Magnetic Resonance Imaging

The purpose of structured education is to provide the opportunity for candidates to develop mastery of discipline-specific knowledge that, when coupled with selected clinical experiences, helps to document qualifications. The Structured Education Requirements for Magnetic Resonance Imaging is provided to assist candidates with these requirements.

Candidates for magnetic resonance imaging certification and registration must document at least 16 hours of structured education. The activities must be earned within the 24-month period immediately prior to submission of an application for certification and registration. Structured education activities may be academic courses from an institution accredited by a mechanism recognized by the ARRT, CE opportunities approved by a RCEEM or RCEEM+, or a combination of the two.

Structured education documentation must include at least one CE credit or its equivalent in each content category listed below (i.e., Patient Care, Safety, Image Production, and Procedures). The remaining hours may be earned from any one or more of the content areas. Specific topics within each category are addressed in the content outline, which makes up the remaining pages of this document.

<table>
<thead>
<tr>
<th>Content Category</th>
<th>Minimum Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Care (includes)</td>
<td>1</td>
</tr>
<tr>
<td>Patient Interactions and Management</td>
<td></td>
</tr>
<tr>
<td>Safety (includes)</td>
<td>1</td>
</tr>
<tr>
<td>MRI Screening and Safety</td>
<td></td>
</tr>
<tr>
<td>Image Production (includes)</td>
<td>1</td>
</tr>
<tr>
<td>Physical Principles of Image Formation</td>
<td></td>
</tr>
<tr>
<td>Sequence Parameters and Options</td>
<td></td>
</tr>
<tr>
<td>Data Acquisition, Processing, and Storage</td>
<td></td>
</tr>
<tr>
<td>Procedures (includes)</td>
<td>1</td>
</tr>
<tr>
<td>Neurological</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Acceptable Examples:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Care – 3 hours</td>
<td>Patient Care – 1 hour</td>
<td>Patient Care – 1 hour</td>
</tr>
<tr>
<td>Safety – 2 hours</td>
<td>Safety – 1 hour</td>
<td>Safety – 5 hours</td>
</tr>
<tr>
<td>Image Production – 4 hours</td>
<td>Image Production – 1 hour</td>
<td>Image Production – 5 hours</td>
</tr>
<tr>
<td>Procedures – 7 hours</td>
<td>Procedures – 13 hours</td>
<td>Procedures – 5 hours</td>
</tr>
<tr>
<td>TOTAL – 16 hours</td>
<td>TOTAL – 16 hours</td>
<td>TOTAL – 16 hours</td>
</tr>
</tbody>
</table>

1. If there is a structured education requirement document with a newer effective date, you may either use the new document or continue to use this document if you have completed at least one educational activity prior to the effective date of the new version. For more information access the online clinical experience tool, where structured education is also reported.

2. Activities meeting the definition of an approved academic course will be awarded credit at the rate of 12 CE credits for each academic quarter credit or 16 CE credits for each academic semester credit. See the ARRT Continuing Education Requirements document for additional information.
Patient Care

1. Patient Interactions and Management

A. Ethical and Legal Aspects
 1. patients’ rights
 a. informed consent (*e.g., written, oral, implied)
 b. confidentiality (HIPAA)
 c. American Hospital Association (AHA) Patient Care Partnership (Patients’ Bill of Rights)
 1. privacy
 2. extent of care (e.g., DNR)
 3. access to information
 4. living will, health care proxy, advance directive
 5. research participation
 2. legal issues
 a. verification (e.g., patient identification, compare order to clinical indication, exam coding)
 b. common terminology (e.g., battery, negligence, malpractice, eneficence)
 c. legal doctrines (e.g., respondeat superior, res ipsa loquitur)
 d. restraints versus positioning aids used to eliminate motion artifact
 3. ARRT Standards of Ethics

B. Interpersonal Communication
 1. modes of communication
 a. verbal/written
 b. nonverbal (e.g., eye contact, touching)
 2. challenges in communication
 a. interactions with others
 1. language barriers
 2. cultural and social factors
 3. physical, sensory, or cognitive impairments
 4. age
 5. emotional status, acceptance of condition (e.g., mental health concerns)
 b. explanation of medical terms
 c. strategies to improve understanding
 3. patient education
 a. explanation of current procedure (e.g., purpose, exam length, risks, benefits)
 b. pre- and post-procedure instructions (e.g., preparations, diet, medications, discharge instructions)
 c. review of pertinent medical history
 d. respond to inquiries about other imaging modalities
 e. communication with patient during procedure

C. Physical Assistance and Monitoring
 1. body ergonomics (e.g., balance, alignment, movement)
 a. patient transfer techniques
 b. safe patient handling devices (e.g., transfer board)
 2. assisting patients with medical equipment
 a. infusion catheters and pumps
 b. oxygen delivery systems
 c. other (e.g., nasogastric tubes, urinary catheters, tracheostomy tubes)
 3. routine monitoring and documentation
 a. vital signs
 b. physical signs and symptoms (e.g., motor control, severity of injury)
 c. fall prevention
 d. patient comfort and privacy
 e. sedated patients/sedation
 f. claustrophobic patients
 g. time-out
 4. Medical Emergencies
 1. allergic reactions (e.g., contrast media, latex)
 2. cardiac/respiratory arrest (e.g., CPR, AED)
 3. physical injury, trauma, or RF burn
 4. other medical disorders (e.g., seizures, diabetic reactions)
 5. communication of critical findings to health care team

* The abbreviation "e.g.," is used to indicate that examples are listed in parenthesis, but that it is not a complete list of all possibilities.
Patient Care (continued)

E. Infection Control
 1. chain of infection (cycle of infection)
 a. pathogen
 b. reservoir
 c. susceptible host
 d. portal of entry
 e. mode of transmission
 1. direct
 a. droplet
 b. direct contact
 2. indirect
 a. airborne
 b. vehicle-borne (fomite)
 c. vector-borne (mechanical or biological)
 d. portal of exit
 2. asepsis
 a. equipment disinfection
 b. equipment sterilization
 c. medical aseptic technique
 d. sterile technique
 3. CDC Standard Precautions
 a. hand hygiene
 b. use of personal protective equipment (PPE) (e.g., gloves, gowns, masks)
 c. safe handling of contaminated equipment and surfaces
 d. disposal of contaminated materials
 1. linens
 2. needles
 3. patient supplies
 4. blood and body fluids
 e. safe injection practices
 4. transmission-based precautions
 a. contact
 b. droplet
 c. airborne
 5. additional precautions
 a. neutropenic precautions (reverse isolation)
 b. healthcare associated (nosocomial) infections

F. Handling and Disposal of Toxic or Hazardous Material
 1. types of materials
 a. chemicals (e.g., disinfectants)
 b. chemotherapy
 2. safety data sheet

G. Pharmacology
 1. patient history
 a. medication reconciliation (current medications)
 b. premedications
 c. contraindications
 d. scheduling and prioritizing examinations
 2. administration
 a. routes (e.g., IV, oral)
 b. supplies (e.g., needles)
 c. procedural technique (e.g., venipuncture)
 d. dose calculation
 e. power injector
 1. fluoro-triggering
 2. timing bolus
 3. automatic bolus tracking
 3. contrast media types and properties
 (e.g., gadolinium, linear versus macrocyclic, ionic versus nonionic)
 4. appropriateness of contrast media to examination
 a. patient condition
 b. patient age and weight
 c. laboratory values (e.g., BUN, creatinine, eGFR)
 5. complications/reactions
 a. local effects (e.g., extravasation/infiltration, phlebitis)
 b. systemic effects
 1. mild
 2. moderate
 3. severe
 c. emergency medications
 d. technologist’s response and documentation
Safety

1. MRI Screening and Safety
 A. Screening and Education (patients, personnel, nonpersonnel)
 1. biomedical implants (active, passive)
 a. identify and document device, year, make, model
 b. research and verify device labeling (MR Safe, MR Conditional, MR Unsafe)
 c. identify device specific parameters
 2. ferrous foreign bodies
 3. medical conditions (e.g., pregnancy)
 4. prior diagnostic or surgical procedures
 5. topical or externally applied items (e.g., tattoos, medication patches, body piercing jewelry, monitoring devices, clothing)
 6. Level 1 and Level 2 MR personnel
 B. Electromagnetic Fields
 1. static field
 a. translational and rotational forces
 b. magnetohydrodynamic effect
 c. magnetohemodynamic effect
 d. magnetic shielding
 e. spatial gradient of the static magnetic field
 f. FDA guidelines
 2. RF field
 a. thermal heating (SAR)
 b. conductive loops
 c. proximity burns
 d. RF shielding
 e. FDA guidelines
 3. gradient field
 a. current induction
 b. acoustic noise
 c. peripheral neurostimulation
 d. magnetophosphenes
 e. FDA guidelines
 C. Equipment
 1. placement of conductors (e.g., ECG leads, coils, cables)
 2. cryogen safety
 3. ancillary equipment (MR Safe, MR Conditional MR Unsafe)
 D. Environment
 1. climate control (temperature, humidity)
 2. designated MR safety zones
 3. gauss lines
 4. emergency procedures (e.g., quench, fire)
Image Production

1. Physical Principles of Image Formation
 A. Instrumentation
 1. electromagnetism (e.g., Faraday’s law)
 2. static magnet
 a. types (superconductive, resistive, permanent)
 b. magnetic field strength
 c. shim coils
 3. RF system
 a. coil configuration
 b. surface coils
 c. phased array coils
 d. transmit and receive coils
 e. transmit and receive bandwidth
 f. pulse profile
 4. gradient system
 a. gradient coil configuration
 b. slew rate
 c. rise time
 d. duty cycle
 B. Fundamentals
 1. nuclear magnetism
 a. Larmor equation
 b. precession
 c. gyromagnetic ratio
 d. resonance
 e. RF pulse
 f. equilibrium magnetization
 g. energy state transitions
 h. phase coherence
 i. free induction decay (FID)
 j. magnetic susceptibility
 (e.g., diamagnetism, paramagnetism,
 superparamagnetism, ferromagnetism)
 2. tissue characteristics
 a. T1 recovery
 b. T2 decay (relaxation)
 c. T2* (susceptibility)
 d. proton (spin) density (PD)
 e. flow
 f. diffusion
 g. perfusion
 3. spatial localization
 a. vectors
 b. X, Y, Z coordinate system
 c. physical gradient
 d. slice select gradient
 e. phase-encoding gradient
 f. frequency (readout) gradient
 g. sampling frequency/rate
 h. k-space (raw data)

C. Artifacts (Cause, Appearance, and Compensation)**
 1. aliasing (wrap around)
 2. Gibbs, truncation
 3. chemical shift
 4. chemical misregistration
 5. magnetic susceptibility
 6. radiofrequency (e.g., zipper)
 7. motion and flow (e.g., patient motion, ghosting)
 8. partial volume averaging
 9. cross-talk
 10. cross-excitation
 11. moiré pattern
 12. parallel imaging artifacts
 13. eddy currents
 14. dielectric effect

D. Quality Control
 1. slice thickness
 2. spatial resolution
 3. contrast resolution
 4. signal to noise
 5. center frequency
 6. transmit gain
 7. geometric accuracy
 8. equipment inspection (e.g., coils, cables, door seals)

** The subsequent list of artifacts is not a complete list of all possibilities.
Image Production (continued)

2. Sequence Parameters and Options

 A. Imaging Parameters
 1. repetition time (TR)
 2. echo time (TE)
 3. inversion time (TI)
 4. number of signal averages (NSA, NEX)
 5. flip angle
 6. field of view (FOV)
 7. matrix
 8. pixel
 9. voxel
 10. number of slices
 11. slice thickness and gap
 12. phase and frequency
 13. echo train length (ETL)
 14. effective TE
 15. bandwidth (transmit, receive)
 16. concatenations (number of acquisitions per TR)
 17. b-value
 18. velocity encoding (VENC)

 B. Image Contrast
 1. T1 weighted
 2. T2 weighted
 3. PD weighted
 4. T2* weighted
 5. diffusion weighted imaging (DWI)
 6. susceptibility weighted imaging (SWI)

 C. Imaging Options
 1. 2D and 3D
 2. slice order (sequential, interleaving)
 3. spatial saturation pulse/band
 4. gradient moment nulling
 5. suppression techniques (e.g., fat, water, Dixon method)
 6. physiologic gating and triggering
 7. in-phase and out-of-phase
 8. rectangular FOV
 9. anti-aliasing
 10. parallel imaging
 11. filtering

FOCUS OF QUESTIONS:

Questions will address the interdependence of the imaging parameters, weightings, and options listed on the left, and how they affect image quality.

Image Quality
 • contrast to noise ratio (CNR, C/N)
 • signal to noise ratio (SNR, S/N)
 • spatial resolution
 • acquisition time
Image Production (continued)

3. Data Acquisition, Processing, and Storage

A. Pulse Sequences
 1. spin echo (SE)
 a. conventional spin echo
 b. fast spin echo (FSE)
 2. inversion recovery (IR) (e.g., STIR, FLAIR)
 3. gradient echo (GRE)
 a. conventional gradient echo
 b. spoiled gradient echo
 c. coherent gradient echo
 d. steady state free precession (SSFP)
 e. fast gradient echo
 f. MRA/MRV
 1. flow dynamics
 2. time-of-flight (TOF)
 3. phase contrast
 4. contrast enhanced
 4. echo planar imaging (EPI)
 5. diffusion weighted imaging (DWI)
 6. susceptibility weighted imaging (SWI)
 7. perfusion
 8. spectroscopy

B. Data Manipulation
 1. k-space mapping and filling
 (e.g., centric, spiral, keyhole)
 2. fast Fourier transformation (FFT)
 3. Nyquist theorem
 4. postprocessing
 a. maximum intensity projection (MIP)
 reformation
 b. multiplanar reformation (MPR)
 c. subtraction
 d. apparent diffusion coefficient (ADC) mapping
 e. CINE

C. Informatics
 1. hard/electronic copy (e.g., DICOM file format)
 2. archive
 3. PACS/MIMPS and electronic medical record (EMR)
 4. security and confidentiality
 5. networking
Procedures

1. Neurological
 A. Head and Neck
 1. brain
 2. brain for MS
 3. brain for seizure
 4. infant brain (less than one year old)
 5. brain perfusion
 6. CSF flow
 7. brain spectroscopy
 8. internal auditory canals (IACs)
 9. pituitary
 10. orbits
 11. cranial nerves (nonIACs)
 12. sinuses
 13. soft tissue neck (e.g., parotids, thyroid)
 14. vascular head (MRA, MRV)
 15. vascular neck (MRA, MRV)
 B. Spine
 1. cervical
 2. thoracic
 3. lumbar
 4. sacroiliac (SI) joints
 5. sacrum-coccyx
 6. total spine
 7. lumbar plexus

FOCUS OF QUESTIONS

Questions about each of the studies listed on the left may focus on any of the following factors:

Anatomy and Physiology
 • imaging planes
 • pathological considerations
 • protocol considerations
 • patient considerations (e.g., pediatric, geriatric, bariatric, trauma)

Patient Set-Up
 • patient data input
 • coil selection and position
 • patient orientation
 • landmarking
 • physiologic gating and triggering

Contrast Media
 • effect on images

Additional Procedures
 • CINE (e.g., CSF flow study, TMJs)
 • surgical planning
Procedures (continued)

2. Body
 A. Thorax
 1. chest (noncardiac)
 2. breast
 3. vascular thorax
 4. brachial plexus
 B. Abdomen
 1. liver
 2. pancreas
 3. adrenals
 4. kidneys
 5. enterography
 6. vascular abdomen (MRA, MRV)
 7. MRCP
 C. Pelvis
 1. soft tissue pelvis
 (e.g., bladder, rectum)
 2. female soft tissue pelvis
 (e.g., uterus)
 3. male soft tissue pelvis
 (e.g., prostate)
 4. vascular pelvis (MRA, MRV)

3. Musculoskeletal
 A. Temporomandibular Joints (TMJs)
 B. Sternum
 C. Sternoclavicular (SC) Joints
 D. Shoulder
 E. Long Bones (upper extremity)
 F. Elbow
 G. Wrist
 H. Hand
 I. Fingers (nonthumb)
 J. Thumb
 K. Bony Pelvis
 L. Hip
 M. Long Bones (lower extremity)
 N. Knee
 O. Ankle
 P. Foot
 Q. Arthrogram
 R. Vascular Extremities (e.g., runoff MRA)
 S. Soft Tissue (e.g., tumor, infection)
FOCUS OF QUESTIONS

Questions about each of the studies listed on the left may focus on any of the following factors:

Anatomy and Physiology
• imaging planes
• pathological considerations
• protocol considerations
• patient considerations (e.g., pediatric, geriatric, bariatric, trauma)

Patient Set-Up
• patient data input
• coil selection and position
• patient orientation
• landmarking
• physiologic gating and triggering

Contrast Media
• effect on images

Additional Procedures
• CINE (e.g., CSF flow study, TMJs)
• surgical planning