

ASR-2000 / ASR-3000 Series Programmable AC/DC Power Source

Utilize ASR-2000/3000 AC/DC power source for LV124 & LV148

LV 124 Electric and Electronic Components in Motor Vehicles up to 3.5t with a 12 V electric system - General Requirements Test Conditions and Tests

LV 148 Electric and Electronic Components for Vehicles with a 48V Electrical System Test Conditions and Tests

1.1.1 Tolerances

Standa	rd tolerances	LV 124	LV 148	Standard values		LV 124	LV 148
	Parameter	Tolerance		Param	neter	Tolerance	
f	Frequencies	±1%	±1%	TRT	Room temperature	23℃±5℃	23℃ ± 5 ℃
Т	Temperature	± 2℃	± 2℃	Frel	Humidity	25 % to 75 % rel. humidity	25 % (+5 to 0 %) up to 75 %
Frel	Humidity	± 5 %	± 5 %				(-5 to 0 %) rel. humidity
t	Times	+ 5 %; 0 %	+ 5 %; 0 %	Ttest	Test temperature	TRT room temperature	TRT room temperature
U	Voltages	± 2 %	± 0.5 %	UB	Operating voltage (for test)	UB = 14 V	U48x
I	Current	± 2 %	± 2 %	Ri	Source impedance	${ m Ri} \leq 100 { m m}\Omega$ (E6)	$10 \mathrm{m}\Omega \leq \mathrm{Ri} \leq 100 \mathrm{m}\Omega$
			,			Ri < 30 m Ω / 100 m Ω (E15)	

1.1.2 Operating voltage range LV 124 / LV 148

Ubmin	Ubmax	Function / description LV 124
6 V	16 V	For functions that must retain their
		performance during starting of the engine
8 V	16 V	For functions that do not have to retain their
		performance during starting of the engine
		This encoding must only be used if the
		component cannot be classified in the
		encoding a, c or d.
9 V	16 V	For functions that must retain their
		performance when the engine is not
		running
9.8 V	16 V	For functions that must retain their
		performance when the engine is running
	6 V 8 V 9 V	6 V 16 V 8 V 16 V 9 V 16 V

Shortcut	Terms LV 148	Values
U48r,dyn	Lower voltage limit of the dynamic overvoltage range	60V
U48r	Lower voltage limit of the 2 V tolerance to the dynamic	58 V
	overvoltage range	
U48max,high,limited	Max. voltage of the upper operating range with functional	54 V
	restriction	
U48max,unlimited	Max. voltage of the operating range without functional	52 V
	restriction	
U48n	BN48- nominal voltage	48 V
U48min,unlimited	Min. voltage of the operating range without functional	24 V
	restriction	
U48min,low,limited	Min. voltage of the lower operating range with functional	20 V
	restriction	
U48stoprotect	Accumulator protected voltage	
U48pp	Peak – peak- voltage	
U48rms	Effektive value of a voltage	
U48max	Maximum voltage that may occur during a test	
U48min	Minimum voltage that may occur during a test	
U48test	BN48- test voltage	
U12test	BN12- test voltage	14 V
U24test	BN24- test voltage	28 V

LV 124 LV148 Automotive Testing

LV 124 & LV 148 Automotive Testing

ASR-2000/2000R Series Programmable AC/DC Power Source

Need an AC+DC waveform power source?

500VA ASR-2050R 1000VA ASR-2100R

Features

- Output Capacity: 500VA/500W ASR-2050(R), 1000VA/1000W ASR-2100(R)
- Output Rating: AC; 0 350 Vrms(@200V range), DC, AC+DC; 0 ± 500 V(@200V range)

• Output mode: AC+DC-INT, AC-INT, DC-INT, AC+DC-EXT, AC-EXT, AC+DC-ADD, AC-ADD, AC+DC-SYNC, AC-SYNC

- Output Frequency: AC+DC mode; DC, 1Hz to 999.9 Hz, AC mode; 40Hz to 999.9Hz
- DC Output (100% of Rated Power): 0 \pm 500 V
- Measurement Items: Vrms, Vavg, Vpeak, Irms, IpkH, Iavg, Ipeak, P, S, Q, PF, CF, Voltage and Current Harmonic Analysis: THDv, THDi
- Remote Sensing
- Protection: OVP, OCP, OPP, OTP, AC Fail Detection and Fan Fail Alarm.
- Arbitrary Waveform Function: 16-bit, 4096 words, 16 ARB waveform memories
- Output On/Off Phase Angle control: 0.0 $^\circ$ to 359.9 $^\circ$, variable (setting resolution 0.1 $^\circ$)
- Sequence Function: up to 999 steps, , up to 10 memories, Mode; DC-INT, AC-INT, and AC+DC-INT
- Simulation Function: 6 steps(Init, Normal1, Trans1, Abnormal, Trans2, Normal2, Init), up to 10 memories, Mode; AC+DC-INT
- Interface: USB Device and , LAN as standard, RS-232+GPIB as optional
- External Control I/O: Input; Sequence control (Start, Stop, Hold, branch 1/2,

Output; Power source on/off, Output on/off, Software busy, Sequence sync output 0/1

• External Signal Input: SYNC mode; Synchronizing the output frequency with this external input signal

EXT and ADD mode: Outputting the amplified external input signal with input signal.

Built-in Output Relay Control

Model			ASR-2050 / ASR-2050R		ASR-2100 / ASR-2100	ASR-2100 / ASR-2100R		
Output Ratir	ng for AC Mode		·					
Range			100 V	100 V 200 V		200 V		
Voltage		Setting Range	0.0 V to 175.0 V,	0.0 V to 175.0 V, 0.0 V to 350.0 V 0.0 V to 175.0 V				
		Setting Resolution	0.1V					
		Accuracy*2	±(0.5 % of set + 0.6 V /	1.2 V)				
Output phase	2		Single phase, Two-wire					
Maximum current*3			5 A	2.5 A	10 A	5 A		
Maximum peak current*4			20 A	10 A	40 A	20 A		
Power capaci	ty		500 VA					
requency	Setting range	AC Mode:	40.00 Hz to 999.9 Hz					
		AC+DC Mode:	1.00 Hz to 999.9 Hz					
	Setting resolution		0.01 Hz (1.00 to 99.99 Hz), 0.1 Hz (100.0 to 999.9 Hz)					
Output on ph	lase		0.0° to 359.9° variable (setting resolution 0.1°)					
DC offset*6			Within \pm 20 mV (TYP)					
Output Ratir	ng for DC Mode							
Range			100 V	200 V	100 V	200 V		
Voltage		Setting Range	-250 V to +250 V	-500 V to +500 V	-250 V to +250 V	-500 V to +500 V		
		Setting Resolution	0.1V					
		Accuracy*2	±(0.5 % of set + 0.6 V	/ 1.2 V)				
Maximum cu	urrent*3		5 A	2.5 A	10 A	5 A		
Maximum pe	eak current*4		20 A	10 A	40 A 20 A			
Power capac	tity		500 W	-	1000 W	I		

ASR-3000 Series Programmable AC/DC Power Source

2000VA	ASR-3200
3000VA	ASR-3300
4000VA	ASR-3400

Features

- Output Capacity: 2000VA/2000W ASR-3200, 3000VA/3000W ASR-3300
- Output Rating: AC 0 400 Vrms, DC 0 \pm 570 V @ 200V range
- Output mode: AC+DC-INT, AC-INT, DC-INT, AC+DC-EXT, AC-EXT, AC+DC-ADD, AC-ADD, AC+DC-SYNC, AC-SYNC
- Output Frequency: AC+DC mode; DC, 1Hz to 999.9 Hz, AC mode; 40Hz to 999.9Hz
- DC Output: (100% of Rated Power): 0 \pm 570 V
- Measurement Items: Vrms, Vavg, Vpeak, Irms, IpkH, Iavg, Ipeak, P, S, Q, PF, CF, Voltage and Current Harmonic Analysis(THDv, THDi)
- Remote Sensing
- Protection: OCP, OPP, OTP, AC Fail Detection and Fan Fail Alarm.
- Arbitrary Waveform Function: 16-bit, 4096 words, 16 ARB waveform memories
- Output On/Off Phase Angle control: 0.0 $^\circ~$ to 359.9 $^\circ~$, variable (setting resolution 0.1 $^\circ~$)
- Sequence Function: up to 999 steps, , up to 10 memories, Mode; DC-INT, AC-INT, and AC+DC-INT
- Simulation Function: 6 steps(Init, Normal1, Trans1, Abnormal, Trans2, Normal2, Init), up to 10 memories, Mode; AC+DC-INT
- Interface(std): USB, LAN, RS-232, GPIB
- External Control I/O: Input; Sequence control (Start, Stop, Hold, branch 1/2,

Output; Power source on/off, Output on/off, Software busy, Sequence sync output 0/1

• External Signal Input: SYNC mode; Synchronizing the output frequency with this external input signal

EXT and ADD mode: Outputting the amplified external input signal with input signal.

- Built-in Output Relay Control
- Built-in Web Server

Model		ASR-3200		ASR-3300		ASR-3400				
Output Ra	ating for AC Mod	le								
Range			100 V	200 V	100 V	200 V	100 V	200 V		
Voltage		Setting Range	0.0 V to 200.0 V	0.0 V to 400.0 V	0.0 V to 200.0 V	0.0 V to 400.0 V	0.0 V to 200.0 V	0.0 V to 400.0 V		
		Setting Resolution	0.1V	·						
		Accuracy*2	\pm (0.5 % of set + 0.6	±(0.5 % of set + 0.6 V / 1.2 V)						
Output pha	ase		Single phase, Two-	wire						
Maximum	current*3		20A	10 A	30 A	15 A	40 A	20 A		
Maximum peak current*4			120 A	60 A	180 A	90 A	240 A	120 A		
Power capa	acity		2000 VA		3000 VA		4000 VA			
Frequency	Setting range	AC Mode:	40.00 Hz to 999.9 Hz							
		AC+DC Mode:	1.00 Hz to 999.9 Hz							
	Setting resolution		0.01 Hz (1.00 to 99.99 Hz), 0.1 Hz (100.0 to 999.9 Hz)							
Output on	phase		0.0° to 359.9° variable (setting resolution 0.1°)							
DC offset*6	5		Within \pm 20 mV (TYP)							
Output Ra	ating for DC Mod	de	1							
Range			100 V	200 V	100 V	200 V	100 V	200 V		
Voltage		Setting Range	-285V to +285 V	-570 V to +570 V	-285V to +285 V	-570 V to +570 V	-285V to +285 V	-570 V to +570 V		
-		Setting Resolution	0.1V							
		Accuracy*2	$\pm (0.5\% \text{ of set} + 0)$.6 V / 1.2 V)						
Maximum	o current*3		20 A	10 A	30 A	15 A	40 A	20 A		
Maximum	peak current*4		120 A	60 A	180 A	90 A	240 A	120 A		
Power cap	Dacity		2000 W		3000 W		4000 W			

The ASR series have a powerful sequence function that can create complex output waveforms.

The sequence feature works in DC-INT, AC-INT, and AC+DC-INT modes and includes DC, sine, square, triangle, and 16 arbitrary waveforms.

The sequence function consists of a total of 1000 steps (0 to 999 step).

Available parameters and waveforms depend on the selected output mode.

Each step can set the waveform, Voltage, and duration Time and select the behavior (constant/hold/sweep) for each step.

It also has a branch function to a specified step during sequence operation. All sequence data can save 10 internal sequence memories (SEQ0 to SEQ9) or external USB sticks.

Since the sequence function can control Start, Stop, Hold, and Branch from the External Control I/O, it can be used in combination with an external device.

PC Software of ASR Sequence screen

				I.6 AS											- D	×
asic	Co	ntrolle	r Seq	uence g	simula	te									System Set	ting
Ċ		*		۱	w,											
utpu	t M	lode AC	DC-INT		Range	(LO) 1	100	V								
		Ed	it (Contr	ol										Add Step)
		Time	ACV	ACV Behavior	DCV	DCV Beh	avior	Frequency	Frequency	Behvior	Wavefo	rm	Terminatio	n 🔥		
0		1.000	0 0.0	CONST	0.0	CONST	~	60.00	CON	IST	SIN [Vr	ms] 🤇	ONTINUE		Insert	
1		1.000	0.0	CONST	11.0	CONS	т	60.00	CON	IST	SIN [∀r	ms] 🤇	ONTINUE			
2		0.001	0.0	CONST	3.2	SWEE	Р	60.00	CON	IST	SIN [∀r	ms] O	ONTINUE		Delete	9
з		0.019	0.0	CONST	3.2	CONS	т	60.00	CON	IST	SIN [∀r	ms] O	ONTINUE			
4		0.001	0.0	CONST	5.0	SWEE	Р	60.00	CON	IST	SIN [Vr	ms] 🤇	ONTINUE		\uparrow	
5		0.329	0.0	CONST	5.0	KEEF	,	60.00	CON	IST	SIN [Vr	ms] 🤇	ONTINUE			
6		0.050	0.0	CONST	6.0	SWEE	Р	60.00	CON	IST	SIN [∀r	ms] 🤇	ONTINUE		\checkmark	
7		10.000	0 0.7	CONST	7.0	CONS	т	2.00	CON	IST	SIN [Vr	ms] 🤇	ONTINUE	×		
		On Phase	On Phase	Off Phase	Off Phase	Jump-To	Jump	Jump Cnt	Branch1	Branch1	Branch2	Branch2	Code			^
0		0.0	OFF	0.0	OFF	0		0	0		0		u			
1		0.0	OFF	0.0	OFF	0	OFF	0	0	OFF	0	OFF	ш			
2		0.0	OFF	0.0	OFF	0	OFF	0	0	OFF	0	OFF	ш			
3		0.0	OFF	0.0	OFF	0	OFF	0	0	OFF	0	OFF	ш			
4		0.0	OFF	0.0	OFF	0	OFF	0	0	OFF	0	OFF	u.			
5		270.0	ON	0.0	OFF	0	OFF	0	0	OFF	0	OFF	u.			
6		270.0	ON	0.0	OFF	0	OFF	0	0	OFF	0	OFF	u.			
7		270.0	ON	0.0	OFF	0	OFF	0	0	OFF	0	OFF	u			~
OV		OC RMS	O	H Sho			EAL			OP					ich Outp	ut
				500		C PK	FA		al	OP				Bran	ich Outp	

[Output parameters]

- Time: 0.0001 ~ 999.9999s,resolution 0.0001s
- AC voltage*1: 0.0 350.0V (Range 200V) , 0.0 175.0V (Range 100V)
- DC voltage*1: 0.0 ±500.0V (Range 200V), 0.0 ±250.0V (Range 100V)
- Frequency: 1.00 999.9Hz (AC+DC-INT) , 40.00 999.9(AC-INT)
- Waveform: SIN / SQU / TRI / ARB1 to ARB16 (AC-DC-INT/AC-INT)
- On / OFF Phase: Free, Fixed (0.0 ~ 359.9°)
- Sync Code^{*2}: Sequence sync output O(L)/1(H) via External I/O connector

[Step operation types]

ACV/DCV Behaivior

- CONST: the step immediately to setting values.
- KEEP : Keep the value of the previous step.
- SWEEP: Linearly increases or decreases the values from the end of the previous step to the end of the current step.
- *: Maximum output voltage: ASR-2000; 500Vpp = DC+ACpp, ASR-3000; 570Vpp=DC+ACpp

Number of sequences:	Retained for each operation mode (DC-INT, AC-INT and AC+DC-INT) and output voltage range (100 V/200 V).
Number of steps:	1 to 999 (per sequence), Step 0 is assigned as a "Standby" step
Step time:	0.1 ms to 999.9999 s (resolution 0.1 ms or 0.0001 s)
Operations within step:	CT(Constant), KP(Keep), or SP(Linear Sweep)
Parameter:	DC voltage, AC voltage, frequency, waveform, phase (start, end), step synchronized output (2 bits)
Jump times:	1 to 999 or infinite
ON/OFF Phs	Sets the start and stop phase of the AC waveform for each step. (AC+DC-INT and AC-INT modes)

E-01 Long-term over voltages

The component's resistance to long-term overvoltage is tested. A generator control

fault during driving operation is simulated.

LV 124

Repeat

Mode: DC-	INT		tr		t1	tr	t2
Step No.	0	1	2	3	4	5	6
Time[ms]	0.0100	0.0100	0.0100	600.00	600.00	0.0100	0.6000
DCV [V]	13.5	13.5	17.0	17.0	17.0	13.5	13.5
DCV Behavior	CONST	CONST	SWEEP	KEEP	KEEP	SWEEP	END
Termination	CONTINUE						
Jump-To	0	0	0	0	3	0	0
Jump		OFF	OFF	OFF	ON	OFF	ON
Jump Cnt	0	0	0	0	2	0	0
Branch 1	0	0	0	0	0	0	0
Branch 1		OFF	OFF	OFF	OFF	OFF	OFF
Branch 2	0	0	0	0	0	0	0
Branch 2		OFF	OFF	OFF	OFF	OFF	OFF
Code	LL						

Note: This waveform changed 600 min to 0.6 s.

LV 148

(Donaat
	Repeat
C	

Mode: DC-	INI		tr	t	1	tf	t2
Step No.	0	1	2	3	4	5	6
Time[ms]	0.0100	0.0100	0.1000	600.00	600.00	0.1000	1.0000
DCV [V]	48.0	48.0	60.0	60.0	60.0	48.0	48.0
DCV Behavior	CONST	CONST	SWEEP	KEEP	KEEP	SWEEP	END
Termination	CONTINUE						
Jump-To	0	0	0	0	3	0	0
Jump		OFF	OFF	OFF	ON	OFF	ON
Jump Cnt	0	0	0	0	2	0	0
Branch 1	0	0	0	0	0	0	0
Branch 1		OFF	OFF	OFF	OFF	OFF	OFF
Branch 2	0	0	0	0	0	0	0
Branch 2		OFF	OFF	OFF	OFF	OFF	OFF
Code	LL						

Note: This waveform changed 600 s to 6.0 s.

E02 Transiente overvoltages

Transient overvoltages may occur in the electric system due to the switching off of loads and due to short accelerator tip-ins. These overvoltages are simulated by means of this.

LV 124

Mode: DC-		Repeat							
Step No.	0	1	2	3	4	5	6	7	
Time[ms]	0.0100	0.0010	0.0400	0.0010	0.600	0.1000	0.6000	0.6000	
DCV [V]	16.0	18.0	18.0	17.0	17.0	16.0	16.0	16.0	
DCV Behavior	CONST	SWEEP	KEEP	SWEEP	KEEP	SWEEP	KEEP	END	
Termination	CONTINUE								
Jump-To	0	0	0	0	0	0	1	0	
Jump		OFF	OFF	OFF	OFF	OFF	ON	OFF	
Jump Cnt	0	0	0	0	0	0	3	0	
Branch 1	0	0	0	0	0	0	0	0	
Branch 1		OFF							
Branch 2	0	0	0	0	0	0	0	0	
Branch 2		OFF							
Code	LL								

LV 148

Mode: DC-	INT	Repeat									
Step No.	0	1	2	3	4	5	6	7			
Time[ms]	0.1000	0.0010	0.0400	0.0010	0.600	0.1000	2.5000	2.0000			
DCV [V]	48.0	70.0	70.0	58.0	58.0	48.0	48.0	48.0			
DCV Behavior	CONST	SWEEP	KEEP	SWEEP	KEEP	SWEEP	KEEP	END			
Termination	CONTINUE										
Jump-To	0	0	0	0	0	0	1	0			
Jump		OFF	OFF	OFF	OFF	OFF	ON	OFF			
Jump Cnt	0	0	0	0	0	0	3	0			
Branch 1	0	0	0	0	0	0	0	0			
Branch 1		OFF									
Branch 2	0	0	0	0	0	0	0	0			
Branch 2		OFF									
Code	LL										

E-03, E48-03

Transiente Undervoltages

Transient undervoltages in the electric system may occur due to switching on of loads.

These undervoltages are simulated by means of this test.

Mode: DC-INT Repeat Step No. 2 4 5 0 1 3 Time[ms] 0.1000 0.0180 0.5000 0.0180 1.000 1.0000 DCV [V] 10.8 10.8 9.0 9.0 10.8 10.8 SWEEP DCV Behavior CONST SWEEP KEEP KEEP KEEP Termination CONTINUE CONTINUE CONTINUE CONTINUE END Jump-To 0 0 0 0 0 1 Jump OFF OFF OFF ON OFF 0 Jump Cnt 0 0 0 0 2 Branch 1 0 0 0 0 0 0 Branch 1 OFF OFF OFF OFF OFF Branch 2 0 0 0 0 0 0 Branch 2 OFF OFF OFF OFF OFF Code LL LL LL LL LL LL

LV 148

Mode: DC-INT

Mode: DC-	INI	to	tr	t1	tr	t2
Step No.	0	1	2	3	4	5
Time[ms]	0.0100	60.000	0.0020	0.5000	0.0020	0.5000
DCV [V]	0.0	36.0	24.0	24.0	36.0	48.0
DCV Behavior	CONST	CONST	SWEEP	KEEP	SWEEP	SWEEP
Termination	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	END
Jump-To	0	0	0	0	0	0
Jump		OFF	OFF	OFF	OFF	OFF
Jump Cnt	0	0	0	0	0	0
Branch 1	0	0	0	0	0	0
Branch 1		OFF	OFF	OFF	OFF	OFF
Branch 2	0	0	0	0	0	0
Branch 2		OFF	OFF	OFF	OFF	OFF
Code	LL	LL	LL	LL	LL	LL

E-04, E

Jumpstart, resp. Recuperation

Jump starting of the vehicle is simulated. The maximum test voltage results from commercial vehicle systems and their elevated electric system voltages. LV 148: Longer recuperation is simulated.

LV 124 Mode: DC-INT

Step No.	0	1	2	3	4	5	6
Time[ms]	0.0100	20.000	0.0100	60.00	0.0100	0.0100	0.6000
DCV [V]	0.0	10.8	26.0	26.0	10.8	13.5	13.5
DCV Behavior	CONST	CONST	SWEEP	KEEP	SWEEP	KEEP	END
Termination	CONTINUE						
Jump-To	0	0	0	0	0	0	0
Jump		OFF	OFF	OFF	OFF	OFF	ON
Jump Cnt	0	0	0	0	0	0	0
Branch 1	0	0	0	0	0	0	0
Branch 1		OFF	OFF	OFF	OFF	OFF	OFF
Branch 2	0	0	0	0	0	0	0
Branch 2		OFF	OFF	OFF	OFF	OFF	OFF
Code	LL						

Number of cycles: LV 148 Mode: DC-INT

Mode: DC-	INT						6
Step No.	0	1	2	3	4	5	0.0100
Time[ms]	0.0100	60.000	0.1000	60.00	0.1000	60.0000	0.0 END
DCV [V]	0.0	52.0	54.0	54.0	52.0	52.0	CONTINUE
DCV Behavior	CONST	CONST	SWEEP	KEEP	SWEEP	KEEP	
Termination	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	ON
Jump-To	0	0	0	0	0	0	0
Jump		OFF	OFF	OFF	OFF	OFF	0
Jump Cnt	0	0	0	0	0	0	OFF
Branch 1	0	0	0	0	0	0	0
Branch 1		OFF	OFF	OFF	OFF	OFF	OFF
Branch 2	0	0	0	0	0	0	
Branch 2		OFF	OFF	OFF	OFF	OFF	ĹĹ
Code	LL	LL	LL	LL	LL	LL	

E-07 Slow decrease and increase of the supply voltage

The slow decrease and increase of the supply voltage is simulated as it occurs during the slow discharging and charging procedure of the vehicle battery.

The maximum Step time for Sequence mode is 999.9999 seconds. If you want to set a time that exceeds the maximum step time, you can set it by combining steps.

Number of cycles: 1

t1/t2: Holding time at V1/V2 until event memory has been completely read out

LV 124

Mode: DC-	INT	VBmin=9.8V		19.6	min	19.6	min →		
Step No.	0	1	2	3	4	5	6	7	8
Time[ms]	0.0100	744.0000	10.0000	600.0000	576.0000	576.0000	600.0000	10.0000	744.0000
DCV [V]	16.0	9.8	9.8	4.8	0	4.8	9.8	9.8	16.0
DCV Behavior	CONST	SWEEP	KEEP	SWEEP	SWEEP	SWEEP	SWEEP	KEEP	SWEEP
Termination	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	END
Jump-To	0	0	0	0	0	0	0	0	0
Jump		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Jump Cnt	0	0	0	0	0	0	0	0	0
Branch 1	0	0	0	0	0	0	0	0	0
Branch 1		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Branch 2	0	0	0	0	0	0	0	0	0
Branch 2		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Code	LL	LL	LL	LL	LL	LL	LL	LL	LL

In the figure below, the steps time changed so that the overall image is easy to understand.

E48-06a Slow decrease and increase of the supply voltage

The slow decrease and increase of the supply voltage is simulated as it occurs during the slow discharging and charging procedure of the vehicle battery.

Number of cycles: 1

t1/t2: Holding time at V1/V2 until event memory has been completely read out

Number of cycles: 1 Functional status: depends on voltage range

LV 148				18	min	18 r	nin	I	
Mode: DC-	INT			9 min	9 min	9 min	9 min		
Step No.	0	1	2	3	4	5	6	7	8
Time[ms]	0.0100	540.0000	10.0000	540.0000	540.0000	540.0000	540.0000	10.0000	540.0000
DCV [V]	52.0	36.0	36.0	18.0	0	18.0	36.0	36.0	52.0
DCV Behavior	CONST	SWEEP	KEEP	SWEEP	SWEEP	SWEEP	SWEEP	KEEP	SWEEP
Termination	CONTINUE								
Jump-To	0	0	0	0	0	0	0	0	0
Jump		OFF							
Jump Cnt	0	0	0	0	0	0	0	0	0
Branch 1	0	0	0	0	0	0	0	0	0
Branch 1		OFF							
Branch 2	0	0	0	0	0	0	0	0	0
Branch 2		OFF							
Code	LL								

In the figure below, the steps time changed so that the overall image is easy to understand.

The maximum Step time for Sequence mode is 999.9999 seconds. If you want to set a time that exceeds the maximum step time, you can set it by combining steps.

E-08, E48-07 Slow decrease, fast increase in the supply voltage

LV 124 This test simulates the slow decrease of the battery voltage to 0 V and the sudden reapplication of the battery voltage, e.g., by applying a jump start source.

LV 148 This test simulates the slow decrease of the vehicle system voltage to the energy storage protection voltage followed by shutdown to 0V and the sudden reconnect the system voltage by a charged or new energy storage battery.

Number of cycles: 1 per operating mode II.a / II.c

t1: Holding time at V1 until event memory has been completely read out

t2: At least 1 min; however, as long as internal capacity is completely discharged

LV 124

Branch 1

Branch 1

Branch 2

Branch 2 Code

0

0

LL

0

OFF

0

OFF

LL

LV 124				10.6	min		
Mode: DC-	INT V	Bmin = 9.8	3V	4	,)	•	
Step No.	0	1	2	3	4	5	6
Time[ms]	0.0100	744.0000	10.0000	600.0000	576.0000	60.0000	0.5000
DCV [V]	16.0	9.8	9.8	4.8	0	0.0	16.0
DCV Behavior	CONST	SWEEP	KEEP	SWEEP	SWEEP	KEEP	SWEEP
Termination	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	CONTINUE	END
Jump-To	0	0	0	0	0	0	0
Jump		OFF	OFF	OFF	OFF	OFF	OFF
Jump Cnt	0	0	0	0	0	0	0

0

OFF

0

OFF

LL

0

OFF

0

OFF

LL

0

OFF

0

OFF

LL

0

OFF 0

OFF

LL

0

OFF

0

OFF

LL

In the figure below, the steps time changed so that the overall image is easy to understand.

E-09, E48-08 Reset behavior

The reset behavior of a component in its environment is simulated and tested. Test boundary conditions (e.g., assembly, terminal, system) must be described in detail. During operation, an arbitrary sequence of repeated switching-on/off procedures occurs; this must not lead to an undefined behavior of the component. The reset behavior is represented by a voltage variance and a time variance. Two different test sequences are required to simulate different switch-off times. A component must always undergo both sequences.

Jump-To0JumpOFFJump Cnt0Branch 10Branch 1OFFBranch 20Branch 2OFFCodeLL

Number of cycles:
Functional status:

LV 124

1 per operating mode II.a / II.c Detection when A exits for the first time.

Mode: DC-	INT 9.8v	•		ΔV1=	0.50						→ 6.0V
Step No.	0	1	2	3	4	5	6	27	28	29	30
Time[ms]	10.0000	0.0100	5.0000	0.0100	10.0000	0.0100	5.0000	0.0100	10.0000	0.0100	5.0000
DCV [V]	9.8	9.3	9.3	9.8	9.8	8.8	8.8	9.8	9.8	6.0	6.0
DCV Behavior	CONST	SWEEP	KEEP								
Termination	CONTINUE										
				ΔV1=	:0.2V						

5.8V		$\Delta V_1 = 0$	υ.
J.0 v	-		

→ 0.0V

Step No.	31	32	33	34	35	36	37	149	150	151	152
Time[ms]	0.0100	10.0000	0.0100	5.0000	0.0100	10.0000	0.0100	0.0100	10.0000	0.0100	10.0000
DCV [V]	9.8	9.8	5.8	5.8	9.8	9.8	5.6	0.0	0.0	9.8	9.8
DCV Behavior	SWEEP	KEEP	SWEEP	KEEP	SWEEP	KEEP	SWEEP	SWEEP	KEEP	SWEEP	KEEP
Termination	CONTINUE	END									

In the figure below, the steps time changed so that the overall image is easy to understand.

E-09, E48-08 Reset behavior

The reset behavior of a component in its environment is simulated and tested. Test boundary conditions (e.g., assembly, terminal, system) must be described in detail. During operation, an arbitrary sequence of repeated switching-on/off procedures occurs; this must not lead to an undefined behavior of the component. The reset behavior is represented by a voltage variance and a time variance. Two different test sequences are required to simulate different switch-off times. A component must always undergo both sequences.

Requirements Number of cycles: **Functional status:**

Mode: DC-INT 52.0V -

LV 148 1 per operating mode II.c Detection when A exits for the first time.

ump-To 0 OFF Jump Jump Cnt 0 Branch 1 0 Branch 1 OFF Branch 2 0 Branch 2 OFF Code LL

▶ 24.0V

LV 148

ΔV1=2.0V

Step No.	0	1	2	3	4	5	6	 51	52	53	54
Time[ms]	10.0000	0.1000	5.0000	0.1000	10.0000	0.1000	5.0000	 0.0100	10.0000	0.1000	5.0000
DCV [V]	52.0	50.0	50.0	52.0	52.0	48.0	48.0	 52.0	52.0	24.0	24.0
DCV Behavior	CONST	SWEEP	KEEP	SWEEP	KEEP	SWEEP	KEEP	 SWEEP	KEEP	SWEEP	KEEP
Termination	CONTINUE	 CONTINUE	CONTINUE	CONTINUE	CONTINUE						

23.5V Δ V ₁ =0.5V									→ 0.0V			
Step No.	55	56	57	56	57	58	59		245	246	247	248
Time[ms]	0.1000	10.0000	0.1000	5.0000	0.1000	10.0000	0.1000		0.1000	10.0000	0.1000	10.0000
DCV [V]	52.0	52.0	23.5	23.5	52.0	52.0	23.0		0.0	0.0	52.0	52.0
DCV Behavior	SWEEP	KEEP	SWEEP	KEEP	SWEEP	KEEP	SWEEP		SWEEP	KEEP	SWEEP	KEEP
Termination	CONTINUE		CONTINUE	CONTINUE	CONTINUE	END						

E-11 Start impulse

When starting the engine, the battery voltage falls for a short period to a low value, and then again to rise slightly. The start process can happen under different vehicle start situations: To cover both cases at cold start and warm start two different test cases are required. A component has always to go through both test procedures.

Test case 1 : Cold start Normal

At test case 1 cold start (start the engine), there are test impulses for: "normal " for normal cold start and "severe " with a lower battery voltage consider when starting the engine.

At test case 2 warm start (automatic restart after a stop), there are two cycles: Short: 5 seconds break 10 x Long: 20 seconds break 100 cycles

Number of samples: at least 6

Example: Normal

Note: The time axis scale is not the actual ratio.

Mode: AC/DC-	INT			On Phas 270°						
Step No.	0	1	2	3	4	5	6	7		
Time[ms]	1.0000	1.0000	0.0010	0.0190	0.0500	10.0000	0.1000	1.0000		
ACV [Vrms]	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0		
ACV Behavior	CONST	CONST	CONST	CONST	CONST	CONST	CONST	CONST		
DCV [V]	11.0	11.0	4.5	4.5	6.5	7.5	11.0	11.0		
DCV Behavior	CONST	CONST	SWEEP	CONST	SWEEP	CONST	SWEEP	CONST		
Frequency [Hz]	60.0	60.0	60.0	60.0	60.0	2.0	60.0	60.0		
Frequency Behavior	CONT	CONT	CONT	CONT	CONT	CONT	CONT	CONT		
Waveform	SIN	SIN	SIN	SIN	SIN	SIN	SIN	SIN		
Termination	Continue	Continue	Continue	Continue	Continue	Continue	Continue	Continue		
On Phase [Degree]	0.0	0.0	0.0	0.0	0.0	270.0	0.0	0.0		
On Pase	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF		

Test case1 : Cold start Severe

At test case 1 cold start (start the engine), there are test impulses for: "normal " for normal cold start and "severe " with a lower battery voltage consider when starting the engine.

At test case 2 warm start (automatic restart after a stop), there are two cycles: Short: 5 seconds break 10 x Long: 20 seconds break 100 cycles

Number of samples: at least 6

Example: Severe

Note: The time axis scale is not the actual ratio.

Mode: AC/DC-	INT			On Phase 270°						
Step No.	0	1	2	3	4	5	6	7		
Time[ms]	1.0000	1.0000	0.0010	0.0190	0.0500	10.0000	0.1000	1.0000		
ACV [Vrms]	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0		
ACV Behavior	CONST	CONST	CONST	CONST	CONST	CONST	CONST	CONST		
DCV [V]	11.0	11.0	4.5	4.5	6.5	7.5	11.0	11.0		
DCV Behavior	CONST	CONST	SWEEP	CONST	SWEEP	CONST	SWEEP	CONST		
Frequency [Hz]	60.0	60.0	60.0	60.0	60.0	2.0	60.0	60.0		
Frequency Behavior	CONT	CONT	CONT	CONT	CONT	CONT	CONT	CONT		
Waveform	SIN	SIN	SIN	SIN	SIN	SIN	SIN	SIN		
Termination	Continue	Continue	Continue	Continue	Continue	Continue	Continue	Continue		
On Phase [Degree]	0.0	0.0	0.0	0.0	0.0	270.0	0.0	0.0		
On Pase	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF		

E-11 Start impulse

Test Case 2: Start pulses Hot start

Example: Start pulses Hot start

Note: The time axis scale is not the actual ratio.

					\mathbf{t}_{test}					
Mode: DC-INT	a	•			b					c ,
Step No.	0	1	2	3	4	5	6	7	8	9
Time[ms]	0.1000	0.0100	0.0010	0.0150	0.0700	0.2400	0.0700	0.6000	0.0010	0.1000
ACV [Vrms]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACV Behavior	CONST	CONST	CONST	CONST	CONST	CONST	CONST	CONST	CONST	CONST
DCV [V]	11.0	11.0	7.0	7.0	8.0	8.0	9.0	9.0	11.0	11.0
DCV Behavior	CONST	CONST	SWEEP	CONST	SWEEP	KEEP	SWEEP	KEEP	SWEEP	KEEP
Frequency [Hz]	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0
Frequency Behavior	CONT	CONT	CONT	CONT	CONT	CONT	CONT	CONT	CONT	CONT
Waveform	SIN	SIN	SIN	SIN	SIN	SIN	SIN	SIN	SIN	SIN
Termination	Continue	Continue	Continue	Continue	Continue	Continue	Continue	Continue	Continue	Continue
On Phase [Degree]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
On Pase	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF

E-12 Voltage curve with electric system control

The behavior of the electric system with voltage controls, e.g., with the use of intelligent generator controls or DC-DC converter controls, is simulated.

Operating mode of DUT	Operating mode II.c
Vmin	(11,8 V - ΔV) (0 %, -4 %)
Vmax	$(15 V - \Delta V)$ (+4 %, 0 %)
t1	2 s
tr	>300 ms
tf	>300 ms
Number of cycles	10
Number of samples	at least 6

Step No.	0	1	2	3	4	5	6
Time[ms]	1.0000	0.3000	0.3000	2.0000	0.3000	2.0000	0.1000
ACV [Vrms]	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACV Behavior	CONST	CONST	CONST	CONST	CONST	CONST	CONST
DCV [V]	11.8	11.8	15.0	15.0	11.8	11.8	11.0
DCV Behavior	CONST	KEEP	SWEEP	KEEP	SWEEP	KEEP	SWEEP
Frequency [Hz]	60.0	60.0	60.0	60.0	60.0	60.0	60.0
Frequency Behavior	CONT	CONT	CONT	CONT	CONT	CONT	CONT
Waveform	SIN	SIN	SIN	SIN	SIN	SIN	SIN
Termination	Continue	Continue	Continue	Continue	Continue	Continue	END
Jump-To	0	0	0	0	0	2	0
Jump	OFF	OFF	OFF	OFF	OFF	ON	OFF
Jump Cnt	0	0	0	0	0	10	0

Test case 1: ΔV=0.0V

Test case 2: ΔV=0.7V

Test case 3: ΔV=2.0V

