

Easy and accurate Ethernet design validation and debug

The Agilent Technologies N5392A Ethernet electrical performance validation and conformance software for Infiniium oscilloscopes provides you with an easy and accurate way to verify and debug your 1000BASE-T, 100BASE-TX and 10BASE-T Ethernet designs. The Ethernet electrical test software allows you to automatically execute Ethernet physical-layer (PHY) electrical tests, and it displays the results in a flexible report format. In addition to the measurement data, the report provides a margin analysis that shows how closely your device passed or failed each test.

To make 1000BASE-T, 100BASE-TX and 10BASE-T measurements with the N5392A Ethernet electrical test software, you also need the Agilent N5395C Ethernet electrical conformance test fixture. If you want to make 1000BASE-T jitter

Agilent Technologies N5392A Ethernet Electrical Performance Validation and Conformance Software for Infiniium Oscilloscopes

N5395C Ethernet Electrical Conformance Test Fixture N5396A Gigabit Ethernet Jitter Test Cable

Data Sheet

measurements, you also need the Agilent N5396A Gigabit Ethernet jitter test cable. In addition, you can use Agilent 33250A arbitrary waveform generators as disturbing signal sources and choose from a variety of Agilent vector network analyzers to make your return loss measurements.

The N5392A Ethernet electrical test software performs a wide range of electrical tests required to meet the Ethernet electrical specifications for 1000BASE-T, 100BASE-TX and 10BASE-T systems as documented in the IEEE 802.3-2005 and ANSI X3.263-1995 standards. To meet signal quality requirements, your product must successfully pass conformance testing based on these specifications. Performing these tests gives you confidence in your design. The N5392A Ethernet electrical test software helps you execute a wide subset of the conformance tests that can be measured with an oscilloscope.

Features

The N5392A Ethernet electrical test software offers several features to simplify the validation of Ethernet designs:

- Setup wizard for quick and clear setup, configuration and test
- Wide range of 1000BASE-T, 100BASE-TX and 10BASE-T tests enabling standards conformance
- Disturbing signal support for 1000BASE-T Test Mode 1 and 4 tests
- Accurate and repeatable results
 with Agilent Infiniium oscilloscopes
- Accurate return loss measurements with supported Agilent vector network analyzers
- Automated reporting in a comprehensive HTML format with margin analysis

With the Ethernet electrical test software, you can use the same oscilloscope you use for everyday debugging to perform automated testing and margin analysis based on the Ethernet-standards.

Agilent Technologies

N5392A software saves you time

The N5392A Ethernet electrical test software saves you time by setting the stage for automatic execution of Ethernet electrical tests. Part of the difficulty of performing electrical tests for Ethernet is properly connecting to the oscilloscope, loading the proper setup files, and then analyzing the measured results by comparing them to limits published in the specification. The Ethernet electrical test software does much of this work for you.

The N5392A Ethernet electrical test software automatically configures the oscilloscope for each test, and it provides an informative results report that includes margin analysis indicating how close your product is to passing or failing that specification. See Tables 3 to 5 for a complete list of the measurements made by the Ethernet electrical test software.

Easy test definition

The N5392A Ethernet electrical test software extends the ease-of-use advantages of Agilent's Infiniium oscilloscopes to testing Ethernet designs. The Agilent automated test engine walks you quickly through the steps required to define the tests you want to make, set up the tests, perform the tests, and view the test results. A setup page enables you to quickly make decisions from the outset regarding the choice of tests and perform functions that affect the testing task. The test selections available in the following steps are then filtered according to the choices made in the setup page. While selecting tests, you can select a category of tests all at once, or specify individual tests. You can save tests and configurations as project files and recall them later for quick testing and review of previous test results. Straightforward menus let you perform tests with a minimum of mouse clicks.

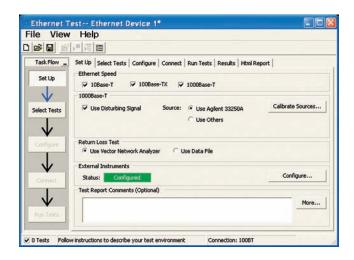


Figure 1. The clean interface of the setup page enables you to quickly make decisions and perform functions that affect the testing task.

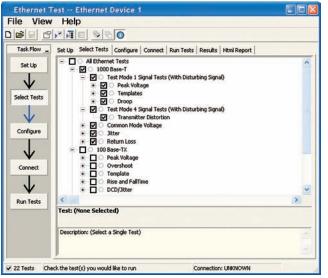


Figure 2. The Agilent automated test engine guides you quickly through selecting and configuring tests, setting up the connection, running the tests, and viewing the results. You can easily select individual tests or groups of tests with a mouse-click.

Configurability and guided connections

The N5392A Ethernet electrical test software provides flexibility in your test setup. It guides you to make connection changes with hookup diagrams when the tests you select require it. All Ethernet electrical conformance tests you perform are based on the Agilent N5395C Ethernet electrical conformance test fixture and N5396A Gigabit Ethernet jitter test cable. You connect the oscilloscope to the conformance test fixture using Agilent InfiniiMax active differential probes, SMA cables and BNC cables. Even when you use additional instruments such as the arbitrary waveform generator as the disturbing signal source, or the vector network analyzer for return loss measurements, the N5392A will guide you through the connections with detailed instructions and diagrams.

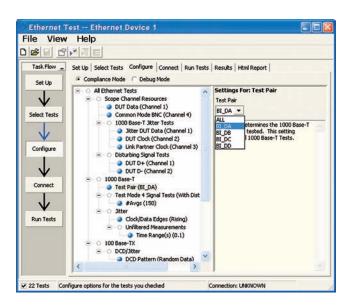


Figure 3. To set up tests, you define the device to test, its configuration, and how the oscilloscope is connected to it.

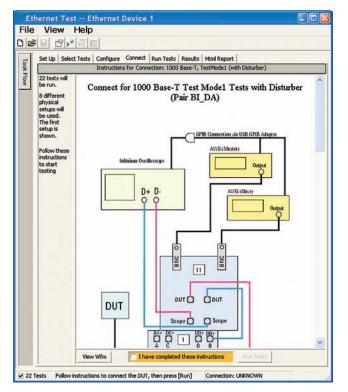


Figure 4. When you make multiple tests where the connections must be changed, the software prompts you with connection diagrams.

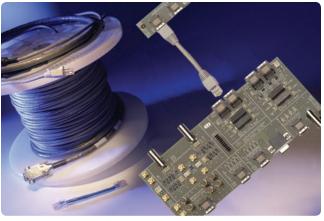


Figure 5. The N5395C Ethernet electrical conformance test fixture and N5396A Gigabit Ethernet jitter test cable.

Reports with margin analysis

In addition to providing you with measurement results, the N5392A Ethernet electrical test software provides a report format that shows you not only where your product passes or fails, but also reports how close you are to the limits specified for a particular test. You can select the margin test report parameter, which means you can specify the level at which warnings are issued to alert you to electrical tests where your product is operating close to the official test limit defined by the Ethernet specification.

6 8						
Task Flow	Set Up Select Tests Confi	gure Connect Run Tests Results H	tml Report			
Set Up	Test Name	Spec Range	Actual Val	Margin		
Surop	√ 1000 Base-T, Point A Pe	ak Output Volt (670.0mV to 820.0mV)	725.5mV	37.0%		
12	1000 Base-T, Point B Per	ak Output Volta (670.0mV to 820.0mV)	717.4mV	31.6%		
¥	X 1000 Base-T, Difference	A,B Peak Outp < 1.00%	1.35%	-35.0%		
Select Tests	√ 1000 Base-T, Point C Pe	ak Output Volt < 2.00%	560m%	72.0%		
	1000 Base-T, Point D Pe	ak Output Volt < 2.00%	540m%	73.0%		
11	√ 1000 Base-T, Point A Ter	0.000	0.0%			
¥	1000 Base-T, Point B Ter	0.000	0.0%			
Configure	√ 1000 Base-T, Point C Te	✓ 1000 Base-T. Point C Template Test(w/ No Mask Failures				
	1000 Base-T, Point D Te	mplate Test(w/ No Mask Failures	0.000	0.0%		
	√ 1000 Base-T, Point F Ter	nplate Test(w/ No Mask Failures	0.000	0.0%		
¥	Details: 1000 Base-T, Po	int A Template Test(w/o Disturbing	Signal)			
Connect	🗸 Summary 🗸 Trial 1	Trial 2 🗸 Trial 3 🗸 Trial 4	🗸 Trial 5 🗸	Trial 6		
	Parameter	Value	A Refere	ence Images:		
Run Tests	Test Limits Parameter Tested Actual Value	No Mask Failures Total # Failures 0		ate Point A, i) No Failures		
	Referenced Values:			Λ		
	Test Pair	BI_DB	~			
	# Was informer	=0				
	<		2 <u> </u>	The second se		

Figure 6. The Ethernet electrical test software results screen shows a summary of the tests performed, pass/fail status, and margin. Clicking on a specific test also shows the test specification and a measurement waveform, if appropriate.

×	🗧 Agilent Technologies				Report S Compac	Style t Verbor
	Ethernet Te	st Rep	oort			
	Overall Results:0 o	f 13 Tests	Failed			
	Test Configural	tion Details	R.			
	Test Session	n Details				
	Infinitum SW Version	05.20.0001	12 L			
	Infiniium Model Number	DS081204	A			
	Infiniium Serial Number	No Serial				
	Last Test Date	4/7/2007 5	39:38 PM			
٧	rgin Thresholds Varning <2 % Critical <0 %					
V	Varning < 2 % Critical < 0 %		Snec Bang		Measured Value	Margin
V	Varning < 2 % Critical < 0 % Is Test Name		Spec Rang		Measured Value	Second Second
V	Varning < 2 %	gnal)	Spec Rang (670.0mV to (670.0mV to	820.0mV)	765.9mV	36.1 %
V	Varning < 2 % Critical < 0 % Is Test Name	gnal) gnal)	(670.0mV to (670.0mV to	820.0mV)	765.9mV	36.1 % 40.5 %
V	Varning < 2 %	gnal) gnal) bing Signal)	(670.0mV to (670.0mV to	820.0mV)	765.9mV 759.2mV	36.1 % 40.5 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal)	(670.0mV to (670.0mV to < 1.00%	820.0mV) 820.0mV)	765.9mV 759.2mV 880m%	36.1 % 40.5 % 12.0 % 97.5 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00%	820.0mV) 820.0mV)	765.9mV 759.2mV 880m% 50m%	36.1 % 40.5 % 12.0 % 97.5 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00% < 2.00%	820.0mV) 820.0mV)	765.9mV 759.2mV 880m% 50m% 410m%	36.1 % 40.5 % 12.0 % 97.5 % 79.5 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00% < 2.00% No Mask Fa	820.0mV) 820.0mV) ilures ilures	765.9mV 759.2mV 880m% 50m% 410m% 0.000	36.1 % 40.5 % 12.0 % 97.5 % 79.5 % 0.0 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00% < 2.00% No Mask Fa No Mask Fa	820.0mV) 820.0mV) illures illures illures	765.9mV 759.2mV 880m% 50m% 410m% 0.000 0.000	36.1 % 40.5 % 12.0 % 97.5 % 79.5 % 0.0 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00% < 2.00% No Mask Fa No Mask Fa No Mask Fa	820.0mV) 820.0mV) illures illures illures illures	765.9mV 759.2mV 880m% 50m% 410m% 0.000 0.000 0.000	36.1 % 40.5 % 12.0 % 97.5 % 79.5 % 0.0 % 0.0 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00% < 2.00% No Mask Fa No Mask Fa No Mask Fa	820.0mV) 820.0mV) ilures ilures ilures ilures ilures ilures	765.9mV 759.2mV 880m% 50m% 410m% 0.000 0.000 0.000 0.000 0.000	36.1 % 40.5 % 12.0 % 97.5 % 79.5 % 0.0 % 0.0 % 0.0 %
V	Varning < 2 %	gnal) gnal) bing Signal) gnal) gnal)	(670.0mV to (670.0mV to < 1.00% < 2.00% < 2.00% No Mask Fa No Mask Fa No Mask Fa No Mask Fa	820.0mV) 820.0mV) ilures ilures ilures ilures ilures ilures ilures	765.9mV 759.2mV 880m% 50m% 410m% 0.000 0.000 0.000 0.000 0.000 0.000	36.1% 40.5% 12.0% 97.5% 0.0% 0.0% 0.0% 0.0%

Figure 7. The Ethernet electrical test software HTML report documents your test, indicates the pass/fail status, the test specification range, the measured values, and the margin.

Reports with margin analysis (continued)

							pe at Point A shall (worst of 16)			V 10 0.82V (0	.75V +/+ 0.83
)etails:										
-	Summ										
P/F					in Test Pai						
1	Trial 1			39.6	BI_DA	128					
4	Trial 2			39.5	BI_DB	128					
1	Trial 3			42.6	BI_DC	128					
1	Trial 4			37.3	BI_DD	128					
1	Trial 5			37.8	BI_DA	128					
1	Trial 6			38.4	BI_DB	128					
1	Trial 7			37.5	BI_DC	128					
4	Trial 8			37.0	BI_DD	128					
1	Trial 9			42.4	BI_DA	128					
1	Trial 10			41.7	BLDB	128					
1	Trial 11			41.5	BI_DC	128					
4	Trial 12			41.7	BI_DD	128					
1	Trial 13			41.6	BI_DA	128					
1	Trial 14	731	8mV	41.2	BI_DB	128					
1	Trial 15	732	9mV	41.9	BI_DC	128					
	Trial 16	731	8mV	41.2	BLDD	128					
	Mean	730	.3m	40.18		1.10					
	StDev	2.98	88m	1.992							
	Range	8.40	90m	5.600	1						
	Min	725	.5m	37.00	1						
	Мах	733	9m	42.60							
k A	è	_									
		A. ((Pair A)								1
	1		1	1		1	1		1	I	
	1		1	1		:	8		1	1	
				1	1	1	1000 Carlos 100				
				1	1	1					
	1			11		1				1	
				1	himmon						
	1			1							
	1.00		1. 10	1 1	0.00	11	100 6.00	0.000	2.0.0	1 11	
			1 1	6		1				-	
*****				1					0.000		
			÷ 1	1			- E		¥.:		

Figure 8. Additional details are available for each test, including the test limits, test description, and test results, including waveforms, if appropriate.

W	in Thresholds aming < 2 % ittical < 0 %			
Pass	Test Name	Spec Range	Measured Value	Margin
1	1000 Base-T, Point A Peak Output Voltage(w/o Disturbing Signal)	(670.0mV to 820.0mV)	725.5mV	37.0 %
1	1000 Base-T, Point B Peak Output Voltage(w/o Disturbing Signal)	(670.0mV to 820.0mV)	717.4mV	31.6 %
×	1000 Base-T, Difference A.B Peak Output Voltage(w/o Disturbing Signal)	< 1.00%	1.35%	-35.0 %
4	1000 Base-T, Point C Peak Output Voltage(w/o Disturbing Signal)	< 2.00%	560m%	72.0 %
1	1000 Base-T, Point D Peak Output Voltage(w/o Disturbing Signal)	< 2.00%	540m%	73.0 %
1	1000 Base-T. Point A Template Test(w/o Disturbing Signal)	No Mask Failures	0.000	0.0 %
1	1000 Base-T, Point B Template Test(w/o Disturbing Signal)	No Mask Failures	0.000	0.0 %
4	1000 Base-T, Point C Template Test(w/o Disturbing Signal)	No Mask Failures	0,000	0.0 %
1	1000 Base-T, Point D Template Test(w/o Disturbing Signal)	No Mask Failures	0.000	0.0 %
1	1000 Base-T, Point F Template Test(w/o Disturbing Signal)	No Mask Failures	0.000	0.0 %
1	1000 Base-T, Point H Template Test(w/o Disturbing Signal)	No Mask Failures	0.000	0.0 %
1	1000 Base-T, Point G Droop Test(w/o Disturbing Signal)	> 73.10%	95.23%	30.3 %
1	1000 Base-T, Point J Droop Test(w/o Disturbing Signal)	> 73.10%	94.84%	29.7 %

Figure 9. How close your device comes to passing or failing a test is indicated as a % in the margin field. A result highlighted in yellow or red indicates that your device has tripped the margin threshold level for a warning or failure.

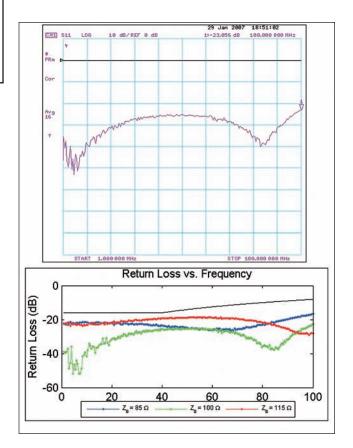


Figure 10. Make accurate and repeatable return loss measurements with a supported Agilent vector network analyzer for confident correlation to the standards. The N5392A software helps you to acquire the measurement data from your network analyzer and perform the necessary calculations.

Extensibility

You may add additional custom tests or steps to your application using the N5467A User Defined Application (UDA) development tool (www.agilent.com/find/uda). Use UDA to develop functional "Add-Ins" that you can plug into your application.:

Add-ins may be designed as:

- Complete custom tests (with configuration variables and connection prompts)
- Any custom steps such as pre or post processing scripts, external instrument control and your own device control

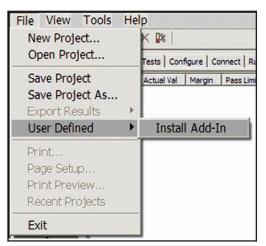


Figure 11. Importing a UDA Add-In into your test application.

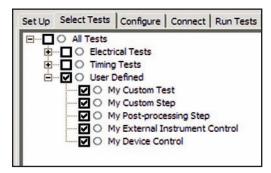


Figure 12. UDA Add-In tests and utilities in your test application.

Automation

You can completely automate execution of your application's tests and Add-Ins from a separate PC using the included N5452A Remote Interface feature (download free toolkit from www.agilent.com/find/scope-apps-sw). You can even create and execute automation scripts right inside the application using a convenient built-in client.

The commands required for each task may be created using a command wizard or from "remote hints" accessible throughout the user interface.

Using automation, you can accelerate complex testing scenarios and even automate manual tasks such as:

- Opening projects, executing tests and saving results
- Executing tests repeatedly while changing configurations
- Sending commands to external instruments
- Executing tests out of order

Combine the power of built-in automation and extensibility to transform your application into a complete test suite executive:

- Interact with your device controller to place it into desired states or test modes before test execution.
- Configure additional instruments used in your test suite such as a pattern generator and probe switch matrix.
- Export data generated by your tests and post-process it using your favorite environment, such as MATLAB, Python, LabVIEW, C, C++, Visual Basic etc.
- Sequence or repeat the tests and "Add-In" custom steps execution in any order for complete test coverage of the test plan.

Figure 13. Remote Programming script in the Automation tab.

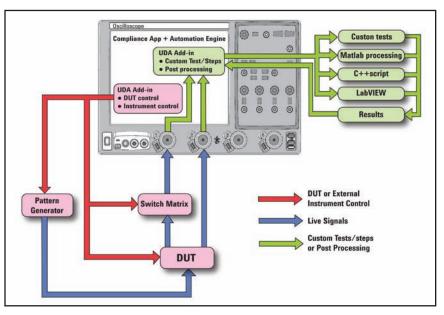


Figure 14. Combine the power of built-in automation and extensibility to transform your application into a complete test suite executive.

Oscilloscope compatibility

The N5392A Ethernet Conformance software will run on:

- 8000 Series, version 5.2 or higher
- 9000 Series, version 1.0 or higher
- 9000 H-Series, version 1.0 or higher
- 90000 Series, version 2.10 or higher
- 90000 X-Series, version 3.0 or higher

These are shown in Table 1 below

- with minimum recommended
- bandwidth model and probes shown.
- For oscilloscopes with earlier software
- revisions, upgrade software is
- available at:
 - http://www.agilent.com/find/infiniium_software.

Data rate	Standard	Recommended oscilloscope	Bandwidth of recommended oscilloscope	Recommended probe	Bandwidth of recommended probe
10 Mb/s,	10BASE-T,	DS0/MS08064A	600 MHz	1130A	1.5 GHz
100 Mb/s	100BASE-TX	DS0/MS08104A	1 GHz	1130A	1.5 GHz
		DSO/MS09064A	600 MHz	1130A	1.5 GHz
		DS0/MS09104A	1 GHz	1130A	1.5 GHz
		DSO/DSA90254A	2.5 GHz	1131A	3.5 GHz
		DSO/DSA90404A	4 GHz	1132A	5 GHz
		DSO/DSA90604A	6 GHz	1134A	7 GHz
		DSO/DSA90804A	8 GHz	1168A	10 GHz
		DSO/DSA91204A	12 GHz	1169A	12 GHz
		DSO/DSA91304A	13 GHz	1169A	12 GHz
		DSO/DSAX91604A	16 GHz	N2800A	16 GHz
		DSO/DSAX92004A	20 GHZ	N2801A	20 GHz
		DSO/DSAX92504A	25 GHz	N2802A	25 GHz
		DSO/DSAX92804A	28 GHz	N2802A	28 GHz
		DSO/DSAX93204A	32 GHz	N2803A	30 GHz
Gigabit Ethernet	1000BASE-T	DS0/MS08104A	1 GHz	1130A	1.5 GHz
4x250 Mb/s)		DS0/MS09254A	2.5 GHz	1131A	3.5 GHz
		DSO/DSA90254A	2.5 GHz	1131A	3.5 GHz
		DS0/MS09404A	4 GHz	1132A	5 GHz
		DSO/DSA90404A	4 GHz	1132A	5 GHz
		DSO/DSA90604A	6 GHz	1134A	7 GHz
		DSO/DSA90804A	8 GHz	1168A	10 GHz
		DSO/DSA91204A	12 GHz	1169A	12 GHz
		DSO/DSA91304A	13 GHz	1169A	12 GHz
		DSO/DSAX91604A	16 GHz	N2800A	16 GHz
		DSO/DSAX92004A	20 GHz	N2801A	20 GHz
		DSO/DSAX92504A	25 GHz	N2802A	25 GHz
		DSO/DSAX92804A	28 GHz	N2802A	28 GHz
		DSO/DSAX93204A	32 GHz	N2803A	30 GHz

Table 1. Recommended oscilloscopes and active probes

The N5392A Ethernet electrical performance validation and conformance software performs

the following tests as per the IEEE 802.3-2005 and ANSI X3.263-1995 standards.

Standard reference	Description
IEEE802.3.2005 Sub clause 40.6.1.2.1	Difference A, B peak output voltage*
IEEE802.3.2005 Sub clause 40.6.1.2.1	Point A peak output voltage*
IEEE802.3.2005 Sub clause 40.6.1.2.3	Point A template test*
IEEE802.3.2005 Sub clause 40.6.1.2.1	Point B peak output voltage*
IEEE802.3.2005 Sub clause 40.6.1.2.3	Point B template test*
IEEE802.3.2005 Sub clause 40.6.1.2.1	Point C peak output voltage*
IEEE802.3.2005 Sub clause 40.6.1.2.3	Point C template test*
IEEE802.3.2005 Sub clause 40.6.1.2.1	Point D peak output voltage*
IEEE802.3.2005 Sub clause 40.6.1.2.3	Point D template test*
IEEE802.3.2005 Sub clause 40.6.1.2.3	Point F template test*
IEEE802.3.2005 Sub clause 40.6.1.2.2	Point G droop test*
IEEE802.3.2005 Sub clause 40.6.1.2.3	Point H template test*
IEEE802.3.2005 Sub clause 40.6.1.2.2	Point J droop test*
IEEE802.3-2005 Sub clause 40.8.3.3	MDI common mode output voltage
IEEE802.3-2005 Sub clause 40.6.1.2.5	Jitter master filtered
IEEE802.3-2005 Sub clause 40.6.1.2.5	Jitter master unfiltered
IEEE802.3-2005 Sub clause 40.6.1.2.5	Jitter slave filtered
IEEE802.3-2005 Sub clause 40.6.1.2.5	Jitter slave filtered
IEEE802.3-2005 Sub clause 40.8.3.1	MDI return loss
IEEE802.3-2005 Sub clause 40.6.1.2.4	Transmitter distortion*

* With or without disturbing signal

Table 2. Ethernet electrical tests for 1000BASE-T performed by the N5392A software

Tests performed (continued)

Standard reference	Description
ANSI X3.263-1995, Section 9.1.3	+V _{out} overshoot
ANSI X3.263-1995, Section 9.1.3	+V _{out} overshoot decay
ANSI X3.263-1995, Section 9.1.3	-V _{out} overshoot
ANSI X3.263-1995, Section 9.1.3	–V _{out} overshoot decay
ANSI X3.263-1995, Section 9.1.6	A0I +V _{out} rise time
ANSI X3.263-1995, Section 9.1.6	A0I +V _{out} fall time
ANSI X3.263-1995, Section 9.1.6	A0I +V _{out} rise/fall time symmetry
ANSI X3.263-1995, Section 9.1.6	A0I –V _{out} rise time
ANSI X3.263-1995, Section 9.1.6	A0I –V _{out} fall time
ANSI X3.263-1995, Section 9.1.6	A0I –V _{out} rise/fall time symmetry
ANSI X3.263-1995, Section 9.1.8	Duty cycle distortion
ANSI X3.263-1995, Section 9.1.4	Signal amplitude symmetry
ANSI X3.263-1995, Section 9.1.9 and IEEE802.3-2005 Sub clause 25.4.5	Transmit jitter
ANSI X3.263-1995, Annex J	UTP AOI template
ANSI X3.263-1995, Section 9.1.2.2	UTP +V _{out} differential output voltage
ANSI X3.263-1995, Section 9.1.2.2	UTP –V _{out} differential output voltage
ANSI X3.263-1995, Section 9.1.5	Transmitter return loss
ANSI X3.263-1995, Section 9.2.2	Receiver return loss

Table 3. Ethernet electrical tests for 100BASE-TX performed by the N5392A software

Standard reference	Description
IEEE802.3-2005 Sub clause 14.3.1.2.5	Common mode output voltage
IEEE802.3.2005 Sub clause 14.3.1.2.1, Figure 14-9, Table 14-1	Template MAU
IEEE802.3.2005 Sub clause 14.3.1.2.1, Figure 14-10	Template TP_IDL with TPM
IEEE802.3.2005 Sub clause 14.3.1.2.1, Figure 14-10	Template TP_IDL without TPM
IEEE802.3.2005 Sub clause 14.3.1.2.1, Figure 14-12	Template Link Pulse with TPM
IEEE802.3-2005 Sub clause 14.3.1.2.1	Peak differential output voltage
IEEE802.3.2005 Sub clause 14.3.1.2.1	Harmonic content
IEEE802.3.2005 Sub clause 14.3.1.2.1 and Annex B.4.1 and B.4.3.3	Jitter with TPM
IEEE802.3.2005 Sub clause 14.3.1.2.1 and Annex B.4.1 and B.4.3.3	Jitter without TPM
IEEE802.3.2005 Sub clause 14.3.1.2.2 and Annex B.4.3.2	Transmitter return loss
IEEE802.3.2005 Sub clause 14.3.1.3.4 and Annex B.4.3.5	Receiver return loss

Table 4. Ethernet electrical tests for 10BASE-T performed by the N5392A software

Measurement requirements

To use the N5392A Ethernet electrical performance validation and conformance software on your Infiniium oscilloscope, you will need oscilloscope probes and probe heads, the Agilent N5395C Ethernet electrical conformance test fixture and other test accessories depending on the Ethernet standard and test suites you want to perform. For 10BASE-T and 100BASE-TX Ethernet testing, the test configurations are similar. For 1000BASE-T, the testing requirements can include jitter tests, tests with the disturbing signal, and return loss measurements, which presents a much more complex test configuration. The following section describes the fixtures and tests.

N5395C Ethernet electrical conformance test fixture

The Agilent N5395C Ethernet electrical conformance test fixture includes a main test fixture board, a short RJ-45 interconnect cable, and a small impedance calibration board (see Figure 4). The main test fixture board is subdivided into 8 fixtures which are configured specifically for the requirements of different tests. Ethernet device connection is accomplished through the short RJ 45 interconnect cable or through the N5396A Gigabit Ethernet jitter test cable. Several tests require equipment in addition to the Infiniium oscilloscope: in these cases, the connection to the test fixture is accomplished using BNC and SMA cables while the control of such equipment is accomplished by the software through the

82357A/B USB-GPIB adaptor. Some measurements require a direct SMA cable connection to channels on the oscilloscope, however, most commonly the connection is via an Agilent InfiniiMax active differential probe (1130A, 1131A, 1132A, 1134A, 1168A, or 1169A) with an E2678A socketed differential probe head.

N5396A Gigabit Ethernet jitter test cable and Gigabit Ethernet jitter measurement

The N5396A Gigabit Ethernet jitter test cable allows you to make 1000BASE-T jitter measurements with the N5395C Ethernet electrical conformance test fixture. The 103-m cable has a RJ-45 connector on one end to connect to the device under test (DUT), and a DB9 connector on the other end to connect to the N5395C Ethernet test fixture board. The 1000BASE-T jitter measurements are best made using two Agilent InfiniiMax active differential probes (1130A, 1131A, 1132A, 1134A, 1168A, or 1169A) with the E2677A/N5381A solder-in and E2678A socketed differential probe heads.

Return loss measurements The N5392A Ethernet electrical performance validation and conformance software supports the 1000BASE-T return loss measurement which requires the N5395C Ethernet electrical conformance test fixture, 3 SMA cables and an appropriate vector network analyzer. We recommend you use one long (36") SMA cable to connect the vector network analyzer to the N5395C fixture and two short (~12") SMA cables for fixture interconnection. The software can either control the vector network analyzer to access the measurement data or read one of several vector-network-analyzercreated ASCII data files for the measurement results. Supported file formats are TouchStone and CITIFile. The software will convert the 100-ohm measured data into the 85- and 115-ohm systems as required in the specification. The network analyzer and main test fixture are calibrated using the impedance calibration board, which has separate RJ-45 connectors for an open circuit, a short circuit, and 50-ohm load.

٠ **1000BASE-T** disturbing signal There are two suites of tests that require an interfering signal referred to as the "disturbing signal:" the template test suite and the distortion test suite. The disturbing signal is created by two Agilent 33250A arbitrary waveform generators which are controlled and calibrated by the N5392A software. The disturbing signal tests require four BNC cables to connect the function generators, two short (~12") SMA cables for fixture interconnection, and two long (36") SMA cables to make direct connection to the oscilloscope for measurements.

Ordering information

Model number	Description
N5392A Option 021	User-installed license Factory-installed license on new 9000A, 9000 H- or 90000 Series oscilloscopes
N5435A Option 008 Server-based license for 9000A, 9000 H- and 90000 Series oscilloscopes	
N5395C	Ethernet electrical conformance test fixture
N5396A Gigabit Ethernet jitter test cable (for 1000BASE-T jitter test)	
113XA or 116XA	InfiniiMax active differential probe
E2677A or N5381A	InfiniiMax solder-in differential probe head
E2678A	InfiniiMax socketed differential probe head

The following products are used in the total solution for Ethernet testing with the N5392A:

An alternative to purchasing the E2677A and E2678A is the E2669A

E2669A	InfiniiMax connectivity kit for differential/single-ended measurements (contains one E2575A differential browser probe head, four E2677A solder-in differential probe heads, and two E2678A socketed differential probe heads)
33250A	80-MHz arbitrary waveform generator
82357A/B	USB/GPIB interface
VNA	Network analyzer that can measure in the 10-100 MHz range. Supported network analyzers: • 8752x/53x • 4395x/96x • E5070x/71x • E5061x/62x • N5230A
Accessories	
10833D	GPIB cable 0.5 meter (other lengths available, check with your Agilent representative)

10833D	GPIB cable, 0.5 meter (other lengths available, check with your Agilent representative)				
8120-1840	BNC (m) – BNC (m) cable, 48". Connects two BNC female ports.				
SMA cables	4 maximum needed. Recommend two long (36") and two short (~12") cables. Suggested vendor, part number • Farnell, 8558566 (36" length) • Farnell, 1056167 (0.25 m length)				
SMA push-on connectors	Aids productivity by not requiring threaded SMA connections. Order 33SMA-050-0-4 from S.M Electronics				

Table 5. Products used for all 10/100/1000 tests for N5392A Ethernet solution

Ordering information (continued)

To purchase the N5392A Ethernet electrical performance validation and conformance software with a new or existing Infiniium oscilloscope, order the following:

	1000BA	ASE-T meas	surements			
Model number	Core	Jitter	Return loss	Disturbing signal	100BASE-TX measurements	10BASE-T measurements
N5392A/ DS090000A-021 DS0X90000A-021	1	1	1	1	1	1
N5395C	1	1	1	1	1	1
N5396A		1				
113XA/116XA	1	2			1	1
E2677A/N5381A		2				
E2678A	1	1			1	1
33250A				2		
82357A/B			1	1		
VNA			1			
GPIB cables				1 (2 if together with return loss)		
BNC cables	1	1		4		1
SMA cables			3	4		
SMA push-on connectors				6 (optional)		

Table 6. Order guide for each Ethernet measurement standard. To determine total number of a given model number for an aggregate capability (more than one column), use highest number in row using those columns. For example, to perform all 10/100/1000 measurements, two 113XA or 116XA probe amplifiers are required.

Related literature

Publication title	Publication type	Publication number
Infiniium DSO/DSA90000A Series	Data Sheet	5989-7819EN
Infiniium Application Server License for Infiniium Oscilloscopes	Data Sheet	5989-6937EN
IInfiniium 8000 Series Oscilloscopes	Data Sheet	5989-4271EN
E2688A High-Speed Serial Data Analysis and Clock Recovery Software	Data Sheet	5989-0108EN
Infiniium 9000 Series Oscilloscopes	Data Sheet	5990-3746EN
9000 H-Series Oscilloscopes	Data Sheet	5991-1520EN
Infiniium 90000 X-Series Oscilloscopes	Data Sheet	5990-5271EN

Product Web site

For the most up-to-date and complete application and product information, please visit our product Web site at: www.agilent.com/find/scope-apps

Agilent Technologies Oscilloscopes

Multiple form factors from 20 MHz to > 90 GHz | Industry leading specs | Powerful applications

www.agilent.com

www.agilent.com/find/myagilent A personalized view into the information most relevant to you.

www.axiestandard.org

AdvancedTCA[®] Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

LXI

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Three-Year Warranty

www.agilent.com/find/ThreeYearWarranty Agilent's combination of product reliability and three-year warranty coverage is another way we help you achieve your business goals: increased confidence in uptime, reduced cost of ownership and greater convenience.

www.agilent.com/find/AdvantageServices Accurate measurements throughout the life of your instruments.

www.agilent.com/quality

Windows[®] is a U.S. registered trademark of Microsoft Corporation.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3600
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Europo a milauto	2401
Belgium	32 (0) 2 404 93 40
Denmark	45 45 80 12 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 927 6201

For other unlisted countries: www.agilent.com/find/contactus (BP2-19-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2011, 2013 Published in USA, March 14, 2013 5989-1527EN

