SPECIFICATIONS

PXIe-6571

32-Channel Digital Pattern Instrument

These specifications apply to the PXIe-6571. When using the PXIe-6571 in the Semiconductor Test System, refer to the *Semiconductor Test System Specifications*.

Contents

Definitions	2
Conditions	2
General	2
Timing	3
Vector Timing.	
Clocking	
Drive and Compare Formats	3
Pin Data States.	
Edge Timing	6
Driver, Comparator, Load	7
Driver	
Comparator	
Active Load	8
PPMU	8
PPMU Force Voltage	8
PPMU Measure Voltage	
PPMU Force Current	
PPMU Measure Current	
PPMU Programmable Aperture Time	
Pattern Control	
Opcodes	12
Pipeline Latencies	13
Source and Capture	14
Independent Clock Generators	
Frequency Measurements	
Calculating Frequency Counter Error	
Calibration Interval	
Physical Characteristics.	
Power Requirements	

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty. Warranted specifications account for measurement uncertainties, temperature drift, and aging. Warranted specifications are ensured by design or verified during production and calibration.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are Nominal unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Operating temperature of 0 °C to 40 °C
- Chassis with 82 W slot cooling capacity
- Operating temperature within ± 5 °C of the last self-calibration temperature ¹
- Recommended calibration interval of 1 year. The PXIe-6571 will not meet specifications
 unless operated within the recommended calibration interval.
- DUT Ground Sense (DGS) same potential as the Ground (GND) pins
- 30-minute warmup time before operation

Note When the pin electronics on the PXIe-6571 are in the disconnect state, some I/O protection and sensing circuitry remain connected. Do not subject the PXIe-6571 to voltages beyond the supported measurement range.

General

-	
Channel count	32
Multi-site resources per instrument	8
System channel count ²	512

¹ For guidance on better thermal management, visit ni.com/info and enter the info code ThermalManagement.

The system channel count is the maximum number of channels available when using multiple PXIe-6571 instruments in a single chassis as a digital subsystem. Some functionality described in this document requires that a PXIe-6674T synchronization module be used in conjunction with each digital subsystem.

Large Vector Memory (LVM)	128M vectors
History RAM (HRAM)	(8,192/N sites)-1 cycles
Maximum allowable offset (DGS minus GND)	±300 mV
Supported measurement range ³	-2 V to 7 V ⁴

Timing

Vector Timing

Maximum vector rate	100 MHz
Vector period range	10 ns to $40~\mu s$ (100 MHz to 25 kHz)
Vector period resolution	38 fs
Timing control	
Vector period	Vector-by-vector on the fly
Edge timing	Per channel, vector-by-vector on the fly
Drive formats	Per channel, vector-by-vector on the fly

Clocking

Master clock source	PXIe_CLK100 ⁵
Sequencer clock domains	One (independent sequencer clock domains on
	a single instrument not supported)

Drive and Compare Formats

Drive formats⁶

100 MHz maximum vector rate	Non-Return (NR), Return to Low (RL), Return to High (RH)
50 MHz maximum vector rate	Surround by Complement (SBC) ⁷

³ If the total voltage sourced or driven on any pin relative to GND exceeds the supported measurement range, instrument performance may be degraded.

⁴ Voltages > 6 V require the Extended Voltage Range mode of operation.

⁵ Sourced from chassis 100 MHz backplane reference clock, external 10 MHz reference, or PXIe-6674T.

⁶ The maximum vector rate for patterns may be limited by the pulse width requirements, which may not allow all formats and edge multipliers to be used up to the fastest vector rate.

⁷ The SBC format is not supported within the 2x edge multiplier mode.

Edge	stro	be
------	------	----

Edge Multipliers⁶

1x, 2x

Figure 1. Drive Formats

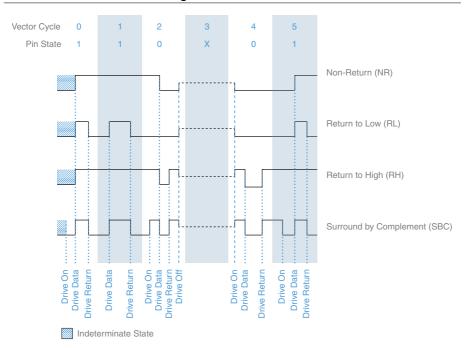
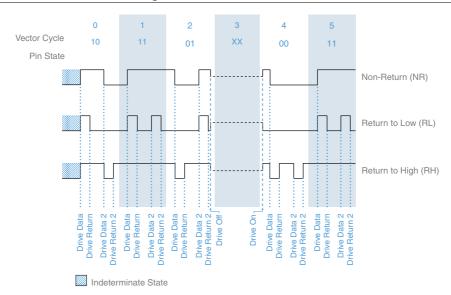



Figure 2. 2x Mode Drive Formats

Pin Data States

Pin States

- 0 Drive zero.
- 1 Drive one.
- L Compare low.
- H Compare high.
- X Do not drive; mask compare.
- M Compare midband, not high or low.
- V Compare high or low, not midband; store results from capture functionality if configured.
- D Drive data from source functionality if configured.
- E Expect data from source functionality if configured.
- — Repeat previous cycle. Do not use a dash (-) for the pin state on the first vector of a pattern file unless the file is used only as a target of a jump or call operation.

Note Termination mode settings affect the termination applied to all non-driving pin states. Non-drive states include L, H, M, V, X, E, and potentially -. Refer to the Programmable input termination mode specification for more information.

Edge Timing

Edge Types

Drive edges	6; drive on, drive data, drive return, drive data 2, drive return 2, drive off
Compare edge	2; strobe, strobe 2
Number of time sets ⁸	31
Edge Generation Timing	
Edge placement range	
Minimum	Start of vector period (0 ns)
Maximum	5 vector periods or 40 μs , whichever is smaller
Minimum required edge separation	
Between any driven data change	3.75 ns
Between any Drive On and Drive Off edges	5 ns
Between Compare Strobes	5 ns
Edge placement resolution	39.0625 ps
Edge placement accuracy ⁹	
Drive	
Edge Multiplier = 1x	±500 ps, warranted
Edge Multiplier = $2x$	Bit rate ≤ 200 Mbps: ±500 ps, typical
Edge Multiplier = $2x$	Bit rate \leq 266 Mbps: \pm 600 ps, typical
Compare	
Edge Multiplier = 1x	±500 ps, warranted

Bit rate ≤ 100 Mbps: ± 500 ps, typical

Bit rate ≤ 133 Mbps: ± 700 ps, typical

Edge Multiplier = 2x

Edge Multiplier = 2x

^{8 31} time sets can be configured. One additional time set, represented by a -, repeats the previous time set.

⁹ For specifications in a Semiconductor Test System, refer to the Semiconductor Test System Specifications.

Overall timing accuracy⁹

Edge Multiplier = 1x	±1.5 ns, warranted
Edge Multiplier = $2x$	Bit rate ≤ 200 Mbps: ± 1.5 ns, typical
Edge Multiplier = $2x$	Bit rate \leq 266 Mbps: ± 1.8 ns, typical
TDR deskew adjustment resolution	39.0625 ps

Driver, Comparator, Load

Driver

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Programmable levels	V_{IH}, V_{IL}, V_{TERM}
Voltage levels	
Range (V_{IH} , V_{IL} , V_{TERM})	-2 V to 6 V
Minimum swing (V_{IH} minus V_{IL})	400 mV , into a $1 \text{ M}\Omega$ load
Resolution (V_{IH} , V_{IL} , V_{TERM})	122 μV
Accuracy $(V_{IH}, V_{IL}, V_{TERM})$	± 15 mV, 1 M Ω load, warranted
Maximum DC drive current	±32 mA
Output impedance	50 Ω
Rise/fall time, 20% to 80%	1.2 ns, up to 5 V

Comparator

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Programmable levels	V_{OH}, V_{OL}
Voltage levels	
Range (V_{OH} , V_{OL})	-2 V to 6 V
Resolution (V_{OH}, V_{OL})	122 μV
Accuracy (V_{OH}, V_{OL})	± 25 mV, from -1.5 V to 5.8 V, warranted
Programmable input termination modes	High Z, 50 Ω to V_{TERM} , Active Load
Leakage current	<15 nA, in the High Z termination mode

Active Load

Programmable levels	I_{OH} , I_{OL}
Commutating voltage (V _{COM})	
Range	-2 V to 6 V
Resolution	122 μV
Current levels	
Range	1.5 mA to 16 mA
Resolution	488 nA
Accuracy	1 mA, 3 V over/under drive, typical

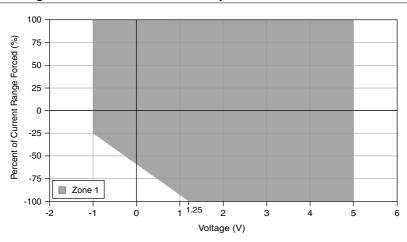
PPMU

PPMU Force Voltage

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Voltage levels	
Range	-2 V to 6 V 6 V to 7 V in Extended Voltage Range ¹⁰
Resolution	122 μV
Accuracy	± 15 mV, 1 M Ω load, from -2 V to 6 V, warranted ± 50 mV, 1 M Ω load, from 6 V to 7 V, typical 10

PPMU Measure Voltage

Signal type	Single-ended, referenced to the DGS pin when connected. Otherwise referenced to GND.
Voltage levels	
Range	-2 V to 6 V
Resolution	228 μV
Accuracy	±5 mV, warranted


¹⁰ The Extended Voltage Range is an unwarranted mode of operation that allows the PMU to force voltages between 6 V and 7 V for applications that can tolerate more error than the normal force voltage accuracy.

PPMU Force Current

Table 1. PPMU Force Current Accuracy

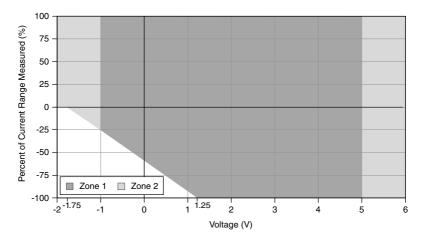
Range	Resolution	Accuracy
±2 μA	60 pA	±1% of range for Zone 1 of <i>Figure 3</i> . on page 9, warranted
±32 μΑ	980 pA	
±128 μΑ	3.9 nA	
±2 mA	60 nA	
±32 mA	980 nA	

Figure 3. Warranted Current Accuracy Zone for PPMU Force Current

Note The boundaries of Zone 1 are inclusive of that zone. The area outside of Zone 1 does not have a warranted spec for PPMU force current accuracy.

How to Calculate PPMU Force Current Accuracy

- 1. Specify the desired forced current.
- 2. Based on the desired forced current, select an appropriate current range from Table 1.
- 3. Divide the desired forced current from step 1 by the current range from step 2 and multiply by 100 to calculate the Percent of Current Range Forced.
- Based on the impedance of the load, calculate the voltage required to force the desired current from step 1. Use the following equation: Voltage Required = Desired Current * Load Impedance.


- Using Figure 2, locate the zone in which the Percent of Current Range Forced calculated in step 3 intersects with the Voltage calculated in step 4. If the intersection is outside of Zone 1, then there are no warranted specs. To get warranted specs, the current range and/or forced current must be adjusted until the intersection is in Zone 1.
- Based on the zone found in step 5, use Table 1 to calculate the accuracy of the forced current.

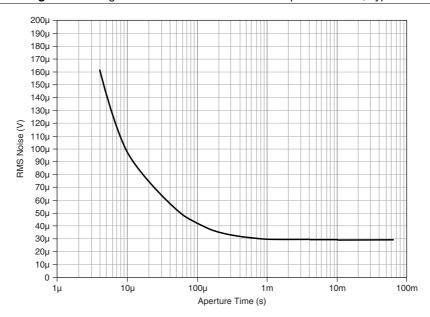
PPMU voltage clamps	
Range	-2 V to 6 V
Resolution	122 μV
Accuracy	±100 mV, typical

PPMU Measure Current

Table 2. PPMU Measure Current Accuracy

Range	Resolution	Accuracy
±2 μA	460 pA	±1% of range for Zone 1 of <i>Figure 4</i> . on page 11, warranted
±32 μΑ	7.3 nA	$\pm 1.5\%$ of range for Zone 2 of <i>Figure 4</i> . on page 11, warranted
±128 μΑ	30 nA	
±2 mA	460 nA	
±32 mA	7.3 μΑ	

Note The boundaries of Zone 1 are inclusive of that zone. All other boundaries are inclusive of Zone 2. The area outside of Zone 1 and Zone 2 does not have a warranted spec for PPMU measure current accuracy.


How to Calculate PPMU Measure Current Accuracy

- 1. Specify the desired measured current.
- 2. Based on the desired measured current, select an appropriate current range from Table 2.
- 3. Divide the desired measured current from step 1 by the current range from step 2 and multiply by 100 to calculate the Percent of Current Range Measured.
- If forcing voltage and then measuring current, Voltage in Figure 3 is equal to the forced 4. voltage. If forcing current and then measuring current, Voltage in Figure 3 is equal to the voltage required to force the desired current based on the impedance of the load. Use the following equation: Voltage Required = Desired Current * Load Impedance.
- Using Figure 3, locate the zone in which the Percent of Current Range Measured 5. calculated in step 3 intersects with the Voltage calculated in step 4. If the intersection is outside of Zone 1 or Zone 2, then there are no warranted specs. To get warranted specs, the current range and forced current or forced voltage must be adjusted until the intersection is in Zone 1 or Zone 2.
- Based on the zone found in step 5, use Table 2 to calculate the accuracy of the measured 6. current.

PPMU Programmable Aperture Time

Aperture time		
Minimum	4 μs	
Maximum	65 ms	
Resolution	4 μs	

Figure 5. Voltage Measurement Noise for Given Aperture Times, Typical

Pattern Control

Opcodes

Refer to the following table for supported opcodes. Using matched and failed opcode parameters with multiple PXIe-6571 instruments requires the PXIe-6674T synchronization module. Other uses of flow-control opcodes with multiple PXIe-6571 instruments only require NI-TCLK synchronization.

Category	Supported Opcodes
Flow Control	• repeat
	• jump
	• jump_if
	• set_loop
	• end_loop
	• exit_loop
	• exit_loop_if
	• call
	• return
	• keep_alive
	• match
	• halt
Sequencer Flags and Registers	• set_seqflag
	• clear_seqflag
	• write_reg
Signal	• set_signal
	• pulse_signal
	• clear_signal
Digital Source and Capture	capture_start
	• capture
	• capture_stop
	• source_start
	• source
	• source_d_replace

Pipeline Latencies

Minimum delay between source_start	3 μs
opcode and the first source opcode or	
<pre>subsequent source_start opcode</pre>	
Matched and failed condition pipeline	80 cycles
latency	

Source and Capture

Digital Source ¹¹	
Operation modes	Serial and parallel; broadcast and site-unique
Source memory size	32 MB (256 Mbit) total
Maximum waveforms	512
Digital Capture ¹¹	
Operation modes	Serial and parallel; site-unique
Capture memory size	1 million samples
Maximum waveforms	512

Independent Clock Generators

Number of Clock Generators	32 (one per pin)
Clock Period Range	6.25 ns to 40 us (160 MHz to 25 kHz) ¹²
Clock Period Resolution	38 fs

Frequency Measurements

Frequency counter measure freque	ency
Range	5 kHz to 200 MHz, 2.5 ns minimum pulse width
Accuracy	See Calculating Frequency Counter Error

Calculating Frequency Counter Error

Use the following equation to calculate the frequency counter error (ppm).

$$\left(\frac{TB_{err}}{\left(1-TB_{err}\right)} + \frac{20ns}{(MeasurementTime-UnknownClockPeriod)}\right) * 1,000,000$$

where

MeasurementTime is the time, in seconds, over which the frequency counter measurement is configured to run

¹¹ To learn how to calculate achievable data rates for Digital Source or Digital Capture, visit ni.com/ info and enter the info code DigitalSourceCapture to access the Calculating Digital Source Rate tutorial or the Calculating Digital Capture Rate tutorial.

¹² Clocks with a period < 7.5 ns will have a non-50% duty cycle.

UnknownClockPeriod is the time, in seconds, of the period of the signal being measured TB_{err} is the error of the Clk100 timebase

Refer to the following table for a few examples of common Clk100 timebase accuracies.

Table 3. TBerr

PXI Express Hardware Specification Revision 1.0	PXIe-1095 Chassis	PXIe-6674T Override
100 μ (100 ppm)	25 μ (25 ppm)	80 n (80 ppb)

Example 1: Calculating Error with a PXIe-1095 Chassis

Calculate the error of performing a frequency measurement of a 10 MHz clock (100 ns period) with a 1 ms measurement time using the PXIe-Clk100 provided by the PXIe-1095 chassis as the timebase.

Solution

$$\left(\frac{25\mu}{(1-25\mu)} + \frac{20ns}{(1ms-100ns)}\right) * 1,000,000$$

$$= 45ppm$$

Example 2: Calculating Error when Overriding with the PXIe-6674T

Calculate the error if you override the PXIe-Clk100 timebase with the PXIe-6674T and increase the measurement time to 10 ms.

Solution

$$\left(\frac{80n}{(1-80n)} + \frac{20ns}{(10ms - 100ns)}\right) * 1,000,000$$

$$= 2ppm$$

Calibration Interval

Recommended calibration interval 1 year	Recommended calibration interval	1 year	
---	----------------------------------	--------	--

Physical Characteristics

PXIe slots	1
Dimensions	131 mm \times 21 mm \times 214 mm (5.16 in. \times
	0.83 in. × 8.43 in.)
Weight	640 g (22.5 oz.)

Power Requirements

The PXIe-6571 draws current from a combination of the 3.3 V and 12 V power rails. The maximum current drawn from each of these rails can vary depending on the PXIe-6571 mode of operation.

Input power	76 W	
Current Draw		
3.3 V	1.7 A	
12 V	5.9 A	

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.