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Introduction 

Few would question the claim that some psychological and neuropsychological 

findings can be relevant to philosophy, and the philosophy of mind in particular. 

Many philosophers, however, have underestimated the intimacy of the relationship 

for certain types of empirical research, including neurophysiology, connectionist 

modelling, artificial life, situated robotics, cognitive psychology, and developmental 

psychology. Principal amongst these is the investigation of real and artificial neural 

networks, which I will concentrate upon. The investigation of such networks is still in 

its infancy, and far from revealing how the brain works. But the view of cognition 

which it hints at is so suggestive, and so promising, given the problems faced in the 

philosophy of mind, that I think it is worth sketching out and exploring from a 

philosophical perspective. I will argue that an investigation of the basic modes of 

neural processing suggests a radical alteration of the conceptual framework within 

which we attempt to understand the mind and cognition. I will advocate an approach 

on which these empirically based concepts actually form an important source for 

philosophical theory, shaping the nature of the concepts employed at the 

philosophical level of inquiry. 

 This approach may sound highly reductive, but I hope to make it clear that 

this is not the case if connectionism is properly construed. Connectionism 

demonstrates that simple models can give rise to complex effects which can only be 

understood at a higher level of abstraction. The basic mechanisms of connectionist 

models can be described in a couple of brief paragraphs, but their behaviour is not so 

transparent, requiring complex and difficult analysis. I am struck by a parallel here 

with the science of self-organized criticality, which attempts to explain how 

complexity emerges in a universe governed by simple laws. Self-organized criticality 

has been discovered in a variety of situations from earthquakes through biological 

evolution to traffic jams; its key features can be illustrated using the example of a 

sandpile formed by a slow steady trickle of sand onto a platform of limited area. As 

the sandpile grows avalanches of sand occur. Eventually a steady state is reached in 

which the amount of sand leaving the pile is equal to the amount being added. At this 
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point a critical state is reached in which avalanches of all sizes occur, some local, 

some encompassing the whole pile. However, the sizes of the avalanches are not 

random, they follow a power law, so that there are very few large avalanches, and 

very many small ones, although there is no correlation in the sizes of the avalanches 

from one moment to the next, just as rolling a six on a die does not alter the 

probability of rolling another one with the next throw. A plot using a log scale on 

both axes of size against frequency reveals a straight line. Bak explains this as 

follows: 

The addition of grains of sand has transformed the system from a state in which the individual grains 

follow their own local dynamics to a critical state where the emergent dynamics are global. In the 

stationary [self-organized critical] state, there is one complex system, the sandpile, with its own 

emergent dynamics. The emergence of the sandpile could not have been anticipated from the 

properties of the individual grains.1 

In the self-organized critical state the effect of small perturbations anywhere in the 

system cannot be predicted unless one knows the state of the whole sandpile and has 

a supercomputer available. Bak also argues that the brain operates as a self-organized 

critical system. Whether this is the case or not remains to be seen, but what is clear 

from this example is that a system of simple interconnected elements following 

simple rules, either grains of sand or neurons, can produce a highly complex pattern 

of emergent behaviour, and this pattern is simply missed if one attempts a reductive 

analysis. 

The notion of emergent properties is notoriously vague, and gives rise to 

accusations of mysticism, but I will argue that it can be placed on a sound footing. 

For surely, if even physicists are starting to see the need for a non-reductive approach, 

which involves analysis of complete systems, then it cannot be unreasonable for 

cognitive scientists to do the same. I do not mean to imply that emergent properties 

are not supervenient upon the activities of fundamental particles. To think this would 

be to misconstrue the point as an ontological one, but I am attempting to address the 

issue of explanation. For if one acknowledges the existence of emergent phenomena, 

one must find some way to analyse them, and the science of self-organized criticality 

suggests how this might be done. Self-organized criticality has been investigated 

                                                 

1 How Nature Works: The Science of Self-Organized Criticality (Oxford University Press, Oxford, 1997), p.51. 
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using highly simplified models, which nevertheless exhibit the phenomenon in 

question. In this way the modelling process is valuable because the designer has 

complete control of all the model’s variables, thus the model can stand as proof that 

even where only simple local rules are operating global emergent properties can be 

produced. This simplification also reveals the fundamental principles at work, 

allowing an understanding of them, even if this requires a systems level analysis. This 

simplifying ethos is also found amongst connectionist modellers, and rightly so. 

Connectionism’s avowed intent is to uncover the fundamentals of brain processing 

rather than recreating in intricate detail the neurophysiological processes that actually 

occur in the brain. This has lead to many exciting and interesting discoveries, about 

such features as memory, for example. However, I will argue that in some aspects the 

drive towards simplification has gone too far, the baby has been thrown out with the 

bath water. The hard part of the task is knowing when to stop jettisoning details. 

With this in mind, rather than discussing the finer points of experimental 

methodology, I will try to draw out the important lessons from the way that 

ensembles of connectionist units, or neurons, function in order to suggest how a 

model of cognition might be produced which is pitched at a more abstract and general 

level.2 Thus the nature of the underlying processing shapes the nature of mental 

processes, without providing a complete account of them. This, I hope, will allow a 

reconciliation of empirical and philosophical approaches. 

 My own approach was prompted by the work of the Churchlands, although it 

diverges significantly in its philosophical conclusions. I will take their view of neural 

computation as a starting point, indicating its limitations, and suggesting how more 

careful attention to the workings of real brains might overcome them. Thus I make a 

distinction between typical connectionist models and more biologically plausible 

models. I will argue that attention to biological detail can have consequences for our 

understanding of the philosophy of mind, particularly of symbolic thought. This will 

involve a certain amount of armchair speculation about the nature of brain processing 

                                                 

2 Many connectionist researchers use the term ‘neuron’ to refer to the computational elements in their networks, but I shall use 

the term ‘unit’ in this context, and reserve ‘neuron’ for actual biological neurons. This is purely a matter of terminology on my 

part in order to make a distinction between more and less biologically plausible networks — although there is no strict dividing 

point with biologically plausible models on one side and the rest on the other, rather there is a spectrum of increasing biological 

plausibility. 
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and so it is open to empirical refutation, and indeed I doubt what I have to say will be 

correct in every detail. However, I believe that this does not vitiate its worth, for it 

demonstrates how empirical findings can be interestingly relevant to the philosophy 

of mind. Thus it has value as an intellectual exercise, in the same way that speculation 

about historical events based upon counterfactual assumptions extends one’s 

appreciation of the workings of the actual course of historical events. 

 One aspect of my argument will involve comparison with sentential models of 

cognition. For the motivation behind the neuronally inspired approach is the belief 

that, at base, cognition does not consist in sentence-crunching (i.e., operations 

involving symbols, as take place in a digital computer). There is no need to postulate 

a language of thought in order to explain the conceptual, combinatorial, and 

productive aspects of cognition. In attempting to explain these phenomena, advocates 

of connectionism attempt to demonstrate that such networks can model linguistic and 

rule-governed behaviour, such as past tense formation. Symbolic theorists cite the 

fragmentary and detached character of these examples as evidence that the 

connectionist style of processing will prove inadequate to the task of explaining the 

essentially systematic nature of human thought.3 Thus until a fully-fledged language-

using connectionist network is constructed the argument cannot be settled. I do not 

mean to be derogatory about the orthodox connectionist approach, indeed it has 

produced stimulating and valuable results. Yet if the argument is to be resolved then 

efforts must be made to understand how real neural systems utilize neurons, in terms 

of the configuration of their connections, to produce complex, including linguistic, 

behaviour. 

Thus the challenge for connectionism, and cognitive science in general, is to 

try and understand how the great structural differentiation of the brain relates to its 

essentially distributed mode of processing and the properties of individual neurons. 

For it is not enough simply to keep trying to model high level tasks using simple 

individual networks and complex learning algorithms. Rather attempts should be 

made to model the total behaviour of basic organisms, building upwards in the hope 

                                                 

3 See J. Fodor and Z. Pylyshyn, ‘Connectionism and Cognitive Architecture: A Critical Analysis’, in S. Pinker and M. Jacques, 

eds., Connections and Symbols (MIT Press, Cambridge, Mass., 1988), pp. 3-71, for the locus classicus of this type of attack 

against connectionism. 
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of understanding the role of the rich structure and modularity of neural systems in 

cognitive processing. In this way an understanding of how large groups of neurons 

interact to process highly complex information may allow artificial networks to 

exhibit ever more complex forms of behaviour. The beginnings of this task are 

already underway, and perhaps in this manner it might be possible to produce a fully-

fledged concept-using parallel processing system at some point in the future. 

However, I believe that we do not have to wait for this event before we can at 

least begin to ground the claim that language and concept-use can be understood in 

terms of a non-sentential form of processing.4 I will argue that connectionism, as it 

stands, cannot adequately account for symbolic and conceptual thought, and that the 

elements of real neural processing from which connectionist models have abstracted 

away provide the raw materials with which it is possible to answer the critics who 

believe that parallel processing can never explain symbolic thought. In my view, 

some of the properties of higher cognitive functions will be best understood by 

reflecting, in detail, on the methods that real brains actually use. This analysis 

depends upon the large-scale principles that have so far been gleaned from the study 

of neural computation, combined with recent speculation about the nature of symbols. 

Thus, I am being somewhat peremptory, for at present large-scale principles of 

neuronal processing remain inchoate, but I think that enough is in place to warrant a 

first speculative survey. 

                                                 

4 Indeed, such ruminations may help to shape the research strategy employed in uncovering the principles of large scale neuronal 

processing.  



 

 

1 Connectionism and Neural Computation 

In this chapter I first want to present some of the principles of large scale neural 

processing which have so far been gleaned from the study of connectionist networks. 

My intent is not to present evidence or argument for their validity — that is not a 

proper task for philosophy, and so should be left to others. Rather, my concern is to 

present their details so that their philosophical consequences, if they prove correct, 

can be explored. I then want to give a brief sketch of Churchland’s 

neurocomputational perspective before arguing that it is in need of significant 

alteration. 

1.1 Connectionist Networks 

Connectionist networks can take many forms, but the features which they typically 

share are simple processing units, and weighted connections between those units. The 

activity of each unit is determined by the sum of the activation it receives from other 

units via its input connections. The strength of the input it receives from each of these 

units is determined by the product of the input unit’s activity and the weight of the 

connection. All of these inputs are then summed, to give the net input, which is fed 

into the activation function, to determine the level of activity of that unit, which is 

then transmitted via outgoing connections to other units. The activation function can 

take a variety of forms, as displayed in figure 1 on page 7. An example is shown in 

Table 1, on page 8. The major distinction is between linear and non-linear functions, 

and the latter are most common because they allow more complex problems to be 

tackled. A prototypical connectionist network consists of three layers of units, 

connected in a feedforward fashion, so that each unit in a layer has a connection to 

every unit in the next layer. There is an input layer, an output layer, and a hidden 

layer, so-called because it is not directly connected to the external environment. Most 

of what follows concerns this type of architecture, as it demonstrates the majority of 

important features of connectionist networks. 

Connectionist networks can utilize several types of representations, and these 

have considerable consequences for the behaviour and interpretation of the network. 
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The most important type is distributed representation, where all of the units in a 

layer are involved in representing a given item in the task domain; the 

representational vehicle is the pattern of activity. In all of the networks discussed 

below the hidden layers, at the very least, have distributed representations. 

Representations can be more or less distributed. For simple binary units, which are 

either on or off (0 or 1) if half of the units are on and the other half are off, e.g. 

010011, then the representation is fully distributed. The reason for this epithet is that 

in order to know what is being represented one must know the activity of all six units. 

At the other end of the spectrum, representations are local if a stimulus is indicated by 

the activity of only one unit, as in 010000. Between these two extremes are vectors 

where a proportion of the units are involved in the representation of a stimulus, e.g. 

010100, and this is called sparse representation. 

 

Figure 1 Different types of activation function. The activation function determines the output of a unit 

given its net input. (a) Linear. (b) Threshold Linear. (c) Sigmoid (the steepnes of the slope depends 

upon the exact nature of the function). (d) Binary threshold. 

The representational primitives in feedforward networks are patterns of 

activation in a layer of units. These can be considered as vectors, where a vector is 

just defined as an ordered set of numbers. Vectors can be conceptualized 
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geometrically in terms of multidimensional spaces. Each unit in the population 

determines an axis of the space, and its level of activation specifies a point on that 

axis. Thus a given pattern of activation can be considered as a point in that space. 

This is most clearly appreciated for the input and output layers, where a pattern of 

activity could represent a sound wave, a digitized picture of a face, or a phonemic 

representation of a word. Similarly the output pattern of a network could be a real 

world action, such as the input to a speech synthesizer. Interpretation of the hidden 

layer of connectionist networks is not so easy. Such a layer is needed in order for 

networks to learn complex tasks successfully, and so an understanding of the way in 

which networks learn is needed in order to understand the role of the hidden layer. 

One way to begin to understand the processing in networks is to view them as 

carrying out transformations from one vector to another. Vector transformation does 

not require input and output vectors to have the same dimensions, and so vastly 

differing representations, such as a sensory vector and a motor vector can be co-

ordinated in a principled fashion. The example in Table 1 shows the transformation of 

a three-dimensional vector into a four-dimensional vector by a matrix. 

  Weight Matrix 

0.6 0.6 3.2 6.0 -2.4 

0.3 -0.5 5.0 2.9 0.5 

In
pu

t V
ec

to
r 

0.4 1.5 -2.3 -1.2 -3.7 

Net Inputs 0.81 2.5 3.1 -2.8 

  0.69 0.92 0.96 0.06 

  Output Vector 

Table 1: An example of vector transformation via a matrix. 

To calculate the first term of the output vector, each term of the input vector is 

multiplied by the corresponding term in the matrix, and these are summed to give the 

net input: (0.6 ⋅ 0.6) + (0.3 ⋅ -0.5) + (0.4 ⋅ 1.5) = 0.81. The net input is passed through 

an activation function to give the unit’s activation, which can then be passed on to 

units in the next layer. The example in Table 1 involves units with activations that 
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vary between 0 and 1 according to the following sigmoid activation function, which 

is plotted in Figure 1(c), on page 7: 

ineti e
a −+

=
1

1
 

where ai is the unit’s activation, and neti is the net input of that unit. For any two 

vectors, there will always exist a tensor matrix which will produce the desired 

transformation between them. This in itself is unremarkable. The hard task is to 

explain how networks manage to orchestrate the connections between units so that the 

right transformations occur (where the right transitions are those which are 

behaviourally advantageous) for a whole range of inputs. 

Initially random weights are assigned to a network’s connections, and it is 

then presented with a set of training inputs. For each one the output of the network is 

compared with the correct output, the teacher pattern, so-called because it is 

externally determined, and the network’s connections are minutely altered according 

to a learning algorithm. This calculates the error for a given unit, and then alters it 

connections by an amount relative to their influence in the production of the error. In 

this way the network’s output is brought closer to the desired output. Through this 

process of error minimisation the network gradually comes to manifest the 

appropriate input/output mapping. In this process the only way in which the 

behaviour of the network is shaped is through the selection of the training set, the 

initial structure of the network, the activation function of the units, and the learning 

algorithm; although it is important to note that these are crucial in determining 

whether the network learns successfully or not.5 During training the network is 

supervised in some sense, in that it requires an external error signal and learning 

algorithm to affect changes in its weights, but in a much more interesting sense the 

network functions autonomously, in that there is no programming. There is no reason 

why anyone, even the designer of the network, must understand how it managed the 

task. A simulation is set in motion and left to do its thing until (hopefully) it manages 

the assigned task. From this point of view connectionist networks appear to be as 

inscrutable as the brain. However, given that we have detailed information about the 

                                                 

5 A good deal of pre-processing can be smuggled into the initial structure through the choice of input and output representations. 

Thus it is important that the nature of these representations be scrutinized in assessing the significance of any model. 
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patterns of activity and weight changes in such networks we can go about trying to 

explain and interpret the way in which networks manage to do what they do. One of 

the advantages of using computer models is the possibility of examining the innards 

of these systems in vivo, as it were, during their learning and subsequent operation. 

There are two interrelated aspects of networks which are crucial to 

understanding their computational capacities, and both arise as a result of distributed 

representations: namely, their incorporation of a semantic metric, and their use of 

superpositional storage.6 If representations involve a semantic metric this means that 

similarities in semantic content are reflected in similarities amongst representational 

vehicles. For example, one might have a layer of units which represent faces, forming 

a multidimensional vector space. Similar faces would be represented by points that 

are close together in this vector space. Further, the relationships between faces would 

also be reflected in the relative positions of their points in vector space. The midpoint 

on a line between two faces would appear similar to both, and a smooth progression 

along that line would appear as a gradual transformation from one of the faces to the 

other. A semantic metric is vitally important because it means that a network receives 

inputs which reflect the relations between the items represented. If genuine categories 

exist in the training set, then they will be present in the representations of that set. 

Thus similar faces will produce similar input vectors to a face recognition network. 

To see the implications of this for network processing one must understand the way 

in which networks store information, using superpositional storage. 

A network’s job, from the perspective of its designer, is to transform input 

vectors into the correct output vectors. Such mappings are achieved because the 

network’s connection weights form a suitable matrix. So the connection weights are 

the repository of the network’s experience of its training set. In the connectionist 

networks that I have been discussing this storage is superpositional, which means that 

exactly the same units are used to represent each item, because of the distributed 

nature of vector representation. Thus existing connection weights, encoding previous 

                                                 

6 This notion was originally developed in T. van Gelder ‘What is the ‘D’ in PDP’? A Survey of the Concept of Distribution’, in 

W. M. Ramsey, D. E. Rumelhart, and S. P. Stich, eds., Philosophy and Connectionist Theory (Lawrence Erlbaum Associates, 

Hillsdale, N.J., 1991), pp. 33-59. 



CONNECTIONISM AND NEURAL COMPUTATION 

 

11

training experience, must be altered in order to accommodate further training input. 

Clark explains the consequences of this as follows: 

. . . semantic features which are statistically frequent in a body of input exemplars come to be both 

highly marked and mutually associated. By ‘highly marked’ I mean that the connection weights 

constituting the net’s long-term stored knowledge about such common features tend to be quite strong, 

since the training regime has repeatedly pushed them to accommodate this pattern . . . By ‘mutually 

associated’ I mean that where such features co-occur, they will tend to become encoded in such a way 

that activation of the resources encoding one such feature will promote activation of the other. The 

joint effect of these two tendencies is a process of automatic prototype extraction: the network extracts 

the statistical central tendency of the various feature complexes and thus comes to encode information 

not just about specific exemplars but also about the stereotypical feature-set displayed in the training 

data.7 

Thus networks latch onto statistical tendencies in their training set in order to produce 

the correct mapping. This can be stated in terms of vectors by saying that if there is a 

group of vectors in the training set which cluster in a region of vector space, then the 

network will come to treat them in the same way. This can be understood by looking 

at the properties of the dot product of an input activation vector and the weight vector 

for a given unit. These are just ordered lists of the values of the weights and 

activations that the unit receives. Assuming that the unit only receives one connection 

from each unit in the previous layer, the activation vector and the weight vector will 

have the same dimensions. Thus the weight vector will indicate the input activation 

pattern which would produce the largest activation in the receiving unit. Where a 

weight is large and positive, if the activation of its input unit is maximally positive 

(assuming bipolar units with activations ranging between –1 and +1) then the 

activation which is transmitted will be maximized. Hence one way to interpret the 

unit’s behaviour is in terms of vector comparison. The weight vector for a unit 

indicates its preferred stimulus, and each input is compared with it. If the activation 

function of the unit is non-linear, i.e. if it has a firing threshold of some kind, then this 

will determine a criterion of similarity. Some patterns will be close enough to the 

ideal to push the unit past its threshold, and into firing, others will not, and the unit 

will remain inactive, or at a low level of activity if its activation function is sigmoid. 

                                                 

7 Associative Engines (MIT Press, Cambridge, Mass., 1993), pp. 20-1. 
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However, this is only the first move in understanding how connectionist 

networks function. For it is not always a benefit for similar inputs to be treated in the 

same way. It is one of the advantages of connectionist networks that they can learn to 

place highly abstract boundaries across multidimensional similarity spaces, i.e. they 

can latch onto the right similarities, ignoring those that conflict with the 

categorisation task at hand. This ability requires a hidden layer, a point that can be 

demonstrated by considering the task of mapping the exclusive OR function, where 

the required transformations are as follows: 

Input 1 Input 2 Required Output 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

Table 2: Mappings required for the exclusive OR problem. 

A network without a hidden layer cannot solve this problem because the patterns are 

not linearly separable; i.e. no hyperplane can be placed in their N-dimensional space 

(where N is the number of units) so as to separate the input patterns requiring 

different responses. This is illustrated in Figure 2 (a) where it can easily be seen that 

no straight line can be drawn which has [0,1] and [1,0] on one side and [0,0] and [1,1] 

on the other. Points that are closer together, and therefore most similar to each other, 

must be treated differently to those which are further apart. 

 

Figure 2: Vector space representation of the exclusive OR problem. In (a) the input space is shown, 

and it can be seen that no hyperplane can separate out the right points. In (b) the hidden unit vector 

space is shown with the points transformed in vector space so that a hyperplane can perform the 

separation, which is shown in (c). 
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This idea of a set of weights imposing a hyperplane is extremely important in 

thinking about the behaviour of networks, as it allows one to visualize what the 

network is doing. The hidden layer allows this problem to be overcome because it 

performs a transformation on the vector space, so that in the hidden unit vector space 

the originally dissimilar inputs are moved closer together, so that a hyperplane can 

separate them, as shown in Figure 2 (b) and (c). This separation is carried out by the 

connections to the output layer, where the solution is achieved. 

At a more abstract level these processes of vector comparison and vector 

space transformation can be seen as the basis for prototype extraction, as Clark 

suggested in the passage quoted above. A word of caution is needed here, for if there 

are too many units in the hidden layer the network will merely learn a separate hidden 

layer activation pattern for each input in the training set. In other words it will not 

take advantage of the distributed representation in the input layer, as there is no need 

for it to use the same resources to store all the inputs patterns, so there is no 

superpositional storage, and no semantic metric. As a result when an input which was 

not amongst the training set is presented the network cannot produce an appropriate 

response. However, when there are not enough hidden units for this to occur, the 

network has to use its limited computational resources to successfully grasp the 

relevant similarities between training inputs, which will allow it to accurately 

categorize novel stimuli.8 

 As a result of training the network comes to funnel inputs into specific regions 

of hidden layer activation space. These regions in turn are recognized by the output 

layer as indicating a specific response. To give a specific — and hackneyed — 

example, Gorman and Sejnowski designed a network to distinguish the difference 

between sonar echoes from rocks and mines.9 The frequency profile of the echo was 

represented on the input layer, and the output layer contained two units to indicate the 

network’s decision, either rock or mine. Upon analysing its hidden layer they found it 

to be partitioned into two regions, activity in one caused the rock output unit to fire, 

and activity in the other causing the mine output unit to fire. Thus the hidden layer 

                                                 

8 At present the only way to calculate the optimum number of hidden units is by rule of thumb, or trial and error 

9 ‘Learned Classification of Sonar Targets Using a Massively-Parallel Network’, IEEE Transactions: Acoustics, Speech, and 

Signal Processing (1988), 1135-1140. 
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activation space contained a similarity gradient moving from peaks at the central 

points of each region, which were most easily recognized by the output units, to the 

border between them, which produced an indecisive response from the output units. 

Thus these ‘hotspots’ can be considered as prototypes, as any input vector which is 

transformed into that region of hidden layer vector space would produce a response 

suitable for a given category, such as a mine. Hence network training can be seen as 

the alteration of connection weights so that input vectors are pushed into specific 

regions of the hidden layer vector space. The output layer then has the job of correctly 

recognising which of these region goes with which response. Whilst networks exhibit 

an ability to map previously experienced stimuli onto the correct prototype in this 

way, they also demonstrate an ability to generalize from experience to map a novel 

input onto the appropriate prototype. They even demonstrate an ability to map 

degraded inputs onto the appropriate prototype. This is possible because the 

prototypes have been strongly ingrained in the network by the training regime. Inputs 

that constitute one of the training categories are grouped according to the common 

statistical tendencies amongst them. Even when only a few of these are present in a 

degraded input there are enough to push the hidden layer activity towards one of its 

prototypes. In this way they can be thought of as basins in vector space, any 

activation vector which comes close enough rolls down into the centre, firing the 

prototype. The trick is to get only the right inputs falling under the influence on an 

attractor basin, and it is a trick at which networks seem to be remarkably adept. 

However, this is not the full extent of the representational power of hidden 

layers. For they also exhibit a semantic metric, which is to say that the prototypes are 

not randomly distributed in the vector space. As an example consider a network 

designed by Elman which had the task of discovering the lexical-category structure of 

a set of words. This was done by getting the network to predict the next word in a 

sentence.10 To do this the network employed an architectural feature which will be 

prominent in what follows, namely recurrent connections.11 Elman used the usual 

                                                 

10 ‘Representations and Structure in Connectionist Models’, in G. T. Altmann, ed., Cognitive Models of Speech Processing: 

Psycholinguistic and Computational Perspectives (MIT Press, Cambridge, Mass., 1990), pp. 345-382. 

11 The first recurrent network models were created by M. I. Jordan, ‘Serial Order: A Parallel Distributed Processing Approach’, 

Report 8604, Institute for Cognitive Science (University of California, San Diego, La Jolla, 1986). The addition of recurrent 

connections is a step towards more brain-like simulations, and thus a step in the right direction, as argued in chapter 2. 
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three layer feed-forward architecture with an additional layer of context units which 

received connections from the hidden layer and then sent return connections back to 

the hidden layer. The weights of these connections were all 1, and were not altered 

during training. Thus the hidden layer received a context input representing its state in 

the previous processing cycle, i.e. a representation of the previous word, or words, in 

the sentence. Put simply, recurrent connections allow the network to operate in the 

temporal dimension. 

The net was trained with crude three word sentences, presented a single word at 

a time, and its task was to predict the next word. The inputs to the network were 

localist, i.e. each word was represented by the a single unit in a 31 unit input layer, so 

that the network had no obvious clues as to its grammatical category or meaning. 

What is interesting about this network is the way it responded to the task, given a 

sentence such as: ‘man eats. . . ,’ the network activated all of the output units 

corresponding to words for edible things. Thus it seems that the network had learned 

a syntactic/semantic category. An analysis of its hidden units was done by taking the 

hidden layer activation patterns corresponding to each word and measuring the 

distance between each pattern and every other pattern. This information was then 

used to form a hierarchical structure, as shown in Figure 3, on page 16. Words that 

are close together in activation space are on adjacent branch endings, whereas words 

which are far apart in vector space are on different branches. This analysis revealed 

relations amongst word prototypes reflecting their semantic categories. At the 

broadest level (the first branching) there was a partition between verbs and nouns, but 

even beyond this the network had grouped the prototypes in highly interesting ways, 

into animate and inanimate nouns, and as demonstrated in the example given above, 

words for edible things were clustered together in the hidden layer vector space. For 

the purposes of this analysis an average of a word’s position in vector space was used, 

because the positions varied with context. Far from being a drawback this variation 

constitutes an advantage because it allows the network to be sensitive to these 

contexts and respond with appropriate modifications of its output. 

The upshot of all this is that the generalizations which the network made were 

highly structured. The spatial relations amongst prototypes in the hidden layer vector 

space are highly abstract, reflecting complex patterns in the input. Through the 

partitioning of its vector space the network acquired an ability to recognize highly 
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Figure 3: Hierarchical clustering of hidden unit activation patterns, demonstrating the semantic metric 

of the network’s hidden unit vector space. 

abstract features of its input. This structure in the hidden layer was then utilized by 

the output layer to produce the appropriate responses as defined by the assigned task. 

Considering Chomskian arguments about the poverty of the linguistic stimulus 

available to infants, this network should act as a warning that the learning 

environment may in actual fact carry much more information than was previously 

thought. 

Distributed representation not only gives rise to complex processing abilities, 

it also means that networks are operationally robust. As representation and 

computation involve many units and connections, each individual unit or connection 

plays only a small part in the overall calculation. As a result, a network can afford to 

lose a few connections or units whilst still attaining a reasonable level of 

performance. It can also cope with incomplete or noisy inputs. The performance 

gradually declines with the number of elements that have been removed, or the 

disturbance to the input, hence the processing of distributed networks is described as 

displaying ‘graceful degradation’. This feature is noteworthy because of its relevance 
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to biological systems. First real neurons are inherently ‘noisy’ in that they have a 

basal spiking frequency from which they deviate according to a normal distribution. 

Thus a neuron may fire more vigorously, in a way that would normally have some 

significance for its receiving neurons, even when none of its preferred stimuli are 

present. Second, it is an unfortunate fact of life that brains lose neurons throughout 

life, whether due to injury or the natural course of ageing, and so must be able to 

continue to function in the face of such loses. Put bluntly, the connectionist argues 

that, as brains degrade gracefully, anything claiming to model the brain had better do 

the same. The contrast here is supposed to be with conventional computers, which 

will crash even if only one line of a program, or one transistor, is missing or broken. 

While this is a persuasive argument it is far from conclusive, I merely mention it as 

an important debate between parallel distributed processing and conventional 

computational models. 

1.2 Vector Cognition 

A bare description of the functioning and abilities of real and artificial networks does 

not count as philosophy. To be relevant to philosophy the processing of these 

networks must be related to mental processes occurring at the personal level. Paul 

Churchland has suggested that cognition should be modelled on the way basic 

perceptual processing works.12 According to his view of such processing, sensory 

inputs are mapped onto the appropriate prototype, which constitutes the creature’s 

understanding of that input. Thus the bridging principle between neurocomputation 

and the philosophy of mind is that of the prototype. In this section I will give a brief 

sketch of Churchland’s approach before going on to show that it, and other standard 

connectionist models, cannot fully account for human cognition in section 1.3. 

1.2.1 Vector Coding 

The first point that Churchland makes is about the power of vector coding. He 

illustrates this by considering the way in which the brain represents colour. The 

human retina contains three kinds of colour sensitive cells, each one being maximally 

                                                 

12 A Neurocomputational Perspective: The Nature of Mind and the Structure of Science (MIT Press, Cambridge, Mass., 1989), 

Ch. 10. 
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responsive to a different wavelength of light. These cells project to a population of 

neurons which contain three further types of cells, and the connections are such that 

they demonstrate opponent processing. This means that the activity of the cells 

signals the presence of either of two colours, but not both simultaneously. For 

example, one type is red-green opponent, which means that they increase their 

spiking frequency when stimulated by red light and decrease their spiking frequency 

when they are stimulated by green light. The second type of opponent process cells is 

yellow-blue opponent, and the third register the relative brightness values across all 

three colour photoreceptor cell types. The upshot of all this is that each of the types of 

opponent process cells can be considered to form an axis of human colour space. 

Thus any colour that can be perceived by humans is represented by a point in that 

three-dimensional space determined by the relative activities in the three cell types. 

Colour space has only three dimensions, but if we make a conservative 

assumption that there are only 10 distinct positions on each axis this gives 1000 

different positions in the vector space.13 Thus the representational power of even a 

small group of neurons is staggeringly huge, and rises exponentially. Indeed, humans 

have four types of taste receptor cells, and at least six types of olfactory receptors, 

which goes some way to explaining the sensitivity and sophistication of our sensory 

capacities. 

Vector coding need not be limited to the representation of such basic sensory 

features. With the use of many more dimensions highly complex domains can be 

represented. For example, there is a reasonable body of evidence to suggest that there 

is a specific region of the brain involved in the representation of faces.14 Thus this 

area might constitute a face vector space with each point representing a particular 

face. 

A caveat is required here concerning the explanatory power of vector coding, 

contra Churchland, because to say that a sensory experience just is a certain pattern of 

spiking frequencies in a population of neurons is not fully to explain what is a 

                                                 

13 Evidence from psychophysical studies suggests that we can distinguish at least 10,000 colours, which suggests that there 

should be approximately 20 positions on each axis.  

14 See, for example, G. G. Baylis, E. T. Rolls, and C. M. Leonard, ‘Selectivity Between Faces in the Responses of a Population 

of Neurons in the Cortex in  the Superior Temporal Sulcus of the Monkey’, Brain Research 342, 91-102. 
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conscious phenomenon.15 I do not claim that the theory expounded here closes the 

explanatory gap between scientific description and subjective experience. For my 

purposes we must simply take it for granted that the activation pattern in a given 

population of neurons produces a subjective experience. The power of the approach 

lies in its capacity to make this leap of faith seem less daunting, and ultimately 

plausible. The key to the representational power of such neuronal activation vectors 

lies in the way in which they can be transformed from one population to another via 

the complex connections between them in a way that respects their informational 

capacity and content, i.e., not according to some abstract syntactic aspect of the 

representation, but through vector transformation, via a tensor matrix from one 

neuronal activation vector to another. 

1.2.2 Vector Prototypes and Explanatory Understanding 

Churchland champions the idea that explanatory understanding ‘consists in the 

activation of a specific prototype vector in a well-trained network.’16 That the 

network be well-trained is crucial, for it explains why the activation of the prototype 

is not merely a labelling of the input stimulus. The activation of a prototype: 

. . . represents a major and speculative gain in information, since the portrait it embodies typically goes 

far beyond the local and perspectivally limited information that may activate it on any given occasion. 

That is why the process is useful: it is quite dramatically ampliative. On each occasion, the creature 

ends up understanding (or perhaps misunderstanding) far more about the explanandum situation than 

was strictly presented in the explanandum itself. What makes this welcome talent of ampliative 

recognition possible is the many and various examples the creature has already encountered, and its 

successful generation of a unified prototype representation of them during the course of training.17 

This allusion to the role of previous encounters has an interesting echo in Evans’ 

notion of an informational system, which he saw as central to explaining the nature of 

thought about particulars.18 Evans rightly stresses the relationship between 

information and recognitional capacities: 

                                                 

15 This argument is made by P. M. Churchland in ‘Reduction, Qualia, and the Direct Introspection of Brain States’, Journal of 

Philosophy 82 (1985), 8-28. 

16 A Neurocomputational Perspective, p.210. 

17 A Neurocomputational Perspective, p. 212. 

18 The Varieties of Reference (Oxford University Press, Oxford, 1982), Ch. 8. 
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. . . we should expect that, in any system in which information is stored about particular objects, there 

will be a central core of cases in which the subject has associated information with a capacity to 

recognize a particular individual . . . These are the paradigm cases: evolving clusters of information 

generated in a pattern of encounters in which the recognitional capacity was triggered, and still linked 

with that capacity, which serves as the means to identify opportunities for using old, and gaining new, 

information.19 

In Churchland’s model we have an obvious explanation of how this informational 

system operates, and what is more, operates rapidly and robustly.20 The recognitional 

capacity and its associated information can be united as a vector prototype. 

Encounters with an object (as an individual, or as a token of a type or category) bring 

about activation of the prototype, and each encounter provides an opportunity for 

changes to be made in the configuration of the hidden layer vector space, to encode 

any novel information. In this way the prototype could come to include various kinds 

of expectations that go beyond the present experience, and play a role in the control 

of on-going behaviour, as Churchland describes: 

The picture I am trying to evoke, of the cognitive lives of simple creatures, ascribes to them an 

organized ‘library’ of internal representations of various prototypical perceptual situations, situations 

to which prototypical behaviours are the computed output of the well-trained network. The 

prototypical situations include feeding opportunities, grooming demands, territorial defence, predator 

avoidance, mating opportunities, offspring demands, and other similarly basic situations, to each of 

which a certain broad class of behaviours is appropriate. And within the various generic prototype 

representations at the appropriate level of hidden units, there will be subdivisions into more specific 

subprototypes whose activation prompts highly specific versions of the generic form of behaviour . . . 

These various prototypes are both united and distinguished by their relative positions in the hidden-unit 

vector space. They are all close together, but they differ slightly in their positions along one or more of 

the relevant axes. These differences evoke relevantly different responses at the output layer.21 

Thus one of the key advantages of Churchland’s account is that representations are 

not conceived of as inner models of reality, which must then lead to action through a 

further distinct process of cogitation involving the model. Rather part of their identity 

                                                 

19 The Varieties of Reference, pp. 276-7. 

20 There is nothing in what Evans wrote that commits him to this or any other explanation of the substrate for informational 

system. I draw the comparison because I think that Churchland’s ideas suggest how the informational system might be 

implemented. I would argue that an understanding of the details of this implementation enriches and alters the account pitched at 

the genuinely philosophical level. 

21 A Neurocomputational Perspective, p. 207. 
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is constituted by the behaviour which they produce; representations are action-

centred.22 As a result, perception and action can be regarded as essentially cognitive 

processes, they do not constitute the links between the mental and the external world; 

they are a part of the cognitive processing itself. In the case of perception, there is no 

sensory Given, which must then be interpreted.23 Incoming sensory data is processed 

by being mapped onto a prototype vector. This provides an explanation for why 

perceptual experience bears cognitive significance; we do not see colour patches, we 

see objects and their affordances.24 Again, this fits nicely with Evans’ notion of 

information-based thought, where this is defined as follows: 

a bit of information (with the content Fx) is in the controlling conception of a thought involving a 

subject’s Idea of a particular object if and only if the subject’s disposition to appreciate and evaluate 

thoughts involving this Idea as being about an F thing is a causal consequence of the subject’s 

acquisition and retention of this information.25 

The activated prototype is the information which controls the thought, because of the 

part it plays in the control of ongoing cognition, interacting with other internal 

processes to produce an appropriate response. For Churchland the role of the 

prototype in processing could be extremely complex, with context and goals 

influencing the informational flow, through the impact of recurrent pathways, which 

he rightly views as important. If I understand correctly an example might be as 

follows: if a squirrel is hungry, the activation of its acorn prototype by an appropriate 

visual input would initiate feeding behaviour, whereas if it is satiated it might prompt 

storing behaviour. This type of contextual sensitivity might be achieved via an input 

to the creature’s hidden layer from neural areas other than those concerned with basic 

sensory input. Through an appropriate learning history these additional inputs could 

come to affect the network’s processing, producing advantageous behavioural 

consequences. 

                                                 

22 See A. Clark, Being There: Putting Brain, Body, and World Together Again  (MIT Press, Cambridge, Mass., 1997). 

23 See W. Sellars, ‘Empiricism and the Philosophy of Mind’, in H. Feigl and M. Scriven, eds., Minnesota Studies in the 

Philosophy of Science, vol. 1 (University of Minnesota Press, Minneapolis, 1956), pp. 253-329, and J. McDowell, Mind and 

World (Harvard University Press, Cambridge, Mass., 1994) for discussion of the Given. 

24 See J. J. Gibson, The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, 1979). 

25 Varieties of Reference, p. 122. 
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On this view, the representational power of the prototype comes from its 

position in a richly structured recurrent vector space. Churchland makes much of this 

architectural feature, no doubt inspired by its ubiquity in the brain, and by the fact 

that it allows complex temporal behaviours, as demonstrated by Elman’s network, 

which was discussed in section 1.1. One feature of recurrent networks, which he 

notes, is their tendency to settle into a repetitive cycle, known as a limit cycle, when 

started off by a momentary input of the right kind. Churchland hypothesizes that this 

could be used for the easy production of cyclical motor activities such as walking, or 

the beating of the heart, because they can be represented by loops in a suitable vector 

space (such as a joint-angle or motor-neuron space). The possibility of iterated 

processing cycles through a network allows trajectories and loops to be followed 

through vector hyperspace, reflecting the continuous cyclical nature of these 

activities. Recurrent connections will prove to be important in the account of 

cognition which follows, for as Churchland points out, it is highly likely that they 

have applications outside the sphere of motor control. Elman’s recurrent word 

prediction network, which was described in section 1.1 is an example of how 

Churchland sees recurrent connections underlying complex cognition. This approach 

seems to imply a kind of representational holism, in that an activated vector is a point 

on a trajectory in vector hyperspace. Thought, which is temporally extended, consists 

in such trajectories, which are produced by recurrent cycles through an immensely 

complex hidden layer. Depending on context the processing will lead off in a variety 

of directions, and it is this diversity of trajectories, and their semantically relevant 

geometrical relations that are supposed to make this process so powerful. Once you 

have an internal array of recurrent connections which can provide their own input, 

and thus which can function without external input, you have the possibility for 

complex and abstract cognition which is not tied to current external stimuli. There 

need be no simple progression from input to processing to output, instead the output 

to any given processing cycle could be the initiation of further processing. 

Churchland places a great deal of stress on the effect of recurrent connections, and 

has suggested that such a system of recurrent networks might be the basis for 

consciousness for this, amongst other, reasons.26 I do not want to take any firm 

                                                 

26 The Engine of Reason, the Seat of the Soul (MIT Press, Cambridge, Mass., 1996), Ch. 8. 



CONNECTIONISM AND NEURAL COMPUTATION 

 

23

position on this claim, as I am not attempting to argue for an explanation of 

consciousness. However, it is clear that a flexibility in cognitive ability does seem to 

be a feature of conscious creatures, and so it is genuinely interesting, and suggestive, 

that recurrent networks seem to have a variety of interesting capabilities.27 

One of these is the capacity to interpret the same sensory input in a number of 

different ways. The human capacity for this is famously demonstrated by ambiguous 

pictures such as the duck/rabbit. A non-recurrent network will always respond to a 

stimulus in the same way, but Churchland argues that a recurrent network can echo 

this human ability because the recurrent connections provide a means of modulating 

processing, either by providing a duck context or a rabbit context. Churchland goes 

on to argue that this capacity of recurrent networks is not only important in the 

context of perception. He claims that it also has impact in much more abstract aspects 

of cognition, in that it offers an explanation for the processes of rapid understanding 

and reconceptualisation. This problem has a fine tradition in philosophy, for 

Wittgenstein wrestled with these phenomena in the form of understanding in a flash: 

‘What happens when a man suddenly understands?’—The question is badly framed. If it is a question 

about the meaning of the expression ‘sudden understanding’, the answer is not to point to a process 

that we give this name to.—The question might mean: what are the tokens of sudden understanding; 

what are its characteristic psychical accompaniments?28 

Normal network learning takes thousands of cycles, and can be understood as a sort 

of gradient descent process, as described in section 1.1. This clearly cannot explain 

how an individual can, literally in an instant, see a recalcitrant problem in an entirely 

new and fruitful way. Churchland suggests a solution to this problem based upon the 

idea of recurrent connections. He illustrates this with Huygen’s realisation that light 

can be understood as a wave phenomenon: 

Here the theory of waves in mechanical media — a theory already well-formed in Huygen’s mind in 

connection with water waves and sound waves — was applied in a domain hitherto unaddressed by 

that framework, and with systematic success. There was no need for Huygens to effect a global 

                                                 

27 This would be compatible with Dennett’s Multiple Drafts model, as expounded in Consciousness Explained (Little Brown, 

Boston, 1991). If it is reduced to a model of cognitive processing (access consciousness) rather than of phenomenal 

consciousness there seems no reason why a system of recurrent networks could not instantiate such a parallel, multitrack system. 

Whether a recurrent system can be the basis for phenomenal consciousness, in humans at any rate, is an interesting, but moot 

point for my purposes. 

28 Philosophical Investigations § 321. 
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reconfiguration of his synaptic weights to achieve this conceptual shift. He had only to apprehend a 

familiar class of phenomena in a new cognitive context, one supplied largely by himself, in order to 

have old and familiar input-unit vectors (those concerning light) activate hidden-unit vectors in an area 

of his conceptual space quite different from areas they had previously activated. The difference lay in 

the context -fixers brought to the problem.29 

Churchland is somewhat vague about the way in which this conceptual redeployment 

occurs. Given that his explanations are couched in terms of recurrent hidden layer 

architectures, it is not clear how a model could be created which would search 

through its prototypes in quite this way. It is at this point that problems begin to 

appear for Churchland’s account, although the problem of explaining the way that 

human cognition manages to focus down onto only the relevant options is not 

restricted to connectionist models. One way to see the force of the worry here is in the 

context of an apparent advantage of the vector prototype model: it does not present 

any fundamental bifurcation in nature between humans and other animals. We can 

make sense of the behaviour of non-linguistic creatures in terms of vectorial 

prototypes, as made clear in the passage quoted above. Thus we can treat (some) 

creatures as having genuinely representational cognitive processes without the need to 

attribute symbolic abilities to them. And of course the vector prototype model is 

ideally suited for explaining how behaviour is smoothly and efficiently carried out. 

Trouble arises for this harmonious picture in that there is an essential difference 

between animal and human thought: humans use a type of representation that is 

unique, namely symbolic representation. In the next section I will argue that 

Churchland’s vector prototype model cannot successfully explain some aspects of 

symbolic representation, such as compositionality. This becomes clear when 

examples such as the one quoted above involving Huygens are examined carefully. 

What Churchland is trying to explain here is conceptual redeployment, but to have 

concepts one must have compositionality, amongst other features, and for reasons 

which will be given in the next section, the vector prototype model cannot 

accommodate them. However, this shouldn’t lead to a total rejection of the model, 

and in what follows I will attempt to show how the problems raised in section 1.3 can 

be overcome by emendations inspired by the processing of real neural networks. 

                                                 

29 P. M. Churchland, ‘Learning and Conceptual Change’, in A. Clark and P. Millican, eds., Connectionism, Concepts, and Folk 

Psychology (Clarendon Press, Oxford, 1996), p.23. 
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1.3 Connectionism and Systematicity 

The main accusation that is made against connectionist models is that they cannot 

explain the essentially structured nature of thought. That thought involving concepts 

must be essentially structured is a premise which I will treat as immutable. It is 

something that the majority of philosophers agree upon, and as such must be 

explained by any aspiring theory of cognition. The articulation essential to conceptual 

thought is expressed by Evans’ generality constraint: to be ascribed the thought that 

‘a is F’ one must also be able to entertain other thoughts involving ‘a’, such as ‘a is 

G’, and other thoughts involving ‘F’, such as ‘b is F’.30 For those attempting to model 

thought this gives rise to what Fodor and McLaughlin call the systematicity problem: 

The systematicity problem is that cognitive capacities come in clumps. For example, it appears that 

there are families of semantically related mental states such that, as a matter of psychological law, an 

organism is able to be in one of the states belonging to the family only if it is able to be in many others. 

Thus, you don’t find organisms that can learn to prefer the green triangle to the red square but can’t 

learn to prefer the red triangle to the green square. You don’t find organisms that can think the thought 

that the girl loves John but can’t think the thought that John loves the girl. You don’t find organisms 

that can infer P from P&Q&R but can’t infer P from P&Q. And so on over a very wide range of 

cases.31 

There is a considerable amount of literature devoted to the subject of systematicity, 

and it involves several strands.32 One concerns the exact nature of systematicity, and 

another whether connectionist architectures can be genuinely systematic. Difficulties 

arise in the context of the first of these because one cannot replace a verb’s argument 

with any old word, there are various kinds of constraints, and these must be learned.33 

This suggests that systematicity should admit of degrees, but this does not appear 

compatible with Fodor and McLaughlins’ position. Suffice it to say, for present 

                                                 

30 Varieties of Reference (1982), Ch. 4. 

31 ‘Connectionism and the Problem of Systematicity: Why Smolensky’s Solution Doesn’t Work’, in C. Macdonald and G. 

Macdonald, eds., Connectionism: Debates on Psychological Explanation (Blackwell, Oxford, 1995), p. 200. 

32 See, for example, J. Fodor and Z. Pylyshyn, ‘Connectionism and Cognitive Architecture: A Critical Analysis’, in S. Pinker and 

M. Jacques, eds., Connections and Symbols (MIT Press, Cambridge, Mass., 1988), pp. 3-71, A. Clark, ‘Systematicity, Structured 

Representations and Cognitive Architecture: A Reply to Fodor and Pylyshyn, in T. Horgan and J. Tienson, eds., Connectionism 

and the Philosophy of Mind (Kluwer Academic Press, Boston, 1991), pp. 198-218, and R. F. Hadley, ‘Systematicity in 

Connectionist Language Learning’, Mind and Language 9 (1994), 247-272. 

33 See S. Pinker, Learnability and Cognition: the Acquisition of Argument Structure (MIT Press, Cambridge, Mass., 1989). 
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purposes, that the feature of thought that I am interested in concerns some kind of 

sensitivity to structure, and an ability to apply information in relevant, but different, 

task domains. I hope that the following discussion will give an intuitive feel for the 

problem at hand, even if it does not furnish a precise definition. 

This type of systematicity cannot be satisfactorily accounted for by the 

processes of generalization, pattern completion, and prototype extraction which form 

the basis of Churchland’s approach. A network may have prototypes for ‘red’ and 

‘square’ but how does it represent the complex thought that the square is red? This 

could not be done by having both prototypes activated at the same time because their 

vectors are fully distributed, and so each one involves the activity of all the units. The 

two patterns cannot just be added together, because that would merely produce a 

vector between the two original ones. This intermediate vector would have a 

representational significance determined by the semantic metric of the vector space, 

and given the hyper-dimensional nature of the metric, it would be a serendipitous 

accident if this happened to be the representation for ‘red square’. The hyper-

dimensionality rules out vector addition because the semantic significance of any 

point in vector space is determined by its relations to all of the dimensions of the 

space, not just a few of them. Presumably an additional ‘red square’ prototype would 

be needed, but even granted the enormous representational power of hyper-

dimensional vector spaces this multiplication of prototypes could not proceed 

indefinitely. Even if it could this would be no solution to the problem of 

systematicity, for it would mean that every complex thought would be represented by 

an unarticulated vector. The whole force behind the problem is that the same elements 

appear in many different complex thoughts.34 Geach uses an analogy with chess to 

illustrate the relationship that must exist between thoughts and their constituent 

concepts: 

Making an appropriate move from a certain position may be, and at the opening of the game very 

likely will be, a learned response; but in the middle game it will certainly not be so, for the position 

may well occur only once in a life-time of play. On the other hand, the ability to make an appropriate 

move from a given position always presupposes a number of simpler, previously acquired, skills — the 

                                                 

34 This line of argument is powerfully deployed by J. Fodor and Z. Pylyshyn in ‘Connectionism and Cognitive Architecture: A 

Critical Analysis’. 
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capacities to carry out the moves and captures that are lawful for the pawns and the various pieces. As 

these skills are related to the chess-move, so concepts are related to the act of judgement.35 

One might address this by resorting to localist microfeatures, so that there would be 

microfeatures for redness and squareness, and they would be co-active when 

representing a red square. As it stands this is no solution, because the lapse into the 

use of localist microfeatures as the dimensions of the representational vector space is 

self-defeating because the semantic contents of those dimensions are left 

unexplained.36 A red microfeature might gain representational significance through 

causal correlation, but this does not provide adequate resources for explaining how 

the semantic content of complex relations such as ‘loves’ could be represented as a 

microfeature. I will not rehearse the inadequacies of causal theories of meaning here, 

for even if the point is granted a second problem remains: how can a set of co-active 

microfeatures (‘John’, ‘loves’, and ‘girl’) represent the thought that John loves the 

girl rather than that the girl loves John? It would seem that a ‘John-as-subject’ 

microfeature is needed, but here again we are faced with an explosion of 

representational elements, one for each possible syntactical position. Given that 

language is productive, having no definite upper boundary, this seems an implausible 

explanation. 

An attempt to rescue the original line of argument might be made by 

maintaining that the various prototypes are not as unstructured as they first appear. 

One might imagine a ‘John’ region of the vector space, with different grammatical 

relations being represented by different positions within this region. After all, analysis 

of Elman’s word prediction network, discussed in section 1.1, showed that its hidden 

layer was highly structured, with major divisions and subdivisions reflecting lexical-

category structure. Thus the articulation of conceptual thought would be captured by 

the semantic metric and the relations of a point to many others, and through the effect 

of further content on the trajectory plotted through vector space. However, doubt is 

cast on this suggestion by the inability of networks to apply knowledge gained in one 

situation to good effect in a different situation. For example, Elman’s network 

                                                 

35 Mental Acts: Their Content and their Object (Routledge and Kegan Paul, London, 1957), p.13. 

36 I am assuming that the semantic metric of distributed representations account for their semantic content. This is a bold claim 

that requires argument, and this will come later in section 3.3. For the moment I want to put the issue to one side whilst dealing 

with the inadequacies of a localist approach to the problem of meaning.  
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structured its hidden layer vector space into nouns and verbs, but there is no easy way 

to utilize this if we wanted to use the network to categorize a set of words into verbs 

and nouns. All it can do is ‘predict’ what type of word will come next in a sentence; 

the network’s expertise is extremely domain specific. Clark relates this to the notion 

of non-conceptual content, as developed by Cussins.37 Non-conceptual content is 

defined by Cussins as content which consists of non-conceptual properties, where 

conceptual and non-conceptual properties are defined as follows: 

A property is a conceptual property if, and only if, it is canonically characterized, relative to a theory, 

only by means of concepts which are such that an organism must have those concepts in order to 

satisfy the property. 

A property is a non-conceptual property if, and only if, it is canonically characterized, relative to a 

theory, by means of concepts which are such that an organism need not have those concepts in order to 

satisfy the property.38 

These notions can be used to express the problem with Elman’s network. Whilst the 

relations revealed in its hidden layer space can be described in terms of the concepts 

of ‘noun’ and ‘verb’ they only have non-conceptual content. Cussins also provides 

the resources to argue for this claim. Progression from non-conceptual to conceptual 

content is marked by increasing perspective independence, a point illustrated by 

consideration of frogs and their fly-detecting abilities: 

The frogs’ ‘fly-thoughts’ are not really fly thoughts because their success (and hence their content) 

depends on special features of the frog task-domain (the cost of tongue-swipes at massive distant 

objects is outweighed by the benefit of successful fly catches); frog ‘cognition’ is dependent on the 

perspective of a particular task-domain. It cannot generalize.39 

If the frogs were placed in a different task-domain, where tongue-swipes are more 

costly, perhaps attracting predators, they would soon be in trouble. They cannot alter 

                                                 

37 Associative Engines, p. 73. 

38 ‘The Connectionist Construction of Concepts’, in M. Boden, ed., The Philosophy of Artificial Intelligence (Oxford University 

Press, Oxford, 1990), pp. 382-3. Although this notion is similar to the one developed by C. Peacocke in A Study of Concepts 

(MIT Press,  Cambridge, Mass., 1992), there is an important distinction that has been debated in the literature, about whether a 

creature can posses non-conceptual content if it has no conceptual states at all. This is something that is denied by Peacocke, but 

acceptable on Cussins definition as stated above; see J. L. Bermódez, ‘Peacocke’s Argument Against the Autonomy of 

Nonconceptual Representational Content’, Mind and Language (1994), 402-418, for a discussion of the issue. I side with 

Cussins on this debate, as the prime reason for introducing non-conceptual content is to explain how creatures can have 

genuinely representational states without having to meet the generality constraint. 

39 ‘The Connectionist Construction of Concepts’, p. 424. 
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their behaviour in response to environmental changes. If, on the other hand, frog fly-

detectors were sensitive to many other abilities, and to environmental circumstances, 

then they would be on the way to achieving conceptual content. Thus perspective 

independence can be seen as the capacity to apply one’s abilities and knowledge in a 

way that allows one to cope with disturbances in the task domain. One can bring these 

abilities to bear from any angle, and in any place. I do not think it I overly contentious 

to hold that this cognitive robustness is at the heart of what makes humans intelligent 

creatures; it accounts for the evolutionary advantage of being intelligent, because it 

allows us to survive in an ever changing environment. 

The notion of perspective independence can be applied in exactly the same way 

to connectionist networks: they are extremely dependent on their task-domains — 

slight changes completely destroy their ability to respond appropriately. Elman’s 

network cannot be used in any situation other than the one in which it was trained, 

and so it cannot meet the generality constraint, and so cannot be considered to have 

the concepts of ‘noun’ and ‘verb’. Perspective independence as a criterion for 

conceptual content is really just another way of expressing the generality constraint. 

To count as conceptual a thought must contain elements that can be combined with 

many other such elements in ways that respect their semantic values. This gives us 

both a handle on the problem with connectionist models and a criterion for 

establishing when it has been overcome. This is useful, because despite the 

difficulties raised in this section for Churchland’s model, it would be wrong to 

assume that they rule out any parallel distributed processing account. I will suggest an 

alternative approach in chapter 3. 

1.4 Summary 

In this chapter I have explained how connectionist networks operate, and how 

Churchland has extrapolated from this to a model of cognition. I then pointed out a 

few problems for this model in explaining the systematicity of human thought. The 

following points will be important in what follows: 

• The distributed nature of vector representation, which is the source of many of the 

abilities of connectionist networks. 

• The encoding of experience by the weights of connections. 
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• The notion of a vector space and its incorporation of a semantic metric, with 

vector prototypes arranged in that space in a way that reflects their semantic 

relations. 

• The distinction between conceptual and non-conceptual content and its relation to 

the systematic nature of human thought. 



 

 

2 Biologically Plausible Neural Computation 

The discussion in the previous chapter dealt with mainstream connectionist networks. 

These provide valuable insights into some aspects of cognition, but for other aspects, 

they may even prove misleading. The problems with such networks arise because of 

their lack of biological plausibility. The main reason why it is unlikely that these sorts 

of networks are implemented in the brain is their use of non-local learning algorithms, 

most commonly the backpropagation algorithm. These algorithms are non-local 

because, as described in section 1.1, they compare the network’s actual output with 

the correct output. This information about the correct result is not available locally in 

the network, and must be provided by an external teacher. The error signal is 

propagated back to connections in earlier layers of the network, further compounding 

the non-local nature of the learning mechanism. Given current knowledge of neuronal 

architecture in the brain there is no way that this sort of precise information could be 

provided. 

The neuronal plausibility of connectionist models is further strained by the 

fact that single neurons cannot produce both excitatory and inhibitory connections, 

because all of their synapses must use the same neurotransmitter. Thus neurons are 

either excitatory or inhibitory, but not both. The vast majority of connectionist 

models allow connections from a single unit to take both positive and negative weight 

values. Most connectionists would not see these architectural divergences as a 

problem. Their standard response is to argue that they are modelling higher level 

cognitive processing, and that this necessitates only a loose connection between 

models and reality. Marr expressed this point in the following way: 

Trying to understand perception by studying only neurons is like trying to understand bird flight by 

studying only feathers: it cannot be done. In order to understand bird flight, we have to understand 

aerodynamics; only then do the structure of feathers and the different shapes of birds’ wings make 

sense.40 

                                                 

40 Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman, 

San Francisco, 1982), p. 27. 
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I agree with this viewpoint, as I made clear in the introduction; the whole purpose of 

modelling is to strip out the unnecessary details, so that the global picture can be seen 

more clearly. Thus connectionist models should not be slavish duplications of real 

neural networks. My objection, which is central to my thesis, is that some features of 

real neural networks that have been abandoned suggest interesting new ways of 

understanding the emergent behaviour of networks. It is precisely by paying attention 

to the details that we get a better grip on the large-scale principles at work in real 

brains, and that produce real thinking. 

 Instead of using sophisticated non-local learning algorithms, recent research 

into neural networks has suggested that they overcome computational problems 

through the use of a number of different architectures linked together, with a Hebbian 

learning rule, and sparse coding (see section 1.1). The Hebb rule states that where a 

presynaptic neuron and a postsynaptic neuron are active at the same time, the synapse 

that connects them will be strengthened according the following algorithm: 

δwij = k ri r′j. 

where ri is the postsynaptic firing rate, r′j is the presynaptic firing rate, k is a learning 

rate constant, and δwij is the change in the synaptic weight wij (this nomenclature, in 

which the ith neuron is the postsynaptic neuron, and the jth neuron is the presynaptic 

neuron, is standard). For Hebbian learning all the information required is available 

locally at the synapse, and empirical research has revealed a plausible mechanism at 

the microcellular level for this rule. At least three different neural architectures have 

been found in the brain which utilize this basic learning rule to accomplish different 

sorts of computational tasks: pattern association networks, autoassociation networks, 

and competitive networks, examples of which are shown in Figure 4, on page 33. 

These architectures are all compatible with connectionist modelling; it is the use of 

non-local learning algorithms that is responsible for the lack of biological plausibility. 

The divergence from connectionist networks arises when these architectures are 

combined with a Hebbian learning algorithm.41 

I will briefly describe biologically plausible pattern association and 

autoassociation networks in sections 2.1 and 2.2 respectively, before going on to 

                                                 

41 It is true that some models have used a Hebbian learning algorithm, but not in the ways that will be described below.  
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discuss competitive networks in more detail in section 2.3, because they play a more 

central role in complex cognitive processing. Then, in section 2.4, I will go on to 

discuss the interactions of these different architectures in actual brain systems. 

 

Figure 4: Examples of three network architectures that use local learning rules: (a) Pattern association 

with a single output neuron; (b) Pattern association network; (c) Autoassociation network; (d) 

Competitive Network. 

2.1 Pattern Association Networks 

Pattern association networks receive two sets of synaptic input: an unconditioned and 

a conditioned input. The former has unmodifiable synapses, as its name suggests, and 

represents a primitive reward signal which is ‘hard-wired’ into the brain. This input is 

effectively dominant, when active it determines the pattern of activity on the output 

neurons. The conditioned input has modifiable synapses. In terms of the connectionist 

networks described in chapter 1, these can be thought of as two different sets of units 

with connections onto a single set, or layer, of units. 
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These pattern association networks are believed to underlie conditioned 

learning. Hence the task of such networks is to associate a vector on the conditioned 

inputs with the same output vector as is produced by an unconditioned input. For 

example, the taste of food, which is intrinsically rewarding might be paired with the 

sight of the food so that the sight of the food also comes to be rewarding. The 

unconditioned stimulus acts in some way as the teaching input, forcing the desired 

output vector. As described in section 1.1, neurons can be viewed as comparing input 

vectors with their weight vectors, firing if they are sufficiently similar. Through 

Hebbian modification the weight vectors of the network’s neurons come to reflect the 

input vector which was co-active with the unconditioned input vector, so that the 

conditioned input vector comes to elicit the same response. 

2.2 Autoassociation Networks 

As can be seen in Figure 4, on page 33, the distinguishing feature of autoassociation 

networks is the fact that each neuron is connected to every other neuron in the 

network. The task of these networks is to produce an output firing vector which is the 

same as their external input vector. This might seem pointless until it is noted that 

these networks have an ability to produce a complete output vector from only a 

fragment of a previously presented input vector. Thus autoassociation networks are 

believed to form the basis of both episodic and short term memory. 

Autoassociation networks work by storing associations between the elements 

in an input pattern. The addition of recurrent connections makes such systems 

dynamic in nature, and their operation can be understood in terms of attractor basins 

similar to those which were appealed to in section 1.1 to explain the prototype 

extraction of connectionist networks. The similarity is not total, however, because of 

the dynamic nature of autoassociation networks. In feedforward connectionist 

networks, the units in the hidden layer are considered as attractors because they draw 

together patterns on the input layer. Thus such attractors emerge over time through 

training, but on any one trial presentation they operate over a single time cycle. By 

contrast, in autoassociation networks the movement towards the bottom of a basin 

occurs as patterns of activation cycle round the system over many iterations until a 

stable state is reached, rather like a ball rolling down into a valley. 
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This dynamic behaviour can be understood by considering pairs of neurons. If 

they are both firing above their base rate, and they have a positive connection weight, 

then they will reinforce each other and contribute to the stability of the system. If one 

were firing below its base rate, or the connection had a negative weight, then they 

would be unstable and would tend to ‘struggle’ to achieve dominance, trying to 

switch each other’s activation state to support their own. These sorts of processes 

would occur throughout the network, until the least antagonistic state is reached, i.e. 

the state with the most compatible relationships between neuron pairs. Through 

Hebbian learning the weights are altered so that these states, the bottoms of the 

attractor basins, come to reflect those input patterns that were presented to the 

network. 

The capacity of autoassociation networks (in terms of patterns stored without 

significant interference) is a complex matter, but Rolls and Treves have shown that 

for biologically plausible networks it is a function of the number of recurrent 

connections, and the sparseness of the patterns, according to the following equation: 

k
aa

C
p

RC

)/1ln(
≈  

where p is the number of patterns, CRC is the number of synapses onto each neuron, 

and a is a measure of the sparseness of the patterns, n is the number of neurons, and k 

is a complex factor dependent on several aspects of the network.42 The result is that 

the greater the number of recurrent connections onto each neuron the larger the 

number of different patterns that can be stored.  For example, for CRC = 12 000 and a 

= 0.02, p is calculated to be approximately 36 000. The implications of the sparseness 

of representations is discussed in section 2.4.2. 

2.3 Competitive Networks and Convergent Architectures 

An example of a competitive network is shown in Figure 4, on page 33. Competitive 

networks are so-called because they utilize mutual inhibition between their output 

neurons. In the most extreme case this might result in only one neuron remaining 

active, a winner-takes-all scenario. Competitive inhibition forms the basis for a 

                                                 

42 ‘What Determines the Capacity of Autoassociative Memories in the Brain?’, Network 2 (1991), 371-397. 
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number of features which make this architecture useful in perceptual systems. The 

most important of these features is self-organisation, which allows the emergence of 

feature detectors. 

 In some sense the competition takes the place of the teaching signal in 

connectionist backpropagation networks, in that it allows the network to extract 

prototypes from its input stimuli. It is easiest to explain why this is the case using the 

example of a winner-takes-all network. Initially such a network will have random 

weights on its synaptic connections. When a particular input is presented it might 

happen to create an activation pattern on the inputs which is closer to the weight 

vector of one of the neurons than to those of the others. Over a short period of time 

the effect of the mutual inhibition will leave only this neuron firing. On a larger time-

scale, and many stimulus presentations, provided that there are genuine clusters of 

patterns in the inputs, the weight vectors of the neurons will come to adopt the central 

tendencies of those clusters, i.e. they will come to represent prototypes. This occurs 

through the influence of superpositional storage of the distributed input patterns, as 

described in section 1.1. Those synapses most often activated on the winning neuron 

by a cluster will become the strongest through Hebbian modification. 

 This competitive prototype extraction is the basis for a number of interesting 

properties. These can be demonstrated most graphically in the visual system, and in 

the pathway devoted to object recognition in particular (see Figure 5, on page 37). 

Recordings from single neurons within this pathway, along with information about 

neural architecture and connectivity, have lead Rolls to suggest a computational 

model of how object recognition is achieved.43 Rolls has proposed that this is 

achieved by a system of hierarchically connected competitive networks. The 

hierarchical organisation is crucial because it allows each successive layer to extract 

more abstract features from increasingly large receptive fields, until cells are reached 

in the anterior inferotemporal cortex which respond to objects regardless of position 

in the visual field and viewing angle. Hence the object recognition achieved by this 

pathway is described as invariant. 

                                                 

43 ‘Brain Mechanisms for Invariant Visual Recognition and Learning’, Behavioural Processes 33 (1994), 113-138. 
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Figure 5: A schematic diagram of the visual pathways from the retina to the visual cortical areas. V1, 

primary visual cortex; V2, V3, V4 etc., other cortical areas; M, magnocellular, P, parvocellular. 

The first evidence for this hierarchical hypothesis can be found in the early 

stages of the visual system. Some cells in the lateral geniculate nucleus, which is the 

way station between the retina and the visual cortex, have concentric on-centre off-

surround (or vice versa) receptive fields, as do the ganglion cells in the retina. This 

means that they are excited by light falling in the centre of their receptive fields, and 

inhibited by light falling in the region around this centre. Some cells in area V1 have 

receptive fields which are not circular, but elongated, so that they are sensitive to 

lines or edges at certain orientations. When these patterns of receptivity were first 

discovered Hubel and Wiesel suggested that they could be accounted for by a 

convergence of connections from several cells in the lateral geniculate nucleus onto a 

cell in V1.44 For a line passing over the retina at a given angle will cause adjacent 

retinal ganglion cells, and hence lateral geniculate cells, in that orientation to fire 

                                                 

44 ‘Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat’s Visual Cortex’, Journal of Physiology 160 

(1962), 106-154. 
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simultaneously. The problem for the brain is how to orchestrate the connectivity 

between layers to create these receptive fields. 

It has been shown using simulations that this organisation can emerge with 

competitive network architectures. A detailed and biologically realistic of model, 

called VisNet, has been produced by Rolls. VisNet is effectively a reproduction of the 

object recognition pathway, based on current neurophysiological evidence.45 The 

model consists of four layers roughly corresponding to V2, V4, the posterior temporal 

cortex, and the anterior temporal cortex. Each layer consists of 32×32 cells. The 

connections to a cell from those in the preceding layer arise from a topologically 

corresponding region in that layer. The connectivity decreases with distance from the 

centre of the receptive field. Lateral inhibition within each layer has a radius of effect 

just greater than the radius of the neurons’ receptive fields, mirroring the pattern of 

connectivity of inhibitory interneurons in the visual cortex. It is these inhibitory 

connections which allow competitive learning. The inhibition in VisNet is set so that 

the competition is ‘soft’, meaning that the neurons produce a graded response rather 

than a sole winner. 

Adjacent cells within a layer have overlapping receptive fields, and so their 

activity will tend to be highly correlated, whilst cells further away will not have 

highly correlated activity, because there will be no receptive field overlap. This 

explains how centre-surround receptive fields might emerge at the next layer of such 

a convergent architecture, as the neurons in that higher level detect and categorize 

these correlations amongst their input neurons. 

The activity from the cells in this layer feeds on to those in the next, and the 

same pattern of correlation will be repeated, but this time the neurons are receiving 

from centre surround neurons, and thus they will begin to extract higher order 

features such as bars or edges, just as Hubel and Wiesel hypothesized. VisNet uses a 

version of the Hebbian learning rule, with a small but important modification, namely 

a short memory trace in the postsynaptic neurons. This matches the physiology of real 

synapses, and is thought to be useful because it allows higher level neurons to 

recognize correlations in the activity of their inputs caused by objects moving over 

                                                 

45 ‘Brain Mechanisms for Invariant Visual Recognition and Learning’. 
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the retina. For example, a line moving across the retina will cause a succession of 

edge-detecting neurons to fire. If the postsynaptic neuron remains active for a short 

period this will allow it to pick up on these patterns and thus to recognize the same 

feature at various different parts of the retina. 

In one testing regime a set of three non-orthogonal stimuli were used, such as 

‘T’, ‘L’, and ‘+’ shapes. These shapes are non-orthogonal because they use the same 

elements in different combinations, thus the system was being tested to see if it had 

the ability to recognize spatial combinations of features, not just the bare presence of 

those features. VisNet was trained by sweeping the stimuli across its ‘retina’ in a 

random sequence. After learning the network was tested by examining the response 

profile of its neurons. Cells were found in layer 4 which responded to the presence of 

particular test stimuli regardless of position on the retina. VisNet was even capable of 

producing cells in layer 4 which would respond to the presence of a particular face, 

regardless of position, and which of seven possible views were presented. 

This demonstrates that an architecture like the one described is capable of 

invariant object recognition. It matches the data from single neurons in the primate 

cortex, where cells have progressively larger receptive fields with each layer, until 

neurons in the inferotemporal cortex are reached which respond to specific objects, or 

types of objects, anywhere in the visual field, just like those in layer 4 of VisNet. 

The product of this invariant object recognition system is a pattern of firing of 

a relatively small number of neurons in a moderately large population, where that 

population is at the top of a set of hierarchically arranged cell populations. From what 

has been discussed so far a number of computational advantages can be seen to 

follow. First, as sets of correlated inputs get represented by the activity of a few 

neurons in the next layer this removes redundancy in the sensory input. What required 

a large number of neurons to code gets represented in ‘short hand’ by a much reduced 

number of neurons. In a convergent network each neuron only has to sample a small 

part of the preceding layer. This avoids a combinatorial explosion in connections, 

which would be produced if each neuron had to search the whole of the preceding 

layer for the presence of its preferred feature combination. This localization of feature 

search also solves another computational problem faced by other models of visual 

recognition, namely feature binding. This is illustrated by the fact that a list of the 

features present in the visual scene is insufficient for object recognition, as it might be 
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possible for the same group of features to be differently arranged to form different 

objects. One must also have a way of representing the relations between features. 

This is achieved automatically in a convergent competitive system, as each layer 

represents local arrangements of features in the preceding layer, and with each layer 

the representations become more complex with progressively larger receptive fields. 

Hence specificity of feature arrangements is built into the system from the very 

bottom, the system simply never has to address the binding problem. 

However, not all the advantages of a sparsely coded output from the object 

recognition system can be appreciated without considering the representational 

significance of such output patterns. After all, in comparison with Churchland’s 

account, which has complex objects being represented by vectors in fully distributed 

hyper-dimensional vector spaces, the present approach seems positively simplistic. 

Yet in this sort of system the representation is truly distributed, not just in a hidden 

layer, but amongst many layers. In this regard I am reminded of Dennett’s Multiple 

Drafts model of consciousness: 

Feature detections or discriminations only have to be made once. That is, once a particular 

‘observation’ of some feature has been made, by a specialized, localized portion of the brain, the 

information content thus fixed does not have to be sent somewhere else to be rediscriminated by some 

‘master’ discriminator.46 

In a convergent architecture something is represented by a complex pattern of 

neuronal activation in one layer, but in the next layer it gets represented by a much 

simpler neuronal ‘label’, which then goes on to affect the further processing in the 

system in a way that respects the content of that complex pattern.47 This applies to the 

relationship between all layers, but has a special significance for the output layer. The 

output is simple because of the sorts of systems it must interact with in order to 

produce behavioural advantages. The next section deals with the way convergent 

competitive networks interact with the other neural architectures described in this 

section to produce cognitive processing. This will allow a demonstration of the 

                                                 

46 Consciousness Explained, p.113. 

47 One might hypothesize that the conscious sensory experience, the qualia, must involve the complex pattern in the earlier 

layers, in addition to the activity in the higher layers, so that consciousness would be envisaged to involve a large number of 

neuronal populations from many different regions. Which neuronal populations contribute to consciousness at any given moment 

probably depends on attention and the nature of the task being attempted.  
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advantages of real neuronal computation when compared with traditional 

connectionist models. 

2.4 Interactions between Neuronal Populations and Brain Function 

To appreciate the power of the various network architectures discussed in this chapter 

it is important to consider the computational problems that an organism faces, even 

once it has successfully recognized an object. After all, perceptual differentiation only 

becomes recognition when it grounds further advantageous cognitive processes. An 

organism must be able to judge the reward value of the object; should the object be 

approached or avoided? Additional benefit would be gained from being able to recall 

more specific details from previous encounters, if any, so that past experience could 

be brought to bear on present actions. As a concomitant of this there would also have 

to be a mechanism whereby the present occasion could be added to the body of data 

just mentioned. Of course it is obvious that what I am talking about here are emotion 

and memory. As mentioned in sections 2.1 and 2.2, these are grounded by pattern 

association networks and autoassociation networks respectively. It is the problem of 

interfacing with these types of networks that accounts for the nature and utility of the 

coding that takes place in the convergent competitive networks of the object 

recognition system, amongst other systems. 

 

Figure 6: Expansion recoding. A competitive network is connected to a pattern association network to 

allow patterns that are not linearly separable (recall the notion of a hyperplane introduced in section 

1.1) to be correctly learned. 
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2.4.1 Orthogonalization, Emotion, and Memory 

Pattern association networks can be used as an alternative way of solving the 

exclusive OR problem, which was discussed in section 1.1. It is true that a pattern 

association network alone cannot solve the problem, because the Hebbian algorithm 

is not powerful enough. However, this can be overcome if the input to the pattern 

association network is pre-processed by a competitive network, as shown in Figure 6, 

on page 41. This is known as expansion recoding, because the original vector is 

transformed into a vector with increased dimensionality (i.e., it uses more neurons). 

Expansion recoding works because the competitive network orthogonalizes the 

patterns. Two vectors are completely orthogonal when they are at ninety degrees, at 

which point they are completely independent. Thus orthogonalization means that 

vectors are made less similar; the angle between them is made larger, approaching 

ninety degrees, thus reducing interference. With expansion recoding each input vector 

is represented by a separate output neuron, which allows the pattern association 

network to solve the problem with the weights shown in Table 3. 

Recoded Inputs Synaptic Weight 

Input 1 (A=1, B=0) 1 

Input 2 (A=0, B=1) 1 

Input 3 (A=1, B=1) 0 

Table 3: Weights required in the pattern association network following expansion recoding. 

Thus where a standard connectionist model would solve this sort of problem with a 

hidden layer and a backpropagation algorithm, it seems plausible that the brain would 

use a combination of architectures. This sort of sophistication in categorization is 

needed in determining the emotional significance of objects, because similar objects 

may have very different reward values.48 Thus objects receive different and 

orthogonalized representations which allows them to be more easily related with their 

reward value in pattern association networks. There is a large body of compelling 

evidence that these pattern associations take place in the amygdala and the 

orbitofrontal cortex. These areas receive inputs from the final stages of the object 

                                                 

48 I am assuming that it is the evolutionary purpose of emotions to motivate appropriate behaviours towards objects and 

situations, i.e. on the basis of previous reward value. 
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recognition system in the inferior temporal 

cortex, but they also receive inputs from other 

sensory areas such as taste and olfaction. Their 

outputs include structures, such as the 

hypothalamus, that are involved in the control 

of autonomic functions which have a role in 

emotional responses. The amygdala is a 

subcortical structure involved in the more 

basic aspects of emotional behaviour in that 

single neurons do not show much flexibility in 

response to changes in reward value, where 

this can be thought of as the emotional 

significance of a stimulus. For example, food 

would have a positive reward value for a 

hungry animal. Neurons in the orbitofrontal 

cortex, on the other hand, do exhibit a close 

tracking of reward value even on single trials. 

The orbitofrontal cortex is part of the frontal 

cortex, the region of the brain that is most enlarged in humans when compared with 

other primates. The possible significance of this area for complex thought will 

emerge in section 2.5. 

 Orthogonalization plays a similar role for autoassociation networks. The role 

of episodic memory is to store information about particular occasions. Even if two 

situations are extremely similar they must be stored as separate temporal units. Marr 

was one of the first to suggest that the area responsible for this function might be the 

hippocampus, a subcortical structure in the temporal lobe, and the idea has been taken 

up by a number of others.49 As shown in Figure 7, the hippocampus receives 

connections from many areas of the neocortex, via the entorhinal cortex. These are 

                                                 

49 See D. Marr, ‘Simple Memory: A Theory for Archicortex’, Philosophical Transactions of The Royal Society of London, Series 

B 262 (1971), 23-81, J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, ‘Why There are Complementary Learning 

Systems in the Hippocampus and Neocortex: Insights from the Successes and Failures of Connectionist Models of Learning and 

Memory’, Psychological Review 102 (1995), 419-457, and E. T. Rolls, ‘Parallel Distributed Processing in the Brain: 

Implications of the Functional Architecture of Neuronal Networks in the Hippocampus’, in R. G. M. Morris, ed., Parallel 

Distributed Processing: Implications for Psychology and Neurobiology (Oxford University Press, Oxford, 1989), Ch. 12. 

Figure 7: Schematic diagram of the 

connections in the hippocampal circuit. 

Forward connections are shown as solid, 

backprojections are shown as dashed 

lines. 
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then passed through a circuit in the hippocampus before returning to the entorhinal 

cortex, and from there back to the neocortex. The crucial part of the circuit is the CA3 

stage, which has a large number of recurrent connections, and thus seems a likely 

candidate for an autoassociation network. The idea is that the cortical activity in many 

areas of the brain during a particular experience pass patterns of activation into the 

hippocampus. The dentate granule cells act as a competitive network to remove 

redundancy and to orthogonalize the input so that large numbers of patterns can be 

stored without interference in much the same way as was explained for pattern 

association networks above. This pattern is then laid down in the CA3 network. Upon 

recall a fragment of the original pattern is presented to the CA3 network, where a 

complete pattern is produced. The next stage illustrates a very important principle of 

real neural functioning. The output pattern of the CA3 neurons is passed back to the 

entorhinal cortex, and from there to the neocortex so that the same, or at least a 

similar, pattern of activity is reproduced in the neocortex as was present when the 

memory was formed. The ramifications of this feature are discussed in section 2.5 

below. 

2.4.2 Sparsification 

The sparseness of the representations produced by a competitive network is 

dependent on the degree of competition. The example of expansion recoding 

discussed in section 2.4.1 involved the greatest level of competition, in that it was a 

winner-takes-all network. It is unlikely that the competition employed by competitive 

networks in the brain would be of this kind, it is more likely to be soft competition as 

this presents computational advantages. The prime advantage is that sparse 

representations allow more patterns to be stored in pattern association networks and 

autoassociation networks. The mathematics behind this is complex, because the 

capacity of a network is dependent upon many factors, and is relative to the desired 

level of reliability of recall and how orthogonal the patterns are. 

 Sparse coding gives greater storage capacity in terms of number of patterns 

stored than either local or distributed representation, but still maintains the benefits of 

distributed encoding, such as generalization and graceful degradation. These benefits 

outweigh the cost of abandoning fully distributed encoding: sparsely coded patterns 

contain less information than their fully distributed counterparts, because less 
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representational elements are used. However, the amount of information still rises 

linearly with the number of neurons involved, and given that information is a 

logarithmic measure, this means that the representational capacity rises exponentially. 

Thus even a small number of neurons can encode a large number of patterns using 

sparse coding. 

2.4.3 Recurrent Connections and Neural Processing 

In explaining hippocampal functioning the recurrent projections to the neocortex 

played a crucial role, but recurrent projections are not unique to this circuit, they are 

ubiquitous throughout the brain. There are often as many, if not more, 

backprojections as there are in the forward direction. These backprojections, 

however, are not limited to the adjacent layer, they will often project to many other 

layers, and other networks altogether. Their very abundance suggests a key role in 

brain processing, and their role in the hippocampal memory circuit suggests one way 

in which they might function in other brain systems. The backprojections could act to 

reinstate original patterns of cortical activity during recall. Rolls and Treves give the 

following example: 

Consider the situation when in the visual system the sight of food is forward projected onto pyramidal 

cells in higher order cortex, and conjunctively there is a backprojected representation of the taste of the 

food from, for example, the amygdala or orbitofrontal cortex. Neurons which have conjunctive inputs 

from these two stimuli set up representations of both, so that later if only the taste representation is 

backprojected, then the visual neurons originally activated by the sight of that food will be activated. In 

this way many of the low-level details of the original visual stimulus might be recalled.50 

Evidence for this comes from PET studies of subjects asked to recall visual scenes in 

the dark, which revealed increased blood flow, and thus increased neural activity, in 

early visual processing areas.51 

 Backprojections may also serve to aid learning in the cortex. Consider a 

competitive network that has a set of backprojections in addition to its normal input. 

These might come from the amygdala, representing emotional states. This 

modification of the network allows two similar inputs to be treated differently if they 

                                                 

50 Neural Networks and Brain Function (Oxford University Press, Oxford, 1998), p. 243. 

51 S. M. Kosslyn, Image and Brain: The Resolution of the Imagery Debate (MIT Press, Cambridge, Mass., 1994). 
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are encountered in different emotional states, because the backprojections form an 

extra part of the input pattern. This mechanism allows the organism to learn fine 

discriminations between stimuli, guiding its category formation and the recognition of 

those categories. 

 In a similar way backprojections might form the basis for semantic priming, 

where activation of one semantic element increases the ability to respond to related 

elements. This might be done by backprojections producing a slight increase in the 

activations of those neurons which are involved in the recognition of the relevant 

semantic category. This would allow them to pass their thresholds more quickly, and 

thus to respond more rapidly (although not always correctly, there will always be a 

trade-off between speed and accuracy). 

Backprojections could also be the basis for some mechanisms of attention and 

cognitive influences on perception, selectively facilitating the activity of relevant 

cortical populations. An instance of this would be situations in which one input 

pathway, say olfaction, has a noisy input. The olfactory pathway and the taste 

pathway both project to a cortical area where flavour is represented. The taste input 

could drive this higher cortical area into the correct pattern, and the backprojections 

from this area could then help the olfactory network to settle into the right pattern. In 

this way the conjunction of information from many channels can help to alter and 

‘clean up’ the activation in the earlier neural populations. 

2.5 General Principles of Brain Function 

There are several general principles that can be drawn from the detailed nature of 

neural processing considered in this chapter. Signals between layers act like a lock 

and key system, for example: a competitive network can output a simple, 

orthogonalized, sparsely coded key, which can be easily stored by a pattern 

association or autoassociation network. During recall this key can then be reproduced 

to ‘unlock’ the original complex pattern of cortical activity. This suggests that 

complex tasks might be solved, even with simple learning algorithms, through the 

interaction of several different sorts of networks operating in concert. One might 

speculate that a large portion of the sophisticated behaviour which brains produce is 

the result of such interactions, possibly between many different networks. This fits 



BIOLOGICALLY PLAUSIBLE NEURAL COMPUTATION 

 

47

well with the fact, well known from the earliest study of the brain, that processing is 

carried out in multiple distinct regions, which are differentiated by their architectures 

and patterns of connectivity (recall the map of areas and connections in Figure 5 on 

page 37). This fact is one of the key sources of tension between connectionism and 

neurophysiology. It is understandable that connectionism, being a young field, with 

limited computing power available, should model simple single networks. Yet 

neurophysiology suggests that much of what is interesting in behaviour, both human 

and non-human, arises out of the interactions of many different cell populations. It 

may well be the case that these interactions are governed by entirely different 

principles than the local interactions between neurons in a single network. What are 

needed, then, are models of processing control mechanisms, or what Clark has called 

neural control hypotheses, in order to explain inter-network interactions.52 Clark 

envisages these as structural features that are responsible for the control of other 

systems, gating the flow of information, and determining which type of activity is 

predominant at any time. One example of this sort of control mechanism is the 

reactivation of patterns of activity by backprojections, which was described in section 

2.4.3, and so the lock and key model has a fundamental role to play here. 

Damasio and Damasio have used backprojections as the basis for a model of 

knowledge representation.53 At the heart of this model is the notion of a convergence 

zone, which is ‘an ensemble of neurons within which many feedforward/feedback 

loops make contact’.54 The purpose of the feedback connections is to activate patterns 

in many distinct cortical areas that are involved in earlier processing. These patterns 

would be reproductions of patterns that had occurred during previous experiences. 

The feedforward connections contact other convergence zones, so that there are 

hierarchies of convergence zones, and this is what makes the model new and 

interesting. Knowledge about basic features and individuals would be encoded by the 

activity in the lowest convergence zones, knowledge about entity categories at higher 

levels, with more complexity and generality being introduced with each step up the 

                                                 

52 Being There, pp. 136-141. 

53 ‘Cortical Systems for Retrieval of Concrete Knowledge: The Convergence Zone Framework’, in C. Koch and J. Davis, ed., 

Large-Scale Theories of the Brain  (MIT Press, Cambridge, Mass., 1994), pp. 61-74. 

54 ‘Cortical Systems for Retrieval of Concrete Knowledge: The Convergence Zone Framework’, p.71. 
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hierarchy. Thus simple features such as colours would require only a small amount of 

activity, whereas representations of more complex categories, such as animals, would 

require the activation of many more areas, including many subordinate convergence 

zones. Rolls’ model of invariant object recognition can be seen as an example of such 

convergence zones. Indeed Damasio and Damasio hypothesize that the 

inferotemporal region is the locus for these convergence zones, based on the patterns 

of knowledge deficits that result from brain injury. Knowledge at the various levels is 

accessed through the activation of the appropriate convergence zone, which very 

rapidly reinstates the activity pattern in many disparate brain regions, and depending 

on the point in the hierarchy which is damaged, various categories of knowledge will 

no longer be available to the injured individual. Thus it is wrong to think of particular 

types of knowledge as being localized in particular brain regions, rather the access to 

that knowledge is controlled by a particular region. 

 Van Essen et al. have proposed a slightly different neural control hypothesis 

in which groups of control neurons gate the flow of activity from one population to 

another.55 The control neurons act as a kind of attentional filter, given that the brain 

receives vast amounts of information from its sensory surfaces, and only has a limited 

processing capacity (Van Essen et al. estimate that only 0.1% of the information in 

the optic nerve can be processed at any one moment).56 Whether the model they 

propose is accurate is a matter for further empirical research, but their analysis of the 

shortcomings of connectionist models is instructive: 

Conventional neural network models typically rely on computations that are dominated by linear 

combinations of synaptic feedforward inputs followed by a non-linear operation. This simple neural 

network structure has proven to be too rigid and unwieldy when applied to large problems . . . We 

suggest that models that do not distinguish control functions from information flow and processing will 

not scale well with increased problem complexity.57 

Not only is there a need for attentional filtering, there is also a need to select between 

multiple processing pathways, given that there are many routes to output. For 

                                                 

55 ‘Dynamic Routing Strategies in Sensory, Motor, and Cognitive Processing’ in C. Koch and J. Davis, ed., Large-Scale Theories 

of the Brain  (MIT Press, Cambridge, Mass., 1994), pp. 271-299. 

56 ‘Pattern Recognition, Attention, and Informational Bottlenecks in the Primate Visual System’, Proceedings of the SPIE 

Conference on Visual Information Processing: From Neurons to Chips 1473 (1991), 17-28. 

57 ‘Dynamic Routing Strategies in Sensory, Motor, and Cognitive Processing’, p. 299. 
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example, an early processing layer may project to another processing layer, but it may 

also project directly to neurons involved in producing motor responses. This allows 

for both the production of fast, but stereotypical responses, and for slower but more 

complex and considered responses. The pathway that is most appropriate will depend 

upon situational factors, such as the general level of arousal, and so a mechanism is 

needed to make this decision. Such multiple routes to output may allow the same 

cognitive task to be achieved by several different processing strategies. One example 

of this is the existence of both a phoneme-based route to the production of speech 

from text, and a whole word recognition route. Evidence also comes from 

neurophysiology, where it has been shown that subcortical structures, such as the 

amygdala, have direct connections to motor neurons, as well as projections to higher 

neocortical structures. 

 The picture that emerges from analysis of real neural processing is one in 

which many distinct networks operate together. The principles whereby these 

interactions are controlled can only be guessed at, but they appear to be different in 

kind to the interactions that take place at a local level between neurons. An important 

point to make is that although control is needed, there is nothing in the hypotheses 

discussed above that suggests a central executive. The control mechanisms described 

have no access to the information stored in the systems they control. Some might 

argue that the correct style of explanation is of the traditional cognitive science ‘black 

box’ variety, but the fact that the models described are distinctly non-sequential in 

their connections speaks against this. However, a word of caution is needed. Many 

researchers agree that the frontal lobes play a crucial role in human cognition. Their 

major function seems to be planning, including response selection and suppression 

and mental modelling to predict real-world outcomes. Nothing in this section sheds 

any light on this directly. That such an important element of thought remains 

unexplained is frustrating, but only to be expected given its complexity. Whether 

mental planning can be explained by a neural control mechanism or by an approach 

involving more traditional processing modules and a central executive remains to be 

seen. I suspect that something like the former may be closer to reality. However, it 

may be the case that such dichotomies are misconceived, and that the truth is 

somewhere in between. What I have in mind here is a model in which there is some 

localization of processing role, but whose properties emerge from the dynamic nature 
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of the interaction between those modules, i.e., more a network of rivers and dams 

than black boxes. 

This leaves the interesting question of where connectionist models should be 

placed in relation to these two styles of analysis. What the discussion in this chapter 

has revealed is that some localization seems inevitable. It is an established fact in 

neurophysiology that there are discrete regions with their own processing roles. The 

problem at issue is what one concludes from this. Despite all the claims to abstraction 

it seems as if connectionism bears the strongest resemblance to the neural goings on 

within the modules themselves, rather than to the mechanisms involved in controlling 

inter-network interactions. As a result I would predict that connectionism, in its 

current form, will prove inadequate at successfully modelling complex world-

negotiating behaviour. This need not lead to a complete rejection of connectionism, 

however, because it may still explain a large proportion of or cognitive processing. In 

addition it may also adapt to take on the problem of larger scale interactions in such a 

way as to explain them in terms of emergent properties that does not fit with 

conventional artificial intelligence styles of explanation. 

2.6 Summary 

Philosophical expositions of connectionism have typically focused on feedforward 

network architectures, with hidden units, which are trained by the backpropagation 

learning algorithm. In this chapter, I have attempted to sketch out a rather different 

picture based on current knowledge of the architectures and functioning of real neural 

networks. The key points from this chapter that the reader will need to carry forward 

to the discussion in chapter 3 are: 

• The distinctions in computational role between different architectures. 

• The computational advantages to be gleaned from the interactions between 

different architectures. 

• The importance of mechanisms to control the interactions of different networks. 



 

 

3 Rethinking Vector Cognition 

With these features of real neural processing in place I now want to suggest a number 

of ways in which Churchland’s neurocomputational model might be adapted to avoid 

the difficulties raised in section 1.3. In that section I argued that contemporary 

connectionist models cannot be considered to display genuinely systematic, and thus 

symbolic, behaviour. A consequence of this is that connectionist networks can only 

be considered to have representations with non-conceptual content. Before tackling 

this problem I want to outline Terence Deacon’s account of symbolic thought, as this 

introduces several notions that play a role in my proposed solutions to the problem of 

complex cognition and systematicity.58 

3.1 Icon, Index, and Symbol 

Deacon, borrowing from Peirce, sets out a scheme of three hierarchically arranged 

categories of referential association: icon, index, and symbol.59 Iconic reference is the 

most basic form. An icon is usually thought to refer to its object through some form 

of physical similarity, but Deacon argues that this is not the foundation; the basis is 

rather ‘that aspect of the interpretation process that does not differ from some other 

interpretive process.’60 Thus it is taking something to be the same as something 

previously experienced, it is recognition. Physical similarity is the most obvious 

reason why one object is treated as iconic of another, but it need not be the only one 

on the definition given here. A picture of a person is iconic because of the stage in the 

interpretive recognition process which is the same for an actual encounter with that 

individual, or with the picture. In the present context iconicity can be conveniently 

assimilated to the vector prototype explanation of recognition; a stimulus is an icon of 

x if it activates the x prototype. 

                                                 

58 The Symbolic Species: The Co-Evolution of Language and the Human Brain  (Allen Lane, The Penguin Press, London, 1997). 

59 The Symbolic Species, p. 70; C. S. Peirce, ‘Collected Papers. Volume II: Elements of Logic’. C. Hartshorne and P. Weiss, eds. 

(Belknap, Cambridge, Mass., 1978). 

60 The Symbolic Species, p. 76. 
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 Indexical reference depends upon iconic reference, requiring the existence of 

at least three iconic relations. An indicating stimulus must be recognized as iconic of 

a previous class of stimuli. In addition members of this class must correlate with 

members of another class of stimuli which are seen as iconic of each other. Finally, 

and most importantly, these previous correlations must be interpreted as iconic of one 

another. This third relation is a higher-order icon, ranging over existing basic icons. 

An example of this type of reference would be the warning calls of vervet monkeys.61 

These monkeys produce distinct calls for different predators, such as snakes, eagles, 

and leopards. This involves the recognition of a predator, the selection and 

recognition of the correct warning cry, and the recognition of the previous 

correlations between the two. Given this explanation, indexical reference just seems 

to be another way of describing learned association of natural indicators.62 Indeed a 

similar charge might be levelled at the account of iconicity, in that it is essentially 

perceptual recognition. Deacon raises just these questions: 

Could we just substitute the word ‘perception’ for ‘icon’ and ‘learned association’ for index? No. Icons 

and indices are not merely perception and learning, they refer to the inferential or predictive powers 

that are implicit in these neural processes. Representational relationships are not just these 

mechanisms, but a feature of their potential relationships to past, future, distant, or imaginary things. 

These things are not physically re-presented but only virtually re-presented by producing perceptual 

and learned responses like those that would be produced if they were present.63 

Thus what is stressed in this account is the role of these processes in the cognitive 

economy. A sensory stimulus counts as an instance of an icon because of the way it is 

processed, as in the example of a picture, given above. It is not some feature of the 

stimulus which is the fundamental ground of reference, it is what is done with the 

stimulus. This matches well with the action-oriented nature of vector prototypes 

which was mentioned in section 1.2. 

 Symbols are at the top of the three-tiered hierarchy, as they range over 

indexical relationships. Deacon illustrates the nature of symbolic reference using the 

                                                 

61 R. M. Seyfarth, D. L. Cheney, and P. Marler, ‘Monkey Responses to Three Different Alarm Calls: Evidence for Predator 

Classification and Semantic Communication’, Science 210 (1980), 801-3. 

62 For an exposition of the notion of ‘indicator aboutness’ see F. Dretske, ‘Misrepresentation’, in R. Bogdan, ed., Belief: Form, 

Content, and Function (Clarendon Press, Oxford, 1986), pp. 17-36. 

63 The Symbolic Species, p. 78. 
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example of a set of chimpanzees who were trained to use symbolic communication.64 

The chimps were taught to use a computer keyboard with simple abstract shapes 

known as lexigrams on the keys. Previous experiments had shown that chimps were 

capable of learning a large number of lexigram-object associations, that is, indexical 

relations. However, this does not constitute symbol-use, and the reason why it does 

not provides a clue to the features which are essential to symbolic relations. If the 

lexigram and the object are no longer paired and rewarded, the association will be 

extinguished; but words are only rarely paired with their referent, and so indexical 

reference is problematic as the sole basis for full-blooded reference. This is the 

central weakness in causal theories of reference. 

 Deacon argues that the missing element in indexical reference is syntax.65 An 

attempt was made to train the chimps to comprehend a simple syntactical system 

which involved a simple verb-noun relationship. The two ‘verbs’, one for solid food, 

and one for liquid, had to be paired with an appropriate noun, ‘banana’ for instance, 

in order to get the item. The chimps only managed to master this simple system 

through a long and highly structured training regime, which cued them to both 

relevant and irrelevant features. Mastery of the system was tested by comparing the 

speed with which they grasped new lexigram ‘nouns’ against non-symbolically 

trained chimps. It was found that the specially trained chimps learned the function of 

the new lexigrams on their first presentation, or after only a few trials, whereas the 

control chimps took hundreds of trials, as usual. This illustrates both the nature and 

advantage of symbolic representation: 

What the animals had learned was not only a set of specific associations between lexigrams and objects 

or events. They had also learned a set of logical relationships between the lexigrams, relationships of 

exclusions and inclusion. More imp ortantly, these lexigram-lexigram relationships formed a complete 

system in which each allowable or forbidden co-occurrence of lexigrams in the same string (and 

therefore each allowable or forbidden of one lexigram for another) was defined. They had discovered 

that the relationship that a lexigram has to an object is a function of the relationship it has to other 

                                                 

64 See D. Rumbaugh, ed., Language Learning by a Chimpanzee: The Lana Project (Academic Press, New York, 1977). 

65 An argument to support this reliance on syntax and combinatorial possibilities as the basis for genuine symbolic meaning will 

be given in section 3.3. 



RETHINKING VECTOR COGNITION 

 

54

lexigrams, not just a function of the correlated appearance of both lexigram and object. This is the 

essence of a symbolic relationship.66 

Thus symbols are higher order categories of indexical relationships. Lexigrams are 

recognized by which category they belong to, either verb, which might be thought of 

as ‘give’, or noun. Members of each of these categories has a fully determined set of 

combinatorial possibilities with other tokens, dependent upon which category they 

fall into in turn. Hence new lexigrams can be acquired rapidly, because once it is 

established which category they belong to their role in the system is grasped, there is 

no need to learn their associations from the scratch. These logical categories are 

defined by their combinatorial possibilities, and so an entire system of interrelations 

must exist before any single token can be considered as a symbol. 

A very special training regime was necessary in order to get the chimps to 

acquire this rudimentary symbol system successfully. The transition from indexical 

reference to symbolic reference requires the recognition of global patterns amongst a 

large number of lexigram-object associations. This requires a change in perspective 

of, what was for the chimpanzees, a previously acquired body of indexical 

knowledge. Progress is further hampered by the fact that symbols from the same 

category will not appear together, indeed they will occur in the context of symbols 

from different categories. However, once this step has been taken it allows a 

considerable off-loading of cognitive effort. One only has a limited number of 

interdependent categories to recognize, rather than a huge array of independent 

associations. Symbolic reference is also more powerful because it moves beyond 

simple naming functions. Indices are grouped together because of a similarity of 

relationships between indexical token and object, and this linking of symbols to 

relationships changes the focus from objects to classes of relationships between 

objects, allowing for more complex representations. Thus once a basic symbol system 

has evolved it is possible for more complex operations to be added: 

The system of representational relationships, which develops between symbols as symbol systems 

grow, comprises an ever more complex matrix. In abstract terms, this is a kind of tangled hierarchic 

network of nodes and connections that defines a vast and constantly changing semantic space.67 
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There is nothing new in the idea that combinatorial syntax is crucial to symbol-use 

and language. It played a central role in the rise of modern logic with the work of 

Frege and Russell, and the early Wittgenstein. It is also involved in many modern 

philosophical accounts of concepts, including Fodor’s, the patriarch of symbolic 

models of cognition. Further, and somewhat paradoxically, Deacon’s account bears 

some relation to conceptual role semantics, in that symbolic status depends upon 

relations to other symbols. Thus the syntactic and semantic categories of an item are 

determined by the pattern of its connections with other symbols. However, these 

connections are not the sole determinants of content, the process of comprehending 

symbols is viewed as moving in a downward direction in the representational 

hierarchy, from symbol, to index, to icon. Production of symbols involves a move in 

the opposite direction. This compositional relationship gives semantic content to 

symbols. They are not merely syntactic entities, they are composed of perceptual and 

action-based processes as well; and these are the very same processes that are 

deployed in the cognition of non-symbolic species. 

3.2 Neural Networks and Symbols 

It is important to be clear about the exact way in which Deacon’s account is relevant 

to the present discussion. The example of symbol acquisition in chimpanzees may not 

be totally analogous to the situation of the human infant. It is open to speculation 

whether neonates first learn iconic relationships, then lexical relationships, before 

having a eureka experience in which these elements are reorganized. I am construing 

him as making a claim about the way in which we should analyse symbolic thought, 

rather than as making a claim about the ontological dependence in development 

between referential relations. The important aspect of Deacon’s analysis is the way it 

is constructed from elements of which we have a (relatively) comprehensive 

neurophysiological understanding: recognition and associative learning, in the guise 

of iconicity and indexicality. Iconic reference can be understood as being based upon 

object prototypes, implemented in the form of convergence zones. The mapping of an 

                                                                                                                                           

67 The Symbolic Species, p. 100. This could be linked in an interesting way with the work of Adrian Cussins, particularly his idea 

of cognitive trails and the rise of objectivity and perspective independence, which could also be related to the discussion in this 

section, see A. Cussins, ‘Content, Embodiment and Objectivity: The Theory of Cognitive Trails’, Mind 101, 651-88. 
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input onto a convergence zone in this system would constitute recognition. Whilst 

words (whether spoken or written) are indexical tokens, thus having relations to 

icons, they are also symbols, and so they have something of a double life. I now want 

to suggest how these final levels in the hierarchy — from words to symbols — might 

be instantiated by a parallel processing system, and how this might go some way to 

solving the problem of systematicity that was raised in section 1.3. 

Psycholinguistic models suggest how lexical tokens might produce symbolic 

thought. An important feature of human language comprehension is the way that 

spoken words are recognized.68 As phonemes are received the words which are 

compatible with them are activated, but as more phonemes are heard it appears that 

more and more words drop out of contention as they become inconsistent with the 

auditory input. Eventually there is only one left, and this is the word that is 

recognized. For example, for the word kangaroo the word is identified as soon as the 

phoneme /g/ has been heard, since at that point no other word is consistent with this 

input. This cohort model of lexical access has been reproduced by D. Norris in a 

recurrent network based on the one designed by Elman, that was discussed in section 

1.1.69 Remember that Elman’s network was tested by being asked to predict the 

following word in a sentence. Its response was to activate all words that were 

compatible with the initial part of the sentence. Norris’ network had 50 output units, 

each one representing a word. The network was trained by being presented with a 

phoneme in each processing cycle, with no breaks between words, just as in real 

speech. In testing, single words were presented and the activation levels of the words 

were examined. The cohort pattern was found with words dropping in activation 

when inconsistent phonemes were presented, until only the winning word unit was 

left. Interestingly the network exhibited many features of human word 

comprehension, such as patterns of identification of mispronounced words. For 

instance, humans can correct for some mispronunciations of the first phoneme of a 

word if they are close enough to the intended target. The network could recognize 

                                                 

68 Although there are significant differences in the case of written word comprehension, the overall strategy appears to be the 

same for, and the differences are not important in the present circumstances.  

69 D. Norris, ‘A Dynamic-Net Model of Human Speech Recognition’, in G. T. M. Altmann, ed., Cognitive Models of Speech 

Processing: Psycholinguistic and Computational Perspectives (MIT Press, Cambridge, Mass., 1990), pp. 87-104. 
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goronet as a distortion of coronet, but not horonet, as the /g/ is close enough to /c/, 

but the /h/ is not. 

Thus recurrent network architectures can explain how words are recognised, 

but they can also cope with grammar. Elman trained another network on a complex 

grammatical task, that was much more challenging than lexical-category structure. 

The task involved a lexicon of 23 items, including 12 verbs and 8 nouns, and a phase-

structure grammar. This meant that the network had to be able to cope with recursive 

structure and complex relationships, a truly rigorous test of representational capacity. 

The inputs were again local, each unit representing a word, and one might envisage a 

situation in which a word recognition network could provide such local outputs, 

which could then act as inputs to the grammatical network. The training of the 

grammatical network was done in phases, starting with simple sentences and 

gradually increasing the number of complex sentences over time.70 The first analysis 

of the network was similar to that for the original lexical-category structure network: 

words were presented and the network had to predict the next word. As with the more 

basic network there is no way to tell exactly which word would come next, rather in 

this case the following word had to be from a grammatically correct category. 

Surprisingly, the network performed very well at this task, grasping even the most 

subtle and complex relations. Elman gives the sentence ‘Boys who Mary chases feed 

cats’ as an example of this ability: 

The appearance of boys followed by a relative clause containing a different subject (who Mary) primes 

the network to expect that the verb which follows must be of the class that requires a direct object 

precisely because a direct-object filler has already appeared. In other words, the network not only 

correctly responds to the presence of a filler (boys) by knowing where to expect a gap (following 

chases); it also learns that when this filler corresponds to the object position in the relative clause, a 

verb that has the appropriate argument structure is required.71 

                                                 

70 This feature of the experimental design, in which the network was started with simple inputs which then became progressively 

more complex, has been stressed in the context of developmental plausibility. It is argued that the short attention spans and 

biases of infants might act in the same way, and that this might significantly simplify the task of comprehending the complex 

relations that grammar allows, see J. L. Elman, E. A. Bates, M. H. Johnson, A. Karmiloff-Smith, D. Parisi, and K. Plunkett, 

Rethinking Innateness: A Connectionist Perspective on Development (MIT Press, Cambridge, Mass., 1997), pp. 340-349, and 

also T. Deacon, The Symbolic Species, Ch. 4. 

71 ‘Representation and Structure in Connectionist Models’, p. 363. 
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The network could cope with several nested centre embeddings, although its 

performance decreased with each one, in a manner similar to humans. This suggests 

that the network has a genuinely productive ability that is only limited by 

computational resources. The sophistication of these grammatical abilities is 

impressive, but it leaves the question of how the network has managed the task. The 

advantage of a recurrent network is that it can take temporally extended inputs and 

produce temporally extended outputs, but the disadvantage is that this makes analysis 

extremely difficult, as Elman explains: 

In the previous simulation [the lexical-category structure network], hierarchical clustering was used to 

reveal the use of spatial organization at the hidden-unit level for categorization purposes. However, the 

clustering technique makes it difficult to see patterns that exist over time. Some states may have 

significance not simply in terms of their similarity to other states but also with regard to how they 

constrain movement into subsequent state space . . . Because clustering ignores the temporal 

information, it hides this information. It is more useful to follow over time the trajectories through state 

space that correspond to the internal representations evoked at the hidden-unit layer as a network 

processes a given sentence.72 

Unfortunately it is virtually impossible to visualize a trajectory in a hyper-

dimensional vector space, so a method called principal component analysis has to be 

used to reveal those hyperplanes in the hidden unit vector space that involve most 

variance. This reveals that similar grammatical structures are represented by similar 

trajectories in vector space; but as with spatial semantic metric revealed by cluster 

analysis, slight differences were marked by slight divergences in trajectory. The most 

crucial point to emerge from this is that movement through recurrent vector space is 

constrained; at any point there are only a certain number of trajectories available, and 

these encode the grammatical progressions. Just as simple feedforward networks were 

explained in terms of attractors in vector space in section 1.1, so recurrent networks 

can be understood in terms of well-worn paths in vector space. This explains how the 

network is able to activate only words that fall into appropriate grammatical 

categories during the testing phase. Elman’s network is not an accurate model of how 

the brain processes grammar, the use of backpropagation sees to this, but biological 

plausibility is not the purpose of this model. Rather the importance of Elman’s 

network is that it reveals how certain structural features — recurrent connections — 

                                                 

72 ‘Representation and Structure in Connectionist Models’, pp. 363-4. 
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make it possible for connectionist networks to represent the combinatorial 

possibilities of symbols. This is a capacity that has been denied by opponents of 

connectionism. The hope must be that the principles are right and that what remains is 

to discover how they can be implemented in real neural systems. 

3.3 Symbols and Semantic Content 

So far no explicit explanation has been given of semantic content. Elman’s networks 

only processed grammatical and lexical relationships, and so without further 

explanation this is just a meaningless kaleidoscope of activity, in the same way that 

the voltage fluctuations in the microchips of a computer are without an external 

interpretation. After all, a point in vector space might represent a word in a particular 

grammatical role, but how does this come to mean anything? There are three elements 

in Deacon’s account that contribute to the explanation of meaning, as demonstrated in 

the following passage: 

[The] cross-modal associations [in convergence zones] between images and experiences on the one 

hand and their associations with particular word sounds on the other provide the indexical associations 

of words, but their symbolic association — what we call the meaning — involves these and something 

more. The something more includes both the associative relationships between words and the logic of 

how these map to the more concrete indexical relationships. 

Thus the first element is the dependence of symbolic status upon combinatorial 

possibilities with other symbols, the second is the associations between words, and 

the third is the indexical relations of symbol tokens. I will combine this view with the 

foregoing discussion of neural computation in sections 3.3.1, and 3.3.2. 

3.3.1 Context and Meaning 

An account of meaning can be extrapolated from Churchland’s vector prototype 

model of explanatory understanding. Recall that the basis of this model is that a 

prototype represents an object because it comes to encode the contexts in which that 

object has been experienced previously. Translating this to language, the pattern of 

neural activity that represents the meaning of a word, a concept, does so because it 

reflects the contexts in which that word has occurred. The notion of context here is a 

rich one, including not just linguistic context, but also other elements of experiential 

context. Elman’s grammatical network could predict which classes of words would 
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come next in a sentence, thus at a very rudimentary level it had encoded the contexts 

of words. Of course, one consequence of this is that there is no strict separation of 

syntactic and semantic aspects of processing. All aspects of context that are predictive 

will be incorporated in the configuration of weights. This is an advantage because 

semantic cues can be used in lexical processing. That humans do this sort of thing can 

be demonstrated by experiment. Altmann discuses the following example: 73 

Which woman did Bertie present a wedding ring to? 

Which horse did Bertie present a wedding ring to? 

As soon as the word ‘present’ is heard it can be given two alternative interpretations, 

the woman or horse is either the thing being presented, or the recipient of the object 

being presented, whatever that turns out to be. When ‘wedding ring’ is heard this 

suggests that it is the thing being presented, and so the horse or woman must be the 

recipient. A horse is an implausible thing to give a wedding ring to, but if we waited 

until the end of the passage before doing the grammatical processing, we would not 

notice this implausibility until that point. However, EEG recordings show that 

subjects notice the implausibility when ‘wedding ring’ is heard, not when the end of 

the passage is reached. Although this is a very short time, it is nonetheless significant, 

and shows that roles are assigned as soon as they are registered, and that semantic 

factors play a role in that determination. We assume that wedding rings are the sorts 

of things that get presented to people, and use this piece of knowledge in the analysis 

of grammatical structure even when what could follow might disagree with these 

assignments. For instance, the passage above might continue as follows: 

Which woman did Bertie present a wedding ring to his fiancée in front of ? 

This sentence is difficult to process precisely because it conflicts with the 

assignments we are inclined to give; we assume that the wedding ring is being given 

to the woman. Such semantic cues will not be as influential as more syntactic 

features, given that on the whole they will be less predictive. Fortunately 

counterintuitive sentences like the one given above are the exception rather than the 

norm. 

                                                 

73 The Ascent of Babel: An Exploration of Language, Mind, and Understanding (Oxford University Press, Oxford, 1997), p. 110; 

the work discussed was carried out by M. K. Tanenhaus, J. E. Boland, G. N. Mauner, and G. Carlson, ‘More on Combinatory 

Lexical Information: Thematic Effects in Parsing and Interpretation’, in G. T. M. Altmann and R. C. Shylock, eds., Cognitive 

Models of Speech Processing: The Second Sperlonga Meeting (Lawrence Erlbaum Associates, Hove, 1993), pp. 297-319. 
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This analysis of meaning owes something to Wittgenstein, for several reasons. 

First, Wittgenstein propounded the idea that an explanation of meaning should 

proceed via an investigation of use, and as demonstrated above, the significance of a 

symbol springs from its relations with other symbols, and its linguistic contexts, 

which are reflected in its use. Secondly, it was Wittgenstein’s insight that meaning 

does not have to be exact (‘everywhere bounded by rules’74) in order to function 

satisfactorily. Given the nature of symbols, and the evolutionary forces which have 

shaped language, it comes as no surprise that a precise axiomatization is not a 

prerequisite for language, as will be argued in the next few paragraphs, and in section 

3.4. I will attempt to produce an analysis of meaning that is linked to what has been 

learned about its neural substrates. This kind of approach would have been anathema 

to Wittgenstein, as is demonstrated by the following passage: 

No supposition seems to me more natural than that there is no process in the brain correlated with 

associating or thinking; so that it would be impossible to read off thought-processes from brain-

processes. I mean this: if I talk or write there is, I assume, a system of impulses going out from my 

brain and correlated with my spoken or written thoughts. But why should the system continue further 

in the direction of the centre? Why should this order not proceed, so to speak, out of chaos? The case 

would be like the following — certain kinds of plants multiply by seed, so that a seed always produces 

a plant of the same kind as that from which it was produced — but nothing in the seed corresponds to 

the plant which comes from it; so that it is impossible to infer the properties or structure of the plant 

from those of the seed that comes out of it — this can only be done from the history of the seed. So an 

organism might come into being even out of something quite amorphous, as it were causelessly; and 

there is no reason why this should not really hold for our thoughts, and hence for our talking and 

writing.75 

 I think that Wittgenstein’s position is unsatisfactory in its rejection of any 

investigation of causal underpinnings for language. His analogy with a seed reveals 

how bizarre his position is; I cannot help but think of the development of a seed in 

terms of cellular mechanisms and genetics. To say that these do not in any way bear 

on its eventual structure is just untenable, and unscientific — it is the opposite of 

scientism. The neurally inspired model of cognition offers a richer account of 

linguistic behaviour and its underlying cognitive mechanisms that I believe occupies 

a midway position between these defective extremes. 

                                                 

74 Philosophical Investigations, §84. 

75 Zettel, § 608. 
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The vector realization of meaning bears a family resemblance to functional 

role theories, but the incorporation of context by degree of predictiveness allows a 

response to the standard criticism that such theories lead to no sharp distinction 

between empirical and semantic aspects of concepts. This charge can be accepted 

without making the theory unattractive and unrealizable. I am inclined to deny that 

there are any inferential roles which have a privileged status in determining meaning. 

There will probably be some which are more important than others, and this will be 

reflected in the fact that they will be shared by most language-users. This in turn will 

be due to the fact they are the most predictive aspects of context. Thus the more 

important inferential roles will be determined by the nature of the underlying 

processing system, with its ability to respond appropriately to statistical tendencies in 

the environment. Hence the argument that functional role theories make sameness of 

meaning impossible can also be parried. As long as two people have neural patterns 

that are activated in more or less the same situations, then those patterns can be 

considered to have the same meanings for them. Obviously this makes meaning a 

matter of degree, because we could not expect total co-activation in every possible 

circumstance, but this need not be seen as detrimental. One might argue that it allows 

for the idiosyncrasies of individual experience to be reflected in cognitive life. A 

traditional difficulty with functional role theories is how they connect to the world of 

objects. The solution to this problem lies in the hierarchical component of meaning, 

that Deacon rightly emphasizes, and this is where indexical and iconic reference re-

enter the picture.  

3.3.2 Meaning and Indexical Foundations 

Connections between symbol tokens mean nothing if they are not properly grounded 

in experience. This grounding is achieved through the interaction of many different 

networks in the brain, especially convergence zones, that underlie the functioning of 

iconic and indexical reference. At the simplest level there are links between words 

and objects. Such word prototypes, activated in a grammatical network, might cause 

activation of the appropriate convergence zone. This provides the content to the 

symbol, the convergence zone goes on to rapidly activate patterns in a variety of brain 

areas. These reinstated patterns have content because of the brute fact that they played 

the same role during the original experience. For example, at the most basic level, 

perceptions of colour are localized in a particular region of the visual cortex. How 
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this can be is, perhaps, inexplicable as far as human investigation is concerned. I have 

made some comments about the remarkable representational power of vector coding, 

but for present purposes it must be accepted as brute fact that these collections of 

neurons produce an experience of colour. This explains the content of basic 

perceptual features. The next stage is the conjunction of these into representations of 

objects at the next level in the convergence zone hierarchy, and then into categories 

of objects, and then superordinate categories, and so on. It is likely that the train of 

processing will not stop at this point, as the pattern of activity caused by the 

activation of the convergence zone can generate further activity. For example, one 

might hear someone say the name ‘John’, which would activate one’s convergence 

zone for that individual, and this in turn might stimulate the recall of information 

about them, and of past encounters with them through the operation of 

autoassociative networks. The exact nature of this cascade of activity would depend 

on the cognitive context in which the name is heard. First, if one knew several people 

with this name, then context would serve, in most cases, to activate the correct 

convergence zone. Second, which episodes would be recalled would depend upon the 

context in which they were mentioned. Such contextual factors might be things as 

general as mood, as it has been found that it is easier to recall happy thoughts when in 

a positive mood, and visa versa for depressive thoughts. Alternatively, contextual 

factors might be highly specific: considering the suitability of candidates for a given 

task would trigger recall of past performances. It is this rich pageant of ongoing 

activity that accounts for the complexity and richness of human cognitive experience. 

3.4 Symbols, Systematicity, and Concepts 

The foregoing account of symbolic processing and meaning goes some way to 

solving the problem of systematicity. However, recall that in section 1.3, I argued that 

having a complex semantic metric in the hidden layer of a recurrent network is not 

enough for true systematicity. The reason for this was the inability of such networks 

to use their knowledge in performing different tasks, their content is non-conceptual. 

As they stand, then, Elman’s networks do not exhibit systematicity. But if the output 

of these networks was sparsely coded, it could be input to another network, which 

could then perform other operations upon it. Thus activation in the verb part of the 

hidden layer vector space could cause a certain sparse label to be produced, and this 
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could allow a lexical category decision to be made by a separate network. The very 

same information could be made available to a number of networks in this way, each 

one being used in a different cognitive context. The selection between these different 

processing routes would probably need to be controlled in the sort of way mentioned 

in section 2.5, although in some situations there might be competition and mutual 

inhibition of the sort that occurs in competitive networks (see section 2.3). This 

analysis of systematicity would have the consequence that activity in the original 

network would be non-conceptual, whilst it would be made fully conceptual through 

interaction with other networks. Hence the notion of ‘concept’ is one that can only 

really be applied at the level of complete systems (this reflects the intuition that it is a 

personal, rather than sub-personal, notion). Further this makes it possible to explain 

how one might have degrees of objectivity and perspective independence: the more 

complex and numerous the systems that the information is available to the nearer 

cognitive behaviour approaches to the ideal encapsulated in the generality constraint. 

Sparse coding also opens up the possibility of several different patterns in a 

network being activate at the same time, suggesting that localist microfeatures could 

be utilized. In a fully distributed system, the activity of every element is involved in 

the representation of any single item. If the coding is much more sparse it might be 

possible for two objects to be represented simultaneously if their patterns did not 

involve the same units, i.e., if they were sufficiently dissimilar. This might make it 

possible for several elements that are stored it the same network to be represented at 

the same time, thus overcoming another objection to the systematicity of 

connectionist models, and recurrence provides the capacity to represent relations 

between these sparse representations. 

Churchland’s model of conceptual redeployment, which was discussed in 

section 1.2.2, also offers a possible explanation of systematicity. For it goes some 

way to explaining how a piece of knowledge gained in one situation can be applied in 

another. At that point I raised some doubts about how Churchland’s idea might work, 

but the convergence zone hypothesis and the hierarchical nature of processing suggest 

how it might be achieved in the brain. A change in which a higher order convergence 

zone is activated can cause activity in more basic levels to be arranged in a different 

way, as different convergence zones activate different patterns of activity in different 

cortical areas. Thus in the case of the duck/rabbit, basic visual features such as edges 
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and lines might be mapped onto different features at higher levels, such as the area 

where form is processed. So the very same visual input can be interpreted as either 

iconic of a rabbit’s ear or a duck’s bill. This reinterpretation would require alterations 

throughout the system, but this can easily be achieved within the convergence zone 

framework. This framework might explain why it is extremely difficult, if not 

impossible, to visualize two different scenes simultaneously, the two patterns cannot 

be activated on the same units at the same time. 

When this idea is applied to more cognitive phenomena it suggests another 

possible source for the systematicity of thought. The activation of different higher 

level prototypes might constitute conceptual redeployment by reorganizing the 

interpretation of sensory information. The convergence zone framework was devised 

to explain concrete knowledge, not the sort of knowledge involved in theoretical 

understanding. What I am trying to do here is extrapolate from those systems that we 

are beginning to understand. The spatial and temporal semantic metric of a 

multidimensional vector space explains how a point in that space can have 

representational content. However, such a space alone suggests no obvious 

mechanism for how activating one prototype can affect so many various aspects of 

cognition. But in hierarchically organised systems it might be possible for some 

hybrid model to accrue the benefits of both systems. 

3.4.1 Neural Commitments 

This account of systematicity does not yet provide a total explanation of the special 

nature of concepts. There is one more important point that must be added before the 

explanation is complete. I have admitted that the generality constraint does state a 

truth about concepts, but the important question is what follows from it. One source 

of conflict concerns its consequences for the cognitive underpinnings of concepts. Do 

all instances of a concept require some sort of causal commonality, and can a 

connectionist account provide the goods? It is clear that Evans did not mean for the 

generality constraint to lead straight into the adoption of a language of thought: 

. . . I certainly do not wish to be committed to the idea that having thoughts involves the subject’s 

using, manipulating, or apprehending symbols—which would be entities with non-semantic as well as 

semantic properties, so that the idea I am trying to explain would amount to the idea that different 

episodes of thinking can involve the same symbols, identified by their semantic and non-semantic 

properties. I should prefer to explain the sense in which thoughts are structured, not in terms of their 
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being composed of several distinct elements, but in terms of their being a complex of the exercise of 

several distinct conceptual abilities.76 

To say that different occasions are to be unified by the operation of the same ability 

necessitates an account of how abilities are individuated, and their place in the 

ontological scheme of things. Evans argues that there should be a ‘common 

explanation’ for applications of the same ability: 

Each common explanation will centre upon a state — the subject’s understanding of ‘a’, or his 

understanding ‘F’ [for an explanation of the thought that a is F] — which originated in a definite way, 

and which is capable of disappearing (an occurrence which would selectively affect his ability to 

understand all sentences containing ‘a’, or all sentences containing ‘F’).77 

I think it is right that there should be some commonalties across occasions, but not a 

complete similarity in all cases — no state present in every instance (in contrast to 

traditional AI models). What I have in mind here is that in different contexts we 

should expect different neural substrates to be used, given the multiple network 

nature of neural processing that was sketched out above. Relevant contextual aspects 

might include the kind of sensory input, e.g., a word, or a visual presentation of an 

object, and the kind of action being attempted, from visual search to solving a 

crossword puzzle, and so on. Evidence for this style of processing comes from PET 

and MRI studies, which have shown that different tasks recruit different brain 

regions. For example, in one study subjects had to listen to a story and monitor for 

either grammatical errors or for words in a particular semantic category. These 

activities caused activation in separate, but overlapping, areas of the ventral prefrontal 

cortex.78 This type of evidence from brain-imaging studies indicates that there is 

probably significant task decomposition in the brain. It may be that certain networks 

are given over to the detection and processing of certain grammatical features. 

Examples might include the generation of words from the same semantic category, or 

alternatively words from complementary grammatical categories, such as an 

appropriate verb for a noun. One might envisage hierarchies of processing stages in 

which first the overall structural elements are identified, so that they can be processed 

                                                 

76 Varieties of Reference, pp. 100-1. 

77 Varieties of Reference, pp. 101-2. 

78 P. J. G. Nichelli, J. Grafman, P. Pietrini, K. Clark, K. Y. Lee, and R. Miletich, ‘Where the Brain Appreciates the Moral of a 

Story’, NeuroReport 6 (1995), 2309-2313. 
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by more specialized networks. Evidence for this hierarchic approach comes from 

studies of cortical stimulation on conscious patients undergoing brain surgery.79 

Deacon has summarized the findings as follows: 

What these stimulation studies demonstrate is that the regions where stimulation disrupts language 

function fan out from the frontal mouth area into the prefrontal lobes, and from around the auditory 

area back into the temporal and parietal areas. Those regions where stimulation reliably disrupts the 

same language functions are organized in what appear to be tiers radiating outward from these two 

foci. Electrical stimulation of the regions closest to the motor and auditory areas produces problems 

with phoneme identification and oral movements. Stimulation further out disrupts naming of familiar 

objects and grammatical assessments. And stimulation even further out appears to disrupt retention or 

recall of words. There is also a rough front-back mirror symmetry of these tiers, so that the very same 

responses are elicited by the second and third tiers both front and back.80 

It follows that in similar contexts the same networks would be used and so there 

would be limited commonality. What gathers these varying contexts together is the 

personal level attribution, made solely on the grounds of behaviour, linguistic or 

otherwise, rather than a computational commonality. Of course in most cases of 

philosophical interest the context will be one of language comprehension, and so a 

certain degree of uniformity is guaranteed, given the account of meaning given in 

section 3.3. If the same concept is being exercised in comprehending sentences, then 

the same neural pattern must be active, because this is what encodes predictive 

context, and therefore meaning. However, we should not let the apparent ease with 

which we can group different situations under the head of a given concept lull us into 

thinking that every exercise of a concept must have an immutable core of 

representative neural encoding. Rather some elements of neural activity will prove 

more central than others. 

Is this a satisfactory way to philosophically unpack the notion of a ‘common 

explanation’? It seems right that there should be a demand for some kind of causal 

commonality behind conceptual attributions — if we found that there was not 

intuition suggests that we might be persuaded to withdraw our attributions. The 

                                                 

79 See, Penfield and Roberts Speech and Brain Mechanisms (Oxford University Press, London, 1959), G. A. Ojemann, ‘Cortical 

Organization of Language’, Journal of Neuroscience 11 (1991), 2281-2287, and G. A. Ojemann and C. C. Mateer ‘Human 

Language Cortex: Localization of Memory, Syntax, and Sequential Motor-Phoneme Identification Systems’, Science 205 (1979), 

1401-1403. 

80 Symbolic Species, p. 289. 
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criterion, then, is whether one can provide strong enough causal explanations to 

defeat such challenges. Even though, on the multiple network model, it isn’t possible 

to move from details of neural processing to personal level determinations of 

conceptual content in any principled fashion, there is nevertheless a relationship 

between these levels. I would argue that the similarities in neural activity across 

occasions that were postulated above would prove enough to meet the criterion. 

 Further support for this analysis comes from considering the exact nature of 

the personal level account. Is it clear that on all occasions there has to be a precise 

matter of fact about which concepts are exercised? An analogy from Geach 

demonstrates how it might be wrong to think that this is the case: 

The exercise of a given concept in an act of judgement is not in general a definite, uniform sort of 

mental act; it does not even make sense to ask just how many concepts are exercised in a given 

judgement. Our chess analogy may here again be of service, in showing why this question is 

unreasonable. Playing chess involves a number of abilities, which are not only distinguishable but can 

actually exist separately; for one way of teaching chess would be to play first just with the kings and 

the pawns and then add the other pieces successively in later games. It would, however, be absurd to 

ask just how many of these abilities there were, or just how many were exercised in a particular move; 

although one might perfectly well say that somebody knew the knight’s move, and that this knowledge 

was or was not exercised in a particular move.81 

This suggests the right way to analyse abilities: normally one has a competence in a 

task domain; one can focus on elements of that competence, and call them specific 

abilities. In this way abilities are identified from an external perspective, one picks 

out a certain subtask and investigates whether an individual can accomplish it, if so 

they can be ascribed the ability. However, it makes no sense to think that abilities 

operate independently in normal negotiation of the task domain. Rather, the whole 

complex system faces the task domain. The neurally inspired account of symbolic 

thought suggests a possible way to apply this chess analogy to language: a subject’s 

symbolic abilities can be considered to be grounded in a number of networks, 

including recurrent grammatical networks, with their multidimensional vector spaces, 

and in neuronal populations that contain convergence zones. The basis for this claim 

would be that these neuronal populations ground the many abilities that a genuine 

symbol-user must exhibit. Full-blooded language comprehension might be a matter of 

                                                 

81 Mental Acts, p.15. 



RETHINKING VECTOR COGNITION 

 

69

aural or visual input being mapped through word recognition networks into 

grammatical networks, which then spread activation to the appropriate convergence 

zone prototypes, and other systems, providing the semantic content to the symbols, so 

that they are not empty syntactic shells as in a language of thought architecture 

(although advocates of the Language of Thought would obviously argue the point 

here). 

However, each symbol cannot exist as a discrete entity, and so the chess 

analogy is not quite right. As made clear in section 3.1, a symbol depends for its 

identity upon its relationships to other symbols, so single symbols cannot exist, rather 

a simple language core forms the initial base, which can then be embellished with the 

addition of further grammatical categories. This core is defined by the combinatorial 

possibilities between its elements, and so in some sense a single symbol cannot be 

exercised without the existence of others. In practice this holism is realized in the 

grammatical vector space of Elman’s recurrent networks, because they are trained on 

whole sentences, and only in this way do they learn interrelationships between words. 

A particular point in vector space constitutes a given symbol because of the paths 

which move off from it. If those other moves could not be made then the individual 

could not be ascribed that symbolic content. Thus a passage of cognition might 

involve a whole body of expertise, even though it is possible to be definite about 

which symbols were involved. The neural system grounds a symbolic system, not 

individual symbols. 

 So far I have used the terms ‘symbol’ and ‘concept’ interchangeably, without 

comment. As far as I am concerned they are virtually synonymous notions, at least 

that is how I treat them; the only difference is in philosophical connotation. ‘Concept’ 

is traditionally linked with sensitivity to public agreement and rule-following. In 

Wittgensteinian parlance, logically private concepts, that cannot possibly be shared, 

are a philosophical nonsense. In recognition of this I will define a concept as a rule-

governed ability. Adopting this notion allows the neural account of cognition to both 

satisfactorily explain the physiological basis of a concept-user’s abilities whilst 

simultaneously avoiding a reduction of concept-use to any kind of causal regularities. 

Thus allowing us to avoid the dichotomy that McDowell sets up between empirical 

and rational styles of explanation; the normativity of concepts is properly 
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acknowledged.82 As argued above, a concept is constituted by many varied abilities, 

and competence can be ascertained from an external perspective, thus delivery the 

required objectivity. These abilities are grouped together because they allow an 

individual to operate according to the conceptual rules. The rules I have in mind here 

are the possession conditions of Peacocke’s analysis.83 

What distinguishes full-blooded concept-use from coincidental conformity 

with the rules is the subject’s having a conception that they are part of a communal 

practice, and that they must try to march in step with that practice. This awareness is 

all that rule-following amounts to, no more, no less.84 This awareness requires a 

certain higher-order ability to view one’s own practice, i.e., concept is a personal 

level notion; but this need not rule out in principle a non-sentential analysis of 

cognition. What has stood in the way of connectionist attempts to model these higher 

cognitive phenomena is the lack of this global responsiveness. A level of complexity 

and sensitivity is needed to be a concept-user that such simple models could not hope 

to have, but they nevertheless suggest a picture of how concept-use develops. As an 

individual faces experience, they must create and deploy prototypes in order to bring 

about their goals, which could be as simple as food and comfort in an infant. Through 

experience the number of prototypes and their interactions increases. At some point 

the bare exercise of abilities comes to be seen as a part of a rule governed practice, 

and full-fledged concept-use begins. But this is not the end, as more and more 

complexity is worked into the system, and as the interrelations of a given vector 

prototype is increased. A child might learn that ‘red’ applies to objects of a certain 

colour, and apply it to everything that has that colour. Yet eventually it may come to 

realize that the concept, red, does not apply to objects that only appear red in certain 

environmental conditions, such as a red light, and that red objects are still red when 

there is no light shining upon them. 

                                                 

82 J. McDowell, ‘Functionalism and Anomalous Monism’, in E. LePore and B. P. McLaughlin, eds., Actions and Events: 

Perspectives on the Philosophy of Donald Davidson (Blackwell, Oxford, 1985), pp. 387-398. 

83 C. Peacocke, A Study of Concepts (MIT Press, Cambridge, Mass., 1992). 

84 From some perspectives, namely those which see rule following as involving physically instantiated tokens of rules as a 

necessary part of the processing underlying concept-use, this is a minimal account. But from other perspectives this is a rich 

account because it involves conscious appreciation of rules.  
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 The public system of rules to which individuals cede authority is an abstract 

ideal. No individual actually exemplifies it, and no individual could, because there is 

no complete public system. For one thing the public system of rules is not closed, it is 

an organic, developing structure. The concept red demonstrates this, for when the 

colour red was first referred to, in the mists of prehistory, it seems odd that this 

should fix the concepts use at all points, even in situations that might depend upon 

modern technology, such as artificial light. The rules are what the majority, or a body 

of experts decide upon. There is no greater authority to which one can apply. The 

objectivity of meaning springs from obedience to the rules. But here I have based an 

analysis of concepts upon a notion of meaning that I have not, as yet spelled out 

clearly. 

Finally, it is important to note a criterion which any account of concepts must 

meet, and which the account given above does meet, namely developmental 

plausibility. We are not born with an innate conceptual scheme, pace Fodor. This 

constrains theories of concepts in a number of ways. First, they must be such as to be 

learnable in principle. This includes the fact that one should be able to establish that 

one has successfully grasped a concept. Any theory which leaves one in a position of 

having to make a guess that one has the concept in question is unacceptable, or at 

least it should be. Hence this constraint might be viewed as demanding that concepts 

be objective. Secondly, concepts should be learnable in practice; the time and 

processing limitations of human infants should not present an obstacle to concept 

acquisition. 

 Given these sorts of considerations I think that they point to another criterion 

of virtue for theories of concepts; if a theory can accommodate the gradual emergence 

of concepts in an individual this should be seen as a pragmatic boon. For any theory 

which trades on a light switch metaphor, i.e. a sudden transition into the charmed 

circle of concept-users, seems developmentally implausible. Rather a theory of 

concepts should explain how they can be the sorts of things that emerge gradually, so 

that the conceptual journey from neonate to adult is a continuous, if non-linear, one. 
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3.5 Summary 

In this chapter I have attempted to draw out some philosophical conclusions from the 

discussion of connectionist and neural networks in the previous two chapters. I have 

used Deacon’s analysis of symbolic reference as a basis for an account of how a 

parallel, neurally inspired, model of cognition might explain symbolic and linguistic 

thought. This involves the interactions of many different networks, with different 

computational roles. I have also made use of the idea of a suitably trained recurrent 

vector space, with grammatically constrained trajectories to explain how humans 

manage to obey the grammars of their languages. Thus the model that emerges is a 

hybrid, involving distributed networks, with sparsely labelled links to other networks, 

so that the results of a particular computation can go on to play an appropriate role in 

the system. 

 I have also suggested a philosophical analysis of meaning which is compatible 

with this empirical model, whose salient points rest upon the details of the physical 

implementation of the model. This makes good on my claim that there is a tight link 

between the findings of sciences interested in the mind and brain and the philosophy 

of mind. 



 

 

4 Conclusions and Further Work 

From the first reading of Paul Churchland’s vector analysis of cognition I have been 

struck by its intuitive appeal and explanatory power. He has taken the idea of a 

multidimensional recurrent vector space with its powerful semantic metric and 

applied it to all aspects of human thought. Even science is encompassed: a scientist’s 

understanding does not consist in a body of laws, but rather in having a well-

configured weight space in a recurrent network. The space is well-configured because 

it allows experiential input to be mapped onto an appropriate prototype, which 

embodies the knowledge built up through previous experiences. These previous 

experiences allow him to understand how the present situation will unfold. Thus at 

the heart of the model are the processes of recognition and learned association. These 

notions crop up again in Deacon’s account of symbolic thought, and I have tried to 

use these links to overcome some of the shortcomings in Churchland’s model. In 

brief, I have argued that we must move beyond the analysis of single networks and 

onwards to the possible ways in which different kinds of network might interact. This 

might involve the introduction of new concepts and methods of analysis, but it does 

not vitiate the vital insights that emerge from investigation of connectionist networks, 

it is additive to that body of research. In this way we might come to a new 

understanding of how complex, conceptual behaviour might be produced by a brain 

whose mode of processing is fundamentally parallel, distributed, and recurrent. The 

processing is distributed in two ways: first, within individual networks as has been 

described at length, and second, in that a single task uses many different networks 

spread throughout the brain. 

 These are empirical speculations, but I have tried to sketch out how they 

might be integrated into a philosophical theory that encompasses meaning and 

understanding. I have also attempted to show how actual parallel brain processing 

could be compatible with a physical commitment regarding the instantiation of 

concepts. No doubt many of the details are wrong, but I believe that in broad outline 

something like the above will emerge over the next few decades of research of the 

mind. The key point that I hope emerges from this thesis, is that philosophy must be 



CONCLUSIONS AND FURTHER WORK 

 

74

responsive to the results of empirical speculation; it is not a domain apart, which 

cannot be touched by matters of fact. 
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