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Summary
Background Chest x-rays are widely used in clinical practice; however, interpretation can be hindered by human error 
and a lack of experienced thoracic radiologists. Deep learning has the potential to improve the accuracy of chest x-ray 
interpretation. We therefore aimed to assess the accuracy of radiologists with and without the assistance of a deep-
learning model.

Methods In this retrospective study, a deep-learning model was trained on 821 681 images (284 649 patients) from five 
data sets from Australia, Europe, and the USA. 2568 enriched chest x-ray cases from adult patients (≥16 years) who 
had at least one frontal chest x-ray were included in the test dataset; cases were representative of inpatient, outpatient, 
and emergency settings. 20 radiologists reviewed cases with and without the assistance of the deep-learning model 
with a 3-month washout period. We assessed the change in accuracy of chest x-ray interpretation across 127 clinical 
findings when the deep-learning model was used as a decision support by calculating area under the receiver 
operating characteristic curve (AUC) for each radiologist with and without the deep-learning model. We also compared 
AUCs for the model alone with those of unassisted radiologists. If the lower bound of the adjusted 95% CI of the 
difference in AUC between the model and the unassisted radiologists was more than –0·05, the model was considered 
to be non-inferior for that finding. If the lower bound exceeded 0, the model was considered to be superior.

Findings Unassisted radiologists had a macroaveraged AUC of 0·713 (95% CI 0·645–0·785) across the 127 clinical 
findings, compared with 0·808 (0·763–0·839) when assisted by the model. The deep-learning model statistically 
significantly improved the classification accuracy of radiologists for 102 (80%) of 127 clinical findings, was statistically 
non-inferior for 19 (15%) findings, and no findings showed a decrease in accuracy when radiologists used the deep-
learning model. Unassisted radiologists had a macroaveraged mean AUC of 0·713 (0·645–0·785) across all findings, 
compared with 0·957 (0·954–0·959) for the model alone. Model classification alone was significantly more accurate 
than unassisted radiologists for 117 (94%) of 124 clinical findings predicted by the model and was non-inferior to 
unassisted radiologists for all other clinical findings.

Interpretation This study shows the potential of a comprehensive deep-learning model to improve chest x-ray 
interpretation across a large breadth of clinical practice.

Funding Annalise.ai.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Chest x-ray is the most frequently used medical imaging 
test worldwide.3 This relatively simple method has allowed 
investigation of chest pathology, including infection, 
cardiac pathology, chest trauma, and malignancy, in 
almost every country worldwide. Advances in digital 
image acquisition and safe principles of ionising radiation 
use have led to improved image quality, reduced radiation 
burden, and wide availability.

However, diagnostic use of chest x-rays has some 
limitations. Assessment of soft tissue contrast is limited 
by two-dimensional projection of x-rays through multiple 
organs, with superimposed densities leading to reduced 
sensitivity for subtle findings.4 90% of cases in which a 

lung cancer diagnosis was missed were due to errors in 
the interpretation of chest x-rays.5 Human error, due to 
factors such as fatigue or interruptions, and reader 
inexperience contribute to inaccuracy;4,6 however, few 
experienced thoracic radiologists (radiologists who are 
fellowship trained and have >5 years of post-training 
experience) are avail able. For these reasons, several 
attempts have been made to create artificial intelligence 
(AI) systems to aid radiologists in the interpretation of 
chest x-rays.7,8 Deep-learning diagnostic image processing 
algorithms based on convolutional neural networks have 
shown strong performance.9

However, although usually highly accurate, most deep-
learning systems have a narrow scope and are often 
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limited to a single finding or a small number of findings,7,10 
restricting their use in clinical practice. For example, a 
decision support system that finds a pneumothorax but 
misses a pulmonary mass is of questionable clinical 
benefit. Furthermore, lateral radiographs are often not 
assessed, despite clear evidence that they contain cli-
nically important information.11

Deep-learning chest x-ray analysis systems have been 
developed to automate lung segmentation and bone 
exclusion;12 diagnose tuberculosis;13 detect pneumonia,14,15 
COVID-19,16 pneumothorax,17 pneumoconiosis,18 and 
lung cancer;19 identify the position of feeding tubes;20 and 
to predict temporal changes in imaging findings.21 Deep-
learning diagnostic tools have also been shown to 
improve the classification accuracy of radiologists in the 
detection of pulmonary nodules,22 pneumoconiosis,18 
pneumonia,14,15 emphysema,7 and pleural effusion.23 
Tschandl and col leagues24 showed that coupling AI 
models with clinicians can lead to higher diagnostic 
accuracy than either AI or physicians alone. Some 
evidence suggests that use of AI can reduce reporting 
time14 and that adjunct diagnostic tools are especially 
useful for junior clinicians.25 Several studies have 
compared the accuracy of AI and radio logists; however, 
the number of radiologists included in these studies was 
often less than ten.14,26,27

 Here we evaluate a deep-learning model designed to 
assist clinicians in the interpretation of chest x-rays, 
encompassing the full range of clinically relevant 
findings on frontal and lateral chest x-rays.

Methods
Study design and participants
In this retrospective, multireader multicase study we 
evaluated the diagnostic accuracy of 20 radiologists 
with and without the aid of a deep-learning system. 
Radiologists interpreted cases without access to the 
deep-learning tool, then interpreted the same cases with 
the support of the deep-learning tool after a 3-month 
washout period. We assessed the change in diagnostic 
accuracy of radiologists when the deep-learning model 
was used as a decision support, and also compared the 
performance of the model alone with that of unassisted 
radiologists.

Model development and evaluation involved three 
groups of radiologists (147 fully accredited radiologists 
in total): 120 consultant radiologists from Vietnam 
labelled the training dataset, seven specialist thoracic 
radiologists from Australia did ground truth label-
ling for the test dataset, and a third group of 
20 consultant radiologists from Vietnam interpreted 
cases in the test dataset. Training dataset labelling 
defined the radiological findings present on each 
case in the training dataset. Ground truth labelling 
defined the radiological findings present in the test 
dataset.

An overview of the study design is presented in figure 1. 
This study was reviewed and approved by the human 
research ethics committee at the University of Notre 
Dame Australia (Sydney, NSW, Australia; approval 
number 2020-127S).

Research in context

Evidence before this study
Deep learning has the potential to improve the accuracy and 
speed of chest x-ray diagnosis. We searched PubMed and Google 
Scholar from Jan 1, 1999, to Oct 1, 2020, using search terms 
“machine learning chest x-ray”, “deep learning”, “artificial 
intelligence”, “chest x-ray”, “chest radiography”, and “automat* 
detect*”. Our search identified 559 machine learning studies in 
chest x-ray diagnostics, which were mostly small proof-of-
concept studies. Most previously developed deep-learning chest 
x-ray interpretation models did not compare clinician accuracy 
with and without the use of artificial intelligence, focused on 
only one or a few clinical findings, solely used public prelabelled 
datasets, did not appropriately address hidden stratification, 
or involved only a small group (less than ten) of clinical 
radiologists. We therefore evaluated the effects of a 
comprehensive deep-learning model on the interpretation of 
chest x-rays by radiologists.

Added value of this study
Our study evaluated the effects of a deep-learning model for 
127 clinical findings on the accuracy of chest x-ray interpretation 
by radiologists. This model is, to our knowledge, the most 
comprehensive to date, and was trained on a labelled dataset 

larger than that used in previous studies (821 681 chest x-rays 
from 520 014 cases). Diagnostic accuracy was compared with a 
robust ground truth. When comparing the performance of 
radiologists with and without assistance from the deep-learning 
model, we found that the model improved performance across 
most chest x-ray clinical findings. We report the full underlying 
ontology tree, which represents the comprehensive chest x-ray 
clinical interpretation framework of a practising radiologist, 
to enable future research. Our model has been developed into a 
clinical decision support tool.

Implications of all the available evidence
Radiologist accuracy improved across a large number of clinical 
chest x-ray findings when assisted by the deep-learning model. 
Effective implementation of the model has the potential to 
augment clinicians and improve clinical practice. The labelled 
training dataset continues to grow, and research is being done 
to iteratively and progressively improve the model over time. 
Detailed subpopulation and error analyses are also being done 
to enable model development. Research is underway to assess 
the generalisability of results to various clinical environments 
and health systems.
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Data sources and processing
Chest x-rays used for the training dataset were obtained 
from multiple datasets: I-MED Radiology Network 
(I-MED; Australia), MIMIC (Beth Israel Deaconess 
Medical Center, Boston, MA, USA), ChestX-ray14 (NIH 
Clinical Center, Bethesda, MD, USA), CheXpert (Stanford 
University Medical Center, CA, USA), and PadChest 
(Hospital San Juan, Spain; appendix p 4).28–31 Images from 
patients (≥16 years) who had at least one frontal chest 
x-ray were included in the test dataset. Selected cases 
were from inpatient, outpatient, and emergency settings. 
Digital Imaging and Communications in Medicine tags 
were removed. Protected health information (excluding 
age and sex) was removed from reports through an 
automated deidentification process, and patient and case 
identification were anonymised to deidentify patients 
while retaining the temporal and logical association 
between cases and patients. Image data were preserved at 
the original resolution and bit-depth.

127 chest x-ray findings were identified prospectively by 
three clinical experts. A chest x-ray finding ontology tree 
was developed to evaluate and develop the test set 
(appendix p 5). Each of the findings was defined 
by consensus between three Australian radio logists, 
including one subspecialist thoracic radiologist. All 
participating radiologists in the labelling and evaluation 
phases were trained to identify chest x-ray findings 
according to these definitions.

Each case in the training set was independently labelled 
by three radiologists. Cases were randomly shuffled and 
placed in a queue. After the radiologist labelled a case, 
they were allocated the next case according to the random 
queue order. If a case had already been labelled by that 
radiologist, the next case in the queue was drawn instead. 
This ensured that each case was labelled by three 
different radiologists. Each case consisted of multiple 
images and the clinical report, which was consistent for 
each radiologist. Each radiologist was masked to the 
labels of the other two.

For the training dataset, clinical reports, age, and sex 
were provided, together with frontal and lateral chest 
x-rays. Each finding was assigned a present or absent label. 
Labels consisted of both classification labels on a case level, 
indicating whether each finding was present in the entire 
case (multiple images) and each segment for relevant 
findings. The consensus for each finding for each triple-
read case was generated as a consensus score between 0 
and 1 using the Dawid–Skene consensus algorithm,32 
which considers the relative accuracies of each labeller for 
each finding. Segmentation overlays were generated by a 
single radiologist to localise and depict pathology. This was 
used to train the model to produce overlay outputs.

In addition to training the model on the original labels, 
derived training labels were created based on the 
ontology tree. For example, focal airspace opacity and 
airspace opacity—multifocal each belonged to the same 
group of findings: airspace opacity. Because of this, any 

case that was labelled with either focal airspace opacity or 
airspace opacity—multifocal was also automatically 
labelled with airspace opacity. This meant that the model 
learnt not just from the original labels but from the 
structure of the ontology tree. It was penalised less if it 
classified the original label incorrectly but still correctly 
classified the parent label.

Test dataset cases were excluded from the model training 
process such that no patient within the test dataset was 
present within the training dataset. The test dataset 
included cases from the I-MED and MIMIC datasets only, 
and was designed to contain approximately 50% of cases 
from I-MED and 50% from the MIMIC dataset. Cases 
were randomly drawn to achieve the target number of 
cases per finding, while keeping the total number of cases 
as low as possible. Commonly co-occurring findings were 
controlled so that episodes of co-occurrence comprised no 
more than 50% of all cases of that finding within this 
dataset or did not exceed the baseline co-occurrence rate in 
the training dataset by more than 10%.

Ground truth labels for the test dataset were 
determined by consensus between three specialist 
thoracic radiologists from Australia drawn from a pool 
of seven who did the ground truth labelling. Radiologists 
had access to anonymised clinical information, past and 
future chest x-ray images and reports, and, where 
available, relevant chest CT reports. They did not have 
access to the outputs of the deep-learning model. The 
ground truth labels were derived from a Dawid–Skene33 
consensus algorithm from independent labelling of the 
cases by the three radiologists.

Figure 1: Study design
An ontology tree containing 127 clinical findings was developed, datasets were gathered and aggregated, and 
clinical findings were labelled by a large team of radiologists. The test set contained past and future images, 
together with clinical reports, which facilitated robust ground truth labelling by three thoracic subspecialist 
radiologists. The deep-learning model was trained with five-fold cross-validation. The test set was assessed by 
20 radiologists both with and without deep learning assistance. *Data sources were I-MED and MIMIC-CXR. 
†Data sources were I-MED, MIMIC-CXR, NIH ChestX-ray14, CheXpert, and PadChest (appendix p 4).

4568 images assessed without AI 4568 images assessed with AI 

Performance evaluated against gold standard labels

Developed ontology tree with 127 clinical findings

3 month washout 

Selection and processing of the test set Development and training of the
deep-learning model

4568 images from 2568 patients
included in the test set*

821 681 images from 520 014 patients
included in the training set†

Ground truth labelling Training and validation of the
deep-learning model

See Online for appendix
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Before labelling or ground truth annotation, radio-
logists underwent rigorous training and a screening 
examination, which involved familiarisation with the 
annotation tool, reviewing definitions of each clinical 
finding, and training on a dataset of 113 chest x-rays from 
the I-MED database covering most findings on the 
ontology tree. Each labeller was then assessed with the 
F1 metric (the harmonic mean of precision [positive 
predictive value] and recall [sensitivity]).33 Each ground 
truth labeller had an F1 score averaged across all findings 
exceeding 0·5, and each training data labeller an F1 score 
exceeding 0·45.

20 radiologists, each with 5–25 years of clinical 
experience (median 10·5 years [IQR 6·75–16·75]) after 
completing radiology specialist training, interpreted all 
cases in the test dataset. Patient age and sex were shown, 
but no radiological report or other comparison images 
were provided. As such, radiologists did a research read 
in both study groups rather than a clinical read (ie, 
radiologists identified findings in a research database, 
but did not write a detailed clinical report). Radiologists 
were asked to rate their confidence in the presence of 
each of the 127 findings using a five-point scale (from 
0 [unlikely] to 4 [consistent]; appendix p 4) and did not 
have access to their labelling results when they reviewed 
cases for the second time after the 3-month washout 
period.

Labelling, ground truth annotation, and interpretation 
were done with the same custom-built, web-based digital 
imaging and communications in medicine viewer 
(Annalise Web Labelling Tool, Annalise.ai, Sydney, NSW, 
Australia). Radiologists viewed images and recorded 
responses on diagnostic quality monitors and hardware, 
and interpretation times were recorded by the software 
platform.

Deep learning model
The deep-learning tool consisted of three convolutional 
neural networks designed for clinical decision support: 

an image projection classification model (attributes 
model), a clinical finding classification model (classifica-
tion model), and a clinical finding segmentation model 
(segmentation model). The attributes and classification 
models were based on the EfficientNet architecture,34 

whereas the segmentation model was based on the 
U-Net35 architecture with an EfficientNet backbone. 
Focal loss36 was minimised with respect to the Dawid–
Skene consensus labels. Class-balanced loss weighting37 
accounted for class imbalance and models were trained 
using five-fold cross-validation.

We assessed the accuracy of the classification model 
(version 1.2.0; figure 2). Segmentation output was 
displayed with the model output, but segmentation was 
not directly evaluated. The attributes model was not 
directly evaluated, but it prevented the system from 
producing output for cases that did not have a 
recognisable frontal anterior–posterior or posterior–
anterior image.

Statistical analysis
For the test dataset, we calculated that a minimum dataset 
of 2568 cases was required to detect a mean difference in 
area under the receiver operating characteristics (ROC) 
curve (AUC) of 0·02 in the diagnostic accuracy of at least 
18 radiologists labelling all 127 findings (alpha=0·05, 
beta=0·8). 20 radiologists were recruited to mitigate the 
risk of dropouts; all of the radiologists completed the 
assessments.

We first assessed the change in AUC when radiologists 
were assisted by the model. Clinical findings for which 
model output was insufficiently powered were retained 
for this analysis, but discarded for the comparison 
between the model alone and unassisted radiologists.

The positive predictive value, sensitivity, and specificity 
for each finding were estimated to assess performance. 
AUC ROC curves were plotted. The generalised Roe and 
Metz model and US Food and Drug Administration 
iMRMC (version 4.0.1) software were used to analyse 
radiologist accuracy (measured as the AUCROC) 
with and without the assistance of the model.38,39 The 
Matthews correlation coefficient represents the quality 
of a binary classifier, ranging from –1 (total disagreement) 
to +1 (total agreement).40,41 An AUC difference more 
than 0·05 and a Matthews correlation coefficient dif-
ference more than 0·1 were considered to be superior.42,43 
Therefore, findings for which the lower bound of the 
95% CI was less than –0·05 were considered 
inconclusive, findings for which the lower bound was 
between –0·05 and 0·0 were considered non-inferior, 
and findings for which the lower bound was higher 
than 0·0 were considered superior to unaided 
radiologists.

Positive predictive value, sensitivity, specificity, and 
Matthews correlation coefficients for each radiologist 
were calculated by binarising confidence scores for 
each finding. Any finding with a rating of one or 

Figure 2: Deep-learning tool interface
The clinical findings detected by the deep-learning model are listed on the interface and an image segmentation 
overlay is presented. The finding likelihood score and CI are displayed as a bar graph under the x-ray. Patient details 
have been replaced with dummy data.
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more was considered positive. Bootstrapping was used 
to assess statistically significant differences in the 
average Matthews correlation coefficient across the 
20 radiologists for each finding between assessment 
with and without the deep-learning tool. When 
bootstrapping was done, 10 000 bootstraps of all cases 
were drawn with resampling to estimate the empirical 
distribution of the parameter concerned. A two-way 
repeated measures ANOVA was used to compare mean 
interpretation time, accounting for between-labeller 
variation.

A model that has high performance for many findings, 
but fails to accurately identify crucial findings is not 
useful in a real-world setting. A subset of 34 crucial 
findings were identified before the start of the study by a 
subspecialist thoracic radiologist (appendix p 4). These 
crucial findings were determined before the analysis and 
were used to determine the utility of the model. These 
crucial findings represented the findings most likely to 
be clinically relevant.

The AUC of the deep-learning model was compared 
with the average radiologist AUC for each finding with 
a bootstrapping technique. The Benjamini–Hochberg 
procedure39 was used to control the false positive rate, 
accounting for multiple comparisons.

Significance testing and data processing were done 
with Python (version 3.7.5), Pandas (version 1.1.0), and 
NumPy (version 1.19.1). Scikit-learn (version 0.22.2.post1), 
TensorFlow (version 2.3.0), and EfficientNet (version 1.0.0) 
were used for design, training, and validation of the deep 
learning model. Two researchers (JCYS and CHMT) 
independently did the analysis to verify results. The 
statistical analyses were verified by an independent 
biostatistician.

Role of the funding source
Employees of the funder (Annalise.ai) were involved in 
study design, data collection, data analysis, data inter-
pretation, and writing of the report. The two co-chief 
executive officers of the funder were not involved in data 
analysis, data interpretation, or writing of the report, but 
one was involved in study design and one oversaw data 
collection.

Results
A total of 821 681 images from 520 014 cases were 
labelled and included in the training dataset (table 1). 
The median number of model training cases per clinical 
finding was 5427 (IQR 1515–18 804). 4568 images from 
2568 cases were included in the test dataset (table 1). 
All 2568 cases were classified by the radiologists and 
2551 cases were classified by the model. 17 (0·6%) cases 
were not interpreted by the attributes model: nine were 
rejected because no frontal image was recognised by the 
model, four were rejected because no chest x-ray image 
was found by the model, three raised a processing error, 
and one had missing data.

Initially, 127 clinical findings were identified on the 
ontology tree. However, review of the training and test 
datasets showed that suboptimal intercostal catheter 
position, pneumobilia, and portal venous gas were 
infrequently present in both datasets. Pneumobilia and 
portal venous gas were therefore not included in the 
secondary outcome analysis. For intercostal catheter 
position, the initially separate labels of suboptimal 
intercostal catheter and satisfactory intercostal catheter 
were merged to create a single label to identify the 
presence of an intercostal catheter, which was sufficiently 
prevalent in the test dataset for analysis. Four findings 
were dropped (pneumobilia, portal venous gas, in-position 
intercostal catheter and suboptimal intercostal catheter) 
and one parent finding was added (intercostal catheter), 
resulting in the change from 127 to 124 findings. To 
alleviate concerns regarding multiple comparisons, these 
three   additional comparisons were adjusted using the 
Benjamini–Hochberg procedure for 127 comparisons for 
the assessment of change in AUC when radiologists were 
assisted by the model. 124 clinical findings were predicted 
by the model, which formed the basis of the comparison 
between the performance of the model alone and that of 
unassisted radiologists.

Unassisted radiologists had a macroaveraged AUC of 
0·713 (95% CI 0·645–0·785) across the 127 clinical 
findings. The lowest AUC was obtained for peribronchial 
cuffing (0·562 [0·504–0·697]). The highest AUCs 
were obtained for electronic cardiac devices (0·979 

Training dataset Test dataset

Datasets MIMIC, I-MED, 
ChestX-ray14, 
CheXpert, and 
PadChest

MIMIC and I-MED

Patients 284 649 2286

Studies 520 014 2568

Images 821 681 4568

Sex

Male 125 246 (44%) 663 (29%)

Female 125 245 (44%) 640 (28%)

Unknown 34 158 (12%)* 983 (43%)*

Mean age, years 65 (18) 74 (15)

View positions

Posterior–anterior 91 088 (32%) 640 (28%)

Anterior–posterior 74 009 (26%) 754 (33%)

Lateral 68 316 (24%) 709 (31%)

Unknown or other 76 855 (27%) 183 (8%)

Median number of 
findings per study

5 (3–7) 7 (5–9)

Data are n (%), mean (SD), or median (IQR). The MIMIC and I-MED datasets 
contained more complete data than the other publicly available datasets, which 
meant they were more suitable for use in the test dataset. They enabled a 
high-quality ground truth labelling process. *MIMIC does not provide complete 
demographic data for all studies.

Table 1: Dataset characteristics
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–0·1 –0·05 0·1 0·2 0·3 0·40

Change in AUCChange in AUC
–0·1 –0·05 0·1 0·2 0·3 0·40

Osteopenia  
Post resection volume loss 
Hiatus hernia
Hyperinflation 
Diffuse interstitial  
Pectus excavatum  
Segmental collapse*
Biliary stent
Basal predominant interstitial
Patient rotation
Upper zone fibrotic volume loss 
Multiple masses or nodules*
Lung sutures
Spine arthritis 
Bronchiectasis 
Tracheal deviation* 
Reduced lung markings 
Simple pneumothorax*
Suboptimal nasogastric tube*
Loculated effusion*
Mastectomy 
Clavicle lesion
Spine wedge fracture
Atelectasis
Suboptimal central line* 
Diffuse lower airspace opacity*
Unfolded aorta
Tension pneumothorax* 
Air space opacity–multifocal* 
Abdominal clips
Rib lesion
Pleural mass 
Humeral lesion 
Gastric band 
Calcified mass <5mm
Distended bowel 
Neck clips
Diaphragmatic elevation
Diffuse fibrotic volume loss
Focal airspace opacity*
Scoliosis
Kyphosis
Upper predominant interstitial 
Shoulder arthritis 
Pulmonary congestion*
Diffuse spinal osteophytes
Diaphragmatic eventration
Mediastinal clips
Pulmonary artery enlargement
Widened cardiac silhouette*
Solitary lung mass*
Scapular lesion
Rib resection 
Calcified pleural plaques
Simple effusion*
Bullae upper 
Suboptimal endotracheal tube*
Diffuse pleural thickening 
Cavitating mass with content*
Superior mediastinal mass*
Perihilar airspace opacity*
Lower zone fibrotic volume loss 
Inferior mediastinal mass*
Underinflation

Diffuse upper airspace opacity*
Diffuse airspace opacity*
Aortic stent
Chest incompletely imaged
Aortic arch calcification
Lung collapse*
Diffuse nodular or miliary lesions
lntercostal drain
Hilar lymphadenopathy*
Axillary clips 
Subcutaneous emphysema*
Chronic humerus fracture
Breast implant
Chronic rib fracture
Suboptimal gastric band
Chronic clavicle fracture
Airway stent
Spine lesion
Acute humerus fracture*
Shoulder dislocation*
Cavitating mass(es)*
Nasogastric tube
Internal foreign body
Solitary lung nodule*
Endotracheal tube 
Central venous catheter
Bullae lower 
Coronary stent 
Acute rib fracture*
Cardiac valve prosthesis
Rotator cuff anchor
Sternotomy wires
Pectus carinatum 
Bullae diffuse 
Calcified hilar lymphadenopathy
Pulmonary arterial catheter 
Suboptimal pulmonary arterial*
catheter 
Calcified axillary nodes 
Spinal fixation 
Oesophageal stent
Peribronchial cuffing
Pericardial fat pad
Calcified neck nodes
Shoulder replacement
Gallstones 
Pneumobilia
Electronic cardiac devices
Calcified granuloma >5mm
Shoulder fixation 
Subdiaphragmatic gas*
Clavicle fixation 
Acute clavicle fracture
Suboptimal ICC 
Nipple shadow
Cervical flexion 
Pneumomediastinum*
Scapular fracture 
Underexposed
Overexposed 
Widened aortic contour*
Rib fixation 
Portal venous gas 
Image obscured

292
82
52

436
172

27
280

25
219
812

97
71
90

499
141
280
160
164

43
99
71
64

329
770
68

132
815

49
154
167
110
96
77
12
74
40
50

355
51

205
308
297

83
177
249

85
91

303
130
792
113
110

73
81

932
48
49
63
27

174
76

110
73

164

n

55
61
31

251
934

36
65

252
88
90

148
34
24

215
38
62
40

177
61
77
40

193
41

137
208
407

47
43
79
82
31

282
60
55
66
33
40

45
69
22

187
109

28
53
43
30

161
131
49
61
21
61
53
68

119
69

104
170

43
56
24

5
70

n
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[0·953–0·996]), sternotomy wires (0·967 [0·929–0·993]), 
and shoulder replacement (0·964 [0·627–1·000]). The 
accuracy of the unassisted radiologists across all clinical 
findings is reported in the appendix (pp 7–8).

When radiologists used the deep-learning tool, the 
macroaveraged AUC was 0·808 (95% CI 0·763–0·839)
across the 127 clinical findings. The lowest AUC was 
obtained for portal venous gas (0·520 [0·499–0·816]). 
The highest AUCs were for shoulder replacement (0·995 
[0·961–1·000]), sternotomy wires (0·983 [0·939–0·999]), 
and oesophageal stent (0·978 [0·900–1·000]).

Use of the deep-learning model significantly 
improved accuracy for 102 (80%) clinical findings 
(figure 3). AUC did not decrease significantly for any 
finding and was statistically non-inferior for 19 (15%) 
findings. The effect of the model for the remaining 
six findings (image obscured, portal venous gas, rib 
fixation, overexposed, widened aortic contour, and 
underexposed) was inconclusive because the lower 

bounds of the 95% CI were less than –0·05 and the 
upper bounds were more than 0·0. Changes in AUC 
with and without the use of the deep-learning model 
across all clinical findings are presented in the appendix 
(pp 7–8). The three findings that had the greatest AUC 
increase were hiatus hernia (0·633 to 0·877; difference 
0·244 [95% CI 0·144–0·345]), post-resection volume 
loss (0·654 to 0·879; difference 0·225 [0·159–0·290]), 
and osteopenia (0·625 to 0·844; difference 0·219 
[0·162–0·276]). Of note, rib lesion (0·741 to 0·890; 
difference 0·149 [0·082–0·217]) and simple pneumo-
thorax (0·746 to 0·895; difference 0·149 [0·098–0·201]), 
two clinically important findings, also improved 
significantly.

100 findings had a statistically significant improvement 
in Matthews correlation coefficient when radiologists 
used the deep-learning model (appendix pp 7–8). 24 of 
the remaining findings were statistically non-inferior. 
Three findings (image obscured, portal venous gas, and 
overexposed) were inconclusive because the lower bounds 
of the 95% CI were less than –0·1 and the upper bounds 
were more than 0·0. Additionally, Matthews correlation 
coefficients for the detection of any crucial finding on a 
given case improved by 0·082 (95% CI 0·030–0·139), 
from 0·491 to 0·574, when radiologists used the deep 
learning model. Sensitivity for crucial findings also 
significantly improved from 0·890 to 0·956, and positive 
predictive value decreased slightly from 0·905 to 0·899 
(figure 4). Most findings showed improved sensitivity, 

Figure 3: Change in AUC when radiologists were aided by the deep-learning 
model
Mean change in AUC and adjusted 95% CI is shown for each clinical finding. 
Findings for which the lower bound of the 95% CI crosses –0·05 are considered 
inconclusive, findings for which the lower bound is between –0·05 and 0·0 are 
considered non-inferior, and findings for which the lower bound is to the right 
of the 0·0 are superior to unaided radiologists. The numbers of positive cases in 
the testing dataset for each finding are presented. AUC=area under the receiver 
operator characteristic curve. ICC=intercostal catheter. *Crucial clinical finding.

Figure 4: Change in positive predictive value and sensitivity when radiologists were aided by the deep-learning model
Each point represents a single finding. The ten most clinically salient findings of the 34 crucial findings are explicitly labelled (A–J); these labels highlight that the 
model helps radiologists to more accurately detect findings that are clinically important. A=simple effusion. B=central venous catheter–in position. C=cardiomegaly. 
D=air space opacity–focal. E=air space opacity–diffuse (central or perihilar). F=lobar or segmental collapse. G=simple pneumothorax. H=free abdominal gas. I=acute rib 
fracture. J=solitary nodule (<3 cm).
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with no overall decrease in positive predictive value 
(appendix pp 16–17).

Mean interpretation time per case when radiologists 
used the deep-learning model (107 s; SD 35·6) was 
significantly lower than when they did not use the model 
(122 s; 37·4; p=0·0045).

Unassisted radiologists had a macro averaged AUC of 
0·717 (95% CI 0·648–0·790) across all 124 clinical 
findings, compared with a macroaveraged AUC of 0·957 
(0·954–0·959) for the deep learning model alone. The 
lowest AUCs were for peribronchial cuffing (0·829; 
appendix p 10) and focal airspace opacity (0·842; table 2). 
The highest AUC of 1·000 was obtained for shoulder 
replacement, electronic cardiac devices, and sternotomy 
wires (appendix p 10).

AUCs for the deep-learning model were statistically 
superior to those for unassisted radiologists for 117 (94%)
of 124 clinical findings and statistically non-inferior for 
all other clinical findings (appendix pp 9–10). The seven 
remaining clinical findings (shoulder fixation, rib 
fixation, oesophageal stent, gastric band, pulmonary 
arterial catheter, clavicle fixation, and shoulder 
replacement) were non-inferior because the lower 
bounds of the change in AUC lay between –0·05 and 0·0. 
ROC curves comparing the model alone with unassisted 
radiologists are reported in the appendix (pp 18–28). 
AUCs for unassisted radiologists and the model alone 
are reported for the subset of 34 crucial findings in 
table 2.

Discussion
In this retrospective, multireader multicase study, the 
accuracy of radiologists assisted by a deep learning 
model was superior to that of unassisted radiologists 
for 80% of chest x-ray findings and non-inferior for 
95% of findings. For the remaining 5% of findings, 
results were inconclusive. Model-assisted radiologists 
did not have an inferior performance on any findings 
compared with unassisted radiologists. Of note, human 
performance was markedly increased with model 
assistance.

The deep-learning model alone was either superior or 
non-inferior to unassisted radiologists for 124 clinical 
findings. The diagnostic accuracy of the model also 
compared favourably with that of previously published 
models (eg, mean ChestNet AUC 0·78).7,8,10,22,23,44

The accuracy of the model can be at least partly 
attributed to the large number of cases labelled by 
radiologists for model training. The evaluated chest x-ray 
model was trained on more than 800 000 images, each 
labelled by radiologists using a prospectively defined 
ontology tree of chest x-ray findings. Many other large-
scale attempts to train deep-learning models on chest 
x-ray data have relied on text mining from the original 
radiology reports,8,45 a process that has been criticised 
for inconsistency and inaccuracy.46 Furthermore, the 
model uses all common chest x-ray projections (anterior–
posterior, posterior–anterior, and lateral), which 
represents the standard of care in real-world settings.

The mechanism underlying improved accuracy for 
model-assisted radiologists might be complex. When 
multiple findings are present, radiologists are less likely 
to perceive them all.47 In general, missed findings on 
radiology reports have been attributed to satisfaction of 
search, difficulties in inter preting technically suboptimal 
imaging, and human error.4,6 Overall, the model pro-
vided additional information to radiologists, facilitating 
improved decision making and making interpretation 
more efficient.

The validity of any diagnostic assessment is dependent 
on the quality of the ground truth. The ideal ground 
truth would include cross-sectional imaging, correlation 

Model AUC Unassisted 
radiologist AUC

AUC difference (adjusted 
95% CI)

Acute humerus fracture 0·980 0·765 0·215 (0·009–0·399)

Acute rib fracture 0·948 0·808 0·141 (0·021–0·319)

Air space opacity–multifocal 0·892 0·590 0·302 (0·188–0·392)

Cavitating mass with content 0·979 0·652 0·326 (0·082–0·450)

Cavitating mass(es) 0·929 0·642 0·288 (0·124–0·424)

Diffuse airspace opacity 0·979 0·707 0·272 (0·137–0·405)

Diffuse lower airspace opacity 0·929 0·628 0·299 (0·156–0·414)

Diffuse upper airspace opacity 0·978 0·615 0·364 (0·174–0·478)

Focal airspace opacity 0·842 0·618 0·223 (0·141–0·327)

Hilar lymphadenopathy 0·939 0·617 0·320 (0·151–0·453)

Inferior mediastinal mass 0·963 0·645 0·318 (0·109–0·455)

Loculated effusion 0·945 0·649 0·296 (0·083–0·449)

Lung collapse 0·997 0·806 0·191 (0·022–0·401)

Multiple masses or nodules 0·954 0·679 0·275 (0·104–0·422)

Perihilar airspace opacity 0·934 0·641 0·293 (0·150–0·427)

Pneumomediastinum 0·962 0·677 0·285 (0·158–0·433)

Pulmonary congestion 0·910 0·586 0·324 (0·172–0·416)

Segmental collapse 0·908 0·624 0·283 (0·179–0·403)

Shoulder dislocation 0·977 0·772 0·204 (0·053–0·372)

Simple effusion 0·950 0·784 0·166 (0·086–0·443)

Simple pneumothorax 0·980 0·746 0·234 (0·113–0·391)

Solitary lung mass 0·935 0·727 0·206 (0·092–0·302)

Solitary lung nodule 0·876 0·662 0·214 (0·110–0·349)

Subcutaneous emphysema 0·992 0·871 0·121 (0·043–0·345)

Subdiaphragmatic gas 0·996 0·774 0·225 (0·077–0·407)

Suboptimal central line 0·969 0·668 0·300 (0·081–0·436)

Suboptimal endotracheal tube 0·995 0·746 0·247 (0·061–0·495)

Suboptimal nasogastric tube 0·984 0·631 0·355 (0·137–0·479)

Suboptimal pulmonary arterial catheter 0·992 0·594 0·397 (0·200–0·495)

Superior mediastinal mass 0·950 0·658 0·292 (0·199–0·380)

Tension pneumothorax 0·997 0·739 0·258 (0·037–0·437)

Tracheal deviation 0·948 0·709 0·240 (0·094–0·368)

Widened aortic contour 0·982 0·700 0·282 (0·105–0·491)

Widened cardiac silhouette 0·947 0·779 0·167 (0·103–0·303)

All differences were statistically significant. AUC=area under the receiver operator characteristic curve.

Table 2: AUC for unassisted radiologists versus the deep-learning model across 34 crucial clinical findings
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with clinical notes, and follow-up imaging. This is not 
practical across a large dataset, and many chest x-ray 
findings are never correlated or followed up. In this 
study, three subspecialist thoracic radiologists reviewed 
each case, with access to previous and follow-up chest 
x-rays and CT imaging, where available, with the 
corresponding reports. The consensus between the 
three ground truth radiologists was calculated for each 
clinical finding using the Dawid–Skene algorithm, 
which reflects a clinical gold standard for ground truth 
labels.

The number of radiologists included in the study in 
both the comparison between the deep-learning model 
alone and unassisted radiologists and assisted versus 
unassisted radiologists, was carefully deter mined, 
considering the possible effects of heterogeneous 
interpretation of x-rays. Other chest x-ray AI decision 
support studies have generally included a much smaller 
number of radiologists (less than ten radiologists), 
resulting in a reduction in power that is often 
unaccounted for in statistical analyses.13,14 Given the 
substantial number of findings assessed in our study, we 
included 20 experienced radiologists.

Hidden stratification is a well known risk of deep-
learning models applied to medical imaging,48 in 
which visually distinct groups of imaging findings within 
the broad label categories of a dataset can produce 
unexpectedly poor accuracy for clinically relevant 
subgroups. The archetypal example is that of detecting 
pneumothoraces without chest drains. Because chest 
drains are visually obvious and inserted to treat pneu-
mothoraces, deep-learning models trained to detect 
pneumothoraces often rely on the presence or absence of 
the chest drain for high accuracy. However, when tested 
on images of pneumothoraces without chest drains, 
models often perform poorly. Meaningful disease variation 
must be appropriately described in the dataset used to 
train the algorithm,48 as faulty AI models can mislead 
clinicians.24 This key issue was addressed by our com-
prehensive labelling process. Public datasets, such as the  
National Institutes of Health ChestXray14 dataset,29 are 
labelled with a small number of broad finding classes, 
which do not account for important subsets; therefore, 
models trained on these datasets cannot effec tively 
evaluate this issue. By com prehensively labelling the 
training and test datasets, we showed that the high 
accuracy of our model is maintained across various 
clinically important subclasses.48

Our study has several limitations. For some clinical 
findings, the AUC for unassisted radiologists was lower 
than in previous studies (eg, lung nodule detection 
AUC 0·742,49 compared with 0·662 in this study). This 
might relate to differences in study design. Previous 
studies on diagnostic accuracy for specific chest x-ray 
findings generally include a higher proportion of positive 
cases than seen in this study or in clinical practice, with 
fewer other distracting findings present. This could be 

explained by the choice of labelling and participant 
radiologists. However, given that radiologists were 
required to pass a screening examination showing their 
understanding of definitions of clinical findings and 
their ability to detect them, we believe that the relatively 
lower initial radiologist accuracy is best explained by the 
difficult task of labelling all 127 findings concurrently 
without the benefit of other clinical information. 
Radiologists ground-truth labelling the test set had this 
additional information, which would usually be available 
in clinical practice. The ontology tree was highly specific 
and contained many findings. Radiologists were 
required not only to detect findings, but also to 
characterise them.

There was a risk of spectrum bias from the 20 study 
radiologists, who were from Vietnam and interpreted 
x-rays in a research setting. Although fully qualified 
specialist radiologists, their findings might not be 
representative of radiologists elsewhere. More research is 
underway to test the generalisability of all of our findings.

Although a 3-month washout period and randomised 
ordering of cases were used, recall bias cannot be 
completely eliminated. Washout periods in similar 
studies range from a minimum of 3 h to a maximum of 
2 months, with a median of 1 month.50 The washout 
period implemented in our study exceeded these 
benchmarks, minimising the risk of recall bias.

Our study did not include data on ethnicity and patient 
demographics beyond age and sex. We recognise this as 
an important bias mitigation issue and work is underway 
to explore the generalisability of the model in different 
geographical settings and people of different ethnicities. 

Furthermore, the non-clinical, retrospective design of 
this study might have influenced the interpretation of 
chest x-rays. The dataset was enriched with a higher 
prevalence of rare findings than in normal clinical 
practice. These factors might restrict direct applicability 
to the clinical setting.

This study has shown the potential of a deep-learning 
model to improve the accuracy of chest x-ray 
interpretation. However, AI will have little effect on 
practice unless it is validated and implemented in usable 
tools.51 A strength of our model is that it has been 
developed into a ready-to-implement tool that can 
determine that the input data are appropriate, analyse 
the images, and present the findings to reporting 
radiologists. Research investigating the clinical 
applicability of the model in real-world settings, including 
effects on patient outcomes, is required. Subset analyses 
of findings in clinically relevant situations are underway. 
In future research we intend to explore whether results 
would differ if radiologists were from the same settings 
as the data sources. This issue was mitigated in our study 
by implementing a rigorous training procedure for each 
of the reading and labelling radiologists, including an 
assessment of accuracy on a separate set of cases ground 
truth labelled in a similar manner. Radiologists were 
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required to show competency in this assessment before 
labelling or reading. Research is also underway to 
investigate the effect on radiologist workflow and their 
attitudes towards an AI diagnostic adjunct. Additionally, 
analysis of the effect of the model on the interpretation 
of chest x-rays by non-radiologist clinicians will be 
required, as this system has the potential to improve 
chest x-ray interpretation in settings where radiologists 
are scarce.52

This diagnostic accuracy study showed that radiologist 
performance improved when assisted by a comprehensive 
chest x-ray deep-learning model. The model had a similar 
or better accuracy than the radiologists for most findings 
when compared with high-quality, gold standard 
assessment techniques. Research is underway to confirm 
the applicability of this model as a diagnostic adjunct in 
the clinical setting.
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