemented during that period.

Our findings of 7–8 days lag effect on infections after the onset of mobility reduction
contrast with those of Cot et al. [11], who reported 2–5 weeks and are closer to the 9–12 days
described by Badr et al. [10]. Our numbers are consistent with the incubation time of
SARS-CoV-2, which may reflect a more direct effect on the mobility measures captured
in our study. Our reduction effect on infection rates of 54% is about the average of what
Cot et al. [11] found for Europe and the United States and are comparable to the 35% and
63% reported by Badr et al. in [10].

We remark that one of the limitations of the study is that mobility data is aggregated
at a national level. Therefore, it was not possible to analyze differences in mobility by
region. Moreover, the statistical analysis relied on a series of assumptions. For example,
the use of a single midpoint to represent each set of measures can change their real effect
over the mobility series, or the effect not accounted for by the mobility data on the detected
change-points can have more temporal structure than the one assumed in Equation (1).
The study also has limitations on capturing the effect of behavioral changes associated with
sanitary measures in different periods of the pandemic. The imposition of restrictions in
the early stages of the disease might have had a larger impact due to the fear in the general
population of a new deadly virus. The widespread use of personal protective measures
such as face masks also changed during the pandemic.

Despite these limitations, results from our study provide an insight into the critical
role of sanitary measures in controlling the spread of the virus in the initial phases, when
countries and health systems are preparing to receive a surge in severe cases. It is important
to communicate these results and their conclusions to public health experts and decision
makers currently battling to control the pandemic and to those in charge of preparing for
future (similar) events.

Further research should explore the effect of human mobility and the role that sanitary
measures play in the context of vaccination roll-outs and the emergence of new variants
of SARS-CoV-2. Beyond the elevated death toll of COVID-19, the cost of having had an
international community poorly prepared to confront the challenges of the pandemic prior
to 2020 will bring serious and lasting consequences to the whole world, some of which
we are only starting to understand. In an effort to learn our lessons, it is important to
study which measures have been effective to contain, control, or mitigate the spread of the
disease. This study can contribute to being better prepared for future pandemics but can
also inform on tools to transition out of the current situation.
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