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| ntroduction

Few would quesion the clam that some psychologicd and neuropsychologica
findings can be rdevant to philosophy, and the philosophy of mind in particular.
Many philosophers, however, have underestimated the intimacy of the rdationship
for cetan types of empiricd research, including neurophysology, connectionist
modelling, atificiad life, Stuated robotics, cognitive psychology, and developmentd
psychology. Principd amongst these is the invedtigation of red and atificid neurd
networks, which | will concentrate upon. The investigation of such networks is 4ill in
its infancy, and far from reveding how the bran works. But the view of cognition
which it hints a is so suggestive, and 0 promising, given the problems faced in the
philosophy of mind, that | think it is worth sketching out and exploring from a
philosophica perspective. | will argue that an invedtigation of the basc modes of
neural processing suggests a radicad dteration of the conceptua framework within
which we attempt to understand the mind and cognition. | will advocate an approach
on which these empiricaly based concepts actudly form an important source for
philosophical theory, shaping the nature of the concepts employed a the
philasophica level of inquiry.

This gpproach may sound highly reductive, but | hope to make it clear that
this is not the case if connectionism is properly congrued. Connectionism
demondrates that ample models can give rise to complex effects which can only be
understood a a higher level of abdraction. The basic mechanisms of connectionist
models can be described in a couple of brief paragraphs, but their behaviour is not so
trangparent, requiring complex and difficult andyss. | am druck by a padld here
with the scence of odf-organized criticdity, which dtempts to explan how
complexity emerges in a universe governed by smple laws. Sdf-organized criticdity
has been discovered in a variety of gtuations from earthquakes through biologica
evolution to treffic jams its key features can be illusrated usng the example of a
sandpile formed by a dow steady trickle of sand onto a platform of limited area. As
the sandpile grows avalanches of sand occur. Eventudly a steady date is reached in
which the amount of sand leaving the pile is equa to the amount being added. At this
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point a criticd date is reached in which avdanches of dl szes occur, some locd,
some encompassing the whole pile. However, the szes of the avaanches are not
random, they follow a power law, so that there are very few large avaanches, and
very many smdl ones, dthough there is no correation in the gzes of the avaanches
from one moment to the next, just as rolling a 9x on a die does not dter the
probability of rolling ancther one with the next throw. A plot usng a log scae on
both axes of dze agang frequency reveds a draght line Bak explans this as
follows

The addition of grains of sand has transformed the system from a state in which the individual grains
follow their own local dynamics to a critical state where the emergent dynamics are global. In the
stationary [self-organized critical] state, there is one complex system, the sandpile, with its own
emergent dynamics. The emergence of the sandpile could not have been anticipated fom the
properties of theindividual grains!

In the sdf-organized critical date the effect of smdl perturbations anywhere in the
system cannot be predicted unless one knows the gtate of the whole sandpile and has
a supercomputer available. Bak aso argues that the brain operates as a sdlf-organized
critica system. Whether this is the case or not remains to be seen, but what is clear
from this example is that a sysem of smple interconnected dements following
ample rules, ether grains of sand or neurons, can produce a highly complex pattern
of emergent behaviour, and this pattern is smply missed if one atempts a reductive
andyss.

The notion of emergent properties is notorioudy vague, and gives rise to
accusations of mydticiam, but 1 will argue that it can be placed on a sound footing.
For surdly, if even physcists are garting to see the need for a non-reductive approach,
which involves andyss of complete sysems, then it cannot be unreasonable for
cognitive scientists to do the same. | do not mean to imply that emergent properties
are not supervenient upon the activities of fundamenta partices. To think this would
be to misconstrue the point as an ontological one, but | am attempting to address the
issue of explanation. For if one acknowledges the existence of emergent phenomena,
one mugt find some way to andyse them, and the science of sdf-organized criticdity
suggedts how this might be done Sdf-organized criticdity has been investigated

! How Nature Works: The Science of Self-Organized Criticality (Oxford University Press, Oxford, 1997), p.51.
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usng highly smplified modds, which nevethdess exhibit the phenomenon in
question. In this way the modelling process is vauable because the designer has
complete control of dl the moded’s variables, thus the model can stand as proof that
even where only smple loca rules are operating globa emergent properties can be
produced. This smplification adso reveds the fundamentd principles a work,
dlowing an underdanding of them, even if this requires a sysems level andyss This
amplifying ethos is dso found amongst connectionis moddlers, and rightly so.
Connectionism's avowed intent is to uncover the fundamentds of brain processing
rather than recregting in intricate detail the neurophysiological processes that actudly
occur in the brain. This has lead to many exciting and intereting discoveries, about
such festures as memory, for example. However, | will argue that in some aspects the
drive towards smplification has gone too far, the baby has been thrown out with the
bath water. The hard part of the task is knowing when to stop jettisoning detalls.

With this in mind, rather than discussing the finer points of experimentd
methodology, | will try to draw out the important lessons from the way that
ensembles of connectionigt units, or neurons, function in order to suggest how a
modd of cognition might be produced which is pitched a a more abstract and generd
levd.? Thus the nature of the underlying processng shepes the nature of mentd
processes, without providing a complete account of them. This, | hope, will dlow a
reconciliation of empirical and philosophical gpproaches.

My own gpproach was prompted by the work of the Churchlands, athough it
diverges dgnificantly in its philosophica conclusons. | will teke their view of neurd
computation as a darting point, indicaing its limitations, and suggesting how more
caeful atention to the workings of red brains might overcome them. Thus | make a
diginction between typicad connectionis models and more biologicdly plausble
modds. | will argue that attention to biological detall can have consequences for our
underganding of the philosophy of mind, paticulaly of symbolic thought. This will
involve a certain amount of armchair speculation about the nature of brain processing

2 Many connectionist researchers use the term ‘neuron’ to refer to the computational ementsin their networks, but | shall use
theterm ‘unit’ in this context, and reserve ‘neuron’ for actual biological neurons. Thisis purely amatter of terminology on my
part in order to make a distinction between more and less biologically plausible networks — dthoughthereisno srict dividing
point with biologically plausible models on one side and the rest on the other, rather there is a spectrum of increasing biological
plausibility.
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and s0 it is open to empiricd refutation, and indeed | doubt what | have to say will be
correct in every detall. However, | beieve that this does not vitiate its worth, for it
demondrates how empirica findings can be interestingly relevant to the philosophy
of mind. Thus it has vaue as an intdlectud exercise, in the same way that speculation
about higtoricd events based upon counterfactud assumptions extends on€'s
gopreciation of the workings of the actual course of historica events.

One aspect of my argument will involve comparison with sententid models of
cognition. For the motivation behind the neurondly inspired goproach is the bdief
that, a base, cognition does not condst in sentence-crunching (i.e, operations
involving symbols, as take place in a digitd computer). There is no need to podtulate
a language of thought in order to explan the conceptud, combinatorid, and
productive aspects of cognition. In attempting to explain these phenomena, advocates
of connectionism attempt to demondrate that such networks can moded linguistic and
rue-governed behaviour, such as past tense formation. Symbolic theorigs cite the
fragmentary and detached character of these examples as evidence that the
connectionist style of processng will prove inadequate to the task of explaining the
essentidly systematic nature of human thought® Thus until a fully-fledged language-
using connectionist network is congructed the argument cannot be settled. | do not
mean to be derogatory about the orthodox connectionist approach, indeed it has
produced stimulating and vauable results. Yet if the argument is to be resolved then
efforts must be made to understand how red neurd systems utilize neurons, in terms
of the configuration of ther connections, to produce complex, including linguidtic,

behaviour.

Thus the chdlenge for connectionism, and cognitive science in generd, is to
try and understand how the great dructurd differentiation of the brain relates to its
esentidly digtributed mode of processing and the properties of individud neurons.
For it is not enough Imply to keep trying to modd high leved tasks usng smple
individud networks and complex learning dgorithms. Rather atempts should be
made to modd the totd behaviour of basic organisms, building upwards in the hope

3 See J. Fodor and Z. Pylyshyn, ‘ Connectionism and Cognitive Architecture: A Critical Analysis’, in S. Pinker and M. Jacques,
eds., Connections and Symbols (MIT Press, Cambridge, Mass., 1988), pp. 3-71, for the locus classicus of thistype of attack

against connectionism.
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of underganding the role of the rich gructure and modularity of neurd systems in
cognitive processing. In this way an undersanding of how large groups of neurons
interact to process highly complex information may dlow atificid networks to
exhibit ever more complex forms of behaviour. The beginnings of this task are
dready underway, and perhaps in this manner it might be possible to produce a fully-
fledged concept-using pardld processing system at some point in the future.

However, | bdieve that we do not have to wait for this event before we can at
leest begin to ground the clam that language and concept-use can be understood in
terms of a non-sententiad form of processing.* | will argue that connectionism, as it
gands, cannot adequately account for symbolic and conceptua thought, and that the
elements of red neurd processing from which connectioniss models have absracted
away provide the rav materids with which it is possble to answer the critics who
believe that pardld processng can never explan symbolic thought. In my view,
some of the properties of higher cognitive functions will be best understood by
reflecting, in detall, on the methods that red brans actudly use. This andyss
depends upon the large-scale principles that have so far been gleaned from the study
of neura computation, combined with recent speculation about the nature of symbols.
Thus, | am being somewhat peremptory, for a present large-scde principles of
neuronad processing remain inchoate, but | think that enough is in place to warant a

first speculétive survey.

“ Indeed, such ruminations may help to shape the research strategy employed in uncovering the principles of large scale neuronal

processing.



1 Connectionism and Neural Computation

In this chapter | fird want to present some of the principles of large scde neurd
processing which have so far been gleaned from the study of connectionist networks.
My intent is not to preset evidence or argument for ther vaidity — thet is not a
proper task for philosophy, and so should be left to others. Rather, my concern is to
present their details so that their philosophica consequences, if they prove correct,
can be explored. | then want to give a brief sketch of Churchland's
neurocomputationa  perspective before arguing tha it is in need of ggnificant
adteration.

1.1 Connectionist Networks

Connectionist networks can take many forms, but the features which they typicaly
share are ample processing units, and weighted connections between those units. The
activity of each unit is determined by the sum of the activation it receives from other
units via its input connections. The srength of the input it receives from each of these
units is determined by the product of the input unit's activity and the weight of the
connection. All of these inputs are then summed, to give the net input, which is fed
into the activation function, to determine the level of activity of that unit, which is
then transmitted via outgoing connections to other units The activation function can
take a variety of forms, as diglayed in figure 1 on page 7. An example is shown in
Table 1, on page 8. The mgor diginction is between linear and non-linear functions,
and the latter are most common because they dlow more complex problems to be
tackled. A prototypical connectionis network consds of three layers of units,
connected in a feedforward fashion, so that each unit in a layer has a connection to
every unit in the next layer. There is an input layer, an output layer, and a hidden
layer, so-cdled because it is not directly connected to the externd environment. Most
of wha follows concerns this type of architecture, as it demongrates the mgority of
important features of connectionist networks.

Connectionist networks can utilize severd types of representations, and these

have congderable consequences for the behaviour and interpretation of the network.
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The most important type is distributed representation, where dl of the units in a
layer ae involved in represnting a given item in the task doman; the
representationd vehicle is the pattern of activity. In al of the networks discussed
beow the hidden layers, a the very least, have didributed representations.
Representations can be more or less digtributed. For smple binary units, which are
gther on or off (O or 1) if haf of the units ae on and the other hdf are off, eg.
010011, then the representation is fully distributed. The reason for this epithet is that
in order to know what is being represented one must know the activity of adl gx units.
At the other end of the spectrum, representations are local if a simulus is indicated by
the activity of only one unit, as in 010000. Between these two extremes are vectors
where a proportion of the units are involved in the representation of a stimulus, eg.
010100, and thisis called spar se representation.
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Figure 1 Different types of activation function. The activation function determines the output of a unit
given its net input. (a) Linear. (b) Threshold Linear. (c) Sigmoid (the steepnes of the slope depends
upon the exact nature of the function). (d) Binary threshold.

The representational primitives in feedforward networks are patterns of
activation in a layer of units. These can be consdered as vectors, where a vector is
just defined as an ordered set of numbers. Vectors can be conceptudized
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geomdricdly in tems of multidimendond spaces Each unit in the population
determines an axis of the space, and its level of activation specifies a point on that
axis. Thus a given pattern of activation can be consdered as a point in that space.
This is most clearly appreciated for the input and output layers, where a pattern of
activity could represent a sound wave, a digitized picture of a face, or a phonemic
representation of a word. Similarly the output pattern of a network could be a red
world action, such as the input to a speech synthesizer. Interpretation of the hidden
layer of connectionist networks is not so easy. Such a layer is needed in order for
networks to learn complex tasks successfully, and so an understanding of the way in
which networks learn is needed in order to understand the role of the hidden layer.

One way to begin to understand the processing in networks is to view them as
carrying out transformations from one vector to another. Vector transformation does
not require input and output vectors to have the same dimensons, and so vasly
differing representations, such as a sensory vector and a motor vector can be co-
ordinaed in a principled fashion. The example in Table 1 shows the transformation of

athree-dimengond vector into afour-dimensiond vector by amatrix.

Weight Matrix
067 06 32 60  -24
8
g 030 05 50 29 05
2
g o4m 15 23 12 37
Netinputs 081 25 31  -28

0.69 0.92 0.96 0.06
Output V ector

Table 1: An example of vector transformation viaa matrix.

To cdculate the firg term of the output vector, each term of the input vector is
multiplied by the corresponding term in the matrix, and these are summed to give the
net input: (0.6 x0.6) + (0.3 x-0.5) + (0.4 x1.5) = 0.81. The net input is passed through
an activation function to give the unit's activation, which can then be passed on to
units in the next layer. The example in Table 1 involves units with activations that
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vay between 0 and 1 according to the following sgmoid activation function, which
is plotted in Figure 1(c), on page 7:

1
q =
1+

where @ is the unit's activation, and net; is the net input of that unit. For any two
vectors, there will dways exig a tensor matrix which will produce the desred
trandformation between them. This in itsdf is unremarkeble. The hard task is to
explan how networks manage to orchestrate the connections between units so that the
right tranformations occur (where the right trandtions ae those which are
behaviourdly advantageous) for awhole range of inputs.

Initialy random weights are assgned to a network’s connections, and it is
then presented with a set of training inputs. For each one the output of the network is
compared with the correct output, the teacher pattern, so-cdled because it is
externdly determined, and the network’'s connections are minutely atered according
to a learning dgorithm. This cdculates the eror for a given unit, and then dters it
connections by an amount redive to ther influence in the production of the error. In
this way the network’s output is brought closer to the desired output. Through this
process of eror minimisation the network gradudly comes to manifest the
gopropriate input/output mapping. In this process the only way in which the
behaviour of the network is shgped is through the sdection of the training s, the
initid dructure of the network, the activation function of the units, and the learning
dgorithm; dthough it is important to note that these are crucid in determining
whether the network learns successfully or not® During training the network is
upervised in some sense, in that it requires an extend eror dgnd and learning
agorithm to affect changes in its weights, but in a much more interesting sense the
network functions autonomoudy, in that there is no programming. There is no reason
why anyone, even the designer of the network, must undersand how it managed the
task. A dmuldion is st in motion and left to do its thing until (hopefully) it manages
the assgned task. From this point of view connectionist networks appear to be as

incrutable as the brain. However, given that we have detailled information about the

® A good deal of pre-processing can be smuggled into theinitial structure through the choice of input and output representations.
Thus it isimportant that the nature of these representations be scrutinized in assessing the significance of any model.
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patterns of activity and weight changes in such networks we can go about trying to
explan and interpret the way in which networks manage to do what they do. One of
the advantages of usng computer modds is the posshility of examining the innards
of these systlemsin vivo, as it were, during their learning and subsequent operation.

There are two interrdlated aspects of networks which are crucid to
underganding their computational capacities, and both arise as a result of digtributed
representations. namely, their incorporation of a semantic metric, and ther use of
superpositional storage.® If representations involve a semantic metric this means that
gmilarities in semantic content are reflected in Imilarities amongst  representationd
vehicles. For example, one might have a layer of units which represent faces, forming
a multidimensona vector space. Similar faces would be represented by points that
are close together in this vector space. Further, the relationships between faces would
aso be reflected in the relative postions of therr points in vector space. The midpoint
on a line between two faces would appear smilar to both, and a smooth progresson
adong that line would appear as a gradud transformation from one of the faces to the
other. A semantic metric is vitaly important because it means that a network receives
inputs which reflect the relaions between the items represented. If genuine categories
exig in the traning s, then they will be present in the representations of that =t
Thus damilar faces will produce smilar input vectors to a face recognition network.
To see the implications of this for network processng one must understand the way

in which networks store information, using superpositiona storage.

A nework’s job, from the perspective of its designer, is to transform input
vectors into the correct output vectors. Such mappings are achieved because the
network’s connection weights form a suitable matrix. So the connection weights are
the repodtory of the network’'s experience of its training st. In the connectionist
networks that | have been discussng this storage s superpostiond, which means that
exactly the same units are used to represent each item, because of the distributed
nature of vector representation. Thus existing connection weights, encoding previous

® This notion was originally developed in T. van Gelder ‘What isthe ‘D’ in PDP' ? A Survey of the Concept of Distribution’, in
W. M. Ramsey, D. E. Rumelhart, and S. P. Stich, eds., Philosophy and Connectionist Theory (Lawrence Erlbaum Assodiates,
Hillsdale, N.J., 1991), pp. 33-59.
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training experience, must be dtered in order to accommodate further training input.
Clark explains the consequences of this as follows:

. . . semantic features which are statistically frequent in a body of input exemplars come to be both
highly marked and mutually associated. By ‘highly marked’ | mean that the connection weights
constituting the net’ s long-term stored knowledge about such common features tend to be quite strong,
since the training regime has repeatedly pushed them to accommodate this pattern . . . By ‘mutually
associated’ | mean that where such features co-occur, they will tend to become encoded in such away
that activation of the resources encoding one such feature will promote activation of the other. The
joint effect of these two tendencies is a process of automatic prototype extraction: the network extracts
the statistical central tendency of the various feature complexes and thus comes to encode information
not just about specific exemplars but also about the stereotypical feature-set displayed in the training
data.’

Thus networks latch onto Satistica tendencies in ther training set in order to produce
the correct mapping. This can be dated in terms of vectors by saying that if there is a
group of vectors in the training set which cluster in a region of vector space, then the
network will come to treat them in the same way. This can be understood by looking
at the properties of the dot product of an input activation vector and the weight vector
for a given unit. These ae just ordered ligs of the vaues of the weights and
activations that the unit receives Assuming that the unit only receives one connection
from each unit in the previous layer, the activation vector and the weight vector will
have the same dimendons. Thus the weght vector will indicate the input activation
pattern which would produce the largest activation in the receiving unit. Where a
weight is large and podgtive, if the activation of its input unit is maximdly pogtive
(assuming bipolar units with activaions ranging between —1 and +1) then the
activation which is tranamitted will be maximized. Hence one way to interpret the
unit's behaviour is in terms of vector comparison. The weight vector for a unit
indicates its preferred simulus, and each input is compared with it. If the activation
function of the unit is non-linear, i.e. if it has a firing threshold of some kind, then this
will determine a criterion of smilarity. Some petterns will be close enough to the
ided to push the unit past its threshold, and into firing, others will not, and the unit

will remain inective, or & alow leve of activity if its activation function is sgmoid.

7 Associative Engines (MIT Press, Cambridge, Mass., 1993), pp. 20-1.
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However, this is only the fird move in underganding how connectionist
networks function. For it is not dways a benefit for smilar inputs to be trested in the
same way. It 5 one of the advantages of connectionist networks that they can learn to
place highly absract boundaries across multidimensona smilarity spaces, i.e. they
can lach onto the right dmilaities ignoring those that conflicc with the
categorisation task a hand. This ability requires a hidden layer, a point that can be
demondrated by consdering the task of mapping the exclusve OR function, where

the required trandformations are as follows:

Input 1 Input 2 Required Output
0 0 0
1 0 1
0 1 1
1 1 0

Table 22 Mappings required for the exclusive OR problem.

A network without a hidden layer cannot solve this problem because the patterns are
not linearly separable; i.e. no hyperplane can be placed in their N-dimensond space
(where N is the number of units) so as to separate the input paterns requiring
different responses. This is illudrated in Figure 2 (8) where it can easly be seen that
no draight line can be drawn which has [0,1] and [1,0] on one sde and [0,0] and [1,1]
on the other. Points that are closer together, and therefore most smilar to each other,
must be treated differently to those which are further gpart.

Faddan umit 2
-

Input

b W

—_— =] LA e

{0.0 10
nput 1 rockdan umt 1 outpat

{a) (b} (c)

Figure 2: Vector space representation of the exclusive OR problem. In (a) the input space is shown,
and it can be seen that no hyperplane can separate out the right points. In (b) the hidden unit vector
space is shown with the points transformed in vector space so that a hyperplane can perform the

separation, which isshownin (c).
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This idea of a st of weghts imposng a hyperplane is extremdy important in
thinking about the behaviour of networks, as it dlows one to visudize what the
network is doing. The hidden layer dlows this problem to be overcome because it
performs a transformation on the vector space, so that in the hidden unit vector space
the origindly dissmilar inputs are moved closer together, so that a hyperplane can
separate them, as shown in Figure 2 (b) and (). This separation is carried out by the
connections to the output layer, where the solution is achieved.

At a more abstract level these processes of vector comparison and vector
gpace transformation can be seen as the basis for prototype extraction, as Clark
suggested in the passage quoted above. A word of caution is needed here, for if there
are too many units in the hidden layer the network will merdy learn a separate hidden
layer activation pattern for each input in the training s&t. In other words it will not
take advantage of the distributed representation in the input layer, as there is no need
for it to use the same resources to dore dl the inputs patterns, so there is no
superpostional storage, and no semantic metric. As a result when an input which was
not amongst the training set is presented the network cannot produce an appropriate
response. However, when there are not enough hidden units for this to occur, the
network has to use its limited computational resources to successfully grasp the
rdevant gmilaities between traning inputs which will dlow it to accuratdy
categorize nove simuli.®

As a reault of training the network comes to funnd inputs into specific regions
of hidden layer activation space. These regions in turn are recognized by the output
layer as indicating a specific response. To give a specific — and hackneyed —
example, Gorman and Sgnowski desgned a network to distinguish the difference
between sonar echoes from rocks and mines® The frequency profile of the echo was
represented on the input layer, and the output layer contained two units to indicate the
network’s decison, ether rock or mine. Upon andysing its hidden layer they found it
to be patitioned into two regions, activity in one caused the rock output unit to fire,
and activity in the other causng the mine output unit to fire. Thus the hidden layer

8 At present the only way to cal culate the optimum number of hidden units is by rule of thumb, or trial and error

® “Learned Classification of Sonar Targets Using a Massively-Parallel Network’, IEEE Transactions: Acoustics, Soeech, and
Signal Processing (1988), 1135-1140.
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activation space contained a dmilarity gradient moving from pesks a the centrd
points of each region, which were most easily recognized by the output units, to the
border between them, which produced an indecisive response from the output units.
Thus these ‘hotspots can be considered as prototypes, as any input vector which is
transformed into that region of hidden layer vector space would produce a response
auitable for a given category, such as a mine. Hence network training can be seen as
the dteration of connection weights so that input vectors are pushed into spedfic
regions of the hidden layer vector space. The output layer then has the job of correctly
recognisng which of these region goes with which response. Whilst networks exhibit
an ability to map previoudy experienced gimuli onto the correct prototype in this
way, they dso demondrate an ability to generdize from experience to map a novd
input onto the appropriate prototype. They even demondrate an &bility to map
degraded inputs onto the appropriate prototype. This is possble because the
prototypes have been srongly ingrained in the network by the training regime. Inputs
that conditute one of the training categories are grouped according to the common
datistical tendencies amongst them. Even when only a few of these are present in a
degraded input there are enough to push the hidden layer activity towards one of its
prototypes. In this way they can be thought of as basins in vector space, any
activation vector which comes close enough rolls down into the centre, firing the
prototype. The trick is to get only the right inputs fdling under the influence on an
attractor basin, and it isatrick a which networks seem to be remarkably adept.

However, this is not the full extent of the representationa power of hidden
layers. For they aso exhibit a semantic metric, which is to say that the prototypes are
not randomly didtributed in the vector space. As an example consgder a network
desgned by Elman which had the task of discovering the lexica-category Structure of
a st of words. This was done by getting the network to predict the next word in a
sentence!® To do this the network employed an architectura festure which will be
prominent in what follows, namely recurrent connections! Elman used the usud

10 “ Representations and Structure in Connectionist Models', in G. T. Altmann, ed., Cognitive Models of Speech Processing:
Psycholinguistic and Computational Perspectives (MIT Press, Cambridge, Mass., 1990), pp. 345-382.

™ The first recurrent network models were created by M. I. Jordan, ‘Serid Order: A Parallel Distributed Processing Approact,
Report 8604, Institute for Cognitive Science (University of California, San Diego, La Jolla, 1986). The addition of recurrent
connections is a step towards more brain-like simulations, and thus a step in the right direction, as argued in chapter 2.
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three layer feed-forward architecture with an additiond layer of context units which
received connections from the hidden layer and then sent return connections back to
the hidden layer. The weights of these connections were dl 1, and were not dtered
during training. Thus the hidden layer received a @ntext input representing its sate in
the previous processing cycle, i.e. a representation of the previous word, or words, in
the sentence. Put smply, recurrent connections dlow the network to operate in the

tempord dimengon.

The net was trained with crude three word sentences, presented a single word at
a time, and its task was to predict the next word. The inputs to the network were
locadid, i.e. each word was represented by the a Sngle unit in a 31 unit input layer, O
that the network had no obvious clues as to its grammatical category or meaning.
What is interesting about this network is the way it responded to the task, given a
sentence such as ‘man eats. . . [ the network activeted dl of the output units
corresponding to words for edible things. Thus it seems that the network had learned
a syntactic/semantic category. An andyss of its hidden units was done by taking the
hidden layer activation patterns corresponding to each word and measuring the
distance between each pattern and every other patern. This information was then
used to form a hierarchical dructure, as shown in Figure 3, on page 16. Words that
are close together in activation space are on adjacent branch endings, whereas words
which are far gpart in vector space are on different branches. This analysis reveded
relaions amongst word prototypes reflecting their semantic categories. At the
broadest level (the first branching) there was a partition between verbs and nouns, but
even beyond this the network had grouped the prototypes in highly interesting ways,
into animate and inanimate nouns, and as demondrated in the example given above,
words for edible things were clustered together in the hidden layer vector space. For
the purposes of this andyss an average of a word's position in vector space was used,
because the postions varied with context. Far from being a drawback this variation
conditutes an advantage because it dlows the network to be sendtive to these
contexts and respond with appropriate modifications of its output.

The upshot of dl this is that the generdizations which the network made were
highly structured. The spatid relations amongst prototypes in the hidden layer vector
goace ae highly abdract, reflecting complex patterns in the input. Through the
partitioning of its vector pace the network acquired an ability to recognize highly
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Figure 3: Hierarchical clustering of hidden unit activation patterns, demonstrating the semantic metric
of the network’ s hidden unit vector space.

abgract festures of its input. This dructure in the hidden layer was then utilized by
the output layer to produce the appropriate responses as defined by the assigned task.
Congdeing Chomskian aguments about the poverty of the linguigic stimulus
avalable to infants this network should act as a waning that the learning
environment may in actud fact cary much more information than was previoudy

thought.

Didributed representation not only gives rise to complex processing abilities,
it adso means that networks ae operationaly robust. As representation and
computation involve many units and connections, each individud unit or connection
plays only a smdl pat in the overal caculation. As a result, a network can afford to
loe a few connections or units whilg 4ill ataning a ressondble leve of
performance. It can aso cope with incomplete or noisy inputs. The peformance
gradudly declines with the number of dements that have been removed, or the
disturbance to the input, hence the processing of distributed networks is described as
displaying ‘graceful degradation’. This festure is noteworthy because of its relevance
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to biologicd sysems. Firg red neurons are inherently ‘noisy’ in that they have a
basd spiking frequency from which they deviate according to a normd digtribution.
Thus a neuron may fire more vigoroudy, in a way tha would normaly have some
ggnificance for its receving neurons, even when none of its preferred stimuli are
present. Second, it is an unfortunate fact of life that brains lose neurons throughout
life, whether due to injury or the natura course of ageing, and so must be able to
continue to function in the face of such loses Put bluntly, the connectionist argues
that, as brains degrade gracefully, anything claming to modd the brain had better do
the same. The contrast here is supposed to be with conventional computers, which
will crash even if only one line of a program, or one tandgstor, is missng or broken.
While this is a persuasve argument it is far from conclusve, | merdy mention it as
an important debate between padld digributed processng and conventiond
computationa models.

1.2 Vector Cognition

A bare description of the functioning and abilities of red and atificid networks does
not count as philosophy. To be rdevant to philosophy the processng of these
networks must be reated to menta processes occurring a the persond levd. Paul
Churchland has suggested thet cognition should be modelled on the way basc
perceptual processing works'? According to his view of such processing, sensory
inputs are mapped onto the appropriate prototype, which conditutes the cresture's
underdanding of that input. Thus the bridging principle between neurocomputation
and the philosophy of mind is that of the prototype. In this section | will give a brief
sketch of Churchland's approach before going on to show that it, and other standard
connectionist modds, cannot fully account for human cognition in section 1.3.

1.2.1 Vector Coding

The firg point that Churchland makes is about the power of vector coding. He
illugrates this by conddering the way in which the bran represents colour. The
human retina contains three kinds of colour sengtive cdls each one beng maximaly

12 A Neurocomputational Perspective: The Nature of Mind and the Structure of Science (MIT Press, Cambridge, Mass, 1989),
Ch. 10.
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reponsve to a different wavelength of light. These cdls project to a population of
neurons which contain three further types of cels, and the connections are such that
they demonstrate opponent processng. This means that the activity of the cdls
dgnads the presence of ether of two colours, but not both smultaneoudy. For
example, one type is red-green opponent, which means that they increase ther
soiking frequency when dimulated by red light and decrease ther spiking frequency
when they are stimulated by green light. The second type of opponent process cells is
yelow-blue opponent, and the third register the rdative brightness vadues across dl
three colour photoreceptor cell types. The upshot of dl this is that each of the types of
opponent process cdls can be consdered to form an axis of human colour space.
Thus any colour that can be percaved by humans is represented by a point in that
three-dimensiond space determined by the relive activitiesin the three cdll types.

Colour space has only three dimensons, but if we make a consarvative
assumption that there are only 10 didtinct postions on each axis this gives 1000
different positions in the vector space!® Thus the representational power of even a
smdl group of neurons is staggeringly huge, and rises exponentidly. Indeed, humans
have four types of taste receptor cells, and a least Sx types of olfactory receptors,
which goes some way to explaning the sengtivity and sophistication of our sensory
capacities.

Vector coding need not be limited to the representation of such basic sensory
features. With the use of many more dimendons highly complex domans can be
represented. For example, there is a reasonable body of evidence to suggest that there
is a specific region of the brain involved in the representation of faces* Thus this
area might condtitute a face vector space with each point representing a particular

face.

A cavedat is required here concerning the explanatory power of vector coding,
contra Churchland, because to say that a sensory experience just is a certain pattern of
giking frequencies in a populaion of neurons is not fully to explan what is a

13 Evidence from psychophysical studies suggests that we can distinguish at least 10,000 colours, which suggests that there
should be approximately 20 positions on each axis.

14 See, for example, G. G. Baylis, E. T. Rolls, and C. M. Leonard, ‘ Selectivity Between Faces in the Responses of a Population
of Neuronsin the Cortex in the Superior Temporal Sulcus of the Monkey’, Brain Research 342, 91-102.



CONNECTIONISM AND NEURAL COMPUTATION 19

conscious phenomenon.’® | do not claim that the theory expounded here closes the
explanatory gap between scientific description and subjective experience. For my
purposes we must amply take it for granted that the activation pattern in a given
population of neurons produces a subjective experience. The power of the approach
lies in its capacity to meke this legp of fath seem less daunting, and ultimatey
plausble. The key to the representationd power of such neurond activation vectors
lies in the way in which they can be trandformed from one population to ancther via
the complex connections between them in a way that respects their informationd
capacity and content, i.e, not according to some abstract syntactic aspect of the
representation, but through vector trandformation, via a tensor matrix from one

neuronal activation vector to another.

1.2.2 Vector Prototypes and Explanatory Under standing

Churchland champions the idea that explanatory understanding ‘condggs in the
activation of a specific prototype vector in a wel-trained network.’'® That the
network be wdl-trained is crucid, for it explans why the activaion of the prototype
isnot merdy alabdling of the input simulus. The activation of a prototype:

. . . represents a major and speculative gain in information, since the portrait it embodiestypically goes
far beyond the local and perspectivally limited information that may activate it on any given occasion.
That is why the process is useful: it is quite dramatically ampliative. On each occasion, the creature
ends up understanding (or perhaps misunderstanding) far more about the explanandum situation than
was strictly presented in the explanandum itself. What makes this welcome talent of ampliative
recognition possible is the many and various examples the creature has already encountered, and its

successful generation of aunified prototype representation of them during the course of training.!’
This dluson to the role of previous encounters has an interesting echo in Evans
notion of an informationd system, which he saw as centrd to explaning the nature of

thought about particulars!® Evans rightly dresses the relaionship  between
information and recognitiona capacities:

15 This argument is made by P. M. Churchland in ‘ Reduction, Qualia, and the Direct Introspection of Brain States', Journal of
Philosophy 82 (1985), 8-28.

18 A Neurocomputational Perspective, p.210.
7 A Neurocomputational Perspective, p. 212.

18 The Varieties of Reference (Oxford University Press, Oxford, 1982), Ch. 8.
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... we should expect that, in any system in which information is stored about particular objects, there
will be a central core of cases in which the subject has associated information with a capacity to
recognize a particular individual . . . These are the paradigm cases: evolving clusters of information
generated in a pattern of encounters in which the recognitional capacity was triggered, and still linked
with that capacity, which serves as the means to identify opportunities for using old, and gaining new,

information.*®

In Churchland's modd we have an obvious explanaion of how this informationd
system operates, and what is more, qerates rapidly and robustly.?° The recognitional
capacity and its asociated information can be united as a vector prototype.
Encounters with an object (as an individud, or as a token of a type or category) bring
about activation of the prototype, and each encounter provides an opportunity for
changes to be made in the configuration of the hidden layer vector space, to encode
any nove informetion. In this way the prototype could come to include various kinds
of expectations that go beyond the present experience, and play a role in the control
of on-going behaviour, as Churchland describes.

The picture | am trying to evoke, of the cognitive lives of simple creatures, ascribes to them an
organized ‘library’ of internal representations of various prototypical perceptual situations, situations
to which prototypical behaviours are the computed output of the well-trained network. The
prototypical situations include feeding opportunities, grooming demands, territorial defence, predator
avoidance, mating opportunities, offspring demands, and other similarly basic situations, to each of
which a certain broad class of behaviours is appropriate. And within the various generic prototype
representations at the appropriate level of hidden units, there will be subdivisions into more specific
subprototypes whose activation prompts highly specific versions of the generic form of behaviour . . .
These various prototypes are both united and distinguished by their relative positionsin the hiddenunit

vector space. They are al close together, but they differ slightly in their positions along one or more of

the relevant axes. These differences evoke relevantly different responses at the output layer.?*

Thus one of the key advantages of Churchland's account is that representations are
not conceived of as inner modds of redlity, which must then lead to action through a
further distinct process of cogitation involving the mode. Rather part of ther identity

19 The Varieties of Reference, pp. 276-7.

20 There is nothing in what Evans wrote that commits him to this or any other explanation of the substrate for informational
system. | draw the comparison because | think that Churchland’s ideas suggest how the informational system might be
implemented. | would argue that an understanding of the details of this implementation enriches and dterstheaccount pitched a
the genuinely philosophical level.

2L A Neurocomputational Perspective, p. 207.
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is condituted by the behaviour which they produce; representations are action
centred.?? As a result, perception and action can be regarded as essentialy cognitive
processes, they do not condtitute the links between the mental and the externa world;
they are a part of the cognitive processing itsdf. In the case of perception, there is no
sensory Given, which must then be interpreted®® Incoming sensory data is processed
by being mapped onto a prototype vector. This provides an explanation for why
perceptua experience bears cognitive significance; we do not see colour patches, we
see objects and their affordances®® Agan, this fits nicdy with Evans notion of
information-based thought, where thisis defined as follows:

a bit of information (with the content Fx) is in the controlling conception of a thought involving a
subject’s Idea of a particular object if and only if the subject’s disposition to appreciate and evaluate
thoughts involving this Idea as being about an F thing is a causal consequence of the subject’s
acquisition and retention of this information.?®

The activated prototype is the information which controls the thought, because of the
pat it plays in the control of ongoing cognition, interacting with other internd
processes to produce an appropriate response. For Churchland the role of the
prototype in processng coud be extremdy complex, with context and gods
influencing the informationd flow, through the impact of recurrent pathways, which
he rightly views as important. If | understand correctly an example might be as
folows if a squirrd is hungry, the activation of its acorn prototype by an appropriate
visud input would initiate feeding behaviour, wheress if it is satiaed it might prompt
gdoring behaviour. This type of contextud sengtivity might be achieved via an input
to the creature’s hidden layer from neura areas other than those concerned with basic
sensory input. Through an gopropriate learning history these additiond inputs could
come to affect the network's processng, producing advantageous behaviourd

consequences.

2 gee A. Clark, Being There: Putting Brain, Body, and World Together Again (MIT Press, Cambridge, Mass., 1997).

2 See W. Sellars, ‘Empiricism and the Philosophy of Mind’, in H. Feigl and M. Scriven, eds., Minnesota Studies in the
Philosophy of Science, vol. 1 (University of Minnesota Press, Minneapolis, 1956), pp. 253-329, and J McDowel, Mind and
World (Harvard University Press, Cambridge, Mass., 1994) for discussion of the Given.

24 5ee J. J. Gibson, The Ecological Approach to Visual Perception (Houghton Mifflin, Boston, 1979).

% Varieties of Reference, p. 122.
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On this view, the representational power of the prototype comes from its
pogition in a richly structured recurrent vector space. Churchland makes much of this
architecturd feature, no doubt inspired by its ubiquity in the brain, and by the fact
that it dlows complex tempord behaviours, as demonstrated by Elman's network,
which was discussed in section 1.1. One festure of recurrent networks, which he
notes, is thelr tendency to settle into a repstitive cycle, known as a limit cycle, when
garted off by a momentary input of the right kind. Churchland hypothesizes that this
could be used for the easy production of cyclicd motor activities such as waking, or
the beating of the heart, because they can be represented by loops in a suitable vector
gpace (such as a joint-angle or motor-neuron space). The posshility of iterated
processng cycles through a network alows trgectories and loops to be followed
through vector hyperspace, reflecting the continuous cyclicd nature of these
activities. Recurrent  connections will prove to be important in the account of
cognition which follows, for as Churchland points out, it is highly likey tha they
have applications outsde the sphere of motor control. Elman’s recurrent word
prediction network, which was described in section 1.1 is an example of how
Churchland sees recurrent connections underlying complex cognition. This gpproach
seems to imply a kind of representational holism, in that an activated vector is a point
on a trgectory in vector hyperspace. Thought, which is tempordly extended, consss
in such trgectories, which are produced by recurrent cycles through an immensely
complex hidden layer. Depending on context the processing will lead off in a variety
of directions and it is this divergty of trgectories, and ther semanticaly relevant
geometrical relations that are supposed to make this process so powerful. Once you
have an internd aray of recurrent connections which can provide their own input,
and thus which can function without externd input, you have the posshbility for
complex and abdract cognition which is not tied to current externd simuli. There
need be no smple progresson from input to processng to output, instead the output
to any given processng cycle could be the initiation of further processang.
Churchland places a greet ded of dress on the effect of recurrent connections, and
has suggested that such a system of recurrent networks might be the bass for

consciousness for this, amongst other, reasons?® | do not want to take any firm

%6 The Engine of Reason, the Seat of the Soul (MIT Press, Cambridge, Mass., 1996), Ch. 8.
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postion on this clam, as | am not atempting to argue for an explanaion of
consciousness. However, it is dear that a flexibility in cognitive ability does seem to
be a feature of conscious creatures, and o it is genuinely interesting, and suggestive,
that recurrent networks seem to have avariety of interesting capabilities”

One of these is the capacity to interpret the same sensory input in a number of
different ways. The human cgpacity for this is famoudy demondrated by ambiguous
pictures such as the duck/rabbit. A nonrecurrent network will adways respond to a
dimulus in the same way, but Churchland argues that a recurrent network can echo
this human ability because the recurrent connections provide a means of moduding
processing, either by providing a duck context or a rabbit context. Churchland goes
on to argue that this capacity of recurrent networks is not only important in the
context of perception. He claims that it also has impact in much more abstract aspects
of cognition, in that it offers an explanation for the processes of rgpid understanding
and reconceptudisation. This problem has a fine tradition in philosophy, for
Wittgengtein wrestled with these phenomenain the form of underganding in aflash:

‘What happens when a man suddenly understands? —The question is badly framed. If it isaquestion
about the meaning of the expression ‘sudden understanding’, the answer is not to point to a process
that we give this name to—The question might mean: what are the tokens of sudden understanding;
what are its characteristic psychical accompaniments?®

Norma network learning takes thousands of cycles, and can be understood as a sort
of gradient descent process, as described in section 1.1. This dearly cannot explan
how an individud can, literdly in an indant, see a recdcitrant problem in an entirdy
new and fruitful way. Churchland suggests a solution to this problem based upon the
idea of recurrent connections. He illudtrates this with Huygen's redisation that light
can be understood as a wave phenomenon:

Here the theory of waves in mechanical media — a theory already well-formed in Huygen's mind in

connection with water waves and sound waves — was applied in a domain hitherto unaddressed by

that framework, and with systematic success. There was no need for Huygens to effect a global

27 This would be compatible with Dennett’s Multiple Drafts model, as expounded in Consciousness Explained (LitileBroan,
Boston, 1991). If it is reduced to a model of cognitive processing (access consciousness) rather than of phenomenal
consciousness there seems no reason why a system of recurrent networks could not instantiate such a parallel, multitrack system.
Whether arecurrent system can be the basis for phenomenal consciousness, in humans at any rate, is an interesting, but moot

point for my purposes.

28 philosophical Investigations § 321.
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reconfiguration of his synaptic weights to achieve this conceptual shift. He had only to apprehend a
familiar class of phenomena in a new cognitive context, one supplied largely by himself, in order to
have old and familiar input-unit vectors (those concerning light) activate hidden-unit vectorsin an area
of his conceptual space quite different from areas they had previously activated. The differencelay in
the context -fixers brought to the problem.

Churchland is somewhat vague about the way in which this conceptud redeployment
occurs. Given that his explanations are couched in terms of recurrent hidden layer
architectures, it is not clear how a modd could be crested which would search
through its prototypes in quite this way. It is a this point that problems begin to
gopear for Churchland's account, dthough the problem of explaining the way that
human cognition manages to focus down onto only the relevant options is not
restricted to connectionist models. One way to see the force of the worry here is in the
context of an apparent advantage of the vector prototype model: it does not present
any fundamenta bifurcation in nature between humans and other animds. We can
make sense of the behaviour of nonlinguigic crestures in terms of vectorid
prototypes, as made clear in the passage quoted above. Thus we can treat (some)
cregtures as having genuingy representational cognitive processes without the need to
atribute symbolic abilities to them. And of course the vector prototype modd is
idedly suited for explaining how behaviour is smoothly and efficiently carried out.

Trouble arises for this harmonious picture in tha there is an essentid difference
between anima and human thought: humans use a type of representation that is
unique, namely symbolic representation. In the next section | will argue tha
Churchland’s vector prototype model cannot successfully explain some aspects of
symbolic  representation, such as compogtiondity. This becomes clear when
examples such as the one quoted above involving Huygens are examined carefully.
What Churchland is trying to explain here is conceptud redeployment, but to have
concepts one must have compostiordity, amongst other festures, and for reasons
which will be given in the next section, the vector prototype modd cannot
accommodate them. However, this shouldn't lead to a tota reection of the modd,
and in what follows | will attempt to show how the problems raised in section 1.3 can

be overcome by emendations inspired by the processing of real neura networks.

29'p, M. Churchland, ‘Learning and Conceptual Change', in A. Clark and P. Millican, eds., Connectionism, Conoepts, and Folk
Psychology (Clarendon Press, Oxford, 1996), p.23.
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1.3 Connectionism and Systematicity

The man accusation that is made agangt connectionis models is that they cannot
explan the essentidly dructured nature of thought. That thought involving concepts
must be essentidly dructured is a premise which | will trest as immutable. It is
something that the mgority of philosophers agree upon, and as such must be
explaned by any aspiring theory of cognition. The aticulation essentid to conceptud
thought is expressed by Evans generdity condraint: to be ascribed the thought that
‘ais F' one must dso be able to entertain other thoughts involving @', such as ‘ais
G', ad other thoughts involving ‘F’, such as ‘b is F'.*° For those attempting to model
thought this gives rise to what Fodor and McLaughlin cdl the systemdticity problem:

The systematicity problem is that cognitive capacities come in clumps. For example, it appears that
there are families of semantically related mental states such that, as a matter of psychological law, an
organism is able to be in one of the states belonging to the family only if it is able to be in many others.
Thus, you don’t find organisms that can learn to prefer the green triangle to the red square but can’t
learn to prefer the red triangle to the green square. Y ou don’t find organisms that can think the thought
that the girl loves John but can’t think the thought that John loves the girl. You don't find organisms
that can infer P from P& Q&R but can’'t infer P from P& Q. And so on over a very wide range of

cases.*!

There is a condderable amount of literature devoted to the subject of systemdticity,
and it involves severd strands®? One concerns the exact nature of systematicity, and
another whether connectionist architectures can be genuindy systemétic. Difficulties
arise in the context of the first of these because one cannot replace a verb's argument
with any old word, there are various kinds of constraints, and these must be learned.®®
This suggedts that systemdticity should admit of degrees, but this does not appear
compatible with Fodor and McLaughlins postion. Suffice it to say, for present

%0 Varieties of Reference (1982), Ch. 4.

31 * Connectionism and the Problem of Systematicity: Why Smolensky’s Solution Doesn’t Work’, in C. Macdonald and G.
Macdonald, eds., Connectionism: Debates on Psychological Explanation (Blackwell, Oxford, 1995), p. 200.

32 See, for example, J. Fodor and Z. Pylyshyn, ‘ Connectionism and Cognitive Architecture: A Critical Analysis', in S. Pinker and
M. Jacques, eds., Connections and Symbols (MIT Press, Cambridge, Mass., 1988), pp. 3-71,A. Clak, ‘ Sysematidty, Sructured
Representations and Cognitive Architecture: A Reply to Fodor and Pylyshyn, in T. Horgan and J. Tienson, eds., Connectionism
and the Philosophy of Mind (Kluwer Academic Press, Boston, 1991), pp. 198-218, and R. F. Hadley, ‘ Systematicity in
Connectionist Language Learning’, Mind and Language 9 (1994), 247-272.

3 See S. Pinker, Learnability and Cognition: the Acquisition of Argument Structure (MIT Press, Cambridge, Mass., 1989).
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purposes, that the feature of thought that | am interested in concerns some kind of
sendtivity to dructure, and an ability to goply information in relevant, but different,
task domains. | hope that the following discusson will give an intuitive fed for the

problem at hand, even if it does not furnish a precise definition.

This type of sysemdicity cannot be satidfactorily accounted for by the
processes of generdization, pattern completion, and prototype extraction which form
the bass of Churchland’'s approach. A network may have prototypes for ‘red’ and
‘square’ but how does it represent the complex thought that the square is red? This
could not be done by having both prototypes activated at the same time because their
vectors are fully distributed, and so each one involves the activity of al the units. The
two patterns cannot just be added together, because that would merely produce a
vector between the two origind ones. This intermediate vector would have a
representationa Significance determined by the semantic metric of the vector space,
and given the hyper-dimensona nature of the metric, it would be a serendipitous
accident if this happened to be the representation for ‘red square’. The hyper-
dimensondity rules out vector addition because the semantic dgnificance of any
point in vector space is determined by its relaions to dl of the dimensons of the
pace, not just a few of them. Presumably an additiond ‘red squar€ prototype would
be needed, but even granted the enormous representationa power of hyper-
dimensond vector spaces this multiplication of prototypes could not proceed
indefinitdly. Even if it could this would be no solution to the problem of
systematicity, for it would mean that every complex thought would be represented by
an unaticulated vector. The whole force behind the problem is that the same elements
aopear in many different complex thoughts®* Geach uses an anadogy with chess to
illusrate the reationship tha must exis between thoughts and ther condituent
concepts:

Making an appropriate move from a certain position may be, and at the opening of the game very
likely will be, a learned response; but in the middle game it will certainly not be so, for the position

may well occur only once in a life-time of play. On the other hand, the ability to make an appropriate

move from a given position always presupposes a number of simpler, previously acquired, skills— the

34 This line of argument is powerfully deployed by J. Fodor and Z. Pylyshyn in ‘ Connectionism and Cognitive Architecture: A
Critical Analysis'.
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capacities to carry out the moves and captures that are lawful for the pawns and the various pieces. As
these skills are related to the chess-move, so concepts are related to the act of judgement.*®

One might address this by resorting to locdist microfeatures, so that there would be
microfeatures for redness and sguareness, and they would be co-active when
representing a red square. As it sands this is no solution, because the lapse into the
use of localist microfestures as the dimensons of the representationd vector space is
Hf-defedting because the semantic contents of those dimendgons are |eft
unexplained®® A red microfesture might gain representationd significance through
causd correlation, but this does not provide adequate resources for explaining how
the semantic content of complex relations such as ‘loves could be represented as a
microfesture. | will not rehearse the inadequacies of causal theories of meaning here,
for even if the point is granted a second problem remains. how can a st of co-active
microfeatures (*John’, ‘loves, and ‘girl’) represent the thought that John loves the
girl rather than tha the girl loves John? It would seem that a ‘John-as-subject’
microfeature is needed, but here agan we ae faced with an exploson of
representationa elements, one for each possble syntactical postion. Given that
language is productive, having no definite upper boundary, this seems an implaushble
explanation.

An dtempt to rescue the origind line of argument might be made by
maintaining that the various prototypes are not as undructured as they first appear.
One might imagine a ‘John’ region of the vector space, with different grammatica
reaions being represented by different postions within this region. After dl, andyss
of Elman’'s word prediction network, discussed in section 1.1, showed that its hidden
layer was highly dructured, with mgor divisons and subdivisons reflecting lexica-
category dructure. Thus the articulation of conceptua thought would be captured by
the semantic metric and the relations of a point to many others, and through the effect
of further content on the trgectory plotted through vector space. However, doubt is
cast on this suggestion by the inability of networks to goply knowledge gained in one
gtuation to good effect in a different gtuation. For example, Elman's network

% Mental Acts: Their Content and their Object (Routledge and Kegan Paul, London, 1957), p.13.

36 | am assuming that the semantic metric of distributed representations account for their semantic content. Thisisabold claim
that requires argument, and this will come later in section 3.3. For the moment | want to put the issue to one side whilst dedling
with the inadequacies of alocalist approach to the problem of meaning.
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gructured its hidden layer vector space into nouns and verbs, but there is no easy way
to utilize this if we wanted to use the network to categorize a set of words into verbs
and nouns. All it can do is ‘predict’ what type of word will come next in a sentence;
the network’'s expertise is extremely doman specific. Clark relates this to the notion
of non-conceptual content, as developed by Cussins®” Non-conceptud content is
defined by Cussins as content which condsts of non-conceptua properties, where
conceptual and non-conceptual properties are defined as follows.

A property is a conceptua property if, and only if, it is canonically characterized, relative to a theory,

only by means of concepts which are such that an organism must have those concepts in order to

satisfy the property.

A property is a non-conceptual property if, and only if, it is canonically characterized, relative to a
theory, by means of concepts which are such that an organism need not have those conceptsin order to
satisfy the property 3

These notions can be used to express the problem with Elman’s network. Whilst the
relaions reveded in its hidden layer space can be described in terms of the concepts
of ‘noun’ and ‘verb’ they only have non-conceptua content. Cussins aso provides
the resources to argue for this clam. Progresson from non-conceptua to conceptua
content is marked by increesng perspective independence, a point illustrated by
congderation of frogs and ther fly-detecting abilities:

The frogs ‘fly-thoughts' are not really fly thoughts because their success (and hence their content)
depends on specia features of the frog task-domain (the cost of tongue-swipes at massive distant

objects is outweighed by the benefit of successful fly catches); frog ‘ cognition’ is dependent on the

perspective of a particular task-domain. It cannot generalize.®

If the frogs were placed in a different task-domain, where tongue-swipes are more
codlly, perhaps dtracting predators, they would soon be in trouble. They cannot ater

37 Associative Engines, p. 73.

3 “The Connectionist Construction of Concepts’, in M. Boden, ed., The Philosophy of Artificial Intelligence (Oxford University
Press, Oxford, 1990), pp. 382-3. Although this notion is similar to the one developed by C. Peacocke in A Sudy of Conoepts
(MIT Press, Cambridge, Mass,, 1992), there is an important distinction that has been debated in the literature, about whether a
creature can posses hon-conceptual content if it has no conceptual states at al. Thisis something that is denied by Peacocke, but
acceptable on Cussins definition as stated above; see J. L. Berm#* dez, ‘ Peacocke's Argument Against the Autonomy of
Nonconceptual Representational Content’, Mind and Language (1994), 402-418, for adiscussion of theissue. | side with
Cussins on this debate, as the prime reason for introducing non-conceptual content is to explain how creatures can have
genuinely representational states without having to meet the generality constraint.

39 “The Connectionist Construction of Concepts', p. 424.
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their behaviour in response to environmental changes. If, on the other hand, frog fly-
detectors were sendtive to many other abilities, and to environmenta circumstances,
then they would be on the way to achieving conceptua content. Thus perspective
independence can be seen as the capacity to apply one's abilities and knowledge in a
way that alows one to cope with disturbances in the task domain. One can bring these
abilities to bear from any angle, and in any place. | do not think it | overly contentious
to hold that this cognitive robustness is a the heart of what makes humans intdligent
cregtures, it accounts for the evolutionary advantage of being intdligent, because it
dlows usto survivein an ever changing environmentt.

The notion of perspective independence can be gpplied in exactly the same way
to connectionist networks. they are extremely dependent on their task-domains —
dight changes completdly destroy their ability to respond appropriatdy. Elman's
network cannot be used in any Stuation other than the one in which it was trained,
and s0 it cannot meet the generdity condtraint, and so cannot be considered to have
the concepts of ‘noun’ and ‘verb’. Perspective independence as a criterion for
conceptuad content is redly just another way of expressing the generdity condraint.
To count as conceptua a thought must contain eements that can be combined with
many other such dements in ways tha respect their semantic vaues. This gives us
both a handle on the problem with connectionis modds and a criterion for
edablishing when it has been overcome. This is useful, because despite the
difficulties raised in this section for Churchland's modd, it would be wrong to
assume that they rule out any pardld digtributed processng account. | will suggest an
aternative approach in chapter 3.

14 Summary

In this chapter | have explained how connectionist networks operate, and how
Churchland has extrapolated from this to a modd of cognition. | then pointed out a

few problems for this modd in explaning the sysematicity of human thought. The
following points will be important in what follows:

The digributed nature of vector representation, which is the source of many of the
abilities of connectionist networks.

The encoding of experience by the weights of connections.
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The notion of a vector space and its incorporation of a semantic metric, with
vector prototypes arranged in that space in a way that reflects their semantic
relations.

The digtinction between conceptuad and non-conceptua content and its relation to
the systematic nature of human thought.



2 Biologicaly Plausible Neural Computation

The discusson in the previous chapter dedt with maingstream connectionist networks.
These provide vauable insghts into some aspects of cognition, but for other aspects,
they may even prove mideading. The problems with such networks arise because of
their lack of biologica plaughility. The main reason why it is unlikdy that these sorts
of networks are implemented in the brain is ther use of nonlocd learning dgorithms,
most commonly the backpropagation dgorithm. These dgorithms are non-loca
because, as described in section 1.1, they compare the network’s actua output with
the correct output. This information about the correct result is not avalable localy in
the network, and must be provided by an extend teacher. The eror sgnd is
propagated back to connections in earlier layers of the network, further compounding
the non-locd nature of the learning mechanism. Given current knowledge of neurond
architecture in the brain there is no way that this sort of precise information could be

provided.

The neurond plaughility of connectionis modds is further drained by the
fact that sngle neurons cannot produce both excitatory and inhibitory connections,
because al of ther syngpses must use the same neurotransmitter. Thus neurons are
ether excitatory or inhibitory, but not both. The vast mgority of connectionist
models dlow connections from a single unit to take both postive and negative weight
vadues. Mogt connectionitss would not see these architecturd divergences as a
problem. Ther dandard response is to ague tha they are modeling higher leve
cognitive processing, and that this necesdtates only a loose connection between
models and redlity. Marr expressed this point in the following way:

Trying to understand perception by studying only neurons is like trying to understand bird flight by

studying only feathers: it cannot be done. In order to understand bird flight, we have to understand

aerodynamics; only then do the structure of feathers and the different shapes of birds' wings make

sense.®®

40 vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman,
San Francisco, 1982), p. 27.
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| agree with this viewpoint, as | made clear in the introduction; the whole purpose of
modelling is to drip out the unnecessary detalls, so that the globa picture can be seen
more clearly. Thus connectionis modds should not be davish duplications of red
neurd networks. My objection, which is centrd to my thess, is that some features of
red neurd networks that have been abandoned suggest interesting new ways of
underganding the emergent behaviour of networks. It is precisely by paying attention
to the detalls that we get a better grip on the large-scale principles & work in red
brains, and that produce red thinking.

Instlead of using sophisticated nortloca learning dgorithms, recent research
into neura networks has suggested that they overcome computationa problems
through the use of a number of different architectures linked together, with a Hebbian
learning rule, and sparse coding (see section 1.1). The Hebb rule states that where a
presynaptic neuron and a postsynaptic neuron are active a the same time, the synapse
that connects them will be strengthened according the following agorithm:

dNij = kl’i I'q:.

where r; is the pogtsynaptic firing rate, r¢ is the presynaptic firing rate, K is a learning
rate constant, and dw;; is the change in the synaptic weight w; (this nomenclature, in
which the ith neuron is the postsynaptic neuron, and the jth neuron is the presynaptic
neuron, is standard). For Hebbian learning dl the information required is avalable
locdly at the synapse, and empirica research has reveded a plausble mechanism a
the microcdlular leve for this rule. At least three different neurd architectures have
been found in the brain which utilize this basc leaning rule to accomplish different
sorts of computationa tasks. pattern association networks, autoassociation networks,
and competitive networks, examples of which are shown in Figure 4, on page 33.
These architectures are al competible with connectionig moddling; it is the use of
non-locd learning dgorithms that is responsble for the lack of biologicd plaushility.
The divergence from connectioni networks arises when these architectures are

combined with a Hebbian learning dgorithm.*

| will briefly describe biologicadly plausble pattern  association  and
autoassociation networks in sections 2.1 and 2.2 respectively, before going on to

“! |t is true that some models have used a Hebbian learning algorithm, but not in the ways that will be described below.
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discuss competitive networks in more detail in section 2.3, because they play a more
centrd role in complex cognitive processng. Then, in section 2.4, | will go on to

discussthe interactions of these different architecturesin actua brain systems.
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Figure 4: Examples of three network architectures that use local learning rules: (a) Pattern association
with a single output neuron; (b) Pattern association network; (c) Autoassociation network; (d)
Competitive Network.

2.1 Pattern Association Networks

Pettern association networks receive two sets of synaptic input: an unconditioned and
a conditioned input. The former has unmodifiadble synapses, as its name suggests, and
represents a primitive reward signa which is ‘hard-wired’ into the brain. This input is
effectively dominant, when active it determines the pattern of activity on the output
neurons. The conditioned input has modifiable synapses. In terms of the connectionist
networks described in chapter 1, these can be thought of as two different sets of units

with connections onto asingle s, or layer, of units.
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These pattern association networks are believed to underlie conditioned
learning. Hence the task of such networks is to associste a vector on the conditioned
inputs with the same output vector as is produced by an unconditioned input. For
example, the taste of food, which is intringcaly rewarding might be paired with the
gght of the food so that the dght of the food aso comes to be rewarding. The
unconditioned simulus acts in some way as the teaching input, forcing the desred
output vector. As described in section 1.1, neurons can be viewed as comparing input
vectors with ther weght vectors, firing if they ae auffidently smilar. Through
Hebbian modification the weight vectors of the network’s neurons come to reflect the
input vector which was co-active with the unconditioned input vector, so tha the

conditioned input vector comes to dlicit the same response.

2.2 Autoassociation Networks

As can be seen in Figure 4, on page 33, the distinguishing festure of autoassociation
networks is the fact that each neuron is connected to every other neuron in the
network. The task of these networks is to produce an output firing vector which is the
same as ther externd input vector. This might seem pointless until it is noted that
these networks have an ability to produce a complete output vector from only a
fragment of a previoudy presented input vector. Thus autoassociation networks are
believed to form the basis of both episodic and short term memory.

Autoassociation networks work by storing associations between the eements
in an input patern. The addition of recurrent connections makes such systems
dynamic in nature, and their operation can be understood in terms of attractor basins
gmilar to those which were appeded to in section 1.1 to explain the prototype
extraction of connectionis networks. The amilarity is not totd, however, because of
the dynamic nature of autoassociation networks. In feedforward connectionist
networks, the units in the hidden layer are consdered as attractors because they draw
together patterns on the input layer. Thus such attractors emerge over time through
traning, but on any one trid presentation they operate over a sngle time cycle. By
contradt, in autoassociation networks the movement towards the bottom of a basin
occurs as patterns of activation cycle round the system over many iterations until a

dable sate is reached, rather like abdl rolling down into avalley.
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This dynamic behaviour can be understood by consdering pars of neurons. If
they are both firing above their base rate, and they have a postive connection weight,
then they will reinforce each other and contribute to the gability of the system. If one
were firing below its base rate, or the connection had a negative weight, then they
would be ungtable and would tend to ‘druggleé to achieve dominance, trying to
switch each other's activation state to support their own. These sorts of processes
would occur throughout the network, until the least antagonistic state is reached, i.e.
the date with the most compatible relationships between neuron pars. Through
Hebbian learning the weights are dtered so that these dates, the bottoms of the
attractor basins, come to reflect those input patterns that were presented to the
network.

The capacity of autoassociation networks (in terms of patterns stored without
ggnificant interference) is a complex matter, but Rolls and Treves have shown tha
for biologicdly plausble networks it is a function of the number of recurrent
connections, and the sparseness of the patterns, according to the following equation:

RC
>
where p is the number of paterns, CC is the number of synapses onto each neuron,
and a is a measure of the sparseness of the patterns, n is the number of neurons, and k
is a complex factor dependent on several aspects of the network.*? The result is thet
the greater the number of recurrent connections onto each neuron the larger the
number of different patterns that can be stored. For example, for CR¢ = 12 000 and a
= 0.02, p is cdculated to be gpproximately 36 000. The implications of the sparseness
of representationsis discussed in section 2.4.2.

2.3 Competitive Networks and Convergent Architectures

An example of a competitive network is shown in Figure 4, on page 33. Competitive
networks are so-cdled because they utilize mutud inhibition between ther output
neurons. In the most extreme case this might result in only one neuron remaning

active, a winner-takes-dl scenario.  Competitive inhibition forms the bass for a

42 “\What Determines the Capacity of Autoassociative Memories in the Brain?, Network 2 (1991), 371-397.
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number of festures which make this architecture useful in perceptud systems. The
most important of these features is sdlf-organisation, which dlows the emergence of
feature detectors.

In some sense the competition tekes the place of the teaching sgnd in
connectionist  backpropagation networks, in that it alows the network to extract
prototypes from its input stimuli. It is eesest to explan why this is the case usng the
exanple of a winner-takes-al network. Initidly such a network will have random
weights on its synagptic connections. When a particular input is presented it might
happen to create an activation pattern on the inputs which is closer to the weight
vector of one of the neurons than to those of the others. Over a short period of time
the efect of the mutud inhibition will leave only this neuron firing. On a larger time-
scde, and many gimulus presentations, provided that there are genuine clugters of
patterns in the inputs, the weight vectors of the neurons will come to adopt the centra
tendencies of those clugters, i.e. they will come to represent prototypes. This occurs
through the influence of superpodtiond dorage of the didributed input petterns, as
described in section 1.1. Those synapses most often activated on the winning neuron
by a cluster will become the strongest through Hebbian modification.

This competitive prototype extraction is the basis for a number of interesting
properties. These can be demondgrated most graphicdly in the visud sysem, and in
the pathway devoted to object recognition in particular (see Figure 5, on page 37).
Recordings from single neurons within this pathway, dong with information about
neurd architecture and connectivity, have lead Rolls to suggest a computationd
modd of how object recognition is achieved*® Rolls has proposed tha this is
achieved by a sysem of hierarcchicadly connected competitive networks. The
hierarchica organisation is crucid because it dlows each successve layer to extract
more abdract features from increasingly large receptive fidds, until cells are reached
in the anterior inferotempora cortex which respond to objects regardless of position
in the visud fidd and viewing angle. Hence the object recognition achieved by this
pathway is described asinvariant.

43 *Brain Mechanisms for Invariant Visual Recognition and Learning’, Behavioural Processes 33 (1994), 113-138.
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Figure 5. A schematic diagram of the visual pathways from the retina to the visual cortical areas. V1,
primary visud cortex; V2, V3, V4 etc., other cortical areas, M, magnocellular, P, parvocellular.

The firg evidence for this hierarchica hypothess can be found in the early
dages of the visud system. Some cdls in the laterd geniculate nucleus, which is the
way dation between the retina and the visua cortex, have concentric on-centre off-
surround (or vice versa) receptive fields, as do the ganglion cdls in the retina This
means tha they are excited by light fdling in the centre of their receptive fields, and
inhibited by light faling in the region around this centre. Some cdls in aea V1 have
receptive fiddds which are not circuar, but eongated, so that they are sendtive to
lines or edges a certain orientations. When these patterns of receptivity were firgt
discovered Hube and Wiesdl suggested that they could be accounted for by a
convergence of connections from severa cdls in the laterd geniculate nucleus onto a
cdl in V1* For a line passing over the retina & a given angle will cause adjacent
retind ganglion cdls, and hence laterd geniculate cdls in that orientation to fire

44 *Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat's Visual Cortex’, Journal of Physiology 160
(1962), 106-154.
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smultaneoudy. The problem for the bran is how to orchedrate the connectivity

between layersto creste these receptive fields.

It has been shown udng smulations tha this organisation can emerge with
competitive network architectures. A detalled and biologicdly redigsic of modd,
called MsNet, has been produced by Ralls. VisNet is effectively a reproduction of the
object recognition pathway, based on current neurophysiologica evidence®® The
model consgts of four layers roughly corresponding to V2, V4, the pogsterior tempora
cortex, and the anterior tempora cortex. Each layer condsts of 32 32 cdls. The
connections to a cdl from those in the preceding layer arise from a topologicaly
corresponding region in that layer. The connectivity decreases with distance from the
centre of the receptive fidld. Laterd inhibition within eech layer has a radius of effect
just greater than the radius of the neurons receptive fidds, mirroring the pattern of
connectivity of inhibitory interneurons in the visuad cortex. It is these inhibitory
connections which dlow compstitive learning. The inhibition in VisNet is st 0 tha
the competition is ‘soft’, meaning that the neurons produce a graded response rather

than a sole winner.

Adjacent cdls within a layer have overlapping receptive fidds, and so ther
activity will tend to be highly corrdated, whilst cdls further away will not have
highly corrdated activity, because there will be no receptive fieddd overlap. This
explains how centre-surround receptive fiedds might emerge a the next layer of such
a convergent architecture, as the neurons in that higher level detect and categorize
these correlations amongst their input neurons.

The activity from the cdls in this layer feeds on to those in the next, and the
same patern of corrdation will be repeated, but this time the neurons are receiving
from centre surround neurons, and thus they will begin to extract higher order
features such as bars or edges, just as Hube and Wiesd hypothesized. VisNet uses a
verson of the Hebbian learning rule, with a small but important modification, namely
a short memory trace in the postsynaptic neurons. This maiches the physiology of red
gyngpses, and is thought to be useful because it dlows higher levd neurons to
recognize correlations in the activity of ther inpus caused by objects moving over

45 *Brain Mechanisms for Invariant Visual Recognition and Learning’.
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the retina. For example, a line moving across the retina will cause a successon of
edge-detecting neurons to fire. If the postsynaptic neuron remains active for a short
period this will dlow it to pick up on these patterns and thus to recognize the same
feature at various different parts of the retina

In one testing regime a st of three non-orthogona stimuli were used, such as
‘T, ‘'L’, and ‘+ shapes. These shapes are non-orthogonal because they use the same
eements in different combinations, thus the system was being tested to see if it had
the ability to recognize spatial combinations of features, not just the bare presence of
those features. VisNet was trained by sweeping the simuli across its ‘retind in a
random sequence. After learning the network was tested by examining the response
profile of its neurons. Cels were found in layer 4 which responded to the presence of
particular test stimuli regardless of postion on the retina. VisNet was even capable of
producing cdls in layer 4 which would respond to the presence of a paticular face,
regardless of position, and which of seven possible views were presented.

This demongrates that an architecture like the one described is capable of
invariant object recognition. It maiches the data from single neurons in the primate
cortex, where cdls have progressvely larger receptive fidds with each layer, until
neurons in the inferotempora cortex are reached which respond to specific objects, or
types of objects, anywherein the visud fidd, just likethosein layer 4 of VisNe.

The product of this invariant object recognition system is a pattern of firing of
a rdaivey smadl number of neurons in a moderatdly large population, where that
population is at the top of a &t of hierarchicaly arranged cell populaions. From what
has been discussed so far a number of computationa advantages can be seen to
follow. Firs, as sats of corrdaed inputs get represented by the activity of a few
neurons in the next layer this removes redundancy in the sensory input. What required
a large number of neurons to code gets represented in ‘short hand’ by a much reduced
number of neurons. In a convergent network each neuron only has to sample a smdl
pat of the preceding layer. This avoids a combinatoriad explosion in connections,
which would be produced if each neuron had to search the whole of the preceding
layer for the presence of its preferred feature combination. This locdization of feature
search dso solves another computational problem faced by other modes of visud
recognition, namely feature binding. This is illudrated by the fact tha a lig of the
features present in the visud scene is insufficient for object recognition, as it might be
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possble for the same group of features to be differently arranged to form different
objects. One must dso have a way of representing the relations between features.
This is achieved automaticdly in a convergent competitive sysem, as esch layer
represents loca arrangements of features in the preceding layer, and with each layer
the representations become more complex with progressively larger receptive fields.
Hence specificity of feature arangements is built into the sygem from the very
bottom, the system ssimply never has to address the binding problem.

However, not dl the advantages of a sparsely coded output from the object
recognition sysem can be appreciated without consdering the representationd
dggnificance of such output patens. After dl, in comparison with Churchland's
account, which has complex objects being represented by vectors in fully distributed
hyper-dimensond vector spaces, the present gpproach seems postively smpligtic.
Yet in this sort of sysem the representation is truly digtributed, not just in a hidden
layer, but amongst many layers. In this regard | am reminded of Dennett’'s Multiple
Drafts model of consciousness:

Feature detections or discriminations only have to be made once. That is, once a particular
‘observation’ of some feature has been made, by a ecialized, localized portion of the brain, the
information content thus fixed does not have to be sent somewhere else to be rediscriminated by some
“master’ discriminator.*®

In a convergent architecture something is represented by a complex pattern of
neurond activation in one layer, but in the next layer it gets represented by a much
ampler neurond ‘labd’, which then goes on to affect the further processng in the
system in a way that respects the content of that complex pattern.*” This applies to the
relaionship between dl layers, but has a specid sgnificance for the output layer. The
output is smple because of the sorts of systems it mus interact with in order to
produce behaviourd advantages. The next section deads with the way convergent
competitive networks interact with the other neural architectures described in this

section to produce cognitive processng. This will dlow a demondration of the

46 Consciousness Explained, p.113.

47 One might hypothesize that the conscious sensory experience, the qualia, must involve the complex pattern in the earlier
layers, in addition to the activity in the higher layers, so that consciousness would be envisaged to involve alarge number of
neuronal populations from many different regions. Which neuronal populations contribute to consciousness a any given moment
probably depends on attention and the nature of the task being attempted.
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advantages of red neurond computation when compared with traditiond

connectionist models.

2.4 Interactions between Neuronal Populations and Brain Function

To appreciate the power of the various network architectures discussed in this chapter
it is important to congder the computational problems that an organism faces, even
once it has successfully recognized an object. After dl, perceptua differentiation only
becomes recognition when it grounds further advantageous cognitive processes. An
organism must be able to judge the reward vaue of the object; should the object be
approached or avoided? Additiond benefit would be gained from being able to recal
more specific details from previous encounters, if any, so that past experience could
be brought to bear on present actions. As a concomitant of this there would aso have
to be a mechanism whereby the present occasion could be added to the body of data
just mentioned. Of course it is obvious that what | am taking about here are emotion
and memory. As mentioned in sections 2.1 and 2.2, these are grounded by pattern
asociation networks and autoassociation networks respectively. It is the problem of
interfacing with these types of networks that accounts for the nature and utility of the
coding that takes place in the convergent competitive networks of the object
recognition system, amongst other systems.

Competitive Network Patiern Associator

L
LR |

Figure 6: Expansion recoding. A competitive network is connected to a pattern association network to
allow patterns that are not linearly separable (recall the notion of a hyperplane introduced in section
1.1) to be correctly learned.
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2.4.1 Orthogonalization, Emotion, and Memory

Pettern association networks can be used as an dternative way of solving the
exclusve OR problem, which was discussed in section 1.1. It is true that a pattern
asociation network done cannot solve the problem, because the Hebbian agorithm
is not powerful enough. However, this can be overcome if the input to the pattern
association network is pre-processed by a competitive network, as shown in Figure 6,
on page 41. This is known as expanson recoding, because the origind vector is
transformed into a vector with increased dimensondity (i.e, it uses more neurons).
Expanson recoding works because the competitive network orthogondizes the
patterns. Two vectors are completely orthogonal when they are a ninety degrees, at
which point they are completedy independent. Thus orthogondization means that
vectors are made less amilar; the angle between them is made larger, approaching
ninety degrees, thus reducing interference. With expanson recoding each input vector
is represented by a separate output neuron, which dlows the pattern association
network to solve the problem with the weights shown in Table 3.

Recoded Inputs Synaptic Weight

Input 1 (A=1, B=0) 1
Input 2 (A=0, B=1) 1
Input 3 (A=1, B=1) 0

Table 3: Weights required in the pattern association network following expansion recoding.

Thus where a standard connectionis modd would solve this sort of problem with a
hidden layer and a backpropagation dgorithm, it seems plausble that the brain would
use a combingtion of architectures. This sort of sophistication in categorization is
needed in determining the emotiond ggnificance of objects, because smilar objects
may have very different reward vaues*® Thus objects receive different and
orthogondized representations which alows them to be more easily reated with their
reward value in pattern association networks. There is a large body of compeling
evidence tha these pattern associations take place in the amygdda and the

orbitofrontal cortex. These areas recelve inputs from the fina stages of the object

“8 | am assuming that it is the evolutionary purpose of emotions to motivate appropriate behaviours towards objects and
Stuations, i.e. on the basis of previous reward value.
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cortex, the region of the brain that is most enlarged in humans when compared with
other primates. The possble sgnificance of this area for complex thought will

emergein section 2.5.

Orthogondization plays a smilar role for autoassociation networks. The role
of episodic memory is to dore information about particular occasons. Even if two
gtuations are extremely smilar they must be stored as separate tempora units. Marr
was one of the firs to suggest that the area responsible for this function might be the
hippocampus, a subcortica structure in the tempora lobe, and the idea has been taken
up by a number of others*® As shown in Figure 7, the hippocampus receives

connections from many areas of the neocortex, via the entorhind cortex. These are

4® See D. Marr, “Simple Memory: A Theory for Archicortex’, Philosophical Transactionsof The Royal Society of London, Series
B 262 (1971), 23-81, J. L. McClelland, B. L. McNaughton, and R. C. O'Reilly, ‘Why There are Complementary Learning
Systems in the Hippocampus and Neocortex: Insights from the Successes and Failures of Connectionist Models of Learning and
Memory’, Psychological Review 102 (1995), 419-457, and E. T. Rolls, ‘Parallel Distributed Processing in the Brain:
Implications of the Functional Architecture of Neuronal Networks in the Hippocampus', in R. G. M. Morris, ed., Parald
Distributed Processing: Implications for Psychology and Neurobiology (Oxford University Press, Oxford, 1989), Ch. 12.
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then passed through a circuit in the hippocampus before returning to the entorhind
cortex, and from there back to the neocortex. The crucia part of the circuit is the CA3
dage, which has a large number of recurrent connections, and thus seems a likely
candidate for an autoassociation network. The idea is that the corticd activity in many
areas of the brain during a particular experience pass paterns of activation into the
hippocampus. The dentate granule cdls act as a competitive network to remove
redundancy and to orthogondize the input so that large numbers of patterns can be
gored without interference in much the same way as was explained for pattern
association networks above. This pattern is then laid down in the CA3 network. Upon
recdl a fragment of the origind pattern is presented to the CA3 network, where a
complete pattern is produced. The next stage illudrates a very important principle of
red neura functioning. The output pattern of the CA3 neurons is passed back to the
entorhind cortex, and from there to the neocortex so that the same, or at least a
amilar, patern of activity is reproduced in the neocortex as was present when the
memory was formed. The ramifications of this feature are discussed in section 2.5
below.

2.4.2 Sarsfication

The sparseness of the representations produced by a competitive network is
dependent on the degree of competition. The example of expanson recoding
discussed in section 2.4.1 involved the greatest level of competition, in that it was a
winner-takes-dl network. It is unlikdy that the competition employed by compstitive
networks in the brain would be of this kind, it is more likey to be soft compstition as
this presents computational advantages. The prime advantage is that parse
representations dlow more patterns to be stored in pattern association networks and
autoassociation networks. The mathematics behind this is complex, because the
capacity of a network is dependent upon many factors, and is relative to the desred
levd of riability of recdl and how orthogond the patterns are.

Sparse coding gives grester storage capacity in terms of number of patterns
gored than ether locd or didtributed representation, but ill maintains the benefits of
digtributed encoding, such as generdization and graceful degradetion. These benefits
outweigh the cost of abandoning fully digtributed encoding: sparsely coded patterns
contan less information than their fully disributed counterpats, because less
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representationa  elements are used. However, the amount of information ill rises
linearly with the number of neurons involved, and given that information is a
logarithmic measure, this means that the representationa capacity rises exponentialy.
Thus even a smdl number of neurons can encode a large number of paiterns using
sparse coding.

2.4.3 Recurrent Connections and Neural Processing

In explaning hippocampd functioning the recurrent projections to the neocortex
played a crucia role, but recurrent projections are not unique to this circuit, they are
ubiquitous throughout the bran. Thee ae often a many, if not more
backprojections as there are in the forward direction. These backprojections,
however, are not limited to the adjacent layer, they will often project to many other
layers, and other networks dtogether. Their very abundance suggests a key role in
bran processng, and their role in the hippocampa memory circuit suggests one way
in which they might function in other brain sysems. The backprojections could act to
reindate origind patterns of corticd activity during recdl. Rolls and Treves give the
following example:

Consider the situation when in the visual system the sight of food is forward projected onto pyramidal
cells in higher order cortex, and conjunctively there is a backprojected representation of the taste of the
food from, for example, the amygdala or orbitofrontal cortex. Neurons which have conjunctive inputs
from these two stimuli set up representations of both, so that later if only the taste representation is

backprojected, then the visual neurons originally activated by the sight of that food will be activated. In

thisway many of the low-level details of the original visual stimulus might be recalled.>
Evidence for this comes from PET studies of subjects asked to recdl visuad scenes in

the dark, which revealed increased blood flow, and thus increased neura activity, in

early visua processing aress>*

Backprojections may dso serve to ad learning in the cortex. Condder a
competitive network that has a set of backprojections in addition to its norma input.
These might come from the amygdda representing emotiond dates  This
modification of the network dlows two smilar inputs to be treated differently if they

%0 Neural Networks and Brain Function (Oxford University Press, Oxford, 1998), p. 243.

1 S. M. Kosslyn, Image and Brain: The Resolution of the Imagery Debate (MIT Press, Cambridge, Mass., 1994).
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are encountered in different emotiona ates, because the backprojections form an
extra pat of the input pattern. This mechanism dlows the organism to learn fine
discriminations between gimuli, guiding its category formation and the recognition of
those categories.

In a dmilar way backprojections might form the bass for semantic priming,
where activation of one semantic dement increases the ability to respond to related
eements. This might be done by backprojections producing a dight incresse in the
activations of those neurons which ae involved in the recognition of the reevant
semantic category. This would adlow them to pass their thresholds more quickly, and
thus to respond more rapidly (dthough not aways correctly, there will dways be a
trade-off between speed and accuracy).

Backprojections could aso be the bass for some mechanisms of atention and
cognitive influences on perception, Sdectively fadliteting the activity of reevant
corticad populations. An indance of this would be gtuations in which one input
pathway, say olfaction, has a noisy input. The olfactory pathway and the taste
pathway both project to a cortica area where flavour is represented. The taste input
could drive this higher corticd area into the correct pattern, and the backprojections
from this area could then help the olfactory network to settle into the right pattern. In
this way the conjunction of information from many channels can hdp to dter and
‘clean up’ the activation in the earlier neura populations.

2.5 General Principles of Brain Function

There are severa generd principles that can be drawn from the detalled nature of
neural processng considered in this chapter. Signas between layers act like a lock
and key sysem, for example a competitive network can output a sSmple,
orthogonalized, sparsdy coded key, which can be easly sored by a pattern
asociaion or autoassociation network. During recdl this key can then be reproduced
to ‘unlock’ the origind complex pattern of cortical activity. This suggests tha
complex tasks might be solved, even with dmple learning dgorithms, through the
interaction of severd different sorts of networks operating in concert. One might
peculate that a large portion of the sophisticated behaviour which brains produce is
the result of such interactions, possbly between many different networks. This fits
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well with the fact, well known from the earliest study of the brain, that processing is
caried out in multiple distinct regions, which are differentisted by ther architectures
and patterns of connectivity (recal the map of areas and connections in Figure 5 on
page 37). This fact is one of the key sources of tenson between connectionism and
neurophysiology. It is undergandable that connectionism, being a young fied, with
limted computing power avalable should modd dmple sngle networks. Yet
neurophysology suggests that much of what is interesting in behaviour, both human
and nonthuman, aises out of the interactions of many different cdl populaions It
may well be the case that these interactions are governed by entirdy different
principles than the locd interactions between neurons in a single network. What are
needed, then, are modes of processing control mechanisms, or what Clark has cdled
neurd control hypotheses, in order to explain inter-network interactions®® Clark
envisages these as dructural features that are responsble for the control of other
gysems, gaing the flow of informaion, and determining which type of activity is
predominant a any time. One example of this sort of control mechanism is the
reectivation of patterns of activity by backprojections, which was described in section
2.4.3, and s0 the lock and key model has afundamentd role to play here.

Damaso and Damasio have used backprojections as the basis for a modd of
knowledge representation.®® At the heart of this model is the notion of a convergence
zone, which is ‘an ensamble of neurons within which many feedforward/feedback
loops make contact’.>* The purpose of the feedback connections is to activate patterns
in many digtinct corticd aress that are involved in earlier processng. These patterns
would be reproductions of patterns that had occurred during previous experiences.
The feedforward connections contact other convergence zones, so tha there are
hierarchies of convergence zones, and this is wha makes the modd new and
interesting. Knowledge about basic features and individuas would be encoded by the
activity in the lowest convergence zones, knowledge about entity categories a higher
levels, with more complexity and generdity being introduced with each step up the

%2 Being There, pp. 136-141.

%3 “Cortical Systems for Retrieval of Concrete Knowledge: The Convergence Zone Framework’, in C. Koch and J. Davis, ed.,
Large-Scale Theories of the Brain (MIT Press, Cambridge, Mass., 1994), pp. 61-74.

% “Cortical Systems for Retrieval of Concrete Knowledge: The Convergence Zone Framework’, p.71.
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hierarchy. Thus smple features such as colours would require only a smal amount of
activity, whereas representations of more complex categories, such as animas, would
require the activetion of many more aress, including many subordinate convergence
zones. Rolls modd of invariant object recognition can be seen as an example of such
convergence zones. Indeed Damaso and Damaso hypothesize that the
inferotempora region is the locus for these convergence zones, based on the patterns
of knowledge deficits that result from brain injury. Knowledge at the various levels is
accesed through the activation of the appropriate convergence zone, which very
rapidly reindates the activity pettern in many disparate brain regions, and depending
on the point in the hierarchy which is damaged, various categories of knowledge will
no longer be available to the injured individud. Thus it is wrong to think of particular
types of knowledge as being locdized in particular brain regions, rather the access to
that knowledge is controlled by a particular region.

Van Essen et al. have proposed a dightly different neurd control hypothesis
in which groups of control neurons gate the flow of activity from one populaion to
another.>® The control neurons act as a kind of atentiond filter, given that the brain
recalves vast amounts of information from its sensory surfaces, and only has a limited
processing capacity (Van Essen et al. edimate that only 0.1% of the information in
the optic nerve can be processed a any one moment).’® Whether the model they
propose is accurate is a meatter for further empirica research, but their analysis of the
shortcomings of connectionist modelsisindructive:

Conventional neural network models typically rely on computations that are dominated by linear
combinations of synaptic feedforward inputs followed by a non-linear operation. This simple neural
network structure has proven to be too rigid and unwieldy when applied to large problems . . . We
suggest that models that do not distinguish control functions from information flow and processing will
not scale well with increased problem complexity.>’

Not only is there a need for atentional filtering, there is dso a need to select between
multiple processng pathways, given tha there are many routes to output. For

%5 *Dynamic Routing Strategies in Sensory, Motor, and Cogpnitive Processing’ in C. Koch and J. Davis, ed., Large SeleThearies
of the Brain (MIT Press, Cambridge, Mass., 1994), pp. 271-299.

%6« pattern Recognition, Attention, and Informational Bottlenecks in the Primate Visual System’, Procesdingsof the SPIE
Conference on Visual Information Processing: From Neurons to Chips1473 (1991), 17-28.

57 *Dynamic Routing Strategies in Sensory, Motor, and Cognitive Processing’, p. 299.
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example, an early processing layer may project to another processing layer, but it may
adso project directly to neurons involved in producing motor responses. This alows
for both the production of fast, but stereotypical responses, and for dower but more
complex and consdered responses. The pathway that is most appropriate will depend
upon stuationa factors, such as the generd leve of arousd, and so a mechaniam is
needed to make this decison. Such multiple routes to output may dlow the same
cognitive task to be achieved by severd different processng srategies. One example
of this is the exigence of both a phoneme-based route to the production of speech
from text, and a whole word recognition route. Evidence aso comes from
neurophysiology, where it has been shown that subcorticad dructures, such as the
amygdala, have direct connections to motor neurons, as well as projections to higher

neocortica structures.

The picture that emerges from andyss of red neurd processng is one in
which many diginct networks operate together. The principles whereby these
interactions are controlled can only be guessed a, but they appear to be different in
kind to the interactions that take place a a loca level between neurons. An important
point to make is that dthough control is needed, there is nothing in the hypotheses
discussed above that suggests a centra executive. The control mechanisms described
have no access to the information stored in the sysems they control. Some might
argue that the correct style of explandtion is of the traditiond cognitive science ‘black
box variety, but the fact that the modes described are didinctly non-sequentid in
their connections speeks againgt this. However, a word of caution is needed. Many
researchers agree tha the frontd lobes play a crucid role in human cognition. Ther
mgor function seems to be planning, including response sdection and suppression
and mentad modelling to predict red-world outcomes. Nothing in this section sheds
avy light on this directly. That such an important dement of thought remans
unexplained is frudrating, but only to be expected given its complexity. Whether
mentd planning can be explained by a neura control mechanism or by an approach
involving more traditiona processng modules and a centrd executive remains to be
seen. | suspect that something like the former may be closer to redity. However, it
may be the case that such dichotomies are misconceived, and that the truth is
somewhere in between. What | have in mind here is a mode in which there is some

localization of processing role, but whose properties emerge from the dynamic nature
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of the interaction between those modules, i.e, more a network of rivers and dams
than black boxes.

This leaves the interesting question of where connectionis modds should be
placed in relation to these two styles of andyss. What the discussion in this chapter
hes reveded is tha some locdization seems inevitable. It is an edablished fact in
neurophysiology that there are discrete regions with their own processng roles. The
problem a issue is what one concludes from this. Despite dl the clams to abdtraction
it seems as if connectionism bears the strongest resemblance to the neura goings on
within the modules themsdlves, rather than to the mechaniams involved in controlling
inter-network interactions. As a result | would predict that connectionism, in its
current form, will prove inadequate a successfully modeling complex world-
negotiating behaviour. This need not lead to a complete rgection of connectionism,
however, because it may dill explain a large proportion of or cognitive processng. In
addition it may dso adapt to take on the problem of larger scae interactions in such a
way as to explan them in terms of emergent properties that does not fit with

conventiond artificid intelligence styles of explanation.

2.6 Summary

Philosophicd expostions of connectionism have typicaly focused on feedforward
network architectures, with hidden units, which are trained by the backpropagation
learning agorithm. In this chapter, | have attempted to sketch out a rather different
picture based on current knowledge of the architectures and functioning of red neurd
networks. The key points from this chapter that the reader will need to carry forward

to the discussion in chapter 3 are:
The diginctions in computationa role between different architectures.

The computational advantages to be gleaned from the interactions between
different architectures.

The importance of mechanismsto control the interactions of different networks.



3 Rethinking Vector Cognition

With these features of red neurd processing in place | now want to suggest a number
of ways in which Churchland’s neurocomputationd model might be adgpted to avoid
the difficulties rased in section 1.3. In that section | argued that contemporary
connectioniss models cannot be consdered to display genuindy systemdtic, and thus
symbolic, behaviour. A consequence of this is that connectionist networks can only
be consdered to have representations with non-conceptual content. Before tackling
this problem | want to outline Terence Deacon’s account of symbolic thought, as this
introduces severd notions that play a role in my proposed solutions to the problem of
complex cognition and systematicity.>®

3.1 Icon, Index, and Symbol

Deacon, borrowing from Peirce, sets out a scheme of three hierarchicaly arranged
categories of referentid association: icon, index, and symbol.>® Iconic reference is the
mogt basic form. An icon is usudly thought to refer to its object through some form
of physcad smilarity, but Deacon argues that this is not the foundetion; the basis is
rather ‘that aspect of the interpretation process that does not differ from some other
interpretive process’®® Thus it is taking something to be the same as something
previoudy experienced, it is recognition. Physcd dmilaity is the most obvious
reason why one object is treated as iconic of another, but it need not be the only one
on the definition given here. A picture of a person is iconic because of the stage in the
interpretive recognition process which is the same for an actuad encounter with that
individud, or with the picture. In the present context iconicity can be conveniently
assimilated to the vector prototype explanation of recognition; a stimulus is an icon of
X if it activates the x prototype.

%8 The Symbolic Species: The Co-Evolution of Language and the Human Brain (Allen Lane, The Penguin Press London, 1997).

%9 The Symbolic Species, p. 70; C. S. Peirce, ‘ Collected Papers. Volume I1: Elements of Logic’. C. Hartshorne and P. Weiss, eds.
(Belknap, Cambridge, Mass., 1978).

€0 The Symbolic Species, p. 76.
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Indexica reference depends upon iconic reference, requiring the existence of
a lesst three iconic rdaions. An indicating simulus must be recognized as iconic of
a previous cdass of gimuli. In addition members of this class mugt corrdae with
members of another class of simuli which are seen as iconic of each other. Findly,
and most importantly, these previous corrdaions must be interpreted as iconic of one
ancther. This third rdation is a higher-order icon, ranging over exising basic icons.
An example of this ype of reference would be the warning cdls of vervet monkeys®?
These monkeys produce digtinct cdls for different predators, such as snakes, eagles,
and leopards. This involves the recognition of a predaor, the sdection and
recognition of the correct warning cry, and the recognition of the previous
corrdaions between the two. Given this explanation, indexica reference just seems
to be another way of describing learned association of natura indicators®? Indeed a
gmilar charge might be leveled a the account of iconicity, in that it is essentidly
perceptua recognition. Deacon raises just these questions:
Could we just substitute the word ‘ perception’ for ‘icon’ and ‘learned association’ for index? No. Icons
and indices are not merely perception and learning, they refer to the inferential or predictive powers
that are implicit in these neural processes. Representational relationships are not just these
mechanisms, but a feature of their potential relationships to past, future, distant, or imaginary things.
These things are not physically re-presented but only virtually re-presented by producing perceptual
and learned responses like those that would be produced if they were present.®
Thus what is sressed in this account is the role of these processes in the cognitive
economy. A sensory gimulus counts as an ingance of an icon because of the way it is
processed, as in the example of a picture, given above. It is not some festure of the
gimulus which is the fundamentd ground of reference, it is what is done with the
dimulus. This maiches wdl with the action-oriented nature of vector prototypes
which was mentioned in section 1.2.

Symbols ae a the top of the three-tiered hierarchy, as they range over
indexicd rdaionships. Deacon illudrates the nature of symbolic reference using the

1 R. M. Seyfarth, D. L. Cheney, and P. Marler, ‘Monkey Responses to Three Different Alarm Calls: Evidence for Predator
Classification and Semantic Communication’, Science 210 (1980), 801-3.

%2 For an exposition of the notion of ‘indicator aboutness’ see F. Dretske, ‘Misrepresentation’, in R. Bogdan, ed., Bdief: Form
Content, and Function (Clarendon Press, Oxford, 1986), pp. 17-36.

&3 The Symbolic Species, p. 78.
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example of a set of chimpanzees who were trained to use symbolic communication.®*
The chimps were taught to use a computer keyboard with smple abstract shapes
known as lexigrams on the keys. Previous experiments had shown that chimps were
cgpable of learning a large number of lexigram-object associations, that is, indexical
relaions. However, this does not conditute symbol-use, and the reason why it does
not provides a clue to the features which are essentid to symbalic rdations. If the
lexigram and the object are no longer paired and rewarded, the association will be
extinguished; but words are only rardy pared with their referent, and s0 indexicd
reference is problematic as the sole bads for full-blooded reference. This is the
central wesknessin causal theories of reference.

Deacon argues that the missing element in indexica reference is syntax.%® An
attempt was made to train the chimps to comprehend a smple syntacticd system
which involved a smple verb-noun rdationship. The two ‘verbs, one for solid food,
and one for liquid, had to be paired with an gppropriate noun, ‘banana for instance,
in order to get the item. The chimps only managed to meder this smple system
through a long and highly dructured training regime, which cued them to both
rdevant and irrdevant features. Magtery of the system was tested by comparing the
goeed with which they grasped new lexigram ‘nouns againg non-symbolicaly
trained chimps. It was found that the specidly trained chimps learned the function of
the new lexigrams on thar fird presentation, or after only a few trids, wheress the
control chimps took hundreds of trids, as usud. This illustrates both the nature and
advantage of symbolic representation:

What the animals had learned was not only a set of specific associations between |exigrams and objects
or events. They had also learned a set of logical relationships between the lexigrams, relationships of
exclusions and inclusion. More importantly, these lexigram-lexigram relationships formed a complete
system in which each allowable or forbidden co-occurrence of lexigrams in the same string (and

therefore each allowable or forbidden of one lexigram for another) was defined. They had discovered

that the relationship that a lexigram has to an object is a function of the relationship it has to other

%4 See D. Rumbaugh, ed., Language Learning by a Chimpanzee: The Lana Project (Academic Press, New York, 1977).

85 An argument to support this reliance on syntax and combinatorial possibilities as the basis for genuine symbolic meaning will

be given in section 3.3.
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lexigrams, not just a function of the correlated appearance of both lexigram and object. This is the
essence of asymbolic relationship.?®

Thus symbols are higher order categories of indexicd relationships. Lexigrams ae
recognized by which category they belong to, ether verb, which might be thought of
as ‘give, or noun. Members of each of these categories has a fully determined set of
combinatorid possbilities with other tokens, dependent upon which category they
fdl into in turn. Hence new lexigrams can be acquired rapidly, because once it is
edtablished which category they belong to their role in the system is grasped, there is
no need to learn their associations from the scratch. These logical categories are
defined by their combinatorid possihilities, and s0 an entire system of interrdations
must exist before any single token can be considered as a symbol.

A very specid training regime was necessary in order to get the chimps to
acquire this rudimentary symbol system successfully. The trangtion from indexicd
reference to symbolic reference requires the recognition of globa patterns amongst a
large number of lexigramobject associations. This requires a change in perspective
of, what was for the chimpanzees, a previoudy acquired body of indexicad
knowledge. Progress is further hampered by the fact that symbols from the same
category will not gppear together, indeed they will occur in the context of symbols
from different categories. However, once this step has been taken it dlows a
condderable off-loading of cognitive effort. One only has a limited number of
interdependent categories to recognize, rather than a huge aray of independent
asociaions. Symbalic reference is dso more powerful because it moves beyond
dmple naming functions. Indices are grouped together because of a smilarity of
relaionships between indexicd token and object, and this linking of symbols to
relationships changes the focus from objects to classes of reationships between
objects, dlowing for more complex representations. Thus once a basc symbol system
has evolved it is possible for more complex operations to be added:

The system of representational relationships, which develops between symbols as symbol systems

grow, comprises an ever more complex matrix. In abstract terms, this is a kind of tangled hierarchic

network of nodes and connections that defines a vast and constantly changing semantic space.®’

% The Symbolic Species, p. 86.
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There is nothing new in the idea that combinatorid syntax is crucid to symbol-use
and language. It played a centrd role in the rise of modern logic with the work of
Frege and RusHl, and the early Wittgengtein. It is adso involved in many modern
philosophicd accounts of concepts, including Fodor's, the patriarch of symbolic
models of cognition. Further, and somewhat paradoxically, Deacon’s account bears
some relation to conceptud role semantics, in that symbolic status depends upon
relations to other symbols. Thus the syntactic and semantic categories of an item are
determined by the pattern of its connections with other symbols. However, these
connections are not the sole determinants of content, the process of comprehending
symbols is viewed as moving in a downward direction in the representationd
hierarchy, from symbol, to index, to icon. Production of symbols involves a move in
the opposte direction. This compostiona reationship gives semantic content to
symbols. They are not merdy syntactic entities, they are composed of perceptua and
action-based processes as well; and these are the very same processes that are

deployed in the cognition of non-symbolic species.

3.2 Neural Networks and Symbols

It is important to be clear about the exact way in which Deacon’s account is relevant
to the present discusson. The example of symbol acquigtion in chimpanzees may not
be totdly andogous to the dtuaion of the human infant. It is open to Speculation
whether neonates firs learn iconic reationships, then lexica relationships, before
having a eureka experience in which these dements are reorganized. | am congruing
him as making a dam &bout the way in which we should andyse symbolic thought,
rather than as making a clam about the ontologica dependence in development
between referentid relaions. The important aspect of Deacon’s andyss is the way it
is condructed from dements of which we have a (rdatively) comprehensve
neurophysiologicd underdanding: recognition and associaive learning, in the guise
of iconicity and indexicdity. lconic reference can be understood as being based upon
object prototypes, implemented in the form of convergence zones. The mapping of an

87 The Symbolic Species, p. 100. This could be linked in an interesting way with the work of Adrian Cussins, particularly hisidea
of cognitive trails and the rise of objectivity and perspective independence, which could aso be related to the discussioninthis
section, see A. Cussins, ‘ Content, Embodiment and Objectivity: The Theory of Cognitive Trails’, Mind 101, 651-88.
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input onto a convergence zone in this sysem would congitute recognition. Whilst
words (whether spoken or written) are indexical tokens, thus having relaions to
icons, they are dso symbols, and so they have something of a double life. I now want
to suggest how these find leves in the hierarchy — from words to symbols — might
be ndantiated by a pardld processng system, and how this might go some way to
solving the problem of systeméticity that wasraised in section 1.3.

Psychalinguisic models suggest how lexica tokens might produce symbolic
thought. An important feature of human language comprehenson is the way tha
spoken words are recognized.®® As phonemes are received the words which are
compatible with them are activated, but as more phonemes are heard it gppears that
more and more words drop out of contention as they become inconssent with the
auditory input. Eventudly there is only one left, and this is the word that is
recognized. For example, for the word kangaroo the word is identified as soon as the
phoneme /g/ has been heard, since a that point no other word is consstent with this
input. This cohort mode of lexical access has been reproduced by D. Norris in a
recurrent network based on the one designed by Elman, that was discussed in section
1.1.%° Remember that Elman's network was tested by being asked to predict the
following word in a sentence. Its response was to ectivate dl words that were
compdtible with the initid pat of the sentence. Norris network had 50 output units,
each one representing a word. The network was trained by being presented with a
phoneme in each processng cycle, with no bresks between words, just as in red
gpeech. In testing, single words were presented and the activation levels of the words
were examined. The cohort pattern was found with words dropping in activation
when inconsgtent phonemes were presented, until only the winning word unit was
left. Interestingly the network exhibited many festures of human word
comprehengon, such as patterns of identification of mispronounced words. For
indance, humans can correct for some mispronunciations of the firg phoneme of a

word if they are close enough to the intended target. The network could recognize

€8 Although there are significant differencesin the case of written word comprehension, the overall strategy appears to be the
same for, and the differences are not important in the present circumstances.

%9 D. Norris, ‘A Dynamic-Net Model of Human Speech Recognition’, in G. T. M. Altmann, ed., Cognitive Modds of Speech
Processing: Psycholinguistic and Computational Perspectives (MIT Press, Cambridge, Mass., 1990), pp. 87-104.
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goronet as a digtortion of coronet, but not horonet, as the /g/ is close enough to /c/,
but the /h/ is not.

Thus recurrent network architectures can explain how words are recognised,
but they can dso cope with grammar. Elman trained another network on a complex
gramnmaticd task, that was much more chdlenging than lexica-category Structure.
The task involved a lexicon of 23 items, including 12 verbs and 8 nouns, and a phase-
dructure grammar. This meant that the network had to be able to cope with recursive
dructure and complex relaionships, a truly rigorous test of representational capacity.
The inputs were again locd, each unit representing a word, and one might envisage a
dgtuation in which a word recognition network could provide such loca outputs,
which could then act as inputs to the grammatica network. The traning of the
grammaticd network was done in phases, dating with smple sentences and
gradudly increasing the number of complex sentences over time’® The first andysis
of the network was dmilar to that for the origind lexica-category structure network:
words were presented and the network had to predict the next word. As with the more
basic network there is no way to tell exactly which word would come next, rather in
this case the following word had to be from a grammaticdly correct category.
Surpriangly, the network performed very well a this task, grasping even the most
subtle and complex relaions. Elman gives the sentence ‘Boys who Mary chases feed
cats asan example of this ability:

The appearance of boys followed by arelative clause containing a different subject (who Mary) primes
the network to expect that the verb which follows must be of the class that requires a direct object
precisely because a direct-object filler has already appeared. In other words, the network not only
correctly responds to the presence of a filler poys) by knowing where to expect a gap (following

chases); it also learns that when this filler corresponds to the object position in the relative clause, a

verb that has the appropriate argument structure is required.”*

" This feature of the experimental design, in which the network was started with simple inputs which then became progressively
more complex, has been stressed in the context of developmental plausibility. It is argued that the short attention spans and
biases of infants might act in the same way, and that this might significantly simplify the task of comprehending the complex
relations that grammar allows, see J. L. EIman, E. A. Bates, M. H. Johnson, A. Karmiloff-Snith, D. Paris, and K. Plunkett,
Rethinking Innateness: A Connectionist Perspective on Development (MIT Press, Cambridge, Mass., 1997), pp. 340-349,ad
also T. Deacon, The Symbolic Species, Ch. 4.

"1 *Representation and Structure in Connectionist Models', p. 363.
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The network could cope with severa nested centre embeddings, dthough its
performance decreased with each one, in a manner amilar to humans. This suggests
that the nework has a genuindy productive ability that is only limited by
computationa resources. The sophidicaion of these grammatica abilities is
impressive, but it leaves the question of how the network has managed the task. The
advantage of a recurrent network is that it can take temporaly extended inputs and
produce temporaly extended outputs, but the disadvantage is tha this makes andysis
extremdy difficult, as Elman explains

In the previous simulation [the lexical-category structure network], hierarchical clustering was used to
reveal the use of spatial organization at the hidden-unit level for categorization purposes. However, the
clustering technique makes it difficult to see patterns that exist over time. Some states may have
significance not simply in terms of their similarity to other states but also with regard to how they
constrain movement into subsequent state space . . . Because clustering ignores the temporal
information, it hides this information. It is more useful to follow over time the trajectories through state
space that correspond to the internal representations evoked at the hidden-unit layer as a network
processes a given sentence.’?

Unfortunately it is virtudly impossble to visudize a trgectory in a hyper-
dimensond vector space, so a method caled principad component analysis has to be
used to reved those hyperplanes in the hidden unit vector space that involve most
vaiance. This reveds tha dmilar grammatica gructures are represented by smilar
trgectories in vector space; but as with spatid semantic metric reveded by cluster
andydss, dight differences were marked by dight divergences in trgectory. The most
crucid point to emerge from this is that movement through recurrent vector space is
condrained; a any point there are only a certain number of trgectories available, and
these encode the grammaticad progressons. Just as smple feedforward networks were
explained in terms of attractors in vector space in section 1.1, so recurrent networks
can be undergood in terms of wedl-worn paths in vector space. This explains how the
network is aie to activate only words that fdl into appropriate grammatical
categories during the testing phase. Elman’s network is not an accurate model of how
the brain processes grammar, the use of backpropagation sees to this, but biological
plaushility is not the purpose of this modd. Raher the importance of Elman's
network is that it reveds how certain structural festures — recurrent connections —

72 *Representation and Structure in Connectionist Models', pp. 363-4.
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maeke it possble for connectionis networks to represent the combinatorid
posshilities of symbols. This is a capacity that has been denied by opponents of
connectionism. The hope must be tha the principles are right and that what remains is
to discover how they can be implemented in redl neurd systems.

3.3 Symbols and Semantic Content

So far no explicit explanation has been given of semantic content. Elman’s networks
only processed grammaticd and lexicad reationshipss and so without further
explandtion this is jus a meaningless kaedoscope of activity, in the same way that
the voltage fluctuations in the microchips of a computer are without an externd
interpretation. After al, a point in vector space might represent a word in a particular
grammatica role, but how does this come to mean anything? There are three dements
in Deacon’s account that contribute to the explanaion of meaning, as demondrated in
the following passage:

[The] cross-modal associations [in convergence zones] between images and experiences on the one
hand and their associations with particular word sounds on the other provide the indexical associations
of words, but their symbolic association — what we call the meaning — involves these and something
more. The something more includes both the associative relationships between words and the logic of
how these map to the more concrete indexical relationships.

Thus the fird dement is the dependence of symbolic datus upon combinatoria
possihilities with other symbols, the second is the associations between words, and
the third is the indexicd rdations of symbol tokens. | will combine this view with the
foregoing discusson of neura computation in sections 3.3.1, and 3.3.2.

3.3.1 Context and Meaning

An account of meaning can be extrgpolated from Churchland’'s vector prototype
model of explanatory understanding. Recdl that the bass of this modd is that a
prototype represents an object because it comes to encode the contexts in which that
object has been experienced previoudy. Trandating this to language, the pattern of
neurd activity that represents the meaning of a word, a concept, does so because it
reflects the contexts in which that word has occurred. The notion of context here is a
rich one including not just linguistic context, but dso other dements of experientid
context. Elman's grammatical network could predict which classes of words would
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come next in a sentence, thus a a very rudimentary level it had encoded the contexts
of words. Of course, one consequence of this is that there is no grict separation of
syntactic and semantic aspects of processing. All aspects of context that are predictive
will be incorporated in the configuration of weights. This is an advantage because
semantic cues can be used in lexica processng. That humans do this sort of thing can
be demonstrated by experiment. Altmann discuses the following example: 3

Which woman did Bertie present awedding ring to?

Which horse did Bertie present awedding ring to?

As soon as the word ‘present’ is heard it can be given two dternative interpretations,
the woman or horse is either the thing being presented, or the recipient of the object
being presented, whatever that turns out to be. When ‘wedding ring’ is heard this
suggests that it is the thing being presented, and so the horse or woman must be the
recipient. A horse is an implausible thing to give a wedding ring to, but if we waited
until the end of the passage before doing the grammatical processng, we would not
notice this implaughility until that point. However, EEG recordings show that
subjects notice the implausibility when ‘wedding ring’ is heard, not when the end of
the passage is reached. Although this is a very short time, it is nonethdess sgnificant,
and shows that roles are assigned as soon as they are registered, and that semantic
factors play a role in tha determination. We assume that wedding rings are the sorts
of things that get presented to people, and use this piece of knowledge in the andlyss
of grammaicd dructure even when what could follow might disagree with these
assgnments. For instance, the passage above might continue as follows:

Which woman did Bertie present awedding ring to hisfiancéein front of ?

This sentence is difficult to process precisdy because it conflicts with the
assgnments we are inclined to give, we assume that the wedding ring is being given
to the woman. Such semantic cues will not be as influentid as more syntactic
feastures, given tha on the whole they will be less predictive. Fortunately
counterintuitive sentences like the one given above are the exception rather than the

norm.

3 The Ascent of Babel: An Exploration of Language, Mind, and Under standing (Oxford University Press, Oxford, 1997), p. 110;
the work discussed was carried out by M. K. Tanenhaus, J. E. Boland, G. N. Mauner, and G. Carlson, ‘More on Combinatory
Lexical Information: Thematic Effectsin Parsing and Interpretation’, in G. T. M. Altmann and R. C. Shylock, eds., Cogntive
Models of Speech Processing: The Second Sperlonga Meeting (Lawrence Erlbaum Associates, Hove, 1993), pp. 297-319.
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This andyss of meaning owes something to Wittgengtein, for severa reasons.
Firg, Wittgensein propounded the idea tha an explanation of meaning should
proceed via an investigation of use, and as demondrated above, the sgnificance of a
symbol springs from its relations with other symbols, and its linguigtic contexts,
which are reflected in its use. Secondly, it was Wittgendein's indght that meaning
does not have to be exact (‘everywhere bounded by rules ") in order to function
satidactorily. Given the nature of symbols, and the evolutionary forces which have
shaped language, it comes as no surprise that a precise axiomatization is not a
prerequidite for language, as will be argued in the next few paragraphs, and in section
3.4. 1 will attempt to produce an anadyds of meaning that is linked to what has been
learned about its neurd substrates. This kind of gpproach would have been anathema
to Wittgengtein, as is demonstrated by the following passage:
No supposition seems to me more natural than that there is no process in the brain correlated with
associating or thinking; so that it would be impossible to read off thought-processes from brain-
processes. | mean this: if | talk or write there is, | assume, a system of impulses going out from my
brain and correlated with my spoken or written thoughts. But why should the system continue further
in the direction of the centre? Why should this order not proceed, so to speak, out of chaos? The case
would be like the following — certain kinds of plants multiply by seed, so that a seed always produces
aplant of the same kind as that from which it was produced — but nothing in the seed corresponds to
the plant which comes from it; so that it is impossible to infer the properties or structure of the plant
from those of the seed that comes out of it — this can only be done from the history of the seed. So an
organism might come into being even out of something quite amorphous, as it were causelessly; and
there is no reason why this should not really hold for our thoughts, and hence for our talking and
writing.”
| think that Wittgendein's podtion is unsatidfactory in its rgection of any
investigetion of causd underpinnings for language. His andogy with a seed reveds
how bizarre his pogtion is; 1 cannot help but think of the development of a seed in
terms of cdlular mechanisms and genetics. To say that these do not in any way bear
on its eventud dructure is just untenable, and unscientific — it is the opposte of
sentism. The neurdly ingpired moded of cognition offers a richer account of
linguigic behaviour and its underlying cognitive mechanisms that | believe occupies
amidway postion between these defective extremes.

"4 Philosophical Investigations, §84.

75 Zettel, § 608.
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The vector redization of meaning bears a family resemblance to functiond
role theories, but the incorporation of context by degree of predictiveness adlows a
reponse to the dandard criticism that such theories leed to no sharp digtinction
between empiricd and semantic aspects of concepts. This charge can be accepted
without making the theory undtractive and unredizable. | am indined to deny that
there are any inferentid roles which have a privileged datus in determining meaning.
There will probably be some which are more important than others, and this will be
reflected in the fact that they will be shared by most language-usars This in turn will
be due to the fact they are the most predictive aspects of context. Thus the more
important inferentia  roles will be determined by the naure of the underlying
processng system, with its ability to respond appropriately to datistica tendencies in
the environment. Hence the argument that functiona role theories make sameness of
meaning impossble can dso be paried. As long as two people have neura patterns
that are activated in more or less the same dtuations, then those patterns can be
conddered to have the same meanings for them. Obvioudy this makes meaning a
matter of degree, because we could not expect total co-activation in every possble
circumstance, but this need not be seen as detrimental. One might argue that it dlows
for the idiosyncrases of individud experience to be reflected in cognitive life. A
traditiond difficulty with functiond role theories is how they connect to the world of
objects The solution to this problem lies in the hierarchicadl component of meaning,
that Deacon rightly emphasizes, and this is where indexica and iconic reference re-

enter the picture.

3.3.2 Meaning and Indexical Foundations

Connections between symbol tokens mean nothing if they are not properly grounded
in experience. This grounding is achieved through the interaction of many different
networks in the brain, especidly convergence zones, that underlie the functioning of
iconic ad indexicd reference. At the smplest leved there are links between words
and objects. Such word prototypes, activated in a grammatical network, might cause
activation of the appropriate convergence zone. This provides the content to the
symbol, the convergence zone goes on to rapidly activate patterns in a variety of brain
aress. These reindated patterns have content because of the brute fact that they played
the same role during the origina experience. For example, a the most basc levd,
perceptions of colour are locdized in a paticular region of the visud cortex. How
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this can be is, perhaps, inexplicable as far as human invedtigetion is concerned. | have
made some comments about the remarkable representational power of vector coding,
but for present purposes it must be accepted as brute fact that these collections of
neurons produce an experience of colour. This explains the content of basc
perceptud features. The next stage is the conjunction of these into representations of
objects a the next level in the convergence zone hierarchy, and then into categories
of objects, and then superordinate categories, and so on. It is likdy that the train of
processng will not sop a this point, as the patern of activity caused by the
activation of the convergence zone can generate further activity. For example, one
might hear someone say the name ‘John’, which would activate one€'s convergence
zone for that individud, and this in tun might simulae the recal of information
about them, and of past encounters with them through the operation of
autoassociative networks. The exact nature of this cascade of activity would depend
on the cognitive context in which the name is heard. Fird, if one knew severa people
with this name, then context would serve, in most cases, to activate the correct
convergence zone. Second, which episodes would be recalled would depend upon the
context in which they were mentioned. Such contextua factors might be things as
generd as mood, as it has been found that it is easer  recal happy thoughts when in
a podtive mood, and visa versa for depressve thoughts. Alternatively, contextud
factors might be highly specific: consdering the suitability of candidates for a given
task would trigger recadl of past peformances. It is this rich pageant of ongoing

activity that accounts for the complexity and richness of human cognitive experience.

3.4 Symbols, Systematicity, and Concepts

The foregoing account of symbolic processng and meaning goes some way to
solving the problem of systemdticity. However, recdl tha in section 1.3, | argued that
having a complex semantic metric in the hidden layer of a recurrent network is not
enough for true sysemdicity. The reason for this was the inability of such networks
to use thar knowledge in peforming different tasks, their content is nonconceptud.
As they dand, then, Elman’'s networks do not exhibit sysemdticity. But if the output
of these networks was sparsely coded, it could be input to another network, which
could then perform other operations upon it. Thus activation in the verb part of the
hidden layer vector space could cause a certain sparse labd to be produced, and this
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could adlow a lexical category decison to be made by a separate network. The very
same information could be made avalable to a number of networks in this way, each
one being used in a different cognitive context. The sdection between these different
processing routes would probably need to be controlled in the sort of way mentioned
in section 2.5, dthough in some dStuaions there might be competition and mutud
inhibition of the sort tha occurs in competitive networks (see section 2.3). This
andyds of sysemdicity would have the consequence that activity in the origind
network would be non-conceptud, whilst it would be made fully conceptud through
interaction with other networks. Hence the notion of ‘concept’ is one that can only
redly be gpplied a the levd of complete systems (this reflects the intuition that it is a
persona, rather than sub-persona, notion). Further this makes it possble to explain
how one might have degrees of objectivity and perspective independence: the more
complex and numerous the systlems that the information is avalable to the nearer

cognitive behaviour gpproaches to the idedl encapsulated in the generality congraint.

Sparse coding dso opens up the possbility of severd different patterns in a
network being activate at the same time, suggesting that locdist microfestures could
be utilized. In a fully didgributed sysgem, the activity of every dement is involved in
the representation of any single item. If the coding is much more sparse it might be
possible for two objects to be represented smultaneoudy if their patterns did not
involve the same units i.e, if they were aufficently dissmilar. This might make it
possible for severa eements that are stored it the same network to be represented at
the same time, thus overcoming another objection to the sysematicity of
connectionis models, and recurrence provides the capacity to represent relations

between these sparse representations.

Churchland's model of conceptud redeployment, which was discussed in
section 1.2.2, ds0 offers a possble explanation of systemdticity. For it goes some
way to explaining how a piece of knowledge gained in one Stuation can be applied in
another. At that point | raised some doubts about how Churchland’s idea might work,
but the convergence zone hypothesis and the hierarchical nature of processng suggest
how it might be achieved in the brain. A change in which a higher order convergence
zone is activated can cause activity in more basic levels to be arranged in a different
way, as different convergence zones activate different patterns of activity in different
cortical areas. Thus in the case of the duck/rabbit, basc visua features such as edges
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and lines might be mapped onto different features a higher levels, such as the area
where form is processed. So the very same visua input can be interpreted as ether
iconic of a rabbit's ear or a duck’s hill. This reinterpretation would require dterations
throughout the system, but this can eadly be achieved within the convergence zone
framework. This framework might explan why it is extremdy difficult, if not
impossble, to visudize two different scenes smultaneoudy, the two patterns cannot

be activated on the same units at the sametime.

When this idea is gpplied to more cognitive phenomena it suggests another
possble source for the sysemdicity of thought. The activation of different higher
level prototypes might conditute conceptud redeployment by reorganizing the
interpretation of sensory information. The convergence zore framework was devised
to explan concrete knowledge, not the sort of knowledge involved in theoreticd
understanding. What | am trying to do here is extrgpolate from those systems that we
ae beginning to understand. The gpatid and tempord semantic metric of a
multidimensona vector space explans how a point in tha space can have
representational content.  However, such a space adone suggests no obvious
mechanism for how eactivating one prototype can affect so many various aspects of
cognition. But in hierarchicdly organised sysems it might be possble for some
hybrid modd to accrue the benefits of both systems.

3.4.1 Neural Commitments

This account of systematicity does not yet provide a totd explanation of the specid
nature of concepts. There is one more important point that must be added before the
explanation is complete. | have admitted that the generdity condraint does dtate a
truth about concepts, but the important question is what follows from it. One source
of conflict concerns its consequences for the cognitive underpinnings of concepts. Do
dl ingances of a concept require some sort of causd commondity, and can a
connectionist account provide the goods? It is clear that Evans did not mean for the
generdity condraint to lead straight into the adoption of alanguage of thought:

... | certainly do not wish to be committed to the idea that having thoughts involves the subject’s
using, manipulating, or apprehending symbols—which would be entities with non-semantic as well as
semantic properties, so that the idea | am trying to explain would amount to the idea that different

episodes of thinking can involve the same symbols, identified by their semantic and non-semantic

properties. | should prefer to explain the sense in which thoughts are structured, not in terms of their
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being composed of several distinct elements, but in terms of their being a complex of the exercise of
several distinct conceptual abilities.”

To say that different occasons are to be unified by the operation of the same ability
necesstates an account of how &bilities are individuated, and their place in the
ontologicd scheme of things Evans agues that there should be a ‘common
explanation’ for gpplications of the same ability:

Each common explanation will centre upon a state — the subject’s understanding of ‘a’, or his
understanding ‘F’ [for an explanation of the thought that a is F] — which originated in a definite way,
and which is capable of disappearing (an occurrence which would selectively affect his ability to
understand all sentences containing ‘a’, or all sentences containing ‘F’).””

| think it is right that there should be some commonalties across occasions, but not a
complete amilarity in dl cases — no date present in every ingtance (in contrast to
traditiond Al modds). What | have in mind here is tha in different contexts we
should expect different neurd substrates to be used, given the multiple network
nature of neural processng that was sketched out above. Relevant contextua aspects
might indude the kind of sensory input, eg., a word, or a visua presentation of an
object, and the kind of action being atempted, from visud search to solving a
crossword puzzle, and so on. Evidence for this style of processng comes from PET
and MRl dudies, which have shown tha different tasks recruit different brain
regions. For example, in one study subjects had to lisen to a story and monitor for
gther grammatica erors or for words in a particular semantic category. These
activities caused activation in separate, but overlgpping, areas of the ventrd prefrontd
cortex.”® This type of evidence from brain-imaging studies indicates that there is
probably dgnificant task decompodtion in the brain. It may be that certain networks
ae given over to the detection and processing of cetan grammaticd festures.
Examples might include the generation of words from the same semantic category, or
dternatively words from complementary grammaticd categories, such as  an
aopropriate verb for a noun. One might envisage hierarchies of processing stages in
which first the overdl dructurd dements are identified, so that they can be processed

78 Varieties of Reference, pp. 100-1.
" Varieties of Reference, pp. 101-2.

8 P, J. G. Nichelli, J. Grafman, P. Pietrini, K. Clark, K. Y. Lee, and R. Miletich, ‘Wherethe Brain Appreciatesthe Moral of a
Story’, NeuroReport 6 (1995), 2309-2313.
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by more specidized networks. Evidence for this hierarchic gpproach comes from
studies of corticd simulation on conscious paients undergoing brain surgery.”
Deacon has summarized the findings as follows:

What these stimulation studies demonstrate is that the regions where stimulation disrupts language
function fan out from the frontal mouth area into the prefrontal lobes, and from around the auditory
area back into the temporal and parietal areas. Those regions where stimulation reliably disrupts the
same language functions are organized in what appear to be tiers radiating outward from these two
foci. Electrical stimulation of the regions closest to the motor and auditory areas produces problems
with phoneme identification and oral movements. Stimulation further out disrupts naming of familiar
objects and grammatical assessments. And stimulation even further out appears to disrupt retention or

recall of words. There is also a rough front-back mirror symmetry of these tiers, so that the very same

responses are elicited by the second and third tiers both front and back.®°

It follows that in dmilar contexts the same networks would be used and so there
would be limited commondity. What gathers these varying contexts together is the
pesond levd dtribution, made soldy on the grounds of behaviour, linguigic or
otherwise, rather than a computationa commondity. Of course in most cases of
philosophica interest the context will be one of language comprehension, and 0 a
catan degree of uniformity is guaranteed, given the account of meaning given in
section 3.3. If the same concept is being exercised in comprehending sentences, then
the same neural pattern must be active, because this is what encodes predictive
context, and therefore meaning. However, we should not let the gpparent ease with
which we can group different dtuations under the head of a given concept LIl us into
thinking that every exercise of a concept must have an immutable core of
representative neural encoding. Rather some dements of neura activity will prove

more central than others.

Is this a satisfactory way to philosophically unpack the notion of a ‘common
explanaion’? It seems right that there should be a demand for some kind of causd
commonadlity behind conceptud atributions — if we found that there was not
intuition suggests that we might be persuaded to withdraw our etributions. The

79 See, Penfield and Roberts Speech and Brain Mechanisms(Oxford University Press, London, 1959), G. A. Ojemann, ‘ Cortical
Organization of Language', Journal of Neuroscience 11 (1991), 2281-2287, and G. A. Ojemann and C. C. Mateer ‘Human
Language Cortex: Localization of Memory, Syntax, and Sequential M otor-Phonemeldentification Systems, Sience205 (1979),
1401-1403.

8 gymbolic Species, p. 289.
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criterion, then, is whether one can provide srong enough causd explanations to
defeat such chdlenges. Even though, on the multiple network mode, it isn't possble
to move from deals of neurd processng to persond leve determinations of
conceptua content in any principled fashion, there is neverthdess a reationship
between these leves | would argue that the smilarities in neurd activity across

occasions that were postulated above would prove enough to meet the criterion.

Further support for this andyss comes from congdering the exact nature of
the persond level account. Is it clear that on al occasons there has to be a precise
matter of fact about which concepts are exercised? An andogy from Geach
demondtrates how it might be wrong to think that thisis the case:

The exercise of a given concept in an act of judgement is not in general a definite, uniform sort of
mental act; it does not even make sense to ask just how many concepts are exercised in a given
judgement. Our chess analogy may here again be of service, in showing why this question is
unreasonable. Playing chess involves a number of abilities, which are not only distinguishable but can
actually exist separately; for one way of teaching chess would be to play first just with the kings and
the pawns and then add the other pieces successively in later games. It would, however, be absurd to
ask just how many of these ahilities there were, or just how many were exercised in a particular move;
although one might perfectly well say that somebody knew the knight’s move, and that this knowledge

was or was not exercised in a particular move.®

This suggests the right way to andyse abilities normaly one has a competence in a
task domain; one can focus on dements of that competence, and cal them specific
abilities. In this way abilities are identified from an externd perspective, one picks
out a certain subtask and investigates whether an individud can accomplish it, if S0
they can be ascribed the ability. However, it makes no sense to think that abilities
operate independently in norma negotiation of the task domain. Rather, the whole
complex system faces the tak domain. The neurdly inspired account of symbaolic
thought suggests a possible way to gpply this chess andogy to language: a subject’s
symbolic abilities can be conddered to be grounded in a number of networks,
including recurrent grammaticd networks, with ther multidimensona vector spaces,
and in neurond populations that contain convergence zones. The basis for this dam
would be that these neurond populaions ground the many abilities that a genuine
symbol-usr must exhibit. Full-blooded language comprehenson might be a matter of

& Mental Acts, p.15.
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aurad or visud input being mapped through word recognition networks into
grammatica networks, which then spread activation to the appropriate convergence
zone prototypes, and other systems, providing the semantic content to the symbols, so
that they are not empty syntactic shells as in a language of thought architecture
(athough advocates of the Language of Thought would obvioudy argue the point

here).

However, each symbol cannot exist as a discrete entity, and so the chess
andogy is not quite right. As made clear in section 3.1, a symbol depends for its
identity upon its relationships to other symbols, so sngle symbols cannot exis, rather
a dmple language core forms the initid base, which can then be embelished with the
addition of further grammatical categories. This core is defined by the combinatorid
posshilities between its dements, and 0 in some sense a single symbol cannot be
exercised without the exigence of others In practice this holism is redized in the
grammatica vector space of Elman’s recurrent networks, because they are trained on
whole sentences, and only in this way do they learn interrdationships between words.
A paticular point in vector space conditutes a given symbol because of the paths
which move off from it. If those other moves could not be made then the individua
could not be ascribed that symbolic content. Thus a passage of cognition might
involve a whole body of expertise, even though it is possble to be definite about
which symbols were involved. The neurd system grounds a symbolic system, not
individua symboals.

So fr | have used the terms ‘symbol’ and ‘concept’ interchangesbly, without
comment. As far as | am concerned they are virtudly synonymous notions, a least
that is how | treat them; the only difference is in philosophicad connotation. ‘ Concept’
is traditiondly linked with sengtivity to public agreement and rule-following. In
Wittgensteinian parlance, logicdly private concepts, that cannot possbly be shared,
are a philosophicd nonsense. In recognition of this | will define a concept as a rule-
governed ability. Adopting this notion dlows the neurd account of cognition to both
satidactorily explan the physologicd bass of a concept-user’'s abilities whilst
smultaneoudy avoiding a reduction of concept-use to any kind of causd regularities.
Thus dlowing us to avoid the dichotomy that McDowel sets up between empirica
and rationd dyles of explanation; the normativity of concepts is properly
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acknowledged.®? As argued above, a concept is constituted by many varied abilities,
and competence can be ascertained from an externd perspective, thus ddivery the
required objectivity. These abilities are grouped together because they dlow an
individua to operate according to the conceptua rules. The rules | have in mind here
are the possession conditions of Peacocke's andysis.®®

Wha didinguishes full-blooded concept-use from coincidentd  conformity
with the rules is the subject’s having a conception that they are pat of a commund
practice, and that they must try to march in step with that practice. This avareness is
dl tha rule-following amounts to, no more, no less® This awareness requires a
certan higher-order ability to view on€'s own practice, i.e, concept is a persond
level notion; but this need not rule out in principle a nonsententid andyss of
cognition. What has stood in the way of connectionist attempts to model these higher
cognitive phenomena is the lack of this globa responsveness A leved of complexity
and sengtivity is needed to be a concept-user that such smple modes could not hope
to have, but they nevertheless suggest a picture of how concept-use develops. As an
individua faces experience, they must create and deploy prototypes in order to bring
about their gods, which could be as ample as food and comfort in an infant. Through
experience the number of prototypes and their interactions increases. At some point
the bare exercise of abilities comes to be seen as a pat of a rule governed practice,
and full-fledged concept-use begins. But this is not the end, as more and more
complexity is worked into the sysem, and as the interrdaions of a given vector
prototype is incressed. A child might learn that ‘red” gpplies to objects of a certain
colour, and gpply it to everything that has that colour. Yet eventudly it may come to
redize that the concept, red, does not apply to objects that only appear red in certain
environmental conditions, such as a red light, and that red objects are ill red when
thereis no light shining upon them.

82 3. McDowell, ‘ Functionalism and Anomalous Monism’, in E. LePore and B. P. McLaughlin, eds., Actions and Events:
Per spectives on the Philosophy of Donald Davidson (Blackwell, Oxford, 1985), pp. 387-398.

8 C. Peacocke, A Study of Concepts (MIT Press, Cambridge, Mass., 1992).

8 From some perspectives, namely those which see rule following as involving physically instantiated tokens of rulesas a
necessary part of the processing underlying concept-use, thisis aminimal account. But from other perspectives this isarich
account because it involves conscious appreciation of rules.
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The public sygem of rules to which individuads cede authority is an abstract
ided. No individua actudly exemplifies it, and no individud could, because there is
no complete public system. For one thing the public system of rules is not closed, it is
an organic, developing sructure. The concept red demondrates this, for when the
colour red was first referred to, in the mists of prehigtory, it seems odd tha this
should fix the concepts use a dl points, even in dtuations that might depend upon
modern technology, such as atificid light. The rules are what the mgjority, or a body
of experts decide upon. There is no greater authority to which one can apply. The
objectivity of meaning springs from obedience to the rules. But here | have based an
andyds of concepts upon a notion of meaning that | have not, as yet spelled out
clearly.

Findly, it is important to note a criterion which any account of concepts must
meet, and which the account given above does meet, namely developmenta
plaushility. We are not born with an innate conceptud scheme, pace Fodor. This
congtrains theories of concepts in a number of ways. Fird, they must be such as to be
learnable in principle. This includes the fact that one should be able to establish that
one has successfully grasped a concept. Any theory which leaves one in a podtion of
having to make a guess that one has the concept in question is unacceptable, or at
least it should be. Hence this congraint might be viewed as demanding that concepts
be objective. Secondly, concepts should be learnable in practice; the time and
processing limitations of human infants should not present an obdacle to concept
acquigtion.

Given these sorts of consderations | think that they point to another criterion
of virtue for theories of concepts, if a theory can accommodate the gradua emergence
of concepts in an individua this should be seen as a pragmatic boon. For any theory
which trades on a light switch metaphor, i.e. a sudden trangtion into the charmed
circle of concept-users, seems developmentdly implausble. Rather a theory of
concepts should explain how they can be the sorts of things that emerge gradudly, so

that the conceptud journey from neonate to adult is a continuous, if nor-linear, one.
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3.5 Summary

In this chapter | have atempted to draw out some philosophica conclusons from the
discussion of connectionis and neural networks in the previous two chapters. | have
used Deacon’'s analyss of symbolic reference as a basis for an account of how a
padld, neurdly inspired, mode of cognition might explan symbolic and linguidic
thought. This involves the interactions of many different networks, with different
computationa roles. | have dso made use of the idea of a suitably trained recurrent
vector space, with grammatically condrained trgectories to explan how humans
manage to obey the grammars of ther languages. Thus the modd that emerges is a
hybrid, involving distributed networks, with sparsdy labelled links to other networks,
S0 that the results of a particular computation can go on to play an gppropriate role in
the system.

| have dso suggested a philosophica andyss of meaning which is compatible
with this empiricd modd, whose sdient points res upon the detals of the physicd
implementation of the modd. This makes good on my cdam tha there is a tight link
between the findings of sciences interested in the mind and brain and the philosophy
of mind.



4 Conclusions and Further Work

From the firg reading of Paul Churchland's vector andyss of cognition | have been
druck by its intuitive gppea and explanatory power. He has taken the idea of a
multidimensond recurrent  vector space with its poweful semantic metric and
aoplied it to dl aspects of human thought. Even science is encompassed: a scientist’s
understanding does not condst in a body of laws but rather in having a wdl-
configured weight space in a recurrent network. The space is well-configured because
it alows experientid input to be mapped onto an appropriate prototype, which
embodies the knowledge built up through previous experiences. These previous
experiences dlow him to undersand how the present Stuation will unfold. Thus a
the heart of the modd are the processes of recognition and learned association. These
notions crop up again in Deacon’'s account of symbolic thought, and | have tried to
use these links to overcome some of the shortcomings in Churchland's modd. In
brief, | have argued that we must move beyond the andyss of single networks and
onwards to the possble ways in which different kinds of network might interact. This
might involve the introduction of new concepts and methods of andyss, but it does
not vitiste the vitd indghts that emerge from invedtigation of connectionist networks,
it is additive to that body of research. In this way we might come to a new
understanding of how complex, conceptua behaviour might be produced by a brain
whose mode of processng is fundamentdly pardld, distributed, and recurrent. The
processing is didributed in two ways fird, within individud networks as has been
described a length, and second, in that a gngle task uses many different networks
spread throughout the brain.

These are empiricd speculations, but | have tried to sketch out how they
might be integrated into a philosophicd theory that encompasses meaning and
undergtanding. | have dso atempted to show how actua parald brain processing
could be compatible with a physcd commitment regarding the indantiation of
concepts. No doubt many of the detalls are wrong, but | beieve that in broad outline
something like the above will emerge over the next few decades of research of the
mind. The key point that | hope emerges from this thess is that philosophy must be
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reponsve to the results of empirica speculation; it is not a doman gpart, which
cannot be touched by matters of fact.
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