Verification example – Coped beam

Type of connection: Beam to beam fin plate connection

Unit system: Metric

Designed acc. to: CSA S14-16 Investigated: Base material

Plate Materials: W series steel grade

Bolts: M20, grade A325, standard holes with diameter 22 mm

Geometry:

Applied forces:

N = 0 kN

V = -500 kN

M = 0 kNm

Procedure:

Block shear resistance is checked on a coped beam (thickness of the web 6 mm), which is designed to fail while other components are still undamaged.

IDEA StatiCa Connection

The resistance of plate in IDEA is determined at 5% limit strain. Steel grade 300W is shown on following pictures.

CISC

$$T_{\rm r} = \Phi_{\rm u} \cdot \left[U_{\rm t} \cdot A_{\rm n} \cdot F_{\rm u} + 0.6 \cdot A_{\rm gv} \cdot \frac{\left(F_{\rm y} + F_{\rm u} \right)}{2} \right]$$

For steel grades with $F_y > 460$ MPa, $(F_y + F_u)/2$ is replaced with F_y .

Comparison:

Steel			Block shear resistance:			
grade	Fy	F u	CISC	IDEA	IDEA/CISC	
260W	260	410	335	215	64%	
300W	300	450	374	244	65%	
350W	350	450	395	282	71%	
380W	380	480	425	305	72%	
400W	400	520	455	321	70%	
480W	480	590	480	379	79%	
550W	550	620	544	430	79%	

The results of IDEA StatiCa Connection design gives conservative values of block shear resistance compared to manual computation according to CSA 16-14. This is caused mainly due to the use of the tensile force, $F_{\rm u}$, in the analytical formula. IDEA works only with the yield strength, $F_{\rm y}$, and therefore the results differ with increasing difference between the tensile strength and yield strength. Also, due to the one-sided fin plate connection, the fin plate slightly bends and thus decreases the resistance.

