

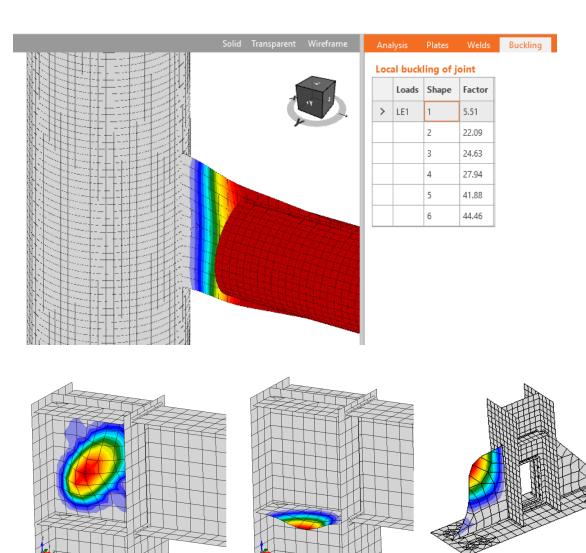
Analysis types for Steel Connection Design

November 30th 12:00 pm EST

Agenda

- Buckling analysis
- Design resistance
- Stiffness analysis
- Capacity design
- Fatigue analysis
- Fire design
- Horizontal Tying resistance

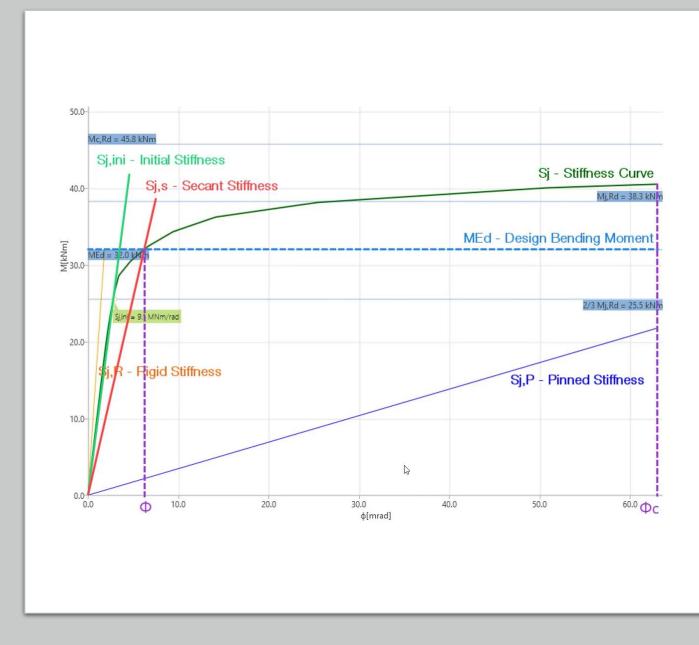
Buckling analysis


- Linear buckling analysis that provides buckling load factor
- Buckling mode shapes
- Deformation is unitless
- Critical mode shape is always the first

How to evaluate?

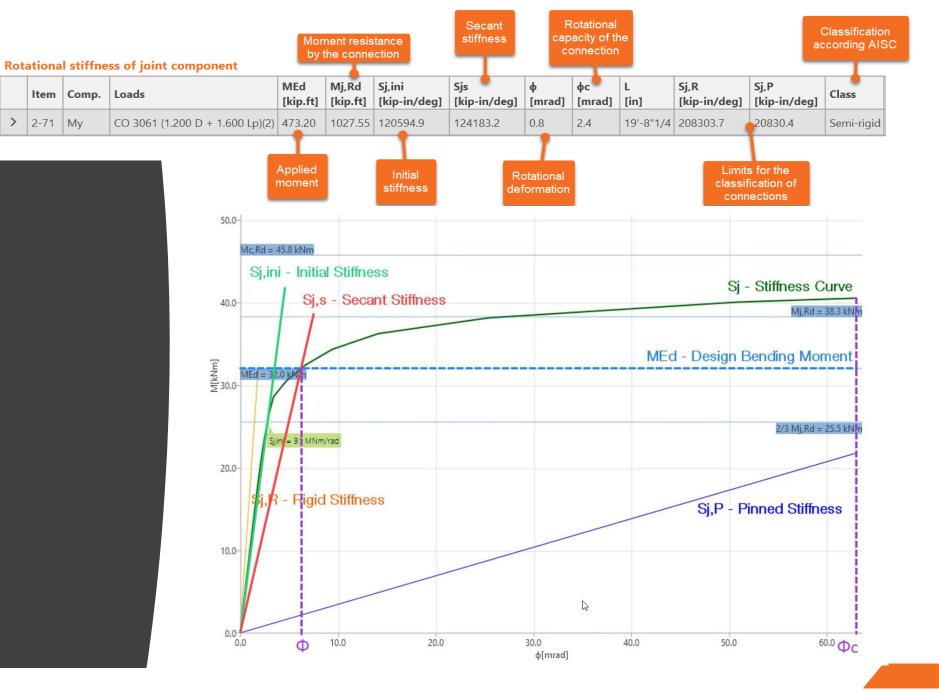
- Identify where the buckling is happening:
 - a. Plates connecting individual members
 - b. Stiffening plates in the joint stiffeners, ribs, short haunches
 - c. Closed sections and thin-walled sections
- Compare buckling factor vs recommended limit factors

Recommended limit factors


- Global buckling: affecting the stability of the joint
- Local buckling: not affecting the stability of the joint, but influencing the plates in other parts of the connection
- <u>Buckling factor- AISC</u>
- <u>Research Stability of bracket</u>
 <u>plates</u>

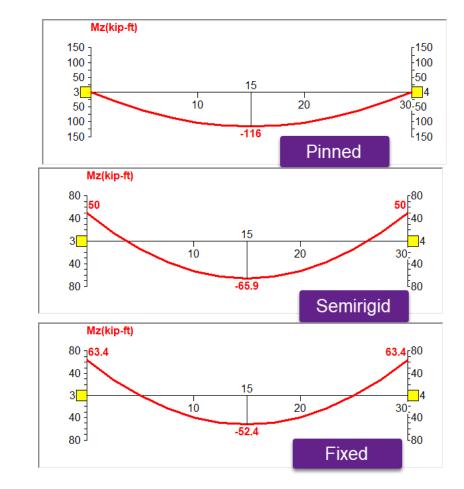
Buckling type	Steel Fy	Recommended limit factor
Global	36 ksi	αcr>12.7
Global	50 ksi	αcr>9.16
Local		αcr>3 – Member plates αcr>4 – Bracket plates

Stiffness analysis


- Analyze the rotational/axial stiffness of the selected member
- Loads only applied to the analyzed member
- Only My, Mz or N forces
- Creates a moment vs rotation diagram
- Stiffness classification according AISC
- Stiffness analysis blog

//=[===] StatiCa®

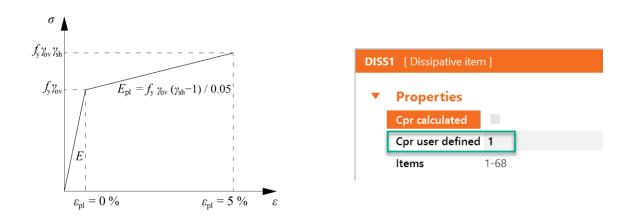
>



//=/=/=/ StatiCa[®]

Stiffness input in your global FEM Model

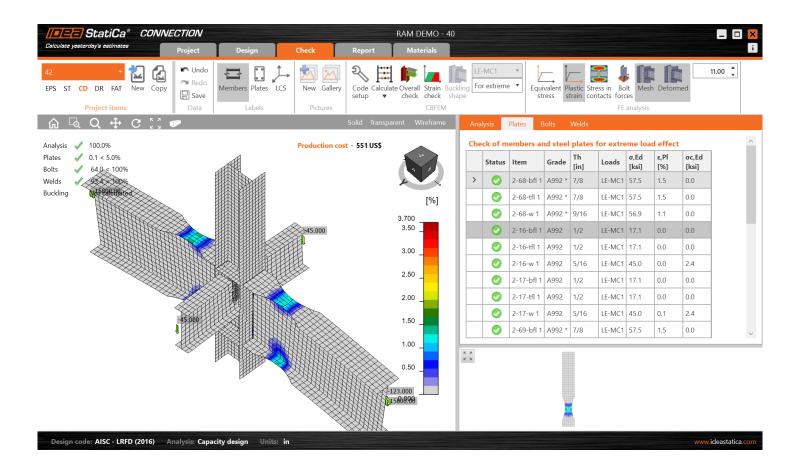
Release					
FX KFX	0	kip/ft	MX KMX	0	kip-ft/deg.
FY KFY	0	kip/ft	🗌 MY 🔽 KMY	0	kip-ft/deg.
FZ KFZ	0	kip/ft	MZ KMZ	0	kip-ft/deg.


1	Assignments			
	Section Property	W10×60		
>	Moment Frame Beam Type	Standard Moment Connection		
>	Property Modifiers	None		
~	End Releases	M33		
	> Axial	None		
	> Shear 2 (Major)	None		
	> Shear 3 (Minor)	None		
	> Torsion	None		
	> Moment 22 (Minor)	None		
	 Moment 33 (Major) 	End I		
	Releases	End I		
	Stiffness I (kip/in)	0		
≻	Slab Line Releases	None		
>	End Length Offsets	Auto		
≻	Insertion Point	CP at 8 - Top Center		
>	Output Stations	Max Station Spacing		
	Local Axis 2 Angle (deg)	Default		
	Springs	None		
	Line Mass (lb-s²/ft²)	0		
>	TC Limits	None		
	Spandrel	None		
	Material Overwrite	None		
	Auto Mesh	Yes: .lt .lnt		

StatiCa[®]

Capacity design

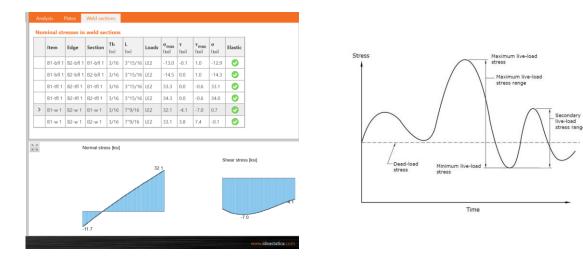
- A member (dissipative item) is selected to increase its strength and modify its material properties.
- Overstrength factor, Ry
- Hardening factor, Cpr

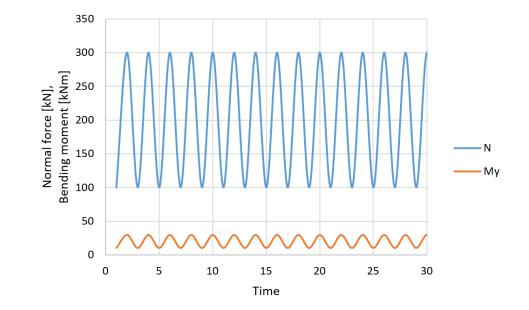

Design data

	Grade	φ [-]	Ry [-]	Fy [ksi]	Fy,FEM [ksi]	Cpr [-]	ε,lim [%]
>	A992	0.90	-	50.0	45.0	-	5.0
	A992 *	-	1.10	50.0	55.0	1.15	5.0

Capacity design fit


- Prequalified connections modeling and plastic hinge confirmation
- Interaction with other members and connections
- Panel zone shear check
- Continuity plates
- <u>Tutorial</u>


Design Resistance


- Provides a percentage of extra load that the joint can support until it fails
- Starting load input is needed
- DR checks for the following components:
 - Plastic strain in plates
 - Bolts shear, tension, and a combination of tension and shear
 - Anchors tension and shear steel resistance
 - Welds

Fatigue analysis

- Determine normal and shear stress range between two load cases
- It is assumed to be used for the design of high-cycle fatigue details, where no yielding is expected.
- Stresses are available for: bolts, welds and plates
- Fatigue due to cyclic loading

Fire design

- Set the temperature for each member or plate separately.
- Reduced material characteristics are used based on preset temperature and material degradation curve.
- Resistance of bolts and welds is reduced. Their stiffness remains the same as at ambient temperature.
- Thermal expansion is neglected and not assumed in any models.

//=[===] StatiCa®

AISC Material properties at elevated Temperatures

Properties of Steel at Elevated Temperatures				
Steel Temperature, °F (°C)	$k_E = E(T)/E$ $= G(T)/G$	$k_p = F_p(T)/F_y$	$k_y = F_y(T)/F_y$	$k_u = F_u(T)/F_y$
68 (20)	1.00	1.00	*	*
200 (93)	1.00	1.00	*	*
400 (200)	0.90	0.80	*	*
600 (320)	0.78	0.58	*	*
750 (400)	0.70	0.42	1.00	1.00
800 (430)	0.67	0.40	0.94	0.94
1000 (540)	0.49	0.29	0.66	0.66
1200 (650)	0.22	0.13	0.35	0.35
1400 (760)	0.11	0.06	0.16	0.16
1600 (870)	0.07	0.04	0.07	0.07
1800 (980)	0.05	0.03	0.04	0.04
2000 (1100)	0.02	0.01	0.02	0.02
2200 (1200)	0.00	0.00	0.00	0.00
Use ambient properties	•	•		

TABLE A-4.2.1

TABLE A-4.2.3 Properties of Group A and Group B High-Strength Bolts at Elevated Temperatures

,	
Bolt Temperature, °F (°C)	$F_{nt}(T)/F_{nt}$ or $F_{nv}(T)/F_{nv}$
68 (20)	1.00
200 (93)	0.97
300 (150)	0.95
400 (200)	0.93
600 (320)	0.88
800 (430)	0.71
900 (480)	0.59
1000 (540)	0.42
1200 (650)	0.16
1400 (760)	0.08
1600 (870)	0.04
1800 (980)	0.01
2000 (1100)	0.00

Q&A

Thank you

David Eckrote

• Director

• David.Eckrote@ideastatica.com

Yann Gueguen

- Regional Engineer
- Yann.Gueguen@ideastatica.com

Andrea Castelo

- Product Engineer
- Andrea.Castelo@ideastatica.com

