

TECHNICAL OVERVIEW

PathWave Vector Signal Analysis (89600 VSA) Basic Vector Signal Analysis and Hardware Connectivity

Option 89601200C (Replaced the 89601B/BN/BK-200 and BHL)

Key Features

- Measure and analyze signals in the time, frequency and modulation domains
- Support two different mode as synchronous or sequenced for carrier aggregation or multimeasurements
- Analyze data from over more than 400 supported hardware model numbers, or use in simulation tools to verify design
- Characterize power amplifier behavior with complex stimulus-response measurements
- Configure, execute and display multiple measurements simultaneously or sequentially with unlimited number of traces and markers
- Record and playback signals for thorough analysis
- Support event-based action to define VSA actions like pause the measurement or run a Macro
- Automate tests using .NET language (full coverage) or SCPI (partial coverage)

Basic vector signal analysis (Option 89601200C) provides the foundation of the tools and user interface that make up PathWave Vector Signal Analysis (VSA) software. Explore virtually every facet of today's most complex signals with views of time, frequency and modulation domains. Benefit from the flexible GUI capabilities: arbitrary arrangement and sizing of unlimited display traces, each with unlimited markers. Powerful display formats, signal recording and playback, and detailed Help text provide the insight needed for analyzing signals.

Use PathWave Vector Signal Analysis (VSA) in simulation with sink and source components providing real-time, interactive analysis of results. Co-simulation is available with Keysight Technologies. Keysight EEsof EDA Advanced Design System (ADS) and SystemVue ESL as part of Option 89601200C.

Hardware connectivity, now part of Option 89601200C, allows PathWave Vector Signal Analysis (VSA) to be linked to over 45 Keysight instruments. Choose the right instrument for your application and apply vector signal analysis across your mixed signal design. Use the 89600 VSA software for consistent, comparable results at simulation, prototype and design-validation stages of development.

Power spectrum measurement, previously provided as Option 89601B-SSA, is also part of Basic VSA Option 89601200C. When used with PXIe VSA M9393A or M9391A, users can perform fast spectrum measurement. (Refer 5991-4582EN for more details.)

These options work together to provide a comprehensive set of tools for demodulation and vector signal analysis. These tools enable you to explore virtually every facet of a signal and optimize your most advanced designs. As you assess the tradeoffs, PathWave Vector Signal Analysis (VSA) helps you see through the complexity.

Vector signal analysis

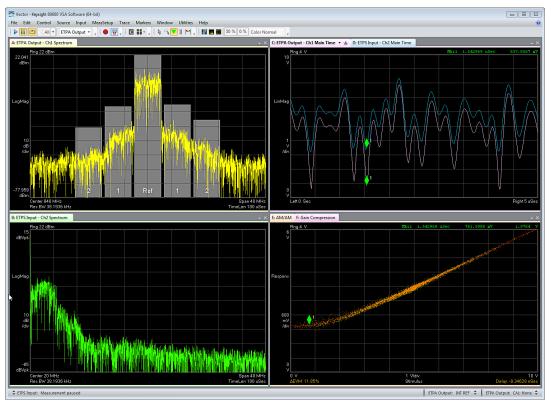
Today's wide-bandwidth, vector-modulated (also called complex or digitally modulated), time-varying signals benefit greatly from the capabilities of FFT analysis and other DSP techniques. Vector signal analysis offers fast, high-resolution spectrum measurements, demodulation, and advanced time-domain analysis. It is especially useful for characterizing burst, transient, or modulated signals used in communications, video, broadcast, radar, and ultrasound imaging applications.

PathWave Vector Signal Analysis (VSA) is fundamentally a digital system that uses data and mathematical algorithms to perform analysis. All it requires is sampled data from an instrument, software, or digital bus. As a larger portion of wireless designs becomes digital, PathWave Vector Signal Analysis (VSA) software is uniquely suited to provide signal analysis for these complex systems.

PathWave Vector Signal Analysis (VSA) running on a PC uses a measurement "front-end" or data acquisition subsystem to provide formatted sampled data. The front-end performs the following functions: connection to the device under test, signal digitizing, signal capture capability, and data transfer to the PC in a sequential stream of data blocks. Once the data blocks are available, PathWave Vector Signal Analysis (VSA) software is able to perform all vector and modulation analysis functions.

Try Before You Buy!

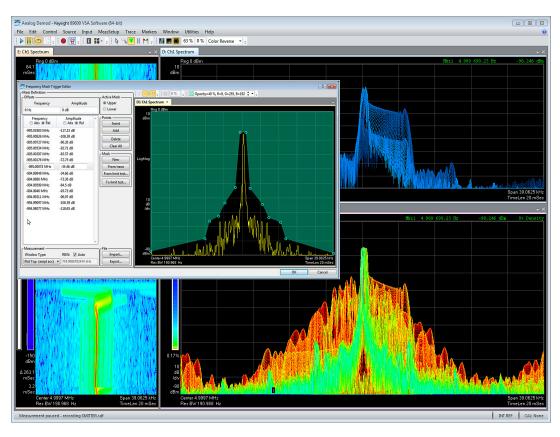
Download PathWave
Vector Signal Analysis
(VSA) software and use it
free for 30 days to make
measurements with your
analysis hardware, or use
our recorded demo signals
by selecting File > Recall
> Recall Demo > Signals
> on the software toolbar.
Request your free trial
license today:


www.keysight.com/find/89600 trial

Analysis and Troubleshooting

Find the root cause of signal problems with advanced troubleshooting tools

Quantify spectral performance with high-resolution FFT-based measurements and a rich set of markers. Analyze time domain signal quality using pulse-timing features, robust trigger controls, CCDF, and more. Use analog demodulation to characterize AM, FM and PM behavior.


Complex stimulus-response measurements enable plotting of one signal versus another for results like AM/AM, AM/PM and gain compression. Automatic time alignment, amplitude normalization and phase error compensation greatly simplify measurement setup. As the industry's only solution to correlate baseband and RF signals, the 89600 VSA software is ideal for characterizing envelope tracking power amplifier and power supply designs.

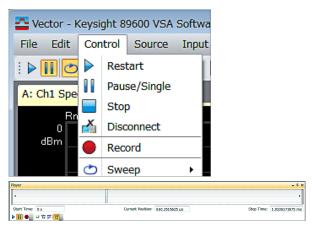
Complex stimulus-response measurements analyze envelope tracking power amplifier and power supply signals together, providing envelope/RF time alignment and shaping information.

Catch short-lived signal events using sophisticated displays and triggering


The digital persistence, cumulative history and spectrogram displays are useful for viewing signal amplitude and frequency behavior over time and identifying infrequently occurring events. Capture elusive signals with flexible magnitude and external triggers, as well as frequency mask trigger (FMT) with real-time enabled UXA, PXA and MXA signal analyzers. Initiate measurements or recordings based on trigger conditions to analyze and thoroughly characterize dynamic signals. Time qualified trigger may be combined with FMT and IF magnitude triggers.

Powerful visualization and triggering tools highlight subtle and transient events like this radio turn-on event.

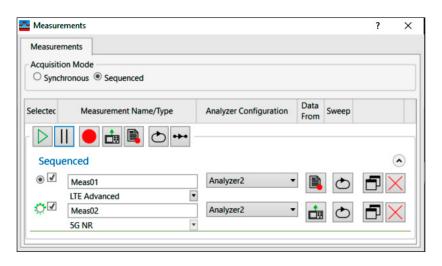
Display unlimited traces simultaneously to gain greater clarity


Pinpoint problems with arbitrary arrangement and sizing of trace windows. You can assign any measurement to any trace, as well as unlimited markers per trace. Optimize the trace window shape to see the most data in each trace. A docking manager tool lets you position traces anywhere within PathWave Vector Signal Analysis (VSA) display window. Multiple display windows can be created to manage a large number of results or take advantage of multiple monitors.

Show unlimited traces, each with unlimited markers, wherever and however you need them. Overlay related traces or hide them. Undock a window and place it anywhere on your desktop using the docking manager tool.

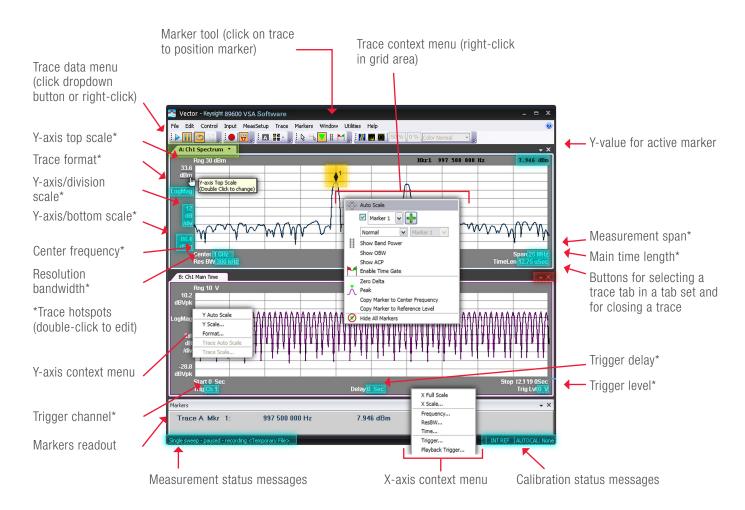
Record and analyze your signals in detail

Especially useful in early R&D, you can capture transient events, compare signal outputs after design iterations, or share the signal for collaborative analysis with remote colleagues. Additional tools, like overlap processing, let you effectively "slow down" the apparent measurement for more in-depth analysis.



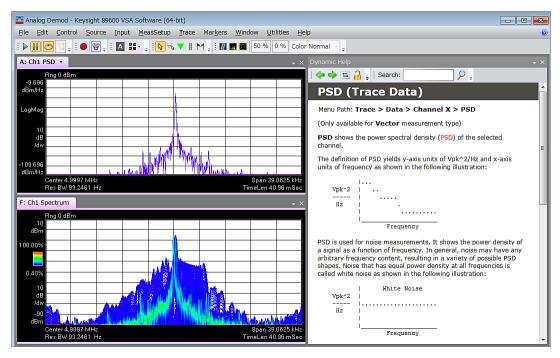
PathWave Vector Signal Analysis (VSA) lets you record signals. Using familiar recording controls, you can replay and analyze the signal as though it were a live measurement.

Multi-measurement and Acquisition Mode


PathWave Vector Signal Analysis (VSA) provides the multiple measurement which can enable you to measure carrier aggregation or DSS (Dynamic Spectrum Sharing) for 5G NR coexistence with LTE. With PathWave Vector Signal Analysis (VSA), you can achieve three different levels of acquisition concurrency with two acquisition modes.

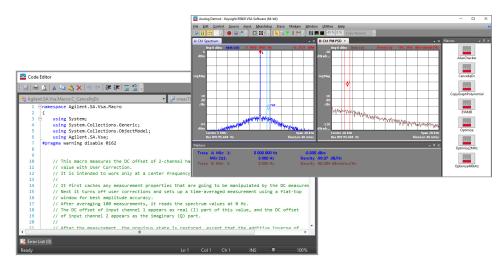
- Phase-synchronous or time-synchronous is supported with synchronous mode
- Non-synchronous is supported with sequenced mode in PathWave Vector Signal Analysis (VSA) 2020 release or above.

Make use of sophisticated tools with an easy-to-use GUI


PathWave Vector Signal Analysis (VSA) software features many time-saving GUI features. Hover your mouse over a display "hot spot" to bring up a special cursor and a helpful message. To change a value, you can choose from a drop-down menu, scroll using the mouse, or type in a numeric value, depending on the parameter. Right-clicking in the trace display brings up a menu of often-used tools, such as Y-autoscale. PathWave Vector Signal Analysis (VSA) toolbar includes one-button selection of other common tasks, such as auto-range, record, start/stop, special markers selection, macros, and more.

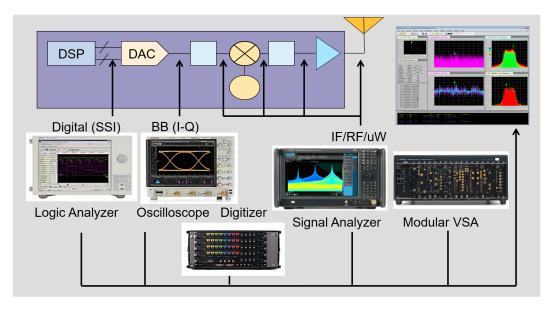
GUI tools let you easily set up your measurements and customize your work area. Hover your mouse over the many "hot spots" on the display, shown highlighted here. Use them to easily change any parameter value without accessing the menus. In addition, you can right-click in the display to bring up a menu of frequently-performed tasks, like auto-scaling the trace.

Learn about PathWave Vector Signal Analysis (VSA)—the fast way


Dynamic Help lets you access detailed information on the product and its applications. Place your mouse over any trace or menu and the pertinent Help text automatically appears - this is particularly useful when setting up complex new modulation schemes. Help text includes information on using PathWave Vector Signal Analysis (VSA) software, setting up measurements, and application information for the specific modulation schemes.

Click in a trace (to make it active) or hover your mouse over a menu and Dynamic Help will provide you with an instant display of user documentation. The content can be locked to show your desired information, and the Help window detached and placed anywhere on your workspace.

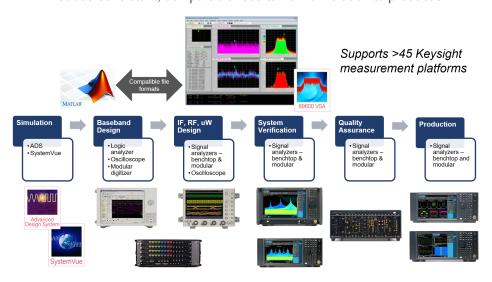
Develop automated tests easily


Create design verification tests using familiar SCPI or any supported .NET language. Use macro recording to capture key-strokes and automate repetitive tasks. The macros toolbar can be displayed for easy macro selection.

Automate tests using programs written in SCPI or any supported .NET language. The 89600 VSA software also supports macros developed with C# and other languages.

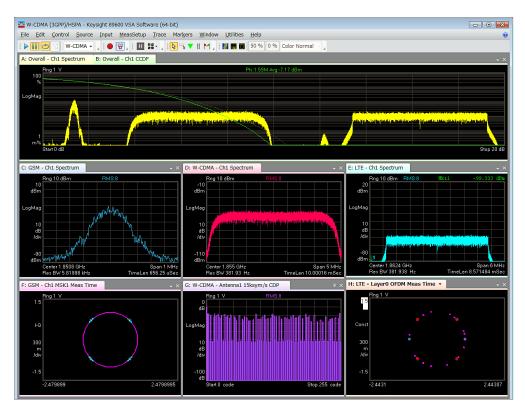
Connect to over 45 instrument platforms

You can choose from signal analyzers, oscilloscopes, logic analyzers, modular instruments, and more. The same GUI is used to control measurements, no matter what hardware platform is used, minimizing the learning curve. Connect to the instruments via GPIB, LAN, USB, PXI interface, or embedded PXI controller. Or, run it inside the instrument itself if it is PC-based. For a list of currently supported products, go to www.keysight.com/find/89600_hardware. A configuration menu simplifies the instrument detection and validation process.

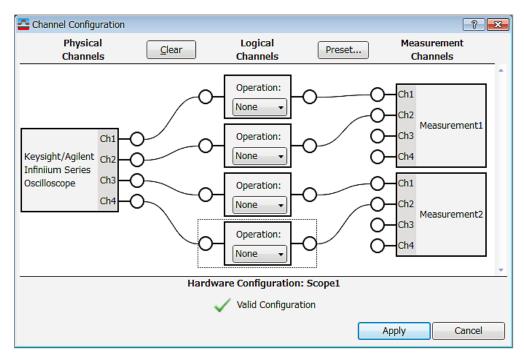

Whether you're making measurements using a logic analyzer, oscilloscope, or signal analyzer, the UI and measurement algorithms are the same. Safely compare results from baseband to RF and evaluate against your error budget.

Make measurements anywhere in your design process

Use PathWave Vector Signal Analysis (VSA) software in simulation environments to analyze and visualize simulated results. When device prototypes are ready, select the measurement hardware best suited to your task and apply the same PathWave Vector Signal Analysis (VSA) measurement science to your physical device under test. Access analog and digital baseband; IF and RF signals, comparing signal quality parameters, like EVM, from one signal block to the next, from simulation to implementation.


Apply Vector Signal Analysis Across the Lifecycle

Produce consistent, comparable results from simulation to production



Simultaneously create, configure, and execute multiple measurements

The new, innovative multi-measurement capability is now standard PathWave Vector Signal Analysis (VSA) software. The multi-measurement capability allows you to configure, execute and display several measurements at once, simplifying and speeding analysis of multi-carrier or multi-format devices, simultaneous uplink and downlink signals, or single signals compared at multiple test points (baseband, IF, RF). When all signals are spaced to fit within an instrument's analysis bandwidth, measurements are perfectly simultaneous. For wider frequency coverage, the VSA software can coordinate two or more independent instruments to acquire all desired signals. You can also configure the data acquisition mode from synchronous (default) or sequenced to speed up measurement switching time from one to another.

Multi-measurements in action: Traces A and B provide a composite spectrum overlaid with the CCDF statistics for the combined waveform. Traces C and F show a GSM signal. Traces D and G outline a W-CDMA downlink signal and Traces E and H analyze an LTE downlink signal.

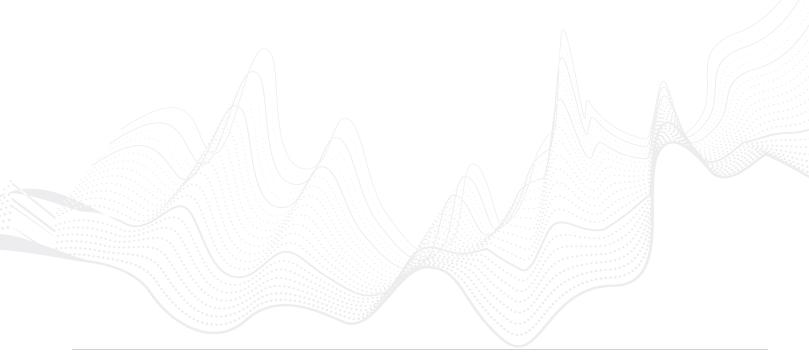
Channel configuration wizard lets you view and map hardware channels to multiple measurements.

Software Features

Basic VSA (Option 89601200C)

Note: The following features are independent of hardware platform used, unless otherwise noted.

Time and waysform							
Time and waveform							
Time record characteristics	In PathWave Vector Signal Analysis (VSA), measurements are based on time records. A time record is a block of samples of the signal waveform from which time, frequency, and modulation domain data is derived.						
Data mode	Two signal processing modes, baseband and zoom, affect the appearance and the duration of input waveforms displayed.						
Zoom	Measurements are made with non-zero start frequency. Time domain display shows a complex envelope representation of the input signal, i.e. the magnitude and phase of the signal relative to the analyzer's center frequency.						
Baseband	shows the entire signal	t O Hz. The input signal is directly dig (carrier plus modulation), much as a					
Time record length (main time)	(Number of	frequency points – 1)					
	Span with RBW mode	e set to arbitrary, auto-coupled					
Time sample resolution	1/(k x span)						
	Where:						
	k = 2.56 for time data	mode set to baseband					
	k = 1.28 for all other modes (default) including zoom						
	Span = Currently selected frequency span						
Time recording characteristics	In recording (time capture) mode the incoming waveform is captured gap-free into high-speed time capture memory. This data may then be replayed at full or reduced speed, saved to mass storage, or transferred to another software application.						
	When time analyzing the captured waveform, users may adjust measurement span and center frequency in order to zoom in on a signal, as long as the new measurement span lies entirely within the originally captured span.						
Time recording memory size	Memory size is depend information.	ent on the hardware used. See hard	Memory size is dependent on the hardware used. See hardware specifications for more				
Resolution bandwidth (RBW)							
RBW values							
			I frequency span and the number of le range in a 1-3-10 sequence or directly				
Range	calculated frequency poir	nts. Users may step through the availab n bandwidth.					
	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo	nts. Users may step through the availab n bandwidth.	le range in a 1-3-10 sequence or directly shape as needed for best amplitude				
Range	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo	nts. Users may step through the availab n bandwidth. c span w allow the user to optimize the RBW s	le range in a 1-3-10 sequence or directly hape as needed for best amplitude				
Range RBW shape factor	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo accuracy, best dynamic r	nts. Users may step through the availab n bandwidth. c span bw allow the user to optimize the RBW s range, or best response to transient sign	le range in a 1-3-10 sequence or directly shape as needed for best amplitude nal characteristics.				
Range RBW shape factor Flat top	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo accuracy, best dynamic r Selectivity	nts. Users may step through the availab n bandwidth. span ow allow the user to optimize the RBW s ange, or best response to transient sign Passband flatness	le range in a 1-3-10 sequence or directly shape as needed for best amplitude hal characteristics. Rejection				
Range RBW shape factor Flat top Gaussian top	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo accuracy, best dynamic r Selectivity 0.41	nts. Users may step through the availaben bandwidth. span w allow the user to optimize the RBW stange, or best response to transient sign Passband flatness 0.01 dB	le range in a 1-3-10 sequence or directly shape as needed for best amplitude hal characteristics. Rejection > 95 dBc				
Range RBW shape factor Flat top Gaussian top Hanning	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo accuracy, best dynamic r Selectivity 0.41 0.25	nts. Users may step through the availaben bandwidth. span wallow the user to optimize the RBW stange, or best response to transient sign Passband flatness 0.01 dB 0.68 dB	le range in a 1-3-10 sequence or directly shape as needed for best amplitude hal characteristics. Rejection > 95 dBc > 125 dBc				
Range	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo accuracy, best dynamic r Selectivity 0.41 0.25 0.11	nts. Users may step through the availaben bandwidth. c span w allow the user to optimize the RBW stange, or best response to transient sign Passband flatness 0.01 dB 0.68 dB 1.5 dB	le range in a 1-3-10 sequence or directly shape as needed for best amplitude nal characteristics. Rejection > 95 dBc > 125 dBc > 31 dBc				
Range RBW shape factor Flat top Gaussian top Hanning Uniform	calculated frequency poir enter an arbitrarily chose < 1 Hz to > 0.287 x Max The window choices belo accuracy, best dynamic r Selectivity 0.41 0.25 0.11 0.0014	nts. Users may step through the availaben bandwidth. span w allow the user to optimize the RBW stange, or best response to transient significant passband flatness 0.01 dB 0.68 dB 1.5 dB 4.0 dB	le range in a 1-3-10 sequence or directly chape as needed for best amplitude nal characteristics. Rejection > 95 dBc > 125 dBc > 31 dBc > 13 dBc				


Measurement display and	u control						
Input	Up to 0 /bardware dependent						
Channels	Up to 8 (hardware dependent)						
Format	Individual; I+jQ (ch1 + jch2); dual I+jQ (ch1 + jch2, ch3 + jch4)						
Range	Selectable, or one-shot auto-range which sets full scale input range of the hardware						
0 "	Applies to current active or all channels						
Coupling	AC, DC						
Connection	Single-ended; differential (balanced)						
Triggering							
Trigger types	All trigger types are not available for all hardware						
Free run	Measurements run continuously without waiting for any trigger condition						
Channel	Level-based trigger used with baseband signals only						
IF magnitude	Trigger on in-band energy, where trigger bandwidth is determined by the measurement span. For zoom data. Time criteria is available when wideband digital IF is installed on UXA, PXA or MXA signal analyzers.						
External	Trigger signal provided to hardware through external trigger port						
Periodic	Available only for PSA Option 122 measurement hardware						
Frequency mask trigger	Frequency selective trigger, initiates measurement based on frequency mask and trigger criteria. Only available with real-time enabled UXA, PXA, or MXA signal analyzer. May be combined with time criteria.						
Event trigger	Allow users to define VSA measurement actions based on event trigger like pause the measurement run a Macro						
Playback trigger	Trigger on recorded data during playback using free run, channel or magnitude triggers						
Trigger delay	Allows pre-trigger (negative) and post-trigger (positive) delay. Delay value range is hardware dependent.						
Trigger hold-off	Prevents re-triggering until a full hold-off period has elapsed						
Trace data	For up to 8 channels, each channel displayed individually						
Autocorrelation	Autocorrelation for the selected input channel, used to determine if the signal repeats within itself, as in multipath						
CCDF	Complementary cumulative distribution function						
CDF	Cumulative distribution function						
Correction	Shows the correction data derived from calibration data						
Gate time	Portion of the main time record marked by the gate, when time gating is on						
Instantaneous main time	Unaveraged time data						
Instantaneous spectrum	Unaveraged spectrum data						
Main time	Corrected, resampled time data						
PDF	Probability density function						
PSD	Power spectral data						
Raw main time	Raw time series data						
Spectrum	Frequency spectrum computed from time trace data						
Graph							
• AM/AM	Response signal magnitude vs stimulus signal magnitude						
• AM/PM	Response signal phase vs stimulus signal magnitude						
Gain compression	Gain vs stimulus signal magnitude						
Stimulus time	Stimulus signal after compensation and time alignment						
Response time	Response signal after compensation and time alignment						
Delta EVM time	Magnitude of the differental error vector between the stimulus and response signals vs time						

Trace data (continued)	For up to 8 channels, each channel displayed individually				
Marker	Displays ACP or OBW tabular data				
Math	Displays computed data in math register				
Channel N x M (where M <n) cross<="" td=""><td>s channel data</td></n)>	s channel data				
Coherence	Indicates similarity between two signals				
Cross correlation	Determines time delays of a common signal between two different paths				
Cross spectrum	Cross power spectrum of ch N vs ch M				
Frequency response	Frequency response of ch N vs ch M				
Impulse response	Inverse of frequency response for ch N vs ch M				
Trace math					
Uses	Trace math can be used to manipulate data on each measurement. With multi-measurements, trace math can be done between results from different measurements. Applications include user defined measurement units, data correction, and normalization.				
Operands	Measurement data, data register, constants, jw				
Operations	+, -, x, /, conjugate, magnitude, phase, real, imaginary, square, square root, FFT, inverse FFT, windowing, logarithm, exponential, peak value, reciprocal, phase unwrap, zero, cross correlation, differentiate, smoothing, sine, cosine, tangent, power operator, constants				
Graphs	Perform complex stimulus-response measurements with modulated signals				
Graph settings	Stimulus and response data selection (auto or manual)				
	Compensation (amplitude normalization, time alignment, phase error compensation)				
	Polynomial order of curve-fit line				
Graph results	Differential error vector magnitude, averaged over all time points				
	Average gain of response data over stimulus data				
	Delay between stimulus and response data				
	Average stimulus power				
	Average response power				
	Coefficients for curve-fit line				
Trace appearance					
Trace formats	Log mag (dB or linear), linear mag, real (l), real (Q), wrap phase, unwrap phase, I-Q, constellation I-eye, Q-eye, trellis-eye, group delay				
Trace layouts	Unlimited traces, displayed on detachable grids with user-determined layout				
Number of colors	User-definable color palette				
Special visualization displays	Unique visual tools providing ways of looking at time-varying signals				
Adjustable parameters					
Color mapping	Color normal, color reverse, grey normal, grey reverse, user-defined				
Enhance	Determines how colors are distributed				
Threshold	Sets threshold value for currently selected visualization display type				
Display types	Cumulative history, digital persistence, spectrogram				
Averaging					
Types	RMS (video), RMS (video) exponential, peak hold, time, time exponential				
Number of averages, maximum	> 108				
Overlap processing	0 to 99.99%				

Time gating					
Features	Time-selective frequency domain analysis on any input or analog demodulated time-domain data. Independent gate delays can be set for each input channel				
Gate length, maximum	Main time length				
Gate length, minimum	Window shape/(0.3 x frequency span) where window shape is:				
	Flat top 2.2				
	Hanning 1.5				
	Uniform 1				
	Blackman-Harris 2.0044				
	Kaiser-Bessel 2.0013				
	Gaussian 2.0212				
	Gaussian Top 2.215				
Markers					
Number available	Unlimited markers per trace				
Types	Normal, delta, fixed, OBW, ACP, spectrogram				
Search	Peak, next peak left, next peak right, peak lower, peak higher, minimum				
Copy marker to >	Start freq, stop freq, center freq, ref level, despread chan, analysis TS/FS, delta to span, counter to center frequency, centroid to center				
Marker functions	Peak signal track, frequency counter, band power, couple				
Band power	Can be placed on any time, frequency, or demodulated trace for direct computation of band power, rms square root (of power), C/N, or C/No, computed within the selected portion of the data.				
Occupied bandwidth (OBW)	Placed on spectrum traces only to dynamically compute the bandwidth required to provide x% of power in the band. User selectable from 0 to 100%				
OBW results	Total power in span				
	Power in OBW				
	Power ratio (OBW/Span)				
	OBW lower frequency				
	OBW higher frequency				
	OBW				
	Centroid frequency				
	Offset frequency (measurement center freq – centroid freq)				
Adjacent channel power	Placed on spectrum traces only				
User-settable parameters	Center frequency and bandwidth of the carrier channel				
	Offset frequency and bandwidth of each offset channel				
	Reference offset allows offset channel to be centered anywhere on screen				
ACP results	Pass/fail limits for each offset (applied to both lower and upper result)				
	Carrier band power				
	Power in both lower and upper offset bands for each frequency offset				
	Power in both lower and upper offset bands for each frequency offset, relative to the carrier (ACPR)				
	Worst case (of the upper and lower offsets) ACPR for each frequency offset				
	Pass/fail condition relative to user supplied thresholds				
Limit lines					
Limit tests	Collection of limit lines applied to trace data. Defined by user or from save trace.				
Marker results	Pass/fail status for limit and margin; worst-case failed point, or smallest-margin point if no failure; limit test status for all traces, limit line table with tabular results				
Settable line parameters	Upper, lower limit; limit margin				
·	Export/import from frequency mask				
Limit programming	All features controllable via .NET				
Limit test failure	Generates measurement status event				

Software interface	
Programming and macros	Fully encapsulates all access to the front-end measurement hardware. Direct programmatic access to the measurement hardware is not required and not supported by any of these interfaces.
Remote programming	
.NET	.NET is the primary remote interface. Software development environments capable of interacting with .NET remoting include Microsoft Visual Studio and others.
SCPI	The SCPI remote interface allows SCPI-based instrument controllers full access to a subset of 89600 VSA software features. Compatible SCPI software development environments include Keysight VEE and Keysight Command Expert. MATLAB users should consider using SCPI for their remote programming needs.
Macro language	Supports macro-recording with a built-in editor using C# and VB.NET. Also, macros can be developed using any supported .NET language. Full-featured code editor complete with syntax coloring allows copy and paste into Microsoft Visual Studio for editing and debugging. Macros developed for the 89601A using VBA can only access features that are part of the COM compatibility interface.
Remote displays	To operate the 89600 VSA software or view its display from a remote location, the use of commercially available remote PC software is recommended.
File formats ¹	For storage and recall of measured or captured waveforms, spectra and other measurement results.
ASCII	Tab delimited (.txt), comma delimited (.csv)
Binary	Keysight standard data format (.sdf, .cap, .dat), Keysight E3238 search system time snapshot (.cap), time recording (.cap) files under 2 GB in size. Keysight N5110 or N5106 signal generator files (.bin) can be over 2 GB with the 89600 VSA 2020 release or above
MATLAB 4 and later	MAT-file (.mat)
MATLAB 2006 and later	MAT-file (.mat) and HDF5 file format (.hdf, .h5)
Simulation environments	
Supported software	Keysight EDA SystemVue and ADS, MathWorks Simulink (only available with VSA version 7.00 to 17.20)

^{1.} With VSA 2018 and later, accessible file size is increased up to 2^63 samples per channel to recall recording in SDF and HDF5 formats. File size is not increased with other file formats such as MAT-file (.mat), ASCII (.txt, .csv) or Binary (.bin).

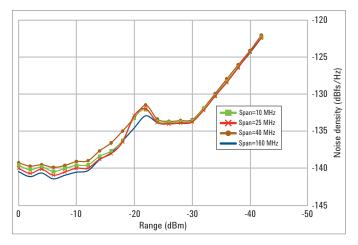
Key Specifications

This technical overview provides nominal performance specifications for the software when making measurements with the specified platform¹. Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty. For a complete list of specifications refer to the measurement platform literature.

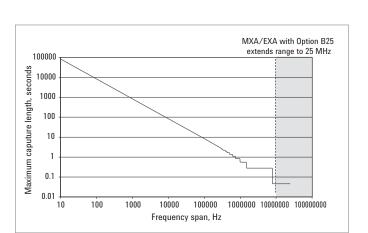
Basic VSA (Option 89601200C)

X-Series signal analyzers

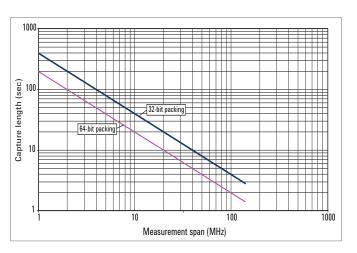
General performance	UXA	PXA			MXA		EXA	CXA	
	n this table represent a sull inside the instrument as v								the 89600 VSA
See the I/Q analy	zer section of the resp	ective X-S	eries sigr	nal analyz	er data sh	neets for n	nore infor	mation	
Literature number	5992-0090EN	5990-39	52EN		5989-49	42EN		5989-6529EN	5990-4327EN
	5992-1822EN	5992-13	17EN		5992-12	55EN		5992-1256EN	5992-1274EN
Frequency									
Minimum frequer	псу								
AC coupled	10 MHz	10 MHz		10 MHz		10 MHz	9 kHz (Option 503/507) 10 MHz (Option 513/526)		
DC coupled	2 Hz	2 Hz			10 Hz			10 Hz	9 kHz (Option 513/526)
Maximum freque	ncy	,			'			'	'
Option dependent	Up to 50 GHz (N9040B)	Up to 50 (N9030B	GHz or N9032B	3)		5 GHz (N90 GHz (N902	,	Up to 44 GHz	Up to 26.5 GHz
	Up to 110 GHz (N9041B or N9042B+ V3050A)								
Center frequency	tuning	'			'			'	'
Resolution	10 μHz	10 μHz			1 mHz				
Frequency span									
Option dependent	Up to 1 GHz (N9040B, N9041B)) MHz (N90 Hz (N9032	,	1 ') MHz (N90) MHz (N90	,	Up to 40 MHz	Up to 25 MHz
	Up to 4 GHz (N9042B)								
Frequency span E	Baseband IQ (Option BE	, '							
		I+jQ BW	1 ch BW	2 ch BW	I+jQ BW	1 ch BW	2 ch BW		
Standard		20 MHz	10 MHz	10 MHz	20 MHz	10 MHz	10 MHz		
Option B25		50 MHz	25 MHz	20 MHz ²	50 MHz	25 MHz	20 MHz ²		
Option B40		80 MHz	40 MHz	20 MHz ²	80 MHz	40 MHz	20 MHz ²		
Frequency points	per span								
Calibrated points		51 to 409							
Displayed points		51 to 524	,288						

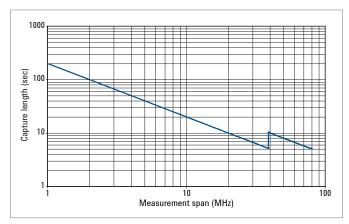

^{1.} Data subject to change.

^{2.} Values are for baseband measurements; values increase to match 1 ch BW for zoom measurements. Select baseband/zoom in the 89600 VSA software by clicking on MeasSetup>Frequency (tab)>Time Data> then either baseband or zoom.


General performance	UXA	PXA	MXA	EXA	CXA				
Input	Full scale, combir	Full scale, combines attenuator setting and ADC gain							
Range									
Without preamp	-22 dBm to +30 dBm (2 dB steps) -20 dBm to 30 (2 dB steps)			m					
With Option FSA or EA3				-20 dBm to 22 dBm	(2 dB steps)				
With preamp, f < 3.6 GHz	-42 dBm to +30 dB	m (2 dB steps)	-40 dBm to 30 dBm	-40 to 20 dBm (10 dB steps)					
			(2 dB steps)						
With Option FSA or EA3				-40 to 22 dBm (2 dB	steps)				
With preamp, f > 3.6 GHz	-56 dBm to +30 dB	m (2 dB steps)		-50 to 20 dBm (10 dB steps)					
With Option FSA or EA3				-54 to 22 dBm (2 dB	steps)				
Option BBA (50 ohm input)		-8 dBm to 10 dBm							
Option BBA (1 Mohm input)		-14 dBm to 4 dBm							
ADC overload	+2 dBfs								

General performance	UXA	PXA		MXA				
Amplitude accuracy								
Absolute amplitude accuracy	± 0.19 dB	< 3.6 GHz						
		± 0.19 dB		± 0.23 dB				
Display scale fidelity	0.12 dB							
Linearity	N/A	± 0.10 dB	± 0.04 dB (typical)	± 0.10 dB				
(input mixer level, ML)		(—18 dBm ≤ ML ≤ —10 dBm)		(—80 dBm ≤ ML ≤ —10 dBm)				
		± 0.07 dB (ML < —18 dBm)	± 0.02 dB (typical)	± 0.15 dB (ML < —80 dBm)				
Dynamic range	'	•		'				
DANL (Displayed Average	—153 dBm (10 MHz to	—155 dBm typical	(10 MHz to 1.2	—154 dBm typical	(10 MHz to 2.1			
Noise Level)	typical 1.2 GHz,		GHz, 0 dB input		GHz, 0 dB input			
Preamp off	0 dB input attenuation)		attenuation)		attenuation)			
Preamp on	—164 dBm typical (10 MHz to 2.1 GHz)	—166 dBm typical	(10 MHz to 2.1 GHz, 0 dB input attenuation, requires option P0x)	—166 dBm typical	(10 MHz to 2.1 GHz, 0 dB input attenuation, requires option P0x)			
Third-order intermodulation		Two —16 dBm	TOI for all frequency	Two —30 dBm	TOI for all frequency			
distortion (TOI)		tones at input mixer	options	tones at input mixer	options			
Preamp off		with tone separation > 5 times IF		with tone separation > 5 times IF				
		prefilter bandwidth		prefilter bandwidth				
		10 to 150 MHz	+16 dBm typical	10 to 100 MHz	+17 dBm typical			
		150 to 600 MHz	+21 dBm typical	100 to 400 MHz	+20 dBm typical			
		0.6 to 1.1 GHz	+22 dBm typical	400 MHz to 1.7 GHz	+20 dBm typical			
		1.1 to 3.6 GHz	+23 dBm typical	1.7 to 3.6 GHz	+19 dBm typical			
				3.6 GHz to 26.5 GHz	+18 dBm typical			
Preamp on		10 to 500 MHz	+4 dBm nominal (Two —45 dBm tones)	10 to 500 MHz	+4 dBm nominal			
		500 MHz to 3.6 GHz	+4.5 dBm nominal (Two —45 dBm tones)	500 MHz to 3.6 GHz	+5 dBm nominal			
		3.6 GHz to 26.5	-15 dBm nominal	3.6 to 26.5 GHz	—15 dBm nominal			
		GHz	(Two —50 dBm		(Two —45 dBm			
			tones)		tones)			


General performance	EXA		CXA	
Amplitude accuracy				
Absolute amplitude accuracy			2.0 to 3.0 GHz	
	± 0.27 dB		± 0.60 dB	
Display scale fidelity				
Linearity (input mixer level, ML)	± 0.15 dB (—80 dBm ≤ ML ≤ —10 dBm)		± 0.15 dB (—80 dBm ≤ ML ≤ —15 dBm)	
	± 0.25 dB (ML < -80 dBm)		\pm 0.30 dB (—15 dBm \leq ML \leq —10 dBm)	± 0.30 dB (typical)
Dynamic range			·	·
DANL (Displayed Average Noise Level)	—150 dBm typical	(10 MHz to 2.1 GHz, 0 dB input attenuation)	—150 dBm typical	(10 MHz to 1.5 GHz, 0 dB input attenuation)
Preamp off				
Preamp on	—163 dBm typical	(10 MHz to 2.1 GHz, 0 dB input attenuation, requires option P0x)	—163 dBm typical	(10 MHz to 1.5 GHz, 0 dB input attenuation, requires option P0x)
Third-order intermodulation distortion (TOI) Preamp off	Two —30 dBm tones at input mixer with tone separation > 5 times IF prefilter bandwidth	TOI with RF/MW (option 503/507/513/526)	Two -20 dBm tones at input mixer with tone separation 10 kHz, 0 dB attenuation	TOI with RF (option 503/507)
	100 to 400 MHz	+17 dBm typical	10 to 400 MHz	+14 dBm typical
	400 MHz to 3.6 GHz	+18 dBm typical	400 MHz to 3 GHz	+17 dBm typical
	3.6 GHz to 13.6 GHz	+18 dBm typical	3.0 to 7.5 GHz	+15 dBm typical
	13.6 GHz to 26.5 GHz	+16 dBm typical	0.0 10 7.0 0.12	1 To abilitypical
Preamp on	30 MHz to 3.6 GHz	0 dBm nominal (Two —45 dBm tones)	10 MHz to 26.5 GHz	—8 dBm nominal (Two —45 dBm tones spaced by 100 kHz, 0 dB attenuation)
	3.6 GHz to 26.5 GHz	—18 dBm nominal (Two —50 dBm tones)		


PXA noise density (nominal, 1.8 GHz).


Capture length vs. span for MXA/EXA (without DP2, MPB, B40 or wider bandwidth).

Capture length vs. span for MXA/EXA (with DP2, MPB, B40 or wider bandwidth) and PXA.

PXA and MXA (BBIQ mode) capture length vs. span.

Time and waveform capture	UXA	PXA	MXA	EXA	CXA				
Max capture size				•					
Complex samples			4 Msa (standard)	4 Msa (standard)	4 Msa (standard)				
(B40 with DP2)	512 MSa (32-bit)	512 MSa (32 bits)	512 MSa (32 bits) ¹	512 MSa (32 bits) ²					
	256 MSa (64-bit)	256 MSa (64 bits)	256 MSa (64 bits) ¹	256 MSa (64 bits) ²					
(B85/B1X/B2X/B5X with DP4)	1073 MSa (32-bit)	1073 MSa (32-bit)	2147 Msa (32-bit)						
	536 MSa (64-bit)	536 MSa (64-bit)	1073 MSa (64-bit)						
(H1G)	838 MSa (32 bit)								
R10/R15/R20	4 GSa (32-bit)	4 GSa (32-bit)							
R40	4 GSa (32-bit)								
Analog baseband samples		500 MSa (Opt BBA)	500 MSa (Opt BBA)						
Maximum capture time (at max. span with RF)	(Complex samples, 32	! bit)							
10 MHz	40 sec	40 sec	266.6 msec	266.6 msec	266.6 msec				
25 MHz	16 sec	16 sec	88.8 msec	88.8 msec	88.8 msec				
40 MHz (B40)	10 sec	10 sec	10 sec	10 sec					
85 MHz (B85)	4.9 sec (DP2)	4.9 sec (DP2)	4.9 sec						
	9.8 sec (DP4)	9.8 sec (DP4)							
125 MHz (B1A)	3.3 sec (DP2)	N/A	3.3 sec						
	6.6 sec (DP4)								
160 MHz (B1X)	2.6 sec (DP2)	2.6 sec (DP2)	2.6 sec						
	5.2 sec (DP4)	5.2 sec (DP4)							
255 MHz (B2X)	7.1 sec (DP4)	7.1 sec (DP4)	3.57 sec (DP4)						
510 MHz (B5X)	3.55 sec (DP4)	3.55 sec (DP4)	3.56 sec (DP4)						
1 GHz (H1G)	665 msec								
1 GHz (R10)	1660 msec	1660 msec							
1.5 GHz (R15)	830 msec	830 msec							
2 GHz (R20)	830 msec								
4 GHz (R40)	429 msec								
System requirements with	PathWave Vector Sig	nal Analysis (VSA) and	d X-Series signal ana	lyzer					
PC to analyzer interface	connected to the analyzer via LAN. Installing the 89600 VSA software into the analyzer enables its use with a connected mouse and keyboard via USB. When the software is running in a remote PC, use of a LAN crossover cable, LAN hub, or LAN switch is required and allows to transfer the data from the signal analyzer.								
PC requirements	PC requirements www.keysight.com/find/89600-pc								

Note: When running the 89600 VSA software inside most of the X-Series signal analyzers, you can gain immediate, direct access to all of the signal analyzer's features by pressing [Mode] on the analyze, using Control > Disconnect on the 89600 VSA software's command toolbar, or closing the 89600 VSA software. When running the 89600 VSA software on a remote PC connected to the analyzer, you can use the same disconnect command or close the 89600 VSA software to release the data acquisition.

- 1. With Option MPB, DP2, B40, B85, B1A or B1X.
- 2. With Option MPB, DP2 or B40.

Hardware Connectivity

For a complete list of specifications refer to the measurement platform literature.

For a complete list of currently supported hardware with the latest version of PathWave Vector Signal Analysis (VSA), go to www.keysight.com/find/89600_hardware

Description	Models supported	Input channels	Baseband (I/Q)	MIMO	Analysis bandwidth ¹	Frequency range ¹	EVM performance ^{1,}	Applications
X-Series signal analyzers	N9000A/B, N9010A/B, N9020A/B, N9021B N9030A/B	1, 2 if N9010A or N9020A controlled together ⁴	Yes, optional	2x2 MIMO with dual N9010A/B or N9020A/B analyzers, time synchronous only ⁴	Up to 510 MHz; 25 MHz max for controlled units	Up to 50 GHz	0.50% rms to 1.5% rms ³	Low cost to high performance baseband, RF, 2-ch MIMO
	N9032B	1 RF	No	No	Up to 2 GHz	Up to 50 GHz	TBD	mmWave, 5G
	N9040B	1 RF	No	No	Up to 1 GHz	Up to 50 GHz	0.16~0.89% (nom)	mmWave, 5G
	N9041B	1 RF	No	No	Up to 1 GHz (int.) Up to 4 GHz (ext.)	Up to 110 GHz	0.29~0.89% (nom)	mmWave, 5G
	N9042B	1 or 2 RF	No	No	Up to 4 GHz (int.) Up to 11 GHz (ext.)	Up to 50 GHz Up to 110 GHz with V3050A	TBD	5G, Satellite Comm
UXM Wireless Test Set	E7515A	2 RF, 2 digital	No	No	100 MHz	300 MHz to 6 GHz	Not available	Signaling test, 2G/3G/4G
MXE EMI receiver	N9038A	1 RF	No	No	Up to 85 MHz	Up to 44 GHz	Not available	CISPR compliance testing
CXA-m PXIe signal analyzer	M9290A	1 RF	No	No	Up to 25 MHz	Up to 26.5 GHz	Not available	Modular, low cost
PSA spectrum analyzer ⁷	E4440A, E4443A, E4445A, E4446A, E4447A, E4448A	1, 2 if 2 units controlled together	No	2x2 MIMO, time synchronous only	Up to 80 MHz; 8 MHz max for controlled units	Up to 50 GHz	0.50% rms to 1.5% rms ⁵	High performance RF
Wideband transceiver	E7760A	1 RF	No	No	2 GHz	2 to 18 GHz, 55 to 68 GHz	Not available	WLAN 802.11ad, compact
Wireless Device Set	E6680A, E6680E	1 to 4 RF	No	4x4 MIMO	Up to 800 MHz	Up to 7.3 GHz	Not available	WLAN 802.11ax/11be
FieldFox handheld analyzers	N99xxA/B (spectrum, combination analyzer)	1 RF	No	No	Up to 120 MHz	Up to 50 GHz	Not available	Handheld, field use, I&M
Infiniium oscilloscopes	S-Series V-Series Z-Series 9000 Series 90000 A Series 90000 X-Series ⁷ 90000 Q-Series ⁷ 9000 H-Series ⁷ UXR Series UXR Series MXR Series	1, 2, 3, 4 Up to 4 ch Up to 8 ch	Yes, including dual I+jQ, and quad I+jQ	Up to 4x4, including baseband Up to 4x4 Up to 4x4 Up to 8x8	61 GHz (62.5 GHz with reduced alias protection) up to 110 GHz up to 6 GHz	61 GHz (62.5 GHz with reduced alias protection) up to 110 GHz up to 6 GHz	Not available	Wide bandwidth; baseband; economic MIMO analysis
		l .		'	'	· .		
	EXR Series	Up to 8 ch		Up to 8x8	up to 2.5 GHz	up to 2.5 GHz		

^{1.} Depending on model/option.

^{2.} On QPSK signal; full scale signal, fully contained in the measurement span; random data sequence; start frequency ≥ 15 % of span; alpha/BT ≥ 0.3; symbol rate ≥ 1 kHz; averaging = 10; Requires Option AYA. Data provided for comparison purposes only.

^{3.} Frequency < 3.6 GHz; range ≥ -30 dBm.

^{4.} Option B40 is not supported (i.e. if any analyzer has Option B40, it cannot be used together with another analyzer).

^{5.} Frequency < 3 GHz; range ≥ -24 dBm.

^{6.} Frequency between 30 MHz and 3 GHz; range ≥ -20 dBm.

^{7.} Discontinued but currently supported.

Description	Models supported	Input channels	Baseband (I/Q)	MIMO	Analysis bandwidth ¹	Frequency range ¹	EVM performance ^{1, 2}	Applications
Streamline vector network analyzer	P50xxA, P50xxB	Up to 50 ports	No	Yes	Up to 29 MHz	Up to 53 GHz	Not available	Modular, cost effective
PNA vector network analyzer	E5221B, E5222B, E5224B, E5225B, E5227B, E5241B, E5242B, E5244B, E5245B, E5247B, E5249B	Up to 4 ports	No	Yes	Up to 33 MHz	Up to 67 GHz	Not available	DPD of amplifiers, EVM on frequency converters, OTA measurements of phased-array antennas
ENA vector network analyzer	E5080B	Up to 4 ports	No	Yes	Up to 33 MHz	Up to 53 GHz	Not available	DPD of amplifiers, EVM on frequency converters, OTA measurements of phased-array antennas
InfiniiVision oscilloscopes	1000 X-Series 3000T X-Series 4000 X-Series	1, 2, 3, 4 depending on model and options	Yes, for all 2-channel scopes; dual I+jQ with 4-channel models	Up to 4×4	Up to 1 GHz	Up to 1.5 GHz	Not available	Wide bandwidth; baseband; economic baseband MIMO analysis
Logic analyzer	16800/16900; RDX ³	1-4 channel analysis	No	No	Up to 1.5 GHz	Up to 1.5 GHz	Not applicable	Digital bus and FPGA analysis, all apps
PXIe vector tranceiver	M9421A, M9420A	8	No	Up to 8x8 (WLAN) Up to 4x4 (5G NR)	Up to 160 MHz	60 MHz to 6 GHz	Not available	Modular, cost effective, WLAN, MIMO
	M9410A, M9411A	4	No	Up to 4x4	Up to 1.2 GHz	380 MHz to 6 GHz	Not available	Modular, wide bandwidth, 5G, WLAN, MIMO
	M9415A	4	No	Up to 4x4	Up to 1.2 GHz	380 MHz to 12 GHz	Not available	Modular, wide bandwidth, 5G, WLAN
PXIe vector signal analyzers	M9393A	Up to 4 per chassis	No	Up to 4x4	Up to 160 MHz	9 kHz to 50 GHz	Not available	Modular, high performance, fast, MIMO
	M9391A	Up to 4 per chassis	No	Up to 4x4	Up to 160 MHz	1 MHz to 6 GHz	-42 dB to -47.5 dB (nominal) ⁴	Modular, wide bandwidth, fast, MIMO
	M9393A + M9203A	Up to 4 per chassis	No	Up to 4x4	Up to 1 GHz	9 kHz to 50 GHz	Not available	Modular, wide bandwidth, fast
PXIe vector network analyzer	M980xA	Up to 50 ports	No	Yes	Up to 29 MHz		Not available	Modular, cost effective
S9100A	M1740A + E7770A + M9410A	1	No	No	Up to 1.2 GHz	FR1: 380 MHz to 6 GHz FR2: 24.25 to 43.5 GHz	< 0.3% (Sub-6 GHz) < 1.0% (28 GHz) < 1.2% (39 GHz)	5G Base Station Manufacturing

^{1.} Depending on model/option.

^{2.} On QPSK signal; full scale signal, fully contained in the measurement span; random data sequence; start frequency ≥ 15 % of span; alpha/BT ≥ 0.3; symbol rate ≥ 1 kHz; averaging = 10; Requires Option AYA. Data provided for comparison purposes only.

^{3.} Discontinued but currently supported.

^{4.} Measurement made with a 256QAM signal and a 160 MHz analysis bandwidth (802.11ac).

^{5. 89600} VSA also supports the source control with the M9383B/M9384B VXG, M9381A PXIe VSG, N5171B/N5172B/N5181B/N5182B X-Series signal generator, E8257D/E8267D PSG.

Description	Models supported	Input channels	Baseband (I/Q)	MIMO	Analysis bandwidth ¹	Frequency range ¹	EVM performance ^{1, 2}	Applications
PXIe digitizer	M9203A	2	Yes	Up to 8x8	1 GHz	DC to 2 GHz	Not available	Multi-channal, wide bandwidth, baseband
	M8131A	4	Yes	Up to 4x4	Up to 12.5 GHz	DC to 12.5 GHz	Not available	Multi-channal, MIMO wide bandwidth, multi-antenna, RF & baseband
	M3102A	4	Yes	Up to 4x4	Up to 200 MHz	DC to 200 MHz	Not available	Multi-channel, baseband, Baseband I/Q
AXIe high speed digitizer	M9703A ³ , M9703B	8	Yes	Up to 8x8	1 GHz	DC to 1.6 GHz	-44 dB and -47 dB (nominal) ⁴	Multi-channel, wide bandwidth, baseband,
	M9710A	4	Yes	Up to 4x4	2.5 GHz	DC to 2.5 GHz	Not available	multi-antenna, MIMO
PCle high speed digitizer	U5303A	8	Yes	Up to 8x8	1 GHz	DC to 1.6 GHz	Not available	Multi-channel, wide bandwidth, baseband, multi-antenna, MIMO
RF sensor	N6841A	1	No	No	Up to 20 MHz	20 MHz to 6 GHz	Not available	Outdoor weatherproof, cost effective

^{1.} Depending on model/option.

^{2.} On QPSK signal; full scale signal, fully contained in the measurement span; random data sequence; start frequency ≥ 15 % of span; alpha/BT ≥ 0.3; symbol rate ≥ 1 kHz; averaging = 10; Requires Option AYA. Data provided for comparison purposes only.

^{3.} Discontinued but currently supported.

^{4.} Measurement made with a 256QAM signal and a 160 MHz analysis bandwidth (802.11ac).

Ordering Information

Software licensing and configuration

Flexible licensing and configuration

- Perpetual: License can be used in perpetuity.
- Time-based: License is time limited to a defined period, such as 12-months.
- Node-locked: Allows you to use the license on one specified instrument/computer.
- Transportable: Allows you to use the license on one instrument/computer at a time.
 This license may be transferred to another instrument/computer using Keysight's online tool
- Floating: Allows you to access the license on networked instruments/computers from a server, one at a time. For concurrent access, multiple licenses may be purchased.
- USB portable: Allows you to move the license from one instrument/computer to another by end-user only with certified USB dongle, purchased separately.
- Software support subscription: Allows the license holder access to Keysight technical support and all software upgrades

Basic vector signal analysis and hardware connectivity (89601200C)

Software License Type	Software License	Support Subscription	
Node-locked perpetual	R-Y5A-001-A	R-Y6A-001-z ²	
Node-locked time-based	R-Y4A-001-z ¹	Included	
Transportable perpetual	R-Y5A-004-D	R-Y6A-004- z ²	
Transportable time-based	R-Y4A-004-z ¹	Included	
Floating perpetual (single site)	R-Y5A-002-B	R-Y6A-002-z ²	
Floating time-based (single site)	R-Y4A-002-z ¹	Included	
Floating perpetual (regional)	R-Y5A-006-F	R-Y6A-006-z ²	
Floating time-based (regional)	R-Y4A-006-z ¹	Included	
Floating perpetual (worldwide)	R-Y5A-010-J	R-Y6A-010-z ²	
Floating time-based (worldwide)	R-Y4A-010-z ¹	Included	
USB portable perpetual	R-Y5A-005-E	R-Y6A-005-z ²	
USB portable time-based	R-Y4A-005-z ¹	Included	

z means different time-based license duration. F for six months, L for 12 months, X for 24 months, and Y for 36 months. All time-based licenses have included the support subscription same as the time-base duration.

2. z means different support subscription duration. L for 12 months (as default), X for 24 months, Y for 36 months, and Z for 60-months. Support subscription must be purchased for all perpetual licenses with 12-months as the default. All software upgrades and KeysightCare support are provided for software licenses with valid support subscription.

Additional Information

Literature

- PathWave Vector Signal Analysis (VSA) Software, Brochure, literature number 5990-6553EN
- PathWave Vector Signal Analysis (VSA) Software, Configuration Guide, literature number 5990-6386EN
- Keysight Vector Signal Analysis Basics, Application Note, literature number 5990-7451EN
- Exploring Signal Interactions with Multi-Measurements in the 86900 VSA Software, Application Note, literature number 5991-1620EN

Web

- www.keysight.com/find/89600vsa
- www.keysight.com/find/eesof-systemvue
- www.keysight.com/find/eesof-ads

Keep your PathWave Vector Signal Analysis (VSA) software up-to-date

With rapidly evolving standards and continuous advancements in signal analysis, PathWave Vector Signal Analysis (VSA) software with valid 89601200C KeysightCare support subscription can offers you the advantage of immediate access to the latest features and enhancements available for PathWave Vector Signal Analysis (VSA) software. Refer the 89600 VSA Configuration Guide (5990-6386EN) for more details.

You can upgrade!

All PathWave Vector Signal Analysis (VSA)

options can be added after your initial purchase and are license-key enabled. For more information please refer to www.keysight.com/ find/89600_upgrades

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

