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SUMMARY 
 
The Department of Mathematics at the Vrije Universiteit Amsterdam is part of the Faculty of Science. 
Due to increasing student numbers and investments through the sectorplan Beta, the department has 
grown substantially over the past years, and currently employs 35 assistant, associate and full 
professors. The department has no formal subdivision into groups. 

The central strength of the department, and core to its strategy, is the intertwining of fundamentals and 
applications. The academic culture is such that the entire spectrum is valued and appreciated, from 
theorems on abstract algebraic structures to optimized algorithms for patient distribution over hospitals. 
Both research and teaching in the department cover this broad spectrum, with a dual aim to have impact 
in academic research and valorisation in society. Apart from our research objectives, we also strive for 
an excellent curriculum for our BSc and MSc undergraduates; a strong teaching environment and a 
strong research environment go hand in hand. 

The excellent research in dynamical systems and in stochastics (probability, statistics, analytics & opti-
mization) form the two main pillars of our department, accompanied by thriving activity in topology, 
geometry and algebra. The department advances mathematics and its applications in the broadest 
sense. Research on fundamental mathematical problems goes together with developing novel mathe-
matical models, methods and algorithms to tackle questions in business and finance, in logistics, in 
health care, in neuroscience, in biology, in medicine, in physics, in engineering, in forensics and even 
in legal issues. The department actively reaches out to societal partners to engage in research collab-
orations. For example, there is a long line of research on the planning and scheduling of emergency 
services including ambulances, and statistical methodology generated by our research is being em-
ployed in the Amsterdam UMC. Other examples are our work on the energy transition and its relation 
to power networks, elderly care, and suicide prevention.  
 
The strategy of the department is grounded in the core values of the Vrije Universiteit Amsterdam: 
responsible, open and personally engaged. The culture in the department is to work in a collegial 
fashion. The division of labour is primarily based on consultation and consent. Where possible we take 
advantage of individual talents. As a result, the hierarchy in the department is relatively flat, with most 
responsibilities related to day-to-day work lying with the staff members themselves. We give full freedom 
to our staff members to choose their research projects. In our view, this is the best guarantee for 
excellent research as well as societal impact. We also stimulate a collaborative academic culture, where 
collaborations can be within the department, with mathematicians all around the world, with researchers 
in other fields, as well as with partners in industry and other organizations. We do this by showing 
appreciation for this full range of activities, both on a daily basis and in criteria for promotions, and by 
providing the necessary financial support, including travel funds, partial matching of investments in PhD 
positions, etc. The policy of the department is to have all papers published under open access, either 
through one of the deals between large academic publishers and Dutch universities, or by publishing 
both the preprint and the author accepted version on the arXiv and/or the VU Research Portal 
repository. 

Looking ahead, the department has a solid organization and financial basis to build on. With an influx 
of excellent young professors, the department has a bright future. It will be vital to guide the next gen-
eration into leadership roles, with a special eye towards (gender) diversity. The “Recognition and Re-
wards” policy recently adopted by the university allows for personalized development paths. While there 
is clearly work to do to put this into practice at the department level and to make the opportunities and 
boundaries concrete, the direction of this dynamics aligns very well with the long-term strategy of our 
department.  
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Case Study 1 
TOPOLOGICAL DATA ANALYSIS 

Topological data analysis (TDA) is a branch of data science which applies topology to study the shape 
of data, i.e., the coarse-scale, global, non-linear geometric features of data.  Examples of such features 
include clusters, loops, and tendrils in point cloud data, as well as modes and ridges in functional data. 
While the history of TDA dates back to the 1990s, in recent years the field has advanced rapidly, leading 
to a rich theoretical foundation, highly efficient algorithms and software, and many applications. 
                                                         
To get an idea of how topology can be applied to data, consider the discrete set of data points shown 
in Figure 1a. There is clearly a ‘circular structure' to the data and our pattern-seeking brains have no 
trouble inferring such information. Topology per se cannot infer this circularity (the topology of a finite 
set is rather uninteresting), so one proceeds by thickening every point by a certain thickness as shown 
in Figure 1e. The resulting annulus has a well-defined circular structure that can be measured by means 
of homology vector spaces, a classical tool from algebraic topology. However, one must be careful to 
choose a radius within the right range: if the radius is too small then the space is not fully connected 

(Figure 1d), and if it is too large then the hole has vanished altogether (Figure 1f). For more complicated 
data, it is not at all clear how one should choose the right scale, or if such a scale even exists. Therefore 
persistent homology was introduced in order to track the topological features across scales, similar to 
how a dendrogram is used in hierarchical clustering methods. The output of persistent homology is a 
barcode. The barcodes of the point clouds in Figures 1a-c are shown in Figures 1g-i. An interval starting 
at scale b that ends at scale d, is to be interpreted as a feature that appears when the points are 
thickened by a radius b/2 and that vanishes when the radius reaches d/2. We see that the long interval 
in Figure 1g vanishes around d = 4, accurately reflecting the fact that the points seem to lie on an 
annulus of inner diameter 4. While the barcode is stable with respect to perturbation of the data, it is 
extremely sensitive to outliers. Consider the same points as before but with a few additional points 
scattered around (Figure 1b) and the associated barcode (Figure 1h); the circular structure can no 
longer be deduced from the barcode. A potential way to rectify this problem is to consider only points 
above a certain density threshold, but this would in turn be very sensitive to the choice of the threshold. 
See for instance Figure 1c and its associated barcode in Figure 1i. Ideally one would thus have a tool 
that allows one to deduce topological signatures across both scale and density in a parameter-free way, 

Figure 1. Illustration of TDA. The points in (b) and (c) are colored by density. 
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and that is precisely what the field of multi-parameter persistent homology is about. In the multi-param-
eter setting, one filters a dataset not only by scale but also by one or more additional parameters. In 
addition to the example given above, there are many settings for which such constructions appear 
naturally, like time-varying data, data with tendrils, and functional data (e.g., image data).  
 
The major challenge in this more general setting is that a significant increase in algebraic complexity 
precludes the existence of a barcode, which in turn has severely limited the development of tools for 
the data scientist. The good news is that multi-parameter persistent homology is a very active field of 
research, with many invariants introduced in recent years, and one can find yet more in the classical 
literature on commutative algebra and representation theory. The main question for TDA is thus which 
of those invariants can be useful in the development of data analysis methodology, i.e. invariants that 
are both descriptive and efficiently computable. 
 
Impact 
 
While the research at the VU concerns multiple aspects of TDA, the core focus lies with the develop-
ment of novel invariants and distances in multi-parameter persistent homology, as well as their connec-
tion to the field of representation theory of algebras. We now mention a few contributions that have 
been well-received by the community.  
 
1) Botnan (VU), Oppermann (Trondheim) and Oudot (Paris) recently have shown that there exists a 

stable barcode-analogue for multi-filtrations. While its interpretation is less intuitive, it is expected 
that many of the tools used to perform inference on barcodes in the one-parameter setting can be 
made to work in this setting too.  

2) Botnan and Crawley-Boevey (Bielefeld) proved a fundamental structure theorem for persistent ho-
mology indexed by any partially ordered set.  

3) Bauer (Munich), Botnan, Oppermann and Steen (Santa Cruz) gave a complete description of the 
representation theory of certain algebraic objects inspired by data analysis. This result is particularly 
interesting as it follows from a novel result about cotorsion torsion triples in abelian categories; a 
good example of how problems in data science inspire deep results in pure mathematics, and in this 
case, in the fields representation theory of algebras and homological algebra .  

4) In TDA, the interleaving distance has received a significant amount of attention, as it is, in a certain 
sense, the optimal stable distance. Work by Botnan, Kerber (Graz) and Bjerkevik (Trondheim/Graz) 
shows that it is NP-hard to approximate the interleaving distance within a factor of 3.  

 
There is a growing interest in TDA in the Netherlands, and for that reason, Botnan and Barthel (VU) are 
organizing a day of applied topology at the VU. This event will bring together researchers and practi-
tioners of applied topology in the Netherlands. In July 2021, Botnan, Bauer, and Lesnick (Albany) orga-
nized a workshop on multi-parameter persistent homology at the Lorentz Center. Additionally, Botnan, 
Hirsch (Groningen/Aarhus), and Bonnet (Groningen) organized a workshop on the interplay between 
topology and stochastics in Groningen in September 2021. 
 
Botnan gave a lecture series on TDA at ICRA 2020 and at the GQT summer school of 2021, in addition 
to numerous (keynote) talks at international workshops and conferences. An interview about Botnan 
and his research on topological data analysis appeared in the May 2021 edition of the magazine For-
skerforum (the monthly publication of The Norwegian Association of Researchers).  
 
Selected publications 
 
[1] U. Bauer, M.B. Botnan and S. Oppermann, J. Steen (2020). Cotorsion torsion triples and the representation 

theory of filtered hierarchical clustering. Advances in Mathematics 369, 107-171. 
[2] H.B. Bjerkevik, M.B. Botnan and M. Kerber (2019). Computing the interleaving distance is NP-hard. Founda-

tions of computational mathematics, 1-35. 
[3] M.B. Botnan and W. Crawley-Boevey (2020). Decomposition of persistence modules. Proceedings of the 

American Mathematical Society 148.11, 4581-4596. 
[4] M.B. Botnan, S. Oppermann and S. Oudot. (2021). Signed barcodes for multi-parameter persistence via rank 

decompositions and rank-exact resolutions. arXiv preprint arXiv:2107.06800. 
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Case Study 2 
COMPUTER ASSISTED PROOFS IN DYNAMICS 
 
Introduction 
 
In dynamical systems all the action is due to nonlinearity. It is the source of the enormous variety of 
phenomena displayed by these system, while the other side of the medal is that the nonlinear character 
usually makes pen-and-paper analysis incredibly difficult. With modern-day scientific computing algo-
rithms and hardware, one can almost ‘see’ the solutions. But since discretization approximations are 
inevitable in simulations, it is not obvious at all that what you see is what is true. 
 
The field of rigorous numerics aims to bridge this gap by supplementing numerical calculations with 
mathematically guaranteed, explicit bounds on the discrepancy between truth and approximation. This 
leads to computer-assisted proofs and thus to theorems which fit into the fabric of mathematics: such 
results can be relied upon to build mathematical theory. Computer-assisted proofs (CAPs) are by now 
a widely used tool in mathematics, with the famous proof of the four-color theorem and the resolution 
of Kepler’s densest sphere packing problem as prime examples. In the theory of dynamical systems 
the role of computer-assisted proofs goes back to the proof of the Feigenbaum conjecture, and later 
the existence of the strange attractor in the Lorenz system. 
 
Idea 
 
Applicability of the general theory of dynamical systems to concrete nonlinear models often hinges on 
obtaining detailed information on special solutions. The last decade has seen a surge in the use of 
computer-assisted proofs to obtain this information. Indeed, adopting a general functional analytic point 
of view, one starts by reformulating the problem of locating the solution of interest as a zero finding 
problem in some suitably chosen Banach space. One then proves that an associated Newton-like fixed 
point operator contracts in a small neigborhood of an approximate solution, obtained from a numerical 
simulation. There are many variants of this approach, but invariably these involve a combination of two 
aspects. First, some large but finite computation is done on a truncated problem, with rounding errors 
controlled via interval arithmetic. Second, a careful pen-and-paper analysis of the truncation error is 
performed, controlling the infinite-dimensional ‘tail’ of the problem. Together these then give an explicit 
estimate on the distance between the true solution and its numerical approximate counterpart. 
 
At the VU Department of Mathematics, working with a variety of colleagues, Jan Bouwe van den Berg 
has developed and refined this approach to obtain results in nonlinear dynamics described by ordinary, 
partial and delay differential equations [1]. This was supported by an NWO Vici grant and has contrib-
uted to the success of four PhD trajectories. 
 
Connecting orbit problems in ordinary differential equations (ODEs) 
 
Connecting orbits describe transitions between different states of a system. They serve as relatively 
simple building blocks for complicated dynamics or spatial patterns, as they can often be combined into 
more complex structures. But constructing the building blocks is not an easy task. Even in cases where 
major parts of a problem can be analyzed using, for example, asymp-
totic analysis, the crucial final step of finding the connections often re-
quires computer-assistance. Three examples where Van den Berg 
and collaborators obtained a CAP to finish such an analysis are a con-
necting orbit that describes target patterns in the Swift-Hohenberg 
problem [2], a connecting orbit that describes a spiral wave in the com-
plex Ginzburg-Landau equation (based on [6]), and a connecting orbit 
that describes domain walls between hexagonal spots and stripes [3] 
in a generalized Swift-Hohenberg equation with broken symmetry 
(Figure 1). 
 
Figure 1. A transition between a hexagonal spot pattern and a stripe pattern 
in a modified Swift-Hohenberg equation. The connecting orbit in the system 
of ODEs which results from an asymptotic analysis, was found using a CAP 
and is depicted as the pair of red and blue graphs. 
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Bifurcations in delay-differential equations (DDEs) 
 
In situations where the response of a system is not instantaneous, time delays need to be incorporated 
in the models, leading to DDEs. Such problems can be posed in a functional analytic setting in much 

the same way as ODEs, although the required analysis is more subtle. 
One recent result concerns the resolution of a long-standing conjecture 
in delay equations, called Wright’s conjecture. Partial progress had al-
ready been made by many researchers in the field of DDEs. Through a 
computer-assisted quantitative analysis of the curve of slowly oscillating 
solutions emanating from a Hopf bifurcation point, Van den Berg and 
Jaquette were able close the final gap and turn the conjecture into a 
theorem [4].  
 
Figure 2.  A so-called “double gyroid” pattern in the Ohta-Kawasaki model for 
di-block copolymers. It is a highly-symmetric configuration which is found to be 
stable in certain parameter regimes.  
 

 
Periodic patterns in partial differential equations (PDEs) 
 
Since the pivot of the CAP approach is a zero finding problem, it is equally suitable for problems with 
more than one spatial or time-like variable, such as PDEs. Of course the estimates, algorithms and 
computational cost are then more involved. Periodic patterns with 
intricate symmetries in the Ohta-Kawasaki model for di-block copol-
ymers have been proven by Van den Berg and Williams using these 
computer-assisted method [5], and their stability has also been as-
sessed (Figure 2). Analogously, time-periodic solutions of the forced 
Navier-Stokes equations for incompressible fluid flows were estab-
lished in [7], see Figure 3. 
 
Figure 3. Snapshots of the vorticity of a time-periodic solution of the Navier-
Stokes equations with Taylor-Green forcing and periodic boundary condi-
tions in two spatial dimensions.  
 
 
Impact 
 
Fixed point formulations for studying problems in nonlinear analysis are ubiquitous. For computer-as-
sisted proofs this approach goes back half a century. Nevertheless, based on increased computational 
power and improved algorithms and analysis, the last decade has seen a flurry of exciting computer-
assisted results in nonlinear dynamics. Jan Bouwe van den Berg has made a substantial contribution 
to this development together with a diverse group of international collaborators: Jean-Philippe Lessard 
(McGill, Montreal), J.F. Williams (SFU, Vancouver), Jay Mireles James (FAU, Florida), Jonathan Ja-
quette (Boston) and Maxime Breden (Ecole polytechnique, Paris). These results have made the dy-
namical systems community aware that turning numerical simulation into rigorous mathematical results 
is a feasible proposition: not trivial, but accessible on a laptop without the need for highly specialised 
code. Such CAPs lead to results that are interesting in their own right (e.g., when analysing solutions 
to “normal form” equations), but they also fill gaps in already existing analysis. Moreover, they generate 
mathematical guarantees for solutions of dynamically different types than those reachable via pen-and-
paper methods such as closed-form formulas. These can then, for example, be used as benchmarks 
for new numerical methods.  
 
Van den Berg has organized a series of collaborative international workshops at Leiden, Banff (Canada) 
and Palo Alto (USA), which generated a lot of research activity, provided networking opportunities for 
junior mathematicians, and contributed to community building. The impact of the work of Van den Berg 
is also illustrated by the invitation to organize an AMS short course at the 2016 annual meeting of the 
American Mathematical Society, as well as a plenary lecture at Equadiff 2019.  
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Selected publications 
 
[1] J.B. van den Berg and J.-P. Lessard (2015). Rigorous numerics in dynamics. Notices of the American Mathe-

matical Society 62, 1057-1061. 
[2] J.B. van den Berg, C.M. Groothedde and J.F. Williams (2015). Rigorous computation of a radially symmetric 

localized solution in a Ginzburg-Landau problem. SIAM Journal on Applied Dynamical Systems 14, 423-447.  
[3] J.B. van den Berg, A. Deschênes, J.-P. Lessard and J.D. Mireles James (2015). Stationary coexistence of 

hexagons and rolls via rigorous computations. SIAM Journal on Applied Dynamical Systems 14, 942-979.  
[4] J.B. van den Berg and J. Jaquette (2018). A proof of Wright’s conjecture. Journal of Differential Equations 264, 

7412-7464. 
[5] J.B. van den Berg and J.F. Williams (2019). Rigorously computing symmetric stationary states of the Ohta-

Kawasaki problem in three dimensions. SIAM Journal on Mathematical Analysis 51, 131-158.  
[6] J.B. van den Berg, W. Hetebrij and B. Rink (2020), The parametrization method for center manifolds. Journal 

of Differential Equations 269, 2132-2184. 
[7] J.B. van den Berg, M. Breden, J.-P. Lessard and L. van Veen (2021). Spontaneous periodic orbits in the 

Navier-Stokes flow, Journal of Nonlinear Science 31:41, 1-64. 
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Case Study 3 
CONLEY THEORY AND THE ALGEBRA OF DYNAMICAL SYSTEMS 

Introduction 
 
Dynamical systems are mostly defined via systems of differential equations, or as iterations of continu-
ous maps. In practice these systems are too complex to study without any computational tools. A first 
insight into the workings of a dynamical system is often provided by numerical simulation in order to 
understand, for example, the long term behaviour of the system, which has been extremely successful 
in the application of dynamical systems as a prediction tool. Such analysis does not give much insight 
into global behaviour, however, nor does it provide rigorous results about the dynamical structure of a 
system. Computational Conley theory makes various aspects of global dynamics computable using 
algebra, combinatorics and algebraic topology. 
 
Scientific problem 
 
In the past decades, discretization methods have been developed in which combinatorialization and 
algebraic topology are the key ingredients, cf. [1,8,9,11]. The first steps in this direction have proved 
very promising. We mention in particular the early work in [1]. Motivated by the combinatorial/algebraic 
topological approach, a program has been started to study dynamics from the point of order theory and 
universal algebra, cf. [3,4,5]. The goal is to find a formulation of dynamics which provides a natural 
formalism to study finite renderings of dynamics. The latter should be interpreted as combinatorializa-
tions of dynamics, providing rigorous information of the full system within a given resolution. One key 
ingredient of dynamics that is pivotal in the algebraic approach, is the dichotomy between gradient-like 
and recurrent dynamics. For example, consider the motion of a natural pendulum. As the pendulum 
swings, it cannot return to its original position with the same velocity because it loses energy due to 
friction—gradient-like dynamics. In the absence of friction the system returns to its initial state, and its 
motion is periodic. In this case the system is said to exhibit recurrence. Understanding this dichotomy 
between recurrent and nonrecurrent or gradient-like behaviour in a system is central to the study of 
dynamical systems.  
 
Mathematical approach 
 
The work of Rob van der Vorst and collaborators in [2,3,4,5,6] is focused on treating dynamical systems 
as algebraic structures. A pivotal ingredient is the attractor of a dynamical system. An attractor is a 
subset of phase space which ‘attracts’ nearby dynamics. A system has many (or infinitely many) attrac-

tors in general. The set of all attractors forms a bounded, distributive lattice which is a key algebraic 
structure. Via lattice theory one can understand the decomposition of dynamics into smaller irreducible 
parts, but more importantly, it opens the door to an algorithmic analysis of dynamics as an order struc-
ture that can be studied via its finite substructures. Finding a (finite) lattice of attractors is equivalent to 
a decomposition of dynamics within a certain resolution, cf. Figure 1. The latter provides an algebraic 

Figure 1. A flow that displays a number of different attractors. The green and purple fixed points are attractors that 
locally attract neighboring points. The blue middle saddle point together with the connecting orbits (beige) gives 
the global attractor of the system [left]. This is an example of a global decomposition of dynamics [middle]. The 
algebraic structure of the attractors is presented by the lattice of attractors given as a Hasse diagram [right]. 
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method for discretizing dynamical systems. Figure 2 below shows a discretization of a two-dimensional 
population model. The lattice of all attractors of the discretized model is a sublattice of the lattice of 
attractors of the system. The decomposition obtained from the discretized model represents an actual 
decomposition of the full system. Our current research is concerned with further strengthening and 
extending the mathematical foundation of the algebraic approach towards dynamics. Some of the sub-
jects are: 

• Boolean algebras with operators: this algebraic structure play a pivotal role in modal logic and 
turns out to be the fundamental tool to reformulate dynamics. Boolean algebras are very useful 
for formulating ‘discretization’ and ‘combinatorialization’ in algebraic terms, cf. [7]. 

• Sheaf cohomology: the algebraic structures such as the lattice of attractors of a dynamical 
system change as the parameters in the system change. One can reformulate this by regarding 
the space of dynamical systems as a parameter space and to study the local robustness of the 
lattice of attractors. This leads to the formulation of the sheaf of attractors which describes the 
attractor lattices as a ‘function over the dynamical systems’. An important invariant for sheaves 
is sheaf cohomology. In [6] we link sheaf cohomology to bifurcations.  

• Sheaf theory and discretization: we can combine sheaf theory with the discretization approach 
via Boolean algebras. The goal is to construct a ‘finite’ sheaf theory such as cellular sheaves 
which allow us to extend the computational techniques to include parameter dependence. 

 
 

 
Figure 2. A discretization of a two-dimensional population model. The middle graph provides an order representa-
tion of the global dynamics. The right picture combines order with algebraic topological data (Conley indices) which 
reveals local information about the ‘nodes’ in the graph. The nodes represent invariant sets for the dynamics and 
the arrows display the direction of the dynamics (gradient-like part). We distinguish attracting, repelling and saddle-
like behaviour in the above decomposition. 
 
Collaborations 
 
Over the past years Van der Vorst has collaborated extensively with W.D. Kalies (Florida Atlantic Uni-
versity) and K. Mischaikow (Rutger’s University). For the period 2020-2025 prof. Mischaikow has a 
visiting position at our department. He will visit us yearly for a one month period combined with two 
prolonged visits of one semester. The research concerning Boolean algebras as reformulation of dy-
namics is joint work with K. Spenlove (Oxford University). With K. Spendlove we also study an important 
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topological invariant for dynamics, the Conley index. In this setting we are mainly interested in the rep-
resentation of dynamics in terms of so-called ‘connection matrices’. There is a relation between the 
latter and generalizations of spectral sequences. The subject of sheaf cohomology is joint work with 
K.A. Dowling (Rutgers University) and W.D. Kalies. This research now focuses on merging sheaf theory 
with discretization. 
 
Selected publications 
 
[1] Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk (2009). A database schema for the 

analysis of global dynamics of multiparameter systems. SIAM Journal on Applied Dynamical Systems, 8(3), 
757-789. 

[2] W.D. Kalies, K. Mischaikow, and R.C.A.M. Vandervorst (2005). An algorithmic approach to chain recurrence. 
Found. Comput. Math., 5(4), 409-449. 

[3] W.D. Kalies, K. Mischaikow, and R.C.A.M. Vandervorst (2014). Lattice structures for attractors I. J. Comput. 
Dyn., 1(2), 307-338.  

[4] W.D. Kalies, K. Mischaikow, and R.C.A.M. Vandervorst (2015). Lattice structures for attractors II. Found. Com-
put. Math., 1(2), 1-41.  

[5] W.D. Kalies, K. Mischaikow, and R.C.A.M. Vandervorst (2021). Lattice structures for attractors III. J. Dynam. 
Differential Equations, https://doi.org/10.1007/s10884-021-10056-8 

[6] K.A. Dowling, W.D. Kalies, K. Mischaikow, and R.C.A.M. Vandervorst, Continuation sheaves in dynamics: 
sheaf cohomology and bifurcation, ArXiv: 2106.8478. 

[7] K. Spendlove and  R.C.A.M. Vandervorst, Closure algebra discretizations, flow topologies and parabolic dy-
namics, in preparation. 

[8] E. Boczko, W.D. Kalies, and K. Mischaikow (2007). Polygonal approximation of flows. Topology Appl., 154(13), 
501-520.  

[9] M. Mrozek (1999). An algorithm approach to the Conley index theory. J. Dynam. Differential Equations, 11(4), 
711-734.  

[10] T. Kaczynski, K. Mischaikow, and M. Mrozek (2004). Computational homology, volume 157 of Applied Math-
ematical Sciences. Springer-Verlag, New York.  

[11] S. Day (2003). A rigorous numerical method in infinite dimensions. Ph.D. dissertation.  
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Case Study 4 
DISTRIBUTED STATISTICAL METHODS FOR HIGH-DIMENSIONAL MODELS  
 
Distributed methods 
 
Both in statistics and machine learning there has been substantial interest in the design and study of 
distributed statistical or learning methods in recent years. One driving reason is the fact that in certain 
applications datasets have become so large 
that it is often unfeasible, or computationally 
undesirable, to carry out the analysis on a sin-
gle machine. In a  distributed method the data 
are divided over a cluster consisting of several 
machines and/or cores. The machines in the 
cluster  then process their data locally, after 
which the local results are somehow aggre-
gated on a central machine to finally produce 
the overall outcome of the statistical analysis, 
cf. Figure 1.  
 
Distributed methods are not only used for 
computational reasons, but are for instance 
also of interest in situations where privacy is 
important and it is undesirable that all data are 
handled at a single location. Moreover, there 
are applications in which data are by construction collected at multiple locations and first processed 
locally, before being combined at a central location.  
 
Suboptimal performance of naive procedures 
 
It is not difficult to see that in distributed settings where the number of local machines is relatively large, 

it is suboptimal to naively use a statistically 
optimal procedure in the local machines and 
then average the local results in the central 
machines. This typically results in underfitting 
and misleading uncertainty quantification 
(UQ). Figure 2 illustrates this in a simple sig-
nal reconstruction problem. The black line is 
the true signal, which is observed in white 
noise. In the right-hand panel an optimal 
(Bayesian) signal reconstruction is shown 
(solid blue line), together with uncertainty 
quantification (blue dashed lines). On the left 
the same data was distributed over 20 local 
machines, the same optimal procedure was 

used in every local machine and then the result was averaged in the central machine. Clearly, the 
resulting signal reconstruction (solid red line) is much worse and the UQ (red dashed lines) is way off. 
 
Performance of existing methods 
 
As the example illustrates, distributed statistical methods for high-dimensional problems should be de-
signed and tuned differently than classical, non-distributed methods.  Until very recently, there was little 
or no mathematical understanding of this phenomenon. In particular, it was not clear whether distributed 
methods that have been proposed over the years actually succeed in avoiding the indicated problems. 
In a paper in Journal of Machine Learning Theory Van Zanten and Szabo (presently at Bocconi) studied 
a number of existing distributed Bayesian methods, including widely used methods such as Consensus 
Monte Carlo, WASP, and distributed GP’s. They proved rigorous mathematical statements asserting 
that there is substantial difference between the performance of the various methods. Figure 3 illustrates 
the results for 6 different methods. Some give signal reconstruction and uncertainty quantification com-
parable to the optimal non-distributed method, but some do significantly worse in one or both respects.  

Szabó and Van Zanten
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Figure 2: Signal reconstruction using the distributed method (left) and the non-distributed
method (right).

is determined using a distributed version of maximum marginal likelihood, as described in
Section 4. This analysis leads to m = 40 local posterior distributions. These are then
combined to produce an overall posterior distribution for the signal. The precise procedure
is described in Section 4. The resulting estimator for the signal, together with pointwise 95%
credible intervals, is shown in the left plot in Figure 2. The corresponding non-distributed
result is obtained by first aggregating all local data as in (2.1) and then carrying out the same
Bayesian procedure on these complete data. The resulting non-distributed reconstruction
of the signal is shown on the right in Figure 2.

The non-distributed version of this method was studied theoretically for instance in
Knapik et al. (2016) and Szabó et al. (2015), where it was shown that the method is
adaptive and rate-optimal. The simulation suggests however that an apparently reasonable
distributed analogue of the method does not necessarily inherit these favourable properties.
The procedure seems to be underfitting and the credible intervals appear to be too narrow.
We will argue that this is in some sense a fundamental issue and in the next sections we
will study various proposed distributed methods to investigate to what degree they succeed
in avoiding or solving these problems.

3. Results for non-adaptive procedures

In this section we study the performance of a number of Bayesian procedures for signal
reconstruction in the distributed signal-in-white-noise model introduced in Section 2. All
methods involve putting a prior distribution on the unknown signal ✓ 2 `

2 in each local
problem and then combining the resulting local posteriors into one global posterior-type
distribution. To be able to compare the various methods we consider the same Gaussian
process (GP) prior in every case, namely the prior

⇧(·|↵) =
1O

i=1

N(0, i�1�2↵), (3.1)

which postulates that the coe�cients ✓i of the signal ✓ are independent and N(0, i�1�2↵)-
distributed. The hyper parameter ↵ > 0 essentially controls the regularity of the prior, since

6

Figure 2. Performance of naive distributed vs non-distributed 
method. 

Figure 1. Distributed parameter estimation. 
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Fundamental possibilities and limitations 
 
The analysis of existing distributed methods raises the question: what are the fundamental statistical 
limits of distributed methods? For classical methods there exist well-developed statistical theory that 
explains in many situations how the best convergence rate that a statistical procedure can attain is 
related to the complexity of the object that is being 
learned. In their recent paper in the Annals of Statis-
tics Van Zanten and Szabo initiated the development 
of such a theory for distributed methods. In particular, 
they studied how the best possible performance of 
methods is related to the amount of communication 
that is allowed between the local and central ma-
chines. A first interesting finding is that there are dif-
ferent regimes, depending on the relation between 
the total sample size (or signal-to-noise ratio) n, the 
number of local machines m, the amount of bits B of 
allowed communication, and the complexity of the 
unknown object that is being learned. In the signal 
reconstruction problem this complexity is measured 
by the smoothness s of the signal. In the paper it is 
proved that in this case, if B > n^(1/(1+2s)), then the 
amount of communication is large enough for distrib-
uted methods to attain the same rate as optimal non-
distributed methods. If, on the other extreme, B <  
(n/m^(2+2s))^(1/(1+2s)), then the allowed communi-
cation is so little that the (slow) rates obtained by local 
machines cannot be improved by aggregating their results in the central machine. The third, intermedi-
ate, regime is in some sense the most interesting. In that range the communication limitation does 
deteriorate the best possible rate, but combining the results of the local machines does help. In the 
paper, Van Zanten and Szabo exhibit a concrete distributed procedure that attains the optimal rate in 
this case.  
 
Adaptation to the complexity of the unknown structure 
 
As with all statistical procedures in high dimensions, distributed methods have to be tuned carefully to 
achieve an optimal bias-variance trade-off, or, in other words, to avoid over- and underfitting. A key 
question is whether this can be done without knowing crucial complexity information, like the smooth-
ness s in the signal reconstruction problem. It is by now well known that the answer is affirmative in the 
non-distributed setting, and there exist several methods to construct so-called adaptive procedures that 
do not use this information, including wavelet thresholding, Lepski’s method, and hierarchical or empir-
ical Bayes procedures. In distributed settings with limited communication the matter is, however, much 
more delicate, since the local machines cannot always extract enough information about the complexity 
from their smaller, local datasets. We have shown nonetheless that in the signal reconstruction problem, 
for instance, adaptation is possible over a non-trivial range of smoothness levels that depends on n, m 
and B. The procedure that we have constructed is not yet very practical. Designing practical, adaptive 
distributed methods is an important topic in ongoing research.   
 
Another topic that is currently under investigation in a joint PhD project with Szabo and L. Vuursteen 
and A.W. van der Vaart (TU Delft), is the testing of statistical hypotheses in distributed settings. Here 
similar phenomena arise, but there are also interesting new aspects. For instance, it turns out that in a 
distributed framework signal detection, which is a particular testing problem, can benefit from the 
availability of a so-called public coin: a common source of randomness accessible to all local machines. 
We have provided a detailed explanation of how the detectability of a signal depends on a combination 
of the signal strength, the number of machines, the signal-to-noise ratio, the communication allowed 
and the availability of a public coin. A related current research direction is the application of these ideas 
to statistical meta-analysis, i.e., the combination of statistical testing outcomes (such as p-values) of 
independent studies. 
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Figure 4: Global posterior mean (solid red curve) and 95% pointwise credible bands (dashed
red curves) for each of the methods I–VI.
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Figure 3. Performance of various distributed 
methods. 
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Outlook: underpinning uncertainty quantification in distributed settings 

Arguably, the most important topic in this area of research is the design of mathematically principled 
uncertainty quantification. Already in the non-distributed setting, it is known that this is extremely chal-
lenging if there is no auxiliary information about the complexity of the unknown structure. Distributed 
methods now routinely produce uncertainty quantification, but without any performance guarantees. 
With the increasing use of distributed methods in critical (e.g., medical) applications it is crucial that 
mathematical theory is developed that can fundamentally underpin such methods, and that can provide 
guidelines for their design and tuning.  
 
Selected publications 
 
[1] B.T. Szabo and J.H. van Zanten (2019). An asymptotic analysis of distributed nonparametric methods. J. 

Mach. Learn. Res. 20, 1-30. 
[2] B.T. Szabo and J.H. van Zanten (2020). Adaptive distributed methods under communication constraints. Ann. 

Statist. 48 (4), 2347-2380. 
[3] B.T. Szabo, L. Vuursteen and J.H. van Zanten (2021). Optimal distributed testing in high-dimensional Gauss-

ian models. Under revision for IEEE Transactions on Information Theory. 
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Case Study 5  
MAXIMIZING GROWTH RATE OF MICROORGANISMS 
 
The importance of microbes 
 
Single-celled organisms such as bacteria and yeasts, together referred to as microbes, are vital for 
humans. They are an essential part of human health and physiology, recycle oxygen, carbon and nitro-
gen on a global scale, and are essential in the production of medicines and foods such as yoghurt, 
beer, wine and soy sauce. They can of course also be a risk for human health. It is therefore important 
to be able to predict how microbes behave: in industrial applications, we wish to control which flavors 
or medicines are produced by microbes; growing microbes are susceptible to antibiotitics, but dormant 
cells can survive this and can become dangerous when they start growing again. For about thirty years, 
scientists have been trying to make such predictions bottom-up: by integrating detailed knowledge of 
the inner workings of cells, and extrapolating these to changes in cellular physiology and behaviour.  
 
Collaboration with the Systems Biology group 
 
For the last ten years, Bob Planqué and Joost Hulshof have been collaborating closely with the Systems 
Biology group at the VU, headed by Frank Bruggeman and Bas Teusink. After an initial period in which 
we studied the dynamical details of glycolysis in yeast, together with PhD student Gosse Overal, our 
attention has shifted towards whole-cell models. The evolutionary success of single-celled organisms 
is very closely tied to their cellular growth rate: high fitness means high metabolic rates, and high self-
replication rates. We therefore try to understand how microbes can achieve steady states of fast growth, 
whether such states are uniquely defined by the environment, and how they can achieve optimality 
when changing from one environment to the next. Our theory is informed by experiments at the Systems 
Biology group, and also leads back to new experiments in their labs. 
 
Using only stoichiometry 
 
Traditional approaches to growth rate maximization have centered around the stoichiometric matrix of 
a microorganism. In such a matrix, each column represents one reaction, and each row one metabolite 
(small cellular compound, such as sugars, ATP, amino acids). A column in this matrix stipulates how 
much substrate and product is converted in one particular reaction event. The resulting optimization 
problem of finding states with high flux through the metabolic network then can be formulated as a pure 
Linear Programming problem. It can be shown that the set of vectors over which we wish to maximize 
is a convex pointed cone that is spanned by extreme rays. These rays are called Elementary Flux 
Modes (EFMs), minimal pathways connecting the beginning and end of the network. Hence, maximisers 
are EFMs. Even in this simple setting, new insights could be obtained. PhD student Daan de Groot, co-
supervised by Planqué, showed that EFMs are indeed expressed by live microbes. Moreover, the 
change from pure respiration to a combination of respiration and fermentation (which happens when 
one gets muscle ache, occurs in cancer tumor cells, and also in yeasts producing alcohol when we 
brew beer) turned out only to depend on the number of constraints that are active, not on the identity of 
these constraints. This resolved a decades-old controversy in the literature, and has led to a new gen-
eration of experiments to determine which physico-chemical or biological constraints are actually hit by 
growing microbes.  
 
Adding self-replication 
 
The biggest challenge to develop a completely general theory for maximal growth rate lies in the fact 
that the growth rate of cells is an emergent property of the complete machinery with which cells produce 
new copies of themselves. In a long effort spanning four years, Planqué and Hulshof, together with De 
Groot, Bruggeman and Teusink, went completely back to square one and modelled the growth rate 
from first principles. This led to a new nonlinear optimization problem for growth rate 𝜇, of the form 
 

𝑚𝑎𝑥{𝜇	|	𝐴(𝒄, 𝜇)𝜶 = 	𝟎, 𝝁 = 𝛼2𝑔2(𝒄), 𝜶 ≥ 𝟎}.	 
  
Identifying solutions to the constraint equations with the same support gives rise to a new type of ele-
mentary mode, which we termed Elementary Growth Modes (EGMs). These are the direct extensions 
of the more familiar EFMs, and growth rate maximizers are now EGMs, cf. Figure 1. This theory gives 
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the first general mathematical foundation for detailed computational models, and also has given us a 
way to describe the degrees of freedom cells have to self-replicate.  
 

 
Figure 1. Comparing EFM cones to EGM ‘cones’. Left, a standard convex pointed cone spanned by extreme rays 
called EFMs. Right, a few instances of the solution space for different growth rates. Those with the same support 
need to be identified and form an EGM. 
 
Adaptive control 
 
Cells that express only the enzymes involved in one of these elementary modes have already optimized 
their behaviour to a large extent. But within one of these modes, enzyme concentrations may still be 
chosen differently, leading to different steady state reaction rates or growth rates. It has become 
increasingly clear that living bacterial cells are able to actively tune these concentrations to maximize 
the growth rate. They are even able to regain such optimal states after changes in the environment, 
without directly sensing these changes. We questioned what type of control cells must implement 
biochemically in order to solve this problem.  
 

 
Figure 2. Example dynamics of the adaptive control. External concentrations are varied from Condition 1 through 3. 
Enzyme concentrations change, causing the pathway to settle into a new (optimal) steady state. The enzyme syn-
thesis rates, as functions of an internal ‘sensor’, are shown on the right, and are the same in all conditions. 
 
Together with MSc student Johan Hendriks, we developed a general framework for this. First, Planqué 
and Hulshof showed that this optimization problem can be reformulated as a convex problem. Dynami-
cally, the concentrations of the metabolites 𝒙	(small molecules that are produced and consumed by en-
zymatic reactions) change through an equation of the form 𝒙8 = 𝑭(𝒙, 𝒆). Enzyme concentrations 𝒆 
change in a much simpler fashion, through synthesis and dilution by growth, and so their dynamical 
equations are given by 𝒆8 = 𝑬 − 𝜇𝒆 for some suitable function 𝑬. If enzyme synthesis rates change ac-
cording to some feedback from metabolism, then we need that 𝑬	 = 	𝑬(𝒙). Remarkably, it is possible to 
construct for a given EFM with prescribed 𝑭(𝒙, 𝒆)	a (fixed, so environment-independent) function 𝑬(𝒙) 
with the property that the combined dynamical system for 𝒙 and 𝒆 has a unique steady state with optimal 
steady state flux. This is remarkable because the optimal state depends on the environment, but 𝑬(𝒙) 
does not. The construction actually gives information about the number and identity of the metabolites 
that appear in 𝑬(𝒙). Initial numerical experiments showed that for rather arbitrary EFMs this control 
seemed to be globally stable, see Figure 2 for an example. Planqué was recently awarded a grant to 
develop this work further, and together with Hulshof and PhD student Maarten Droste, he is currently 
trying to prove such global stability properties for individual EFMs. 
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Teaching 
 
The collaboration with the Systems Biology group has also been very fruitful in our teaching. Planqué 
regularly co-supervises MSc thesis projects of Bruggeman, some of which have turned into publications. 
In addition, Planqué and Hulshof teach a yearly modelling workshop for third year BSc students on math-
ematical systems biology. The course is extremely rich in mathematical techniques—in four weeks stu-
dents apply techniques from graph theory, linear algebra, convex analysis, dynamical systems, linear 
and nonlinear programming and control theory. It thus gives students a great experience in how the 
breadth of the mathematics they have just learnt can be applied fruitfully in just one context. 
 
Selected publications 
 
[1] G. B. Overal, B. Teusink, F. J. Bruggeman, J. Hulshof and R. Planqué (2018). Understanding startup problems 

in yeast glycolysis. Mathematical Biosciences 299, 117-126. 
[2] M. T. Wortel, H. Peters, J. Hulshof and F. J. Bruggeman (2014) Metabolic states with maximal specific rate 

carry flux through an elementary flux mode. (2014). FEBS Journal 28, 1547-1555. 
[3] R. Planqué, J. Hulshof, B. Teusink, J. C. Hendriks and F. J. Bruggeman (2018). Maintaining maximal metabolic 

flux by gene expression control. PLoS Computational Biology 14(9), e1006412. 
[4] D. H. de Groot, C. van Boxtel, R. Planqué, F. J. Bruggeman and B. Teusink (2019). The number of active 

metabolic pathways is bounded by the number of cellular constraints at maximal metabolic rates. PLoS Com-
putational Biology 15(3), e1006858. 
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iology. FEMS Microbiology Reviews 44(6), 821-844. 
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Case Study 6  
SAVING LIVES WITH MATHEMATICS: From reactive to proactive planning of emergency 
services 

Societal problem 
 
In serious life-threatening situations where every second counts, getting an ambulance to the scene on 
time or not can mean the difference between survival and death. The response-time requirement for 
high-emergency calls is country-specific, but is usually of the form “In x% of the cases, the arrival time 
of an ambulance vehicle may not be longer than y minutes”. For example, in the Netherlands,  
x = 95 and y = 15. The problem is that in practice, such requirements are (too) often not met, with all its 
consequences for the patient-in-need. In order to realize short response times at an affordable cost, 
careful planning of ambulance services is necessary. 
 
When realizing an efficient planning of the ambulance service, many questions come up. For example: 
How can we accurately predict the number of help requests depending on time and location? How can 
we properly anticipate and respond to peaks in demand for ambulance rides? How many base locations 
do we need, and what are the optimal locations? How many units (vehicles, drivers, medical personnel) 
should we deploy to achieve the desired level of service, and where and when? How can we do suitable 
personnel planning in such a way that all hard and soft preconditions are met? How can we achieve 
high coverage of ambulances across a region at any time of the day by using smart dynamic and pro-
active real-time repositioning of ambulances? 
 
Scientific problem 
 
The above questions lead to a wide variety of scientific challenges. A highly complicating, but scientifi-
cally very challenging, factor in solving these kinds of planning issues is the omnipresence of the phe-
nomenon of uncertainty that is inherent in almost all facets of the ambulance service process. The 
problem is that existing planning methods usually assume that the demand and availability of ambu-
lances are known in advance, while these methods are usually very sensitive to changes in these input 
parameters. Underestimating these uncertain factors leads to inefficient, and therefore expensive, plan-
ning of ambulance rides. This requires groundbreaking research to develop new, scalable, forecasting 
and planning methods that are robust against changes in environmental factors.  
 
Vision and solution concept 
 
The key to reducing response times for the ambulance service is to make a paradigm shift from the 
traditional reactive to a proactive way of working. This so-called Dynamic Ambulance Management 
(DAM) entails two important decisions that ambulance service providers need to make: 
1. Dynamic dispatching: “Which ambulance do we send to a given incident?”, “Is it always optimal to 

send the closest-idle ambulance first, and if not, which ambulance should be sent?” 
2. Proactive relocation: “How to proactively reposition ambulance vehicles to anticipate future inci-

dents better?” 
 
Solution approach 
 
In the project From Reactive Planning of Ambulance Services (REPRO), co-funded by NWO and five 
ambulance services providers in the greater Amsterdam area, we have developed stochastic optimiza-

 
Figure 1. Illustration of the analysis of dispatching (l) and proactive relocation (m) by means of toy examples (r). 
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tion models for optimal decision making for dispatching and relocation of ambulances. Since the deci-
sion making needs to be fast, a key requirement is that the algorithms provide answers in real-time, not 
only in toy examples but also for realistic real-life scenarios. Figure 1 illustrates the dispatching and 
relocation problems and the way of working. 
 
Mathematical models and publications 
 
Our research involves a variety of models and solution techniques in the realm of forecasting methods, 
deterministic and stochastic optimization models. More specifically, we have developed machine learn-
ing models for forecasting incidents [8], facility location models (e.g., maximum expected coverage 
location models) for the strategic planning of base locations [3], and efficient heuristics for optimal dis-
patching [5, 6] and dynamic relocation of vehicles [1, 2, 7]. We emphasize that, in line with the nature 
of this research, the results have not only been published in classical Operations Research journals, 
but also in leading journals focused on the application of the results in real-life practice [3, 4]. 
 
Results and real-life pilots 
 
Over the years, we have developed and evaluated a range of stochastic optimization algorithms for 
optimal dispatching and relocation of vehicles, as well as models for optimal locations of base stations. 
In doing so, the key to getting these algorithms implemented in real-life practice is that we have collab-
orated closely with our partnering ambulance providers. In particular, we have set up a real-life pilot in 
which the algorithms were tested (in collaboration with GGD Flevoland) in an iterative process of model 
improvement based on feedback from practice. This iterative process converged into effective algo-
rithms that are well-aligned with the need and limitations of practice. 
 
Implementation in practice and spin-off company 
 
The model and methods have been implemented in a software package that is commercially exploited 
in the market, via the spin-off company Stokhos Emergency Mathematics. Currently, the algorithms are 
operational in several safety regions in the Netherlands.  
 
 

 
 

Figure 2. Illustration of the operational tools for relocation of ambulances (l) and firefighters (r). 
 
 
Other application areas 
 
The work on ambulance planning has attracted the interest of other application areas as well, such as 
firefighter and police services. With the Fire Brigade Amsterdam/Amstelland, we have developed mod-
els for optimal locations of fire stations and for optimal relocation of firetrucks in case of large fire inci-
dents, which has been the basis for a relocation tool named FireScore, currently deployed in the greater 
Amsterdam area. For police, we have developed forecasting methods for creating risk maps for high-
impact crimes, such as burglaries, and robberies. For a railway infrastructure provider, we have devel-
oped models for optimally balancing preventive maintenance tasks and emergency response, as part 
of a public-private partnership. 
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PhD projects, academic staff involved and Huibregtsen Prize 
 
This research (which was done partly in collaboration with CWI and TU Delft) has led to six PhD pro-
jects, out of which four have been successfully finished, and there are two more to come. The supervi-
sion of the PhD students was done by three full professors and a postdoctoral researcher.  
 
Partly based on this line of research, profs. Sandjai Bhulai and Rob van der Mei were awarded the 
prestigious Huibregtsen Prize 2021, a national award for excellent research that is applied in real-life 
practice. The jury report states (paraphrase): “The mathematical solutions offered are efficient and ele-
gant. What is truly exceptional within this field is how much effort Bhulai and Van der Mei put into 
ensuring that their work is used in practice. This is truly mathematics for the real world”. 
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