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Abstract 
 
Bhutan is undergoing rapid changes after lifting a self-imposed isolation which exposed a development lag with 
the rest of the world. The nation is developing from a traditional into a modern society in rapid pace. This 
development is putting a pressure on Bhutan’s landscapes because of large-scale infrastructure projects and 
diminishment in perceived importance of cultural landscapes. The Bhutanese government puts great effort in 
developing the nation in an ecologically and culturally sustainable manner. A landscape typology and map is 
created to aid these efforts. A literature review of existing typologies shows a lack of standardised methods 
aimed at (sub-)national scale. Proposed standards for supra-national landscape typologies are found to be 
inadequate for this goal. Previous methodologies are examined and discovery of general patterns has led to a 
methodology flowchart which is used to develop a robust but simple method that is suitable for Bhutan.  
 
The typology for Bhutan is based on altitude, slope and landcover, with class boundaries determined using 
landcover and settlement patterns. In an attempt to include a larger scale landscape attribute as source data 
for the landscape typology commonly used relief roughness indicators were found to be unsatisfactory in 
discriminatorily indicating different types and measures of relief roughness. An improved indicator was 
therefore developed called the Comprehensive Roughness Indicator (CRI). In a technical comparison CRI 
outperformed four commonly used indicators in accuracy, scalability and flexibility. Noise in the Digital 
Elevation Model prevented the use of CRI in the final typology creation. The final landscape map uses a 
minimum mapping unit of 230 ha for a general overview and 15 ha for research and guidance for policy-
makers.  
 
The landscape map resulting from this typology is found to be accurate with a minimum accuracy of over 72 % 
and a realistic accuracy of over 86.6 %. Based on the validation results it is recommended to include an 
additional heterogeneity landscape attribute. The developed landscape typology is used in two case-studies 
concerning real world issues. The first case study addresses vulnerability of cultural heritage and difficulties for 
archaeological research. Two types of archaeological heritage prediction models are calculated, where the 
landscapes generated by the developed methodology perform optimal in delineating high potential 
archaeological sites and the typology adds considerable discerning capability. The second case-study addresses 
landscape change. The landscape typology is found to help explain and increase understanding of processes 
related to landscape change. Based on the literature review and building upon the developed method a 
proposal is made for a standard framework which can be used to create coherent super-national scale 
landscape typologies in greater detail than currently feasible. 
  

Bhutan’s national flag. 
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1. Introduction 

1.1 Background 
 

Bhutan, known by locals as Druk yul which is Dzongkha for ‘the Land of the Thunder Dragon’, is a 

country undergoing rapid transformations. Throughout history the Himalayan kingdom has never 

been conquered or ruled over by other nations or any other form of outside power (Aris, 2005; Rose, 

1977). This fact, together with its difficult traversable mountainous terrain and in part naturally 

impenetrable border consisting of some of the world’s highest mountain peaks has ensured Bhutan 

has been relatively free from foreign cultural influences (Mathou, 2000; Silva & Sinha, 2017). 

Consequently the Bhutanese people have adhered strongly to their cultural identity and practices 

imparting Bhutan’s traditional society with an almost time-capsule like quality which much of the 

modern world has passed by for a long time (Mathou, 2000). Relatively recent changes in the 

political structure have paved the way for a more open stance towards the outside world. More 

modern forms of government introduced throughout the 20th century together with the China-Tibet 

conflict and fear for similar encroachment efforts on Bhutan led the Bhutanese to seek out a 

stronger relationship with India, its neighbour to the south (Savada, 1993; Ueda, 2003). Supported 

and partly funded by India a program of modernisation was implemented which included the 

construction of roads throughout Bhutan and connecting this network to India. The end of Sikkim’s 

300 year old monarchy in 1975 through Nepalese actions may have further encouraged the 

Bhutanese to solidify Bhutan’s independence and international position by establishing diplomatic 

relations with other nations and joining international organizations, resulting in even more contact 

with the more modern outside world (Savada, 1993). 

Now modernisation has finally achieved a solid foothold it is increasingly influencing and quickly 

altering all aspects of the nation's society including culture, environment, landscape, economy and 

much more (Asian Development Bank: Bhutan Country Team, 2005; Palden, 2016; Topping, 2014; 

Ueda, 2003). The country is being pulled from a traditional society and technology level into the 

modern world at an unprecedented pace. Modernisation is having both desirable and detrimental 

effects on many of the nation's cultural and ecological attributes (Palden, 2016; Topping, 2014). The 

stronger ties with the rest of the world have improved healthcare and education and ensured better 

infrastructure, the abolishment of slavery and so on (BBC, 2018; Topping, 2014). Small villages that 

had been isolated for centuries are now connected to the electricity grid and can receive television 

and internet. Also they are physically becoming connected to the outside world by newly built roads 

where previously its inhabitants had to hike for up to a week to reach the next township (Y. 

Samdrup, personal communication, March 29, 2017; Topping, 2014). The lifting of the ban on 

television and the internet in 1999 has especially lead to many societal and cultural changes, not all 

of them beneficial (McDonald, 2004). Global cultural influences and modern knowledge could now 

easily spread to the least developed regions (Knaster, 2008; Silva & Sinha, 2017). Information about 

stronger building techniques and materials have caused the prevalence of typical ancient 

architecture used for centuries to decline, altering the look of traditional houses (Fig. 1).  
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Children are being schooled via telepresence solutions and gain aspirations outreaching their 

traditional environment, driving them to the nation's cities. This results in traditional villages 

becoming increasingly abandoned as has been happening in other modern nations for decades 

(Asian Development Bank: Bhutan Country Team, 2005; CNN, 2007; Knaster, 2008; Topping, 2014; 

Ueda, 2003). Traditional villages play an important role in the perpetuation of Bhutanese culture and 

traditional landscapes. The villages act as a repository for local legends through village elders (Chand, 

Nel & Pelc, 2017). Surrounding landscapes are shaped by the local customs but also by local legends 

and beliefs (Allison, 2015; Nassauer, 1995). The decline of their population is thus expected to have a 

large influence on the landscape and Bhutanese heritage (Nassauer, 1995). The influx of globalised 

culture through television and the internet has resulted in a decrease of experience with, and 

perceived importance of, Bhutanese culture. These processes resonate throughout the entire social, 

economical and ecological structure of Bhutan. Because of the pressure on traditional practices 

Bhutanese culture itself is increasingly under pressure. The decline of traditional practices and 

cultural awareness are particularly visible in the traditional Bhutanese landscapes (Allison, 2015; 

Palden, 2016). Their appearance is more often than not strongly tied to legends, beliefs and cultural 

features like temples and stupas. The landscapes, cultural practices and cultural features have 

evolved around each other and the value of both is derived from this reciprocal relationship (Allison, 

2015; Cultural Heritage Act of Bhutan, 2016; Nassauer, 1995). The decrease in importance and value 

associated with cultural features and practices thus also has a large influence on the perceived 

importance and value of traditional cultural landscapes. Adding a sense of urgency to the pressure on 

Bhutan's landscapes and heritage is that analysis shows that even though in the course of a country's 

economic development the nation becomes less dependent on provisioning and regulating 

ecosystem services it becomes more dependent on cultural services of landscapes (Guo, Zhang, & Li, 

2010 in Plieninger, Dijks, Oteros-Rozas, & Bieling, 2013, p. 119). This highlights the importance of 

understanding cultural landscapes in developing countries. There are additional factors that 

exacerbate these negative consequences of Bhutans modernisation. 

One significant pressure on Bhutanese landscapes is Bhutan’s enormous potential for generating 

hydropower due to its geography and climate (Tshering & Tamang, 2004). High-level governmental 

cooperation with India has led to the (future) construction of multiple hydroelectric plants and is 

now shaping Bhutan's hydropower export into its most important economic input, thereby 

skyrocketing the tiny economy to the second fastest growing economy worldwide in 2007 (The 

World Bank Group, 2014; The World Bank Group, 2017). Since the valleys are where most of 

Bhutanese life takes place flooding of parts of the valleys combined with large scale scarring of the 

Fig. 1) Modern influences on Bhutanese society can also be found in its architecture. For example typical wood shingle 
roofs weighed down with rocks (left) are replaced with low maintenance corrugated sheet roofs (right). Image credit: 
Bhutan Nuns Foundation; Living Travel. 
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mountain side has a big impact on the landscape. In addition to the direct influences of large-scale 

construction projects there are many indirect effects associated with them as well. For example 

relocation of people living in to-be-flooded regions which may involve them leaving traditional 

villages and moving into more modern apartment blocks. Workers of these projects (often Indians 

with no local homes) have to be housed in semi-temporary buildings and additional roads are 

constructed for transport of workers, materials and machines. Because of the indirect effects of the 

large scale construction projects their effect on the Bhutanese landscape reaches farther than solely 

the construction site. The scale of these and other large scale infrastructure projects are affecting all 

aspects of Bhutan's society and ecology, including its cultural landscapes (Dharmadhikary, 2015; 

Rinzin, 2017). For these reasons the more open attitude of Bhutan to the rest of the world appears to 

have set in motion an unstoppable cascade of processes that may diminish the impact, presence and 

importance of the Bhutanese heritage, including cultural landscapes.  

The interplay between landscapes and local legends and traditions is exemplified by the Bhutanese 

religion which is a combination of Buddhism and a pre-Buddhistic animistic belief system called Bon. 

As such the Bhutanese assign great importance to many natural features like rocks, trees, cliffs, 

rivers, mountains and even small features like specific indents in rock faces. These features are 

believed to be inhabited by deities or incorporate the spirit of important historic persons (which are 

often shrouded in mythology) who have visited those locations. Such features are called Nye’s and 

are absolutely everywhere in the Bhutanese landscape where they influence every aspect of day to 

day life. As such they are vulnerable to many changes in Bhutan’s environment and culture. The box 

on the next page has an example of a Nye and the effects large infrastructure has had on this Nye. 
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The influence of Bhutans modernisation on a Nye near Thimphu 

An example of the effect of infrastructure growth is found in a little known Nye very close to the 

capital of Thimphu where one of Bhutan’s two important historical influencers, Guru Rinpoche, is 

believed to have meditated together with many deities. The Guru, his horse and the deities have left 

imprints of various body parts in the cliff face which are closely guarded by the villagers to this day. 

They are believed to house religious insights known as treasures which can be unlocked by a Tertön 

(treasure seeker). When looking at the cliff face from across the valley one should also see the face 

of the Guru in the shape of the rocks. During a field visit this very holy and otherwise tranquil 

location was found to suffer from its proximity to the capital as city noise was very clearly audible, 

diminishing –according to the caretaker of the Nye- the suitability of the location for meditation and 

religious festivities. 

       Fig. 2) View of Thimphu from Tandin Nye in 2018. Image source: Google Earth Pro 

Fig. 2 contains a view from Tandin Nye towards the capital of Thimphu in 2018. Fig. 3 features a top 
down aerial image of the urban area seen in the view from Tandin Nye. The increased urban density 
is clear. 

Fig. 3 clearly shows the increase in urban density but maybe even more importantly in this case the 

new highway that has been built. The highway has replaced a dirt road and when seen in high 

resolution clearly is home to a much higher traffic density which is responsible for the noise pollution 

mentioned earlier.  

Fig. 3) Aerial view of the area seen from Tandin Nye. 2003 on the left, 2018 on the right. Image source: Google Earth Pro 
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The example in the box reveals the pressures on Bhutanese culture and cultural landscapes due to 

modernisation which are in this case two-fold. Important locations are suffering from the modern 

world finding its way into Bhutan altering the properties of the landscape (in this case noise pollution 

and the view from the Nye, which has rapidly changed from a forested valley to a highway and 

apartment blocks). The other factor in this example is that the population of the neighbouring capital 

mostly does not know of this location as especially the younger generation is losing touch with the 

importance and significance of these places and rituals. The professional guide employed during the 

field study had, to his own surprise, never before heard of this location, same as anyone who was 

asked about it in the capital even though it is one of four locations where Guru Rinpoche, 

unanimously regarded as one of the two most important individuals in Bhutanese history, has spent 

a significant amount of time. Both pressures enforce each other as well, because when people are 

less aware of the presence of such locations they are unable to protect them during planning phases 

of (urban or infrastructural) development projects. Encroaching development further diminishes the 

sanctity of these places which ensures that less people will regard them as important and so they 

slide into obscurity. Various departments within the Bhutanese government are working on projects 

to map and spread knowledge of these locations. The projects have just begun in recent years and 

there is a lot of work to do before such an overview is complete. 

The Bhutanese government has expressed a great desire to protect the cultural heritage and 

traditions of Bhutan, including cultural landscapes as was laid down in the 1990 Paro Resolution, the 

11th and 12th Five Year Plan and the Economic Development Policy. Bhutan is famous for being the 

only nation to adopt Gross National Happiness as its guiding philosophy where other nations around 

the world measure their success through the Gross National Product. The pursuit of Gross National 

Happiness (GNH) is even dictated by the 2008 Bhutan constitution and is taken very seriously. The 

GNH commission is one of the most important governmental bodies of Bhutan influencing just about 

every other regulatory body. The GNH philosophy is supported by the four main pillars of GNH: 1) 

Good Governance, 2) Sustainable Socio-economic Development, 3) Preservation and Promotion of 

Culture and 4) Environmental Conservation. Especially pillar 3 and 4 are vulnerable to the influences 

of modernization. The GNH centre of Bhutan describes the importance of the pillars as such (Gross 

National Happiness Centre [GNHC], n.d.; Silva & Sinha, 2017):  

Preservation and Promotion of Culture. Happiness is believed to be contributed to by preserving the 

Bhutanese culture. Developing cultural resilience, which can be understood as the culture’s capacity 

to maintain and develop cultural identity, knowledge and practices, and able to overcome challenges 

and difficulties from other norms and ideals. 

Environmental Conservation. Environmental Conservation is considered a key contribution to GNH 

because in addition to providing critical services such as water and energy, the environment is 

believed to contribute to aesthetic and other stimulus that can be directly healing to people who 

enjoy vivid colours and light, untainted breeze and silence in nature’s sound. 

In these two pillars an acute awareness of the development pitfalls described by Guo et al. (2010) is 

clearly visible. The concept of cultural landscapes is relevant for both pillars and they are thus a large 

contributor to GNH in the view of the Bhutanese government. The fourth pillar is often closely tied to 

the third pillar as their subjects are influenced by each other. Especially due to large infrastructure 

projects, like the enormous hydropower installations being constructed at multiple locations and the 

earlier mentioned urban developments, many parts of the Bhutanese landscape are being affected. 
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In order to aid the Bhutanese with their goal of sustainable development (pillar 2) the World Bank is 

offering technology, materials and knowledge. This report is a continuation of these efforts aimed at 

helping the Bhutanese transition to the modern age in a sustainable fashion, in particular the ‘Bhutan 

cultural mapping for large infrastructure planning and development’ project (contract number 

7182038) which is undertaken by the World Bank Group and Spinlab of the Vrije Universiteit 

Amsterdam. 

The aim of this research is to create a nationwide landscape typology and create the first ever 

landscape map of Bhutan. A landscape typology has many possible uses. Use cases for Bhutan 

include, but are not limited to, aiding with environmental protection, finding or designating cultural 

landscapes, aid in protection of sensitive areas, track landscape changes over time and find unknown 

cultural heritage. A landscape map will help quantify the influence of several processes associated 

with large scale construction and the modernization of the Bhutanese civilization like urban 

development, decline of traditional village populations etc. In order to quantify the changes the 

Bhutanese landscape is undergoing data from earlier years will be used in a case study as input for 

creating the landscape map, after which differences in locations and coverage of landscape types can 

create insight into landscape dynamics and vulnerable landscapes or areas.  

Additionally there may be a possible use for locating unknown cultural heritage sites, which will also 

be examined in a case study. Bhutan’s library and historical records containing most knowledge of 

the nation’s history was situated in the old capital of Punakha. When Punakha was destroyed by fire 

in 1827 this repository, which was the only one of its kind, was lost. Because of this event very little is 

known about the nation’s history before the 19th century (Arches: Protecting the World’s 

Irreplaceable Cultural Sites, 2016; Gupta, 2007; Mason, 2014). As a consequence many historic 

cultural sites have also been lost or forgotten and archaeological research proves to be difficult 

because of it. With the inundation of large sections of valley there is a possibility that important 

cultural heritage may be destroyed and/or lost forever. So there is a need to develop a method for 

predicting possible locations where the likelihood of finding previously unknown archaeological sites 

or cultural heritage is high. It stands to reason that requirements of locations for building different 

types of cultural heritage will have been similar for both known and, as of yet, unknown heritage 

sites. If a pattern can be found between the locations of known heritage and associated landscape 

types the typology can aid in predicting sites with greater archaeological potential which in turn will 

reduce cultural losses sustained through for example large scale infrastructure construction. 

The importance of creating GIS based tools and their ability to help with emerging challenges of 

socio-economic development and environmental conservation is well understood as can be read in 

the foreword to the Atlas of Land Cover and Institutional Facilities (2016) written by the National 

Land Commission Secretary, Mr. Pema Chewang. The landscape typology and the mentioned use 

cases fall within this goal. Additionally this study is an interesting exercise in landscape studies in 

Asian countries. Attribute based automated landscape typology designation through GIS is 

commonly used in the West but is not yet common for Asian nations. If this study and the developed 

methodology prove to be useful they can be applied to many more nations where it may help 

achieve similar goals. 
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1.2 What is a Landscape? 

 

Fig. 4) A cultural landscape. The Paro river valley. This relationship of humans and the landscape is typical for Bhutan. 
The Paro Dzong is overlooking the valley from a strategic location. The flat area of the floodplain is where most of the 
human activity is found. Agricultural activity is dominant in the floodplain and the historical city of Paro is located next to 
the river. Photo credit: IG_Bhutan, 22-03-2018. 

There are many definitions of the term landscape. Mücher, Klijn, Wascher and Schaminée (2009) 

define landscapes as “recognizable, although often heterogeneous, parts of the earth’s surface, 

which show a characteristic ordering of elements” (p. 87). Wascher (2005) uses the Countryside 

Agency and Scottish Natural Heritage (2001) definition of landscape character: “a distinct, 

recognisable and consistent pattern of elements in the landscape that makes one landscape different 

from another, rather than better or worse” (p. 1) where landscape character is described as what the 

average traveller would designate as a landscape. In order to further muddle the concept of 

landscape there is another type of landscape concept, the cultural landscape. This is a landscape that 

is influenced by humankind, or in the official terminology agreed upon in Article 1 of the World 

Heritage Convention (1992) landscapes that represent the “combined works of nature and of man”. 

In Article 1 the term cultural landscapes is further subdivided into three categories: 1) Clearly defined 

landscape designed and created intentionally by man, 2) Organically evolved landscape and 3) 

Associative cultural landscape. Associative cultural landscapes are landscapes that carry “powerful 

religious, artistic or cultural associations of the natural element rather than material cultural 

evidence, which may be insignificant or even absent” (“Operational Guidelines,”  2008). Especially 

the last definition of a cultural landscape basically designates the entirety of Bhutan as a cultural 

landscape, which is how the Bhutanese people actually treat their land. This concept is known as 
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‘Beyul’, a term encompassing the spiritual and historic value of an area and widely regarded to be 

applicable to the whole nation by the Bhutanese (Silva & Sinha, 2017). The preamble of the Heritage 

Sites Bill illustrates this school of thought (UNESCO, 2015):  

Bhutan’s uniqueness lies in its cultural landscape where heritage sites coexist 

harmoniously with nature bearing witness to the distinctive history, wisdom and 

custom of the people of Bhutan.  (…) thus heritage sites should be protected with the 

understanding of its association with natural settings and living traditions in such a 

manner as to respect the cultural landscape. 

As all of Bhutan is regarded as cultural landscape this paper from here on out will adhere to the less 

holistic definition by Mücher et al. (2009). 

 

1.3 Project Area 

 

Bhutan is located between India and Tibet and has an area of approximately 38.400 km2. It stretches 

from the flat planes of India to the apex of the eastern Himalayan mountain range. Bhutan 

encompasses a huge range of elevation, in the south the elevation is ±28 m above sea level whereas 

in the north the highest peaks are over 7500 m above sea level. This also means that there is a rough 

North-South gradient in climate leading to a couple of climatic "bands". The Köppen-Geiger climate 

zones can be found in fig. 5. The northern “band” is primarily Polar Tundra (ET) with some areas of 

boreal Cold continental climate with dry winters and cold summers (Dwc). Towards the north-east it 

is primarily warm Temperate climate with dry winters and warm summers (Cwb). The middle “band” 

is predominantly Cwb and the southern “band” is primarily Cwa (Temperate with dry winters and hot 

summers). The middle band also features a couple of polar ET zones in local high elevation areas 

(Kottek, Grieser, Beck, Rudolf, & Rubel, 2006).  

Fig. 5) Bhutan’s climate zones according to the Köppen-Geiger classification. Data source: (Kottek et al., 2006) 

The country features multiple river systems in the north-south direction that have created a series of 

river valleys. Some areas in the middle and lower climate bands feature flood plains, which is where 

most of the population of Bhutan is concentrated. Between the river valleys the Himalayan 

mountains extend towards the south in multiple smaller ranges. The alternating mountain range-
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valley-mountain range system has led to slightly different cultural properties between the people of 

the valleys, which in turn may have an influence on the landscapes found there.  

 
Bhutan is mainly covered by natural forests. Broadleaved forest in the southern region and 

coniferous forest in the middle region. 72% of Bhutan is covered by forest according to Gilmour, 

Chhetri, Temphel, and Schmidt (2009). In 1969 all forests were nationalised and in 1974 the National 

Forest Policy was approved which set a goal to maintain 60% of Bhutan as forest coverage. The 

nationalisation resulted in reduced engagement of local populations with their forests and this had 

an adverse effect on forests as a sense of responsibility diminished (Wangdi, Lhendup & Wangdi, 

2013). In part to counter this effect in 1995 the National Forest Policy was amended with the Forest 

and Nature Conservation Act which restored communities’ traditional rights with regards to use of 

local forests thereby reinstating their responsibility. As a result forest vitality was restored and 

preservation of local cultural and environmental heritage was enhanced (Wangdi, Lhendup & 

Wangdi, 2013). 
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2. Review of Existing Typologies  
 

A literature review was carried out to understand which methods and data types are commonly used 

for the creation of landscape typologies. The initial focus was on typologies of similar landscapes, i.e. 

rice cultivation type landscapes, Asian landscapes and Himalayan mountain landscapes. The 

literature review, however, showed there are hardly any landscape typologies for these categories 

and areas. Therefore it was only possible to review landscape typologies created for western 

countries where they are much more common. In the European Union member states are strongly 

encouraged to create landscape typologies under Article 6 of the European Landscape Convention 

(CoE, 2000 in Mücher et al., 2009, p. 88). At the Sofia Conference in 1995 eleven action themes were 

defined, the fourth of which detailing the objective to create a Pan-European Landscape Map (CoE, 

UNEP & ECNC, 1996; Vervloet, Spek, & Unwin, 2003 in Mücher et al., 2009, p. 88). Most European 

countries have a national landscape typology as a result. This has caused confusion however as no 

standard method was used and the large variety of developed methodologies resulted in very 

different typologies even between neighbouring areas. To achieve the goals set by the Sofia 

Conference an overarching typology for the European continent has been created called LANMAP 

(Mücher et al., 2009). Examples of comprehensive landscape classifications are also available for 

non-European western countries like New Zealand (Brabyn, 1996; Brabyn, 2009), the United States 

and Canada (Moss, 1985; Moss, 1989 in Lipský & Romportl, 2015, p. 4; Nair, Preston, King, & Mei, 

2016). This chapter first outlines the types of methods used in the creation of the typologies after 

which the source data used for these typologies is discussed.  

2.1 Previous Methodologies 

A total of 22 articles were reviewed of which seventeen directly treat the creation of a landscape 

typology. Additionally the European Landscape Character Assessment Initiative or ELCAI report has 

reviewed 49 national typologies and five international ones in light of the Pan-European efforts 

(Wascher, 2005). A surprising find of this review of earlier work, which is corroborated in the ELCAI 

report, is that there is no standardised method to create landscape typologies and as a result 

typologies and their creation methods can differ substantially between two neighbouring areas. 

Wascher (2005) describes the phenomenon as follows: “The different regional and national 

landscape typologies form a patchwork of classification models, which are conceptually rather 

incompatible at the international level. This is one of the reasons that classification models also 

started to evolve at the international level” (p. 8). This problem is in part addressed in Europe by the 

establishment of the LANMAP project, one of the goals of which is to create a unified landscape 

typology throughout Europe. The LANMAP project methodology is influenced by standards set by 

ELCAI (Wascher, 2005). Regardless of best efforts a comprehensive typology of such a large and 

diverse area will suffer from one of two issues. The first possible issue is that detail is lost through 

generalisation of landscape categories and thus a typology for such a large area may not be useful on 

a national or smaller scale. The second possible issue is that the typology can become unwieldy and 

difficult to interpret when there are too many landscape categories, which are needed to accurately 

display actual landscapes on a smaller than (supra)national scale (Mücher et al., 2009).   

The ELCAI and LANMAP projects and other international typologies like the World Map of Present-

day Landscapes by Milanova, Kushlin, and Middleton (1993), the EEA Dominant Landscape Types 

(EEA-ETC, 2002 in Wascher, 2005, p. 12) or the Dobríš Landscape Map by Meeus (1995) unavoidably 

suffer from those problems. Because of the scale issues they are often not very useful on a national 
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or smaller level for any kind of policy-making or research and this maintained the necessity for 

typologies being created by and for individual nations. The literature reveals that those typologies 

more often than not use a different individually created method which explains in part the different 

typology sets often found to exist between neighbouring administrative regions (there are 

differences in typology between nations, but also depending on the administrative system and 

regulations between intranational regions). This practice results in incompatibility between 

typologies causing edge problems and difficulties for projects requiring the use of multiple typologies 

together, a problem also identified by ELCAI. Between all the typologies some similarities have been 

found and approaches used in literature can be generalised into types, which is discussed in this 

section.  

According to Lipský & Romportl (2015) there are two major distinctions in the basic approach to the 

creation of a landscape typology, the geochemical and the physicogeographical approach. The latter 

is used most often as the former, based on sometimes labour intensive or difficult to measure 

(physio)chemical properties of the study area, presents all kinds of difficulties in creating complex 

landscape units because of for example low spatial and temporal data resolution. The 

physicogeographical approach is more representative of what people intuitively think of when 

discussing landscapes (the ‘average traveller experience’ discussed earlier) and can often be created 

using more accessible (remote sensing) data. The approaches can be further subdivided in two 

methods. The method used most often is the establishment of landscapes led by a hierarchical 

classification through multiple GIS data layers, which will henceforth be called the parametric 

method. There are variations in every instance where the parametric method is used but the overall 

process is aimed at assigning relevant attribute values retrieved from source data layers (like 

thematic maps) to a standardized grid cell layer, after which the result is used to delineate landscape 

units. The less used method is the holistic method, where landscape types are assigned intuitively by 

an operator through the use of for example aerial photography or landscape picture slides. The 

parametric method uses clearly defined source data and source data classes, the holistic method is 

based on the subjective interpretation by each individual typology developer. Often a combination of 

the parametric and holistic method is used with the parametric method primarily driving the 

definition of the typology and the holistic method being used for validation, further refinement etc. 

 Fig. 6) The methodology flowchart. 
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Finally for all approaches and methods there is the possibility to delineate the landscape types in an 

inductive or deductive manner. Inductive delineation entails the gridcell by gridcell combination of all 

source data and subsequent automated and sensible grouping of small and unique landscape units 

(or patches) into larger ones. Deductive delineation entails the division of large units, like climate or 

altitude, in smaller landscape units through smaller scale data like land cover. A typology 

establishment thus always roughly follows a path on the methodology flowchart (Fig. 6).  

An example of a hierarchical divisionary system is shown in fig. 7. These systems are almost always 

based on increasing dependency of the attribute. In the example in fig. 7 climate and geology are not 

influenced by geomorphology, hydrology etc. Geomorphology is influenced by climate and geology 

but not by hydrology, soils etc. Therefore the deductive physicogeographical approaches divide 

landscape types by increasing dependency of attributes.  

 

Fig. 7) Example of a hierarchical system. Based on the work of Jenny (1941) and Vos & Stortelder (1992). The phenomena 
mentioned in this image are also the most used landscape variables according to a study of 49 existing typologies by 
Groom (2005) and have been found to be the most prevalent in this literature review as well. Image Source: Mücher et 
al., (2003) in Lipský & Romportl, (2015) 

2.1.1 Parametric method 

The parametric method was used for example by Mücher et al., (2009), Vogiatzakis, Griffiths, Melis, 

Marini and Careddu (2006), van Eetvelde and Antrop (2009), Bastian (2000), Blankson and Green, 

(1991), Odeh et al., (2017) and Nair et al., (2016) as well as most of the studies reviewed by Groom 

(2005) in Wascher (2005, p. 32). The abundance of studies that use this method reveals the 

widespread support for and confidence in this method. The specific implementation differs for each 

study however. A generalised roadmap for the parametric method incorporates at least the following 

steps. First of all data will be gathered on the area of interest. This can be GIS data but also paper 

maps, tables, census data or anything that contains useful information on the study area. This data 
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then has to be readied to be used in a GIS environment, i.e. digitizing and georeferencing of paper 

maps, tables etc. Next the project is shaped by creating a tessellated grid cell layer by which 

maximum resolution and extent of the final result is determined. The next step is to use the GIS 

environment to assign attributes extracted from the source data layers to the grid cells. This can be 

done in multiple ways depending on the data type. For example land cover is generally represented 

on a per grid cell basis by relative values of each land cover type found in the extent of a particular 

standardized grid cell, rather than assigning the entire grid cell the most prominent land cover type. 

During this step the developer of the typology has to make choices in how to best represent the 

original data, which often follows different formats than the standardized grid layer. The choices 

made will have a big influence on the typology so they should be made with care. The choices made 

earlier and in this step determine the main divisionary landscape attributes -and boundary conditions 

for each attribute- and consequently the amount of landscape units. Often these choices will be 

represented in the naming of categories in the final typology. In many reviewed typologies however 

the choices, as well as the process of selecting relevant data, are not explicitly substantiated leaving 

some uncertainty into the process and rationale driving the decisions.  

During the next step the typology starts to take shape as the attributes assigned to the grid cells are 

now used to design landscape units or types. This is generally done by using a variety of similarity 

based, size based or statistics based methods or a combination thereof to automatically cluster 

(groups of) grid cells with similar attributes. Using the result sometimes a validation step follows, 

which is often borrowed from the holistic method, where the developer uses previous knowledge, 

aerial imagery, maps or any other type of useful resource to determine whether the created typology 

is accurate, whether the distribution pattern of the landscape units are sensible and if needed 

manually guide the clustering process. After this step each reviewed method may even diverge more 

if edits are needed. Some switch to manually refining the typology (van Eetvelde & Antrop, 2009), 

others use landscape metrics to further group the landscape units (Mücher et al., 2009). The final 

step however is always the creation of a clear visual representation of the end product, the 

landscape map.  

2.1.2 Holistic method 

This method was used for example by Zoderer, Tasser, Erb, Stanghellini and Tappeiner (2016), 

Plieninger et al., (2013) and Marusic (1999). The holistic method is a more hands-on approach to 

landscape typology creation. In the studies found for this review the focus was often on peoples’ 

perception of the landscapes. This more subjective quality of a landscape is hard to capture in GIS 

data and is often the reason for choosing the holistic method. The processes used are very different 

for this method. Generally it depends on the manual division or grouping of perceived landscape 

units. Often much less data types are used to create this kind of typology. Sometimes data is in the 

shape of mapped questionnaire answers (for example Plieninger et al., 2013) and a typology is first 

created for the area relevant to the questionnaire after which it may be used throughout a larger 

area, other times typologies are created using photographs of perceived significant and hopefully 

comprehensively selected landscapes. This was used for example by Marusic (1999) to create a 

landscape typology for Slovenia. This study used photographs of Slovenian landscapes, collected over 

many years, to manually define landscape types by grouping them according to similar morphological 

features. These were then linked to GIS data layers to find what attributes and values were found to 

be present in the landscapes, and then extrapolate the findings over the entire research area in order 

to map landscape type distribution. This method however requires a lot more time and knowledge of 
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the area as it depends on (on-site) collection of subjectively perceived distinct landscapes, and then 

grouping by an operator, again by perceived similarities and differences. The drawbacks in terms of 

objective evaluation, workload and automation possibilities are the reason the holistic method is less 

used. The Marusic (1999) example shows how also within the holistic method there can be a 

symbiosis with the parametric method as the extrapolation phase uses distinctly parametric 

methods. Purely holistic approaches were not found. 

 

The most detailed description of a used methodology found in this review is by van Eetvelde and 

Antrop (2009). Their methodology creates two scale levels of landscape typology using the 

physicogeographical parametric approach. The first scale level contains the standardized tessellated 

grid with landscape units derived from a combination of the source layers using the parametric 

method. This is then used to create the 

second scale level where the grid cells are 

aggregated, for which the holistic method is 

also used. The combination of parametric and 

holistic method represents the human factor 

in landscape evaluation as landscapes cannot 

always be distinguished purely by parametric 

values because of intrinsic or spiritual values 

sometimes associated with them. This also 

addresses the fact that not all required 

landscape attributes are available as GIS data, 

or can even be expressed in such a way.  

The resulting process consists of five steps: 

1. Selection of data sources, defining 

variables, geocoding of grid cells, 

building the database. 

2. Defining landscape types at grid cell 

(first scale) level (parametric). 

3. Delineation of landscape units at the 

second scale level (holistic). 

4. Defining landscape types at the 

second level. 

5. Visualisation of landscape character 

areas. 

The steps are also visualised in fig. 8. One starts 

by selecting and then collecting data that is 

relevant to the study area, which is then attributed to a standard grid cell layer. Then using cluster 

analysis landscape types were defined and assigned to the grid cells by grouping cells with similar 

properties into a pre defined maximum amount of possible types. This is the first scale. Next using a 

slightly holistic approach a landscape unit delineation was created where aerial photography, maps, 

Fig. 8) The process of hierarchical landscape typology creation. 
Source: van Eetvelde and Antrop (2009). 
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local knowledge etc. were used to further refine the delineation. Landscape metrics of the first level 

grid landscape types are used to assign the second level landscape units to their definitive landscape 

type. Finally the data is visualised in a landscape map. 

In general a similar process was used by most of the landscape typology projects, combining the 

source data and grouping the result (creating the typology), and from this creating a final landscape 

map. However as there is no established process no two projects really used the same methodology. 

Many studies did not explain their parameter and method choices in any detail, making their efficacy 

and rationale hard to check. Boundary conditions and divisionary values for the parametric approach 

as well as how they were chosen are never fully given. This was even true for studies trying to 

standardize typologies for continents like LANMAP in which no explanation was given as to what 

particular available source data was omitted and for what reason. Their choices with regard to the 

definition of data class boundaries and grouping of nominal source data classes to reduce class count 

also are not discussed. Finally the method they used appears to be restricted by the use of image 

recognition software for delineating landscape units for which an RGB image was needed limiting the 

possible source layers for a typology created using this method to three, with a fourth edited in 

afterwards by the developers. 

Consensus on the best approach for creating typologies aimed at a sub-continental or national scale 

is lacking and discussion about the creation of a standard method is non-existent. Between the 

(European) national typologies analysed by Groom (2005) in Wascher (2005, p.32) huge differences 

are found. The German landscape typology (Gharadjedaghi et al., 2004) for example is based on a 

national standardised parametric physicogeographical approach whereas the Spanish national 

typology is based on a more holistic approach using extensive field work and partly also personal 

judgement (Mata Olmo & Sanz Herraiz, 2003). Nations sometimes even submitted multiple 

typologies, aimed at the same mapping goals, covering that nation. For example ‘Taxonomic 

distribution of natural landscapes’ and ‘Landscape types’ both submitted by and covering the 

entirety of Hungary with a 3-level hierarchical typology, which shows that even within countries 

consensus on methodology is lacking (Wascher, 2005). With this in mind the method for this study 

could not follow an established standard method but at best be modelled after one of the approach 

types mentioned earlier and shown in the methodology flowchart (Fig. 6).  

Parametric typologies are easiest to recreate and standardise, and can be automatically applied to a 

large area because of their methodical and numerical approach to landscape type designation. 

Parametric methods often could be applied to other areas, and source data or source data classes 

can be changed to better suit the new target area whilst still applying the exact same method. This 

possibility for general use in multiple areas makes this approach very powerful and an attractive 

option for a possible standardised method. The automated nature of the parametric method 

allowing large areas to be designated automatically makes it quick and effective which is the reason 

it is the most used method in the literature. The method used in this study will be modelled after the 

parametric approach  

The lack of a standard method and sometimes the use of statistical methods without explicitly 

naming the choices and settings used in them can make typologies difficult to understand for the lay-

person and impractical to adapt for use in other areas. Also comparing regions that use two different 

typologies is impossible. The insights gained from this literature review suggest that pan-continental 

typologies suffer from a significant lack in detail, in the case of LANMAP using a landscape minimum 
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mapping unit  6̴8 times larger than the average MMU used by European nations. This scale is too 

large to reflect locally valued and important landscapes in sufficient detail for policy-making or 

scientific research as many significant landscape changes or effects on landscapes would be missed. 

A more advisable and refined approach for establishing a continuous and corresponding landscape 

coverage over multiple individual regions would be to create a standard framework containing 

guidelines for initial source data selection, source data class boundary definition and a robust 

method for creation of the typology using this data instead of ‘brute forcing’ a large area scale 

typology. This framework could then be implemented by nations or regions on scales that are 

sufficiently small to be useful and accurate but because of the standardised and predictable method 

could easily be used and compared on pan-continental scale. 

 
 

2.2 Data Requirements 

The reviewed typologies were all created using some form of GIS data. The data types used were 

tallied for this review in order to find which are most common. As with the methods there was no 

prescribed or standardized set of required data agreed upon to create a typology, and similar to the 

methods typology developers appear to use what they think is sensible and distinctive, without 

always providing an underlying rationale behind their choice. This again led to differing aggregations 

of data being used for the typology creation. According to work by Jenny (1941) adapted by Vos and 

Stortelder (1992) landscape is primarily determined in order of increasing dependency by climate, 

geology and geomorphology, hydrology, soils, vegetation, fauna, land use and landscape structure. In 

the typologies analysed by Groom (2005) in the ELCAI report (Wascher, 2005) these factors also 

played an important role. In part this is also seen in the data of the studies analysed for this review 

although fauna and landscape structure were not used at all.  

A count of data sets used in the reviewed literature is shown in fig. 9. The most important result is 

the "Typologies" selection which only shows figures for landscape typology creation projects (17 in 

total). Also shown is the "All" selection which also incorporates studies into landscape evaluation, 

character and ecosystem services that share some similarities with typologies (an additional 5 

studies). Some trends were clearly visible in the data selection. The use of a DEM was almost 

ubiquitous, used in 15 of 17 typology studies when including altitude in this category. Generally a 

product derived from the DEM served as data layer, like a  

slope-, relief- or altitude map. Altitude is seen by many as a higher order determining factor than 

slope and relief (see fig. 7) as it determines the local climate which is deemed the most important 

and independent determining factor for landscapes. Also parent material/soil type were used in most 

of the studies (14 of 17). Land use/Land cover is used in 13 of the studies making it another 

important data source, with finally climate being important as it is used in 10 of the studies. Geology 

and vegetation are both used in 7 of the studies. It is worth noting that land use/land cover was 

often seen as a cultural data layer indicating that many landscape typologies already use a hybrid 

approach with regards to natural and cultural landscapes.  
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Fig. 9) Data sets used in reviewed literature on creating a landscape typology. 

With regard to this study a lot of GIS data on the study area was already gathered through the 

‘Bhutan Cultural Mapping for Large Infrastructure Planning and Development’ project to which this 

work is related. Of the categories used in the reviewed studies land use/land cover, DEM/altitude, 

Satellite/aerial imagery and settlement pattern are already available (underlined in red in fig. 9).  

 

 

 

  

0

2

4

6

8

10

12

14

16

18

Ti
m

e
s 

u
se

d
 in

 s
tu

d
ie

s

Typologies

All



 

22 

3. Developing a landscape typology for Bhutan 
 

The goal for this study is to create a nationwide landscape typology, which dictates a couple of 

restrictions in choosing the method. First the approach needs to be decided. As observed in Bhutan 

the landscape is directly dictated by geomorphological attributes, especially on the proposed scale of 

individual landscape units for which the landscape typology will be created. This can be described 

best by using the physicogeographical approach whereas the geochemical approach would be much 

less descriptive. Additionally the landscape is very much dictated by the DEM of Bhutan because of 

the large altitude range and accompanying climatic properties, which lends itself best for the 

physicogeographical approach. The nationwide aspect of the to be created landscape typology calls 

for the use of the parametric approach. The holistic method would require extensive and labour 

intensive on-site collection of subjectively distinguished landscapes. This would need to be done 

throughout the nation in order to acquire a comprehensive collection of landscapes. Within the 

possibilities of this study such an effort is not possible. The parametric method in contrast can be 

applied through the use of relevant data which is already available for the entire country. This 

method allows for automatic allocation of areas to a particular landscape type. An important side 

note is that there is no widely accepted standard method for creating landscape typologies. The 

review of approaches and methods indicated that none of the considered studies employed one path 

from the methodology flowchart exclusively but rather used a combination of most or all techniques 

for their typology creation with only a focus on a specific direction of the flowchart. The same holds 

true for this study. So the applied methodology primarily suits the physicogeographical parametric 

inductive path but holistic and deductive elements will be used as well in order to finalise and 

validate the typology. 

The landscape typology was created using the ArcMAP software by ESRI. A custom method was 

created using previous methods discussed in the literature review as a source of inspiration. The 

method follows a couple of steps: 

1. Collect and create datasets. 

2. Determine and create source data categories by enforcing relevant boundary conditions. 

3. Combine datasets into a first order landscape map. 

4. Refine first order landscape typology into final landscape map. 

5. Validate results using aerial photography. 

The individual source datasets (Step 1) will be subdivided into relevant classes resulting in classified 

rasterised source datasets (Step 2). These are then combined into a first order typology containing 

many small individual landscape units. These units are clusters of cells with the same attribute 

combination (Step 3). The raster of the first order typology is then converted into a shapefile 

containing polygons representing the individual landscape units. These are finally combined into the 

final typology using a minimum mapping unit size to determine which units are combined to create 

features that can be counted as landscapes (Step 4). The final typology will be validated using a 

holistic method making use of satellite imagery (Step 5). 
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Throughout every step a border shapefile was used. This was created using a Dzonkhag (province) 

border shapefile (National Land Commission Secretariat [NLCS], 2013) and then compiling all 

Dzonkhag polygons so only the national border remains. The visual representation of the border is 

instrumental in assessing the results of many of the intermediate steps, as well as preserving 

oversight of the study area for data that does not cover the entire nation continuously. 

3.1 Collect and create datasets 

The first step of any typology creation is the acquisition of data. In this case a lot of data was already 

collected for the ‘Bhutan Cultural Mapping for Large Infrastructure Planning and Development’ 

project led by the World Bank Group. This data was collected through a multitude of different 

resources. Important datasets for the landscape typology were the Digital Elevation Model (DEM), 

the slope map (derived from the DEM) and the landcover dataset. For the creation of relevant class 

breaks a couple of additional data sources were used: Settlement locations derived from NCRP 

(National Cadastral Resurvey Project) data and National Statistics Bureau (NSB) statistics data.  

A geological map of Bhutan was not available during this study. Because of the extreme elevation 

(and therefore climatic) and geomorphologic differences of Bhutan the geology might actually not be 

as important as it is in many other regions. The large differences in elevation and geomorphology 

within fairly small areas may have a larger effect on the landscape than geology would. 

For the assessment of a possible link between landscape type and cultural heritage also data from 

the NLCS (Nye Atlas project) was used, as well as data supplied by the World Bank and data retrieved 

from OpenStreetMaps. 

3.1.1 The DEM 

For the DEM, ASTER elevation data was used (Fig. 10). ASTER (Advanced Spaceborn Thermal Emission 

and Reflection Radiometer) is a remote sensing tool developed by JPL, NASA, the Japanese Ministry 

of Economy, Trade and Industry and Japan Space Systems incorporated and is deployed on the Terra 

satellite. It captures high resolution images in 14 bands through three telescopes: Visible and Near 

infrared or VNIR, Shortwave Infrared or SWIR and Thermal Infrared or TIR. Elevation data is 

constructed through stereoscopy in which the difference between two viewpoints of the same 

location is used to extract distance to that location (National Aeronautics and Space Administration 

[NASA], n.d.; Jet Propulsion Laboratory [JPL], n.d.). The resultant elevation data is divided into 

standard sized tiles. The ASTER data was retrieved from the NASA Worldview data portal. This data 

portal allows easy selection of relevant tile files through a map based selection tool. For Bhutan a 

total of 15 ASTER tiles were needed to cover the entire nation: N26-28, E88-92. The tiles were loaded 

into ArcMAP and combined into a single layer file for ease of use after which the extent was clipped 

to the Bhutanese border to reduce computer memory requirements and operation runtime. 
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Fig. 10) Digital elevation model of Bhutan (ASTER). 

3.1.2 Landcover 

For landcover two different datasets were used. For the typology creation a vector based landcover 

was used, generously provided for this study by the NLCS of Bhutan (Fig. 12). For the landscape 

change analysis a raster based landcover dataset made by ICIMOD (the International Centre for 

Integrated Mountain Development, fig. 11) was used. The NLCS vector file is made manually through 

field observations whereas the ICIMOD data is generated automatically. The NLCS file is more precise 

and more accurate in terms of spatial and thematic resolution as can be seen in fig. 13 and fig. 14. 

However the NLCS file only exists for 2010 with no earlier versions having ever been made. Therefore 

this data cannot be used for the landscape change analysis whereas the ICIMOD data exists for every 

10 years since 1990. 

The ICIMOD landcover data was retrieved from the Bhutan geospatial data portal (NLCS). It was 

created for use by the Ministry of Agriculture and Forests (MoAF) by ICIMOD using LandSat 30m 

resolution imagery 'for general purpose and Assessment and Monitoring of land cover dynamics in 

Bhutan' (ICIMOD, 1990/2000/2010). An algorithm is applied to the LandSat imagery to build the 

landcover dataset (ICIMOD, 2018; Di Gregorio & Jansen, 2005). The NLCS landcover data was 

compiled by the NLCS using data from the National Cadastral Re-survey database and data from the 

MoAF (NLCS, 2016). 
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Fig. 12) Original NLCS landcover map of Bhutan in 2010 (Source: NLCS). 

Fig. 11) Original ICIMOD landcover map of Bhutan in 2010 (Source: ICIMOD). 



 

26 

 

Fig. 13) Section of the NLCS landcover map. Paro/Thimphu area. 

 

 
Fig. 14) Section of the ICIMOD 2010 landcover map. Paro/Thimphu area. 
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3.1.3 Slope map 

On location in Bhutan it quickly became apparent that slope plays an important part in determining 

both landcover and land use. To be able to incorporate this a slope map was derived from the ASTER 

DEM using the Slope tool in ArcMAP. The Slope tool calculates the maximum rate of change in 

elevation by checking for each cell which neighbour features the largest elevation difference. The 

location specific ratio between the height unit [m] and the ground unit [degrees] (Z-factor) was set as 

9 • 10-6. The result is the map below. 

 

Fig. 15) Slope map of Bhutan derived from ASTER DEM data. 
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3.1.4 Settlement data 

Settlement data was created by the National Statistics Bureau, it includes all individual structures 

(Fig. 16). This data can be used to analyse population distribution patterns. 

 

Fig. 16) Settlement locations (Source: National Statistics Bureau of Bhutan). 

 

3.1.5 Cultural heritage data 

To investigate a possible correlation between landscape type and cultural heritage, location data of 

heritage features was retrieved from multiple sources. At the start of this study Bhutan did not have 

an established comprehensive official database of cultural heritage features. Towards the end of this 

study a project was finished in which national cultural heritage was surveyed and inventoried. This 

data was incorporated in the analysis shortly before this thesis was finished. Because of this initial 

lack of data other sources for heritage location data were considered in order to achieve a more 

thorough and nationwide coverage. One interesting possible source is crowd sourced location data, 

the most notable example of which is Open Street Map (openstreetmap.org).  

OpenStreetMap (OSM) is an online geospatial data service similar to Google Maps but its data is 

added to the database by volunteers (registered users). This often results in more detailed data with 

a stronger focus on locally valued features, which presents a significant opportunity for this project. 

Data quality is dependent on the user that created it and verification of data depends primarily on 

the OSM community. The World Bank has used OSM data created by the Humanitarian 

OpenStreetMap Team together with other NGO's in their relief aid projects after the 2010 Haiti 

earthquake. Data acquisition is also encouraged through events organized by the OpenStreetMap 

team, organizations and governments. Humanitarian NGO's also work on encouraging the growth of 

local OSM communities and build improved risk models. The OSM data is or has also been used by 

high profile commercial companies and services like Apple, Flickr, Craigslist, Foursquare and many 

http://openstreetmap.org/


 

29 

others, indicating a current general high confidence level of the provided data (Barth, 2012; 

Humanitarian OpenStreetMap Team, n.d.; Wikipedia, 2018; World Bank Group, & Vrije Universiteit 

Amsterdam, 2018) 

Data in OSM is structured in tags containing in their most basic form a key and a value in the format 

key=value. The key indicates a category, feature type, classification scheme etc. The value further 

specifies what sub-category, feature class etc. a data entry is. A feature can have multiple tags 

attached to it, for example a historic Buddhist temple might have the tags religion=Buddhist, 

building=temple and historic=monument. The tag system was used to extract relevant data from the 

OpenStreetMap database via the online tool Overpass Turbo (https://overpass-turbo.eu/). Bhutan 

data was acquired from OSM using the tags relevant to cultural, religious and heritage features. This 

method resulted in 250 heritage locations (Fig. 17). They are mainly concentrated in the most 

densely inhabited medium elevation region. This concentration may be either explained by the 

population density of this area, or by the fact that tourists and representatives of international NGO's 

(often adept in OSM) primarily visit this area, adding features.  

 

 

 

 

 

Fig. 17) Heritage locations extracted from OpenStreetMap. 



 

30 

Another source of cultural heritage location data was supplied by the World Bank for the ‘Bhutan 

cultural mapping for large infrastructure planning and development’ project. The data was supplied 

by their local contact Karma Athang. The dataset appears to be a compilation of data accessible 

through the geospatial data portal. A dataset focussing on historical locations, buildings and features 

was used for the analysis. The data contains 1776 data points (Fig. 18). There is an area without 

features in the middle northern region of Bhutan. This is in part expected as this region is a very 

rough and highly elevated mountainous area with little human inhabitation. Combined with the 

holiness associated with high mountains in Bhutan that restricts access to these areas this explains 

the absence of features. 

 

 

 

 

 

 

 

 

 

Fig. 18) Heritage location map supplied by the World Bank. 
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A final cultural heritage dataset became available just before this thesis was finished. This official 

centralised comprehensive database of cultural heritage features dataset is called the Nye Atlas of 

Bhutan. This data originates from a project started by the NLCS in July 2016 and was carried out in 

cooperation with the Department of Culture (DoC). Survey teams have visited Dzonkhags (provinces) 

and Gewogs (villages) to find and record cultural heritage sites together with Dzonkhag cultural 

officers. A pilot was done for the Chhukha region and the experience from the pilot has been applied 

in cataloguing the rest of the nation's cultural features. The project was completed near the end of 

2017. The NLCS has graciously provided the finished dataset for analysis purposes on the condition 

that individual locations are not shown and the data is not disseminated further. A total of 10154 

heritage features have been recorded in this project. The exact data is still classified at the moment 

of writing this report and only a density map of the data can be shared here (Fig. 19). 

Fig. 19) Nye Atlas based heritage feature density. Source: NLCS Nye Atlas database. 

The Nye Atlas data is the most comprehensive dataset of cultural heritage. The project aim was to 

include all heritage features. These features are built-up structures but also includes natural features 

associated with cultural heritage, for example rocks and streams that are important in (local) 

legends.  

In contrast to the data in the Nye atlas the OSM data is added voluntarily and for the most part not 

systematically. The exact origin and methodology behind the collection of the data supplied by the 

World Bank is unclear. A quick comparison between the population of features in three Dzonkhags 

surveyed in the Nye Atlas pilot study for all three data sources reveals the difference in density 

between the datasets. The Nye atlas data shows a total of 1203 features, the World Bank data shows 

169 features, and the OSM data has only 4 features in these three Dzonkhags. 
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 3.1.6 Relief Ruggedness 

The literature review revealed multiple methods used to create landscape typologies and landscape 

maps. All of those used data pertaining to the study area, but relief ruggedness was not found in any 

of the studies even though for some regions it seems like an important addition in order to represent 

a larger scale connection of a landscape to the surrounding area. This can be especially important for 

the visual quality of the landscape. For topologically heterogeneous study areas relief ruggedness 

seems a compelling extra feature that will reflect the great impact topology can have on the 

experience of the individual with the landscape. Gently sloping hills stretching into the distance 

create a different landscape character than steep and deep valleys, see fig. 20.  

 

 

Fig. 20) Two viewpoints revealing the large scale impact of relief on the experience of landscape. Both were taken almost 
at the bottom of the valley. The image on top shows the gentle valley of Punakha, the one on the bottom was taken in the 
valley between Paro and Thimphu. For an honest comparison two panoramic photo’s where chosen of roughly similar 
locations (in a valley, just above the valley floor). Both photo’s are taken using the same device and have not been 
cropped or stretched. Bigger differences are possible in reality and do exist in Bhutan. Image source: Author. 
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Adding a measure for relief ruggedness can reflect this landscape quality that because of its visual 

nature can extend beyond the borders of a landscape unit. For this study the matter has been looked 

into and a total of 13 different relief ruggedness indicators have been evaluated with four of those 

methods evaluated more thoroughly. This is described below. The evaluation revealed that none of 

the methods return a comprehensive indication of ruggedness as envisioned for this study and thus a 

new method has been developed which is also described in the following paragraph. 

The examined indicators of landscape relief or relief ruggedness generally followed one of two 

approaches. One common approach was examining the rate of elevation change in a neighbourhood 

around each cell, which is similar to calculating slope. The other common approach is based on a 

comparison of 3D area vs. 2D area, or planimetric vs. surface area. However the evaluated methods 

were all found to represent a very basic and singular dimension or approximation of relief 

ruggedness, meaning that they could not exhaustively differentiate particular different features of 

ruggedness. Different landforms that intuitively should represent different ruggedness values can 

return the same ruggedness value using these methods. An indicator looking at height difference 

within a neighbourhood for example will not differentiate between a smooth slope running between 

the maximum and minimum heights found in the neighbourhood and a strongly undulating relief. 

Similarly, a method based on the difference between surface area and planimetric area cannot tell 

the difference between one large peak or many small peaks which would result in the same surface 

area. This problem has been noted by others as well (Grohmann, Smith, & Riccomini, 2011) especially 

in mountainous areas (Hoechstetter, Walz, Dang, & Thinh, 2008). A mention was found of an 

interpretation of a combination of many statistical parameters of multiple morphometric factors 

(Klinkenberg, 1992). However apart from not having been fully proven, applying this is a whole study 

in and of itself.  

One common indicator, the Topographic Position Index (TPI) (also known as Relative Topographic 

Position) uses the following formula (Cooley, 2016; Jennes, 2006): 

𝑇𝑃𝐼 =  
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑥 − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑖𝑛

0,5 ∙ 𝐶𝑒𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 

Another common indicator is the Standard Deviation of Elevation (SDE) (Ascione, Cinque, Miccadei, 

Villani, & Berti, 2008; Cooley, 2016): 

𝑆𝐷𝐸𝐶𝑒𝑙𝑙 =  
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑛 − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐶𝑒𝑙𝑙

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑥 − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑀𝑖𝑛
 

The SDE uses a mean value in the formula. Multiple observations are needed to find this mean value. 

In table 1 the function of SDE has therefore been approximated by dividing the examples in 25 m 

horizontal increments and calculating the SDE first for every 25m increment and its two neighbours 

(three point approximation) and then the same for every increment and its four neighbours (five 

point approximation). Different ranges will return different results. 

The next common indicator in the comparison is basin-scale ruggedness. This indicator is designed to 

compare the relief of drainage areas. The method can easily be adapted to find the relief ruggedness 

of a target cell by substituting the area of a watershed with the area around the cell: 

𝑅𝑢𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 =  
𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝐴𝑟𝑒𝑎

𝑆𝑡𝑟𝑒𝑎𝑚 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
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Finally the comparison includes the 2D area : 3D area ratio method. This method calculates the ratio 

between the planimetric cell area (the cell size on the flat horizontal plain) and the DEM derived 

surface area of that cell. This ratio is then an index for the roughness because as surface area within 

a specific size of planimetric area increases then increasingly steep slopes must be present in that 

area. 

Based on the experience with the existing methods it was found that a good ruggedness indicator 

should take into account the undulation of the landscape together with elevation ranges. Very simply 

put: it should be able to indicate variations between all possible combinations of amplitudes and 

undulations of relief found in the study area. The existing methods were lacking this possibility and a 

new method was created based on hypothetical stream density and surface area.  

The newly developed method combines stream density of a hypothetical flow pattern (so not based 

on real world surveyed streams but based on a DEM derived stream network in order to get 

flexibility and full coverage) of a particular neighbourhood with surface area of that same 

neighbourhood. The drainage system reveals the ratio of undulation in the landscape by revealing 

local lows (where water converges into a stream) indicating where the borders of relatively high 

areas are located, thereby segmenting the relief into individual higher elevation "islands". This is 

combined with the surface area (revealing the amount of land between each stream, larger surface 

area thus means larger elevation differences within each “island’) which then accurately indicates 

the actual roughness of the area. The formula for this method is very simple: 

𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒 𝑅𝑢𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (𝐶𝑅𝐼) = 𝑆𝑡𝑟𝑒𝑎𝑚 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑆𝐷) ∙ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 (𝑆𝐴) 

In which SD is hypothetical stream density in [length/planimetric roving window area] and SA is 

roving window surface area in [km2]. In addition to the simplicity of the method and 

comprehensiveness as an indicator it can also easily be scaled to all possible desired DEM 

resolutions, neighbourhood sizes (by choosing different sizes of roving window for SD and SA) and 

sensitivities (by changing the amount of water needed to hypothetically constitute a stream, i.e. 

choosing stream formation threshold values).  

This method is further exemplified and compared to the others using the following two dimensional 

schematic representation of possible differences in landscape relief (Fig. 21): 

 

In table 1 the developed method CRI is compared to other accepted methods. For each example in 

fig. 21 the ruggedness value returned by each method is calculated.  

 

Fig. 21) Examples of different relief types shown in order of increasing designed relief roughness. All reliefs are to scale 
with a horizontal size of 200 m. The red line indicates a height of 150 m. Blue areas indicate streams. 
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Example 
relief 

Range 
[m] 

TPI SDE (3 point 
approximation) 

SDE (5 point 
approximation) 

Basin-Scale 
Ruggedness 

2D Area:3D 
Area ratio 

CRI (developed 
method) 

a 150 1.5 0 0 - 1.3 250 

b 150 1.5 -0.095 -0.12 200 3.2 633 

c 225 2.3 -0.1111 -0.137 200 3.9 778 
d 150 1.5 -0.0682 0.055 100 3.9 1575 
e 150 1.5 -0.095 0.08 66

2

3
 6.1 3650 

f 225 2.3 -0.157 0.082 66
2

3
 6.8 4099 

Table 1) Relief ruggedness results for multiple accepted indicators calculated for the hypothetical set of relief examples of 
fig. 21. 

There is a clear difference in effectiveness of the different accepted methods. The developed method 

CRI returns results that conform well with expectations (returning the correct order of increasing 

relief roughness as they were designed). For TPI table 1 shows how the method performs at 

indicating relief roughness. Only two unique values are found. As the results are only influenced by 

the range of elevation the method fails to take into account the undulation of the landscape and 

does not reflect the order of landscape complexity of the examples.  

Next on the list is the Standard Deviation of Elevation (SDE). Both approximations return an 

unrealistic estimation of roughness with notable differences between the three and five point 

approximations. There appears to be no useful relief ruggedness information contained within the 

results. In part this is related to the theoretical nature of the examples, relief 'e' especially returns 

unexpected results in the three point approximation because of its regularity which either cancels 

out or strengthens the influence of each increment's value through destructive and constructive 

interference, resulting in the same SDE roughness value for relief e as for relief b for the three point 

approximation. However comparing the five point approximation to the three point approximation 

also reveals the method is very dependent on scale as well, both returning a different order of 

complexity for the examples. Other strange results were observed during the SDE calculations as 

well, for example local SDE values of 0 in case of uniform slopes meaning a cell within a uniform 

steep slope would receive the same SDE value as a cell within a horizontal plain, or seemingly 

arbitrary positive/negative SDE values. These examples show that the SDE method is unsuitable for 

the analysis of relief roughness.  

Basin-scale ruggedness also performs unsatisfactory. In the examples the calculation was 

200[m]/[amount of streams]. The results show that the method does return the correct order of 

roughness due to its incorporation of the undulation of the landscape. However the method cannot 

distinguish between large and small elevation ranges meaning a hypothetical landscape with 3 

streams in a flat plain would receive the same value as a hypothetical landscape with three streams 

with high peaks between them. This is evident in the results which for a collection of cells with 

identical sizes are dependent purely on stream density. Therefore example reliefs with the same 

amount of streams get the same basin-scale ruggedness value and this method is therefore not 

suitable to indicate cell by cell relief ruggedness in a raster. When surface area is used instead of 

planimetric area the method performs worse, returning the wrong order of complexity: c-b-f-e-d-a. 

This is because increasing surface area, which is correlated in part with stream density, is cancelled 

out by that same increasing stream density. In other words, if the roughness of an area increases 

both surface area and stream density increase, and thus cancel each other out. Additionally (but less 

importantly as the area can be adapted to suit the needs of the research) as basin-scale ruggedness 

is based on watershed area it is hard to standardize and compare in a standardized grid.  
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Finally 2D area : 3D area ratio is examined. The method returns the most useful results by almost 

completely succeeding to find the correct order of roughness for the provided examples. Only 

example c and example d return the same value which reveals the weak point of this method: it has 

no sensitivity to the undulation of the landscape. A single high peak within a specified planimetric 

area may have the same surface area as multiple lower peaks within that same planimetric area and 

would thus return the same value.  

From the comparison made in table 1 it can only be concluded that none of the established methods 

succeeds in combining both landscape undulation and landscape elevation, which are both needed 

for an accurate representation of landscape relief ruggedness. The newly developed method CRI uses 

the potential stream network in conjunction with surface area in order to combine both the 

undulation and amplitude of the land. Together these provide an accurate and robust indicator for 

the relief ruggedness. This method can be applied on both large and small scales in both 

mountainous and flatter terrain. When the same size of roving window is applied it can also be used 

to directly compare relief ruggedness between completely separate areas. CRI is also easily adjusted 

to suit different goals and reliefs. By adjusting the threshold value for the hypothetical stream 

pattern, which controls how much 'runoff' is needed in order to create a hypothetical stream, the 

sensitivity can be adjusted. A low threshold value will reveal smaller undulations because a low 

threshold value can create a stream underneath a small hill whereas a large threshold value needs 

more runoff to create a stream and thus a larger hinterland which smoothes out small scale 

undulations. Furthermore CRI can be used over all sizes of neighbourhoods and is therefore suitable 

for ruggedness analyses in all conceivable scales. Finally the method is simple and easy to intuitively 

understand making it easy to use and adapt to individual project needs. 

After these hypothetical explorations the CRI for Bhutan was created. A drainage system shapefile 

was already supplied by the World Bank Group as part of the ‘Bhutan Cultural Mapping for Large 

Infrastructure Planning and Development’ project, however the coverage of this data was 

incomplete. Therefore a complete drainage system was calculated following a standardised method 

(ESRI, 2017). The first step in this method is to apply hydrologic conditioning to the DEM. In order to 

allow the hypothetical flow of a unit of water to continue to its end (the edge of the area of interest) 

cells which are local low points, or sinks, have to be removed. In order to find these sinks first the 

flow direction is calculated with the Flow Direction tool. This tool calculates to which neighbouring 

cell flow would take place, by retrieving the cell pair with the steepest slope between them. The 

output of the tool is a raster where each cell has one of eight possible values indicating the 

neighbouring cell into which water would flow. This is the most conventional method, called D8 for 

the eight directional possibilities of waterflow out of each cell (Turcotte et al., 2001). The result is 

used to determine the sinks (Sink tool). If a cell of the Flow Direction output has received a value 

indicating it does not flow towards a lower cell (undefined drainage direction) the tool marks this cell 

in the output as a sink. The next step incorporates the Fill tool which heightens the DEM height value 

of the cells marked as sinks to the height of their "pour point", i.e. the neighbouring cell from which 

water flows into the sink cell. The result is a hydrologically conditioned DEM. Without this 

conditioning step a flow into a sink would end in that sink as the function is not engineered to 

calculate filling of a basin. 

The hydrologically conditioned DEM is used as a valid input product to determine the drainage 

system. Again flow direction of the conditioned DEM is calculated using the Flow Direction tool. With 

the result flow accumulation can be calculated for each cell (Flow Accumulation tool).  
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The Flow Accumulation tool follows the flow paths ending up in each cell and adds up how many 

cells "drain" into the examined cell. Finally the normal procedure is to determine streams by applying 

a boundary condition using for example a "Con" tool or a raster calculator operation to find cells that 

exceed the threshold value and would thus be considered a stream. The threshold value should be 

based on field observations on how much drainage flow is needed to form the predetermined 

definition of a stream. In reality this would be dependent on local conditions like soil properties, 

geomorphology, precipitation etc (Pilotti, Gandolfi, & Bischetti, 1996). However in this case the goal 

is to find the potential stream system (every instance where in the given DEM surface runoff could 

potentially converge in a local low into a contained structured water flow in ideal circumstances) in 

order to calculate relief ruggedness which means the real world stream dynamics are not very 

important. To find a suitable stream network a couple of threshold values were tried: 80, 100, 150, 

200, 250, 300, 400 and 500. A smaller value means that the resulting stream network has a lower 

threshold for the formation of a stream and would therefore be more densely populated. This can be 

explained as representing a higher resolution of or sensitivity for relief roughness. Smaller landscape 

undulations (which would only form a stream when applying a lower threshold value as their 

potential to collect water is smaller) are visible in the resulting stream network, whereas a larger 

threshold value will ensure that small scale relief features are not taken into account. The choice of 

threshold value is important for CRI as it determines sensitivity. A low threshold value will, 

depending on the accuracy of the DEM, produce a very large stream density which would then 

overpower the influence of surface area and smooth out the end product so much that little 

information could be gathered from it. On the other end of the scale a very high threshold value will 

create such a sparse stream density that the end result would be dominated by surface area where 

the remaining streams would clearly stand out in the relief roughness pattern. 

This means that a trade-off exists between having the final product represent relief features and 

fulfilling a distinguishing function. To find the ideal threshold value the line density was calculated for 

the threshold values mentioned earlier. To reduce computing time needed for this validation process 

it was only performed for the Punakha Dzonkhag. For each threshold value two sizes of roving 

window were used to find which would return the most distinguishing result. The size of roving 

window (the area around the cell that is seen as functional area for the determination of landscape 

relevant relief ruggedness) was decided to be around 4 km in diameter, or 0,036 degrees which 

should be a good measure to represent local landscape ruggedness conditions. The roving window 

diameter sizes tested were ±4 km (0,036 degrees; 12,56 km2) and ±5,56 km (0,05 degrees; 24,27 

km2). Results in fig. 22. 
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A threshold value of 150 with a roving window of 4 km was found to be the most distinguishing 

combination whilst still providing a continuous image. 

When compared to the results of the supplied official stream data however the result is very 

different. Not only the visual appearance is very different (more patchy), but also the pattern of 

areas where the highest stream densities are found is different, as can be seen in the comparison in 

fig. 23. 

 

The threshold value applied to the supplied stream file appears to be smaller than the 150 used for 

the self-made stream network but that should not have any effect on the distribution of maximum 

and minimum density, this does seem to be the case for the comparison in fig. 23. The high values 

(white spots) show a different distribution. Some areas have a high stream density in both results, 

other areas have high density in one and low density in the other. The only structural difference that 

was found between the official and calculated stream network sets that might explain the difference 

was the delineation of the calculated streams in the flatter parts of the valleys (Fig. 24).  

 

 

Fig. 22) Punakha stream density maps for different stream threshold values (Tstream) and roving window diameter sizes (d). Whiter areas have higher stream 
densities. From left to right: Tstream = 80, d = 4 km - Tstream = 80, d = 5,56 km - Tstream = 500, d = 4 km - Tstream = 500, d = 5,56 km. 

Fig. 23) Punakha stream density maps based on the calculated stream network data (left) vs. the official stream network data (right). 
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The difference between the two stream networks is clear in this image. The calculated stream 

network in red has multiple parallel streams in the valley. This is especially noticeable in valleys with 

floodplains. The correct natural behaviour is clear in the official stream network (blue), where 

streams from the valley slopes flow straight into the river. Additionally the official stream network 

appears more organized, in general featuring less small tributary streams than the calculated 

network and the tributary streams of the official network are often longer, reaching farther from the 

main river.  

 

The unnatural parallel streams in the valley appear to be caused by very small height differences in 

the DEM which enforce a ‘boundary’ between two streams that should actually converge into one 

stream. This could explain the irregular difference between stream density maps based on the official 

and calculated stream networks, where in floodplain valleys where density in reality is low, the 

calculated version returns very high density and in steep valleys both versions show low density. The 

same may happen on steeper slopes but no good example or explanation was found.  

Looking into the problem on GIS forums and Google apparently this happens often in the DEM-based 

calculation of stream networks. According to McMaster (2002) the resolution of a DEM must be 

greater than the average hillslope length to be used for hydrologic modelling. This is of course not 

achievable for the small height differences causing the problem observed in this chapter. Apparently 

there is no good solution for the problem. The search for a solution or a better method led to a 

referral by the Dutch national water management authority (Rijkswaterstaat) to Deltares, a Dutch 

independent knowledge institute specializing in water and subsurface with great global expertise in 

the modelling and calculation of these kinds of networks. They offered to help in person with the 

problem. After explaining the applied method and the exact problems by e-mail and telephone 

however it became clear that they follow the exact same procedure and suffer from the same 

problems. The Deltares expert stated upon reviewing the calculated stream network that it was 

already as accurate as it can get. They solve these problems by outsourcing to foreign companies to 

manually rectify those areas (E. Van Meerendonk at Rijkswaterstaat, personal communication, 

October 31, 2017; H. Venema at Deltares, personal communication, November 7, 2017). The official 

stream network also appears hand-made given the smoothness of the stream delineation vs. the 

mechanical shapes of the calculated streams and the lack of parallel streams in the valleys. 

Fig. 24) Example of the difference between the two stream networks. 
Blue: the official dataset. Red: the calculated dataset. 
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The solution of manually correcting the stream network was unfortunately outside the scope of this 

study. Since the calculated stream network was considered to be too inaccurate and the official 

dataset featured large gaps, the decision was made to not include relief roughness in the typology. 

The developed method CRI is nonetheless a promising option for more accurately calculating a relief 

roughness indicator, and it would be interesting to include if at some point a complete dataset of the 

official stream network could be acquired. 

 

3.2 Create dataset categories by enforcing relevant boundary conditions 

 

After having selected the most important datasets that characterise the landscape variation it may 

be necessary to classify each dataset into a limited number of distinct classes that each bare 

relevance to specific landscape characteristics. This increases the discerning value of the datasets as 

well as reduce final category count resulting in a more powerful final landscape map. One must 

choose categories so that they add discriminatory value, an elevation class containing only one 

landcover type for example does not add any value to the final product. 

 

3.2.1 Elevation classes (DEM) 

In order to define elevation classes a couple of options were evaluated. The customary method is to 

divide elevation classes based on climatic properties, the boundaries of which are often determined 

through observations of dominating vegetation or biomes. A widely used classification based on 

climatic properties is the Holdridge life zones system (Holdridge, 1947). This classification uses 

annual precipitation, potential evapotranspiration and biotemperature to determine possible climax 

vegetation in a location. The most suitable factor for division of elevation classes within the 

Holdridge life zones system is biotemperature (the mean annual temperature between 0 and 30˚C). 

As seen in fig. 25 the system divides altitudinal belts according to their biotemperature.  

 

Fig. 25) Holdridge life zones system. Image credit: Peter Halasz. 
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For Bhutan however annual climate data was not available in sufficient temporal and spatial 

resolution to be able to create the altitudinal belts according to Holdridge. This means that many 

other classification schemes cannot be used in order to determine elevation classes either as they 

too are based on climatic data and/or potential vegetation or biomes. This applies to biome based 

classification systems like ecoregions (Bailey, 1989), zonobiomes (Walter, 1976) and biome-types 

(Whittaker, 1962; Whittaker, 1975). 

Existing climate based division systems thus cannot reasonably be used to find boundary conditions 

for elevation in the case of Bhutan. The grand principle behind all these systems however is 

something that can be applied to the available data. The systems are all designed to indicate where a 

specific biome or vegetation type can be expected. As land cover data is available for Bhutan the 

distribution of certain types of vegetation is known. This distribution can therefore be used to find 

boundary conditions for the elevation classes. 

To find sensible boundaries for the elevation classes the distribution of land cover over elevation 

ranges was used (Table 2).  

 

Landcover category min max mean St. dev. 

Snow&Glacier 2851 7522 4984 468 
Shrub 2504 5187 3940 399 
Grassland 2155 6534 4227 757 
Barren Area 44 5717 4127 1385 
Mixed Forest 102 3828 2482 655 
Conifer Forest 1573 6395 3262 439 
Broadleaved Forest 43 3270 1575 654 
Agriculture 44 3188 1330 828 
Urban Area 871 2650 2006 477 
Waterbody 28 5459 496 582 
Table 2) Landcover/elevation distribution statistics in meters. 

NOTE: For the determination of these boundaries the ICIMOD landcover data was used. Ideally one 

would use the more accurate NLCS landcover data however this dataset was only made available 

later on in the study. As a consequence a lot of work had already been done using the boundaries 

derived from the ICIMOD data. Additionally for the landscape change analysis ICIMOD data must be 

used as the NLCS data only exists for one year. For those reasons the boundary conditions for the 

elevation ranges were not changed after receiving the NLCS dataset. When more years of accurate 

NLCS landcover data are created one may want to adapt the boundary conditions to suit these 

datasets. The elevation boundary values were however found to be extremely similar to the ICIMOD 

based boundaries, especially those of the categories used for determining the boundary values. A 

detailed comparison between both datasets can be found in the landscape change analysis chapter. 
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The data in table 2 is represented visually in fig. 26. Fig. 26-A shows the mean elevation value for 

each landcover class with the accompanying standard deviation indicated. Fig. 26-B shows the means 

with two times the standard deviation indicated.  

 

Of the landcover types included in the landcover data a couple of types lend themselves best for 

determining elevation classes based on vegetation type. The first logical class break is the lowest 

elevation where the Snow & Glacier landcover type is found or the highest elevation where 

vegetation is found. This class break would denote the barrier where vegetation is at all possible and 

is thus an important indicator of local climate, as well as an important factor for determining the 

(visual) attributes of the landscape. It is also clearly a class break that determines what types of land 

use are possible in the area. Another logical elevation class break may be found in the maximum 

elevation where trees are found indicating the tree line. Again this is a major change in type of 

vegetation and is important for landscape. A final interesting class break is the upper elevation value 

where agriculture is practiced. The prevalence of agriculture is indicative of human influence in the 

landscape. Agriculture is also confined to specific geomorphological areas. In Bhutan most agriculture 

is focused in the relatively flat areas of the country.  

Fig. 26) Landcover elevation means with 1x St.Dev. (left) and 2x St.Dev. (right). 

A B 
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Preferably the 2x standard deviation data would be used to determine elevation class breaks. The 2x 

standard deviation reflects the elevation where the majority (>95 %) of the area containing a specific 

land cover type would be included in a specific elevation class, and would thus be the most 

discerning indicator for climatic elevation bands. The class breaks for the 2x standard deviation 

would be 3000 m and 4000 m elevation. The 3000 m class break is found in the maximum height of 

agriculture. The 4000 m class break falls in the tree to snow&glacier transition. The grass and shrub 

landcover classes are invisible in this scheme as the tree and snow&glacier classes completely 

overlap the grass and shrub classes and demarcate a more important transition. The resulting 

elevation classes are mapped in fig. 27. 

Fig. 27) Elevation class boundaries using 2x St.Dev. resulting in three elevation classes. 
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The elevation classes based on the 2x standard deviation class breaks visually divide the map in two 

main altitude bands with a relatively thin line of the middle altitude class. The area represented by 

the <3000 m class is 57 % of total area, 3000-4000m represents 21 % and >4000m represents 22 %. 

This division is not very discerning due to its topography and could lead to an overrepresentation of 

'low altitude' landscapes in the final product. 

The 1x standard deviation altitude class division divides the area a lot more evenly. This is not 

necessary in and of itself as long as the map accurately represents the real situation. But there is 

another relevant landcover class break that can be applied when using the 1x standard deviation as a 

guideline which would divide the elevation classes in such a way it becomes much more discerning. 

The 1x standard deviation leaves room to represent an area dominated by grassland and shrubs. The 

classes are now  <2200 m, representing the occurrence of agriculture, 2200-3700 m representing the 

zone where tree growth is possible and is more important than agriculture, 3700-4500m where only 

low vegetation is possible and >4500 m where no vegetation at all is possible. Note that these class 

breaks are based on the upper limit of  the mean plus 1 standard deviation (or the lower limit in case 

of the snow & glacier class), meaning that above the class breaks still over 15 % of the total area 

corresponding to the agriculture or tree landcover can be found. In the case of the 4500 m class 

break this is based on the mean minus 1 standard deviation of the snow & glacier land cover class as  

there is some overlap of the grassland/shrub and the snow & glacier landcover classes. This is 

unavoidable as the transition between classes is not a hard boundary and is influenced as well by 

seasonal and local influences (especially for the snow & glacier class). The resulting altitude bands 

can be seen in fig. 28. 

Fig. 28) Elevation class boundaries using 1x St.Dev. resulting in four elevation classes. 
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For these elevation classes the total area is made up of <2200 m (37 %), 2200-3700 m (36 %), 3700-

4500 m (15 %) and >4500 m (12 %). As these divisions result in a more balanced division of the area 

while still being based on relevant land cover categories the 1x standard deviation based altitude 

classes will be used for the final landscape typology. 

3.2.2 Slope 

Slope has a clear influence on landcover in Bhutan. The nation's most populous middle elevation 

band (from west to east) is characterised by relatively low mountain ranges with mild to steep slopes 

with a relatively flat valley floor in between where most of the human activity is found. In fact the 

nation's urban areas are closely tied to the valleys. A couple of options were looked at in order to 

determine relevant slope categories. Among these were human and animal gait analyses with regard 

to slope, slope related vegetation patterns, slope related erosion patterns and influence of slope on 

agriculture (United States Department of Agriculture [USDA], 2016; Whittaker, 1967). In the end 

none of these options resulted in relevant figures for determining slope classes in this study. Class 

breaks were therefore found through settlement locations which is deemed a relevant discerning 

factor. Slope values where human activity is statistically most prevalent can be expected to stand a 

higher chance of being influenced by human activity or else possibly be influenced by human activity 

in the future. Slope classes are based primarily on the slope distribution of the nation's settlements. 

A shapefile containing every individual settlement of Bhutan was linked to the slope map resulting in 

a dataset containing the slope value for every settlement which was analyzed with the following 

results (Fig. 29):  

 

The mean slope value of all settlements is 16.5 degrees with a standard deviation of 8.2 degrees. 

Next two different options for determining the class breaks were discussed. The first option was to 

divide the slope map in four classes based on the settlement slope values. 

The first class break was set on the mean + one standard deviation: 24.7. This was rounded to 25 

degrees. For the next class break another standard deviation was added to reach 32.9 which was 

rounded to 33 degrees. These two classes include almost 98 % of all settlements in Bhutan. The last 

class break was chosen to represent extreme values, i.e. cliffs. This break was somewhat arbitrarily 

chosen after looking at options like maximum angle of repose of materials, which idea was 

disregarded seeing as this isn't really applicable to for example rock. The chosen class break was 50 

degrees. The resulting slope map with these classes is shown in fig. 30. 
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Fig. 29) Settlement/slope distribution. 
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Fig. 30) Slope map (4 classes). 

The first two classes are indicative of possible human influence on the local landscape, whereas the 

last two classes are more discerning of natural/geomorphological properties of the landscape. The 

extremes are representative of cliffs and extreme landscapes where vegetation coverage may be 

affected. 

Another approach was to more generally divide the slope map into two classes based on the 

settlement values. Here the division would be telling of the possibility of human influence found in 

the landscape versus a much lower possibility, i.e. primarily natural attributes influencing the local 

landscape. For this the class break was set on the mean settlement slope + 2 times standard 

deviation. The first class is now 0 - 33 degrees, the second class 33 - 90 degrees. The first class 

includes 97.8 % of all settlements and therefore a large majority of human activity. The resulting map 

is seen in fig. 31. 
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The 0 - 33 degree class represents 70.7 % of total area, the 33 - 90 class represents 29.3 %.  

For the final map the two class slope map will be used. This binary classification limits the resulting 

number of classes by 50 % compared to including four slope classes. The two class slope map has the 

advantages of offering a simple distinction into relatively mild slopes where human activity is 

concentrated and steep slopes where natural processes will dominate. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31) Slope map (2 classes). 
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3.2.3 Landcover 

Landcover categories have been based on the original categories used in the ICIMOD landcover data. 

The original dataset uses ten categories: Snow and Glacier, Shrub, Grassland, Barren area, Mixed 

forest, Conifer forest, Broadleaved forest, Agriculture, Urban area and Waterbody. Operational 

constraints required the amount of categories to be reduced to nine total classes due to the three-

digit structure of the landscape codes. For this reduction there were three possible options. The first 

was to combine the grassland and shrub landcovers, the second possibility was combining 

broadleaved forest and mixed forest and the third option was to combine conifer forest and mixed 

forest. These options combine classes that are already somewhat similar in character and spatial 

distribution whereas the remaining classes have a more unique character. Based on the total areas of 

the mentioned class pairs the choice was made to combine the broadleaved forest and mixed forest 

classes. In the case of grassland and shrub the area ratio is 1:1.9. For conifer forest and mixed forest 

the ratio is 1:13.1 and for broadleaved forest and mixed forest the ratio is 1:23. So the impact of 

combining mixed forest with broadleaved forest is relatively small compared to the impact of 

combining any of the other landcover class pairs. The shared border length between mixed forest 

and either conifer forest or broadleaved forest is similar at 9707 km and 9344 km respectively. The 

slightly shorter border length of broadleaved and mixed forest (96.3 % of conifer and mixed forest) is 

insignificant compared to the relative area differences. 

The resultant ICIMOD landcover map is shown in fig. 32 below. 

 

Fig. 32) ICIMOD 2010 reclassified landcover map. 
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The NLCS landcover was adapted to follow the same nine categories. To this end the original classes 

were reassigned to one of the nine landcover ICIMOD based classes. The decisions were based on the 

closest relationship of the original classes with one of the ICIMOD based nine classes, for example all 

types of orchards, plantations as well as Chhuzhing land (which translates to paddy fields) are 

grouped into Agriculture. The complete conversion scheme can be found in appendix A. Fig. 33 

shows the resultant NLCS based landcover map. 

A comparison of the total relative area of each of the nine classes of both the ICIMOD and the NLCS 

based landcover maps shows that they are very similar (Table 3). A more detailed comparison of the 

NLCS and ICIMOD landcover datasets and the landscape maps based thereon can be found in the 

landscape change chapter. 

 
Landcover class NLCS Area [%] ICIMOD Area [%] 

Waterbody 0.8 0.4 

Urban Area 0.2 0.2 

Snow and Glacier 8.7 7.7 

Shrub 12.2 9.9 

Mixed/Broadleaved Forest 49.9 44.5 

Grassland 4.6 5.1 

Conifer Forest 16.0 24.3 

Barren Area 4.4 4.8 

Agriculture 3.3 3.1 

Table 3) NLCS vs ICIMOD landcover class area comparison. 

 

Fig. 33) NLCS reclassified landcover map. 
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3.3 Combine datasets into a preliminary/first order landscape map 

The first step in creating the final product is combining the prepared (i.e. classified) datasets. In this 

step a map is created where each cell represents the values of all three datasets and no further 

manipulation is applied. This will yield a preliminary first order landscape map where all existing 

combinations of the dataset classes will be shown no matter how small their unit area. 

The combination of the data will be done using a raster operation. As the NLCS landcover file is a 

vector file this was first converted into a raster. The operational parameters were set so that the cells 

of the resultant raster file exactly match size and position of the elevation and slope rasters. 

In order to be able to combine the source datasets they are reclassified again according to 

hierarchical importance of the data. The cells in the first order landscape map will have a 3-digit 

value with the first digit representing the class of the hierarchically most important dataset 

(Elevation), the second digit the hierarchically second most important dataset (Landcover) and the 

final digit the least important dataset (Slope). In preparation the datasets were reclassified so that 

the elevation classes got a value between 100 and 400, the landcover classes a value between 10 and 

90 and finally the slope classes a value of 1 or 2 (Table 4). Now the datasets can be combined by 

simply adding the values of each cell within each dataset.  

Altitude 

1xx: < 2200 m, Agricultural zone, name: Low Land (L) 

2xx: 2200 - 3700 m, Tree zone, name: Montane (M) 

3xx: 3700 - 4500 m, Grass and Shrubs, name: Alpine (A) 

4xx: > 4500 m, Unvegetated zone, name: Nival (N) 

Landcover 

x1x: Snow and Glacier 

x2x: Shrubs 

x3x: Grassland 

x4x: Barren Area 

x5x: Broadleaved forest/Mixed forest 

x6x: Conifer forest 

x7x: Agriculture 

x8x: Urban Area 

x9x: Waterbody 

Slope [Degree] 

xx1: 0 - 33 

xx2: 33 - 90 

Table 4) Landscape variable reclassification scheme. 

The combined map features 67 unique values from a total of 72 possible values, where each unique 

value represents a unique combination of elevation, landcover and slope. Some of the found 

combinations feature landcover types where elevation and slope are irrelevant. These are Urban 

Area and Waterbody. All cells with value 'x9x' (Waterbody) are, therefore, reclassified into value '1' 

and all cells with value 'x8x' reclassified into value '2'. Also cells with Snow and Glacier as landcover 

are reclassified, however the influence of slope is retained as slope does influence the visual and 

practical quality of a snow landscape. Consequently cells with value 'x11' are reclassified to value '3' 

(Snow and Glacier mild slope) and cells with value 'x12' are reclassified to value '4' (Snow and Glacier 

steep slope). The result is the first order typology map shown in fig. 34. 
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Fig. 34) First order landscape typology. 
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3.4 Refine first order landscape typology into final landscape map 

At this point the definitive landscape map can be created using the first order landscape map. The 

first order map is a patchwork of landscape units of all sizes starting at only one cell (30x30 m). A 

landscape unit of a single cell does not count as a coherent landscape. The small primary landscape 

units must thus be combined which is done through the application of a minimum mapping unit 

(MMU) that enforces a minimum size for each individual landscape unit. 

For the best result landscape units should be combined with preservation of the original borders of 

the landscape units. Preserving unit borders is not possible using raster data so the first order 

landscape map was converted into vector format. The vector data was constructed using non-

simplified polygons such that polygon borders exactly followed the original raster cell borders in 

order to minimize inaccuracies (Fig. 35). 

  

Fig. 35) Raster data was converted into polygons using the non-simplified output method in order to maximize 
preservation of original borders. Image source: ArcMAP raster to vector tool help. 

With this operation a vector file is created based on the values of the first order typology raster cells. 

In the resulting file groups of adjacent cells with the same value are converted to a single polygon 

(see fig. 35) representing that particular landscape unit. The first order units are then clustered using 

the eliminate tool. Here the minimum mapping unit is needed. 

The minimum mapping unit is determined by examining typical landscape areas through a 

combination of explorative site visits, examination of aerial photography and viewshed analysis. The 

site visits have already helped determine what data is important for creating a Bhutanese landscape 

typology. During the visit however also typical landscapes were found which have guided the 

viewshed analysis. Viewshed analysis was done using Google Earth Pro. Locations for viewsheds were 

chosen in such a manner that no extremes were included, for example viewshed analysis was not 

performed from a mountain top which would result in an exorbitantly large area. The analysis was 

performed using locations that represent the everyday experience one would have of the Bhutanese 

landscape, think of viewsheds found while driving, when hiking to important landmarks or from 

typical inhabited areas. The calculated viewshed was then used as a guide together with 

photographs, aerial imagery and experience from the specific location to delineate multiple areas 

that qualify as a coherent and relevant landscape. As a result of this work a couple of sizes were 

tested to use as MMU for the final landscape map, shown in table 5. 
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Size Source 

2.3 km2 or 230 hectare Viewshed analysis (Average viewshed size) 

 
1 km2 or 100 hectare 

 
Viewshed analysis (Typical small viewshed size) 

 
0.15 km2 or 15 hectare 

 

Optimum landscape size found through analysis 

of aerial imagery of visited locations. This turned 

out to be very similar to European average 

national typology MMU sizes of 16 ha (Mücher 

et al., 2009) 

Table 5) Possible landscape sizes. 

Using the MMU's from table 5 the first order map was clustered with the elimination tool. Through 

the clustering process landscape unit polygons with areas smaller than the MMU are added to 

adjacent larger landscape units. The eliminate tool used for clustering adds selected polygons (i.e. 

landscape units in this case) to unselected polygons. This allows for precise control over which 

landscape units are to be added to larger landscape units. Landscape unit polygons to be assimilated 

are selected based on their area. The file was found to have erroneous polygon areas which was 

solved by reprojecting the file to a projection that 

allows polygon areas to be recalculated. Then polygon 

attributes are used to select polygons which are 

smaller than the MMU and that are not of the 

"Waterbody" or "Urban Area" type. The initial 

selection typically includes between 300.000 and 

700.000 landscape units that meet these 

requirements. 

The landscape types "Waterbody" and "Urban Area" 

have to be excluded from the clustering process as 

they are sharply defined landscape types and 

completely different in nature from the other 

landscape types. Clearly the borders of waterbodies 

are sharply defined, the borders of urban areas which 

are based on census and cadastre data should not be 

subject to change because these are not only clearly 

very distinct from other landscape types but also offer 

a reference with which to more easily interpret the 

final map. If included in the clustering this would 

result in land being added to rivers and lakes or vice 

versa, or urban areas being added to natural areas or 

vice versa. 

The eliminate tool is then programmed to add 

landscape units smaller than the MMU to landscape 

units larger than the MMU based on the longest 

shared border whilst again excluding landscape units 

of the type Waterbody or Urban Area. This means Fig. 36) Schematic view of step 4. 
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that if a landscape unit smaller than the MMU is adjacent to more than one landscape unit larger 

than the MMU the smaller landscape unit is added to the landscape unit with whom it shares the 

longest border. Also the selected landscape units cannot be added to landscape units larger than the 

MMU but of the Waterbody or Urban Area type (the previous selection by attributes only excluded 

Waterbody and Urban Area units smaller than the MMU from clustering, this step ensures units of 

these types larger than the MMU are excluded as well).  

The result of this first cluster step still features many landscape units smaller than the MMU. This 

can, for example, be caused by sub-MMU sized landscape units being completely surrounded by 

other sub-MMU sized landscape units. That means the clustering process must be repeated after the 

recalculation of polygon size in order to ensure correct landscape unit areas. After a couple of 

clustering steps (typically between 5 and 8 repeats) an equilibrium is reached where the amount of 

landscape units that are smaller than the MMU remain constant. Not all of the landscape units 

smaller than the MMU can be added to larger than MMU units, for example because they are 

surrounded completely by Waterbody (islands) or Urban Area. on average around 650 individual 

units smaller than the MMU remain (Table 6). 

 

NLCS  
15 ha 

NLCS 
230 ha 

ICIMOD 2010  
15 ha 

ICIMOD 2010  
230 ha 

Individual units before clustering 1790010 1790010 851707 851707 

Individual units after clustering 45885 25001 25917 2303 

Cluster steps 7 8 5 7 

Remaining sub-MMU 1271 1282 82 88 

Avg. Size before clustering [ha] 2.2 2.2 4.5 4.5 

Avg. Size after clustering [ha] 84.4 154.8 149.4 1681 
Table 6) The clustering step drastically reduces the amount of landscape units. The NLCS based map retains more sub-
MMU units in the final product than the ICIMOD based maps. 

The final step in the cluster process is dissolving the equilibrium result. After the elimination steps 

there is a possibility of landscape units of the same type to have grown adjacent to one another by 

repopulating the sub-MMU sized units that previously divided them. Dissolving the map connects 

those units together creating a single landscape unit of that type. At this point the final landscape 

map is completed. The entire process is shown schematically in fig. 36. 

For the landscape change study the exact same process is repeated using ICIMOD landcover data 

made in 1990 and 2000. By using the same parameters and methods the landscape maps of the 

different years should be directly comparable. 

At this point there is an option to enforce additional restraints, for example landscape types with a 

total area smaller than 1 % of Bhutan could be discarded. This would decrease the amount of 

landscape types in the final typology. However there was no indication for what percentage would 

be sensible. Additionally it was reasoned that some uses of the typology, like landscape change, 

would need these rarer landscapes. For this study therefore such a boundary was not used. 

The final step is creating a visual language that can convey the map data in a structured manner. 
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3.5 Validate results using aerial photography 

The final landscape map can now be validated. In the literature validation was only done in four of 

the articles, 3 of which used a validation method that could be applicable to this study. Mücher et al. 

(2009) compare their result to national landscape maps (the precise method is not discussed), which 

is impossible for Bhutan as no such map exists. Lioubimtseva and Defourney (1999) mention the 

traditional field survey of random sample points method (used by Odeh et al. (2017)) before 

proposing substitution of the field survey with a comparison of aerial photography which is better 

suited for landscape maps with a large extent. They compare multiple sample points with aerial 

photographs that have been classified automatically into land cover. Their precise method of 

comparing the landscape and automatically generated landcover maps remains unknown.  

Validation will be done in two different ways, similar to the method of Lioubimtseva and Defourney 

(1999). 5 points will be randomly generated within the border polygon and a buffer with a 1 km 

radius is applied to them. For these 5 areas landscapes will be delineated manually using aerial 

photography after which the manual typology will be compared with the created typology. In this 

way bias is eliminated and a measure of difference between perceived landscape units and 

landscape map units can be quantified by comparing the zonal geometry of the landscape units 

made manually and automatically. As this is very labour intensive the amount of area that can be 

used for validation is limited. For this reason also a visual comparison will be done. 10 additional 

points will be randomly generated within the border polygon and a buffer with a 2 km radius will be 

applied. These areas will be compared to the created typology visually. Using the combination of 

these two approaches a much larger area can be used for verification. 

The landscape map is extracted for the sample areas and projected over a background map showing 

aerial photography. This will be done using Google Earth Pro because it offers a choice of which year 

of satellite imagery you want to see. That control allows for the best fit between aerial photography 

and the year of the landcover data used for the landscape typology thereby excluding as many 

temporal changes in aerial imagery compared to the map as possible. The map is loaded into Google 

Earth Pro by converting the file into KML which can be opened in Google Earth Pro.  

  



 

56 

4. Results 

4.1 Landscape map 

Whilst creating the final landscape map it quickly became clear that two maps of different scale 

would be required in order to be clear at different zoom levels. For the national level a map with 230 

hectare (average viewshed size) set as the MMU showed the best results, creating a clearer map 

suitable for rough or low detail analysis (Fig. 37). However for closer zoom levels and more in depth 

analyses this MMU can be too large and an additional landscape map with a 15 hectare MMU 

(similar to average national typology MMU’s) was created (Fig. 40). The larger scale map will also be 

more accurate for the landscape change analysis as it will be more sensitive to landscapes that are 

being 'nibbled', i.e. incrementally changed. 

In the 230 hectare map some relation between landscape type distribution and topography is clear. 

Lower elevation landscapes penetrate northwards via long valleys and conversely higher elevation 

landscapes extend into the lower lying southern regions of Bhutan through the mountain ranges 

intersecting the valleys. Landscape types with exceptionally large individual units are Snow and 

Glacier (mild slope) and M_CoF1 (Tree Zone Conifer forest mild slope). Landscape L_BMF1 also 

features a large semi-continuous landscape unit, spanning from the easternmost part to the 

westernmost part of the country, containing pockets of other landscape types. 

 

 

 

Fig. 37) Final landscape typology map using a 230 ha MMU. Legend in fig. 38. 
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Because of the mountain range/valley configuration of Bhutan's topology L_BMF1 is the only 

landscape type capable of developing such a large continuous east to west unit as landscape types on 

higher elevations will be divided by other landscape units in the valleys or on the mountain ridges. 

M_BMF1 visually appears to be present in a similar extent but upon closer observation is also divided 

into multiple individual units by incursions of other landscape types. Due to the mountain ranges 

extending into the south the Snow and Glacier landscape type can be found relatively far to the 

south on higher elevated peaks contained within these ranges. 

In more detail the individual landscape units are clearly visible (Fig. 39). Because urban areas and 

waterbodies have retained their original shape and size locating areas of interest is simple. Roughly a 

pattern appears to be present where the succession of landscape types moving away from the 

river/valley floor  is similar on both sides of the river.  

 

Fig. 38) Legend suitable for all typology maps. 

Fig. 39) Detail of the 230 ha MMU typology map at the location of Chimi Lhakhang temple. 
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In the 15 hectare MMU landscape map it is more difficult to see overarching landscape patterns as 

the resolution of individual units becomes quite small. The same larger patterns as in the 230 hectare 

small scale map can be found but what happens in between is less clear. This map however is better 

suited when looking in detail at smaller areas. In the zoomed map of fig. 41 the difference with the 

230 MMU map of fig. 39 is immediately obvious from the smaller landscape units. An important 

distinction however between the two maps on this zoom level is that landscape types that do not 

appear on the small scale map are suddenly visible. This is an expected consequence of choosing a 

larger MMU. When using the landscape map for research on an area of this more detailed size, or 

where small scale dynamics are important the 15 ha map will be preferable. 

Fig. 40) Final landscape typology map using a 15 ha MMU. Legend in fig. 38. 

Fig. 41) Detail of the 15 ha typology map at the location of Chimi Lhakhang temple. 
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There are large differences in total areas of landscape types between the 15 ha en 230 ha map 

(Appendix C). Again the influence of MMU is clear in the pattern. Almost every landscape type has a 

bigger area in the 15 ha map than in the 230 ha map except for eight types that had exceptionally 

large individual units in the first order typology: Snow and Glacier (mild slope), all mild slope forest 

landscapes except for A_BMF1 and N_CoF1, L_Agr2 and A_Shr1. A_BMF1 and N_CoF1 are larger in 

the 15 ha map because they represent small patches of Broadleaved and Mixed forest and Conifer 

Forest that are found above their main elevation range. The smaller patches are retained in the 15 ha 

MMU assimilation steps. A big surprise was the larger area of L_Agr2 (Steep agriculture in the lowest 

elevation zone) in the 230 ha MMU map. Agricultural fields on steeper slopes were expected to be 

divided in small patches because of the unfavourable angle. All other landscape types with a steep 

slope are larger in total area in the 15 ha map. The total amount of L_Agr2 units is 2 for the 230 ha 

map and 9 for the 15 ha map. This appears to be a rare instance where there were some patches of 

steep agriculture that were larger than 230 ha that were surrounded by smaller than 230 ha but 

bigger than 15 ha units. In the 230 ha map they could therefore assimilate other smaller units 

whereas in the 15 ha map their growth was stopped by the surrounding units that were then 

classified as legitimate landscapes. This is the only example were that happened in the final 

typologies.  

For most other landscapes the 15 ha map has 3 to 8 times more area. The agricultural elevation zone 

is an exception to this rule. Five landscape types have an extreme difference in area between the 230 

and 15 ha map: L_Shr2 (5905 times larger in the 15 ha map), L_Gra1 (280 times larger), L_Gra2 

(20616 times larger), L_Bar1 (54 times larger) and L_Bar2 (30096 times larger). The other elevation 

zones have a total of nine landscape types in the map that do not exist in the 230 ha map, which one 

might argue is the same phenomenon. Often these landscape types are less frequently found on 

those specific elevation zones meaning their patches are smaller. Therefore they can be assimilated 

in the 230 ha map. These findings indicate that it is a small minority of large area landscape types, 

namely forest landscapes, that assimilate large amounts of smaller landscape units in the 230 ha map 

and therefore that the chosen MMU highly influences the end result. All landscape type sizes and 

individual unit counts can be found in appendix C. 

By excluding waterbodies and urban areas from the aggregation process between the first order 

typology and the final map these features act as a guide for interpreting the found landscape 

distribution as well as anchor points for finding exact locations. 
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4.2 Validation of the landscape map 

 

The final 15 ha landscape map is validated by comparing it to satellite imagery as proposed by 

Lioubimtseva and Defourney (1999). The traditional method of random sample locations will still be 

used but performing a field survey is not possible. As the precise method used by Lioubimtseva and 

Defourney (1999) to compare the satellite images and landscape map is not described two different 

approaches are used. The first approach is a comparison of the created landscape boundaries with 

manually delineated landscape boundaries, the second a purely visual comparison done for a larger 

area. The validation focuses primarily on whether landscape unit distribution follows holistically 

interpreted unit distribution rather than designation of landscape type. Typologies are normally not 

validated, probably because they are a product of a pre-determined definition and validation would 

be nonsensical. In this study landscape units are distributed using a newly created method. The 

question of whether this method delineates sensible areas is found in this section. 

For the manual delineation five randomly generated points within the national border were used 

(Fig. 42). No points within 1 km of the border were allowed so as to be able to create a sample area. 

The sample areas (circular polygons with a radius of 1 km, 314 ha per location) around each random 

point (1571 ha total) were imported into Google Earth Pro so that satellite imagery from 2010 could 

be used for the manual delineation. This in order to more closely reflect the data used for the NLCS 

landcover based landscape map. Within each polygon visually perceived landscapes were delineated 

manually with an attempt made to meet the 15 ha MMU requirement. A manually delineated 

landscape could be smaller than the 15 ha MMU if it continued outside the sample area to achieve 

sufficient size. The manually delineated landscapes were then imported into the GIS environment to 

analyze the similarities and differences with the landscape map. 

Fig. 42) Randomly generated sample areas used for typology performance validation. 
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For the visual comparison a larger area could be analyzed. Ten points were randomly generated (Fig. 

42) within the national border (minimum distance of 2km) and a sample area (radius of 2 km, 1257 

ha per location, 12566 ha total) was used to extract the associated typology. The ten typology circles 

were then also imported into Google Earth Pro for a visual comparison. A listing of the sample area 

coordinates can be found in appendix E. 

 

4.2.1 Manual validation 

For the manual validation the typology had to be somewhat simplified as precision estimates of slope 

and height are not feasible by eye. The manual delineations were however not based solely on 

landcover. The 15 ha MMU was adhered to and landscapes were delineated by what would 

holistically count as a single landscape for an average human observer. These manual landscapes 

were then labelled by their most dominant characteristic with the label names mostly based on 

landcover. For comparison with the typology the landscape types present in the sample areas were 

given an additional attribute with one of the labels of the manually delineated landscapes most 

representative of the landscape type. Broadleaved and Mixed Forest types and Conifer forest types 

were grouped under “forest” as the difference cannot reliably be seen from satellite imagery. Snow 

and Glacier mild slope and steep slope were grouped under Snow and Glacier. In total six different 

landscapes were present in the manual sample areas: Agricultural, Barren Area, Forest, Snow and 

Glacier, Waterbody and Shrub landscapes. Three of the samples are shown below in fig. 43. The M-3 

and M-4 sample plots are not shown as these were purely forest and their similarity score was 100 %. 

 

 

 

 

 

 

 

 

Fig. 43) The three most telling samples used for manual validation (coded as M-1, M-2 and M-5). The similarity column shows where the manual and 
automated landscape maps agree (green) or disagree (red) and their similarity score (area percentage that agrees). 
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Some interesting observations can be made in relation to these samples. M-1 is located in the high 

Himalayan region in a location with little vegetation and a lot of snow fields, glaciers and barren area. 

The similarity between the manual designation and the automated typology is only 13.6 %. Within 

the manually designated landscape distribution no shrubs were present even though these cover a 

large part of the automated map. With this in mind the M-1 satellite imagery was examined more 

closely and shrubs were indeed found to be present, indicating the automated typology can help 

improve understanding of landscapes even when similarity is low.  

Precise designation was open to interpretation for M-1 as there was light intermittent snow 

coverage present in the satellite photos and a choice had to be made between designation as Barren 

Area or Snow and Glacier. Also the area containing shrubs was not a continuous area larger than the 

MMU, but interspersed by barren parts or snow cover. It was however also noted that the 

automated typology was not very accurate in specific areas. For example the large area of Shrub 

landscapes dominating the right part of the sample area is in reality primarily Barren Area, possibly a 

boulder field deposited by a glacier. To investigate the performance of the automated typology 

further the original NLCS landcover for the sample area was compared to the satellite image and 

typology (Fig. 44).  

 

Fig. 44 suggests that the automated typology has performed as expected in delineating landscapes 

according to the MMU used in the method. Even when taking into account the additional influence 

of slope and elevation (which can further subdivide landscape units and weren’t used for manual 

validation) the typology represents the overarching 2010 landcover patterns with a large area of 

Shrubs on the right, Barren Area in the middle part and Snow and Glacier on the left. As it turns out 

the 2010 landcover data did not accurately represent the landcover seen on the Google Earth 

satellite images, explaining part of the large difference between the automated and manual 

landscape designation. The large presence of Shrubs on the right for example is probably due to the 

boulder field being classified as shrubs, as the visual properties of both can be very similar. Adding to 

the dissimilarities between the manual and automated designation introduced by the unsharp real 

world boundaries between different landcover types and inaccurate landcover data is the large 

difference in landcover that can exist between even two consecutive days. One day of snowfall for 

example can completely change the landcover perceived on satellite imagery. More than most other 

areas of Bhutan the designation of landscape type distribution in this high mountainous area is 

uncertain because of the possibility for large day-to-day and season-to-season variations in 

landcover/visual appearance. The day-to-day variances in this region could be circumvented in part 

Fig. 44) M-1 sample area compared to original landcover data. The green areas in the 2010 Landcover indicate 
grass. 
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by separating the highly variable snow cover from the more stable glacier cover. In doing this higher 

accuracy can be achieved in the highest elevation zone.  

The M-2 sample point has a similarity of 90.4 %. There are three important differences. The 

agricultural landscape on the top left of the sample area has a different distribution compared to the 

manual designation. This difference is small and can be explained through the original landcover data 

which has a collection of small landcover units there that happen to have been assimilated into the 

larger agricultural landscape just outside the sample area. The manual designation does have 

another agricultural landscape in the top right, which in reality extends outside the sample area. In 

the automated typology this agricultural landscape has been assimilated completely into a 

Broadleaved and Mixed Forest landscape unit. In the original landcover data the associated 

agricultural unit is 12 ha (smaller than the MMU) with another agricultural unit smaller than the 

MMU next to it and a corridor of Shrubs in between. From the Google Earth imagery this seems a 

coherent agricultural landscape, but strictly using the MMU the unit has correctly been assimilated 

into the larger forest landscapes surrounding it. The manually designated shrub landscape on the 

bottom left could also be forest, visual differences with the forested areas surrounding it led to the 

decision to manually label it as shrubs. It is possible however that the automated typology is correct 

in this case. Everything considered the model has performed well, returning a very useable 

approximation of landscape types in the sample area. Only the agricultural area on the top right 

would be interpreted differently by a human observer but the model did perform well complying to 

the pre-set landscape parameters. 

The similarity of the M-5 sample plot in the very south of Bhutan is 56.1 %. The dissimilarity of the 

elongated area from north to south just right of the middle is because of inaccurate designation of 

agricultural area as shrubs in the original landcover data. Satellite imagery very clearly shows this 

area is used for agriculture. Just next to the river there is a small band of shrubs and in the landcover 

data this extends too far to the west. Satellite images of the area in 2001 show a broader band of 

shrub area. Probably the landcover data was based on an older situation. The area on the bottom left 

is an extended area of evenly mixed shrubs and agricultural fields. The designation by the model as 

shrub area is therefore understandable. A human observer would probably classify this area as 

agricultural as it is clearly shaped by humans and the shrub covered parts are only found on the 

disused pieces of land between the agricultural fields. The designation of this area is open to 

interpretation, but agricultural landscape seems the most appropriate label for this area. The 

dissimilarly classified region on the far right of the sample area is manually designated as shrub 

landscape, but automatically designated as forest landscape. The satellite imagery is inconclusive to 

the best description of this area’s landcover so it is possible that the manual designation is incorrect 

in this case. If the automated landscape designation of the ambiguous areas at the bottom left and 

far right area is assumed to be correct the similarity of M-5 would increase to 71.6 %. When only 

reclassifying the far right area, which is probably justified as the landcover data probably correctly 

shows forested area here, similarity would increase to 58.2 %. 

The total similarity of all 5 sample areas is 72 % (using 56.1 % similarity for M-5). Because of the 

extreme variability and uncertainty of M-1 for the reasons discussed earlier an argument could be 

made that this sample area is not representative of the performance of the typology. If excluded the 

similarity of the remaining 4 sample areas rises to 86.6 % (using the worst case 56.1 % similarity 

rating for M-5). This figure better represents the performance of the model for the largest part of 
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Bhutan, which is less prone to very short term landcover changes and interpretation differences of 

vague coverage boundaries.  

With regard to all the manual sample areas there are some additional remarks that influence the 

similarity between the manual and automated landscape designation. If a sample area has more than 

one landscape type a 100 % similarity between the manual and automated typology is impossible. 

The automated typology is based on raster data with a resolution of about 30x30m resulting in 

stepped border lines whereas the manual landscapes feature straight vector borders. Even in the 

case of perfect agreement between the manually and automatically designated landscape maps the 

vector borders will bisect the cell based stepped borders resulting in an inherent dissimilarity (Fig. 

45). The quantity of this dissimilarity is difficult to estimate but increases with total border length 

within any given sample area and can add up to multiple percentages. 

 

  

Fig. 45) Example of the inherent dissimilarity caused by the different border 
properties of raster and vector data. The red landscape 'A' and green landscape 'B' 
are separated by a stepped border because of their raster based origin. A manual 
designation using vector format produces a straight border (the yellow line) which 
bisects individual gridcells. The similarity check will treat these overlapping areas 
as erroneously designated landscapes (the purple regions). 
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Additional dissimilarities are introduced through unclear landscape boundaries where even when 

there is agreement in principle between the manual and automated typologies the boundaries may 

not be in exactly the same location (this is visible for example in M-5 where the waterbody has a 

much smaller footprint in the automated typology than in the manual typology). The accuracy of the 

automated typology might therefore actually be higher than the similarity figures mentioned before. 

This effect is, however, difficult to quantify.  

In conclusion the manual validation returns at least a 72 % accuracy compared to a human 

interpretation of the landscapes. A more realistic figure (without M-1 and 58.2 % for M-5) is at least 

86.6 %. The high mountainous areas can change quickly and significantly in landcover -and therefore 

visual appearance on satellite imagery- meaning landcover data in these regions will never be very 

precise, also the types of landcover here often do not feature sharp boundaries introducing more 

uncertainty. The validation revealed that a lot of accuracy could possibly be gained by separating 

snow cover from glaciers as glaciers are more stable landcover over time. Snow cover could then be 

classified as barren area, which is closely related. The available satellite images did not always agree 

with the landcover data, especially in the higher regions. Taking all these uncertainties into account 

the performance of the typology is good, especially for the relatively few landscape variables 

(Elevation, Landcover and Slope) included in the typology.  

 

4.2.2 Visual Validation 

In order to validate the model using a larger sample area a simpler visual comparison was done as 

well. For the visual comparison the generated landscape distribution was extracted for ten randomly 

generated sample areas and imported into Google Earth Pro. They were then compared to satellite 

imagery as close as possible to 2010. For the visual validation the complete typology definition could 

be used. The visual comparison is a quick visual estimation of performance that particularly focuses 

on spatial landscape distribution. Sample areas were checked for similarity of perceived landscape 

boundaries. Using the complete typology definition and larger sample areas possible negative trends 

can also be spotted more easily. The sample area satellite imagery and typologies can be found in fig. 

46 and fig. 47 on the next two pages. These figures also include the NLCS landcover to help analyse 

perceived trends and find explanations for them. 
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slopes must be present in that area. 
Fig. 46) The first five visual comparison samples. 
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Fig. 47) The second five visual comparison samples. 
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Analysis of the visual samples again shows good performance. The generated landscape map is 

capable of showing the type of landscape that can be expected. Even the two samples in the higher 

mountainous regions (V-1 and V-2) perform well. The designation of V-3 was not very accurate, this 

could be traced back to the original landcover data which showed a different interpretation of a 

particular region in the centre of the sample (forest instead of grassland) which had a large effect on 

the rest of the sample area typology designation. This cannot be attributed to bad typology 

performance, the typology accurately used landcover data to determine landscape type distribution. 

One weak point of the typology method is detected however. The landscape map performs well at 

designating landscape boundaries and is useful as an aid in getting a feel for a particular region. 

Where the typology is lacking, however, is with landscapes that include multiple patchy, sub-MMU 

sized areas of a different type of landcover. In the visual samples it was found that the designed 

landscape type labels, based on the combination of the three base variables, were not always 

satisfactory for these regions. This effect was found in V-6 and V-9. The samples featured a dominant 

forest landcover but with significant areas of mostly agricultural landcover patches within the 

forested areas. An observer would not classify this type of landscape as purely forest landscape and 

the experience of such a landscape is significantly different from a purely forest landscape. V-8 

features the same landcover types in similar concentrations (mostly forest, a little agriculture) but 

here they are not mixed and consequently the performance of the model is good. This is a scale issue 

that is hard to avoid when combining small scale and large scale data. It would be desirable therefore 

to include some extra layer to the typology.  

This layer should use some form of landscape metrics to indicate the “patchiness” of a landscape unit 

and could then be queried and/or activated at will depending on the user’s need. Often this effect is 

found in areas where there is a certain human presence, large enough to influence the landscape in 

multiple close by locations, but small enough not to grow together into one larger agricultural or 

urban area. The effect can also be observed with patches of barren area or shrubs. For a small part 

the unaltered Urban Area landscape type was expected to circumvent this effect for patches of 

human activity by indicating the presence of a population, it is now found in this visual validation 

that concentrations of human activity can be too small to register as Urban Area but still significantly 

influence the landscape.  

In earlier studies multiple different approaches have been used, van Eetvelde and Antrop (2009) 

used landscape metrics to define patchiness which was used in the grouping process. De Agar, 

Ortega and de Pablo (2016) applied landscape mosaics in order to emphasise the interaction 

between different landscape patches and Jellema, Stobbelaar, Groot and Rossing (2009) used 

correlation of shape and size variables to group landscape patches that were indicative of past 

landuse practices. For Bhutan landscape metrics would be the preferred option as the trend 

observed in the visual validation appears to be independent of other patches (ruling out the use of 

landscape mosaics) and are not created through a coherent (past) landscape use or landscape 

shaping process, ruling out the method employed by Jellema et al. (2009). 

If the extra “patchiness” metrics data layer is included in the digital landscape map data improved 

representation of landscape type is possible. The data, gathered using landscape metrics, could even 

be appended as an attribute to the current map.  
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4.3 Landscape Typology and Heritage Richness (Case Study) 

 

Archaeological research is normally based on combining experience, knowledge of many sources and 

intensive on-site field inspection which is a costly and labour intensive process. Modelling the 

potential for archaeological features of a study area using GIS can greatly improve the speed and 

accuracy of this process while decreasing the cost of research (Groenewoudt & Kvamme, 1992). 

Investigating the relationship between heritage feature location and landscape type may help to find 

vulnerable heritage locations as well as designate areas with an increased probability of containing 

unknown cultural heritage, which is of great interest for archaeological research as little is known 

about pre-19th century Bhutan. The importance of such analyses for protection against 

disappearance by development projects is also recognized in the archaeological community (Espa, 

Benedetti, De Meo, Ricci, & Espa, 2006; Kamermans & Wansleeben, 1999; Williams, 2016). To 

analyse the potential of the proposed landscape typology for predicting heritage richness a spatial 

analysis was set up. The analysis is performed by overlaying known heritage feature locations on the 

landscape map so the associated landscape type can be extracted per heritage feature. Using the 

landscape map combined with known heritage feature locations a chart of heritage distribution per 

landscape type was created (Fig. 48). A full overview of results can be found in appendix B. The 

heritage locations were retrieved from the NLCS Nye Atlas and World Bank databases with double 

entries between both datasets removed. 

Surprisingly Waterbody also features 85 heritage features (0.8 % of the total amount). This may seem 

remarkable but there are a couple of heritage feature types that can be expected to be centred in a 

body of water.  

Examination of the 85 features located in a waterbody reveals that 20 of the features are bridges and 

16 are prayer wheels. Bridges are logically located over a body of water and water powered prayer 

wheels can also be expected in a waterbody. Other features are harder to explain logically. There are 

five Lhakhangs (temples) located in a waterbody. As far as they are traceable in the data they appear 

to be normal temples which therefore should not be in a waterbody. These locations are probably 

due to inaccuracies in either the feature location or the landcover data. 24 other features are 

chortens which are not expected to be in waterbodies, so these locations are probably based on 

inaccuracy as well. Finally there are nine Nye’s: one cave, six boulders and two unspecified Nye’s. It is 
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Fig. 48) Heritage feature count per landscape type. 
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possible that these are found in water or along the water’s edge. This cannot be verified however 

with the available data and no assessment as to possible inaccuracy of their placement can be made. 

Further examination of these heritage locations superimposed over satellite imagery and the 

landscape type map shows that their Waterbody landscape designation is largely caused by the 

coarse resolution of the original source data (Fig. 49). The Waterbody landscape type was excluded 

from the landscape aggregation process and this inaccuracy is therefore inherent in the coarseness 

of the data.    

 

However the amount of heritage features per landscape type is only half the story. It stands to 

reason that more prominent landscape types with a larger total area will contain a larger amount of 

heritage features. A more telling property of the landscape types with regard to the probability of 

containing archaeologically interesting sites therefore would be feature density per landscape type. 

The feature density per landscape type is shown in fig. 50 below. 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

W
at

er
b

o
d

y

U
rb

an
 A

re
a

Sn
o

w
 a

n
d

…

L_
Sh

r1

L_
Sh

r2

L_
G

ra
1

L_
G

ra
2

L_
B

M
F1

L_
B

M
F2

L_
C

o
F1

L_
C

o
F2

L_
A

gr
1

L_
A

gr
2

M
_

Sh
r1

M
_

Sh
r2

M
_

G
ra

1

M
_

G
ra

2

M
_

B
ar

1

M
_

B
M

F1

M
_

B
M

F2

M
_

C
o

F1

M
_

C
o

F2

M
_

A
gr

1

A
_

Sh
r1

A
_

Sh
r2

A
_

G
ra

1

A
_

G
ra

2

A
_

B
ar

1

A
_

C
o

F1

A
_

C
o

F2

A
_

A
gr

1

N
_S

h
r1

N
_S

h
r2

N
_B

ar
1

D
e

n
si

ty
 [

fe
at

/h
a]

Fig. 49) A relatively course resolution introduced by the original landcover data can misrepresent the landscape type in which a feature is placed. The 
feature in these images is clearly located on land in the Urban Area, because of the course resolution however the typology places it in a Waterbody. 

Fig. 50) Feature density per landscape type in features/hectare. 
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The conclusions drawn from the feature density figures are very different from those one would get 

from the heritage count per type. Urban Area is now the most important landscape type. This is not 

very remarkable as one would expect a concentration of heritage features in population centres. 

Some of the most prominent landscape types for heritage feature count have become quite 

unimportant when using feature density. L_BMF1 is one of the least significant landscape types now 

whereas it was the most significant type in total feature count. L_Agr1 has also become much less 

important while overall remaining one of the most significant types. M_BMF1 and M_CoF1 are 

completely insignificant in the density chart as opposed to the total feature count where they were 

among the most significant types. A_Agr1 has become extremely important. 

For designating archaeologically interesting locations a deductive and an inductive approach have 

been used (Stančič & Kvamme, 1999; Kamermans & Wansleeben, 1999). Both approaches attempt to 

model archaeological potential of a specific location. The approaches both have pro’s and con’s but 

when applied with complete information both should result in the same outcome. In reality this is 

impossible and therefore both methods complement each other. Both approaches have previously 

been used in archaeological site modelling.  

4.3.1 Deductive Approach 

The deductive approach followed here, makes use of an analysis of the attributes of known cultural 

sites. This method is based on the continuity principle, where requirements for selection of a build 

site are supposed to be similar between known and unknown heritage features. In other words by 

analysing the properties of known heritage sites other locations that feature the same attributes and 

thus have a greater chance of finding archaeological features can be highlighted. This type of 

modelling is especially useful when the heritage feature attributes are categorical, as is the case with 

the landscape typology (Groenewoudt & Kvamme, 1992; Stančič & Kvamme, 1999).  

The approach suggests that landscape types with the highest densities can be seen as the most 

promising for discovering archaeological heritage, both man-made and natural, that have been 

missed in current surveys or were lost in time. Urban Area can be disregarded in that view. 

Population centres may contain interesting archaeological opportunities but their locations are 

clearly well known and the presence of cultural heritage there will not be a surprise to anyone 

researching (archaeological) heritage. One could argue that landscape types with high feature 

densities have little left to discover and that therefore landscape types with low densities are the 

most interesting. This may be partly true but the continuity principle suggests that high density 

landscapes are the types forgotten or lost heritage features will have been built on as well. One 

explanation for the absence of existing/known features in other landscape types can be that they 

have been destroyed through events that are more likely to occur in those landscapes, for example 

destruction through fires may be more likely in forested landscape types (which are some of the least 

densely populated landscape types). In the scope of this research however there is no data available 

on such processes and it is most logical to use the relative densities of landscape types. 

The threshold for designation of a landscape type as promising for heritage sites is set at a feature 

density of at least 0.005 features/ha. This threshold returns around one quarter of heritage 

containing landscape types for consideration and appears to be broad enough to also include more 

than just the most feature rich landscape types. The most promising landscape types are following 

this selection: A_Agr1, M_Agr1, L_Agr1, M_Gra1, L_Shr1, M_Shr1, L_CoF1 and L_Agr2. 
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The selected areas are shown in fig. 51. The map returns a total of 232546 ha for the selected 

landscape types, still a large area to study.  

 

To further narrow down the search area two location specific attributes are also included in the 

spatial analysis: Distance to the nearest river and distance to the nearest urban area. These 

attributes were analysed because they are traditionally linked to human activity. Rivers are logical 

locations for human settlements, and in Bhutan where the rivers are often responsible for the only 

somewhat flat areas by creating flood plains where settlements grow to any significant size this is 

especially true. The overlay of heritage features on the DEM in fig. 52 shows a pattern where 

heritage features are located for a large part along the valley walls lending credibility to this 

assumption. The distance to the nearest urban area follows a similar reasoning. There is a larger 

possibility for cultural heritage in locations near to human population centres (Espa et al., 2006). 

These assumptions appear to be corroborated when examining the distribution of known heritage 

locations over these distances. 

Fig. 51) The most heritage dense landscape types (more than 0,005 features/hectare) highlighted. 
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The histogram of fig. 53 shows the distance to the nearest river up to 30 km. Beyond 30 km the 

occurrence of features is negligible (± 0 %). The distance to the nearest Urban Area is shown in  

fig. 54. Here the amount of heritage features occurring beyond 15 km is negligible. 

Fig. 52) Locations of cultural heritage features supplied by the World Bank overlain on the Digital Elevation Model show a correlation between valleys, 
rivers and heritage feature locations. 

Fig. 53) The histogram of heritage feature distance to the nearest river 
confirms a negative correlation of heritage feature occurrence to river 
distance. 

Fig. 54) The histogram of heritage feature distance to the nearest Urban 
Area confirms a negative correlation of heritage feature occurrence to 
Urban Area distance. 
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The distributions were then plotted to their corresponding distances using Euclidian distances from 

each river and reclassifying the distance values with the percentage of total heritage features found 

at that distance which resulted in maps where the cell values represents the relative amount of 

features progressing in distance from rivers and the relative amount of features progressing in 

distance from Urban Areas. These values were then added to each other and a mask of the pre-

selected heritage dense landscapes applied resulting in the prediction model seen in fig. 55. 

 

 

Fig. 55) Heritage feature prediction model found using the deductive approach. 
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This model’s prediction gradient is intentionally unitless as it is a basic extrapolation of known 

attributes. It provides a relative indication of potential heritage density. 

  

Fig. 57) Detailed view of the deductive heritage prediction model. 
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By combining the prediction model with a density plot of known heritage features (Fig. 57) the 

designation of locations of exceptional archaeological opportunity can be specified even further. 

Areas with a high known heritage feature density are less likely to yield unknown heritage features 

because these locations are often still actively used and/or relatively densely populated. Also areas 

with a higher known heritage density are logical candidates for archaeological research if little other 

data is available and for this reason are no surprise to archaeologists. Therefore the locations with 

the highest potential for finding unknown/archaeological heritage sites are generally those with a 

high predicted heritage density and a low known heritage density.  

 

 

  

Fig. 57) The deductive prediction model superimposed over a density map of known heritage features. With this information locations with high 
potential for unknown heritage features can be found. Examples of such locations are encircled. 
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When reviewing the exact locations of the heritage features also within heritage dense areas there 

are opportunities for locating archaeologically interesting sites. An example of such a site is shown in 

fig. 58. Here an area with high potential but also a high density is found, however this particular high 

potential region does not have any actual heritage sites in the direct vicinity. 

Upon closer inspection using aerial imagery a possible unknown heritage site (possibly a temple or 

chorten) was found (Fig. 59).  

 

Next to the possible feature there was an apparent footbridge which also wasn’t found in any of the 

databases. However wether this bridge is actually historical is unkown. Additionally the model was 

found to be capable of locating areas with human activity even though they were not designated as 

urban area in the NLCS landcover data. These two finds suggest that the model performs well at it’s 

task of finding areas of interest for archaeological research.    

Fig. 58) A location with a high heritage prediction in a heritage dense location that 
nonetheless contained no heritage in the Nye Atlas and World Bank heritage databases. 

Fig. 59) The possible cultural heritage feature shown with the prediction model (left) and without (right). 
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The six selected landscape types contain 43.8 % of all heritage features (4451 of 10154) in just 6 % of 

total area, the percentage of heritage features is thus over seven times as large as the represented 

area with an effectiveness (measured through 
Heritage Coverage [%]

Area of Interest [% of total Bhutan area]
) of 7.3. A high as 

possible percentage of heritage in a low as possible percentage of area (and thus high effectiveness 

score) is indicative of good performance. The chosen landscape type density cut-off value is 

therefore quite effective in selecting relevant areas, indicating that selection by landscape type may 

be a useful aid for researching possible heritage locations. It was noted that many heritage features 

not covered by the selected landscapes were located right next to them. A possibility to further 

improve the effectiveness of the method therefore might be to apply a buffer to the selected 

landscapes. When buffering the areas by 1 km the coverage of heritage features increased to 82.3 % 

(8354 of 10154 features) but the total area of interest increased to  

27.5 % of the nation resulting in an effectiveness of just 3 reducing the effectiveness by a factor of 

2.4. A buffer of 500 m covers 73.2 % of heritage features with a total area covering 18 % of the 

nation resulting in an effectiveness of 4.1 and thus also performing worse than the unbuffered areas. 

A 250 m buffer returns an effectiveness of 5.1 and a 100 m buffer an effectiveness of 6.2. Fitting a 

trendline through these results (𝑓 = −1.39 ∙ 𝐿𝑁(𝑥) + 12.68; 𝑟2 = 0.995) and solving for 7.3 it 

would appear possible to increase efficiency with a buffer smaller than 48 meters, a test with a 

buffer of 20 meters however returned an efficiency of just under 7.1 (Fig. 60). This suggests the 

model is optimised as good as possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 60) Graph with the tested buffers and their resulting effectiveness (red). Also showing the original 
effectiveness of 7,3 (green line), the trendline (black line) and the 20 m additional test buffer (dark green cross). 
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4.3.2 Inductive Approach 

The inductive approach employs a statistics centred method. Where the deductive approach uses 

data of heritage features and extrapolates these to the entire study area the inductive method 

analyses the properties of every gridcell after which predictive weights of each attribute are 

returned. The weights of each attribute are telling of the attributes’ relation to cultural heritage 

features. These weights are used to create a formula which when incorporated into the GIS builds 

the heritage prediction model (Espa et al., 2006). The main benefit of the inductive approach is that 

the prediction model not only reveals which areas have a high potential for containing cultural 

heritage, but also quantifies the likelihood. Additionally a statistical model can be calculated that 

predicts the amount of heritage features that can be found in each gridcell. As the model returns a 

prediction of the chances of finding cultural heritage a better informed decision can be made on 

where to conduct archaeological research and there is less uncertainty about a chosen study site as 

the contrast is higher compared to the deductive method. One must keep in mind though that these 

figures are still an estimation and a large area with a fairly high chance can still contain no heritage 

due to the probabilistic character of the approach and the limited explanatory power (and thus 

remaining error) of such models. Drawbacks of the inductive method are the fact that it is less 

flexible because of the dependence on the functional form of the logistic regression, and requires a 

certain amount of understanding on the topic of statistics and analysis (Espa et al., 2006). This makes 

it more difficult to spot errors or quickly introduce changes in the model (and compare the results).  

For the inductive model the same attributes were used as for the deductive method. The first step in 

creating the model is preparing the attribute data. In GIS a database is created of every individual 

gridcell’s attributes. They may be the same as for the deductive method but they are used in a 

different way because every cell is used in the analysis. Therefore in addition to the previously 

mentioned attributes a binary attribute indicating the presence of heritage in a cell and an attribute 

indicating the amount of individual heritage sites in each cell was created. Also landscape types were 

classified according to their typical heritage density. M_Gr1, L_Shr1, M_Shr1, L_CoF1 and L_Agr2, the 

landscape types that had the lowest heritage densities of the included types, became one class. 

Ag_Agr1, M_Agr1 and Gs_Agr1 (the landscapes with the highest densities in ascending order) each 

got their own class.  

For the presence of heritage prediction model these variables were analysed through logistic 

regression with the binary presence of heritage data as dependent variable. The results are found in 

table 7 below. 

 B Standard 
Error 

Sig. 

Distance to River [LN(m)] -0.112 0.008 0.000 
Distance to Urban Area [LN(m)] -0.617 0.006 0.000 
M_Gra1/L_Shr1/M_Shr1/L_CoF1/L_Agr2 0.988 0.035 0.000 
L_Agr1 2.061 0.029 0.000 
M_Agr1 1.970 0.043 0.000 
A_Agr1 5.462 0.245 0.000 
Constant 4.743 0.141 0.000 
Table 7) Results of the statistic analysis explaining presence of heritage features. The Nagelkerke R2 = 0.185. 
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The B values (coefficients for the constant) confirm the assumptions made for the location variables. 

The negative B value for Distance to River indicates that the chance of presence of cultural heritage 

declines with distance from the river, as was expected. The same goes for Distance to Urban Area 

with an even stronger negative correlation. These results are in line with the distance decay plots in 

fig. 53/54. The landscape type classes also reflect their increasing heritage density in the ascending B 

values. The exception to this is the B value for M_Agr1 which is smaller than the B value of the less 

heritage dense landscape L_Agr1. This is probably caused by the fact that this analysis uses a binary 

factor to indicate the presence of heritage. This would suggest that within M_Agr1 clusters of 

cultural heritage are more prevalent than in the other landscape categories. The reasoning behind 

this will become clear when the linear regression is discussed in the subsequent section. 

Table 7 also shows the correlation coefficient of the different landscape types. The difference in 

explanatory value between A_Agr1 and the category with the closest B value L_Agr1 is 3.401. 

Compared to the coefficient of Distance to Urban Area (which at -0.617 is much larger than Distance 

to River) the difference in coefficient between A_Agr1 and L_Agr1 is 5.5 times larger than the entire 

coefficient of distance to urban area. This suggests that the explanatory value of Distance to Urban 

Area/River pales in comparison to the explanatory value of the difference between the landscape 

classes. This is because Distance to Urban Area/River is measured on a different scale. The B value for 

Distance to Urban Area is per 100 meter distance, so in order to reach the same difference in 

heritage potential as is present between the two landscape types a distance of 550 meters is 

required. For an oversimplified comparison in area size one can take an area of 550 x 550 meters 

which is 302.5 ha. As the MMU is 15 ha in this simplified comparison the difference in landscape type 

has over 20 times more explanatory value when seen by area unit (302.5 vs 15 ha to reach the same 

difference in heritage potential). The landscape types are thus very discerning in explaining presence 

of heritage.  

To create the presence of heritage prediction model the B values can be used to create a formula 

with which the relative importance’s of the attributes will be combined. The base formula is: 

𝐶ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝑒𝑟𝑖𝑡𝑎𝑔𝑒 =  
𝑒(𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +𝐵1⋅𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒1+⋯+𝐵𝑖⋅𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖)

1 + 𝑒(𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +𝐵1⋅𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒1+…+𝐵𝑖⋅𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖)
 



 

81 

Applying the formula in the GIS using the B values found in the logistic regression results in the 

prediction model for presence of heritage sites. This model is shown in fig. 61. 

 

Additionally the inductive statistical approach allows for quantifying the expected amount of 

heritage features in a location. This model is made using linear regression. For the linear regression 

the same attributes are used as for the logistic regression except that the binary ‘presence of 

heritage’ dependent variable is replaced with a variable containing the amount of known heritage 

features in any given cell. The results are found in table 8. 

 B Standard 
Error 

Sig. 

Distance to River 0.000 0.000 0.000 
Distance to Urban Area -0.004 0.000 0.000 
M_Gra1/L_Shr1/M_Shr1/L_CoF1/L_Agr2 0.005 0.000 0.000 
L_Agr1 0.034 0.000 0.000 
M_Agr1 0.064 0.001 0.000 
A_Agr1 0.126 0.006 0.000 
Constant 0.038 0.000 0.000 
Table 8) Results of the statistic analysis explaining amount of heritage features. R2 = 0.015. 

 

The results show that distance to the nearest river has no influence on the heritage feature count 

within a grid cell. Distance to Urban Area explains a small part of the heritage count. The increasingly 

Fig. 61)  Results of the statistic analysis explaining presence of heritage features mapped onto Bhutan. 
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heritage dense landscape types provide the strongest contribution to explaining the amount of 

heritage features. 

In the linear regression results the heritage density of the landscape types is mirrored in the B values 

of each landscape class. This goes back to the earlier observation made using the results of the 

logistic regression where the B value of M_Agr1 was unexpectedly smaller than that of the less 

heritage dense landscape classes. Because the B values of the linear regression do reflect the order 

of heritage density of these landscapes this means that heritage features within M_Agr1 landscapes 

tend to be more clustered than those in the other landscapes as their amount is not accurately 

reflected in the relative B values of the binary value used for logistic regression. The binary value 

makes no distinction between different amounts of heritage features within one grid cell and a 

relatively high tendency of heritage to cluster together can be the only explanation for the difference 

in B value order between the logistic and linear regression.  

The B values from the linear regression are then used to create a predictive model of the amount of 

expected heritage features. This is again done using the GIS to apply a standard formula with the B 

values used to represent the importance of each variable. The formula is: 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑒𝑟𝑖𝑡𝑎𝑔𝑒 =  𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐵1 ⋅ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒1 + ⋯ + 𝐵𝑖 ⋅ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑖 

Applying this formula in the GIS using the B values found in the linear regression results in a model 

predicting the amount of features per gridcell. For easier interpretation and comparison the per 

gridcell amount is adjusted to represent the amount of features per hectare, producing the map in 

fig. 62. 

Fig. 62)  Results of the statistic analysis explaining amount of heritage features mapped onto Bhutan. 
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The deductive model and the inductive presence of heritage models are very similar in the areas 

designated as high potential for heritage sites. The inductive model puts a greater emphasis on river 

valleys than the deductive model. The inductive heritage feature count model is also very similar to 

the inductive presence of heritage model. Without the point cloud of known heritage locations it is 

difficult to assess which areas predicted by the models are promising for archaeological research. 

Access to the known heritage locations dataset would therefore be highly recommended for anyone 

involved in archaeological research in Bhutan. For an initial indication of areas of high potential for 

this case study the known features database was used to indicate some areas that are particularly 

promising (Fig. 63).  

 

Again the database with exact locations of known heritage features cannot be displayed in this paper 

but was used in the GIS in order to designate areas of high potential for archaeological research. The 

most promising areas for archaeological research found through both the deductive and inductive 

method show similarities and indeed some areas are designated using both approaches. There are 

however multiple areas of high potential that only show up in one of the two results. This indicates 

that both methods have value and complement each other.  

  

Fig. 63) Promising areas for archaeological research are encircled. 
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4.3.3 Application of Results in Development Planning 

Apart from archaeological research this method can be helpful for development planning. When 

selecting locations for new development projects the maps in this chapter can be used to roughly 

dismiss certain areas and put emphasis on others, based on their (predicted) heritage density and 

location. One example could be the roads being built throughout Bhutan at this moment in order to 

connect remote villages. The information contained within these maps can help determine the 

routes of new roads in order to avoid a heritage rich landscape, or even to reduce noise pollution in 

important locations and determine impact on sightlines from heritage rich landscapes. Additionally 

with regard to the planning and construction of hydropower projects the models created in this 

chapter can be valuable. Hydropower construction has a large influence on vast areas both through 

the construction process and the upriver flooding associated with hydropower generation. The 

mandatory environmental impact assessments can benefit from this data by helping to focus 

research on the presence of (archaeological) cultural heritage to more specific high potential 

locations. Also when deciding on locations for new hydropower projects the data presented in this 

chapter can inform initial inventories of possible construction locations to help avoid locations with a 

high chance of cultural heritage. An example of the impact of hydropower construction is given 

below in fig. 64 and in fig. 65 on the next page. 

 

Fig. 64) The top panel shows the location of the Punatsangchhu-1 Hydroelectric Project near Wangdue Phodrang on 23-05-2002, before 
construction began. The bottom panel shows the exact same location during construction (18-10-2017). The large impact on the area is very clearly 
visible. The construction site has an enormous impact in and of itself, the blue, orange and green coloured structures in the middle underneath the 
path of the river is a village build for the workforce, showing how these large scale construction projects have an impact surpassing that of only the 
construction site. Image source: Google Earth Pro. 
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The natural location for hydropower projects is in river valleys which were found to be the most 

heritage dense locations and therefore can be expected to contain (archaeological) heritage that is 

exceptionally vulnerable to these projects. The effect of these construction projects is not limited to 

the actual construction site. Additional support infrastructure is needed in the form of bigger roads 

and temporary housing for construction workers (Fig. 64). Also because of the associated water level 

rise upstream an additional area is affected. 

In addition to direct changes affecting cultural heritage there is also an indirect effect in some cases. 

As was mentioned in the introduction noise pollution and affected vistas are also a consequence of 

the developments in Bhutan. The example in fig. 66 below shows the view from historic Trongsa 

Dzong in 2004 (left) and in 2017 (right) after downriver construction of the Manghdechhu 

hydropower plant had begun. In addition to the visual impact in this example a construction worker 

village has been build just over the ridge on the left and it can be reasonably expected that the 

sudden increase in local population will add to the impact of the hydropower plant. While some 

impact may be temporary as they relate to the period of construction, others like dams and roads 

may remain visible in the landscape for longer periods. 

Fig. 65) A panoramic view of the Punatsangchhu-1 Hydroelectric plant construction site as seen during a visit on 29-03-2017. The scale is hard to convey 
in this image, the holes in the mountain can comfortably fit two cement trucks side by side. Image source: Author. 

Fig. 66) The view from Trongsa Dzong in 2004 (left) and 2017 (right). It has clearly been impacted by the Manghdechhu hydropower plant construction. 
Made with Google Earth Pro. 
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Dzongs are ancient centres of power as well as the seat of the monastic body and are some of the 

most impressive historic features of Bhutan. Realizing the impact of large scale construction on the 

historic environment and tranquillity associated with dzongs and other similarly important features is 

essential for achieving Bhutan’s goal of sustainable development.  

 

Changes in hydrodynamics as a consequence of (hydropower) construction have been reported to 

have an even less directly visible consequence as this can propagate through invisible (underground) 

routes leading to instances of important (sacred) wells drying up (Dharmadhikary, 2015). 

The data presented in this chapter offers exciting possibilities for cultural heritage related work. It 

can also act as an aid for planning and assessing development projects and governmental entities like 

zoning commissions. Furthermore the outstanding effectiveness of the selected landscapes in the 

deductive approach lends credibility to the method used in this project to create the landscape 

typology. If the typology would have been based on wrong assumptions, data and/or methods one 

might expect that the predictive models would not be optimized and effectiveness could easily be 

increased by applying a buffer. The models created in this chapter should be seen as a preliminary 

result as even though they are based on assumptions which have proven to be valid the models can 

possibly be improved further by archaeologists or heritage specialists using additional data and/or 

applying different classification schemes that more accurately indicate archaeological heritage 

properties. 

 

 

 

  

Fig. 67) Trongsa Dzong. To the left the impacted mountainside from fig. 68 before construction began. 
Image credit: Lonely Planet. 
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4.4 Landscape change analysis 1990-2010 (Case Study) 

 

Bhutan is undergoing rapid societal changes that affect the landscape. During the field visit a World 

Bank employee noted how much changes between each of her visits (1-2 year increments). The 

landscape typology can be used to investigate vulnerability of specific landscape types. As the 

Bhutanese culture is strongly tied to and derived from the landscape it is very important to 

understand which landscapes are changing (Palden, 2016; Topping, 2014). An example of an 

important cultural location undergoing changes is Chimi Lhakhang and its surrounding area. Chimi 

Lhakhang is an ancient temple built on top of a hill where according to legend the “Divine Madman” 

Drukpa Kunley subdued a demon and trapped it in a rock (Wangdi & Chema, 2008). One side of the 

hill is flanked by a river, the other side features three small villages and rice paddies. Because of the 

striking lifestyle and practices of Drukpa Kunley the area is turning into one of the most visited 

tourist locations of Bhutan, as shown by the top attractions lists of lonely planet and tripadvisor, 

which has had a significant effect on the landscape. Roads have been widened, extra paths and 

hotels built, the villages have grown and densified and completely new buildings have been built in 

locations that used to be agricultural land or have natural landcover. All these changes are very 

recent as is clearly visible in satellite images of just under 15 years apart shown in fig. 68. 

 

 

 

 

 

 

 

 

Fig. 68) The changes of the Chimi Lhakhang area. The top image is from 17-01-2002 and the bottom image from 17-12-2016. 
Significant changes (new Urban Area and higher urban density) are marked. Image source: Google Earth and Author 
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Fig. 68 shows aerial views of Chimi Lhakhang on 17-1-2002 in the upper pane and on 17-12-2016 

with most notable changes highlighted in the bottom pane. Not highlighted are the widened and 

blacktopped roads and newly created paths through the rice paddies. The photo of fig. 69, which was 

taken on location, shows the view from the viewpoint in fig. 70. As can be concluded from the 

comparison of fig. 68 on the previous page most of the buildings seen in this photo are less than 15 

years old, the large blue-roofed constructions are hidden from view by the trees on the left of the 

photo. 

 

The small village of Yuwakha from where the previous photo has been taken is dominated by 

construction projects as is shown in the photo in fig. 71 on the next page. This was an omnipresent 

process in this village and most of it was aimed at tourism (guest houses, artisan shops etc.). 

 

 

 

Fig. 69) A view on recently developed buildings as seen from Yuwakha village (Viewpoint in fig. 70). Image source: Author. 

Fig. 70) Location and direction of the view in fig. 69. Image 
source: Google Earth Pro and Author. 
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The changes in landscape are found throughout Bhutan, often showing increased urban density and 

the spreading and settlement in new locations of Urban Areas combined with newly built or widened 

roads. A sample of locations showed significant changes over a period of 10-15 years from the most 

western point of Bhutan to the most eastern point. As can be expected the changes are most visible 

near human population centres (and were often visible in areas where the heritage prediction model 

showed a high potential).  

One other example is given in fig. 72 on the next page. These two images show the Jakar valley in 

Bumthang, a dzonkhag that is often named as the most historically important area of Bhutan 

containing many sacred sites and temples. The construction of an airport runway has had a big 

influence on this area with a new road, an increase in built up area, removal of a small foot bridge, 

new industrial area, decrease in grassland and most notably fixing the course of the river by 

constructing an embankment. The influence on the quality of landscape here is clear and there are 

numerous such examples of landscape changes due to large scale construction projects. With the 

endless supply of similar examples in mind the importance of increasing knowledge with regard to 

landscape change is obvious. This importance should not be lost on the Bhutanese people because of 

their aim for ecologically and culturally sustainable development of the nation, as was laid down in 

the 1990 Paro Resolution, the 11th and 12th Five Year Plan and the Economic Development Policy. 

Fig. 71) Construction in the centre of Yuwakha. The villages surrounding Chimi Lhakhang are 
rife with new construction due to the touristic appeal of the site. Image source: Author. 



 

90 

 

 

 

 

Fig. 72) Jakar valley in Bumthang. The top pane is from 24-11-2003 and the bottom pane from 31-12-2017. The changes 
mentioned in the text have had a visible impact on the valley landscape. Image source: Google Earth Pro. 
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For the landscape change analysis the ICIMOD landuse datasets were used. These datasets are less 

precise and accurate compared to the NLCS landuse data, but contrary to the NLCS data they are 

available for years prior to 2010. The total areas of the landcover classes are very similar to that of 

the NLCS based landcover distribution which gives some confidence that even though distributions 

and sizes of individual landscape units may be inaccurate in the ICIMOD based maps, the trends in 

total area coverage over the years should be representative of the actual dynamics. An analysis was 

made using data from 1990, 2000 and 2010 which was the latest edition of the ICIMOD data. All 

landscape maps were made using the same methodology used to create the NLCS based landscape 

map described in earlier chapters, only landuse data was substituted. A detailed comparison 

between the NLCS based and the ICIMOD based landscape maps can be found next in the 

“Comparison NLCS vs. ICIMOD” sub-chapter.  

4.4.1 Comparison NLCS vs. ICIMOD 

The landscape change analysis can only be done using ICIMOD landcover data. This introduces some 

uncertainties as both landcover datasets may differ from each other and conclusions drawn from one 

may not apply to the other. This chapter investigates the differences of each dataset so these can be 

accounted for when discussing change analysis results. As the NLCS landcover map is from 2010 the 

ICIMOD 2010 landcover will be used for the comparison. 

Fig. 73) Spatial landcover category comparison showing similarity between NLCS and ICIMOD landcover data. 

Similarity: 61.6 % 
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Fig. 73 is a comparison between the two landcover datasets. 61.6 % of the total area is classified as 

the same category in both datasets with the rest classified as different categories. The discrepancy 

between the two datasets is primarily present in the northern regions. Also the valleys are often 

qualified differently. The NLCS dataset contains more Conifer forest in the valleys where the ICIMOD 

features primarily Broadleaved and mixed forest. Only the Paro and Thimphu valleys are primarily 

different because of the large amount of Urban Area described in the ICIMOD map. The differences 

can be explained by the different methods used to create these maps. The NLCS landcover map is 

based on physical surveys whereas the ICIMOD landcover map is created using image classification 

through the Land Cover Classification System (LCCS) developed by FAO/UNEP (ICIMOD, 2018). The 

ICIMOD landcover map uses assumptions to help with landcover classification through aerial images 

which are responsible for the overestimated urban sizes. 

The most obvious variables that can be compared between the two landcover datasets are the total 

areas (Appendix F) and elevation distributions of the nine landcover categories. This basic analysis 

shows that the areas of each landcover class are very similar both in total area (Fig. 74) and 

distribution of the classes over elevation ranges (Fig. 75). 
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Fig. 74) Portions of each landcover category in the ICIMOD 2010 and NLCS datasets. 



 

93 

 

The elevation distributions of the landcover types, presented in fig. 75, are also generally similar. The 

mean values of the ICIMOD categories are extremely close to the mean values of the NLCS 

categories. The maximum elevation of the classes follow a similar trend between the ICIMOD and 

NLCS datasets although the differences between the maximum values of some categories are 

somewhat larger. Especially the maximum values for barren area, shrubs, agriculture and urban area 

differ by a fairly large amount with the NLCS dataset indicating a higher maximum elevation for every 

class except grassland. The trends in minimum values are less similar between the NLCS and the 

ICIMOD dataset. Except for snow and glacier the NLCS dataset features every landcover class at 

almost the lowest possible elevation in Bhutan. The ICIMOD landcover data returns significantly 

higher minimum values for five of the nine landcover classes. The differences in the extreme values 

can be expected as the NLCS dataset is based on surveys which returns high resolution data and is 

more likely to find occurrences in all possible locations. The less precise ICIMOD data by comparison 

is created using an automated satellite imagery interpretation approach which focuses on general 

patterns and may discard some of the more extreme (low elevation) areas. Also the ICIMOD 

algorithm is originally bound to fewer categories (ten originally) than the creators of the NLCS 

dataset (44 originally) which creates a need to combine more different landuses in one category and 

therefore requires averaging their properties, like elevation range, and in this way introduces 

additional dampening to the elevation range amplitudes. 

The similarities in relative areas of every category in both the NLCS and ICIMOD landcovers (Fig. 74) 

combined with the very similar category mean elevation values between the two datasets and the 

similar behaviour of the maximum elevation values (Fig. 75) would suggest that the trends in the 

ICIMOD landcover are comparable with the NLCS landcover data. These large scale trends are most 

important for the evaluation of landscape change as the data can thus be expected to reflect actual 

Fig. 75) Landcover distribution comparison: Landcover class elevation ranges for the ICIMOD 2010 and NLCS datasets. 
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nationwide landcover change trends even when smaller scale dynamics may still be misrepresented 

in the ICIMOD data. 

4.4.1.1 Influence of landcover patch size difference on clustering 

Small scale dynamics are expected to have some influence however because of the aggregation used 

in the landscape typology creation. If landcover of a particular category in a particular area is for 

example less scattered in the ICIMOD data compared to the NLCS data it may be less likely to 

assimilate, or be assimilated into, surrounding landscapes. This could introduce an error in the 

typology and consequently misrepresent actual landscape change trends. Also the on average larger 

ICIMOD units may underestimate small scale dynamics. To analyse this difference landscape metrics 

may be helpful. By comparing average sizes of individual landcover patches the possible 

misrepresentation of landscape change may be better understood. The NLCS landcover has 601087 

individual landcover patches vs 33219 individual patches in the 2010 ICIMOD landcover, so the NLCS 

data has over 18 times more individual landcover patches meaning every individual patch will be 

smaller in size. In table 9 below is some data of the individual landcover patches for both datasets.  

Table 9 confirms that the total size of each category is very similar (as was shown in fig. 74). The only 

category where both datasets have a relatively large discrepancy is Waterbody of which the NLCS 

landcover data features almost twice as much area as the ICIMOD landcover data. The patch count 

per category, average patch size and standard deviation all reveal that the ICIMOD data is less 

detailed. The ICIMOD data is divided in less individual landcover patches which has consequences for 

average patch size and their standard deviation. The per category patch count is an order of 

magnitude smaller than that of the NLCS which means the average patch size per category is much 

larger. Standard deviation for the individual landcover patches is also much larger. The much larger 

average landcover patch size in the ICIMOD data may have consequences for the landscape map if 

the increase in average patch size over NLCS patch size differs a lot between categories.  

Category Total Size [ha] 
NLCS (ICIMOD) 

Patch Count 
NLCS (ICIMOD) 

Average Patch 
Size [ha] NLCS 

(ICIMOD) 

NLCS:ICIMOD 
Avg. patch size 

ratio 

St.Dev 
NLCS (ICIMOD) 

Urban Area 6464 (6834) 6243 (228) 1.0 (29.9) 0.03 13.96 (179.71) 
      
Waterbody 27445 (14421) 9924 (476) 2.8 (30.3) 0.09 25.72 (57.59) 
      
Snow and Glacier 299339 (299119) 54686 (4049) 5.5 (73.9) 0.07 431.96 (2648.38) 
      
Shrubs 419154 (386168) 203537 (4826) 2.1 (80.0) 0.03 66.03 (453.34) 
      
Grassland 157238 (199405) 108566 (8290) 1.4 (24.1) 0.06 11.75 (85.80) 
      
Barren Area 151749 (186397) 64597 (6178) 2.3 (30.2) 0.08 47.76 (183.50) 
      
Broadleaved and Mixed 
Forest 

1720310 
(1726653) 

50255 (2311) 34.2 (747.1) 0.05 3806.44 
(34995.71) 

      
Conifer Forest 983240 (944249) 71655 (2076) 13.72 (454.8) 0.03 1162.09 

(8763.00) 
      
Agriculture 112156 (120595) 31624 (4785) 3.5 (25.2) 0.14 20.43 (72.42) 
Table 9) Landcover patch statistics. As there were single cell patches it is unlikely the NLCS and ICIMOD landcover data 
used an MMU. 

If one landcover category features a much larger average patch size ratio (NLCS:ICIMOD) compared 

to another landcover category patch ratio increase this will result in a disproportionate assimilation 
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Fig. 76) Final landscape typologies (MMU=15 ha) based on NLCS data (top) and ICIMOD 2010 data (bottom). 

of low NLCS:ICIMOD ratio categories by larger ratio categories in the clustering phase. If all 

categories have a similar patch size ratio the effects will cancel each other out. Table 9 reveals that 

the ratios between NLCS and ICIMOD individual landcover unit sizes can in fact differ greatly. This is 

not an ideal situation but it is still possible that the landcover unit size is of relatively little influence 

on the final landscape map. This is possible because the landscape map is dependent on many other 

variables (slope and elevation and their respective individual unit sizes) as well as many possible 

unseen factors that may be at play like dynamics between and properties of typically neighbouring 

landcover types and the variables that are not explicitly used in the typology creation but are still 

influencing it. The complex interplay between all those factors can have a bigger impact on the final 

map than the ratio of average landcover unit size diminishing the impact of that ratio.  

With this in mind comparing the final landscape maps based on both datasets will help assess the 

total effect of differences in the landcover datasets. For comparison fig. 76 shows the results for the 

NLCS based landscape map (using 2010 NLCS data) and the 2010 ICIMOD based map. 
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On a cursory glance one can see both 2010 maps by and large follow similar trends. The north is 

dominated by Snow and Glacier landscapes as well as Barren Area landscapes. The middle part is for 

a significant part covered by Conifer Forest landscapes and the southern part by Mixed and 

Broadleaved Forest landscapes. The Mixed and Broadleaved forest landscapes penetrate towards the 

north through the valleys. The ICIMOD based map has 10 fewer landscape categories than the NLCS 

map (8 fewer categories for the 230 ha map, all type area sizes and individual unit counts can be 

found in appendix C).  

Most noticeable differences in fig. 76 are the absence of the most southern Snow and Glacier 

landscapes in the ICIMOD based map and the difference in coverage of Urban Area. The NLCS based 

map has one relatively large Urban Area at the location of Thimphu, while many smaller Urban Areas 

can be seen at the location of Paro and Ha with very small Urban Areas dotted throughout Bhutan. In 

the ICIMOD based map three major Urban Area landscape units are visible at the locations of Paro, 

Thimphu and Punakha and very few other instances of Urban Area are present. This pattern is 

consistent with the trends shown in table 9 where total areas of landcover categories are similar but 

they are grouped together more in larger patches in the ICIMOD data. The NLCS based map does 

show a lot of Agriculture landscape near the Paro area, which appears to be interpreted as Urban 

Area in this case by the ICIMOD algorithm. Another noticeable difference is the presence of a 

significant area of L_CoF1 and L_CoF2 in the NLCS based map when there is none found in the 

ICIMOD map. Also there is a much larger presence of M_BMF1 and M_BMF2 in the NLCS based map. 

In the ICIMOD map the different forest types are almost perfectly split between the first elevation 

zone boundary. 

Earlier this section the range of ratios between the landcover categories’ individual patch sizes was 

hypothesised to possibly influence the final typology result. If that is the case one would expect to 

see the range of NLCS:ICIMOD ratios of the individual patch sizes of landcover categories reflected in 

the ratios of total coverage change of those landcover categories in the final maps. For example, if all 

categories were to have the same average patch size ratio (NLCS compared to ICIMOD) of 1 except 

the ratio of landscape X which would be 2, one would expect for the ICIMOD based landscape map to 

feature a relatively larger area increase of X landcover based landscapes compared to the area 

increase of X landcover based landscape in the NLCS based landscape map. This is because the 

ICIMOD based typology would favour the assimilation of non landcover X areas into the initially 

larger landcover X areas. In short, the ratio of landcover X based landscape area change between the 

NLCS and ICIMOD based landscape maps should be positively correlated to the ratios of the average 

landcover patch sizes of the original NLCS and ICIMOD landcover data. However possibly the 

individual patch size is of little influence in the final typology result due to many other (sometimes 

unseen) variables at play. In that case the ratio of landcover X based landscape coverage change 

should not be reflected in the landscape map.  

The data is inconclusive about the influence of average landcover patch size on the final landscape 

map through the spatial aggregation process. What is immediately clear is that the larger average 

landcover patch sizes of the ICIMOD data dampen the total coverage change of each landcover 

category (when calculated by the sum of the area of landscapes based on each landcover category) 

as can be found in table 10. The reason for this dampening effect is that the average patch size for 

each landcover category is already greater than the MMU of 15 ha. Therefore a lot more of the first 

order landscape units are classified as valid landscapes and there is less opportunity to be assimilated 

by other first order landscape units and the equilibrium state within the aggregation phase is 
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Fig. 77) Plots of average landcover unit size ratios and their best fit trendlines. Left: all categories, middle: possible outlier shrubs omitted, right: possible 
outlier Conifer forest omitted. On the X-axis the ratios from table 9, on the Y-axis the ratios of table 10 after clustering of the first order map. 

reached sooner thereby altering the original landcover distribution less. The NLCS landcovers’ smaller 

average landcover patch size means there is more potential to be assimilated by other patches and 

therefore the landcover category areas are able to change more significantly. 

 
Category 

NLCS 
landcover 

[ha] 

NLCS based 
landscape 
map [ha] 

NLCS area 
change [%] 

ICIMOD 
landcover 

[ha] 

ICIMOD 
landscape 
map [ha] 

ICIMOD 
area 

change [%] 

Change ratio 
NLCS/ICIMOD 

Snow and Glacier 299339 336698 12.5 299119 318000 6.3 1.98 
        
Shrubs 419154 342400 -18.3 386168 384482 -0.4 41.95 
        
Grassland 157238 84691 -46.1 199405 152109 -23.7 1.95 
        
Barren Area 151749 124599 -17.9 186397 173240 -7.1 2.53 
        
Broadleaved and 
mixed forest 

1720310 1818847 5.7 1726653 1743824 1.0 5.76 

        
Conifer forest 983240 1049959 6.8 944249 976997 3.5 1.96 
        
Agriculture 112156 88742 -20.9 120595 101628 -15.7 1.33 
Table 10) Comparison of the original landcover areas vs area of landscape types based on those landcover categories in 
the final landscape maps of NLCS and ICIMOD 2010. 

The dampening effect is clear from table 10 (Urban Area and Waterbody are not included because 

they were excluded from the aggregation phase) as the ICIMOD area change is always smaller than 

the NLCS area change. A correlation between average NLCS:ICIMOD landcover patch ratio and 

change ratio is less obvious from this data. The R2 value of the best fitting trendline through these 

points is 0.458 (𝑦 = 0.062𝑥−1.39) (Fig. 77). The Shrubs category could possibly be classified as an 

outlier because of its enormous NLCS:ICIMOD change ratio of 41.95 (significant in Dean and Dixon 

outlier test) in which case however there would be even less correlation (R2 = 0.305. 𝑦 =

3.832𝑒−7.27𝑥). In contrast when disregarding Conifer forest the R2 value becomes 0.81 (𝑦 =

0.012𝑥−2.04), providing a much better fit. The amount of datapoints is too small to confidently 

qualify either Conifer forest or Shrubs as an outlier, hence the existence of a correlation between 

patch size and area change from landcover to landscape is unclear and the most logical conclusion is 

that there is little correlation between initial landcover patch size ratio and landscape change ratio 

between the NLCS based typology and the ICIMOD based typology. 
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In conclusion the ICIMOD dataset has proven to resemble the total areas of the NLCS landcover 

categories closely making it applicable for the landscape change analysis. The dampening effect of 

the coarser data through the bigger initial landcover patch sizes should not be forgotten when 

discussing the results of the change analysis however. With regard to small scale effects of the 

discrepancy in original relative landcover patch sizes of the ICIMOD data categories compared to the 

original relative landcover patch sizes of the NLCS data categories it is difficult to predict their 

influence. There does appear to be some effect on the final representation of each landscape 

category in the landscape map thanks to this discrepancy but a definitive correlation can’t be found. 

Compared to the dampening effect any influence of the discrepancy seems minor. 

4.4.2 Change Analysis 

 
For the change analysis a couple of different sets of landscape types are compared. This is for the 

sake of clarity as a simultaneous analysis of all 33 occurring types (for the ICIMOD based typology) 

would be impractical to comprehend. The different sets are: 

- The 10 largest total area types 

- The 8 smallest total area types 

- The pre-selected heritage rich landscape types 

All data on landscape type area and individual unit count can be found in appendix C. The low spatial 

and temporal accuracy of the ICIMOD data limits the analytical possibilities through more extensive 

statistical analyses like patch- and class-level landscape metrics (Zomeni, Tzanopoulos, & Pantis, 

2008) or (stochastic) Markov chain modelling (Weng, 2002). The applied analysis is a simplified 

version of the post-classification change detection analysis applied by Dewan and Yamaguchi (2009) 

and the similar diachronic approach of Bender et al. (2005). This is the most that can be done with 

the available data without hampering the reliability of the results because of the low accuracy of the 

ICIMOD data. The 1990 coverage area was used as the baseline level for the analysis. A graph 

visualises the dynamics of the landscape sets. In order to further investigate the dynamics of the 

landscapes the three landscape maps have been cross tabulated against each. In this way data is 

created on what portion of each landscape type is converted in what type of new landscape. These 

tables can be found in appendix D.   
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4.4.2.1 Change of the 10 largest landscape types 

Fig. 78 shows total landscape type areas for the largest 10 landscape types. Many of the landscape 

type coverages appear to stay relatively constant between 1990 and 2010. Visually many of the 

largest landscape types are somewhat stable in their total coverage. M_CoF1 shows a small increase 

in coverage between 1990 and 2000 and A_Shr1 exhibits a small decrease in 2000 returning to 

almost it’s original value in 2010. More significant coverage changes are seen in Snow and Glacier 

(mild slope), A_CoF1 and N_Gra1. A_CoF1 increases between 1990-2000 and then stabilizes, Snow 

and Glacier (mild slope) is stable between 1990-2000 but increases greatly between 2000-2010.   

 

Most notably N_Gra1 is the only landscape type that shows a large and steady decline in the entire 

time frame and might therefore possibly be seen as pressured. The decrease in N_Gra1 between 

1990-2000 is primarily explained by losses in area to N_Bar1 (data in appendix D). The net loss of 

area to N_Bar1 is responsible for 75 % of its decrease. Within this period there is one landscape type 

that N_Gra1 recovers a significant amount of area from, Snow and Glacier (mild slope) which 

contributes 12% of the overall coverage change but in the positive. In contrast in the 2000-2010 time 

frame the coverage change of N_Gra1 is for 82 % explained through coverage loss to Snow and 

Glacier (mild slope) and only 7 % loss to N_Bar1. When considering the complete time frame 

between 1990-2010 the contributions of N_Bar1 and Snow and Glacier (mild slope) to the decrease 

Fig. 78) Total area of the ten largest landscape types from 1990-2010. 
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in area coverage of N_Gra1 are very similar at 48 % and 44 % respectively. These are landscape types 

that are closely related to each other and as such it is highly probable that differing conditions 

throughout the years can easily lead to Grassland landscapes, Snow and Glacier landscapes and 

Barren Area landscapes interchanging area. The small impact of other types of landscapes on the 

N_Gra1 coverage corroborates this theory. As it is quite possible that after a period of climate 

favourable for grass growth the balance switches to more grassland. Similar changes in this elevation 

range with little human activity are thus most likely due to natural causes and N_Gra1 should not be 

classified as an endangered landscape.  

For many of the other landscapes the changes are relatively small, and a specific amount of increase 

or decrease has a larger impact on a landscape type with a smaller total area. It may be more 

informative to visualise the change in coverage as a percentage of original coverage. This is shown in 

fig. 79. 

 

Fig. 79) Total area change relative to 1990 total area. 

A_CoF1 shows a large increase of coverage (34 %). The increase occurs primarily between 1990-2000 

with the new coverage primarily occupying space that was previously A_Shr1 (85 % of the increase) 

and A_Shr2 (8 %). The transition into A_CoF1 is also the most important factor for the decrease of 

A_Shr1 in that period (39 % of decrease) together with A_Shr1 lost to A_Gra1 (30 % of decrease). The 

A_Shr1 area lost to A_Gra1 is almost completely recovered between 2000-2010 along with a 

significant portion of the area initially lost to A_CoF1. These interactions appear to be due to 

fluctuating landscape borders, and the overall landscape coverage sizes of these types don’t warrant 

any concern for these landscapes. The last most notable change is the large increase of Snow and 

Glacier (mild slope) coverage between 2000-2010, 81 % of this increased coverage area is taken from 

N_Gra1 and N_Bar1 as discussed earlier. 

With regard to the large forested landscape areas more general analysis suffices. Within the Grass 

and Shrubs elevation range all landscape types show decrease in coverage except A_CoF1, A_CoF2 

and A_Shr2. In fact all conifer forest based landscape types are increasing in size in all elevation 

ranges except the Agricultural zone, where no conifer forest landscape types are found at all. The 

Broadleaved and Mixed forest landscape types are very constant in coverage even though these 
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represent the largest total coverage in the entire nation (All 4 occurring Broadleaved and Mixed 

forest based landscape types are found in the top 10). The most significant coverage increase of 

these landscape types is found in M_BMF2 with a 1.3 % increase in coverage throughout the 

investigated time frame. These figures mean that Bhutan is very successful in protecting it’s forested 

landscapes. The National Forest Policy and the Forest and Nature Conservation Act can be seen as a 

great success according to these numbers.  

4.4.2.2 The 8 smallest area landscape types 

Total area for the eight landscapes with the smallest coverages are shown in fig. 80. The smallest 

area landscapes are more dynamic than the largest area landscapes since a small amount of 

landscape coverage change already has a relatively large impact on these landscapes. They may 

therefore be more vulnerable to pressure caused by Bhutan’s societal changes. 

The smallest landscapes are primarily Barren Area, Shrubs and Agricultural landscapes. Five of the 

landscapes show a continuous downward or upward trend: M_Agr2, L_Agr2 (upwards trend), 

L_Gra1, L_Shr1 and L_Bar2 (downwards trend). The remaining three have a minimum (N_Shr2, 

M_Bar2) or maximum (L_Shr2) in 2000. N_Shr2 loses and gains area from other landscape types 

associated with the higher elevation dynamics discussed in the 10 largest area section (Grassland, 

Barren Area, Snow and Glacier). The dynamics can be expected to be very similar to those of the 

large areas. 

Fig. 80) Total area of the eight smallest landscape types from 1990-2010. 
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The Agricultural elevation zone is well represented in this set with five landscape types, indicating 

that landscape units in this low elevation zone are small or fragmented. There is a steady increase in 

landscapes associated with agriculture in both elevation zones where agricultural activity is found 

(Agricultural zone and Tree zone). Throughout the entire time frame L_Agr2 increases by 23.9 %. 

M_Agr2 increases in total area by an enormous 233.5 %. Compared to the agriculture found on mild 

slopes the increases in steep slope agriculture are very interesting. In the Agricultural elevation zone 

the increase of L_Agr1 is a mere 2 % from 1990 to 2010. In the next elevation zone M_Agr1 increases 

by 24 %. The relative increase in steep slope agricultural landscapes is around ten times that of 

agricultural landscapes on mild slopes. Along with the larger relative growth of agricultural 

landscapes in the Tree zone (which is less associated with agricultural activity) this may be indicative 

of an increased need for agricultural land such that less desirable locations are now also being used 

for agriculture. M_Agr2 encroaches in only two other landscape types, Grassland landscapes and 

Broadleaved and Mixed Forest landscapes. L_Agr2 increases area at the expense of Broadleaved and 

Mixed Forest and Shrub landscapes (see appendix D). Within the Agricultural elevation zone except 

for Agricultural and Broadleaved and Mixed Forest landscape types all other types (Shrub and 

Grassland landscapes) decrease in area. Shrub and Grassland landscapes may thus be under pressure 

from human activities through the increased need for agriculture.  

The total area covered by L_Bar2 and M_Bar2 both decrease in total coverage. L_Bar2 decreases 

both between 1990-2000 and 2000-2010 with the decrease in the later decade smaller than in the 

former and a total decrease of 39.1 % compared to 1990. It loses coverage only to Broadleaved and 

Mixed Forest landscapes. M_Bar2 decreases from 1990 to 2000 but increases in the next decade, 

with a decrease over the entire time frame of 41.2 %. M_Bar2 loses area to many landscape types, 

but the most important ones are again Broadleaved and Mixed Forest types and Agricultural types.  

L_Shr1 and L_Shr2 both decrease in area over the entire time frame. L_Shr1 however decreases over 

both decades whereas L_Shr2 only decreases between 2000 and 2010. Over the entire time frame 

L_Shr1 loses almost all of its area to increased agriculture (89 % of the change in total area is 

explained by loss to agriculture). L_Shr2 can ascribe almost 100 % of its area loss to Broadleaved and 

Mixed Forest landscapes. This is probably due to natural encroachment of the forests on these 

otherwise undisturbed locations.  

As noted earlier this may be an indication of the pressure to increase the amount of agricultural area. 

First the Bhutanese may have used more easily farmable flatter areas for creating additional 

agricultural land and later on they start using the less easily farmable steep areas.  
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4.4.2.3 The pre-selected heritage rich landscape types 

The change in landscape types associated with heritage can shed light on the vulnerability of heritage 

features under the dynamics of modernizing Bhutan. However of the eight pre-selected heritage 

dense landscapes (>0.005 features per ha, urban area neglected) two of them are not present in the 

ICIMOD based landscape maps. These two are L_CoF1 and A_Agr1. This discrepancy can probably be 

ascribed to the algorithm used by ICIMOD as from the data it appears that Conifer forest and 

Agriculture designation of areas has a cut-off value at specific elevations. The change analysis for 

heritage dense landscapes can only be done for the remaining six landscape types. Their data is 

displayed in fig. 81. 

 

Fig. 81) Total area of the pre selected heritage rich landscape types from 1990-2010. 

The total amount of pre-selected heritage dense landscape types have decreased in coverage by 

49727 ha between 1990 and 2010 (-21 % of the 1990 original combined total coverage area). Out of 

the six analysed landscape types three have declined in total area and three have increased. Two of 

the heritage rich landscape types also belong to the landscape types with the smallest total coverage 

(L_Shr1 and L_Agr2). L_Shr1 disappears completely and as mentioned before this appears to be 

caused by the pressure exerted from the increased demand for agricultural land leading to an 

increase in Agricultural landscape, in particular in this case L_Agr1 which is responsible for 89 % of 

the lost area of L_Shr1. All heritage rich landscapes that increase in area are agricultural landscape 

types. These landscape types have a steady upward trend. M_Gra1 increases slightly between 1990 

and 2000 but then decreases sharply between 2000 and 2010. This fits with the change analysis for 
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the eight smallest landscape areas that showed grassland area is under pressure. In the case of 

M_Gra1 only a part of the lost area can be ascribed to increased agricultural area (15 % of M_Gra1 

decrease). As might be expected in this elevation zone area loss to forested landscape types have a 

larger influence as 62 % of decrease is lost to M_Cof1 and 20 % to M_BMF1. As a side note the data 

fits with the supposed properties of the elevation zones, indicating the parameters for dividing the 

zones have been chosen correctly. M_Shr1 increases in area after a large decrease between 1990 

and 2000. The total coverage has decreased significantly over the entire time frame (Fig. 82). 94 % of 

M_Shr1 area is lost to Conifer Forest landscapes between 1990 and 2010. Fig. 82 also clearly shows 

how the most heritage dense landscape types show large relative decreases in total coverage (L_Shr1 

-100 %, M_Shr1 -43 % and M_Gra1 -33 %) versus smaller relative increases in total coverage for 

L_Agr1 (2 %), L_Agr2 (24 %) and M_Agr1 (24 %).  

 

The increased area of L_Agr1 is taken in roughly equal amounts from L_Shr1, L_Bar1 en L_BMF1. 

M_Agr1 receives it’s additional area primarily from M_Gra1 and M_Bar1. L_Agr2 shows a large 

relative change but is so small in total coverage that it’s dynamics are of no real influence on any of 

the other landscape types.   

The shift in landscape type in which the heritage features may be found should perhaps be 

interpreted as more important than their absolute coverage areas. As landscape type changes 

heritage features are not necessarily destroyed. Their historical function in the landscape however 

can be lost as well as their perceived ties to their particular location leading to a diminished 

importance and a larger probability of degrading (due to lack of maintenance or later destruction). 

Many of the historical heritage features have (origin) stories attached to them that relates to the 

landscape in which they are found. The features and the landscapes have historically evolved around 

-and co-existed with- each other, a symbiotic balance that may very well be disturbed by the 

processes associated with modernisation of the nation and accompanying landscape change. This 

analysis shows heritage dense agricultural landscape types increase in coverage whereas all other 

heritage rich landscape types decrease. Therefore it is a very real possibility that historical cultural 

landscapes are threatened by, amongst other possibilities, agricultural needs creating pressure on 
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the historical landscapes. This is a finding where further study is advisable in order for Bhutan to 

comply with its aim to develop in a culturally sustainable fashion. 

A couple of other sets were considered for analysis, namely largest absolute changes, largest relative 

changes, and landscape types with the smallest average individual units. Many of the landscapes that 

would be in those sets were already represented in the other analyses in this chapter, and otherwise 

many of them have already been discussed when trying to explain the behaviour of landscape types 

in the discussed sets.  
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5. Discussion 
 

The landscape map created in this study is found to be fairly precise. For the final accuracy figures of 

the automated landscape map it is stated that the figure that best reflects the real life accuracy of 

the method is 86.6 %. Low accuracy was found in high mountainous regions with high day-to-day 

variability. Separating snow cover from glaciers could improve the results. Without such a distinction 

the landscape map may not be suitable for end-users with a focus on those regions. The inaccuracy 

in these regions is further ascribed to vague landscape boundaries. Even in areas with low accuracy 

the landscape map helped improve understanding of the landscape. 

Validation has returned one important weak point of the method. It was found that landscape units 

of the same type can in some cases differ in character, here the area is not as homogenous as the 

typology might suggest. In these cases the landscape unit includes significant amounts of patches of 

a different landcover, often of the same kind. A suggestion for the typology would be to include a 

patchiness factor in the landscape designation. The data can for example be appended to the 

typology by using landscape metrics to calculate a parameter indicating the patchiness of the 

landscape unit. The usefulness of such a parameter and difficulties with their implementation have 

been discussed by Lausch and Herzog (2002). Otherwise a more general ‘patchiness’ layer could be 

created beforehand and included as source data when creating the first order typology. It is 

recommended to include what type of patches are dominant in a landscape unit in this attribute. The 

inclusion of this data might also be able to further enhance the predictive power of the heritage 

prediction models or the informative possibilities of the landscape change analysis. 

What is important to remember is that some dissimilarity is not a major problem. The landscape map 

is a semi-schematic approximation by definition, and like all maps inaccuracy compared to the real 

world situation is unavoidable, whether it is because of simplification of data for practical purposes 

(which is the case here), translation of a three dimensional object to a 2D surface or any other 

reason. What the validation of the method relying on NLCS landcover data shows is that the 

landscape map is able to aid in finding trends in landscape distribution or pinpoint where a certain 

landscape can be found. 

An interesting result from the landscape change analysis is the large increase in Snow and Glacier 

(mild slope). After the small dip in 2000 there is an enormous increase in total area of 44.6 % 

compared to 1990. Satellite imagery of those years found in Google Earth does show this decrease-

increase pattern when comparing areas in detail, however a 44.6 % increase seems unlikely based on 

visual interpretation. The most plausible explanation would be that the Google Earth images and the 

images used by ICIMOD are of different dates as snow cover is highly variable from day-to-day. This 

could also be improved by separating snow cover from the more stable glaciers. 

Another recommendation for this typology or possible future typologies using this method would be 

to devise a way to guide the assimilation process between the first order and final typologies. In this 

paper sub MMU landscape units were assimilated by the landscape units with the longest shared 

border. To more accurately portray the real situation some preference should be included to have 

similar landscape units assimilate each other. One idea is to include a weight for each landscape type 

pair indicating their similarity. This weight should be used together with shared border lengths to 

determine what unit a sub MMU unit will assimilate into. So a shorter border with a neighbouring 
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unit of a similar landscape type should take precedence over a longer border with a less similar 

landscape type up to a certain limit. Implementing such a system would require knowledge on 

smaller scale or more subtle landscape dynamics and properties. The weights would be 

representative of a particular region, so such a system would diminish the flexibility, robustness, 

objective nature and reproducibility of the methodology. 

This study limited the amount of possible landscape types by limiting the amount of classes 

represented in the thematic base data. There are other viable options to limit the final total amount 

which were rejected for this study but might be interesting for future versions. One option is to 

disregard landscape types smaller than a certain percentage of Bhutan’s total area, adding these to 

another type. Another option is to disregard types that have a small amount of individual units. The 

addition to another (larger) landscape type could then be based on most similar hierarchical type, i.e. 

the most dependent attributes would first be grouped. For this study there were no relevant figures 

to base the cut-off values on. For a first landscape map it might even be undesirable as types with a 

small total area or amount of units might prove to be important for particular types of users. Future 

experience with the use of the map could guide such decisions if a newer version is made. 

A final recommendation would be to refrain from using the raster format as an intermediate step. 

The conversion between raster and vector formats may introduce errors. Also converting vector data 

into raster data will normally decrease its resolution and accuracy. The NLCS vector based landcover 

data in this study was already based on a raster file as was evident when zooming in close enough 

which reveals stepped borders. Vector data does require more computing power and memory space 

and the gain in accuracy can be limited so this is not the most important improvement. In reality it 

would be a decision made based on available computing power, study area size and original source 

data formats. 

This study resulted in a number of general findings. First of all it was found in the course of this study 

that it is customary practice for landscape typology and map creators to develop a customised 

method. This has led to a patchwork of incompatible typologies, instigating efforts to standardise 

landscape typologies for supranational areas like LANMAP. These efforts aim at “brute-forcing” a 

landscape typology covering areas the size of continents, or even the entire globe. Inevitably such 

typologies will suffer from destructive generalisation by using source data that is too general to do 

justice to the diversity in actual landscapes. This approach also necessitates the use of multiple 

sources for the same thematic source layer as coverage of such data often does not extend across 

the entire area of interest, forcing the developers to edit the original datasets to comply with each 

other. Also too large MMU sizes are used. Typologies created in this way will be too general to use 

for research or policy-making and may cause discontent in regions when policy based on these 

general landscape maps affects their inhabitants in a negative way. According to Zoderer et al. (2016) 

traditional landscapes are extremely important and highly valued but often small and scattered. This 

is exactly the type of landscape important for policy-makers and locals as well as the type that will be 

missed by such landscape maps. 

This paper puts forward another approach to international or continent-wide landscape typology 

creation and mapping that will return more useable results and involve regions in the creation of the 

typology. A preferable approach to large scale typology creation would be to create a standard 

framework using a version of this method and guidelines for choosing source data, determining class 

boundaries and for documenting and visualising the final typology. In this way regions can 
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incorporate local knowledge and values in the landscape map, but the results of all regions will be 

easily comparable combining into a supranational landscape map. In this study an attempt has been 

made to rationalise the choices made with regard to source data and source data class boundaries 

which was absent in the landscape typology papers reviewed for this study. Documenting the 

rationalisation behind choices should be an integral part of the standard framework as it is 

imperative to end-users when trying to understand, verify or adapt a typology. The methodology of 

this paper fulfils all requirements set by Mücher et al. (2009) for a standard typology. The flexibility in 

a well structured GIS and methodological transparency requirements may even be fulfilled to a 

higher degree. The work described in this paper may help with the creation of comprehensive 

typologies spanning across nations as the method developed for the Bhutan typology has proven to 

be simple, flexible, robust and accurate. The possibility to implement as many source data layers as 

needed (by applying the reclassification scheme with as many digits as needed in the source data 

combination phase) and create an accurate landscape typology and map in a straightforward manner 

without the use of specialist software apart from a GIS program is not found in earlier typology 

methods.  

A second finding of this paper was the absence of a relief roughness indicator capable of accurately 

discerning relief variability. Many commonly used indicators are based on some ratio of cell size and 

elevation range that disregards undulation and amplitude of the relief within the cell. The 

Comprehensive Ruggedness Indicator (CRI), developed in this study, is capable of distinguishing 

different types and extents of relief roughness. Additionally sensitivity and resolution can be scaled. 

In the reviewed indicators this accuracy combined with flexibility was not possible. A drawback of CRI 

is the need for a realistic yet DEM-based stream network. If available an official stream network can 

be used, however sensitivity is not scalable in that case. Because the supplied official stream network 

did not cover the entire nation and the accepted method for calculating a stream network based on 

the DEM returns a model with too many errors and artefacts it was not possible to include this 

landscape attribute. In order for CRI to be used to its full potential a new, more accurate method for 

calculating DEM based stream networks is needed. This would be an interesting opportunity for new 

research. Improvements might for example be found in the emerging field of machine learning. 

The heritage prediction model presented in this thesis is primarily intended to show the power and 

usefulness of the landscape typology. Factors for predicting heritage locations were based on field 

visits and data already available within the project. Better results can be achieved by archaeologists 

and other heritage experts by adding additional data of determining factors together with the 

landscape map. This model must thus be seen as a tentative case study and not be used as a 

comprehensive guideline for directing future archaeological research. Thorough investigation and 

implementation of spatial and temporal patterns of Bhutanese customs and practices and extensive 

selection of factors dictating heritage locations was outside the scope of this case study. 

The landscape map has been received positively by the World Bank where it is being used to help 

with their development and research for projects in Bhutan. In this light it has been passed along to 

the team working on the Cumulative Impacts of Hydropower in the Kuri-Gongri River in Bhutan 

project. Positive reactions have also been received from an archaeologist specialising in Bhutan and 

the NLCS who will add the landscape map to their published paper atlas. This means that the 

potential and usefulness of the typology and associated landscape map is recognized by both 

governmental and non-governmental organizations. The landscape map as a tool has many more 

possibilities than the two use-cases examined in this paper. Among many options one could think of 
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aiding with zonal planning, environmental protection and use by the tourism industry. This versatility 

combined with the mapping accuracy and enthusiasm expressed by policy-makers and researchers 

leads to the final conclusion that the landscape typology is successful. 
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6. Conclusion 
 

The primary goal of this study was to create a nationwide landscape typology and map for Bhutan to 

be used as an aid for ensuring ecologically and culturally sustainable development. The incredible 

rate at which Bhutan is changing because of the recent end to their self-imposed isolation has had an 

enormous influence on the nation both ecologically and culturally. The Bhutanese government is 

acutely aware of the possible detrimental effects this can have on, amongst many other issues, their 

(cultural) landscapes. A landscape typology and map may be an important tool for protection and 

conservation of Bhutanese nature and culture which are closely entwined.  

A review of existing methods was done to find an optimal method to design a landscape typology. 

The literature review revealed that most existing typologies are created using an individually 

customised method. The patchwork of different typologies that policy-makers and researchers have 

to deal with have given rise to a need for a standardised typology and led to efforts to create a pan-

continental/supranational landscape typology. In this study it was found that a standardised 

framework used by individual regions is preferable over the normally used approach of a centrally 

created generalised landscape typology and map.  

The method designed for this study is similar to the method used by van Eetvelde and Antrop (2009) 

in that initially a first order landscape map was created by combining all the landscape attributes in a 

tessellated grid cell layer which was then refined into a final product. The method used in this study 

was simpler in its execution by relying less on multiple calculated landscape metric properties for 

clustering and relying more on automated designation in the final product. The method conforms to 

the requirements set by Mücher et al. (2009). The study proves that a simple highly automated 

method can produce accurate landscape designation which is easy to understand because of its 

simplicity and the provided rationalisation behind choices that were made.  

Another find of this literature review was that hardly any typologies, if any at all, exist for Asian 

regions. This fact combined with the lack of a standardised typology creation method meant that a 

new method had to be devised for the Bhutanese landscape typology. The knowledge of existing 

methods and the possible future need for a coherent pan-Asia landscape typology steered the 

methodology to a robust but simple and flexible design. A physicogeographical parametric method 

was designed which is capable of automated landscape designation over any area size using as many 

source datasets as desired. For the typology altitude, landcover and slope were used. Classes for 

altitude were determined using landcover distribution statistics, slope classes were determined using 

settlement data. These classified datasets were combined into a first order typology which was then 

shaped into the final landscape typology by enforcing a minimum mapping unit. For a general 

overview a 230 ha MMU was used while for research and policy-making purposes a more detailed 15 

ha MMU was used. The 15 ha MMU is representative of average national landscape sizes and should 

result in a representative landscape delineation. The resulting landscape map was verified using 

satellite imagery and knowledge of the area acquired through a field visit. Both a comparison 

between manually designated landscapes in five sample areas and a visual comparison of ten 

additional sample areas returned a good performance of the automatically generated landscape 

map.  

The visual validation showed accurate landscape delineation using the automated typology. Most 

inaccuracies were traced back to landcover data not matching with satellite imagery, which analysis 



 

111 

shows may be based on pre-2010 data in some cases. One performance issue of the typology is when 

multiple substantial but sub-MMU sized areas are assimilated into a single landscape. This can result 

in two landscapes to be designated with the same landscape type even if a human observer would 

consider them to be different in character. This effect is not always as important and was only found 

in two of the sample areas so does not necessarily render the map useless.  

Having validated the landscape map and found it to be accurate the power of the landscape map and 

associated typology as a tool for aiding with policy-making and research were demonstrated by two 

use-cases. First the landscape map was used to create a heritage occurrence prediction model. 

Because of the limited knowledge about pre 19th century Bhutan difficulties have been experienced 

in performing archaeological research. Designation of possible archaeological sites is very difficult as 

there is little information on which to base decisions of which sites to allocate research time and 

funds to. Archaeologists have previously used GIS to extrapolate heritage feature location attribute 

patterns to large areas. Landscape is a very important factor and can now be applied to create a 

Bhutanese archaeological prediction model. Two models were created using both an inductive and 

deductive approach. The statistical inductive model showed that landscape type can be a more 

determining factor than distance to Urban Area and distance to River with higher correlation 

coefficients for heritage dense landscape types indicating a larger explanatory value. Compared by 

influence per area unit the landscape types can be many times more discerning than the classically 

significant distance to Urban Area or distance to River attributes. The different landscape categories 

also have a large difference in explanatory value between them again indicating the excellent 

explanatory value added to the model by using the distinction between landscapes.  

Both models were able to designate sites with high heritage potential. Using the deductive model a 

possible undocumented temple was found. Both models were successful at designating areas with 

human activity even when the source data used for either the landscape map or the archaeological 

model had no record of human activity in these locations. This suggests that the models perform well 

as heritage features are most prevalent near locations with human activity. Using the landscape map 

in this way can help both researchers and policy-makers. Researchers can make better informed 

decisions where to conduct research with maximum efficiency. Policy-makers can use this 

information to guide zoning planning, construction projects and generally improve preservation of 

heritage. 

The second case study examined landscape change. This is important for Bhutan as landscape and 

culture are closely intertwined. Landscapes are under pressure because of the modernisation of 

Bhutan. An accurate landscape map is instrumental in analysing the status of these landscapes. The 

additional value of a landscape map over merely landcover data for the change analysis is found in a 

better representation of different factors that also have an influence on the pressures relevant to a 

particular landscape. A specific type of landcover might be under pressure in a certain area but still 

show a stable net area size, or even an increasing net area size. The landscape map incorporates 

more factors and can therefore be able to spot landscapes under pressure where a purely landcover 

based analysis would miss them. In other words a landscape map has the added value of more 

precisely describing an area and the changes that occur there, revealing more information about the 

processes taking place. Change analysis of the largest landscape types show that coverage of 

grassland, barren area and snow and glacier landscapes appear to be closely related within the Nival 

elevation zone. This appears to be an interaction based primarily on natural (climate) factors and 

therefore not require intervention by the Bhutanese government. The numbers indicate that the 
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National Forest Policy and the Forest and Nature Conservation Act are working very well. Forests 

across Bhutan are stable or increasing in size, Broadleaved and Mixed forest landscapes have 

increased in coverage between 0.06 and 1.28 %. Conifer Forest landscape types have increased more 

significantly with a maximum coverage increases of 36.5 %. There is some doubt about the reliability 

of the snow coverage (mild slope) and N_Gra1 figures because of the use of different dates and/or 

image quality issues.  

The landscape types with the smallest coverages appear to be under pressure from forested 

landscapes and agricultural landscapes. The landscape types with smallest total areas are primarily in 

the elevation zones with the largest human populations. This fact combined with the increased total 

area of agricultural landscapes creates the idea that human activity creates a significant pressure on 

these small coverage landscape types. The larger increase of agricultural landscape on less desirable 

steep slopes suggests the need for agricultural area is growing rapidly. This is a factor that Bhutanese 

policy-makers should take note of. There is a marked decrease in coverage of heritage dense 

landscapes other than agricultural landscape types. As seen when evaluating the other landscape 

sets agricultural landscapes are gaining area at the cost of other landscape types. This can act as a 

threat to historical cultural features as their perceived function and importance is often derived in a 

large part from the landscape in which they are found. If the type of landscape changes the role of 

the historical feature can be lost, thereby diminishing its importance in the eyes of the local people 

and increasing the risk of the feature disappearing.  

The method devised to create the typology and landscape map is robust and flexible, as shown by 

the possibility to easily substitute source data for the landscape change analysis. The demonstrated 

accuracy of the landscape map shows that a simple methodology can be very powerful with the right 

source data. For Bhutan elevation, land cover and slope were selected, for other regions other 

landscape attributes will be more important. Elevation and slope for example will be substituted in 

regions without much topology, for example by hydrology and/or soils. Therefore this methodology 

could also be used to build a standardised framework with which coherent supranational typologies 

can be created, building upon and adding to the work done by Wascher (2005) and Mücher (2009).  

The case studies show the potential of the landscape map as a tool for researchers and policy-

makers, in the case of Bhutan providing a great tool to help the Bhutanese achieve their goal of 

ecologically and culturally sustainable development. The need for such a tool and confidence in the 

product from this study is already evident from the quick adoption by policy-makers and researchers 

alike. This quick adoption combined with demonstrated high accuracy makes the typology and 

landscape map based thereon a success. 
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Appendices 

A. Reassigning NLCS landcover classes 
Original main code Original sub code Original landcover class Reassigned landcover class (colours match those used in maps) 

A  Cultivated Agricultural Land 

 AC Chhuzhing Land Agriculture 

 AK Kamzhing Land Agriculture 

B  Not Related 

 BA Built Up Areas Urban Area 

 BS Bare Soils Barren Area 

D  Degraded Areas 

 DG Gullies Barren Area 

 DL Landslides Barren Area 

F  Forests  

 FB Broadleaf Forest Broadleaved/Mixed Forest 

 FBc Broadleaf mixed with Conifer Broadleaved/Mixed Forest 

 FCb Blue Pine Forest Conifer Forest 

 FCc  Chir Pine Forest Conifer Forest 

 FCf Fir Forest Conifer Forest 

 FCm Mixed Conifer Forest Conifer Forest 

 FP Forest Park Broadleaved/Mixed Forest 

G  Grassland 

 GP Grassland Grassland 

H  Horticulture Land 

 HA Apple Orchard Agriculture 

 HAa Areca Nut Plantation Agriculture 

 HC  Citrus Orchard Agriculture 

 HCo Cardamom Plantation Agriculture 

 HO Others Agriculture 

 HOa Others Agriculture 

 HOc Others Agriculture 

M  Meadows 

 MA  Marshy Areas Barren Area 

 MD  Moraines Barren Area 

 NB  Anthropogenic Non-Built up Area (Quarries, waste 
dump, etc.) 

Urban Area 

O  Open Area    

 OR  Open area Barren Area 

 OS  Snow Cover Snow and Glacier 

R  Bare Areas 

 RR  Rock Outcrops Barren Area 

 RS  Scree Barren Area 

S  Shrubs  

 SH  Shrubs Shrubs 

 SIS  Shrubs Shrubs 

 SR  Shrubs Shrubs 

W  Waterbodies 

 WL  Lake Waterbody 

 WR  River Waterbody 

 WRe  Reservoir Waterbody 
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B. Heritage feature counts per landscape type and densities in [features/ha] 

Landscape type 230 ha count 15 ha count 230 ha Density 15 ha Density 

     Waterbody 31 31 0.001135 0.001135 

Urban Area 265 265 0.04166 0.04166 

Snow and Glacier (mild slope) 0 3 0 1.03E-05 

Snow and Glacier (steep slope) 1 0 2.81E-05 0 

L_Shr1 36 92 0.002408 0.002778 

L_Shr2 0 11 0 0.001218 

L_Gra1 0 5 0 0.001968 

L_BMF1 1300 773 0.001185 0.00089 

L_BMF2 72 55 0.00048 0.000188 

L_CoF1 93 84 0.001313 0.0012 

L_CoF2 12 17 0.000491 0.000363 

L_Agr1 133 771 0.007939 0.010886 

L_Agr2 19 0 0.021153 0 

M_Shr1 9 70 0.002685 0.003323 

M_Gra1 7 62 0.001659 0.003162 

M_Gra2 0 4 0 0.001075 

M_Bar1 2 1 0.002469 0.001225 

M_BMF1 433 213 0.000677 0.000434 

M_BMF2 16 9 0.000183 5.45E-05 

M_CoF1 499 288 0.000776 0.00057 

M_CoF2 3 11 2.05E-05 6.65E-05 

M_Agr1 40 199 0.00808 0.011447 

A_Shr1 11 12 6.53E-05 8.05E-05 

A_Shr2 0 2 0 6.76E-05 

A_Gra2 0 1 0 0.000128 

A_CoF1 10 9 4.65E-05 4.63E-05 

A_CoF2 0 1 0 1.57E-05 

A_Agr1 0 3 0 0.013911 

 

  



 
123 

C. Landscape type total area and unit count. 

 

 

  
NLCS 

   
ICIMOD 2010 

   
ICIMOD 2000 

   
ICIMOD 1990 

   

  
230 ha MMU 

 
15 ha MMU 

 
230 ha MMU 

 
15 ha MMU 

 
230 ha MMU 

 
15 ha MMU 

 
230 ha MMU 

 
15 ha MMU 

 
GRIDCODE Type Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count 

1 Waterbody 273201 14771 27321 14771 14318 471 14318 471 12218 1516 12218 1516 13487 801 13487 801 

2 Urban Area 63601 7522 6361 7522 6832 224 6832 224 6654 299 6654 299 6701 274 6701 274 

3 
Snow and Glacier 
(mild slope) 344110 175 291314 1331 401466 101 265594 986 222872 96 174785 1163 257617 94 183683 923 

4 
Snow and Glacier 
(steep slope) 35528 16 45383 494 49424 32 52406 604 44822 28 28357 266 41912 23 41792 438 

121 L_Shr1 14952 344 33122 741 0 0 0 0 0 0 201 2 496 1 650 3 

122 L_Shr2 2 8 9034 145 0 0 0 0 0 0 166 2 0 0 80 1 

131 L_Gra1 9 44 2541 89 0 0 0 0 0 0 0 0 0 0 19 1 

132 L_Gra2 0 1 1747 27 0 0 0 0 0 0 0 0 0 0 0 0 

141 L_Bar1 12 20 657 35 6615 47 15990 266 8223 47 18999 307 7366 44 18456 309 

142 L_Bar2 0 1 2552 49 98 1 687 19 0 0 727 19 0 0 1128 28 

151 L_BMF1 1097288 549 868074 1917 1206131 152 950052 1250 1208827 146 949314 1258 1215188 151 949531 1247 

152 L_BMF2 150111 191 292933 3340 243042 278 360000 3367 246565 279 360306 3378 243944 280 359394 3395 

161 L_CoF1 70817 78 70029 526 0 0 0 0 0 0 0 0 0 0 0 0 

162 L_CoF2 24430 32 46843 456 0 0 0 0 0 0 0 0 0 0 0 0 

171 L_Agr1 16753 154 70822 1122 29376 62 78699 1150 28633 60 77810 1139 27241 58 77032 1136 

172 L_Agr2 898 2 300 9 0 0 371 11 0 0 317 11 0 0 299 10 

221 M_Shr1 3352 80 21066 388 17508 15 54711 856 12413 11 49037 785 45765 35 95196 1241 

222 M_Shr2 1099 4 8171 116 4245 4 44128 704 4919 4 41147 652 11509 5 56180 808 

231 M_Gra1 4220 33 19608 338 13411 13 29380 394 30789 26 48770 615 25901 20 44021 594 

232 M_Gra2 0 0 3723 54 0 0 3867 72 0 0 7448 117 0 0 4753 89 

241 M_Bar1 810 9 816 17 381 2 3031 63 52 7 2110 55 1328 8 7060 130 

242 M_Bar2 0 0 843 10 0 0 493 10 0 0 333 6 0 0 839 12 

251 M_BMF1 639787 183 490264 1108 320606 240 309798 1596 323158 237 307649 1592 325646 235 306567 1570 

252 M_BMF2 87522 87 165004 1837 31266 31 123973 1794 32083 30 122625 1757 32920 30 122402 1754 
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NLCS 

   
ICIMOD 2010 

   
ICIMOD 2000 

   
ICIMOD 1990 

   

  
230 ha MMU 

 
15 ha MMU 

 
230 ha MMU 

 
15 ha MMU 

 
230 ha MMU 

 
15 ha MMU 

 
230 ha MMU 

 
15 ha MMU 

 
GRIDCODE Type Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count Area [ha] 

Unit 
Count 

261 M_CoF1 643285 193 504968 1338 856850 206 625548 1625 866640 211 621272 1678 838092 233 576363 1767 

262 M_CoF2 146239 85 165385 1468 108281 73 176214 2172 119791 76 176890 2161 102072 64 163631 2044 

271 M_Agr1 4950 57 17384 263 7730 19 22494 329 5332 10 19453 312 4253 8 18186 304 

272 M_Agr2 0 0 21 1 0 0 631 2 0 0 57 2 0 0 19 1 

321 A_Shr1 168413 88 149155 1030 219289 111 193938 1544 135888 69 167681 1594 205009 111 194624 1713 

322 A_Shr2 11633 10 29579 420 17391 17 70872 1064 27244 26 56683 871 22359 24 59761 926 

331 A_Gra1 12027 14 24667 328 20966 16 49210 716 40748 27 86105 1181 58847 41 78306 1111 

332 A_Gra2 803 3 7818 126 1910 3 22362 373 6477 6 36076 563 6615 10 31898 505 

341 A_Bar1 6620 38 20014 230 7914 9 20275 293 8113 11 20178 317 41725 22 53274 715 

342 A_Bar2 0 0 8074 112 0 0 2260 47 376 1 965 23 2313 4 15516 255 

351 A_BMF1 0 0 1824 21 0 0 0 0 0 0 0 0 0 0 0 0 

352 A_BMF2 0 0 747 12 0 0 0 0 0 0 0 0 0 0 0 0 

361 A_CoF1 215137 112 194261 1134 162819 91 152973 986 184867 88 152628 960 121439 62 114292 873 

362 A_CoF2 26344 19 63578 804 4550 6 22204 470 9919 9 19894 399 11106 11 14110 285 

371 A_Agr1 0 0 216 2 0 0 0 0 0 0 0 0 0 0 0 0 

421 N_Shr1 59815 27 79874 632 2761 2 18818 294 6504 5 17986 267 1455 2 12875 200 

422 N_Shr2 935 3 12400 187 699 1 2015 46 463 1 1666 39 1208 1 1785 28 

431 N_Gra1 5814 8 20893 273 5933 7 29381 535 40368 34 70564 937 127475 66 125761 1048 

432 N_Gra2 1079 2 3694 52 0 0 17909 335 3478 3 37481 618 6536 7 33882 573 

441 N_Bar1 48501 36 69376 636 105868 64 112658 922 229692 84 162301 927 62483 39 79530 903 

442 N_Bar2 2642 2 22266 304 3748 5 17846 326 3238 4 14440 271 1362 2 8287 171 

461 N_CoF1 0 0 1944 32 0 0 58 1 0 0 59 1 0 0 0 0 

462 N_CoF2 0 0 2951 38 0 0 0 0 0 0 21 1 0 0 0 0 
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D. Landscape change analysis cross tabulated area dynamics (in Ha).  

Red boxes are pairs used in the landscape change analysis 

1990-2000 

 
Wat.b 

Urb. 
Ar. 

Sn.& 
Gl. 
mild 
sl. 

Sn.& 
Gl. 
St.sl. L_Shr1 L_Shr2 L_Bar1 L_Bar2 

L_BMF
1 

L_BMF
2 L_Agr1 L_Agr2 

M_Shr
1 

M_Shr
2 

M_Gra
1 

M_Gra
2 

M_Bar
1 

M_Bar
2 

M_BM
F1 

M_BM
F2 

M_Co
F1 

M_Co
F2 

M_Agr
1 

M_Agr
2 

A_Shr
1 

A_Shr
2 

A_Gra
1 

A_Gra
2 

A_Bar
1 

A_Bar
2 

A_CoF
1 

A_CoF
2 

N_Shr
1 

N_Shr
2 

N_Gra
1 

N_Gra
2 

N_Bar
1 

N_Bar
2 

N_CoF
1 

N_CoF
2 

Water 
body   0,1 0 0 0 0 

1.357.
752,0 0 

4.998.
135,0 

2.358.
323,0 

2.152.
356,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0 0 0 0,3 0 0 0 0 

Urban 
Area 0,1   0 0 0 0 0,3 0 0,7 0,1 0,5 0 0 0 0,3 0,0 0,7 0,0 0,4 0,0 0,0 0 0,7 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sn.& 
Gl. 
mild 
sl. 0 0   

1.679.
404,0 0 0 0 0 0 0 0 0 0,1 0,1 0 0 0,0 0 0 0 0 0 0 0 

3.836.
137,0 

1.810.
794,0 

1.142.
517,0 

7.153.
065,0 

4.206.
019,0 0,0 0,3 0,2 

2.656.
117,0 0,3 

2.163.
916,0 

4.319.
816,0 

2.705.
506,0 

8.604.
275,0 0 0 

Sn.& 
Gl. 
St.sl. 0 0 

5.298.
332,0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.304.
458,0 0,2 

3.199.
355,0 

1.081.
327,0 0,4 0 0,1 0 0,0 0 

2.064.
906,0 

7.988.
691,0 

1.892.
837,0 

725.51
9,0 0 0 

L_Shr1 0,0 0 0 0   0 0,2 0 0,2 0 
6.063.
156,0 0,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Shr2 0 0 0 0 0   0 0 0 0,8 0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Gra
1 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Bar1 
3.757.
183,0 0,1 0 0 0 0   0,1 

1.288.
238,0 

1.716.
392,0 

6.397.
852,0 0,0 0 0 0 0 0,0 0 0,4 0,0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Bar2 0,0 0 0 0 0 0 0,1   0,8 
3.461.
963,0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_BMF
1 

3.677.
371,0 0,5 0 0 

188.88
9,0 0,1 

9.597.
208,0 0,1   

1.274.
945,0 

1.951.
452,0 0,1 0 0 0 0 0,0 0 

8.223.
236,0 

2.963.
351,0 0,0 0,0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_BMF
2 

1.255.
541,0 0,2 0 0 0,1 

1.525.
873,0 0,7 0,1 

1.187.
014,0   

1.316.
473,0 0,0 0 0 0 0 0,0 0,0 

3.191.
632,0 

5.331.
973,0 0 0,0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Agr1 
107.53

2,0 0,4 0 0 0 0 
6.174.
721,0 0,0 

1.888.
632,0 

2.705.
893,0   0,3 0 0 0 0 0,0 0 0,2 0,0 0 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Agr2 0 0 0 0 0 0 0 0 0,0 0,1 0,1   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_Shr
1 0 0 

1.906.
054,0 0,9 0 0 0 0 0 0 0 0   

2.281.
858,0 

726.40
3,0 

300.19
7,0 

1.099.
349,0 0 0,7 0,9 

3.641.
987,0 

3.236.
086,0 0 0 

56.332
,0 

3.504.
873,0 0,2 0,8 0 0 

8.720.
131,0 

1.810.
794,0 0 0 0 0 0 0 0 0 

M_Shr
2 0 0 

1.614.
267,0 

4.244.
638,0 0 0 0 0 0 0 0 0 

199.35
9,0   

3.677.
371,0 

1.463.
825,0 0,3 0 0,6 

2.375.
487,0 

4.884.
595,0 

859.06
3,0 0 0 

2.668.
132,0 

8.505.
582,0 0,6 

150.35
6,0 0,2 0,0 

3.801.
809,0 

3.255.
138,0 0 0 0 0 0 0 0 0 

M_Gra
1 0 0,1 0 0 0 0 0 0 0 0 0,0 0 

7.007.
172,0 0,2   

4.256.
653,0 0,5 0,0 

2.055.
037,0 

1.397.
143,0 

8.090.
044,0 

2.832.
906,0 

153.18
8,0 0,0 0,2 0,1 0 0,0 0,0 0 0 0 0 0 0 0 0 0 0 0 

M_Gra
2 0 0,0 0 0 0 0 0 0 0 0 0 0 0,1 0,5 

2.323.
995,0   0 0 0,4 

1.647.
737,0 

2.676.
714,0 

4.623.
961,0 0,4 0 0,0 0 0 0 0 0 0,0 0,0 0 0 0 0 0 0 0 0 

M_Bar
1 0 

1.107.
931,0 0,1 0 0 0 0 0 0,0 0,2 0 0 

2.100.
006,0 0 

2.635.
263,0 0,6   0,5 

3.518.
604,0 

1.683.
781,0 

3.916.
807,0 0,2 

1.443.
229,0 0 0 0,1 0 0 0 0 0,1 0,1 0 0 0 0 0 0 0 0 

M_Bar
2 0 0,0 0 0 0 0 0 0 0 0,0 0 0 0,3 0,1 0,8 

1.859.
7110 0,2   0,4 1,0 0,2 0 0,7 0 0,0 0,1 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 

M_BM
F1 0 0,5 0 0 0 0 0,0 0 

9.513.
105,0 

2.252.
765,0 0,3 0 0,0 0,1 

1.150.
669,0 

2.136.
908,0 0,3 0,1   

298.51
5,0 

230.66
6,0 

3.309.
204,0 

6.112.
931,0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_BM
F2 0 0,0 0 0 0 0 0,0 0,1 

1.826.
241,0 

294.01
8,0 0,1 0 0,0 0,2 

1.203.
191,0 

4.380.
233,0 0 0,0 

3.057.
324,0   

769.80
2,0 

7.143.
625,0 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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M_Co
F1 0 0,0 0,3 0,3 0 0 0 0 0,0 0,0 0 0 

6.619.
267,0 

264.06
7,0 

4.136.
935,0 

4.065.
275,0 1,0 0 

2.122.
147,0 

7.596.
753,0   

9.338.
376,0 

2.570.
298,0 0 

2.842.
346,0 

1.466.
657,0 0,4 0,3 0,0 0 

1.474.
982,0 

1.626.
282,0 0 0 0 0 0 0 0 0 

M_Co
F2 0 0 0,4 0,4 0 0 0 0 0,0 0,0 0 0 

2.140.
341,0 

3.748.
601,0 

3.029.
432,0 

3.540.
917,0 0,0 0 

227.42
2,0 

4.212.
885,0 

8.544.
716,0   0,1 0 

1.833.
965,0 

2.357.
465,0 0,7 0,6 0 0 

7.482.
612,0 

6.015.
097,0 0 0 0 0 0 0 0 0 

M_Agr
1 0 0,3 0 0 0 0 0,0 0 0,1 0,0 0,2 0 0 0 

1.706.
008,0 0,4 0,5 0 

6.090.
618,0 0,3 

2.617.
498,0 0,1   0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_Agr
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 0,0 0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A_Shr
1 0,0 0 

7.766.
246,0 

7.265.
489,0 0 0 0 0 0 0 0 0 

605.62
9,0 

6.425.
315,0 0,8 0,2 0,0 0 0 0 

1.489.
399,0 

8.009.
545,0 0 0   

7.382.
633,0 

2.720.
542,0 

2.796.
604,0 

2.271.
216,0 0,8 

3.586.
951,0 

2.075.
204,0 

5.713.
012,0 0,9 

277.36
9,0 

1.501.
843,0 

7.500.
635,0 

163.65
8,0 0,2 0,0 

A_Shr
2 0,0 0 

1.505.
362,0 

769.28
7,0 0 0 0 0 0 0 0 0 

5.776.
518,0 

1.233.
314,0 0,1 0,7 0 0 0 0 

8.234.
392,0 

1.521.
925,0 0 0 

6.589.
917,0   

2.998.
452,0 

5.814.
365,0 0,6 1,0 

3.719.
422,0 

2.785.
962,0 0,7 0,1 0,8 0,2 

2.749.
661,0 0,4 0 0 

A_Gra
1 0,3 0 

4.940.
635,0 

3.443.
941,0 0 0 0 0 0 0 0 0 0,3 0,1 0 0 0 0 0 0 0,4 0,3 0 0 

2.888.
397,0 

2.535.
884,0   

238.83
6,0 

7.094.
622,0 

1.226.
362,0 

1.605.
685,0 

1.491.
545,0 

3.715.
989,0 0,1 

3.346.
107,0 

4.114.
192,0 

1.149.
725,0 

1.732.
698,0 0 0 

A_Gra
2 0,2 0 

1.094.
887,0 

5.691.
557,0 0 0 0 0 0 0 0 0 0,7 0,4 0,0 0 0 0 0 0 0,1 0,2 0 0 

3.860.
338,0 

79.033
,0 

2.387.
673,0   

5.204.
102,0 

1.621.
991,0 

731.26
9,0 

1.301.
884,0 0,7 0,2 

1.209.
198,0 

4.292.
697,0 

5.291.
638,0 1,0 0 0 

A_Bar
1 0,0 0 

4.221.
553,0 

2.184.
109,0 0 0 0 0 0 0 0 0 0,2 0,0 0,1 0 0 0 0 0 0,1 0,0 0 0 

1.582.
994,0 

129.51
9,0 

1.860.
595,0 

1.400.
319,0   0,6 

8.400.
882,0 

1.515.
574,0 

3.812.
966,0 0,7 

2.299.
108,0 

2.466.
456,0 

1.231.
254,0 

3.510.
022,0 0 0 

A_Bar
2 0 0 

66.227
,0 

1.815.
085,0 0 0 0 0 0 0 0 0 0,1 0,0 0 0 0,1 0 0 0 0,2 0,3 0 0 

199.93
4,0 

3.144.
517,0 

1.465.
713,0 

6.151.
464,0 

2.038.
216,0   

2.333.
435,0 

1.018.
679,0 

1.512.
142,0 0,4 0,9 

1.395.
427,0 

4.758.
698,0 

2.831.
189,0 0 0 

A_CoF
1 0 0 

1.267.
556,0 0,0 0 0 0 0 0 0 0 0 

1.092.
484,0 0,4 0,4 0,1 0 0 0 0,0 

1.321.
193,0 

2.932.
456,0 0 0 

2.621.
703,0 

6.939.
374,0 

1.740.
937,0 

2.191.
833,0 0,3 0,0   

2.043.
193,0 0,5 0,0 0,3 0,0 0,3 0,0 0 0 

A_CoF
2 0 0 0,4 0,0 0 0 0 0 0 0 0 0 0,3 0,4 0,1 0,0 0 0 0 0 

1.455.
501,0 

224.07
5,0 0 0 

2.723.
056,0 

1.823.
667,0 

1.229.
795,0 

2.287.
951,0 0,0 0 

1.554.
451,0   0,0 0 0 0 0,1 0 0 0 

N_Shr
1 0 0 

1.134.
879,0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.955.
829,0 0,8 

111.30
8,0 0,3 

1.002.
373,0 0 0,1 0   0,4 

8.953.
561,0 

2.278.
511,0 

5.897.
181,0 

2.690.
445,0 0 0 

N_Shr
2 0 0 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0,5 0,3 0,2 0,2 0 0 0 0,2   0,6 

4.213.
743,0 

3.573.
529,0 

7.564.
999,0 0 0 

N_Gra
1 0 0 

1.179.
256,0 

2.266.
496,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6.257.
966,0 

1.571.
357,0 

6.801.
205,0 

386.78
9,0 

341.13
3,0 0,2 0,3 0,1 

2.065.
163,0 

1.637.
438,0   

3.907.
796,0 

6.763.
804,0 

1.997.
795,0 0,2 0,2 

N_Gra
2 0 0 

9.844.
368,0 

3.067.
193,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.995.
963,0 

1.712.
101,0 

4.127.
065,0 

7.440.
561,0 

1.307.
033,0 0,4 0,1 0,0 

1.172.
296,0 0,3 

2.670.
792,0   

5.911.
513,0 

499.76
2,0 0 0 

N_Bar
1 0 0 

9.367.
812,0 

2.161.
796,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.161.
225,0 

3.421.
628,0 

1.016.
791,0 

4.607.
655,0 

2.634.
662,0 0,2 

1.841.
689,0 0,2 

9.676.
076,0 

2.681.
863,0 

4.937.
117,0 

1.241.
552,0   

1.263.
694,0 0,2 0 

N_Bar
2 0 0 

4.650.
565,0 

1.200.
616,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.688.
729,0 

1.815.
085,0 

155.07
6,0 

2.579.
738,0 0,5 0,2 0,2 0,0 

3.863.
599,0 

871.58
4,0 

3.554.
649,0 

9.877.
838,0 

1.577.
879,0   0 0 
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2000-2010 

 
Wat.b 

Urb. 
Ar. 

Sn.& 
Gl. 
mild 
sl. 

Sn.& 
Gl. 
St.sl. 

L_Bar
1 

L_B
ar2 

L_BM
F1 

L_BM
F2 

L_Agr
1 

L_A
gr2 

M_Sh
r1 

M_Sh
r2 

M_Gr
a1 

M_Gr
a2 

M_Ba
r1 

M_Ba
r2 

M_B
MF1 

M_B
MF2 

M_Co
F1 

M_Co
F2 

M_Ag
r1 

M_A
gr2 

A_Shr
1 

A_Shr
2 

A_Gra
1 

A_Gra
2 

A_Bar
1 

A_Bar
2 

A_CoF
1 

A_CoF
2 

N_Shr
1 

N_Shr
2 

N_Gra
1 

N_Gra
2 

N_Bar
1 

N_Bar
2 

N_C
oF1 

Wate
r 
body   0.3 0 0 

16382
96.0 0.0 

68552
71.0 

23772
03.0 

23368
68.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 

Urba
n 
Area 0.3   0 0 0.0 0 

12109
15.0 0.1 1.0 0 0 0 0.0 0.0 0.1 0.0 

11474
08.0 0.0 0.1 0.0 

11662
89.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sn.& 
Gl. 
mild 
sl. 0.0 0   

79650
04.0 0 0 0 0 0 0 0.5 0.9 0 0 0.0 0 0 0 0.1 0.4 0 0 

10473
43.0 

68346
74.0 

42961
3.0 

12958
76.0 

39811
72.0 

13190
48.0 

22321
68.0 0.7 

11474
08.0 0.2 

65943
79.0 

23703
38.0 

21032
67.0 

42918
39.0 0.0 

Sn.& 
Gl. 
St.sl. 0 0 

21967
25.0   0 0 0 0 0 0 0.2 0.5 0 0 0 0 0 0.0 0.1 0.1 0 0 1.0 0.8 0.3 0.1 0.1 0.5 0.3 0.1 0 0.0 0.7 

11817
36.0 0.2 0.6 0 

L_Shr
1 0 0 0 0 0 0 

18760
17.0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Shr
2 0.0 0 0 0 0 0 0.2 

14297
55.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Ba
r1 

15907
52.0 0.3 0 0   0.4 

17019
75.0 0.9 

97636
98.0 0 0 0 0 0 0.0 0 0.0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Ba
r2 0.0 0 0 0 0.5   0.4 0.6 0.0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_B
MF1 

91209
09.0 

13379
28.0 0 0 

68321
.0 0.3   

21396
98.0 

51561
28.0 0.2 0 0 0 0 0.0 0 

12111
72.0 

36902
44.0 0.0 0.0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_B
MF2 

43536
29.0 0.2 0 0 

11208
04.0 0.4 

22019
08.0   

48848
53.0 0.3 0 0 0 0 0 0.1 

37460
26.0 

51405
95.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Ag
r1 

42120
27.0 

11508
41.0 0 0 

39296
8.0 0.0 

47374
15.0 

35692
38.0   0.6 0 0 0 0 0 0 0.9 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

L_Ag
r2 0.0 0 0 0 0 0 0.2 0.2 0.2   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_S
hr1 0 0 0.5 0.4 0 0 0 0 0 0   

18689
8.0 

11405
43.0 0.0 0.2 0 0.0 0.2 

26792
88.0 

72139
97.0 0 0 

58211
45.0 

40978
87.0 0.1 0.1 0.0 0.0 

23102
64.0 

11997
58.0 0 0 0 0 0 0 0 

M_S
hr2 0 0 0.2 0.2 0 0 0 0 0 0 

15299
06.0   0.1 0.1 0 0 0.1 0.7 

99636
58.0 

91612
44.0 0 0 

39185
24.0 

10769
5.0 0.0 0.0 0 0 

20467
98.0 

11190
88.0 0 0 0 0 0 0 0 

M_G
ra1 0 0.3 0 0 0 0 0 0 0 0 

45997
6.0 

33486
81.0   

35417
76.0 

11980
42.0 0.1 

25713
27.0 

25900
36.0 

92846
53.0 

40300
89.0 

29439
56.0 0.0 0.2 0.1 0 0.0 0 0 0.5 0.1 0 0 0 0 0 0 0 

M_G
ra2 0 0.0 0.1 0.2 0 0 0 0 0 0 

21626
54.0 

13522
6.0 

44557
55.0   0.5 

11113
64.0 

33435
32.0 

48676
89.0 

53645
84.0 

50624
99.0 0.7 0.3 0.1 0.5 0.0 0.2 0 0 0.1 0.1 0 0 0 0 0 0 0 

M_B
ar1 0 0.8 0.0 0 0.0 0 0.1 0.0 0.0 0 0.2 0.0 0.4 0   0.3 

16434
46.0 0.0 

11070
73.0 0.1 

13396
44.0 0 0.0 0.1 0 0 0 0 0.0 0 0 0 0 0 0 0 0 

M_B
ar2 0 0.0 0 0 0 0.0 0 0.0 0 0 0 0 0 0.0 0.1   0.1 0.0 0.1 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_B
MF1 0 1.0 0 0 0.1 0 

10695
7.0 

45184
03.0 0.7 0 0.1 0.4 

31624
53.0 0.4 0.6 0.2   

70374
66.0 

47366
42.0 

84618
14.0 

11843
11.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_B
MF2 0 0.0 0 0.0 0.1 0 

44179
94.0 

69333
67.0 0.1 0 0.2 

11920
34.0 0.7 0.3 0.0 0.2 

60240
22.0   

19738
51.0 

13404
17.0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_C
oF1 0 0.1 0.0 0.2 0 0 0.0 0.0 0 0 

43135
51.0 

14013
49.0 

11735
83.0 0.9 0.7 0.1 

55538
17.0 

16534
87.0   

11514
42.0 

55199
18.0 0.0 

69848
59.0 

51448
86.0 0.0 0.0 0 0 

14401
39.0 

34139
04.0 0 0 0 0 0 0 0 

M_C
oF2 0 0.0 0.3 0.5 0 0 0.0 0.1 0 0 

77289
15.0 

19328
29.0 

11568
48.0 0.4 0.0 0 

83451
.0 

16062
86.0 

10908
62.0   0.2 0 

32062
21.0 

78396
22.0 0.0 0.1 0.0 0.0 

53808
9.0 

80215
6.0 0 0 0 0 0 0 0 

M_A
gr1 0 

16168
42.0 0 0 0.0 0 0.7 0.2 0.4 0 0.0 0 0.9 0.7 

12769
96.0 0.0 

10948
87.0 0.4 

35881
18.0 0.2   0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M_A
gr2 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0.2   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A_Sh
r1 0.0 0 

11402
85.0 

32765
93.0 0 0 0 0 0 0 

43072
87.0 

24115
31.0 0.0 0 0.0 0 0 0 

51165
66.0 

24544
41.0 0 0   

72263
55.0 

23191
89.0 

60288
28.0 

72062
73.0 0.9 

49069
08.0 

71770
95.0 

42489
29.0 0.3 1.0 0.5 

52581
68.0 

13336
37.0 0 



 
128 

A_Sh
r2 0 0 

49715
3.0 

26398
11.0 0 0 0 0 0 0 

24432
85.0 

45553
05.0 0.1 0 0.0 0 0 0 

16666
17.0 

36584
9.0 0 0 

48252
08.0   

28088
76.0 

40257
98.0 0.8 0.4 

94032
55.0 

54847
32.0 0.9 0.6 0.1 0.3 

13396
44.0 0.8 0 

A_Gr
a1 0.1 0 

51346
74.0 

94967
99.0 0 0 0 0 0 0 0.3 0.3 0 0 0 0 0 0 0.7 0.5 0 0 

24077
81.0 

32453
55.0   

14064
98.0 

36814
04.0 

20425
07.0 

41269
8.0 

57851
.0 

20545
22.0 0.1 

24286
95.0 

24312
7.0 

95036
64.0 

22793
69.0 0 

A_Gr
a2 0.0 0 

19258
78.0 

21182
.0 0 0 0 0 0 0 0.3 

19163
52.0 0 0.0 0 0 0 0 0.5 0.7 0 0 

32067
36.0 

53766
85.0 

12162
36.0   

55817
08.0 

68389
65.0 

67582
95.0 

68621
37.0 0.5 0.1 

15833
72.0 

37288
62.0 

39099
42.0 

28543
6.0 0 

A_Ba
r1 0.0 0 

12454
14.0 0.7 0 0 0 0 0 0 0.0 0.2 0 0 0 0 0 0 0.0 0 0 0 

14123
33.0 

22235
86.0 

20614
73.0 

25874
61.0   

35941
26.0 

11225
21.0 0.1 0.6 0 0.8 0.9 

41562
44.0 

15164
33.0 0 

A_Ba
r2 0 0 0.3 0.1 0 0 0 0 0 0 0.0 0.1 0 0 0 0 0 0 0 0.0 0 0 0.6 0.5 0.2 

11868
85.0 0.4   0.1 0.0 0.0 0 0.1 0.0 0.2 0.1 0 

A_Co
F1 0 0 

17146
76.0 0.3 0 0 0 0 0 0 

25471
26.0 

12126
31.0 0.0 0 0 0.0 0 0 

11124
8.0 

59430
08.0 0 0 

75472
35.0 

20716
.0 

24029
49.0 

12624
07.0 0.7 0.1   

25733
87.0 0.3 0 0.2 0.1 0.7 0.2 0 

A_Co
F2 0 0 0.8 0.1 0 0 0 0 0 0 0.7 

13113
24.0 0.1 0 0 0 0 0.0 

18296
74.0 

37794
96.0 0 0 

72028
4.0 

88952
03.0 0.4 0.3 0.0 0.0 

16989
71.0   0 0.0 0 0.0 0.2 0 0 

N_Sh
r1 0 0 

50959
69.0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67582
95.0 

20502
31.0 

13336
37.0 0.3 0.8 0.0 0.3 0.1   1.0 

20536
63.0 0.3 

10028
88.0 0.8 0 

N_Sh
r2 0 0 0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0.5 0.1 0.2 0.0 0 0.0 0.1 0.7   0.2 0.0 

13216
22.0 0.5 0 

N_Gr
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E. Typology validation locations. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

F. Total Landcover Area 

 

 
NLCS ICIMOD 

 
Area [ha] Area [ha] 

Snow and Glacier 299339 298845 

Shrubs 419154 385734 

Grassland 157238 199170 

Forest Broadleaved/Mixed 1720310 1725619 

Forest Conifer 983240 943577 

Agriculture 112156 120565 

Urban Area 6464 6835 

Waterbody 27445 14409 

Barren Area 151749 186200 
 

 

 Latitude Longitude 

M-1 27.970452 90.707973 

M-2 27.319321 89.656428 
M-3 27.260855 90.249317 
M-4 27.036061 90.757405 
M-5 26.917049 90.426233 
   
V-1 27.710202 89.4214 
V-2 27.794645 90.169813 
V-3 27.527978 90.244941 
V-4 27.188096 89.107159 
V-5 26.971341 89.391986 
V-6 26.895111 89.868125 
V-7 27.234337 90.4863 
V-8 26.945568 90.373923 
V-9 27.578565 91.470476 
V-10 27.146646 91.931307 


