E5061B-3L3/3L4/3L5 LF-RF Network Analyzer with Option 005 Impedance Analysis Function # E5061B-3L3/3L4/3L5 with Option 005; NA plus ZA in one box To ensure the performance and reliability of electronic equipment, it is crucial to evaluate impedance characteristics of various electronic components used in the circuits. The E5061B-005¹ is the impedance analysis firmware option for the E5061B-3L3/3L4/3L5 ENA Series LF-RF network analyzer. The E5061B-005 combines network analysis (NA) and impedance analysis (ZA) functions in a single instrument with comprehensive component and circuit characterization in a broad frequency range, 5 Hz to 3 GHz. ### E5061B-3L3/3L4/3L5 block diagram # Key measurement functions of E5061B-3L3/3L4/3L5 with Option 005 | Impedance analysis functions | | | |-----------------------------------|---|--| | Impedance parameters | IZI, θ z , IYI, θ y, Cp, Cs, Lp, Ls, Rp, Rs, D, Q, R, X, G, B | | | Measurement methods | Port 1 Reflection, Port 2 Reflection, Port 1-2 Series-thru, Port 1-2 Shunt-thru, | | | | Gain-phase Series-thru, Gain-phase Shunt-thru | | | Equivalent circuit analysis | 3-component model (4 models: A/B/C/D), 4-component model (1 model: E) | | | Source characteristics | | | | Test frequency | 5 Hz to 500 MHz/1.5 GHz/3 GHz (Port-1 and 2), 5 Hz to 30 MHz (Gain-Phase test port), 1 mHz resolution | | | AC source power (Osc level) | –45 to + 10 dBm (when the source port is terminated with 50 Ω) | | | DC voltage bias | 0 to ±40 V (100 mA max.) 1 mV resolution (0 V to ±10 V), 4 mV resolution | | | | (10 V to 40 V, -10 V to -40 V), DC bias monitor available (voltage or current) | | | Output impedance | 50Ω (nominal) | | | Sweep characteristics | | | | Sweep types | Linear frequency sweep, Logarithmic frequency sweep, Segment sweep, Power sweep | | | | (in dBm unit), DC bias sweep | | | Sweep direction | Up sweep | | | Number of point | 2 to 1601 | | | Error correction (for impedance m | easurements) | | | Calibration | Impedance calibration (open/short/load and optional low-loss capacitor). | | | | Response thru calibration, Full 1-port calibration, Full 2-port calibration, ECal ¹ , | | | | Port extensions. | | | Fixture compensation | Fixture selection (port extension for 7 mm fixtures), open/short/load compensation. | | ^{1.} For more about the impedance analysis with the E5061B, please see the application note: Performing Impedance Analysis with the E5061B ENA Vector Network Analyzer, publication 5991–0213EN # Wide application coverage with three measurement techniques To cover a broad range of impedance measurements for electronic components and circuits, the E5061B-005 supports three impedance measurement methods using both S-parameter and gain-phase test ports. You can choose appropriate measurement method depending on the impedance and frequency range of your application. #### Reflection method The reflection method using the S-parameter port 1 is a general-purpose impedance measurement suitable for low-to-middle impedance range. Keysight's 7 mm component test fixtures can be connected via the 16201A 7 mm terminal adapter. Similarly to conventional RF impedance analyzers, the measurement circuit is calibrated by performing the open/short/load (plus optional low-loss-C) calibration with the 7 mm calibration kit and eliminating errors caused by the 7 mm fixture with the fixture compensation functions (open/short compensation, plus optional fixture selection/port extension). #### Series-thru method The series-thru method using the gain-phase test port is also a general-purpose impedance measurement, that is suitable for middle-to-high impedance range in the low frequency range up to 30 MHz. You can connect Keysight's 4-terminal-pair (4TP) component test fixtures directly to the gain-phase test port. An accurate impedance measurement is obtained by performing the open/short/load calibration at the fixture with leaded or SMD 50 Ω resistors, which is provided by the option E5061B-720 50 ohm resistor set. Port 1 reflection method using 16201A terminal adapter and 16092A 7 mm fixture RF inductor measurement with reflection method (1 MHz to 3 GHz) Gain-phase series-thru method using 16047E 4TP fixture Ceramic resonator measurement with gain-phase series method (Fr = 400 kHz) #### Shunt-thru method The shunt-thru method is specifically targeted at very low impedance measurements down to milliohm range. The most typical applications are power distribution networks (PDNs) and their associated components such as bypass capacitors and DC-DC converters. The shunt-thru method using the S-parameter port 1 and 2 is suitable for PDN measurements up to GHz range. The shunt-thru method using the gain-phase test port is suitable for milliohm PDN measurements in the low frequency range, due to the ability to eliminate the ground loop errors. Summary of major impedance measurement methods of the E5061B-3L3/3L4/3L5 + 005 | | Typical freq.
range | 10% accu-
racy
 Z range | Test fixtures | Application examples | |--|--|--------------------------------|--|---| | S-parameter
port 1
reflection | 5 Hz to 500 MHz
/1.5 GHz/3 GHz | 1 Ω to 2 kΩ | Keysight's 7 mm test
fixtures with 16201A
terminal adapter | Inductors, transformers,
RF capacitors, RF diodes | | Gain-phase
series-thru
(T: 50 Ω 20 dB,
R: 1 MΩ 20 dB) | 5 Hz to
30 MHz | 3 Ω to
40 kΩ | Keysight's 4TP test
fixtures | Resonators, piezo sensors, small capacitors, large inductors | | S-parameter
port 1-2
shunt-thru | 100 kHz to
500 MHz
/1.5 GHz/3 GHz ¹ | 1 mΩ to
80 Ω | User-prepared coax
probes, or shunt-thru
test board | High-freq PDN applications (bypass capacitors, PCB-level PDN measurements) | | Gain-phase
shunt-thru
(T: 50 Ω 0 dB,
R: 50 Ω 20 dB) | 5 Hz to
30 MHz | <1 m Ω to 5 Ω | User-prepared coax
probes, or shunt-thru
test board | Low-freq PDN applications (DC-DC converters, large bypass caps, PCB-level PDN measurements) | | S-parameter
port 1-2
series-thru | 5 Hz to 500 MHz
/1.5 GHz/3 GHz | 8 Ω to
40 kΩ | User prepared series-thru fixture | Resonators (Fr > 30 MHz) | ^{1.} Need external cores to measure milliohm impedance in the low frequency range below 100 kHz. Shunt-thru method using S-parameter port 1 and 2 PDN measurement with S-parameter port 1-2 shunt-thru method (100 Hz to 1 GHz) Shunt-thru method using gain-phase ports MLCC measurement with Gain-phase shunt-th-ru method (100 Hz to 30 MHz) # Calibration and fixture compensation ### Impedance calibration In addition to the NA calibration capabilities such as response-thru, 1-port full, and 2-port full, the E5061B-005 provides the impedance calibration (Z-calibration) function for impedance measurements. The impedance calibration executes the open/short/load (and optional low-loss-C) calibration in the impedance domain after the measured S-parameter or gain-phase ratio data is converted to impedance. This enables you to perform the open/short/load calibration in any impedance measurement method, not only in the reflection method but in the series-thru and shunt-thru methods. ### Fixture compensation The fixture compensation functions eliminate the measurement errors introduced by test fixtures, and is mainly used in the reflection method using the 16201A terminal adapter and 7 mm test fixtures. The open/short (and optional load) compensation eliminates the fixture's residual impedance and stray admittance. The electrical length compensation (selecting fixture type, or Z port extension) eliminates the phase shift error that occurs at 7 mm fixtures in the RF range. # Equivalent circuit analysis The equivalent circuit analysis function extracts 3- or 4-element equivalent circuit parameters from the measured impedance trace for capacitors, inductors, and resonators. It is also possible to simulate the impedance curves using the extracted parameters and overlay them onto the measured impedance traces, while adjusting the value of each parameter to fit the simulated trace to the measured trace. Equivalent circuit analysis (measured and simulated traces overlaid) # DC biased impedance measurement Unlike other network analyzers, the E5061B-3L3/3L4/3L5 is equipped with a built-in sweepable DC bias source (0 to 40 Vdc, max.100 mAdc) which superimposes a DC voltage onto the AC source signal at port 1 or LF OUT port. This enables you to easily perform DC voltage biased impedance measurements for components that have a DC bias dependency, such as varicap diodes, large-capacitance MLCCs, and MEMS resonators. Freq sweep with spot DC bias DC voltage biased MLCC measurement # Measurement Accuracy (SPD) #### Definition All specifications apply over a $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$ range (unless otherwise stated) and 90 minutes after the instrument has been turned on. Supplemental performance data (SPD) represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty. ### Conditions for defining accuracy (Reflection and Series-thru method) #### Common conditions | Frequency | 5 Hz to 200 Hz | above 200 Hz | |-------------|--|--------------| | IFBW | ≤ 1/5 x Frequency [Hz] | ≤ 40 Hz | | Averaging | OFF | | | Temperature | Calibration is performed within 23 °C ±5 °C,
measurement is performed within ±1 °C from the calibration temperature | | #### Reflection method | Measurement method | S-parameter port 1 reflection (Port 1 Refl) | |--------------------|---| | Frequency range | 5 Hz to 500 MHz/1.5 GHz/3 GHz | | Calibration | Impedance calibration: Open/Short/Load ¹ | | Input Z | - | | Input ATT | - | | Source power | -20 to 0 dBm | #### Series-thru method | Frequency | S-parameter port 1-2
series-thru (Port 1-2 Series) | Gain-phase series
(GP Series) | -thru | |-----------------|---|--|------------------| | Frequency range | 5 Hz to 500 MHz/1.5 GHz/3 GHz | 5 Hz to 30 MHz | | | Calibration | Full 2-port calibration:
Open/Short/Load/Thru ² | Impedance calibrat
Open/Short/Load ³ | | | Input Z | - | Τ: 50 Ω, R: 1 ΜΩ | Τ: 50 Ω, R: 1 ΜΩ | | Input ATT | - | T: 20 dB, R: 20 dB | T: 0 dB, R: 0 dB | | Source power | -20 to 0 dBm | –10 to 10 dBm | -30 to -10 dBm | - 1. At the 7 mm terminal of the 16201A with 7 mm calibration kit: 16195B or 85031B. - 2. Without a Full 2-port calibration or a impedance calibration (Open / Short / Load) at the DUT connection terminal, a measurement accuracy may be degraded by a mismatch above 500 MHz. - 3. At the end of the fixture: 16047E or 16034E/G/H, Load: 50 Ω resistor set (E5061B-720 or E5061-60109, Leaded 50 Ω or SMD 50 Ω). Only with the response-thru calibration at the end of the fixture, a measurement accuracy may be degraded by a parasitic capacitance of receiver port above 1 MHz. ## Conditions for defining accuracy (Shunt-thru method) #### Common conditions | Frequency | 5 Hz to 50 Hz | above 50 Hz | |-------------|--|-------------| | IFBW | ≤ 1/5 x Frequency [Hz] | ≤ 10 Hz | | Averaging | OFF | | | Temperature | Calibration is performed within 23 °C ±5 °C, | | | | Measurement is performed within ±1 °C from the calibration temperature | | #### Shunt-thru method | Measurement method | S-parameter port 1-2
shunt-thru (Port 1-2 Shunt) | Gain-phase shunt-thru
(GP Shunt) | |--------------------|--|---| | Frequency range | 100 kHz to $500 \text{ MHz}/1.5 \text{ GHz}/3 \text{ GHz}^1$ | 5 Hz to 30 MHz | | Calibration | Impedance calibration:
Open/Short/Load ² | Impedance calibration:
Open/Short/Load with
-10 dBm source power ³ | | Input Z | - | Τ: 50 Ω, R: 50 Ω | | Input ATT | - | T: 0 dB, R: 20 dB | | Source power | 10 dBm | 10 dBm | - Need external cores to measure milliohm impedance in the low frequency range below 100 kHz. - Without a Full 2-port calibration or a impedance calibration (Open/Short/Load) at the DUT - connection terminal, a measurement accuracy may be degraded by a mismatch above 500 MHz. Only with the response-thru calibration at the DUT connection terminal, a measurement accuracy may be degraded by a parasitic capacitance of receiver port above 1 MHz. # Impedance measurement accuracy comparison with the 4395A (SPD) Figure 1. Impedance measurement accuracy (SPD) ≤ 10%. Comparison with 4395A. Page 8 Find us at www.keysight.com Figure 2. Impedance measurement accuracy (SPD), S-parameter port 1 reflection method. Figure 3. Impedance measurement accuracy (SPD), S-parameter port 1-2 series-thru method. Figure 4. Impedance measurement accuracy (SPD), Gain-phase series-thru method (T: 50 Ω 20 dB, R: 1 M Ω 20 dB). Figure 5. Impedance measurement accuracy (SPD), Gain-phase series-thru method (T: 50 Ω 0 dB, R: 1 M Ω 0 dB). Figure 6. Impedance measurement accuracy (SPD) ≤ 10%, S-parameter port 1-2 shunt-thru method. Figure 7. Impedance measurement accuracy (SPD) \leq 10%, Gain-phase shunt-thru method (T: 50 Ω 0 dB, R: 50 Ω 20 dB). In the following equations, A, B, and C are obtained from Figure 1 to Figure 6. | Z - θ z accuracy | | |--------------------------|--| | Z | $A + (B/IZ_mI + C \times IZ_mI) \times 100 [\%]$ | | θΖ | sin ⁻¹ (Z _a /100) [rad] | Where, Z_a is |Z| accuracy. |Z_m| is |Z| measured. | Y - θy accuracy | | |------------------|--| | Y | $A + (B \times IY_m I + C/IY_m I) \times 100 [\%]$ | | θy | sin ⁻¹ (Y _a /100) [rad] | Where, Y_a is |Y| accuracy. |Y_m| is |Y| measured. | R - X accuracy (depends on D) | | | | |-------------------------------|-------------------------------------|--------------------------|-----------------------------------| | | D ≤ 0.2 | 0.2 < D ≤ 5 | 5 < D | | R | $\pm X_m \times X_a / 100 [\Omega]$ | $R_a/cos\theta$ [%] | R _a [%] | | Χ | X _a [%] | X _a /sinθ [%] | $\pm R_m \times R_a/100 [\Omega]$ | Where, $R_a = A + (B/IR_mI + C \times IR_mI) \times 100 [\%]$, $X_a = A + (B/IX_mI + C \times IX_mI) \times 100 [\%]$ R_m and X_m are the measured R and X respectively. | G - B accuracy (depends on D) | | | | |-------------------------------|-------------------------------------|--------------------------|-----------------------------------| | | D ≤ 0.2 | 0.2 < D ≤ 5 | 5 < D | | G | $\pm B_m \times B_a / 100 [\Omega]$ | $G_a/cos\theta$ [%] | G _a [%] | | В | B _a [%] | B _a /sinθ [%] | $\pm G_m \times G_a/100 [\Omega]$ | Where, $G_a = A + (B/IG_mI + C \times IG_mI) \times 100 [\%]$, $B_a = A + (B/IB_mI + C \times IB_mI)$ | D accuracy (depends on D | | | |--------------------------|---------------------|----------------------------| | | D ≤ 0.2 | 0.2 < D | | D | Z _a /100 | $(Z_a/100) \times (1+D^2)$ | Where, Z_a is |Z| accuracy. | L accuracy (depends on D) | | | |---------------------------|----------------|------------------------| | | D ≤ 0.2 | 0.2 < D | | L | L _a | L _a x (1+D) | Where, $L_a = A + (B/IZ_LI + C \times IZ_LI) \times 100 [\%]$ $IZ_LI = 2 \pi f x L_m$, f is frequency in Hz, and L_m is measured L. | C accuracy (depends on D) | | | |---------------------------|----------------|------------------------| | | D ≤ 0.2 | 0.2 < D | | С | C _a | C _a x (1+D) | Where, $C_a = A + (B/IZ_CI + C \times IZ_CI) \times 100 [\%]$ $IZ_{C}I = (2 \pi f \times C_{m})^{-1}$, f is frequency in Hz, and C_{m} is measured C. # Must order the following options for the impedance measurement on the E5061B. Test set option #### E5061B-3L3/3L4/3L5 LF-RF network analyzer with DC bias source, 5 Hz to 500 MHz/1.5 GHz/3 GHz #### Software option E5061B-005 1 Impedence analysis function # Typical configuration examples S-parameter port 1 reflection method (for low-mid impedance, up to 3 GHz) | 5-parameter port i reflection method (for low-mid impedance, up to 3 GHz) | | |---|--| | E5061B options | | | E5061B | Network Analyzer | | E5061B-3L5 | LF-RF NA with DC bias | | E5061B-005 | Impedance analysis function for LF-RF NA | | E5061B-1E5 | High stability time base | | E5061B-020 | Standard hard disk drive | | E5061B-810 | Add key board | | E5061B-820 | Add mouse | | Adapter for connecting fixtures | | | 16201A | 7 mm terminal adapter kit | | 16201A 0012 | 7 mm tarminal adapter kit for EEOG1D | | 102UTA | / IIIIII teriiiiilat adapter kit | | |-------------------------|--------------------------------------|--| | 16201A-001 ² | 7 mm terminal adapter kit for E5061B | | ### 7 mm calibration kit 16195B (open/short/load + low-loss capacitor) #### 7 mm test fixtures 16092A (SMD & leaded component, 500 MHz) - E5061B-005 is not applicable to the E5061B RF NA option: 1x5 / 2x5 / 1x7 / 2x7. Option 001 is the only option for the 16201A. Must choose this option when ordering the 16201A. 16201A 16201A 16092A Page 13 Find us at www.keysight.com Gain-phase series-thru method (for mid-high impedance, up to 30 MHz) | dam-phase series-till a mei | thou (for find-fingir impedance, up to 50 Mir 12) | | |-------------------------------|---|--| | E5061B options | | | | E5061B | Network Analyzer | | | E5061B-3L5 | LF-RF NA with DC bias | | | E5061B-005 | Impedance analysis function for LF-RF NA | | | E5061B-720 50 Ω resistor set | | | | | 50 Ω resistor set contains the following items for the impedance calibration at the test fixture: - SMD 50 Ω (0699-2929), 10 ea - Leaded 50 Ω (5012-8646), 2 ea - Tweezers (8710-2018), 1 ea | | | E5061B-1E5 | High stability time base | | | E5061B-020 | Standard hard disk drive | | | E5061B-810 | Add key board | | | E5061B-820 | Add mouse | | | 4-terminal pair test fixtures | | | | 16047E (leaded component) | | | | 16034E (SMD), or 16034G (for | SMD) | | 16047E 16034E # Upgrade kit The following upgrade kits are available for adding the option 005 and 720 to the E5061B-3L3/3L4/3L5. | Software upgrade | | | |--|--|------------| | Upgrade kit No.
(Order with this No.) | Description | Option No. | | E5007A | Impedance analysis for E5061B-3L3/3L4/3L5 LF-RF network analyzer | E5061B-005 | | E5007A-1FP1 | Fixed Perpetual license | | | Impedance accessory | | | | E5061-60109 | 50Ω resister set (Equivalent to E5061B-720) | E5061B-720 | ^{1.} This option is not applicable to the E5061B RF NA options 1x5/1x7/2x5/2x7. If your E5061B's firmware revision is Rev.A.01.xx, the firmware must be updated to Rev.A.02.00 or later before installing the impedance analysis firmware option. # Available accessories | 7 mm calibratio | on kit (for S-parameter po | ort 1 reflection method with 16201A) | |-----------------|----------------------------|--| | Model No. | Frequency | Description, Additional Information | | 16195B | DC to 3 GHz | 7-mm calibration kit. Contains Open, Short, 50 Ω Load and Low-loss capacitor terminations. | | 85031B | DC to 6 GHz | 7-mm calibration kit. Contains Open, Short and 50 Ω Load terminations. | | 7 mm test fixtu | re (for S-parameter port | 1 reflection method with 16201A) | | 16092A | DC to 500 MHz | Spring clip test fixture for SMD and leaded device. | | 16197A | DC to 3 GHz | For bottom electrode SMD from 1005 (mm)/0402 (inch) to 3225 (mm)/1210 (inch). | | 16192A | DC to 2 GHz | For parallel electrode SMD. | | 16196A | DC to 3 GHz | For parallel electrode SMD, 1608 (mm)/0603 (inch). | | 16196B | DC to 3 GHz | For parallel electrode SMD, 1005 (mm)/0402 (inch). | | 16196C | DC to 3 GHz | For parallel electrode SMD, 0603 (mm)/0201 (inch). | | 16196D | DC to 3 GHz | For parallel electrode SMD, 0402 (mm)/01005 (inch). | | 16194A | DC to 2 GHz | High Temperature Component Test Fixture for SMD and leaded device,
Temperature range: –55 °C to +200 °C. | | 4-terminal pair | test fixture (for Gain-pha | se series-thru method) | | 16047E | DC to 110 MHz | For axial or radial lead device. | | 16034E | DC to 40 MHz | For SMD, (0.1 to 8) L x (0.5 to 10) W x (0.5 to 10) H in mm. | | 16034G | DC to 110 MHz | For SMD, (0.1 to 5) L x (0.3 to 1.6) W x (0.3 to 1.6) H in mm. | | 16034H | DC to 110 MHz | For array-type SMD, (0.1 to 5) L x (≤ 15) W x (0.6 to 3) H in mm. | | Other accessor | ies | | | 11667L | DC to 2 GHz | Power splitter with BNC connector for gain-phase shunt-thru method. Used for milliohm PDN measurement at low frequencies. | | 16200B | 1 MHz to 1 GHz | DC bias adaptor, it allows you to supply a bias current across the device of up to 5 Adc through a 7 mm port by using an external dc current source. | ### Literature Resources You can find information about key features, technical specifications, and option configurations for the E5061B's network analysis in the following documents: Keysight E5061B Network Analyzer Brochure 5990-6794EN Keysight E5061B Network Analyzer Data Sheet 5990-4392EN Keysight E5061B Network Analyzer Configuration Guide 5990-4391EN For more detailed information about impedance measurement basics and technical specifications of test fixtures, refer to the following documents: Keysight Impedance Measurement Handbook 5950-3000 Keysight Accessories Selection Guide for Impedance Measurements 5965-4792EN ## Web Resources Have access to the following website to acquire the latest news, product and support information, application literature and more: www.keysight.com/find/e5061b # Learn more at: www.keysight.com For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus