PXIe-4142 Specifications

Contents

011 4440 0														_
² XIE-4142 S	pecifications.	 		್										

PXIe-4142 Specifications

These specifications apply to the PXIe-4142.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

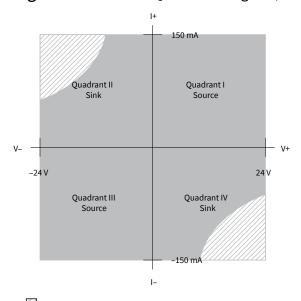
- Typical specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are **Warranted** unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature^[1] of 23 °C ± 5 °C
- Calibration interval of 1 year
- 30 minutes warm-up time
- Self-calibration performed within the last 24 hours
- niDCPower Aperture Time property or NIDCPOWER_ATTR_APERTURE_TIME attribute set to 2 power-line cycles (PLC)
- Fans set to the highest setting if the PXI Express chassis has multiple fan speed settings


Device Capabilities

The following table and figure illustrate the voltage and the current source and sink ranges of the PXIe-4142.

Table 1. PXIe-4142 Current Source and Sink Ranges

Channels	DC Voltage Ranges	DC Current Source and Sink Ranges
0 through 3	±24 V	 10 μA 100 μA 1 mA 10 mA 150 mA

Figure 1. PXIe-4142 Quadrant Diagram, All Channels

Limit power sinking to 6 W per module.

SMU Specifications

Voltage Programming and Measurement Accuracy/ Resolution

Table 2. Voltage Programming and Measurement Accuracy/Resolution

Range	(0.1 Hz to 10 Hz)		Temperature Coefficient ± (% of Voltage + Offset) / °C[3], 0 °C to 55 °C
24 V	200 μV	0.1% + 10 mV	0.0005% + 1 μV

Related tasks:

Calculating SMU Resolution

Related reference:

Additional Specifications

Current

Table 3. Current Programming and Measurement Accuracy/Resolution

Range	Resolution and noise (0.1 Hz to 10 Hz)	Accuracy (23 °C ± 5 °C) ± (% of current + offset), T _{cal} ±5 °C	Tempco \pm (% of current + offset)/°C, 0 °C to 55 °C $\boxed{[4]}$
10 μΑ	100 pA	0.1% + 5.0 nA	0.002% + 10 pA
100 μΑ	1 nA	0.1% + 50 nA	0.002% + 100 pA
1 mA	10 nA	0.1% + 0.5 μΑ	0.002% + 1.0 nA
10 mA	100 nA	0.1% + 5.0 μΑ	0.002% + 10 nA
150 mA	1.5 μΑ	0.1% + 75 μΑ	0.002% + 150 nA

Related tasks:

Calculating SMU Resolution

Related reference:

Additional Specifications

Calculating SMU Resolution

Refer to the following figure as you complete the following steps to derive a resolution in absolute units:

100000 10000 1000 1000 100 1 1 m 10 m 100 m

Figure 1. Noise and Resolution versus Measurement Aperture, Typical

1. Select a voltage or current range.

Aperture (seconds)

- 2. For a given aperture time, find the corresponding resolution.
- 3. To convert resolution from ppm of range to absolute units, multiply resolution in ppm of range by the selected range.

Example of Calculating SMU Resolution

The PXIe-4142 has a resolution of 1,000 ppm when set to a 100 μ s aperture time. In the 24 V range, resolution can be calculated by multiplying 24V by 1,000 ppm, as shown in the following equation:

$$24 \text{ V} * 1,000 \text{ ppm} = 24 \text{ V} * 1,000 * 1 \times 10^{-6} = 24 \text{ mV}$$

Likewise, in the 150 mA range, resolution can be calculated by multiplying 150 mA by 1,000 ppm, as shown in the following equation:

150 mA * 1,000 ppm = 150 mA * 1,000 *
$$1 \times 10^{-6} = 150 \mu A$$

Additional Specifications

<100 µs to settle to 0.1% of voltage step, device configured for fast transient response, typical
<100 µs to recover within ±20 mV after a load current change from 10% to 90% of range, device configured for fast transient response, typical
2 mV RMS, typical
<20 mV _{pk-pk} , typical
10 kΩ, typical
Add 0.1% of LO lead drop to voltage accuracy specification
Add 0.03% of range per volt of total HI and LO lead drop to current accuracy specification
Up to 1 V drop per lead
$10~\mu\text{V}$ at connector pins per mA of output load when using local sense, typical
20 pA + (10 ppm of range per volt of output change) when using local sense, typical
60 VDC, CAT I, verified by dielectric withstand test, 5 s, continuous, characteristic

Absolute maximum voltage between any terminal and LO	30 VDC, continuous

The following figures illustrate the effect of the transient response setting on the step response of the PXIe-4142 for different loads.

Figure 1. 1 mA Range No Load Step Response, Typical

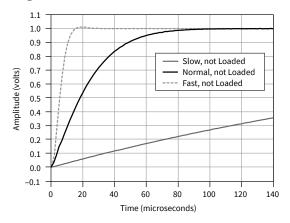
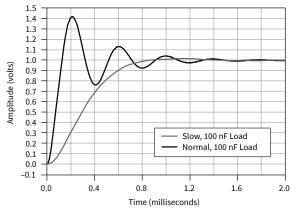



Figure 1. 1 mA Range, 100 nF Load Step Response, Typical

Related reference:

- Voltage Programming and Measurement Accuracy/Resolution
- Current

Supplemental Specifications Measurement and Update Timing

Available sample rates <u>[7]</u>	(600 kS/s)/N
where	
 N = 6, 7, 8, 2²⁰ S is samples 	
Sample rate accuracy	±50 ppm
Maximum measure rate to host[8]	600,000 S/s per channel, continuous
Maximum source update rate[9]	
Sequence length <300 steps per iteration	100,000 updates/s per channel
Sequence length ≥300 steps per iteration	100,000 updates/s per board
Input trigger to	
Source event delay	5 μs
Source event jitter	1.7 μs
Measure event jitter	1.7 μs

Triggers

Input triggers	
Types	Start

	Source				
	Sequence Advance				
	Measure				
Sources (PXI trigger lines 0 to 7)					
Polarity	Active high (not configurable)				
Minimum pulse width	100 ns				
Destinations $[11]$ (PXI trigger lines 0 to 7)					
Polarity	Active high (not configurable)				
Minimum pulse width	200 ns				
Output triggers (events)					
Types	Source Complete				
	Sequence Iteration Complete				
	Sequence Engine Done				
	Measure Complete				
Destinations (PXI trigger lines 0 to 7)					
Polarity	Active high (not configurable)				
Pulse width	230 ns				

Calibration Interval

Recommended calibration interval	1 year

Physical

Dimensions	3U, one-slot, PXI Express/CompactPCI Express module 2.0 cm × 13.0 cm × 21.6 cm (0.8 in. × 5.1 in. × 8.5 in.)
Weight	
20 W	412 g (14.53 oz)
40 W	428 g (15.1 oz)
Front panel connectors	25-position D-SUB, male

Power Requirement

PXIe-4142 (40W)	3.0 A from the 3.3 V rail and 6.0 A from the 12 V rail
PXIe-4142 (20W)	2.5 A from the 3.3 V rail and 2.7 A from the 12 V rail

Environmental Characteristics

Temperature	
Operating	
Storage	
Humidity	
Operating	

Storage	
Pollution Degree	2
Maximum altitude	
Shock and Vibration	
Operating vibration	5 Hz to 500 Hz, 0.3 g RMS
Non-operating vibration	5 Hz to 500 Hz, 2.4 g RMS
Operating shock	30 g, half-sine, 11 ms pulse

¹ The ambient temperature of a PXI system is defined as the temperature at the chassis fan inlet (air intake).

- ² Accuracy is specified for no load output configurations. Refer to Load Regulation and Remote Sense in the **Additional Specifications** section for additional accuracy derating and conditions.
- $\frac{3}{2}$ Temperature Coefficient applies beyond 23 °C ± 5 °C within a given tolerance of Tcal.
- 4 Temperature Coefficient applies beyond 23 °C \pm 5 °C within a given tolerance of Tcal.
- ⁵ Current limit set to ≥1 mA and ≥10% of the selected current limit range.
- ⁶ 20 Hz to 20 MHz bandwidth. PXIe-4142 configured for normal transient response.
- ⁷When source-measuring, both the NI-DCPower Source Delay and Aperture Time properties affect the sampling rate. When taking a measure record, only the Aperture Time property affects the sampling rate.
- ⁸ Load dependent settling time is not included. Normal DC noise rejection is used.

- $\frac{9}{2}$ As the source delay is adjusted or if advanced sequencing is used, maximum source update rates may vary.
- 10 Pulse widths and logic levels are compliant with **PXI Express Hardware Specification Revision 1.0 ECN 1.**
- $\frac{11}{2}$ Input triggers can come from any source (PXI trigger or software trigger) and be exported to any PXI trigger line. This allows for easier multi-board synchronization regardless of the trigger source.