

Agilent B4655A FPGA Dynamic Probe for Xilinx

Data Sheet

The Challenge

You rely on the insight a logic analyzer provides to understand the behavior of your FPGA in the context of the surrounding system. A typical approach is to take advantage of the programmability of the FPGA to route internal nodes to a small number of physical pins that a logic analyzer can measure. While this is a very useful approach, it has significant limitations.

- Since pins on the FPGA are typically an expensive resource, there are a relatively small number available for debug. This limits internal visibility (i.e. one pin is required for each internal signal to be probed).
- When different internal signals need to be accessed you must change your design to route these signals to pins. This can be time consuming and can affect the timing of the FPGA design.
- Finally, the process required to map the signal names from the FPGA design to the logic analyzer setup is manual and tedious. When new signals are routed out, the need to manually update these signal names on the logic analyzer takes additional time and is a potential source of confusing errors.

A Better Way

Collaborative development between Agilent Technologies and Xilinx have produced a faster and more effective way to use your logic analyzer to debug FPGAs and the surrounding system. The Agilent FPGA dynamic probe, used in conjunction with an Agilent logic analyzer, provides the most effective solution for simple through complex debugging.

Best of Show Electronica, 2004

Debug Your FPGAs Faster and More Effectively with a Logic Analyzer

The Agilent FPGA dynamic probe, used in conjunction with an Agilent logic analyzer, provides the most effective solution for debugging problems [simple through complex]. The FPGA dynamic probe lets you:

- View internal activity With a logic analyzer, you are normally limited to measuring signals at the periphery of the FPGA. With the FPGA dynamic probe, you can now access signals internal to the FPGA. You can measure up to 128 internal signals for each external pin dedicated to debug, unlocking visibility into your design than you never had before.
- Make multiple measurements in seconds — Moving probe points internal to an FPGA used to be time consuming. Now, in less than a second you can easily measure a different set of internal signals — without design changes. FPGA timing stays constant when you select new sets of internal signals for probing.
- Leverage the work you did in your design environment — The FPGA dynamic probe is the industry's first tool that maps internal signal names from your FPGA design tool to your logic analyzer. Eliminate unintentional mistakes and save hours of time with this automatic setup of signal and bus names on your logic analyzer.

Figure 1. The FPGA dynamic probe application endows your logic analyzer with unique productivity enhancements to find problems more quickly.

Figure 2. Create a timesaving FPGA measurement system. Insert an ATC2 (Agilent Trace Core) core into your FPGA design. With the application running on your logic analyzer you control which group of internal signals to measure via JTAG.

Figure 3. Access up to 128 internal signals for each debug pin. Select cores with 1, 2, 4, 8, 16, 32, or 64 signal banks. Signal banks all have identical width (4 to 128 signals wide) determined by the number of pins you devote for debug. Each pin provides sequential access to 1 signal on every input bank. Using an optional 2X time division compression in state mode, each pin can access 2 signals per bank.

A Quick Tour of the Application

Design step 1: Create the ATC2 core

Use Xilinx Core Inserter or EDK to select your ATC2 parameters and to create a debug core that best matches your development needs. Parameters include number of pins, number of signal banks, the type of measurement (state or timing), and other ATC2 attributes.

DEVICE	ATC2							
E ICON	HICE	AICZ						
UO: ATC2	Pin Selection Pa	Pin Selection Parameters Net Connections						
	Global Paramete Capture Mode	ers	Pin Edit Mode		Endpoint Type		TDM Rate	
	STATE	-	Same as ATCK	-	SINGLE-ENDED	-	2X 💌	
	Clock Edge ATD Pin Count		Signal Bank Coun	t	Data Width			
	RISING	-	8	-	4	-	16	
	Max Frequency	Range						
	0-100MHz	-	Enable Auto	Setup				
	Individual Pin Se	ettings						
	Pin Name	rungo	Pin	Loc	10	Stan	dard	
	ATCK		L15	1000	LV	/CMO	833	
	ATD[0]		C11		LV	/CM0	833	
	ATD[1]		C12		LV	LVCMOS33		
	ATD[2]	ATD[2]		B4		LVCM0S33		
	ATD[3]		A10		LV	LVCM0833		
	ATD[4]		G16		LV	LVCMOS33		
	ATD[5]		K16		LV	/CM0	833	
	ATD[6]		E14		LV	/CMO	833	
	ATD(71		510		13	(CMC	000	

Design step 2: Select groups of signals to probe

Specify banks of internal signals that are potential candidates for logic analysis measurements (using Xilinx Core Inserter or EDK).

Structure / Nets					Net Sele	ections	
Erv/(state_pins04_banks01_tdm1x)					Data Sig	nais	
Himu atc3 [atc3 tst_core]						1	
	··_···				Channe	4	
ter-u_crit (counter	1				CH:0	Au_atc3/U_ATC/u	_acb_bridge/u_addrctl/co
E⊡u_clk [clock_s	urce]				CH:1	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/cf
					CH:2	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
					CH:3	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
					CH:4	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
					CH:5	/u_atc3/U_ATC/u_	_acb_bridge/u_addrctl/ac
					CH:6	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
					CH:7	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
				-1	CH:8	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
2			1	÷.	CH:9	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
				<u> </u>	CH:10	/u_atc3/U_ATC/u_	acb_bridge/u_addrctl/ac
Net Name	Pattern:		▼ Filte	r	CH:11	/u_atc3/U_ATC/u_	_acb_bridge/u_datard/cfg
	1	1		-	CH:12	/u_atc3/U_ATC/u_	acb_bridge/u_datawr/cf
Net Name	Source Instance	Source Component	Base Type		CH:13	Atck .	
p_clkin	state_pins04_banks0	state_pins04_banks0	PORT		CH:14	Atms .	
p_clkinb	state_pins04_banks0	state_pins04_banks0	PORT		CH:15	/tdi_1	
p_mstrpresent_b	state_pins04_banks0	state_pins04_banks0	PORT	_	CH:16	/tdo_1	
ptdi_i	state_pins04_banks0	state_pins04_banks0	PORT				
ptms_i	state_pins04_banks0	state_pins04_banks0	PORT				
ptck_i	state_pins04_banks0	state_pins04_banks0	PORT				
tms	ptms_i_ibuf	IBUF	IBUF				
tdo_1	u_atc3	atc3_tst_core	FDC_1				
tdo_oe_1	u_atc3	atc3_tst_core	FDR_1				
tdi_1	ptdi_i_ibuf	IBUF	IBUF				
tdo_oe_1_i	tdo_oe_1_i	INV	INV				
p_mstrpresent_b_c	p_mstrpresent_b_ibuf	IBUF	IBUF		U		
n metrorecent h o i	p_mstrpresent_b_c_i	NV	INV		SB0 S	B1 SB2 SB3	
b_usubieseur_o_c_i	ptck_i_ibuf	IBUF	IBUF				
ptck_i_c			BUEG				
p_mstrpresent_b_c_ ptck_i_c tck	u_tck	BUFG	poro	_		1	
p_inarpresent_b_c_j ptck_i_c tck clkin	u_tck u_ibuf_clkin	BUFG BUFDS_LVPECL_33	BUFDS_LVPECL_33		Make	Connections	1 Move Nets Up
p_instrpresent_b_c_i ptck_i_c tck clkin clk	u_tck u_ibuf_clkin u_clk	BUFG BUFDS_LVPECL_33 clock_source	BUFDS_LVPECL_33 BUFG	_	Make	Connections	Move Nets Up

Activate FPGA Dynamic Probe

The FPGA dynamic probe icon allows you to control the ATC2 Core and setup the logic analyzer.

A Quick Tour of the Application

Measurement setup step 1: Establish a connection between the analyzer and the ATC2 core

The FPGA dynamic probe application establishes a connection between the logic analyzer and a Xilinx cable. It also determines what devices are on the JTAG scan chain and lets you pick which one you wish to communicate with. Core and device names are user definable.

Measurement setup step 2: Map FPGA pins

Quickly specify how the FPGA pins (the signal outputs of ATC2) are connected to your logic analyzer. Select your probe type and rapidly provide the information needed for the logic analyzer to automatically track names of signals routed through the ATC2 core.

For ATC2 cores with auto setup enabled, each pin of the ATC2 core, one at a time, produces a unique stimulus pattern. The instrument looks for this unique pattern on any of its acquisition channels. When the instrument finds the pattern, it associates that instrument channel with the ATC2 output pin producing it. It then repeats the process for each of the remaining output pins eliminating the need to manually enter probe layout information.

Measurement setup step 3: Import signal names

Tired of manually entering bus and signal names on your logic analyzer? The FPGA dynamic probe application reads a .cdc file produced by Xilinx Core Inserter. The names of signals you measure will now automatically show on your logic analysis interface.

A Quick Tour of the Application

Setup Complete: Make measurements

Quickly change which signal bank is routed to the logic analyzer. A single mouse click tells the ATC2 core to switch to the newly specified signal bank without any impact to the timing of your design. To make measurements throughout your FPGA, change signal banks as often as needed. User-definable signal bank names make it straight forward to select a part of your design to measure.

Correlate internal FPGA activity with external measurements

With each new selection of a signal bank, the application updates new signal names from your design to the logic analyzer. View internal FPGA activity and time correlate internal FPGA measurements with external events in the surrounding system.

FPGA Dynamic Probe	×
Packet Flow Packet Flow ATC2 Packet Flow ATC2 Packet Flow ATC2 Packet Flow A	Run Eyefinder Rename Bank Trim Bus/Signal Names Selected signal bank: Transmit signals (Bank 0) Last selected in core:
	Transmit signals (Bank 0)
<u> </u>	Cancel Help

Using the FPGA Dynamic probe, each pin provides access to up to 128 internal signals. The number of debug pins can range from 4 to 128 depending on your needs. When using synchronous cores, one additional pin is used for the clock.

Number of debug pins	Maximum internal signals
4	512
8	1024
16	2048
•	•
•	•
•	•
128	16384

Agilent B4655A Specifications and Characteristics

Supported logic analyzers	
Portable and PC-hosted logic analyzers	16800 Series, 1690 Series, 1680 Series
Modular logic analysis systems	 16900 Series with one or more state/timing modules: A single node-locked FPGA dynamic probe license will enable all modules within a 16900 Series system U4154A logic analyzer module
Triggering capabilities	Determined by logic analyzer
Supported Xilinx FPGA families	Virtex-5, Virtex-4, Virtex-II Pro series, Virtex-II series, Spartan-3 series
Supported Xilinx cables (required)	Parallel 3 and 4, Platform Cable USB
Supported probing mechanisms	Soft touch (34-channel and 17-channel), Mictor, Samtec, Flying lead

FPGA dynamic probe software application	
Maximum number of devices supported on a JTAG scan chain	256
Maximum number of ATC2 cores supported per FPGA device	15

Agilent trace core characteristics	
Number of output signals	User definable: Clock line plus 4 to 128 signals in 1 signal increments
Signal banks	User definable: 1, 2, 4, 8, 16, 32, or 64
Modes	State (synchronous) or timing (asynchronous) mode
Compression	Optional 2X compression in state mode via time division multiplexing. Logic analyzer decompresses the data stream to allow for full triggering and measurement capability.
FPGA Resource consumption	 Approximately 1 slice required per input signal to ATC2 Core Consumes no BUFGs, DCM or Block RAM resources See resource calculator at www.agilent.com/find/fpga

Compatible design tools		
	1680, 1690, 16800, 16900	
ChipScope Pro Version	Series SW Version	Primary new features
6.2i, 6.3i	2.5 or higher	Mouse-click bank select, graphical pin mapping, .cdc signal name import
6.2i, 6.3i	3.0 or higher	Support for Virtex-4 devices, improved JTAG drivers, single-session multi-core support, user-definable naming
7.1i	3.2 or higher	Plug & run (auto pin mapping), ATC2 "always on" option, ATC2 width + 64 banks, Platform Cable USB support, PRBS stimulus on test bank
8.2i	3.5 or higher	Support for Virtex-5 devices and 16800 Series logic analyzers
EDK (Embedded Development	Kit)	
8.1i SP2	3.2 or higher	Support for ATC2 core using EDK flow
Synthesis	Core Inserter produces ATC2 cores po independent. ATC2 cores produced by • Exemplar Leonardo Spectrum • Synopsys Design Compiler • Synopsys Design Compiler II • Synopsys FPGA Express • Synplicity Synplify • Xilinx XST	st-synthesis (pre-place and route) making the cores synthesis Core Generator are compatible with:

Additional information available via the Internet: www.agilent.com/find/FPGA and www.agilent.com/find/fpga_FAQ

Ordering Information

Ordering options for the	Agilent B4655A FPGA dynamic probe
Option 011	 Entitlement certificate for perpetual node-locked license CD with application software
Option 012	 Entitlement certificate for perpetual floating license CD with application software

Related Agilent Literature

Publication title	Pub number
Frequently Asked Questions B4655A FPGA Dynamic Probe for Xilinx Data Sheet	5989-1170EN
Agilent Technologies 16900 Series Logic Analysis Systems Color Brochure	5989-0420EN
Agilent Technologies Measurement Modules for the 16900 Series Data Sheet	5989-0422EN
U4154A Logic Analyzer Module Data Sheet	5990-7513EN
Probing Solutions for Agilent Technologies Logic Analyzers Catalog	5966-4632E
Agilent 16800 Series Portable Logic Analyzers Color Brochure	5989-5062EN
Agilent 16800 Series Portable Logic Analyzers Data Sheet	5989-5063EN
Agilent 1680 and 1690 Series Logic Analyzers Data Sheet	5988-2675EN
Planning Your Design for Debug: FPGA Dynamic Probe Design Guide	5989-1593EN

For copies of this literature, contact your Agilent representative or visit www.agilent.com/find/logic

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA® for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

LXI

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

http://www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based highperformance measurement and automation system.

Agilent Channel Partners

www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com www.agilent.com/find/logic

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

(877) 894 4414
(11) 4197 3500
01800 5064 800
(800) 829 4444

Asia Pacific

ł

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

-	
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 9276201

For other unlisted Countries: www.agilent.com/find/contactus Revised: October 14, 2010

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2006, 2011 Printed in USA, March 18, 2011 5989-0423EN

