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Chapter 1 
 
Introduction 
 
The past five years have seen vast and rapid changes in the landscape of behavior genetic 
research. At the time this dissertation was conceived, the field was dominated by studies 
estimating the proportions of individual differences in behavioral traits attributable to the 
effects of genes and the environment, via the application of structural equation modeling to 
covariance structures of phenotypes measured in family members. Beyond heritability 
estimation, structural equation modeling of genetically informative data enabled the study 
of a range of more complex etiological issues, including the study of the nature of 
developmental stability and change in behavioral phenotypes, the genetic and 
environmental contributions to inter-individual variation in age-related growth and decline, 
the dependency of genetic effects on environmental exposures, heterogeneity of genetic 
effects across the sexes, direction of phenotypic causality between traits, presence and 
magnitude of rater bias, and sibling imitation and contrast effects. The continuing 
developments in statistical methodology and computing resources over the past five years 
have facilitated an increased flexibility in the modeling of genetic covariance structures, 
both in terms of the models one may fit, and in terms of the number of variables that can be 
included into the analysis. This allowed for increasingly sophisticated analyses, including, 
for instance, the application of genetically informed item-level analyses in addressing 
questions regarding the ontology of latent psychological traits (e.g., general cognitive ability, 
depression), via the study of the mediatory role of the latent traits with respect to genetic 
and environmental effects (Chapters 3-5). The recent advent of the large-scale availability of 
measured genotype data has provided an additional impetus for the development of genetic 
covariance structure modeling, namely for 1) its use in refining the definition of the 
phenotype in genetic association analyses, and 2) the incorporation of measured genetic 
variables into structural equation modeling-based association analysis.  

Most notably, the past five years have seen a sharp increase in the large-scale use of 
genomic microarrays and next-generation sequencing technologies, and a subsequent 
proliferation of gene-finding studies using measured genetic information to identify the 
genetic variants underlying the observed inter-individual variability. The interrogation of 
common single-nucleotide polymorphisms (SNPs) along the genome and their use in 
genome-wide association (GWA) studies were possibly the largest enterprise to this end, 
yielding over 2,000 associations for over 700 traits in the seven years since their inception 
(Visscher, Brown, McCarthy, & Yang, 2012). A complementary approach enabling a 
relatively rapid interrogation of the entire nucleotide sequence of a genome (including rare 
and structural variation, in addition to common point mutations) was made widely 
available through the rapid decline in the cost of DNA sequencing, and the ubiquitous move 
from Sanger sequencing (Sanger, Nicklen, & Coulson, 1977) to next-generation sequencing 
technologies. The development and the large-scale availability of these technologies, and of 
the methodology for the analysis of high-throughput data that they generate, have been 
remarkable. If one were to describe the largest point of progress in behavior genetics over 
the past five years, it would almost undoubtedly be in terms of the availability of measured 
genotype data.  

The present dissertation reflects the progression of behavior genetic methodology 
over the past five years. It can be seen as a cross-section of the relevant applications: from 
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the basics of genetic covariance structure modeling, via its more advanced applications in 
psychometric dimensionality assessment, the study of the ontology of latent psychological 
traits (childhood internalizing problems, personality dimensions) and refinement of the 
phenotype definition in genetic association analyses, to GWA studies and the analysis of 
next-generation sequencing data. In particular, the dissertation focuses on applications of 
genetic covariance structure modeling that go beyond simple heritability estimation, dealing 
primarily with the ontological nature of latent variables employed in psychological research, 
and the related question of their suitability for use in genetic association studies.  

The former topic (i.e., the nature of latent variables) has long generated controversy 
within psychology. Are latent constructs, as frequently postulated, psychological or 
biological entities that exist within individuals and manifest themselves in psychometric 
questionnaire item responses, behaviors, and symptoms (e.g., because one is depressed, one 
feels dejected and frequently ruminates), or purely statistical constructs that have no 
existence outside of the realm of abstraction, serving only to summarize clusters of item 
responses, behaviors, and symptoms (e.g., one is said to be depressed if they feel dejected 
and frequently ruminate; not because depression is an underlying cause of their symptoms, 
but because it is the term standardly used to describe them)? Apart from its obvious 
relevance to psychological theories that employ latent constructs and the psychometric 
practice that aims to measure them, the ontology of latent variables is highly relevant to 
behavior genetics, perhaps chiefly due to its implications for genetic association studies. For 
instance, if depression is nothing more than an index variable used to summarize a cluster 
of symptoms, efforts to identify genetic variants affecting the liability to depression will be 
characterized by a lower statistical power relative to a situation in which genes for its 
constituent symptoms are sought. A more relevant question in the context of genetic 
association studies is that of genetic unidimensionality: is a given cluster of symptoms 
affected by a single set of genes? For instance, depression symptoms related to dejected 
mood and those related to withdrawn behavior may be distinctly affected by environmental 
factors, but (co)vary as a function of a single set of genes (i.e., the distinction between the 
symptom clusters may be driven by differential environmental effects on a largely 
nonspecific genetic predisposition to developing depression). Genetically unidimensional 
constructs, regardless of the degree of their environmental etiological heterogeneity, 
generally represent more suitable targets for genetic association studies than genetically 
multidimensional ones. A related issue is that of genetic and environmental structure of a 
construct over time. In the presence of longitudinal data, how does one optimally define a 
target phenotype for a genetic association study? For instance, analyzing measures collected 
at a single age may be inefficient in terms of discarding other data, while using all measures 
simultaneously may dilute the genetic signal if different genetic factors affect the phenotype 
across development. If one opts to utilize all data, can one summarize the measures across 
time, or should one employ a multivariate approach? One of the relevant questions here is 
that of genetic unidimensionality over time – does a single set of genes affect the phenotype 
across the developmental period under study? The present dissertation is based on the idea 
that the answers to the above questions and, more generally, the treatment of the phenotype 
in genetic association studies, are consequential (both in terms of the statistical power to 
detect genetic effects, and in terms of the interpretability of the results obtained), and 
explores the aforementioned issues with respect to several behavioral phenotypes. The 
increasing availability of measured genotypic information has allowed me to take a step 
beyond the exploration of the phenotypic structure of psychological constructs, and 
complement this work with genetic association studies – initially using genomic microarray 
data to explore the role of common genetic polymorphisms in the etiology of intelligence, 
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and subsequently using DNA sequence data to test for effects of rare genetic variation. 
Although much work remains to be done, both in improving the treatment of the phenotype 
and in the gene finding domain, the dissertation hopefully opens some possibilities for the 
investigation of the phenotypic structure that go beyond a simple sum score approach.  

The phenotypes of interest over the coming nine chapters are childhood internalizing 
psychopathology, adult personality, and intelligence. Research to date has proven 
challenging with respect to these phenotypes, in several regards: a) the ontology of the 
latent factors that feature in the theories of the respective phenotypes is unclear, b) relatedly, 
noncontroversial taxonomies have proven difficult to arrive at (as evidenced by the 
continuing debate over the factor structure of the phenotypes), and c) genetic association 
studies have thus far not identified genetic variants that would explain more than a minute 
fraction of their phenotypic variance. Rather than focusing on standard applications that 
study the etiology of these phenotypes as represented by latent factors or sum scores, this 
dissertation has inquired what the empirical support for the existence and causal relevance 
of such latent factors is (i.e., whether we should be conceptualizing these phenotypes as 
latent factors at all), and hypothesized that the search for genetic variants may be more 
successful if greater attention was paid to the issue of phenotype modeling.  
 
The outline of this dissertation is as follows. Chapter 2 introduces the basics of genetic 
covariance structure modeling (GCSM), as applied in the classical twin design. Considering 
the intrinsic reliance of GCSM on the quantitative genetic theory-based predictions of 
genetic and environmental resemblance between individuals of differing degrees of genetic 
relatedness, in Appendix 1 I review how these predictions are derived. Chapters 3-5 discuss 
genetically informed item-level analyses and their application to the study of the ontology 
and the genetic and environmental etiology of personality dimensions and childhood 
internalizing problems (anxiety, depression, withdrawn behavior and somatic complaints). 
Chapter 6 reviews GCSM-based literature on childhood internalizing problems. Chapters 7-
9 focus on the genetics of intelligence. Chapter 7 examines the genetic and environmental 
etiology of the temporal stability of verbal, nonverbal and general intelligence across ages 5-
18; the results obtained in Chapter 7 are subsequently used to inform the definition of the 
phenotype in the association studies reported in Chapters 8 and 9. Working on the 
assumption that that the genetic variation affecting normal-range intelligence may be 
concentrated in the same areas of the genome as that underlying intellectual disability, 
Chapters 8 and 9 test for an enrichment of a number of intellectual disability genes for 
polymorphisms associated with normal-range intelligence. Chapter 8 examines 43 
intellectual disability genes using a common-variant approach, and Chapter 9 extends this 
work to 168 candidate genes and examines the possible effects of rare genetic variation.  
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Chapter 2 
 
Structural Equation Modeling in Genetics 
 
 
Abstract 
 
The present chapter introduces structural equation modeling, as applied in human 
quantitative genetics. After introducing the basic method of exploiting familial relationships 
to infer the effects of unmeasured genetic and environmental factors, the chapter reviews 
the implementation of models from the structural equation modeling literature into 
genetically informative designs, and structural equation models developed specifically 
within genetics. The former include simplex and latent growth curve models; the latter 
include common and independent genetic factor models, genotype-environment interaction 
models, sex-limitation models, and direction of causation models. The chapter concludes 
with a discussion of the incorporation of measured genetic variables into structural equation 
modeling-based association analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Dolan, C.V., Borsboom, D., & Boomsma, D.I. (2012). Structural Equation 
Modeling in Genetics. In R. H. Hoyle (Ed.), Handbook of Structural Equation Modeling (pp. 
617-635). New York: Guilford Press.  
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The aim of the present chapter is to discuss structural equation modeling (SEM1) as applied 
in human quantitative genetics. Taking the seminal paper by Martin and Eaves (Martin & 
Eaves, 1977) as a starting point, the genetic analysis of covariance structures spans a period 
of over 30 years (see Hottenga & Boomsma, 2008, for a brief history). Martin and Eaves 
(1977) is the first published account of genetic covariance structure modeling (GCSM) using 
Maximum Likelihood (ML) estimation in SEM. Although Martin and Eaves used their own 
programs to fit multivariate twin models, it was soon realized that the LISREL program 
(Jöreskog & Sörbom, 2006) could be used to fit genetic models (Boomsma & Molenaar, 1986; 
Cantor, 1983; Fulker, Baker, & Bock, 1983). The adoption of the LISREL program cemented 
the view of quantitative genetic modeling as a class of structural equation modeling of data 
observed in family members. In addition, it encouraged the applications of multivariate 
models developed in SEM (e.g., the common factor, simplex, and growth curve models), and 
it inspired geneticists to develop their own models. Finally, the incorporation of SEM in 
genetic modeling resulted in the development of Mx, a SEM program with a flexible matrix 
syntax, which is well suited to the data structures and modeling requirements of GCSM 
(Boker et al., 2010; M. C. Neale, 2000).  

The present chapter aims to introduce GCSM, as applied in the classical twin design. 
We first present the basic method of exploiting familial relationships to infer the effects of 
unmeasured genetic and environmental factors. We then emphasize that any SEM can be 
incorporated in GCSM of twin data to study the structures of the genetic and environmental 
covariances matrices. Next, we discuss several models developed specifically in GCSM. 
These include models which require data collected in twins, pedigrees or adoption designs 
for identification. Finally, we briefly discuss the recent incorporation of measured genetic 
variables in GCSM-based association analyses.     
 
Genetic covariance structure modeling 
 
A principal aim of GCSM (Boomsma, Martin, & Neale, 1989; Eaves, Last, Young, & Martin, 
1978; Martin & Eaves, 1977; M. C. Neale & Cardon, 1992) is to estimate the contributions of 
genetic and environmental variables to individual differences in one or more measured 
variables (i.e., phenotypes). If the genetic and environmental variables are unobserved 
(latent), their effects are inferred from resemblance among family members in a SEM. 
However, measured environmental and (or) genetic variables may also be modeled directly 
(e.g., Cherny, 2008; van den Oord, 2000).  

To infer the contributions of unmeasured genetic and environmental variables to the 
phenotypic variance, quantitative geneticists employ a number of designs, which include 
individuals in known genetic and environmental relations (Falconer & Mackay, 1996, 
Mather & Jinks, 1971). Samples of such individuals are called genetically informative, because, 
given various assumptions, genetic and environmental effects are identified in the 
associated phenotypic covariance structures. The classical twin design, which involves the 
analysis of phenotypes measured in monozygotic (MZ) and dizygotic (DZ) twins living 
together, is the best known of such designs (Boomsma, Busjahn, & Peltonen, 2002), but 
others the such as the adoption design also achieve identification in GCSM.   

In GCSM, different classes of genetic and environmental variables are distinguished. 
A polygenic factor represents the total effects of multiple, possibly very many, genes. A gene 
refers to a unit of heredity, that resides on a stretch of DNA and codes for a protein or for an 
RNA chain. Genes are situated at a given chromosomal region, referred to as a locus. If the 

                                                
1 We use this abbreviation to refer to modeling and model(s).  
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gene influences a complex (or a quantitative) trait, the location is referred to as a QTL: a 
quantitative trait locus. To contribute to phenotypic variation, a gene has to be polymorphic, 
i.e., different forms of the gene (i.e., different alleles) must exist. The combination of alleles 
at a locus determines the effect of the gene (Evans, Gillespie, & Martin, 2002; Slagboom & 
Meulenbelt, 2002). We distinguish between additive polygenic variable(s) (A), which 
represent the combined additive effects of alleles within and across loci, and genetic 
dominance variable(s) (D), which represent intra-locus allelic interaction effects. One can 
also consider interactions between loci (inter-locus nonlinear effects, i.e., epistasis), although 
in practice such effects are hard to resolve in the non-experimental designs typically used in 
GCSM. With respect to environmental effects, environmental effects that are shared by 
family members (shared environment; C), and individual-specific environmental effects 
(unshared environment; E) are distinguished. In the classical twin design, the latter 
contribute to the phenotypic differences between the twins, and the former contribute to 
resemblance among the twins. Note that environmental influences are defined in terms of 
their effect. For instance, twins may be exposed to the shared event of parental divorce, but 
the effects of divorce on the individual twin pair members may differ. Thus, a shared event 
can have a specific (unshared) consequence, which will contribute to what is interpreted as 
specific or unshared environmental effects.  

The identification of model parameters in GCSM is achieved by incorporating in the 
model the information on the degree of genetic and environmental relatedness among 
different types of relatives (Evans et al., 2002; Falconer & Mackay, 1996; Mather & Jinks, 
1971). In the classical twin design the sample consists of MZ and DZ twin pairs. DZ twins 
share an average of 50% of their polymorphic (also termed segregating) genes and MZ twins 
share 100% of their genetic material, as they arise from a single fertilized egg. This 
information is used in model specification as follows: the A factors correlate 1 in MZ twins 
and .5 in DZ twins, while the D factors correlate 1 in MZ twins and .25 in DZ twins 
(Falconer & Mackay, 1996). Shared environmental factors C correlate unity across twins, 
regardless of zygosity, and unshared environmental factors E correlate zero2.  

All designs in GCSM include specific assumptions and limitations. For instance, in 
the classical twin design, a model including effects of A, C, D, and E is not identified. 
Researchers must therefore limit their comparisons to submodels including three of the four 
sources of individual differences, i.e., an ACE or ADE model (or submodels thereof). The DE 
model is biologically implausible (Falconer & Mackay, 1996). The twin design involves 
many further assumptions, some of which are mentioned below. For an exhaustive 
treatment we refer the reader to the literature (e.g., G. Carey, 2009; Plomin, Defries, 
McClearn, & McGuffin, 2008).   
 
GCSM based on the twin design 
 
GCSM based on the classical twin design can be used to analyze univariate and multivariate 
data. In the univariate case, the phenotypic measure is regressed on the genetic and 
environmental variables. For instance, the univariate ACE model can be expressed as:   
 

Pij = t + a*Aij + c*Cij + e*Eij, 
 

                                                
2 Carey (2009) suggested an alternative model in which the C and E latent variables are replaced by a variable T 
representing total environmental effects, which may correlate among family members to account for shared 
environmental effects. 

13



 

where Pij is the continuous phenotypic measure observed in the j-th member (j=1,2) of the i-
th twin pair. The genetic (A) and environmental variables (C and E) are unobserved, and as 
such are subject to standard identifying scaling constraints: the variances are fixed to unity, 
the means are fixed to zero. The parameter t represents the intercept, i.e., given the scaling 
constraints, the mean of the phenotype. We assume the phenotypic means of the twin pair 
members are equal (a testable assumption of the twin model). The parameters a, c, and e are 
regression coefficients that represent the effects of the A, C, and E factors on the phenotype. 
  

 
Figure 1. An ACE (left) and an ADE (right) univariate genetic factor model. 

 
Figure 1 depicts two examples of a univariate model for twin data. Assuming the variables 
have been centered, we can drop the intercept t from the path diagrams. The path diagrams 
graphically convey some of the assumptions associated with the twin model. For instance, 
barring the correlations as depicted, the A, C (D), and E variables are uncorrelated within 
and between twin pair members. The zero correlations between A and D, and between E 
and C, follow from their definitions. However, certain correlations (e.g., between A and E, 
or A and C) are fixed to zero by assumptions (not by any substantive theory). Any violation 
of such assumptions will bias estimates in the model (e.g., Purcell, 2002). Note also that 
absence of any interaction among the latent variables is assumed3. Expressing the ACE 
model for the mean-centered observations in matrix notation, we have:  
 

Pi = Ληi, 
 
where i represents twin pair, Pi

t = [Pi1 Pi2], 
 

Λ = a c e 0 0 0
0 0 0 a c e  , 

 
and ηi

t = [A1 C1 E1 A2 C2 E2]i. The expected covariance matrix is Σ = E[Pi Pi
t] = E[Ληiηi

tΛt] = 
ΛE[ηiηi

t]Λt = ΛΨΛt, where the correlation matrix of the latent variables is denoted Ψ. The 
correlation matrix Ψ contains the expected correlations among ηi

t = [A1 C1 E1 A2 C2 E2]i: 
 

                                                
3 Modeling genotype-environment correlation and genotype-environment interaction will be discussed in subsequent 
sections. 
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Ψ = 

1 0 0 ρk 0 0
0 1 0 0 1 0
0
ρk
0
0

0
0
1
0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , 

 
where ρk is the correlation between the twins’ additive polygenic factors, i.e., unity in MZ 
twins and .5 in DZ twins (the k subscript denotes zygosity). As Ψ differs over zygosity, we 
require a separate model for MZ and DZ twins, i.e., ΣMZ = ΛΨMZΛt and ΣDZ = ΛΨDZΛt. The 
actual structures of the 2x2 phenotypic covariance matrices are: 
 

Σk = σ
2
k11 σ2k12

σ2k21 σ2k22
a2+c2+e2 ρAka2+c2
ρAka2+c2 a2+c2+e2 , 

 
where k denotes zygosity, and the additive polygenic correlation ρAk is 1 in MZ and .5 in DZ 
twins. The standardized decomposition of variance is a2/σ2, c2/σ2, and e2/σ2, where σ2 
equals the total phenotypic variance (note σ2 = σ2

11 = σ2
22). The component is a2/σ2 is 

commonly denoted the narrow-sense heritability. In the ADE model (a2+d2)/σ2, the 
proportion of total genetic effects, is called the broad-sense heritability. 

Application of the univariate twin model has provided important insights into the 
structure of individual differences in a variety of psychological phenotypes such as 
personality, cognitive abilities, and psychopathology. For instance, it is now clear that C 
plays a minor role in determining individual differences on personality dimensions. 
Furthermore, the role of C in general intelligence is considerable in young children, but with 
increasing age, the role of C wanes, while that of A waxes. By young adulthood, the 
heritability of general intelligence is as high as .7, while shared environmental influences are 
no longer discernible (e.g., Bartels, Rietveld, Van Baal, & Boomsma, 2002; Boomsma et al., 
2002).  

As demonstrated originally by Martin and Eaves (1977), a powerful feature of GCSM 
lies in the possibility to analyze multivariate phenotypes. Two examples of a multivariate 
ACE twin model are depicted in Figure 2. First consider the model on the right. While we 
have dropped the C factors from the model to avoid clutter in the figure, we include C in the 
following representation of the model:  

 
Pi = Ληi, 

 
where i represents twin pair, Pi

t = [Pi11 Pi21 Pi31 Pi12 Pi22 Pi32]i, 
 

Λ = ΛA ΛC ΛE 0 0 0
0 0 0 ΛA ΛC ΛE

 , 

 
and ηi

t = [A11 A21 A31 C11 C21 C31 E11 E21 E31 A12 A22 A32 C12 C22 C32 E12 E22 E32]i. The 3x3 matrix 
ΛA contains the regression coefficients in the regression of the phenotypes on the additive 
genetic factors (ΛC and ΛE are defined analogously): 
 

ΛA = 
a11
a21 a22a32 a32 a33

 . 
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The implied phenotypic covariance matrices can be expressed as Σmz = ΛΨmzΛt and Σdz = 
ΛΨdzΛt, where 
 

Σk = Σk11 Σk12
Σk21 Σk22

ΛAΛA
t+ΛCΛC

t+ΛEΛE
t   ρAkΛAΛA

t+ΛCΛC
t

ρAkΛAΛA
t +ΛCΛC

t   ΛAΛA
t+ΛCΛC

t+ΛEΛE
t     , 

 
and k, as above, denotes zygosity. Given p phenotypes, Σk11 (Σk22) is the expected pxp 
phenotypic covariance matrix of twin 1 (twin 2), and Σk12 is the expected pxp twin 1 - twin 2 
phenotypic cross-covariance matrix.    
 

 
Figure 2. Multivariate genetic factor models with single (left) and multiple (right) genetic 
and environmental factors. 
 
It is important to note that in the right panel of Figure 2, the phenotypic covariance matrix 
Σ11 (Σ22) is decomposed into covariance matrices ΣA=ΛAΛA

t, ΣC=ΛCΛC
t, and ΣE=ΛEΛE

t, where 
ΛA (shown above), ΛC, and ΛE are lower triangular matrices. This triangular decomposition 
has the advantage that the sum of the underlying covariance matrices (ΣA+ΣC+ΣE) yields a 
covariance matrix that is almost certainly positive definite (M. C. Neale & Cardon, 1992). 
Beyond this restriction, the underlying covariance matrices are not modeled. However, the 
covariance matrices ΣA, ΣC and ΣE may themselves be subjected to covariance structure 
modeling. That is, we can specify any model for each of the covariance matrices underlying 
the phenotypic covariance matrix. For example, see the left panel of Figure 2, where we have 
introduced common A, C, and E factors, and residuals that represent the effects of error and 
phenotype-specific environment. The model for the unshared environmental effects is now a 
standard factor model (Lawley & Maxwell, 1971), i.e., ΣE = ΛEΨEΛE

t+ΘE. The path diagram is 
overly simple (e.g., genetic and shared environmental residuals may be added), but it 
illustrates the principle of modeling the genetic and environmental covariance matrices. 
 
Examples of GCSM based on the twin design 

By multivariate GCSM, we obtain the decomposition of covariances among the phenotypes, 
and thus insight into the cause of phenotypic covariation. For instance, phenotypic 
measures of depression and anxiety covary quite considerably (Angold, Costello, & Erkanli, 
1999; Brady & Kendall, 1992). Multivariate GCSM has been used to estimate the 
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contributions of genetic and environmental factors to the phenotypic covariance (e.g., 
Hettema, Prescott, & Kendler, 2004; Kendler, Heath, Martin, & Eaves, 1987). Interestingly, 
from these analyses it appears that the distinction between anxiety and depression is not a 
function of genetic differences, since the additive genetic factors that underlie anxiety and 
depression are hardly separable; rather, the distinction between these disorders appears to 
be driven by the unique environmental covariance structure. GCSM has also been used to 
study the genetic and environmental contributions to the intercorrelations among cognitive 
ability tests (e.g., subtests of the WAIS or the WISC). For instance, the phenotypic covariance 
structure of the WAIS can be represented by a hierarchical factor model with three or four 
first-order factors, and a second-order general factor. Rijsdijk, Vernon, & Boomsma (Rijsdijk, 
Vernon, & Boomsma, 2002) found that the underlying additive genetic influences resembled 
the hierarchical phenotypic structure, while the structure of the underlying unshared 
environmental influences resembled a single factor model.  

Both growth curve and simplex models have been applied in twin studies to study 
the roles of genetic and environmental factors in development. Applied phenotypically, 
growth curve models are used to study individual differences in growth curves by 
regressing repeated measures on the (appropriately coded) time index. Often, a polynomial 
regression model is used, which may include higher order components to accommodate 
non-linearity (see M. C. Neale & McArdle, 2000, for other nonlinear models). A simple linear 
model may be conveyed as Xit = Ii + t*Si + εit, where Xit is the phenotypic measure of subject i 
at occasion t (t=0,1,2,...), I is the random intercept and S is the random slope (Figure 3). The 
phenotypic mean at occasion t is E(Xt)=E(I)+ t*E(S). In a growth curve model, regression 
coefficients (S and I), are random over subjects, which allows for individual differences in 
the form of the growth curve. The covariance matrix of interest is therefore: 

 

Ψ = σ
2
I   σIS

σIS   σ2S  
 
Using GCSM, this covariance matrix can be decomposed into genetic and environmental 
components (e.g., Ψ = ΨA + ΨC + ΨE), which provides a window on the role of genetic and 
environmental factors in growth or decline (e.g., McArdle, 1986). A notable area of 
application of growth curve modeling is that of age-related changes in cognitive abilities 
(e.g., McArdle, Prescott, Hamagami, & Horn, 1998; Reynolds, Finkel, Gatz, & Pedersen, 
2002; Reynolds et al., 2005), especially with regard to cognitive decline. Multiple studies of 
aging have demonstrated, for instance, that additive genetic factors account for most of the 
variance in intercept (or level) in adults of age 50 or more, whereas the rate of change 
(decline) is primarily affected by unshared environmental factors (e.g., Reynolds et al., 
2002). The model has also been applied in other research areas, such as personality, 
psychopathology (e.g., Burt, McGue, Carter, & Iacono, 2007; Kendler et al., 2007) and health 
research (e.g., Hjelmborg et al., 2008). 

An alternative approach to the analysis of repeated measures is provided by the 
simplex model. The simplex model is used to assess stability over time, by regressing the 
data at occasion t (t=1,…,T) on data at the preceding occasion (t-1) (Boomsma & Molenaar, 
1987; Eaves, Long, & Heath, 1986; Hewitt, Eaves, Neale, & Meyer, 1988). The simplex model 
is depicted in Figure 3. To ease presentation we limit the model to additive genetic (A) and 
unshared environmental influences (E). In this model, the phenotypic variable X measured 
at time point t, Xt, is related to the additive genetic and unshared environmental factors At 
and Et (t=1,…,T). Simplex models, or first order autoregressions, are specified to account for 
the stability and change at the level of the At and Et. For instance, for the unshared 
environmental part, the autoregression is Et=βEt,t-1*Et-1+ζEt, and the implied decomposition of 

17



 

variance is βEt,t-1
2σ2

Et-1+ σ2
ζEt. The simplex model has been applied extensively in GCSM. For a 

study of repeatedly measured full scale IQ at age 5, 7, 10, and 12, see Bartels, et al. (Bartels et 
al., 2002). Hoekstra, Bartels, and Boomsma (R. A. Hoekstra, Bartels, & Boomsma, 2007) 
applied the model to repeatedly measured verbal and nonverbal IQ tests administered at 5 
occasions from ages 5 to 18 (see also Bishop et al., 2003; Eaves et al., 1986; Petrill, Lipton, 
Hewitt, & Plomin, 2004; Rietveld, Dolan, Van Baal, & Boomsma, 2003). Generally, these 
studies found that the observed temporal stability in cognitive performance was due to a 
single common genetic factor, and a common shared environmental factor. The latter 
declined in effect over the years, such that it was all but absent in early adulthood. In 
addition, age-specific additive genetic factors emerged at different ages (i.e., σ2

ζAt ≠ 0), partly 
accounting for the lack of complete temporal stability. The genetic simplex model has also 
been applied in other domains, such as personality (e.g., Gillespie, Evans, Wright, & Martin, 
2004; Pedersen & Reynolds, 1998) and psychopathology (e.g., Boomsma, Van Beijsterveldt, 
& Hudziak, 2005a; Gillespie, Kirk, et al., 2004).  
 

 

Figure 3. A linear growth curve (left) and a simplex AE (right) genetic covariance structure 
model. 

 
Structural equation models developed within genetics 
 
The examples of GCSM discussed above essentially involve the simultaneous estimation 
and modeling of the covariance matrices ΣA, ΣC (or ΣD), and ΣE. The fact that these matrices 
may be subjected to any identified SEM resulted in the full scale adoption of SEM in GCSM. 
However, the twin design itself and its various extensions (e.g., the use of parental ratings of 
the twins) posed modeling challenges and provided unique modeling possibilities. We now 
discuss several models that were developed in GCSM of twin data. These models include 1) 
the common and independent pathway factor models, 2) moderation models, 3) sex 
interaction models, and 4) direction of causality models.    
 
Factor models: common pathway and independent pathway models 
 
 With regard to the relationship between the genetic and environmental factors, on the one 
hand, and the observed phenotypes, on the other, two kinds of factor models may be 
distinguished: the common pathway model and the independent pathway model (Kendler 
et al., 1987; McArdle & Goldsmith, 1990). The common pathway model is depicted in the left 
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panel of Figure 4. In this model, the influences of A, C (or D), and E on the phenotypes are 
mediated by a latent phenotype, represented by the common factors P1 and P2 in Figure 4. In 
this model, the factors P1 and P2 generally have substantive interpretations (e.g., neuroticism 
or verbal intelligence). The latent phenotypes mediate the genetic and environmental effects, 
as the path from the A, C, and E factors to the observed phenotypes runs via the latent 
phenotype. In the common pathway model, the observed variables may be interpreted as 
indicators of the latent phenotype (Mellenbergh, 1994).  

 

 
Figure 4. A common pathway (left) and an independent pathway (right) genetic factor 
model. 
 
In the independent pathway model (Kendler et al., 1987), or the biometric factors model 
(McArdle & Goldsmith, 1990), the common factors A, C, and E influence the phenotypes 
directly; these is no mediating phenotypic common factor. A simple instance of this model is 
shown in the right panel of Figure 4. We can convey the common pathway model as 

 
Σk11 = Σk22 = ΛΨΛt + Θcp = Λ(ΨA + ΨC + ΨE)Λt + Θcp 

Σk11 = Σk22 = Λ(ΓAΦAΓA
t + ΓCΦCΓC

t + ΓEΦEΓE
t)Λt + Θcp 

Σk21 = Λ(ρAkΨA + ΨC)Λt + Θcp21 = Λ(ρAkΓAΦAΓA
t + ΓCΦCΓC

t)Λt + Θcp21, 
 
and the independent pathway model as 
 

Σk11 = Σ22 = ΛAΦAΛA
t + ΛCΦCΛC

t + ΛEΦEΛE
t + Θip 

Σk21 = ρAkΛAΦAΛA
t + ΛCΦCΛC

t + Θip21.
 
Here, ΦA, ΦC, and ΦE are the covariance matrices of the A, C, and E factors, respectively. In 
the common pathway model, the covariance matrix of the psychometric factor, Ψ, equals 
ΨA + ΨC + ΨE, i.e., ΓAΦAΓA

t
 + ΓCΦCΓC

t
 + ΓEΦEΓE

t, where ΓA, ΓC, and ΓE are the vectors of 
factor loadings. The Λ (in the common pathway model) and ΛA, ΛC, and ΛE (in the 
independent pathway model) vectors contain the factor loadings of the indicators on the 
psychometric factor, and on the biometric (A, C, and E) factors, respectively. Note that in 
both models the matrices Θ (denoted Θcp and Θip, as they may vary over the models) 
contain the residuals of the indicators in the model. By considering two phenotypes (xj1, 
j=1,2) in the common pathway model: 
 

X1 = λ1 (aA + cC + eE) + ε11 = λ1aA1 + λ1cC1 + λ1eE1 + ε1, 
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X2 = λ2 (aA + cC + eE) + ε12 = λ2aA1 + λ2cC1 + λ2eE1 + ε2, 
 
and the independent pathway model:  
 

X1 = a1A1 + c1C1 + e1E1 + ε1, 

X2 = a2A1 + c2C1 + e2E1 + ε2, 
 
we note that the common pathway model is nested under the independent pathway model, 
i.e., that we may derive the common factor model from the independent pathway model by 
imposing appropriate proportionality constraints on the factor loadings. Specifically, the 
introduction of the constraints a1/a2=c1/c2=e1/e2 renders the common and the independent 
pathway equations above equivalent (see also Yung, Thissen, & McLeod, 1999). Hence, 
restrictions of the common pathway models can be tested using a likelihood ratio test. Such 
comparisons are particularly useful in addressing methodological issues pertaining to the 
conceptual status of latent variables (Franić, Dolan, Borsboom, Hudziak, et al., 2013). 
Specifically, if the independent pathway fits better than the corresponding common 
pathway model, we may conclude that the genetic and environmental influences on the 
indicators in the model are not fully mediated by the phenotypic latent variable (i.e., the 
psychometric factor). If the measured phenotypes are taken as indicators of the phenotypic 
latent variable, this calls into question the substantive meaning of the phenotypic latent 
variable. Ideally, if the common factor obtained in a phenotypic analysis represents a 
substantive unitary construct, and the phenotypes are indicators of this construct, one 
would expect the genetic and environmental influences on the indicators of the construct to 
be mediated by the construct.  

The independent pathway model may be applied in a purely exploratory manner to 
determine the (possibly different) dimensionalities of the covariance matrices ΣA, ΣC (or ΣD), 
and ΣE. For example, Kendler, et al. (Kendler et al., 1987) concluded that the dimensionality 
of anxiety and depression symptoms differs with respect to genetic and environmental 
factors; while genetic factors appear to represent a unidimensional structure affecting the 
overall level of symptoms, environmental influences distinctly affect symptoms of anxiety 
and symptoms of depression, giving rise to the observed phenotypic clustering of the two 
disorders.  
 
Genotype-environment interaction 
 
The possibility of genotype by environment interaction (G x E) is widely recognized in 
human genetics and, if present, may have a biasing effect on estimates obtained in the 
standard twin model. We speak of G x E if an environmental variable moderates the genetic 
effects in the sense that the magnitude of the genetic variance varies over the levels of the 
moderator. Similarly, a genetic variable (a given genotype) may moderate environmental 
effects.  

The phenotypic variance in the presence of G x E may be expressed as σ2
P = σ2

G + σ2
E 

+ σ2
GxE, where σ2

GxE represents variance due to the interaction. In the twin model, the effect 
of the interaction depends on the exact nature of the interaction (Purcell, 2002). In the ACE 
twin model, the variance due to A x C interaction cannot be distinguished from the A 
variance. Thus A x C interaction will result in overestimation of the A variance. On the other 
hand, variance due to A x E interaction cannot be distinguished from E variance. 

Several methods have been proposed to detect interaction in the twin model. Jinks 
and Fulker proposed the regression of MZ twin pair differences on MZ twin pair sums 
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(Eaves, 1984; Jinks & Fulker, 1970). In this method, the MZ pair difference features as a 
measure of environmental variability, and the MZ pair means as measure of the polygenic 
effects. In the absence of G x E, the environment variability should not depend on the 
genotypic level, i.e., the regression coefficient should be zero (see van der Sluis, Dolan, 
Neale, Boomsma, & Posthuma, 2006, for a related method).  

Modeling G x E is relatively easier if one has measured the variable which moderates 
the genetic effects. Given a measured moderator, G x E can be modeled by fitting the twin 
model conditional on the moderator (e.g., in a multigroup model, with groups 
corresponding to the levels of the moderator). One can then test for homogeneity in A, C, 
and E variance components over the levels the moderator. For instance, Boomsma, de Geus, 
van Baal, and Koopmans (Boomsma, de Geus, van Baal, & Koopmans, 1999) found that the 
heritability of disinhibition (a personality trait related to sensation seeking), as estimated in 
the twin design, depended on whether the twins had a religious upbringing or not. In the 
latter case the heritability was about .45 (typical for personality traits; Boomsma et al., 2002), 
but in the former, it was less than .10.  

Purcell (Purcell, 2002) proposed a general method to accommodate a measured 
moderator in the twin model, where the moderator can be any variable (not necessarily 
environmental; Kendler & Baker, 2007; Plomin et al., 2008; Vinkhuyzen, van der Sluis, de 
Geus, Boomsma, & Posthuma, 2010; Vinkhuyzen, van der Sluis, & Posthuma, 2010). This 
method can also accommodate genetic and environmental effects on the moderator itself, 
and the possible correlation between the moderator and the trait. For instance, parenting 
style may moderate the heritability of neuroticism in children, but it is quite possible that 
the parenting style of the parents and the neuroticism of the children are correlated, either 
directly (say, common genetic influences), or indirectly (say, a highly neurotic child elicits a 
given parenting style).   

Purcell’s approach to modeling G x E is depicted in Figure 5. We limit the depiction 
to an AE model to ease presentation. In this model, M1 (M2) is the moderator measured in 
twin 1 (twin 2), and T1 (T2) is the phenotype of interest measured in twin 1 (twin 2). The 
models for the moderator Mi and the trait Ti are 

 
Mi = em*Eci + amAci 

Ti  = (ec + βec*Mi)*Eci + (ac + βac*Mi)*Aci + (eu + βeu*Mi)*Eui + (au + βau*Mi)*Aui. 
 

 
Figure 5. A G x E model (Purcell, 2002). The model accommodates moderation of the 
possible covariation between a measured moderator (M) and a phenotype (T), and the 
moderation of the residual genetic and environmental effects on T. In addition, the model 
includes the decomposition of the phenotypic variance of the moderator itself.  
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This model accommodates moderation of the covariance between the moderator and the 
trait [(ec+βec*Mi)*Eci + (ac+βac*Mi)*Aci], and moderation of the residual [(eu + βeu*Mi)*Eui + (au 
+ βau*Mi)*Aui], and includes the decomposition of the phenotypic variance of the moderator 
itself. Tests of moderation can be carried out by means of a likelihood ratio test. 

This bivariate moderation model describes the relations between T and M in such 
detail that computational problems (e.g., sensitivity to starting values, converging problems) 
may arise, especially if the covariance between trait T and moderator M is small. In addition, 
Rathouz et al. (Rathouz, Van Hulle, Rodgers, Waldman, & Lahey, 2008) have shown that 
this model sometimes produces spurious moderation effects. An alternative approach is to 
regress the trait directly on the moderators, without decomposing the variance of the 
moderator. The moderation of the regression of the trait on its genetic and environmental 
factors is retained (van der Sluis, Posthuma, & Dolan, 2012).  

The popularity of the G x E model is evident given its frequent use in twin studies on 
moderation in the context of, for instance, cognitive abilities (e.g., Bartels, van Beijsterveldt, 
& Boomsma, 2009), personality (e.g., Brendgen et al., 2009), health (e.g., Johnson & Krueger, 
2005), or brain morphology (e.g., Lenroot et al., 2009). This method of handling moderation, 
i.e., modeling moderation directly on the path parameters of the model, is also used in SEM 
outside the field of GCSM. Bauer and Hussong (Bauer & Hussong, 2009) applied it to test 
whether the parameters in the one factor model depend on a continuous moderator, or in 
the present case, a differentiation variable. Molenaar et al. (Molenaar, Dolan, Wicherts, & 
van der Maas, 2010) and Tucker-Drob (Tucker-Drob, 2009) used this method to investigate 
ability differentiation (Spearman, 1927) in the higher-order common factor model. 

Although G x E is frequently discussed in conjunction with genotype-environment 
correlation (rGE), G x E and rGE represent very different mechanisms. rGE refers to a non-
random distribution of genotypes over the environments. rGE may arise, for instance, from 
genetic control of exposure to environmental events (Kendler & Eaves, 1986). Examples of 
research on rGE include, e.g., a study by Kendler & Karkowski-Shuman (Kendler & 
Karkowski-Shuman, 1997), in which rGE was shown to explain the association between life 
events and depression. However, not all studies supported this finding (e.g., Middeldorp, 
Cath, Beem, Willemsen, & Boomsma, 2008).  
  
Sex interaction in the twin model 
 
An important possible moderator of genetic and environmental effects in the twin model is 
sex. The classical twin design can be broken down by sex, i.e., we can distinguish between 
same-sex pairs (MZ males, DZ males, MZ females, DZ females) and opposite-sex pairs 
(DZOS). This extended design, specifically the presence of DZ opposite-sex twins, provides 
the information to study both qualitative and quantitative sex differences in genetic and 
environmental effects. Figure 6 depicts a partial path diagram of a general sex limitation 
model (Eaves et al., 1978; M. C. Neale & Cardon, 1992), conveying both quantitative and 
qualitative sex differences. In the former case, the genetic factors are the same, but sex 
modulates their effects. In the latter case, different genetic factors (different genes) are 
expressed in men and women. To model quantitative effects, the genetic and environmental 
correlations (ρA and ρC) in opposite-sex DZ twin pairs are constrained to equal those in 
same-sex DZ twin pairs (.5 and 1, respectively), while the genetic and environmental factor 
loadings (a, c, and e) may differ across the sexes. This covariance structure implies that the 
Af (Cf) and Am (Cm) factors represent sets of genes (environmental influences) common to 
both sexes, but not necessarily of the same magnitude of effect in males and females. In 
addition, a sex-specific additive genetic factor (A’m), uncorrelated with other additive 
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genetic factors in the model, is specified. This factor represents genetic effects unique to the 
phenotype of one, in this example male, sex. Note that we may also choose to model a sex-
specific C factor, but cannot model both A’m and C’m. The model is fitted in a multi-group 
analysis, in which the parameters pertaining to men are equated across male groups (e.g. 
MZM, DZM and males from opposite-sex pairs) and the same is done for parameters 
pertaining to women. As a result, the expectations of variances are equal within, but not 
necessarily between, the sexes.  
 

 
Figure 6. A general sex-limitation ACE model. 

 
Testing for the presence of quantitative and qualitative sex differences may be performed by 
likelihood ratio tests based on the loglikelihood of the general sex-limitation model, and that 
of its various subset models.  

The sex interaction model has been used extensively in various domains of genetics 
research, such as psychopathology (e.g., Boomsma, van Beijsterveldt, & Hudziak, 2005b; 
Eley & Stevenson, 1999; Rice, Harold, & Thapar, 2002a), intelligence (e.g., Bartels et al., 
2002), personality (e.g., Eaves, Heath, Neale, Hewitt, & Martin, 1998; Rettew et al., 2006), 
health and well-being (e.g., Mosing, Pedersen, Martin, & Wright, 2010; Roysamb, Harris, 
Magnus, Vitterso, & Tambs, 2002; Schousboe et al., 2003), physiological traits (e.g., Weiss, 
Pan, Abney, & Ober, 2006), and substance abuse research (e.g., Prescott, Aggen, & Kendler, 
1999, 2000). These studies generally indicate absence of any substantial sex-related 
differences. However, there are exceptions. For instance, Eaves, et al. (Eaves et al., 1998) 
found that the relative contribution of non-additive genetic effects to neuroticism is larger in 
males. Rettew, et al. (Rettew et al., 2006) showed that different genes may produce variation 
in neuroticism in male and female adolescents.  
 
Direction of causation model 
 
So far we have considered models in which the measured phenotypes are dependent 
variables and the genetic and environmental variables are independent variables. Twin 
models in which the measured phenotypes may be related directly, i.e., models in which the 
phenotypes are not strictly dependent variables, have also been developed. These models 
include longitudinal models (Eaves et al., 1986), the sibling interaction model (G. Carey, 
1986), and the direction of causality (DOC) model (Heath et al., 1993). The DOC model is 
interesting from a SEM point of view as this twin model allows one to test hypotheses 
concerning the direction of causality among two (or more) phenotypes. For instance, a 
correlation between psychopathology and recall of early childhood environment may be 
due to a causal influence of the childhood environment on psychopathology (A → B), or, for 
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instance, to a biasing effect of current psychopathology on recall of childhood environment 
(B → A) (Heath et al., 1993). An instance of a bivariate genetic model with a reciprocal 
causal relationship between two indicator variables is depicted in Figure 7. Note that in this 
example, the model for trait x is an ADE model, while the model for trait y is a CE model.  
 

 
Figure 7. A bivariate genetic covariance structure model with a reciprocal causal relationship 
between the two indicator variables (Heath et al., 1993). 
 
The expectations for the cross-relative cross-trait covariance (CRCTC, i.e., the covariance 
between trait x (y) in relative 1 and trait y (x) in relative 2) derived under this model may be 
employed to test hypotheses about the direction of causation between the two indicator 
variables. Specifically, consider the case in which trait x exerts a causal influence on trait y (x 
→ y). Given that the variances of the latent factors are scaled at 1, the expected covariance 
structure is: 
 

Σ11 = Σ22 = ax2 + dx2 + ex2 iyx(ax2 + dx2 + ex2)
iyx(ax2 + dx2 + ex2) cy2 + ey2 + iyx2(ax2 + dx2 + ex2)

 , 

 

Σk21 = Σk12
t = rAax2 + rDdx2 iyx(rAax2 + rDdx2)

iyx(rAax2 + rDdx2) rCcy2 + iyx2(rAax2 + rDdx2)
 , 

 
where iyx(rAax

2 + rDdx
2) is the expectation for the CRCTC. Conversely, if y → x, the expected 

CRCTC can be shown to be ixyrCcy
2. Given that the CRCTC depends on rA and rD if x → y, 

and on rC if y → x, a comparison of CRCTCs in groups of different degrees of genetic and 
environmental relatedness is informative about the direction of causality. For instance, if x 
→ y, CRCTC is positive in biological relatives, but its magnitude will depend on the degree 
of genetic relatedness. Alternatively, if y → x, CRCTC will be positive and independent of 
the degree of genetic relatedness in individuals reared in the same family, and zero in 
individuals reared in separate families. Family data will, however, only be informative 
about direction of causality if the phenotypes have different modes of inheritance, i.e., if the 
effects of A, C (D), and E differ across the two phenotypes.  

In the DOC model depicted in Figure 7, the latent genetic and environmental factors 
affecting each of the two traits are uncorrelated; thus the only mechanism that generates the 
correlation between traits x and y is the unidirectional causal effect of x on y, or of y on x (or 
bidirectional causal effects, which may be resolved using models with multiple indicators; 
Heath, et al., 1993). The standard bivariate twin model, in contrast, models the phenotypic 
correlation between x and y as a function of the underlying genetic and environmental 

24



 

correlations. Given that the DOC model is nested under the general bivariate model (Heath 
et al., 1993), the fit of both uni- and bidirectional causal models can be compared to that of 
the general bivariate model by means of a likelihood ratio test.  

Thomsen, et al. (Thomsen et al., 2009) applied the this model to data on asthma and 
severe respiratory syncytial virus (RSV) infection, and found that the high positive 
association between these phenotypes is not due to RSV causing asthma, but to both 
phenotypes reflecting a common genetic predisposition. In the area of intelligence research, 
Luciano, et al. (Luciano et al., 2005) showed that the well-established correlation between 
inspection time (a measure of perceptual discrimination speed; IT) and general cognitive 
ability is due neither to the efficiency of IT increasing general cognitive ability, nor to 
general ability affecting IT. Instead, both processes seem to be indicators of common genetic 
factors. De Moor et al. (de Moor, Boomsma, Stubbe, Willemsen, & de Geus, 2008) used 
bivariate genetic modeling, analyses of longitudinal data and intra-pair differences in 
identical twins to show that the association between exercise and symptoms of anxiety and 
depression is not due to causal effects of (lack of) exercise. 

In all models considered above the genetic (or polygenic) factors featured as latent 
variables, which represent the action of many polymorphic genes. In the final section of this 
chapter, we briefly discuss the incorporation of measured genes in genetic association 
analysis. 
 
From genetic latent variables to measured genetic markers: association analysis 
 
Developments in high-throughput genotyping technologies have enabled geneticists to 
measure vast amounts of genetic information directly (Slagboom & Meulenbelt, 2002). 
Consequently, twin and family registries now include measured genotypic material in the 
form of genetic markers, alongside phenotypic data. Accordingly, the aim of studies has 
shifted towards localizing and identifying individual genes that contribute to variation in 
complex phenotypes (Cherny, 2008; Guo & Adkins, 2008; Vink & Boomsma, 2002). Such 
genes are generally expected to have a relatively small effect (<1% of the phenotypic 
variance), and are referred to as quantitative trait loci (QTLs). In this section we outline how 
information on genetic markers has been incorporated in SEM. 

A genetic marker is a DNA sequence with a known chromosomal position. This 
sequence is measurable and is polymorphic, i.e., displays inter-individual variation (i.e., 
there are at least 2 alleles). The marker may be (part of) a functional gene of interest (i.e., a 
candidate gene), but that is not necessarily the case. Markers are used in two ways to 
identify the QTLs that contribute to individual differences in the trait of interest: linkage and 
association analysis. Both methods hinge on the phenomenon of co-segregation, i.e., the fact 
DNA variants located closely together on the same chromosome are not inherited 
independently. This means that a marker can serve as an indicator of functional genes in its 
chromosomal vicinity. Linkage analysis is carried out in pedigrees, in which long stretches 
of DNA are shared among family members. Genetic association tests are usually performed 
in samples of unrelated subjects, either patients (cases) and controls, or subjects who differ 
phenotypically on a quantitative scale. Although both linkage and association analysis have 
been incorporated in SEM (e.g., Hottenga & Boomsma, 2008), here we discuss association 
analysis, as this technique currently dominates gene hunting enterprises and is 
characterized by a higher statistical power to identify genes of relatively small effect (see e.g. 
T.A. Manolio & Collins, 2009). 

Distant loci (or loci on different chromosomes) are subject to recombination as a 
consequence of chromosomal crossing over during meiosis (the formation of gametes). 
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However, when large numbers of markers are genotyped (e.g. typically 0.5 to 1.5 million 
variants), the chromosomal locations of a QTL and a marker may be so close that 
configurations of the alleles (i.e., haplotypes) are almost always transmitted from parents to 
offspring as single units. This means that at the population level a marker allele (say M1 of a 
marker locus with alleles M1 and M2) almost always forms a haplotype (M1-Q1) with a 
given allele of at a QTL location (say Q1 at a QTL locus with alleles Q1 and Q2). The 
observed marker allele can therefore serve as indicator of the QTL allele. The closer the 
marker is to the QTL on the chromosome (the more tightly they are linked), the more 
reliable it is as an indicator, as the process of crossing over is less likely. High resolution 
microarrays typically assess genetic variants called SNPs (single nucleotide polymorphisms) 
that have two alleles and whose minor alleles frequencies (MAF) are not extremely low. The 
reliability of a SNP as an indicator can be expressed in terms of the degree of linkage 
disequilibrium, i.e., a measure of the extent to which a SNP allele at locus M is predictive of 
the presence of an allele at locus Q in the population (Wray & Visscher, 2008). 

In the case of a continuous phenotype, association analysis involves the regression of 
the phenotype on the number of M1 (or M2) alleles observed in each subject. If explained 
variance is statistically significant, the marker itself (say, if it is situated within a candidate 
gene), or a QTL in the vicinity of the SNP is associated with the phenotype. Note that this 
analysis can be carried out in samples of unrelated individuals, if the sample is genotyped 
across the genome. Given multivariate phenotypes, one can consider a multivariate test. 
Ferreira and Purcell (Ferreira & Purcell, 2009) considered the power of MANOVA given 
varying number of phenotypes (5, 10, and 20), of which a varying number were affected by 
the QTL. They found that the multivariate test was more powerful than univariate tests, 
with 1) increasing correlations among the phenotypes and 2) increasing number of 
phenotypes affected (i.e., by the QTL) increasing the power. They noted a sharp loss of 
power of the multivariate test when all phenotypes were affected by the QTL.  

Given multivariate data, one can also consider embedding the test of association in a 
proper SEM. Medland and Neale (Medland & Neale, 2010) considered single factor models 
with 3 or 5 indicators, in unrelated cases and in sib pairs. They varied the locus of the effect 
of the QTL in the factor model such that it was part of the common factor, thus conveying its 
effect via the factor loadings on all variables, common to all phenotypes, but not conveyed 
via the factor, or common to some phenotypes, but not conveyed via the factor. The main 
conclusion is that their combined multivariate approach (where the QTL effect is conveyed 
via the common factor, or the QTL affects the phenotypes directly) was almost universally 
as powerful as, or depending on specific circumstances more powerful than, the univariate 
tests using weighted or unweighted sumscores. Van der Sluis et al. (van der Sluis, Verhage, 
Posthuma, & Dolan, 2010) discussed the power to detect the effects of genetic variants in the 
context of uni- and multidimensional common factor models, and contrasted the power in 
these designs to the sum score operationalisation in the case that the sum score is not a 
sufficient statistic (i.e., the sum score entails a loss of information). They showed that the 
sum score is as powerful as the factor analytic design only under very specific 
circumstances. In addition, they discussed how violations of measurement invariance across 
multiple samples or with respect to the genetic variant itself, affect the power to detect 
genetic variants. Violations with respect to the genetic variant itself proved very 
disadvantageous in both the sum score model as well as in incorrectly specified factor 
models. Van der Sluis et al. considered association tests in factor models fitted to ordinary 
samples (not genetically informative). Medland and Neale also considered sib data (e.g. DZ 
twins), as these allow one to test for stratification (i.e., spurious association due to 
population heterogeneity; Fulker, Cherny, Sham, & Hewitt, 1999). Minica, et al. (Minică, 
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Boomsma, Van Der Sluis, & Dolan, 2010) considered the incorporation of the marker 
information in a variety of structural equation models, including the simplex model and the 
multiple factor model. They considered both twin samples and ordinary samples. Overall, 
their results were consistent with Medland and Neale (Medland & Neale, 2010), and van der 
Sluis et al. (van der Sluis et al., 2010).  

Other statistical issues in genetic association studies include the multiple testing 
problem (when e.g. more than a million SNPs are tested), meta-analyses to combine 
association tests, and the fact that a statistically significant association is not yet proof of a 
causal relation between the gene and the phenotype. In addition, rare genetic variants are 
difficult to hunt down in association tests, and attention has consequently shifted to large 
sequencing projects. 
 

 
Figure 8. A genetic association model. 

 
 
Discussion 
 
The aim of the present chapter was to discuss SEM as applied in human quantitative 
genetics. We have concentrated on the classical twin design, as this provides a good basis for 
understanding genetic covariance structure modeling. Given its various assumptions, the 
twin design applied to multivariate phenotypic data provides the information to estimate 
the genetic and environmental covariance matrices underlying the phenotypic covariance 
matrix. As we discussed, any structural equation model that can be fitted to the phenotypic 
covariance matrix can be fitted to the genetic and environmental covariance matrices. An 
important fact is that the genetic covariance structure does not necessarily resemble the 
environmental covariance structure. The phenotypic structure may resemble either, or 
indeed neither. For instance, Rijsdijk et al. (Rijsdijk et al., 2002) in their analysis of the WAIS 
showed that the hierarchical phenotypic structure resembled closely the additive genetic 
structure, whereas the unshared environmental structure was a single factor model. One 
model in which the relationships between the genetic, environmental, and phenotypic 
covariance structures are compared explicitly is the common pathway model (e.g., Franić, 
Dolan, Borsboom, Hudziak, et al., 2013). This model implies that all three have the same 
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structure (i.e., are isomorphic). This follows from the fact that the phenotypic latent 
variables mediate the effect of the genetic and environmental factors on the indicators. 
Interestingly, the isomorphism implied by the common pathway model appears to be the 
exception rather than the rule. Often, therefore, the phenotypic structure is a function of two 
qualitatively different underlying structures. The fact that the phenotypic structure is in 
effect a weighted average of distinct underlying genetic and environmental structures 
underlines the theoretical importance of GCSM. 

In the sections that followed, we reviewed a selection of models developed within 
genetics and suited specifically to address research questions arising in this particular field 
(such as, for instance, the possible moderation of genetic and environmental effects on the 
phenotype, or the direction of causation between observed variables). The utility of these 
models is evident given their widespread use in genetics research. However, the classical 
twin design represents only the most basic design employed in the field, and many 
extensions to this design are currently in use. These more elaborate designs usually involve 
adding one or more relatives to the study, which greatly enhances the resolution to detect 
more subtle effects, and increases the assemblage of research questions that may be 
addressed (for an overview see e.g. Boomsma et al., 2002; Truett et al., 1994). For instance, 
the inclusion of parents of twins allows one to study the effects of social homogamy and 
cultural transmission (Eaves, Fulker, & Heath, 1989; Rao, Morton, & Yee, 1974) or 
differential gene expression as a function of age (see e.g. Snieder, van Doornen, & Boomsma, 
1997). Including spouses of twins allows one to study assortative mating (Eaves, 1979; Heath 
& Eaves, 1985). The inclusion of siblings of twins makes it possible to examine social 
interactions and special twin effects, such as prenatal hormone transition or shared prenatal 
environment (see e.g. Stoel, De Geus, & Boomsma, 2006), and including offspring of MZ 
twins (who are genetically half-sibs but socially cousins) allows for the study of maternal 
effects and imprinting (see, e.g., Nance, Kramer, Corey, Winter, & Eaves, 1983). In addition, 
adding relatives to the twin model results in an increase in power to detect and distinguish 
between different sources of variation (see also Dolan, Boomsma, & Neale, 1999; Posthuma 
& Boomsma, 2000). 

In the present chapter we focused on continuous outcome measures; however, the 
possibility to model discrete data using the liability-threshold model (Falconer & Mackay, 
1996) has also been developed. The liability-threshold model assumes the discrete 
phenotype to be a manifestation of an underlying continuous liability distribution, with one 
or more thresholds imposing a discontinuity on the visible expression. Estimation of 
thresholds and polychoric correlations allows one to specify models with respect to the 
underlying liability distributions rather than the observed discrete indicators. This model 
bears a close resemblance to the ordinal factor model as commonly applied in SEM.  

As mentioned, the present chapter addressed only a selection of models employed in 
GCSM. More recent developments include, for instance, genetics applications of mixture 
modeling (B. O. Muthén, Asparouhov, & Rebollo, 2006), or extensions of GCSM to include 
linear feedback or recursiveness between multivariate phenotypes (Gianola & Sorensen, 
2004). Finally, we note that GCSM may be performed using any standard SEM software, 
e.g., Mx (M. C. Neale, 2000), the OpenMx package in R (Boker et al., 2010; R Core Team, 
2013), MPlus (L. K. Muthén & Muthén, 2007), or LISREL (Jöreskog & Sörbom, 2006). 
Extensive libraries containing Mx specifications of most of the models discussed in this 
chapter are available at http://www.psy.vu.nl/mxbib/ (Posthuma & Boomsma, 2005) and 
http://www.vcu.edu/mx/examples.html (M. C. Neale, 2007).  
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Chapter 3 
 
Can Genetics help Psychometrics? Improving 
Dimensionality Assessment through Genetic Factor 
Modeling 
 
 
Abstract 
 
In the present chapter, we discuss the role that quantitative genetic methodology may play 
in assessing and understanding the dimensionality of psychological (psychometric) 
instruments. Specifically, we study the relationship between the observed covariance 
structures, on the one hand, and the underlying genetic and environmental influences 
giving rise to such structures, on the other. We note that this relationship may be such that it 
hampers obtaining a clear estimate of dimensionality using standard tools for 
dimensionality assessment alone. One situation in which dimensionality assessment may be 
impeded is that in which genetic and environmental influences, of which the observed 
covariance structure is a function, differ from each other in structure and dimensionality. 
We demonstrate that in such situations settling dimensionality issues may be problematic 
using standard factor analytic techniques, and propose using quantitative genetic modeling 
to uncover the (possibly different) dimensionalities of the underlying genetic and 
environmental structures. We illustrate using simulations and an empirical example on 
childhood internalizing problems.  
 
Appendices can be obtained at http://sanjafranic.com/dissertation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Dolan, C. V., Borsboom, D., Hudziak, J. J., van Beijsterveldt, C. E. M., & 
Boomsma, D. I. (2013) Can Genetics Help Psychometrics? Improving Dimensionality 
Assessment Through Genetic Factor Modeling. Psychological methods, 18(3), 406-433. 
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It could be argued that all psychometric modeling starts and ends with the assessment of 
dimensionality, i.e., with the determination of the number of latent psychological attributes 
that are measured through a set of indicators (e.g., questionnaire items, subtest scores etc). 
Psychometrics starts with dimensionality assessment because some idea of how many 
attributes one intends to measure, however implicit, guides the test construction and item 
selection process, as well as the psychometric models one subsequently entertains as viable 
candidate models for the data. Ideally, it also ends with dimensionality assessment in that, 
when the fog clears and validity issues begin to be settled, a picture emerges of which 
psychological attributes are measured by the test items; clearly, this question cannot be 
answered without simultaneously resolving the dimensionality issue. 

The importance of dimensionality assessment, however, extends beyond purely 
psychometric issues pertaining to test construction, as dimensionality assessment impacts 
the research questions that psychologists pose and, as a result, the answers they obtain. For 
instance, via identification of item clusters, dimensionality assessment steers the allocation 
of items to subscales. This not only determines which subtest scores are analyzed in 
empirical data analysis, but also significantly influences the interpretation of latent variables 
hypothesized in psychological research. This interpretation may in turn result in revisions of 
theory concerning the nature of the psychological construct under consideration. In this 
way, procedures aimed at determining dimensionality play a central role in psychology; not 
just in the development of psychological tests, but also in the revision of interpretations of 
psychological constructs, and thus in the development of psychological theory (Cronbach & 
Meehl, 1955; Gorsuch, 1983; Haig, 2005a, 2005b; Mulaik, 1987; Rummel, 1970).  

The most widely used, and in this sense most important, way of investigating 
dimensionality is through the statistical method of Exploratory Factor Analysis (EFA) and 
related models (e.g., Principal Component Analysis; PCA; Lawley & Maxwell, 1971). The 
influence of this method pervades many different areas in psychology. For instance, EFA 
has played an important role in the development of the Five Factor Model of personality 
(Costa & McCrae, 1985; Goldberg, 1990), the theory of child psychopathology associated 
with the Child Behavior Checklist (CBCL; Achenbach, 1966, 1991), and the Cattell-Horn-
Carroll model of the structure of cognitive abilities (Carroll, 2003; Cattell, 1941; Horn, 1965). 
Many other examples could be listed, as EFA is one of the most widely used statistical 
techniques in the psychological science (Fabrigar, Wegener, MacCallum, & Strahan, 1999). In 
the past decades, confirmatory methods - e.g., Item Response Theory (IRT) modeling and 
Confirmatory Factor Analysis (CFA) - have been added to the repertoire for dimensionality 
assessment, and a good deal of work has gone into the development of heuristics to facilitate 
the process (Fabrigar et al., 1999; Henson & Roberts, 2006; Zwick & Velicer, 1982, 1986).  

Notwithstanding the availability of these statistical tools, the evaluation of 
dimensionality remains difficult. For instance, in the area of cognitive abilities research, 
there is currently a lack of consensus on whether the g factor (general intelligence) can be 
equated with some of the more specific common factors, such as working memory or fluid 
reasoning (e.g., Ackerman, Beier, & Boyle, 2005; Matzke, Dolan, & Molenaar, 2010). Given 
the lack of sufficiently elaborate theory, research relies heavily on the intercorrelations 
among common factors as a source of information concerning dimensionality, conditional 
on the specified factor structure. Similar issues arise in psychopathology research, where 
some of the most prominent debates concern the origin of covariation between symptoms of 
two or more disorders (e.g., Angold et al., 1999; Cramer, Waldorp, van der Maas, & 
Borsboom, 2010; Lilienfeld, Waldman, & Israel, 1994). For instance, the co-occurrence of 
symptoms of anxiety and depression is typically subject to many different explanations, 
ranging from those that view the disorders as different points on the same continuum, to 
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those conceptualizing them as empirically and conceptually distinct phenomena (Clark, 
1989).  

It would thus appear that EFA and related methods, which work purely on the 
observed covariation between the items4, do not always have sufficient resolution to firmly 
clinch dimensionality issues. However, it is not entirely clear why dimensionality assessment 
is so difficult. In the light of work done in the field of quantitative genetics (e.g., Boomsma & 
Molenaar, 1986; Martin & Eaves, 1977), we propose that one of the possible reasons 
underlying this difficulty is that item covariation, upon which EFA and related methods 
work, may be the result of genetic and environmental influences which differ from each 
other in dimensionality and structure. In the current chapter, we study the relationship 
between the item covariance structures, on the one hand, and the underlying genetic and 
environmental covariance influences giving rise to such structures, on the other. This 
relationship, as we will show, may be such that it hampers obtaining a clear phenotypic 
dimensionality (i.e., dimensionality assessed on the basis of observed item covariation only). 
Incorporating genetic information in item analysis may yield a deeper understanding of the 
number of latent variables measured through the test scores. This provides important 
insights and research opportunities in the context of dimensionality assessment.  

The structure of this chapter is as follows. We first introduce genetic factor modeling 
as applied in the classical twin design, and note that the genetic and environmental 
influences underlying the observed item covariation do not necessarily resemble each other 
in structure. This fact, in turn, may have implications for dimensionality assessment. We 
illustrate using 1) a simulation study, and 2) an empirical example on childhood 
internalizing psychopathology. Before addressing these issues, however, it is necessary to 
cover the basics of the genetic factor model as applied in the classical twin design. 

 
Genetic covariance structure modeling and the twin design 
 
Genetic covariance structure modeling (GCSM; Martin & Eaves, 1977) is the application of 
structural equation modeling (Bollen, 1989; Kline, 2005) to data collected in genetically 
informative samples, such as siblings or adoptees (Boomsma et al., 2002; Franić, Dolan, 
Borsboom, & Boomsma, 2012; M. C. Neale & Cardon, 1992). The fact that the samples are 
genetically informative (i.e., they consist of relatives whose average degree of genetic 
resemblance is known based on quantitative genetic theory; Falconer & Mackay, 1996) 
makes it possible to assess the relative contributions that genetic and environmental factors 
make to individual differences in observed traits (i.e., phenotypes). This is done by 
modeling genetic and environmental effects as contributions of latent variables to individual 
differences in observed traits, and estimating these contributions as regression coefficients in 
the linear regression of the observed traits on the latent genetic and environmental variables. 
The genetic and environmental latent variables themselves represent the effects of many 
unidentified influences: the genetic factors represent the effects of an unknown number of 
genes (polygenes), while the environmental factors correspond to effects of a potentially 
large number of unmeasured environmental influences. Measured genotypic and 
environmental information may also be included in the analyses (Cherny, 2008; Medland & 
Neale, 2010), but we do not consider this possibility in the present chapter.  

Identification in GCSM is achieved by using the information on the average degree of 
genetic resemblance between relatives in specifying the model. For instance, in the classical 
twin design the sample consists of monozygotic (MZ) and dizygotic (DZ) twin pairs. DZ 

                                                
4 Or on the estimated covariation between latent distributions assumed to underlie discrete items. 
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twins share on average 50% of their segregating genes, while MZ twins share nearly their 
entire genome (Falconer & Mackay, 1996; J. P. van Dongen, Draisma, Martin, & Boomsma, 
2012). The observed (i.e., phenotypic) covariance structure is typically modeled as a function 
of latent factors representing three sources of individual differences: additive genetic (A), 
shared environmental (C) and individual-specific environmental (E) sources5. Additive 
genetic influences are modeled by one or more A factors, which represent the total additive 
effects of genes relevant to the phenotypes. Based on quantitative genetic theory (Falconer & 
Mackay, 1996), the A factors are known to correlate 1 across MZ twins and .5 across DZ 
twins. Environmental influences affecting a phenotype in family members in an identical 
way, thereby increasing their similarity beyond what is expected based on genetic 
resemblance alone, are modeled by one or more C factors. Therefore, by definition, the C 
factors correlate unity across twins, regardless of zygosity. All environmental influences 
causing the observed trait to differ in two family members are modeled by one or more E 
factors. These influences include environmental events to which each family member is 
uniquely exposed (e.g., two members of a twin pair engaging in different extracurricular 
activities), as well as events to which multiple family members are exposed, but are affected 
by in a different way (e.g., both twins may be exposed to parental divorce, but the divorce 
may affect the trait of interest in each of the twins differently). Thus, by definition, the E 
factors correlate zero across twins.  

The twin design relies on several further assumptions, which include the equal 
environment assumption (i.e., it is assumed that MZ and DZ twins are equally correlated in 
their exposure to environmental factors of etiological relevance to the trait under study), 
equality of variance in MZ and DZ twin pairs, absence of genotype-environment interaction 
(i.e., of dependency of genetic effects on the environment and vice versa), of genotype-
environment correlation (i.e., of non-random placement of genotypes in the range of 
available environments), of rater bias, and of recruitment bias (e.g., Dolan, 1992; Lykken, 
McGue, & Tellegen, 1987; Martin & Wilson, 1982; M. C. Neale, Eaves, Kendler, & Hewitt, 
1989; Stoolmiller, 1999). The presence of these phenomena does not hamper the approach, 
but requires them to be modeled explicitly (see e.g., Derks, Dolan, & Boomsma, 2006). For 
other assumptions of the twin model, see e.g. Derks, et al. (Derks et al., 2006), Falconer & 
Mackay (Falconer & Mackay, 1996), Lykken, McGue, Bouchard, & Tellegen (Lykken, 
McGue, Bouchard, & Tellegen, 1990), Martin, Boomsma, & Machin (Martin, Boomsma, & 
Machin, 1997), Plomin, Defries, McClearn, & McGuffin (Plomin et al., 2008), Purcell (Purcell, 
2002).  

Figure 1 depicts two examples of the particular multivariate twin model relevant to 
the present chapter. Within a given model two identical parts are specified, one for each 
twin. These parts relate the observed phenotypic variables to the latent common variables. 
For each twin, the covariation in item scores is specified to be a function of the twins' A, C, 
and E factors. The A, C, and E factors are correlated 1, 1, and 0 in the MZ twins, and .5, 1, 
and 0 in the DZ twins, respectively.  Note that the correlations between the A, C, and E 
factors within an individual are assumed to be zero, as are the cross-correlations between 
twin 1 and twin 2. Subsequently, the data are analyzed in a multi-group analysis of MZ and 
DZ covariance matrices. The expected covariance structure in a multivariate twin model is 
thus: 

                                                
5 In addition, the trait may be influenced by non-additive genetic effects (D). Unlike additive genetic effects, which 
result from additive action of genes, non-additive genetic effects represent interactive effects of genes on the trait of 
interest. These will not be modeled in the present chapter, as the classical twin design does not allow for simultaneous 
estimation of A, D, C, and E effects. In the empirical example, we performed a series of univariate analyses with the 
results showing most of the items in our dataset to conform better to an ACE than to an ADE model. 
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Σ11 Σ12
Σ21 Σ22

 = ΣA + ΣC + ΣE rAΣA + ΣC  
rAΣA + ΣC ΣA + ΣC + ΣE

 

 
where, given p phenotypes (i.e., observed traits, indicators) per individual, Σ11 (Σ22) is the p 
× p covariance matrix of twin 1 (twin 2), Σ12 is the twin 1 - twin 2 p × p covariance matrix, 
and ΣA, ΣC and ΣE are the additive genetic, shared environmental, and unique 
environmental p × p covariance matrices, respectively. The coefficient rA is the additive 
genetic twin correlation (1 for MZ twins, .5 for DZ twins). The ΣA, ΣC and ΣE matrices may 
be subject to further modeling, as depicted in Figure 1. Although the ΣA, ΣC and ΣE 
covariance matrices may be subjected to any kind of a covariance structure model (see 
Boomsma & Molenaar, 1987; Eaves et al., 1986; M. C. Neale & Cardon, 1992), we focus on the 
type of model depicted in Figure 1.  
 

 
Figure 1. A common pathway (left) and an independent pathway (right) genetic factor 
model. Matrix names on the sides correspond to notation in the text. Note: as indicated by 
the notation, the a, c, e, and λ parameters (as well as the residual factor loadings) are subject 
to equality constraints over Twin 1 and Twin 2. 
 
The first model in Figure 1 is a common pathway model (Kendler et al., 1987), also known as 
the psychometric factor model (McArdle & Goldsmith, 1990). In common pathway models, 
all of the A, C, and E influences on item covariation are mediated by a latent variable, 
henceforth referred to as the psychometric factor (factors P1 and P2 in Figure 1). P1 and P2 may 
be viewed as phenotypic latent factors (i.e., latent factors obtained in factor analysis as 
usually applied in psychological research), e.g. ‘neuroticism’ or ‘g’. In common pathway 
models, the psychometric factor acts as a mediator of the genetic and environmental effects. 

The second model is the independent pathway model (Kendler et al., 1987), also known 
as the biometric factor model (McArdle & Goldsmith, 1990). An example of this model is 
depicted in the right panel of Figure 1. In independent pathway models, there is no 
phenotypic latent variable that mediates genetic and environmental effects on the item 
responses. Rather, the A, C, and E factors influence item responses directly. In terms of the 
phenotypic covariance matrix of item responses, we can convey the common and the 
independent pathway model as follows: 
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Σ11 = Σ22 = ΛΦΛt + Θcp = Λ(ΦA + ΦC + ΦΕ)Λt + Θcp 
Σ11 = Σ22 = Λ(ΓAΨAΓA

t + ΓCΨCΓC
t + ΓEΨEΓE

t)Λt + Θcp 
Σ21 =  Σ12 = Λ(rAΦA+ΦC)Λt + Θcp21 = Λ(rAΓAΨAΓA

t + ΓCΨCΓC
t)Λt + Θcp21, 

 
Σ11 = Σ22 = ΛAΨAΛA

t + ΛCΨCΛC
t + ΛEΨEΛE

t  +  Θip 
Σ21 = Σ12 = rAΛAΨAΛA

t + ΛCΨCΛC
t + Θip21, 

 
respectively. Here, Λ (in the common pathway model) and ΛA, ΛC, and ΛE (in the 
independent pathway model) matrices contain the loadings of the indicators on the 
psychometric factor and on the biometric (A, C, and E) factors, respectively, and ΨA, ΨC, 
and ΨE are the covariance matrices of the A, C, and E factors. In the common pathway 
model, the covariance matrix of the psychometric factor, Φ, equals ΦA + ΦC + ΦE, i.e. 
ΓAΨAΓA

t + ΓCΨCΓC
t + ΓEΨEΓE

t, where ΓA, ΓC, and ΓE are the vectors of factor loadings ΓA = [a], 
ΓC = [c], ΓE = [e]. Note that in both models the diagonal matrices Θ (denoted Θcp and Θip, as 
they may vary over the models) contain the residuals of the items in the model, and Θcp21 
and Θip21 matrices contain the twin 1 - twin 2 covariance among the residuals. The residual 
matrices may be subjected to their own decomposition, i.e., Θ = ΘA + ΘC + ΘE and Θ21 = 
rAΘA + ΘC (M. C. Neale & Cardon, 1992), as depicted in Figure 1.  It is immediately clear 
from Figure 1 that the common pathway model differs from the independent pathway 
model in the presence of the psychometric factors P1 and P2. As we explain next, this 
difference can have important implications for dimensionality assessment. 
 
Phenotypic latent variable model and the common pathway model 
 
In the present chapter, we distinguish between genetic factor models (introduced above), 
and phenotypic factor models. By ‘phenotypic factor model’ we refer to the factor model as 
usually formulated and applied in psychological research. The term ‘phenotypic’ is used 
because the model is applied only to the observed (i.e., phenotypic) covariation; no genetic 
information is used. The 8-factor cross-informant model of the CBCL (Achenbach, 1966) and 
the 5-factor model of personality (McCrae & Costa, 2003) are examples of a phenotypic 
factor model.  

The common pathway model bears a number of similarities to the phenotypic factor 
model. Notably, both the phenotypic factor model and the common pathway model are 
based on the assumption that all covariation in item responses is attributable to one or more 
latent variables. In phenotypic factor modeling, this is formulated as the requirement of 
measurement invariance: influences of all external variables affecting covariation in item 
responses run only via the latent variable (Mellenbergh, 1989; Meredith, 1993). Likewise, in 
common pathway modeling one assumes that all of the A, C, and E influences on item 
covariation run only via the psychometric factor. That is, there are no direct effects of A, C, 
and E on the items6.  

The assumption of full mediation of external influences by a latent variable has 
strong implications. For instance, different external variables affecting a set of item 
responses via the same latent variable exert the same magnitude of influence relative to each 
other on all the items that depend on that latent variable. For instance, if an A and a C 

                                                
6 As such, the common pathway model may be interpreted as a MIMIC model (Jöreskog & Goldberger, 1975), as the 
causal influences of A, C, and E factors on the observed responses are mediated by the phenotypic factor. However, in 
this case the multiple causes are latent rather than observed variables. 
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variable affect a set of items via the same psychometric factor, the magnitude of influence 
exerted by the variable A on any individual item will be a scalar multiple of the magnitude 
of influence exerted by the variable C on that item, and this scalar multiple (k) will be a 
constant across all the items depending on this psychometric factor. This can be seen from 
the regression equations describing the common pathway model, e.g. (in terms of the 
symbols used in Figure 1): 
 

x11 = λ1(aA1 + cC1 + eE1) + ε11 = λ1aA1 + λ1cC1 + λ1eE1 + ε11, 
x12 = λ2(aA1 + cC1 + eE1) + ε12 = λ2aA1 + λ2cC1 + λ2eE1 + ε12, 

 
etc. (note that ε11=A11+C11+E11 in Figure 1, etc). In contrast, the independent pathway model 
imposes no proportionality constraints on the factor loadings, e.g.: 
 

x11 = a1A1 + c1C1 + e1E1 + ε11, 
x12 = a2A1 + c2C1 + e2E1 + ε12, 

 
etc. Specifically, letting k denote a positive constant, we note that the introduction of the 
constraints a1/a2 = c1/c2 = e1/e2 = k renders the common and the independent pathway 
equations above equivalent (Yung et al., 1999). Thus, the common pathway model makes 
explicit an assumption of the phenotypic latent variable model concerning the sources of 
item covariation – all influences on item covariation run via the phenotypic latent variable. 
This means, barring cases of model equivalence, that a latent variable model cannot hold unless 
the corresponding common pathway model holds. Because any given latent variable hypothesis 
implies a corresponding common pathway model, a refutation of that common pathway 
model constitutes evidence against the latent variable hypothesis.  

For this reason, one may test the latent variable hypothesis by comparing the fit of a 
common pathway model to that of a corresponding independent pathway model. 
Specifically, if a model in which all of the A, C, and E factors exert direct influence on the 
phenotype fits the data statistically better than a model in which these influences are 
mediated by a phenotypic latent variable, this would provide evidence against the 
hypothesis that the effects on the observed item covariation are completely mediated by the 
phenotypic latent variable. In that case the latent factors employed in the phenotypic factor 
model are no more than an amalgamation of the direct influences of the A, C, and E factors 
on the observed item responses. This would have implications for the substantive 
interpretation of such factors as well-defined, causal entities that produce the observed item 
covariation (e.g., Borsboom, Mellenbergh, & van Heerden, 2003; Haig, 2005a, 2005b)7. If, on 
the other hand, an independent pathway model does not fit the data better than the 
corresponding common pathway model, this would provide support for the structure 
employed in the common pathway model, and substantiation for the corresponding 
phenotypic latent variable model. Comparison of an independent pathway model and a 
common pathway model may be conducted using a likelihood ratio test, because, as shown 
above, a common pathway model can be derived from an independent pathway model by 
imposing appropriate proportionality constraints on the factor loadings (i.e., the models are 
nested). 

                                                
7 This would, however, not diminish the usefulness of phenotypic latent variables as a means of summarizing data or 
their utility as predictors. In addition, the specific reasons for rejecting the common pathway model may be local (due 
only to a subset of observed variables), and thus the violation may be accommodated by the addition of parameters or 
by the removal of offending variables.   
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The logic underlying the present approach is essentially the same as that involved in 
measurement invariance research and MIMIC modeling: the latent variable is required to 
screen off the effects of genetic and environmental factors (in Pearl, 2000, terminology, the 
latent variable d-separates genes and environment from the item responses). However, what 
makes the genetic case special is that the A, C, and E factors (a) plausibly determine the 
variance of the latent variable completely, and (b) can be highly structured by applying 
standard genetic theory to genetically informative data. This allows for unique possibilities 
to investigate hypotheses on the origins of structures seen in the correlations among 
psychometric items. To demonstrate that the proposed methodology works under realistic 
conditions, we next provide a simulation example. 
 
Simulation study 
 
To illustrate the relationship between the observed association structures and the 
underlying genetic and environmental structures, we simulated several datasets. In each 
dataset, a different pattern of genetic and environmental effects gives rise to the 
observations. These patterns depart progressively from the ideal situation of a common 
pathway model. As we will show, such departures lead to psychometrically indeterminate 
covariation structures, in the sense that standard psychometric research practices would not 
(and in fact could not) converge on correct assessments of the underlying dimensionality. 
However, we also show that attending to genetic information, present in the widely 
available twin datasets, allows one to resolve the psychometric puzzle accurately (i.e., to 
better understand the dimensionality of the dataset). 

In total, four datasets were simulated. In the first dataset (Dataset 0) the data are 
consistent with a common pathway model. In the three subsequent datasets (Datasets 1-3), 
the assumption of the common pathway model concerning the proportionality of the genetic 
and environmental effects on the items is violated to an increasing extent. This was achieved 
by manipulating the dimensionalities of the latent A, C, and E structures (i.e., the order of 
the covariance matrices ΨA, ΨC, and ΨE). Figure 2 outlines the general structure of this 
simulation.  

Each of the four datasets comprises 12 continuous normally distributed variables per 
individual (24 variables per twin pair), for 1000 MZ and 1000 DZ twin pairs. We used exact 
data simulation (i.e., the simulated data fitted the generating model exactly; e.g., van der 
Sluis, Dolan, Neale, & Posthuma, 2008).  We limit the current presentation to a single set of 
parameter values (given in Table 1)8, which we do not vary over the four simulations. The 
manipulation involves only 1) varying the dimensions of the ΨA, ΨC, and ΨE covariance 
matrices (and the dimensions of the corresponding ΛA, ΛC, and ΛE matrices), and 2) varying 
the patterns of factor loadings within the ΛA, ΛC, and ΛE matrices. However, all simulations 
were performed with five different sets of parameter values, and our conclusions were 
found to be invariant.9 The simulation script provided in Appendix 2B may be used to verify 
the generality of our inferences. In the following text, we will first review the four 
generating models. Subsequently, we present the results of dimensionality assessment for 
the four datasets.  

 
 

                                                
8 The table does not detail the parameters of the ACE model for the residuals given our focus on dimensionality 
assessment; these are given in Appendix 2A and the simulation script (Appendix 2B). 
9 Details on these five sets of parameter values may be obtained from the first author. 
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Models 
 
The baseline model (Model 0, depicted in the first panel of Figure 2) is a common pathway 
model. The expected phenotypic covariance matrix (ΣCP) under this model is:  
 

Σ11 Σ12
Σ21 Σ22

 = Λ(ΦA + ΦC + ΦΕ)Λt + Θcp Λ(rAΦA+ΦC)Λt + Θcp21
Λ(rAΦA+ΦC)Λt + Θcp21 Λ(ΦA + ΦC + ΦΕ)Λt + Θcp

 , 

 
where Σ11 (Σ22) is the 12 × 12 phenotypic covariance matrix of twin 1 (twin 2), Σ12 is the 12 × 
12 twin 1 - twin 2 phenotypic covariance matrix, Λ is a vector containing the loadings of the 
indicators on the psychometric factor, ΦA, ΦC, and ΦE are the A, C, and E variance 
components of the psychometric factor, respectively, coefficient rA is the additive genetic 
twin correlation (1 for MZ twins, .5 for DZ twins), Θcp is a diagonal matrix containing the 
residuals of the items, and Θcp21 and Θip21 are matrices containing the twin 1 - twin 2 
covariance among the residuals. In the present case, the variance of each of the items in Σ11 
(Σ22) is 1, and the correlations between the indicators range from .12 to .62.  

The model above may also be expressed in terms of parameters of an independent 
pathway model, as presented in Table 1. In this independent pathway model, the expected 
covariance structure (ΣIP) is: 
 
Σ11 Σ12 
Σ21 Σ22

 = ΛAΨAΛA
t +ΛCΨCΛC

t +ΛEΨEΛE
t  + Θip rAΛAΨAΛA

t + ΛCΨCΛC
t + Θip21

rAΛAΨAΛA
t + ΛCΨCΛC

t + Θip21 ΛAΨAΛA
t +ΛCΨCΛC

t +ΛEΨEΛE
t  + Θip

. 
 
Here, ΛA, ΛC, and ΛE vectors contain the loadings of the indicators on the A, C, and E 
factors, respectively, and the residual matrices Θip, Θip21mz , and Θip21dz are equal to those in 
the common pathway model. In the case of the present model (Model 0), ΣCP = ΣIP. Note that 
the independent pathway factor loading parameters above are fully consistent with a 
common pathway model, i.e., the elements of ΛA, ΛC, and ΛE matrices satisfy the 
proportionality constraint ai/ai+1 = ci/ci+1 = ei/ei+1 = k, where i=1, ...11, and k is a constant). 
Taking these parameter values as a point of departure, we specify the three subsequent 
models.  

In Model 1, the additive genetic influences on the items are represented by two 
orthogonal A factors per twin. Note that this model (depicted in the second panel of Figure 
2) may alternatively be represented as a common pathway model with two phenotypic 
factors per twin, each factor being a function of its own A, C, and E factor (where the two A 
factors are uncorrelated, and the two C factors, as well as the two E factors, correlate unity). 
In this sense, the model does not represent a severe violation of the common pathway 
structure.  

In Model 2 (depicted in the third panel of Figure 2), the structure employed in Model 
1 is further altered, by increasing the dimensionality of the E structure. This model 
represents a more severe violation of the common pathway structure, as the items here no 
longer cluster identically with regard to A and E influences (i.e., the patterns of factor 
loadings in the ΛA and ΛE matrices differ from each other). For instance, sets of items that 
form a unidimensional structure with respect to additive genetic influences, are two-
dimensional with respect to unique environmental influences.  In Model 3 (fourth panel of 
Figure 2), the common pathway structure is further violated by increasing the 
dimensionality of the latent C structure. Here, the clustering of the items is markedly 
different with regard to the A, C, and E influences; thus the phenotypic dimensionality is a 
function of A, C, and E influences that severely violate the common pathway structure. 
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Figure 2. Path diagrams of Models 0-3. Matrix names on the left correspond to the notation 
in the text. 
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Table 1 
Parameters of Models 0-3.  

Model 0 in terms of common pathway paratemers: 

Λt = [√.1, √.15, √.2, √.25, √.3, √.35, √.4, √.45, √.5, √.55, √.6, √.65] 
ΓA = [√.5], Γ C = [√.3], Γ E = [√.2] 
ΨA = ΨC = ΨE = [1] 
Θcp = I - diag(Λ(ΦA + ΦC + ΦE)Λt) = I - diag(Λ(ΓAΨAΓA

t + ΓCΨCΓC
t + ΓEΨEΓE

t)Λt) 
       = diag(.9,.85,.8,.75,.7,.65,.6,.55,.5,.45,.4,.35) 
Θcp21mz = .8*I - diag(Λ(ΦA+ΦC)Λt)   
             = diag(.72,.68,.64,.6,.56,.52,.48,.44,.4,.36,.32,.28) 
Θcp21dz = .55*I - diag(Λ(.5ΦA+ΦC)Λt)  
            = diag(.495, .4675, .44, .4125,  .385, .3575, .33, .3025, .275, .2475, .22, .1925) 

Model 0 in terms of independent pathway paratemers: 

ΛA
t = Γ AΛt = [√.05, √.075, √.1, √.125, √.15, √.175, √.2, √.225, √.25, √.275, √.3, √.325] 

ΛC
t = Γ CΛt = [√.03, √.045, √.06, √.075, √.08, √.105, √.120, √.135, √.150, √.165, √.180, √.195] 

ΛE
t = Γ EΛt = [√.02, √.03, √.04, √.05, √.06, √.07, √.08, √.09, √.10, √.11, √.12, √.13] 

ΨA = ΨC = ΨE = [1], Θip = Θcp, Θip21mz = Θcp21mz, Θip21dz = Θcp21dz 

Model 1: 

ΨA = diag(1, 1) 
 
ΛA

t =  √.05 √.075 √.1 √.125 √.15 √.175       
       √.2 √.225 √.25 √.275 √.3 √.325   

 

Model 2: 

ΨE = diag(1, 1) 
 
ΛE

t =  √.02 √.03 √.04       √.11 √.12 √.13     
    √.05 √.06 √.07 √.08 √.09 √.10               

 

Model 3: 

ΨC = diag (1, 1, 1) 
 
ΛC

t =  √.03   √.075   √.120   √.165       
  √.045   √.08   √.135   √.180             
   √.06   √.105   √.150   √.195   

 

Λ = vector containing the loadings of the indicators on the psychometric factor 
ΓA, ΓC, ΓE = vectors of factor loadings of the psychometric factor on the A, C, and E factors 
ΨA, ΨC, ΨE = covariance matrices of the A, C, and E factors 
Θcp = Θip = 12 x 12 diagonal matrix containing the residual item variances 
Θcp21mz = Θip21mz = 12 x 12 diagonal matrix of twin 1 - twin 2 covariances among MZ twins 
Θcp21dz = Θip21dz = 12 x 12 diagonal matrix of twin 1 - twin 2 covariances among DZ twins 
ΛA, ΛC, ΛE = matrices containing direct factor loadings of the items on the A, C, and E factors 
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Note. The models are conveyed only in terms of parameters that differ from the preceding 
model. For instance, the parameter matrices not listed under Model 1 (ΛC, ΛE, ΨC, ΨE, Θip 

and Θip21) equal those in Model 0. In addition, the factor loading parameters are conveyed in 
terms of square roots, as this gives straightforward information on the proportion of 
variance explained (e.g. a factor loading of √.1 indicates √.12=.1 explained variance).  
 
Analyses 
 
The analyses of the datasets consisted of two parts. In the first part, the aim was to examine 
the effect that the violations of the common pathway structure had on the phenotypic 
dimensionality estimates. To this end, the dimensionality of the datasets was assessed using 
EFA. The phenotypic latent factors obtained in the EFA were subsequently used as a basis 
for specifying confirmatory genetic factor common pathway models. As in standard genetic 
research, here we decomposed the variation in the latent factors obtained in the phenotypic 
EFA into genetic and environmental components. In the second part, the aim was to obtain a 
clearer indication of the data generating mechanism by disposing of the hypotheses 
concerning the number of latent variables in the model, and applying independent pathway 
modeling in a purely exploratory manner, to uncover the (possibly different) structures of 
the A, C, and E influences. Specifically, we used EFA to determine the possibly different 
dimensionalities of the covariance matrices ΣA, ΣC, and ΣE, in terms of the latent covariance 
matrices ΨA, ΨC, and ΨE. Here the dimensionality of the observed covariance matrix is a 
function of the A, C, and E covariance structures, which may differ in dimensionality, and in 
no way satisfy the common pathway model. The advantage of this is that it provides an 
insight into the dimensionality of the phenotypic structure that does not assume, but does 
not exclude, the common pathway model. The analyses were performed using Mplus (L. K. 
Muthén & Muthén, 2007), Mx (M. C. Neale, 2000), and R (R Core Team, 2013).10 In 
evaluating model fit, we used the Comparative Fit Index (CFI), the Tucker Lewis Index 
(TLI), and the Root Mean Square Error of Approximation (RMSEA). 
 
Results 
 
Given that Model 0 has a unidimensional structure and was used only as a baseline model 
from which parameter values were derived, we limit the presentation to the results obtained 
in analyses of Datasets 1-3.  

Dataset 1. Seeing as Model 1 can be viewed as a 2- factor common pathway model in 
which the two C factors, as well as the two E factors, correlate unity, one can simply 
accommodate the violation of the 1-factor common pathway structure by fitting a 2-factor 
model. The phenotypic EFA results, a summary of which is provided in Table 2, reflect this: 
a 2-factor EFA solution (detailed in Table 2) provides a perfect fit to the data, as do a 2-factor 
common pathway model (χ2=0, df=581, p=1, RMSEA=0, CFI=1, TLI=1) and a 2 A, 2 C, 2 E 
independent pathway model (χ2=0, df=508, p=1, RMSEA=0¸ CFI=1, TLI=1) based on this 2-
factor EFA solution. Note that perfect fit is associated with c2 values of zero because we used 
exact data simulation. The parameter estimates obtained in genetic factor modeling indicate 
that C and E are unidimensional (the correlations between the two C factors in both the 
common and the independent pathway model are 1, as are the correlations between the two 
E factors), while A may be represented by two orthogonal factors. The structure depicted in 

                                                
10 All scripts may be obtained from the first author upon request. We alternated between Mplus and Mx because Mplus 
estimates the polychoric correlations very efficiently, while Mx's matrix-based syntax is very convenient in fitting 
models involving high dimensional Cholesky decompositions. R was used for its data simulation features. 
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the second panel of Figure 2 therefore need not preclude accurate dimensionality 
assessment. However, one might consider situations in which the data generating structure 
is less consistent with the common pathway model; in the following examples we consider 

such more severe violations of the common pathway structure. 
Dataset 2. In Model 2, the ΣA and ΣE matrices are both two-dimensional, but the 

items cluster differently with regard to A and E influences (e.g., clusters of items that form a 
unidimensional structure with respect to additive genetic influences, are two-dimensional 
with respect to unique environmental influences). Note that the data generating structure 
may still be accommodated by a common pathway model with 4 phenotypic factors, each 
affecting 3 items. However, as common pathway analyses are confirmatory in nature and 
predicated on the results of phenotypic analyses, we first investigated whether phenotypic 
EFA correctly indicated the number of phenotypic factors needed to account for the 
covariance structure. 

The results of the EFA are shown in Table 2. Here, both the 1-factor and the 2-factor 
solution were clearly rejected by the χ2 statistic, but in the 3-factor solution both the χ2 and 
the RMSEA indicated a perfect fit (χ2=0, df=33, p=1, RMSEA=0, CFI=1, TLI=1). In the 4-
factor solution the same was the case, although the model (based on promax rotation; 
presented in Table 2) does not correspond to the data generating structure. Moreover, in the 
4-factor solution none of the items appear to be best represented by the third factor, and 
only one item loads substantially (factor loading above √.025) on the fourth factor. 
Considering the fit statistics and the factor structure in Table 2, it appears that in a standard 
situation of dimensionality assessment the 3-factor solution would be a compelling choice.  

Based on this 3-factor EFA solution (detailed in Table 2), we specified a 3-factor 
common pathway model and a corresponding independent pathway model, depicted in 
Figure 3. In both of these models, the phenotypic covariation in twin 1 (twin 2) is a function 
of three mutually correlated A (C, E) factors (i.e., ΨA, ΨC, and ΨE are 3 x 3 matrices with 
freely estimated off-diagonal elements). Although inclusion of cross-loadings improves 
model fit, we specify simple structure models given our focus on dimensionality 
assessment. For the common pathway model, the fit measures were χ2 (577) = 2158, p<.001, 
RMSEA=.052, CFI=.944, TLI=.944, and for the independent pathway model χ2 (507) = 1148, 
p<.001, RMSEA=.036, CFI=.976, TLI=.974. Additional analyses showed that inclusion of 
cross-loadings (as indicated by the EFA solution) improves model fit for both the common 
pathway and the independent pathway model; however, even then, the parameter estimates 
remain somewhat biased. Thus, even assuming lack of simple structure, these models are 
still unable to precisely convey the actual A, C and E effects on the items. If one considers 
the generating model (3rd panel Figure 2), it is clear why this is the case: a model that 
assumes equal clustering of items with regard to A, C, and E effects (as does any model 
based on phenotypic factor analysis) cannot adequately describe the data generating 
mechanism. Although we detail only the results based on the 3-factor EFA solution, none of 
the EFA solutions presented in Table 2 correctly convey the genetic and environmental 
effects on the items. It is interesting to note that the misspecification of the phenotypic 
models (in the sense that none accurately represented the data generating structure) was not 
evident in the fit measures associated with the models; the fit measures associated with all 
but the 1-factor the EFA solution indicated an excellent fit. 
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Based on this 3-factor EFA solution (detailed in Table 2), we specified a 3-factor common 
pathway model and a corresponding independent pathway model, depicted in Figure 3. In 
both of these models, the phenotypic covariation in twin 1 (twin 2) is a function of three 
mutually correlated A (C, E) factors (i.e., ΨA, ΨC, and ΨE are 3 x 3 matrices with freely 
estimated off-diagonal elements). Although inclusion of cross-loadings improves model fit, 
we specify simple structure models given our focus on dimensionality assessment. For the 
common pathway model, the fit measures were χ2 (577) = 2158, p<.001, RMSEA=.052, 
CFI=.944, TLI=.944, and for the independent pathway model χ2 (507) = 1148, p<.001, 
RMSEA=.036, CFI=.976, TLI=.974. Additional analyses showed that inclusion of cross-
loadings (as indicated by the EFA solution) improves model fit for both the common 
pathway and the independent pathway model; however, even then, the parameter estimates 
remain somewhat biased. Thus, even assuming lack of simple structure, these models are 
still unable to precisely convey the actual A, C and E effects on the items. If one considers 
the generating model (3rd panel Figure 2), it is clear why this is the case: a model that 
assumes equal clustering of items with regard to A, C, and E effects (as does any model 
based on phenotypic factor analysis) cannot adequately describe the data generating 
mechanism. Although we detail only the results based on the 3-factor EFA solution, none of 
the EFA solutions presented in Table 2 correctly convey the genetic and environmental 
effects on the items. It is interesting to note that the misspecification of the phenotypic 
models (in the sense that none accurately represented the data generating structure) was not 
evident in the fit measures associated with the models; the fit measures associated with all 
but the 1-factor the EFA solution indicated an excellent fit. 

The second part of the analyses was aimed at directly addressing the dimensionality 
issue, without reference to the phenotypic factor structure. To this end, the A, C, and E 
components of the observed covariance structure were estimated from the data, and the 
dimensionality of each of those components was separately evaluated using EFA. The A, C, 
and E covariance components (i.e., the 12 x 12 ΣA, ΣC and ΣE matrices) may be estimated 
from twin data by fitting the model given on page 35. These analyses were carried out in Mx 
(Neale, 2000). Subsequently, each of the three covariance matrices was subjected to EFA. As 
we do not assume any phenotypic model and make no predictions about the 
dimensionalities of the ΣA, ΣC and ΣE covariance components, this approach is purely 
exploratory. 

The results of the EFA are given in Table 3 and Figure 4. As apparent from both the 
Table and the scree-plots in the Figure, the results correctly indicate the order of the ΨA, ΨC, 
and ΨE matrices to be 2, 1, and 2, respectively. The estimated factor loadings of the 
corresponding EFA solutions with 2 A, 1 C, and 2 E factors, shown in the lower panel of 
Figure 4, correspond exactly to the parameters of the generating model. 
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Figure 3. A common pathway (upper panel) and an independent pathway (lower panel) 
model based on the phenotypic EFA of Dataset 2. 
 
Dataset 3. In Model 3, the A, C, and E structures differ appreciably from each other. The 
results of phenotypic EFA, shown in Table 2, indicate that a model with five phenotypic 
latent factors provides an adequate description of the data. However, as evident from the 
Table, the pattern of factor loadings in this model is inconsistent with a simple structure; 
thus deciding on the number of actual latent dimensions underlying the data and the nature 
of the factors is complicated. Given that none of the EFA solutions in Table 2 can correctly 
convey the genetic and environmental effects on the items, we do not detail the possible 
confirmatory common and independent pathway models one may fit to the data given the 
EFA results. Instead, we present the solution obtained by the EFA of the ΣA, ΣC and ΣE 
variance components (Figure 5 and Table 3). As evident from both the Table and the Figure, 
a 2 A, 3 C, and 2 E structure is clearly supported by the EFA results, and both the factor 
loading structure and the values of the factor loading parameters are recovered correctly 
(lower panel Figure 5).  

Finally, we note that the chosen dimensionalities of the ΨA, ΨC, ΨE matrices 
represent only one instance of a possible violation of the common pathway model. In the 
present simulation, the values within the ΛA, ΛC, and ΛE matrices are still consistent with a 
common pathway model (i.e., the non-zero elements of ΛA, ΛC, and ΛE matrices satisfy the 
proportionality constraint ai/ai+1 = ci/ci+1 = ei/ei+1 = k, where i=1, ...11, and k is a constant). 
In other words, the correlation between the non-zero values in the ΛA, ΛC, and ΛE matrices 
is 1, i.e. the factor loadings are collinear. It is possible to further violate the common 
pathway structure by manipulating the correlations between the values in the ΛA, ΛC, and 
ΛE matrices. However, this violation is less detrimental to model fit than are the differences 
in dimensionalities of ΨA, ΨC, ΨE matrices.  
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Table 3 
Fit statistics obtained in EFA of the ΣA, ΣC, and ΣE matrices in Datasets 2 and 3 
 

 
 

 
 
Figure 4. Dataset 2: Normalized eigenvalues for the ΣA, ΣC, and ΣE matrices (upper panel) 
and factor loadings obtained in the EFA solutions with 2 A, 1 C, and 2 E factors (lower 
panel). Colors code for different latent factors. 
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  Dataset 2 Dataset 3 

  χ2 df p RMSEA χ2 df p RMSEA 

A 1 f 519.7 54 0 .0004 519.7 54 0 .0004 

 2 f 0 43 1 0 0 43 1 0 

C 1 f 0 54 1 0 1157.
7 54 0 .0006 

 2f 0 43 1 0 495 43 0 .0005 

 3f 0 33 1 0 0 33 1 0 

E 1 f 1302.
9 54 0 .0007 1302.

9 54 0 .0007 

 2 f 0 43 1 0 0 43 1 0 
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Figure 5. Dataset 3: Normalized eigenvalues for the ΣA, ΣC, and ΣE matrices (upper panel) 
and factor loadings obtained in EFA solutions with 2 A, 3 C, and 2 E factors (lower panel). 
Colors code for different latent factors. 
 

 

 
 

Figure 6. Eigenvalues of the phenotypic covariance matrices for Models 0-3. 
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The present simulation shows that the clustering of the items with respect to genetic and 
environmental effects is required to be identical for a unidimensional latent variable model 
to hold. This is in line with the theoretical derivation presented earlier in this chapter. In 
addition, it shows that if genetic and environmental effects do not cluster identically, 
psychometric analyses may fail to correctly indicate the dimensionality of the latent space. 
In these cases, the data will either show a significant degree of indeterminacy with respect to 
alternative dimensional hypotheses, or will support an incorrect latent structure. However, 
attending to the genetic and environmental antecedents of the items succesfully resolved the 
dimensionality issue. We now apply this methodology to an empirical dataset. 
 
Illustration: childhood internalizing problems 
 
Internalizing problems concern conditions such as anxiety, depression, and somatization. 
Dimensionality assessment has traditionally been difficult for such problems. For instance, 
current diagnostic systems like the DSM-IV (American Psychiatric Association, 1994) 
distinguish anxiety and mood disorders as separate categories, but there is a significant 
amount of evidence to suggest that the overlap between such disorders is larger than can be 
reasonably expected were such a categorical distinction between types of disorders correct 
(e.g., Brady & Kendall, 1992). This is supported by genetic analyses, which univocally 
suggest that the genetic effects that impact anxiety and depression are shared, while the 
unique environmental effects are not (see e.g. Kendler et al., 1987; Kendler, Neale, Kessler, 
Heath, & Eaves, 1992; Middeldorp, Cath, Van Dyck, & Boomsma, 2005). This presents an 
extraordinarily difficult task for the test constructor. For how should items that probe 
different anxiety and mood related problems be allocated to subscales? Can we reasonably 
expect a clear outcome of dimensionality assessment in this case? In the present example, we 
show that such an outcome is unrealistic given the genetic and environmental background 
of internalizing problems. In addition, we show how the use of genetic information 
uncovers a complex dimensional pattern that can be used to further the psychometric 
understanding of test scores. 
 
Data 
 
The data were obtained from the Netherlands Twin Register at the VU University 
Amsterdam (Bartels, van Beijsterveldt, et al., 2007; Boomsma et al., 2006), and consist of 
maternal ratings of 11,565 twins (including 2,085 MZ and 3,599 DZ complete twin pairs) of 
mean age 10.1 (SD = .4) on the Internalizing grouping of the Dutch version of the Child 
Behavior Checklist for Ages 4-18 (CBCL/4-18; Achenbach, 1991; Verhulst, Van der Ende, & 
Koot, 1996). The Internalizing grouping of the CBCL is a scale designed to measure 
disturbances in intropunitive emotions and moods in children, and consists of 3 subscales: 
Anxious/Depressed (AD), Withdrawn (W), and Somatic Complaints (SC), comprising 31 discrete 
items (listed in Appendix 2C) in total. Responses are given on a three-point scale. 11  

                                                
11 Returning to the aforementioned assumptions of the twin design: in the present study, we tested a number of these 
assumptions, including absence of rater bias and absence of recruitment bias. The issue of rater bias was addressed by 
comparing the standard deviations observed in our sample to those of normative samples (Verhulst et al., 1996). These 
were found to differ only slightly: the ratios of our standard deviations to those of normative samples are .91, .83, and 
.95, for the Anxious/Depressed, Withdrawn, and Somatic Complaints scales, respectively. The issue of rater bias in the 
present data has been addressed in the past. Bartels, Boomsma, Hudziak, van Beijsterveldt, and van den Oord (2007) 
report that in a subset (N=7718) of the present sample, the estimate of the upper bound of the phenotypic variance that 
may contain rater bias is ~ .14.  
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Descriptive statistics 
 
The item distributions were positively skewed, with response rates ranging from 54.8% to 
96.8% (M = 84.8, SD = 10.3) for the response 0 (symptom not present), 2.9% to 41.2% (M = 
13.2, SD = 9.4) for the response 1 (symptom somewhat/sometimes present), and 0.2% to 
6.4% (M = 1.5, SD = 1.3) for the response 2 (symptom very/often present). MZ and DZ twin 
item correlations and the distribution of inter-item correlations are depicted in Appendix 
2C.  
 
Analyses 
 
As in the preceding example, the analyses consisted of two parts. In the first set of analyses, 
the phenotypic dimensionality of the dataset was assessed using EFA, and the solutions 
obtained in EFA were tested in a confirmatory manner, by 1) specifying and fitting simple 
structure phenotypic models based on the EFA results12, and b) subsequently using these 
simple structure models as a basis for specifying genetic common and independent pathway 
models. In common pathway models, the variance in the phenotypic factors obtained in 
EFA was decomposed into A, C, and E components. The independent pathway models were 
based on the common pathway models, in the sense that they retain the structure employed 
in the common pathway models (i.e., they contain the same number of A, C, and E factors, 
affecting the same clusters of items), but dispose of the psychometric factors, i.e. allow for 
the items to load directly on the A, C, and E factors. Thus, the common pathway models 
represent a special case of (i.e., are nested under) the independent pathway models. By 
comparing the fit of these common and independent pathway models, we address the focal 
question of whether one can interpret the phenotypic common factors substantively and 
causally. 

In the second set of analyses, independent pathway modeling was applied in an 
exploratory manner. In particular, the analyses consisted of estimating the unconstrained 
genetic and environmental covariance matrices (i.e., the 31 × 31 additive genetic, shared and 
unshared environmental covariance matrices ΣA, ΣC and ΣE), and subjecting each of these 
covariance matrices to EFA to obtain an indication of their dimensionality, i.e., the order of 
the covariance matrices ΨA, ΨC, and ΨE.  

As in the simulation example, the analyses were performed using Mplus, Mx, and 
R.13 Given the discrete nature of the items, we fitted discrete factor models (i.e., we assumed 
the discrete indicator variables to be a realization of a continuous normal latent process, and 
fit models to polychoric correlations; Flora & Curran, 2004; Wirth & Edwards, 2007) using 
the robust weighted least squares estimator (WLSMV; L. K. Muthén & Muthén, 1998-2007). 
The polychoric correlations between the 31 items and between the 62 (31 per twin) items 
served as input in the phenotypic and the genetic factor analyses, respectively. In evaluating 
model fit, we used CFI, TLI, and RMSEA. As both our sample size and the models 
employed were large, the chi-square statistic was of limited use as an overall fit measure  
(Jöreskog, 1993), and was employed only to test local hypotheses concerning comparisons of 
nested models, as these comparisons are associated with a smaller approximation error.  
 

                                                
12 EFA and CFA were performed using split half validation. Cases were randomly assigned to either half of the sample; 
one half was subsequently used for EFA (N=5782) and the other for CFA (N=5783). 
13 The scripts used to perform the analyses may be obtained from the first author upon request. 
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Results 
 
The initial analysis involved phenotypic EFA of the 31 items. The term ‘phenotypic’ here 
indicates that only the observed (phenotypic) covariation is analyzed, i.e. the analysis does 
not exploit the fact that the sample consists of familially related individuals.14 EFA indicated 
two well-fitting models, a 3- and a 4-factor model (depicted in Figure 7a and 7b). 
Interestingly, in both of these models, the items originally belonging to the 
Anxious/Depressed scale cluster into those appearing to be more relevant to anxiety (3. 
Fears doing something bad, 4. Must be perfect, 8. Nervous, tense, 9. Fearful, anxious, 10. Feels too 
guilty, 11. Self-conscious, 14. Worries) and those more related to depression (1. Lonely, 2. Cries 
a lot, 5. Feels unloved, 6. Others out to get him, 7. Feels worthless, 12. Suspicious, 13. Sad). Note 
that the depiction in the Figure is simplified insofar as only the path with the highest factor 
loading is shown for each item. The factor loadings associated with the paths omitted from 
the Figure equal .05 on average; for comparison, the mean of the factor loadings for the 
depicted paths equals .58. Detailed results, including item content, factor loadings, factor 
correlations, and proportion of variance explained (R2) are given in Appendix 2C.  

Subsequently, based on the EFA results and the standard CBCL/4-18 model, a 3- and 
a 4-factor phenotypic model (Figure 7c and 7b) were specified and fitted to the data.  
 

 
 
Figure 7. a) The 3-factor model based on EFA, b) the 4-factor model based on EFA, c) the 
standard CBCL/4-18 3-factor model. Right: fit indices obtained in EFA (geomin rotation) 

                                                
14 As treating observations from the same family as independent may result in biased estimates, we performed a 
correction for clustering available in MPlus, which has been shown to work well in this context (Rebollo, de Moor, 
Dolan, & Boomsma, 2006). 
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and CFA. N=5782 for EFA, N=5783 for CFA. For EFA solutions, only the path with the 
highest factor loading is shown for each item. 
 
As is evident from the Figure, a firm distinction was hard to make between the fit of a model 
in which the anxiety and depression items represent a single dimension (Figure 7c), and a 
model in which they represent two distinct dimensions (Figure 7b). The additional solution 
provided by EFA (Figure 7a), in which items associated with anxiety load on the Withdrawn 
factor, obtained a similar fit. Whereas items pertaining to somatic complaints consistently 
form one dimension, the dimensionality of items pertaining to depression, anxiety, and 
withdrawn behavior therefore remains less clear. This is perhaps not surprising in the light 
of the well-established difficulty of distinguishing phenotypically the dimensions of anxiety 
and depression (e.g., see Clark & Watson, 1991).  

In the next step, the results of phenotypic analyses were used as a basis for specifying 
genetic factor models. In common pathway models, the factor structure of the models tested 
in the phenotypic CFA (Figure 7b and 7c) was retained, and the contributions of the A, C, 
and E factors to the phenotypic latent factors investigated. The 3- and the 4-factor common 
pathway models specified in this way differ only minimally in terms of model fit: the 
respective fit measures were χ2 (583) = 2030, p<.001, CFI=.952, TLI=.966, RMSEA=.030 and 
χ2 (584) = 1811, p<.001, CFI=.959, TLI=.971, RMSEA=.027. In independent pathway 
modeling, the structure employed in the 3- and the 4-factor common pathway models was 
retained, but the psychometric factors are disposed of, i.e. the items were allowed to load 
directly on the A, C, and E factors. Again, the 3- and the 4-factor model differed only 
minimally in terms of model fit; the fit measures associated with the two models were χ2 
(534) = 1142, p<.001, CFI=.980, TLI=.984, RMSEA=.020, and χ2 (542) = 1161, p<.001, 
CFI=.979, TLI=.984, RMSEA=.020, respectively.15  

Returning to the focal question of whether the independent pathway models fit the 
data appreciably better than the corresponding common pathway models, we compared the 
general fit of the models and carried out likelihood ratio tests of the proportionality 
constraints mentioned above. These tests revealed both the 3- and the 4-factor-based 
independent pathway models to fit better than their common pathway counterparts (χ2 
difference tests:16 χ2 (25) = 1066, p<.001 for the 3-factor based models, and χ2 (23) = 864, 
p<.001 for the 4-factor based models). This implies that the common pathway models, in 
which the latent variables mediate all of the A, C and E effects on individual phenotypic 
differences, fail to convey accurately the genetic and environmental effects on the items. 
Again, we note that the misspecification of the common pathway models was not evident in 
the fit measures associated with the models. Both common pathway models obtained a good 
fit, and the same is true of the phenotypic models.  

In the second set of analyses, we employed EFA to evaluate the dimensionalities of 
the ΣA, ΣC and ΣE covariance matrices. The results are shown in Figure 8. An inspection of 
scree plots indicates a 1-dimensional C structure. The structures of A and E matrices remain, 
however, somewhat less clear. To explore the A and E structures further, we use the EFA 
results as a basis for specifying a number of competing independent pathway models with 
varying A, C, and E dimensionalities, and fit these models to the phenotypic covariance 

                                                
15 Given that the fit of the 3- and the 4-factor model is virtually indistinguishable, in practice one might simply accept 
the 3-factor model on the basis of parsimony. However, given our interest in the specific reasons for the nearly 
identical fit, at this point we make no decisions on which model to accept and proceed with the analyses. 
16 For WLSMV estimators the standard approach of taking the difference between chi-square values and the 
corresponding degrees of freedom is not appropriate because the chi-square difference is not chi-square distributed 
(Muthén & Muthén, 1998-2007). We therefore performed chi-square difference testing using scaling correction factors 
(Satorra & Bentler, 2001). 
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matrix. An example of these confirmatory independent pathway models is depicted in 
Figure 9. A detailed overview of the fit measures and inter-factor correlations associated 
with each of the models is given in Appendix 2C (Table 6). Overall, a comparison of these 
models indicated a model with 2A, 1C, and 4E factors as the best-fitting model (χ2(531) = 
1082, p<.001, CFI=.982, TLI=.986, RMSEA=.019). This model is depicted in Figure 9. It 
should, however, be noted that most of the models tested did not differ considerably in 
terms of model fit; therefore the structure in Figure 9 need not necessarily be conclusive. In 
addition, rejecting a common pathway model in favor of the corresponding independent 
model does not establish the structure employed in the independent model as in any way 
definitive, and there is, naturally, a possibility of other types of models (e.g., the mutualism 
model of van der Maas et al., 2006, or the network model of Cramer et al., 2010) providing a 
better account of the data. The use of the independent pathway model, as presented in this 
chapter, is merely instrumental to testing the mediation of external effects on item 
covariation by a latent variable. Furthermore, the present results do strongly suggest a 
unidimensional C structure, and multidimensional (but mutually differing) A and E 
structures.  
 

 
 
Figure 8. CBCL/4-18 dataset: Eigenvalues of the ΣA, ΣC, and ΣE matrices (upper panel) and 
factor loadings obtained in EFA solutions with 2 A, 1 C, and 4 E factors (lower panel). 
Shading/shapes code for different latent factors. Only the highest factor loading for each 
item is shown. 
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Figure 9. The 2A 1C 4E independent pathway model for the CBCL/4-18 Internalizing scale. 
Item residuals are not depicted but are estimated in the model. 
 
In light of the present results, the results of the phenotypic analyses start to make more 
sense; the inability of phenotypic modeling to distinguish between several models appears 
to be due to the phenotypic structure being generated by three different sources: a 1-
dimensional C, a 2-dimensional A, and a 4-dimensional E source.  
 
Discussion 
 
Even though the analysis and determination of dimensionality is of central importance in 
psychological science, currently available strategies for dimensionality assessment often 
leave the issue undecided. Building on ideas concerning genetic item analysis, as developed 
in quantitative genetics (Eaves, 1983; Heath, Jardine, Eaves, & Martin, 1989; Kendler et al., 
1987; M. C. Neale, Lubke, Aggen, & Dolan, 2005; van den Berg, Glas, & Boomsma, 2007; 
Waller & Reise, 1992), the present chapter has outlined how genetic information may be 
brought to bear on the dimensionality assessment problem. In particular, the methodology 
outlined in this chapter may be used with genetically informative data to a) put latent 
variable hypotheses to a stronger test than is possible in purely phenotypic analyses, and b) 
gain insight into why dimensionality issues may be difficult to settle.  

The methodology proposed in this chapter may therefore not only improve 
dimensionality assessment, but may also suggest explanations of why specific dimensional 
hypotheses are violated. While dimensionality assessment remains a difficult and to some 
extent subjective task, these methods therefore offer enhanced resolution relative to that 
possible in purely phenotypic analyses. Importantly, we do not claim that assessment of 
phenotypic dimensionality without incorporating genetic information cannot produce 
correct results, or that genetic analyses render standard methods obsolete. Rather, we think 
that genetic designs offer an underutilized and informative source of data that may help 
researchers to better understand the dimensionality of their constructs. Practically we 
envisage a situation in which phenotypic dimensionality research produces varied results, 
which will in practice simply result in disagreement concerning dimensionality. For 
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instance, this is the case for cognitive abilities, with respect to which there are competing 
models which differ in dimensionality (notwithstanding many decades of research). One 
solution to this is to collect larger data sets. However, the present chapter suggests to 
researchers that the greater resolution provided by larger data sets may not provide the 
answer. We propose that it might be useful to seek out twin data in order to investigate 
possible differences in dimensionality of genetic and environment influences on major 
constructs. 

As mentioned previously, the logic underlying our approach is essentially the same 
as that involved in measurement invariance research and MIMIC modeling. Moreover, 
common and independent pathway model comparisons have been considered outside the 
context of genetics (see e.g. Carlson & Mulaik, 1993). However, what makes the analyses 
presented here different is that, unlike in standard MIMIC modeling, the A, C, and E factors 
determine the variance of the latent variable completely. Furthermore, the situation in which 
the common pathway model is rejected is at least as informative as that in which it is 
retained, as the information contained in genetically informative datasets allows one to 
examine the exact nature of violations of dimensional assumptions; something that is 
typically not the case in standard MIMIC modeling. In the twin model, one can establish 
whether or not the common pathway model fits and, in case of misfit, can arrive at a 
detailed account of the cause of misfit, thereby moving the question of dimensionality from 
the phenotypic level to the genetic level and the environmental level. This increased 
resolution (i.e., the possibility to view the lack of unidimensionality of the observed 
covariation structure as a function of the dimensionalities of its underlying genetic and 
environmental structures) is unique to the twin design and is, in our opinion, a particularly 
powerful aspect of the present method. 

In our illustrative analyses, the incorporation of genetic information turned out to be 
highly informative. In standard phenotypic analyses, it proved difficult to decide whether a 
three- or four-dimensional latent structure underlies the data - a situation that is not 
uncommon in psychometric investigations into dimensionality, where one often has to 
decide between solutions that differ substantively but appear to be nearly equivalent 
statistically. Incorporating genetic information, however, suggested that the reason for the 
ambiguity in the data with respect to these structures is that several different models are 
correct, but apply to different sources of item covariation: a 2-factor model seems to better 
reflect additive genetic influences, whereas a 4-factor model better reflects unique 
environmental influences. Interestingly, common environmental influences appear to 
influence item scores across the board, suggesting that the common part of environmental 
variation varies along a single dimension.17 

The question of how many dimensions are measured by the Internalizing scales of the 
CBCL can now be viewed from a new perspective, which may be surprising to the 
psychometrician: in terms of genetic variance the items appear to measure two dimensions, 
corresponding to genetic influences distinctly affecting symptoms of 
depression/anxiety/withdrawal, on the one hand, and somatic complaints, on the other. 
This implies, for instance, that genes act in a nonspecific way to influence the chance of 
developing depression-, anxiety-, and withdrawal-related symptomatology. Individual-
specific environmental influences distinctly affect symptoms of depression, anxiety, 
withdrawal, and somatic complaints (thus, individual-specific environmental events may be 
e.g. specifically depressogenic or specifically anxiogenic), whereas environmental events 

                                                
17 It is possible that a unidimensional C component partly stems from method variance. For instance, variance due to 
rater bias, if not explicitly modeled, is absorbed by C (Neale & Cardon, 1992). Given data by multiple raters, it is 
possible to test for presence of rater bias. 
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shared by family members appear to either have a positive or a negative effect on the entire 
range of symptoms. In terms of, for instance, the anxiety/depression distinction, the present 
results suggest that these two syndromes share the same genetic basis, but are distinctly 
affected by individual-specific environmental events - a finding that is in line with prior 
genetic investigations into the dimensionality of anxiety and depression (e.g., Kendler et al., 
1987; Kendler et al., 1992; Middeldorp et al., 2005).  

It should be noted that the current results do not necessarily reflect upon the utility 
of the CBCL in the clinical context; we do not doubt its usefulness for diagnostic purposes, 
especially given that the broad structure found in our analyses is in line with the current 
item allocation of the CBCL. However, in the context of research one should bear in mind 
that the current scales may not measure three distinct sets of genetic, common 
environmental and individual-specific environmental influences, but possibly reflect a more 
complex underlying structure. Depending on the specific research goals, the results of this 
type of analysis may provide a basis for redefining the current scales to arrive at distinct 
measures of each of these sources of influences (e.g., if one’s aim is to measure common 
environmental influences, one may view the item set as unidimensional and accordingly 
derive a single sumscore from the data).  

Naturally, the results of this type of analyses are relevant not only to theories of 
psychopathology; we consider their implications to be much wider. For instance, theories in 
developmental psychology may benefit from investigating the individual differences in the 
development of behavior as a function of genetic and environmental influences, or 
examining how the various dimensions of environmental and genetic influences change and 
develop over time. Also, the results might have implications for genetics itself. Specifically, 
the search for genes affecting specific behaviors is often based on a composite measure of a 
phenotype, such as a sumscore. However, if these phenotypes are heterogeneous, analogous 
to the way the CBCL appears heterogeneous, using a total score as a basis for gene search 
would appear suboptimal, as the total score itself might not accurately reflect the genetic 
structure underlying the data (van der Sluis et al., 2010). We consider this issue to be 
important, because power to detect the effects of measured genes is likely to suffer if the 
phenotypic measure is not correctly defined (van der Sluis et al., 2010). Independent 
pathway item level analysis, as described in this chapter, offers possibilities for redefining 
the phenotypic scores in terms of genetic and environmental effects. This may in turn allow 
for using latent trait estimates derived from a model such as that in Figure 7, as a basis for 
gene search.  

In addition to these practical benefits of the present methodology, there are 
important conceptual considerations that follow from the ideas presented in this chapter. 
For instance, latent variable models like the factor model can be viewed as incorporating 
hypotheses concerning a common cause structure that underlies item covariation 
(Borsboom, 2008; Borsboom et al., 2003; Haig, 2005a, 2005b). However, the question of 
whether latent variables hypothesized in a given context may be said to exist and have 
causal relevance is a point of dispute in many fields; one need only consider the fields of 
intelligence and personality research, where considerable controversy exists regarding the 
theoretical status of variables such as the g-factor and the five factors of personality. To the 
extent that such models survive the confrontation with genetic information, as described 
here, they may be considered more strongly corroborated than they could be in analyses of 
purely phenotypic data. However, if models for genetic and environmental effects have 
different structures, as was the case for the illustration data in this chapter, the common 
factors found in our phenotypic analysis may in fact be an amalgam of several different 
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genetic and environmental models. Clearly, in this case, the ascription of causal force to such 
amalgams is problematic. 

In conclusion, we expect that the methodology proposed in this chapter may bear 
considerable fruit in disentangling dimensionality issues in the research areas where they 
have generated controversy, and shed light on the theoretical status of important 
hypothesized latent variables in intelligence, psychopathology, and personality research. 
The time is ripe for investigations along these lines. In the past decades, behavior genetics 
researchers have constructed large and well-archived twin and family registries that are 
perfectly suited for analyses such as those reported here (e.g., a 1998 review lists 16 twin 
registries in Europe alone; Boomsma, 1998; Busjahn, 2002). The datasets contained in those 
registries are typically obtainable via protocols for collaborative projects, and in some cases 
even publically available (e.g. Add Health; see Harris, Halpern, Smolen, & Haberstick, 
2006). In addition, the development of psychometric software as well as the current speed of 
computers have led to a situation where the required statistical analyses have become 
feasible. In our view, this opens up a wealth of possibilities for refining and extending 
psychometric investigations beyond the analysis of purely phenotypic covariation.
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Chapter 4 
 
Three-and-a-half-Factor Model? The Genetic and 
Environmental Structure of the CBCL/4-18 
Internalizing Grouping 
 
 
Abstract 
 
In the present chapter, multivariate genetic item analyses were employed to address 
questions regarding the ontology and the genetic and environmental etiology of the 
Anxious/Depressed, Withdrawn, and Somatic Complaints syndrome dimensions of the 
Internalizing grouping of the Child Behavior Checklist/6-18 (CBCL/6-18). Using common 
and independent pathway genetic factor modeling, it was examined whether these 
syndrome dimensions can be ascribed a realist ontology. Subsequently, the structures of the 
genetic and environmental influences giving rise to the observed symptom covariation were 
examined. Maternal ratings of a population-based sample of 17,511 Dutch twins of mean age 
7.4 (SD=.4) on the items of the Internalizing grouping of the Dutch CBCL/6-18 were 
analyzed. Applications of common and independent pathway modeling demonstrated that 
the Internalizing syndrome dimensions may be better understood as a composite of 
unconstrained genetic and environmental influences than as causally relevant entities 
generating the observed symptom covariation. Furthermore, the results indicate a common 
genetic basis for anxiety, depression, and withdrawn behavior, with the distinction between 
these syndromes being driven by the individual-specific environment. Implications for the 
substantive interpretation of these syndrome dimensions are discussed. 
 
Appendices can be obtained at http://sanjafranic.com/dissertation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Dolan, C. V., Borsboom, D., van Beijsterveldt, C. E. M., & Boomsma, D. 
I. (2014) Three-and-a-Half-Factor Model? The Genetic and Environmental Structure of the 
CBCL/6–18 Internalizing Grouping. Behavior Genetics, 44(3), 254-268. 
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The development of taxonomy of psychiatric symptoms has traditionally been challenging. 
Difficulties in delineating between diagnostic categories, arising from issues such as 
overlapping features of multiple disorders, inconsistent empirical evidence regarding the 
factor structure of psychometric instruments, definitional issues arising from high 
comorbidity rates, debates regarding dimensional vs. categorical conceptualization, and 
unknown degree of etiological overlap between symptoms or sets of symptoms, have 
notoriously hampered the attempts of arriving at a classification of psychopathology that 
would gain univocal support from empirical researchers and clinical practitioners alike. In 
children, these issues are further exacerbated by the developmental aspect of the disorders: 
for instance, the same disorder may manifest itself through different symptoms over time, 
while identical symptoms may reflect distinct, temporally changing underlying conditions. 
Symptoms of anxiety and depression, for instance, famously illustrate the aforementioned 
issues (Brady & Kendall, 1992; Brown, 1996; Clark & Watson, 1991; Mineka, Watson, & 
Clark, 1998; Rapee, Schniering, & Hudson, 2009). The definitional and etiological questions 
surrounding these disorders (and their high comorbidity rates) are as old as the systematic 
study of the disorders itself. Are these two highly comorbid disorders manifestations of a 
single syndrome, or separate entities with overlapping features? To what extent are their 
etiologies shared? Is their symptom overlap a reflection of inadequacies of the current 
diagnostic systems, or an indication of a shared etiology? These and similar questions have 
stimulated ample and diverse theoretical development, and motivated a vast amount of 
research. The theories range from those postulating anxiety and depression as different 
points along a single continuum, to those conceptualizing them as conceptually and 
empirically distinct phenomena (Clark, 1989).  

This complexity, inherent to the study of psychiatric disorders, is further 
compounded by a lack of agreement in evaluating and understanding the structure of 
psychometric instruments used to assess psychopathology. The Child Behavior Checklist 
(CBCL, Achenbach & Rescorla, 2001), for instance, is one of the most widely used 
instruments in assessing childhood psychopathology. It has been translated into over 85 
languages, and more than 6,000 publications from over 65 countries report its applications 
in both the practical and the research context. However, when faced with critical empirical 
and psychometric evaluations, the syndrome dimensions postulated in the CBCL do not 
always stand up to scrutiny. In possibly the most comprehensive critical 
psychometric/empirical evaluation of the CBCL to date, Hartman et al. (Hartman et al., 
1999) demonstrated that the 8-factor cross-informant model of the CBCL (Achenbach & 
Rescorla, 2001, described below) fails to adequately describe the empirical data across 
multiple cultures under study, in both population-based and clinical samples. Furthermore, 
if violations of distributional assumptions, invariably present in the analysis of CBCL data, 
are taken into account when evaluating model fit, the conclusions of the studies indicating 
acceptable or nearly acceptable fit are often undermined (see Hartman et al., 1999). Upon 
close scrutiny, it therefore appears that the postulated 8-factor structure of the CBCL does 
not consistently survive critical confrontation with empirical data. This, naturally, raises 
questions about the instrument’s validity: what do the CBCL syndrome dimensions 
measure, given the lack of unambiguous empirical support for the proposed 8-factor 
structure?  

In the present chapter, we propose that multivariate genetic item analysis (e.g., 
Eaves, 1983; Franić, Dolan, Borsboom, Hudziak, et al., 2013; Heath, Eaves, & Martin, 1989; 
Heath, Jardine, et al., 1989; Kendler et al., 1987; M. C. Neale et al., 2005; van den Berg et al., 
2007; Waller & Reise, 1992), as first applied to individual psychiatric symptoms by Kendler 
et al. (Kendler et al., 1987), can be used to illuminate some of the aforementioned issues. 
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Specifically, genetic item analyses can be employed to examine how some of the difficulties 
in delineating the CBCL syndrome dimensions may arise as a function of the complexity of 
the latent genetic and environmental structures that underlie the observed symptom 
covariation. In addition, the applications of this type of analysis can contribute to the 
discussion on whether the current CBCL dimensions may be conceptualized as well-
defined, coherent entities exerting causal influence on item covariation (i.e., whether they 
can be ascribed a realist ontology; Borsboom et al., 2003), or are better considered an 
unconstrained amalgamation of genetic and environmental influences. In the present 
chapter, we focus on the Internalizing grouping of the CBCL (items of the CBCL pertaining 
to intropunitive emotions and moods), with the aim of answering two principal questions: 1. 
Can one interpret the Internalizing syndrome dimensions of the CBCL substantively and 
causally? 2. What is the structure of the genetic and environmental influences giving rise to 
the observed (i.e., phenotypic) symptom covariation? We do not place primary emphasis on 
detailed phenotypic dimensionality assessment, and use it mainly insofar as it serves as a 
gateway into exploring the latent genetic and environmental dimensionality.  
 
Method 
 
Data 
 
The data were obtained from the Netherlands Twin Register at VU University Amsterdam 
(Bartels, Beijsterveldt, et al., 2007; van Beijsterveldt, Groen-Blokhuis, Hottenga, Franić, et al., 
2013) and consist of maternal ratings of a population-based sample of 17,511 twins 
(including 3,023 MZ and 5,599 DZ complete twin pairs) of mean age 7.4 (SD = .4) on the 
Internalizing grouping of the Dutch version of the Child Behavior Checklist for Ages 6-18 
(CBCL/6-18; Achenbach & Rescorla, 200118). The CBCL/6-18 is a 140-item questionnaire 
used to assess problem behaviors and competencies in children, as reported by their 
parents. The cross-informant model of the CBCL (Achenbach & Rescorla, 2001) was derived 
through the application of principal components analysis, and consists of 8 correlated 
syndrome dimensions, broadly clustered into those pertaining to internalizing problems 
(the Internalizing grouping) and those pertaining to externalizing problems (the 
Externalizing grouping). The Internalizing grouping of the CBCL is a scale designed to 
measure disturbances in intropunitive emotions and moods in children, and consists of 3 
subscales (i.e., syndrome dimensions): Anxious/Depressed (AD), Withdrawn (W), and 
Somatic Complaints (SC), containing 31 discrete items (listed in Figure 1) in total. Responses 
are given on a three-point scale: “not true”, “somewhat or sometimes true”, and “very true 
or often true”. A path-diagrammatic representation of the three syndrome dimensions of the 
Internalizing grouping is given in Figure 1.  

The analytic framework employed in the present study has been outlined in the 
preceding chapter, but is repeated in the Approach section below for completeness. The 
reader familiar with Chapter 3 may skip to the Analyses section.  
 

 

                                                
18 The study had permission to permission to use, reproduce and reformat the CBCL. 
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Figure 1. The syndrome dimensions and item content of the CBCL 6/18 Internalizing 
grouping. AD = Anxious/Depressed, W = Withdrawn, SC = Somatic Complaints. 
 
Approach 
 
Genetic covariance structure modeling (Martin & Eaves, 1977) is the application of structural 
equation modeling (Bollen, 1989; Kline, 2005) to data collected in genetically informative 
samples, such as samples of twins (Franić et al., 2012; M. C. Neale & Cardon, 1992). In the 
classical twin design, the sample consists of monozygotic (MZ) and dizygotic (DZ) twin 
pairs. DZ twins share an average of 50% of their segregating genes, while MZ twins share 
their segregating DNA (Falconer & Mackay, 1996; J. P. van Dongen et al., 2012). In the 
present analyses, the covariance structure of the phenotypes (i.e., observed traits, 
symptoms) is modeled as a function of latent factors representing three sources of 
individual differences: additive genetic (A), shared environmental (C) and individual-
specific environmental (E) sources. Additive genetic influences are modeled by one or more 
A factors, which represent the total additive effects of genes relevant to the phenotypes. 
Based on quantitative genetic theory (Falconer & Mackay, 1996; Mather & Jinks, 1971), the A 
factors are known to correlate 1 across MZ twins and .5 across DZ twins. Environmental 
influences affecting the phenotype of both twins in an identical way, thereby increasing 
their similarity beyond what is expected based on genetic resemblance alone, are 
represented by one or more C factors. Therefore, by definition, the C factors correlate unity 
across twins (regardless of zygosity). All environmental influences causing the phenotype of 
two family members to differ are represented by one or more E factors. Thus, by definition, 
the E factors are correlated 0 across twins.19 The expected covariance structure in a 
multivariate twin model is thus: 
 

Σ11 Σ12
Σ21 Σ22

 = ΣA + ΣC + ΣE ΠΣA + ΣC  
ΠΣA + ΣC ΣA + ΣC + ΣE  

 

                                                
In addition, the phenotype may be influenced by non-additive genetic effects (D), which are the result of interactions 
of alleles within the same locus (genetic dominance) or across different loci (epistasis). These will not be modeled in 
the present chapter, as the classical twin design does not allow for simultaneous estimation of A, D, C, and E effects. 
The choice between modeling C and D effects was informed by preliminary univariate item analyses, which showed 
most of the items to conform better to an ACE than to an ADE model. We note, however, that this does not exclude the 
presence of non-additive genetic influences (Keller and Coventry, 2005). 
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where, given p phenotypes, Σ11 (Σ22) is the p x p covariance matrix of twin 1 (twin 2), Σ12 
(Σ21) is the twin 1 - twin 2 p x p covariance matrix, and ΣA, ΣC and ΣE are the additive 
genetic, shared environmental, and unique environmental p x p covariance matrices, 
respectively. The coefficient P is the additive genetic twin correlation (1 for MZ twins, .5 for 
DZ twins).  
 

 
Figure 2. A common pathway (left) and an independent pathway (right) genetic factor 
model. Matrix names on the sides correspond to notation in the text.  
 
Figure 2 depicts two examples of the multivariate twin models used in the present study. 
The first model is a common pathway model (Kendler et al., 1987), also known as the 
psychometric factor model (McArdle & Goldsmith, 1990). In a common pathway model, all 
of the A, C, and E influences on the item responses are mediated by a latent variable, 
henceforth referred to as the psychometric factor (factors P1 and P2 in Figure 2). P1 and P2 
may be viewed as latent phenotypic factors, e.g. ‘anxiety’ or ‘depression’. In common 
pathway models, the psychometric factor acts as a mediator of the genetic and 
environmental effects, and the factor loadings represent common pathways from the A, C, 
and E factors to the observed item responses.  

The second model is the independent pathway model (Kendler et al., 1987), also known 
as the biometric factor model (McArdle & Goldsmith, 1990). This model is represented in the 
right panel of Figure 2. In the independent pathway model, there is no phenotypic latent 
variable that mediates the genetic and environmental effects on the item responses. Rather, 
the A, C, and E factors influence item responses directly. In terms of the phenotypic (i.e., 
observed) covariance matrix of the item responses (i.e., S11 = S22), we can convey the 
common and the independent pathway models, respectively, as follows:  
 

Σ11 = Σ22 = ΛΦΛt + Θcp = Λ(ΦA + ΦC + ΦE)Λt + Θcp = Λ(ΓAΓA
t + ΓCΓC

t + ΓEΓE
t)Λt + Θcp 

Σ21 = Σ12
t = Λ(ΦA + ΦC)Λt + Θcp21 = Λ(ΠΓAΓA t + ΓCΓC t)Λt + Θcp21 

 
and 
 

Σ11 = Σ22 = ΛAΨAΛA
t + ΛCΨCΛC

t + ΛEΨEΛE
t  +  Θip = ΛAΛA

t + ΛCΛC
t + ΛEΛE

t + Θip 
Σ21 = Σ12

t = ΠΛAΛA
t + ΛCΛC

t + Θip21. 
 
Here ΨA, ΨC, and ΨE are the covariance matrices of the A, C, and E factors in the two 
models. In the common pathway model the covariance matrix of the psychometric factor, Φ, 
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equals ΦA + ΦC + ΦE, i.e. ΓAΓA
t + ΓCΓC

t + ΓEΓE
t, where ΦA, ΦC, and ΦE denote the A, C, and 

E variance components of Φ, and ΓA, ΓC, and ΓE are the vectors of factor loadings ΓA = [a], ΓC 
= [c], ΓE = [e]. Note that in both models the diagonal matrices Θ (denoted Θcp and Θip, as 
they may vary over the models) contain the residual variances of the items in the model. The 
residual covariance matrices may be subjected to their own decomposition, i.e., Θ = ΘA + ΘC 
+ ΘE and Θ21 = ΠΘA + ΘC (M. C. Neale & Cardon, 1992).  

In the present chapter, we distinguish between genetic factor models (introduced 
above), and phenotypic factor models. By ‘phenotypic factor model’ we refer to the factor 
model as usually formulated and applied in psychological research. The term ‘phenotypic’ 
is used because the model is applied only to the observed (i.e., phenotypic) covariation; no 
genetic information is used.20 The 8-factor cross-informant model of the CBCL and the 5-
factor model of personality (McCrae & Costa, 2003; McCrae & John, 1992) are examples of a 
phenotypic factor model.  

The common pathway model bears a number of similarities to the phenotypic factor 
model. Notably, both the phenotypic factor model and the common pathway model are 
based on the premise that all covariation in item responses is attributable to one or more 
latent variables. In phenotypic factor modeling, this can be formulated in terms of 
measurement invariance: influences of all external variables affecting covariation in item 
responses run only via the latent variable (Mellenbergh, 1989; Meredith, 1993). Likewise, in 
common pathway modeling one assumes that all of the A, C, and E influences on item 
covariation run only via the psychometric factor. That is, there are no direct effects of A, C, 
and E on the items. The assumption of full mediation of external influences by a latent 
variable has strong implications. For instance, different external variables affecting a set of 
item responses via the same latent variable exert the same magnitude of influence relative to 
each other on all the items that depend on that latent variable. For instance, if an A and a C 
variable affect a set of items via the same psychometric factor, then the magnitude of 
influence exerted by the variable A on any individual item will be a scalar multiple of the 
magnitude of influence exerted by the variable C on that same item, and this scalar multiple 
(k) will be a constant across all the items depending on this psychometric factor. This means 
that one can derive a common pathway model from an independent pathway model by 
imposing proportionality constraints on the factor loadings, such that a1/a2 = c1/c2 = e1/e2 = 
k (following the notation in the right panel of Figure 2).  

Thus, the common pathway model makes explicit an assumption of the phenotypic 
latent variable model concerning the sources of item covariation – all influences on item 
covariation run via the phenotypic latent variable. This means, barring cases of model 
equivalence, that a latent variable model cannot hold unless the corresponding common 
pathway model holds (Franić, Dolan, Borsboom, Hudziak, et al., 2013). Because any given 
latent variable hypothesis implies a corresponding common pathway model, a refutation of 
that common pathway model constitutes evidence against the latent variable hypothesis.  

For this reason, one may test the latent variable hypothesis by comparing the fit of a 
common pathway model to that of a corresponding independent pathway model. 
Specifically, if a model in which all of the A, C, and E factors exert direct influence on the 
phenotype fits the data statistically better than a model in which these influences are 
mediated by a phenotypic latent variable, this would provide evidence against the 
hypothesis that the effects on the observed item covariation are completely mediated by the 
phenotypic latent variable. In that case the latent factors employed in the phenotypic factor 

                                                
20 This is the standard application of the factor model to data collected in unrelated subjects, or when no information is 
available on genetic relatedness. We note, however, that if genome-wide DNA marker data are available in unrelated 
subjects, these could be used in a GTCA-like approach (Yang et al., 2011) to explore genetic covariance structures. 
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model are no more than an amalgamation of the direct influences of the A, C, and E factors 
on the observed item responses. If, on the other hand, an independent pathway model does 
not fit the data better than the corresponding common pathway model, this would provide 
support for the structure employed in the common pathway model, and substantiation for 
the corresponding phenotypic latent variable model. Comparison of an independent 
pathway model and a common pathway model may be conducted using a likelihood ratio 
test, because, as shown above, a common pathway model can be derived from an 
independent pathway model by imposing appropriate proportionality constraints on the 
factor loadings (i.e., the models are nested). 

 
Analyses 
 
In the present study, the outlined methodology was used to examine the substantive 
interpretability of the Internalizing syndrome dimensions of the CBCL 
(Anxious/Depressed, Withdrawn, Somatic Complaints). The phenotypic dimensionality of 
the 31 items of the Internalizing grouping was assessed using exploratory (EFA) and 
confirmatory (CFA) factor analysis. In this part of the analyses, the data were treated as if 
the sample consisted of genetically unrelated individuals. As treating observations from the 
same family as independent may result in biased test statistics, we performed a correction 
for clustering available in MPlus, which has been shown to work well in this context 
(Rebollo, de Moor, Dolan, & Boomsma, 2006). The EFA was performed using the oblique 
geomin rotation. Split-half validation was used, i.e. the EFA was performed on one 
randomly selected half of the sample (N=8756), and CFA on the other (N=8755).  

Based on the results of the phenotypic dimensionality assessment, a common 
pathway model was formulated: in this model, the phenotypic factors obtained in the EFA 
and the CFA were retained, and their variation decomposed into A, C, and E components, 
as illustrated in the top panel of Figure 4. Subsequently, an independent pathway model 
was specified. This model is equal to the common pathway model in the number of the 
latent A, C, and E factors (i.e., the dimensions of the  ΨA, ΨC, and ΨE matrices are equal 
across the two models), but it disposes of the phenotypic factors, i.e., it allows for the items 
to load directly on the A, C, and E factors. By comparing the fit of the common and the 
independent pathway model, we address the first focal question of whether one can 
interpret the syndrome dimensions of the CBCL Internalizing grouping substantively and 
causally. 

To address the second research question, namely one concerning the dimensionality 
and the factor structure of the genetic and environmental effects that underlie the observed 
symptom covariation, independent pathway modeling was employed in an exploratory 
manner. First, the covariance matrix of the 31 symptoms was decomposed into A, C, and E 
components, i.e., the unconstrained 31x31 ΣA, ΣC, and ΣE matrices were estimated. 
Subsequently, EFA was applied to each of these matrices to obtain an indication of their 
dimensionality. Examining the dimensionality and the factor structure of the genetic and 
environmental effects which jointly act to produce the observed symptom structure 
provides insight into the observed symptom covariation, as the structure emerging in the 
phenotypic analyses (EFA, CFA) depends directly on the structure and relative magnitude 
of the underlying genetic and environmental components; for instance, a strongly prevailing 
unidimensional C component will make the phenotypic structure appear unidimensional.  

The analyses were performed using Mplus (L. K. Muthén & Muthén, 2007), Mx (M. 
C. Neale, 2000), and R (R Core Team, 2013R). Given the discrete nature of the items, we 
fitted discrete factor models (i.e., we assumed the discrete indicator variables to be a 

67



 

realization of a continuous normal21 latent process, and modeled polychoric correlations; 
Flora & Curran, 2004; Wirth & Edwards, 2007) using the robust weighted least squares 
estimator (WLSMV; L. K. Muthén & Muthén, 1998-2007). The polychoric correlations 
between the 31 items and between the 62 (31 per twin) items served as input in the 
phenotypic and the genetic factor analyses, respectively. In evaluating model fit, the 
Comparative Fit Index (CFI), the Tucker Lewis Index (TLI), and the Root Mean Square Error 
of Approximation (RMSEA) were employed. As both the sample size and the models 
employed were large, the chi-square statistic was of limited use as an overall fit measure  
(Jöreskog, 1993), and was used only to test local hypotheses concerning comparisons of 
nested models, as these comparisons are associated with a smaller approximation error. 
 
Results 

 
Phenotypic analyses (EFA and CFA). The results of phenotypic dimensionality assessment are 
presented in Figure 3 and Table 1. EFA produced two well-fitting solutions: a 3- and a 4-
factor solution (Figure 3). Interestingly, in both solutions, the items of the 
Anxious/Depressed scale appear to cluster into those pertaining to anxiety (‘Fears doing 
something bad’, ‘Must be perfect’, ‘ Nervous, tense’, ‘Fearful, anxious’, ‘Feels too guilty’, 
‘Self-conscious’) and those pertaining to depression (‘Lonely’, ‘Cries a lot’, ‘Feels unloved’, 
‘Others out to get him’, ‘Feels worthless’, ‘Suspicious’, ‘Sad’, ‘Worries’). In contrast to the 
Anxious/Depressed scale, the Somatic Complaints scale displayed a clearly unidimensional 
structure. The same is true of the Withdrawn scale, with the exception of the item ‘Sulks’, 
which consistently clustered with the items pertaining to depression, and the item ‘Shy, 
timid’, which in the 4-factor solution cross-loaded highly on the ‘Anxious’ factor.  
 The 4-factor solution, in which anxiety and depression form separate clusters, and 
the standard CBCL cross-informant model containing the Anxious/Depressed, Withdrawn, 
and Somatic Complaints scales, were subsequently tested in CFA. The models and the fit 
measures are shown in Figure 3. As can be seen from the Figure, the two models differed 
only minimally in terms of model fit: CFI = .877 vs. .891, TLI = .944 vs. .950, RMSEA = .037 
vs. .035 for the 3- vs. the 4-factor models, respectively. In the light of the well-established 
difficulty in distinguishing phenotypically the dimensions of anxiety and depression, this 
finding is perhaps not entirely unexpected.  
 Genetic covariance structure modeling. Based on the results of the phenotypic 
dimensionality assessment, a 3- and a 4-factor common pathway model were formulated. 
These are depicted in the top panel of Figure 4. In both models, the common factors 
obtained in the phenotypic analyses (Anxious/Depressed, Withdrawn, and Somatic 
Complaints for the 3-factor model, and Anxious, Depressed, Withdrawn, and Somatic 
Complaints for the 4-factor model) were retained, and the contributions of the A, C, and E 
factors to their variation were assessed. As can be seen in Figure 4, the fit of the two 
common pathway models was virtually indistinguishable: CFI = .947 vs. .952, TLI = .962 vs. 
.966, RMSEA = .028 vs. .026 for the 3- vs. the 4-factor model, respectively.  

Subsequently, based on the two common pathway models, the two independent 
pathway models depicted in the lower panel of Figure 4 were formulated. In these models, 
the A, C, and E factors employed in the common pathway analyses were retained, but the 
psychometric factors were disposed of, i.e. the items were allowed to load directly on the A, 
C, and E factors. Again, the fit of the two independent pathway models was virtually  

                                                
21 Tests of departures from underlying bivariate normality indicated that the normality assumption was tenable for all 
items. 
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Figure 3. Results of the phenotypic EFA and CFA. In EFA solutions only the highest factor 
loading for each item is depicted (the omitted factor loadings equal .057 on average; the 
depicted factor loadings equal .57 on average). 
 
indistinguishable: CFI = .977 vs. .976, TLI = .982 vs. .982, RMSEA=.019 vs. .010 for the 3- vs. 
the 4-factor-based model, respectively.  

Addressing the first focal question of whether an independent pathway model fits 
the data appreciably better than a common pathway model, we compared the general fit of 
the models, and carried out likelihood ratio tests of the proportionality constraints 
mentioned above22. These tests revealed both the 3- and the 4-factor-based independent 
pathway models to fit the data better than their common pathway versions (χ2=1554, df=24, 
p<.0001 for the 3-factor-based models, χ2=1084, df=21, p<.0001 for the 4-factor-based 
models). This implies that the common pathway models, in which phenotypic latent 
variables mediate all of the A, C and E influences, fail to convey entirely accurately the 
genetic and environmental effects on the items.  

In the second set of analyses, EFA was employed to evaluate separately the 
dimensionality and the factor structures of the genetic and environmental influences that 
underlie the observed symptom covariation. Specifically, we evaluated the dimensionalities 
of the ΣA, ΣC and ΣE covariance matrices. The results are shown in Figure 5. An inspection of 
the scree plots in the Figure clearly indicates a 1-dimensional C structure. The structures of 
A and E matrices remain, however, somewhat less clear. To explore the A and E structures 
further, the present EFA results were used as a basis for specifying a number of competing 
independent pathway models with varying dimensionalities of the ΣA, ΣC and ΣE covariance 
matrices. An overview of these models, including the fit measures and inter-factor 
correlations, is given in Table 1 in Appendix 3. Overall, a comparison of the models 
suggested a model with 2A, 1C, and 4E factors as the best-fitting model with acceptable 
inter-factor correlations (CFI=.978, TLI=.983, RMSEA=.018). This model is depicted in Figure 
6, and parameter estimates are given in Table 2. It should, however, be noted that the 
models did not differ considerably in terms of model fit; therefore the structure in Figure 6 
need not necessarily be conclusive. What the present results do strongly suggest, however, 
is a unidimensional C structure, and multidimensional (but mutually differing) A and E 
structures. These structures may also be discerned in Figure 7, which gives a graphical 
representation of the ΣA, ΣC, and ΣE covariance matrices (Epskamp, Cramer, Waldorp, 
Schmittmann, & Borsboom, 2012).  

Finally, the results of variance component estimation are given in Table 2. Overall, 
around 50% of the variance in the CBCL Internalizing symptoms is explained by the 
common A, C, and E factors, the remaining half being due to residual (symptom-specific) 
factors. The overall symptom heritability (defined as the heritability due to both the 
common and the symptom-specific factors) is 50% on average. The mean proportions of the 
phenotypic variance explained by the C and E factors are 20% and 30%, respectively (last 3 
columns Table 2). These proportions are relatively stable across all symptom clusters, with 
symptoms of depression being somewhat less heritable than the others (41% vs. 51%-65% on 
average). Interestingly, the high item heritability is predominantly due to the item-specific, 
rather than the common A factors, while the C component is primarily due to the common 
C factor, with the item-specific factors accounting for a negligible portion of the variance.  

                                                
22 For WLSMV estimators the standard approach of taking the difference between chi-square values and the 
corresponding degrees of freedom is not appropriate because the chi-square difference is not chi-square distributed 
(Muthén & Muthén, 1998-2007). We therefore performed chi-square difference testing using scaling correction factors 
(Satorra & Bentler, 2001). 
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Figure 4. The common (upper panel) and independent (lower panel) pathway models fitted 
to the data. 
 

 
Figure 5. Eigenvalues of the SA, SC, and SE matrices (upper panel) and factor loadings 
obtained in EFA solutions with 2 A, 1 C, and 4 E factors (lower panel). Colors/shapes code 
for different latent factors. Only the highest factor loading for each item is shown. 

 

 
Figure 6. The 2A 1C 4E independent pathway model. Item residuals are not depicted but are 
included in the model. The mean percentages of item variance explained by each factor are 
given. Items are listed below, and their allocation to factors is indicated by the color of the 
panels.
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Figure 7. Graphical representation of the ΣA, ΣC, and ΣE matrices. Nodes (i.e., circles) 
represent symptoms. The thickness of the edges (i.e., of the lines connecting the nodes) 
represents the strength of correlations between the symptoms. For instance, the thickness of 
the line connecting Item 1 (“Lonely”) to item 13 (“Sad”) in the “A” graph represents the 
magnitude of the additive genetic correlation between these two symptoms. 
 
 
Discussion 
 
The present chapter aimed at answering two principal questions: one pertaining to the 
ontological nature of the syndrome dimensions postulated in the CBCL cross-informant 
model, and the other pertaining to the factor structure of the genetic and environmental 
influences that underlie the observed symptom covariation.  

The first question relates to a longstanding discussion in philosophy of science. The 
latent variable model, arguably the predominant measurement model in psychology, 
invariably invokes a latent variable which is hypothesized to underlie a set of observed 
variables (i.e., item responses, symptoms). The ontological nature of such latent variables 
has long been a subject of debate. On the theoretical side of the debate, broadly speaking, 
two principal (and mutually opposing) accounts of the latent variable are commonly 
invoked. In the realist view, the latent variable represents a real entity which is assumed to 
exist independently of measurement, and is characterized by a causal relationship with its 
indicators: for instance, because a child is depressed, it exhibits symptoms such as excessive 
crying and feelings of sadness and worthlessness. The opposing, constructivist account, 
posits the latent variable as nothing more than a statistical construct used to simplify 
observations; in this view, this construct need not exist independently of measurement 
(Borsboom et al., 2003).  
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Empirical contributions to this debate have, to our knowledge, been scarce, although 
the existence and causal relevance of specific latent constructs such as depression and 
general intelligence have long been a source of controversy. Genetic factor modeling, as 
applied in the present chapter, may inform the discussion from an empirical perspective: by 
comparing the fit of a common pathway model, in which the latent phenotypic variables 
mediate all genetic and environmental effects on item covariation (the model therefore 
incorporating a realist hypothesis concerning the nature of those variables, or at least bring 
consistent with a realist perspective), to the fit of an independent pathway model (which 
bears no realist commitment regarding the phenotypic variable), one may test the latent 
variable hypothesis.  

In the present case, neither the common pathway model including the three 
Internalizing syndrome dimensions of the CBCL (Anxious/Depressed, Withdrawn, and 
Somatic Complaints), nor the common pathway model postulating anxiety and depression 
as separate entities, survived confrontation with the independent pathway models. This 
invites reconsideration of the substantive interpretation of the dimensions in question, as it 
follows that these dimensions are better understood as a composite of unconstrained genetic 
and environmental influences than as well-defined entities that plausibly exist 
independently of measurement and statistical procedures (e.g., as natural kinds, Kendler, 
Zachar, & Craver, 2011).  

This does not necessarily undermine the practical utility of the CBCL; we do not 
doubt its usefulness for diagnostic purposes, especially given that the broad structure found 
in our analyses is in line with the current item allocation of the CBCL. Furthermore, the 
reasons for rejecting the common pathway structure may be local (due only to a subset of 
observed variables) and therefore the violation may be accommodated by addition of 
parameters or by the removal of offending variables. What the present results do suggest, 
however, is that the three syndrome dimensions, as currently defined, do not appear to 
represent homogeneous entities in the Borsboom et al. (Borsboom et al., 2003) sense, but are 
rather an amalgam of several different genetic and environmental structures. Clearly, the 
ascription of causal forces to such amalgams is problematic.  

The second research question pertains to the structure of the genetic and 
environmental influences that give rise to the observed symptom covariation. Interestingly, 
the results suggest mutually differing additive genetic, common environmental and unique 
environmental structures. The 2-dimensional additive genetic structure distinctly affects 
symptoms of anxiety, depression, and withdrawal, on the one hand, and somatic 
complaints, on the other. The 4-dimensional unique environmental structure affects each of 
these symptom clusters distinctly, while the common environment acts uniformly across the 
entire range of internalizing symptoms. This replicates the findings of previous multivariate 
investigations into the genetic and environmental sources of symptom covariation, which 
demonstrate a common genetic diathesis for anxiety and depression, with the distinction 
between these disorders being driven by the individual-specific environment (e.g., Kendler 
et al., 1987; Kendler et al., 1992; Middeldorp et al., 2005).  

The present results put the aforementioned difficulties in delineating between the 
diagnostic categories of anxiety and depression into a clearer perspective. Anxiety and 
depression appear to share a common genetic basis: a single set of genes affects the 
individual differences in predisposition to developing general anxiety-, depression- and 
withdrawal-related symptomatology. Previous research and theoretical work have amply 
demonstrated a possibility of a general factor accounting for shared symptoms of anxiety, 
depression, and possibly more broad neurotic symptomatology (with more specific factors 
accounting for the specific subtypes of symptoms) (e.g., Clark & Watson, 1991). This general 
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factor can conceivably be identified with the shared genetic basis found in the present 
analyses. While this shared basis constitutes a broad genetic vulnerability which may 
predispose children to developing general internalizing symptomatology, the specific form 
of symptomatology (anxiety, depression or withdrawal) may depend on the children’s 
unique environmental influences. The common family environment23, interestingly, exerts 
an overall protective or predisposing effect on the entire set of internalizing symptoms, 
either increasing or lowering the chance of developing internalizing psychopathology across 
the board.  

If one takes into account not only the structure, but also the relative magnitude of the 
A, C, and E influences found in the present analyses, an interesting picture emerges. 
Consider the set of items pertaining to anxious, depressed, and withdrawn behaviors. 
Under the model depicted in Figure 6, this item set is influenced by a unidimensional A and 
a unidimensional C structure. These unidimensional latent structures, which act to make the 
symptoms act alike (i.e., covary), collectively explain around a quarter of their total 
phenotypic variance (10.2% and 17% of the relevant item variance is explained by the A1 and 
by the C factor, respectively). The factors which facilitate the clustering of these symptoms 
into three separate groups (in particular, the E1, E2, and E3 factors) explain around 22% of 
their phenotypic variance. The remainder (~50%) of the phenotypic variance is explained by 
item-specific factors. Given the balance in the magnitude of influence that these mutually 
differing structures exert on the item set, the inability of the phenotypic modeling to 
distinguish between several different models is not surprising. In fact, one could wonder 
how the phenotypic analyses could converge on a single model, if several different models, 
each equally relevant to the phenotypic structure, are correct.  

Finally, it should be mentioned that problems regarding the validity and reliability of 
children’s self-reports and the consequent use of raters (parents, teachers) in the assessment 
of children’s behavior may complicate assessment and subsequent interpretation. Rater bias  
(i.e., systematic effects on ratings originating from rater characteristics) is a widely 
recognized problem in research involving informants. In the context of twin and family 
studies, unmodeled rater bias is known to result in an overestimation of the shared 
environmental variance (M. C. Neale & Cardon, 1992). Previous studies on internalizing 
symptoms have demonstrated a modest to nonexistent role of shared environment in the 
development of anxiety (Gregory & Eley, 2007; Hettema, Neale, & Kendler, 2001; Legrand, 
McGue, & Iacono, 1999; Rapee et al., 2009), and a modest to moderate role of shared 
environment in the development of depression (Boomsma et al., 2005b; Rice, Harold, & 
Thapar, 2002b). Although this is consistent with the present findings, the extent to which 
our estimate of the shared environmental component is confounded by rater bias remains to 
be examined.  

In summary, the present chapter utilized genetic item analyses to examine the 
ontology and the genetic and environmental etiology of the latent constructs 
‘Anxious/Depressed’, ‘Withdrawn’, and ‘Somatic Complaints’, as defined in the CBCL/6-18 
cross-informant model. The results 1) invite reconsideration of the substantive interpretation 
of these latent constructs, and 2) consistently with results of previous studies, demonstrate 
that additive genetics, common environment, and individual-unique environment each 
exert a distinct and mutually differing pattern of influence on internalizing symptoms. 
These results provide an informative context to the discussion on the phenotypic delineation 
between different syndromes or disorders, and contribute to our understanding of both the 
nature of the Internalizing syndrome dimensions and the etiology of internalizing behavior. 

                                                
23 See Carey 2009 for an alternative interpretation of C. 
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Chapter 5 
 
The Big Five Personality Traits: Psychological 
Entities or Statistical Constructs? 
 
 
Abstract 
 
The present study employed multivariate genetic item-level analyses to examine the 
ontology and the genetic and environmental etiology of the Big Five personality dimensions, 
as measured by the NEO Five Factor Inventory (NEO-FFI; Costa & McCrae, 1992; H. A. 
Hoekstra, Ormel, & De Fruyt, 1996). Common and independent pathway model comparison 
was used to test whether the five personality dimensions fully mediate the genetic and 
environmental effects on the items, as would be expected under the realist interpretation of 
the Big Five. In addition, the dimensionalities of the latent genetic and environmental 
structures were examined. Item scores of a population-based sample of 7900 adult twins 
(including 2805 complete twin pairs; 1528 MZ and 1277 DZ) on the Dutch version of the 
NEO Five Factor Inventory were analyzed. Although both the genetic and the 
environmental covariance components displayed a 5-factor structure, applications of 
common and independent pathway modeling indicate that they do not comply with the 
proportionality constraints entailed in the common pathway model. Implications for the 
substantive interpretation of the Big Five are discussed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Borsboom, D., Dolan, C. V., & Boomsma, D. I. (2013) The Big Five 
Personality Traits: Psychological Entities or Statistical Constructs? Behavior Genetics, advance 
online publication, doi: 10.1007/s10519-013-9625-7, 1-14. 
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Over the past century, one of the most influential approaches to personality description has 
been the Five Factor (FF) approach. Predicated on the lexical approach to personality 
description, reflected in Cattell’s (Cattell, 1943, p.483): "All aspects of human personality 
which are or have been of importance, interest, or utility have already become recorded in 
the substance of language", the FF approach is based on the idea that identification of basic 
dimensions of human personality is possible via the application of factor analytic techniques 
to verbal descriptors of human traits.  

The beginnings of the FF approach can be traced to Allport & Odbert’s (Allport & 
Odbert, 1936) selection of 4,504 psychological trait terms from the 1925 unabridged 
Webster's New International Dictionary. Cattell (Cattell, 1943, 1945) augmented this list in 
the 1940s by adding “the substance of all syndromes and types which psychologists have 
observed and described in the past century or so”, and subsequently abbreviated it to a set 
of 35 variables - a factor analysis of which produced 12 “primary” factors. In the early 1960s, 
Tupes and Christal (Tupes & Christal, 1992) performed a series of factor analyses on 
Cattell’s variables and observed five recurrent orthogonal factors, which they denoted 
Surgency/Extraversion, Agreeableness, Dependability, Emotional Stability, and Culture 
(French, 1953). Through Norman’s (Norman, 1963, 1967) further addition to, and subsequent 
abbreviation of, Allport & Odbert’s original list, and further selection of adjectives from this 
list by Goldberg (Goldberg, 1977, 1980, 1983, 1990, 1992), a set of variables with a clearer 
five-factor orthogonal structure was produced. Goldberg (Goldberg, 1980, 1982) denoted 
these five factors “the Big Five”.  

In a parallel research program, following a cluster analysis of Cattell’s Sixteen 
Personality Factor (16PF) Questionnaire in which three factors were extracted – 
Neuroticism, Extraversion, and Openness to Experience – McCrae and Costa (McCrae & 
Costa, 1983) developed a 144-item, 18-facet, 3-dimensional questionnaire, which they termed 
the NEO Inventory. After linking their Neuroticism and Extraversion factors to those from 
the previous lexically based research (e.g., Goldberg, 1980, 1981, 1982, 1983), they fully 
adopted the FF approach, and consequently developed measures of Agreeableness and 
Conscientiousness. The addition of these scales to the NEO Inventory resulted in the NEO 
Personality Inventory (NEO-PI; Costa & McCrae, 1985), and the subsequent implementation 
of facets to measure these two new factors yielded the Revised NEO Personality Inventory 
(NEO-PI-R; Costa & McCrae, 1992). The NEO Five Factor Inventory (NEO-FFI) is a shorter, 
60-item version of the NEO-PI-R. 

 The FF approach has been extraordinarily influential: numerous behavior genetics 
studies have assessed the heritabilities of the Big Five (and more recently sought 
associations with measured genetic variants; de Moor et al., 2010), neural and clinical 
correlates of the five factors have been examined (e.g., DeYoung et al., 2010; Nigg et al., 
2002), and the model has found wide practical application, for instance in the field of 
personnel selection (Schmit & Ryan, 1993). A Google Scholar search for “Five Factor model 
personality” returns nearly two million hits, and a Google search of the same term returns 
around 121 million. 

Notwithstanding its popularity, however, a plethora of issues have been raised 
concerning the conceptual, empirical and statistical foundations of the FF approach (e.g., J. 
Block, 1995). Lack of formal theory underpinning the approach and the possibility of 
empirical analyses being shaped by prior conceptual commitments are some of the most 
prominent ones. Concerns have been raised over the orthogonality of the factor solutions, 
their proposed simple structure, and even the number of factors being significantly 
impacted by the selection of input variables and choices of factor rotations, which ultimately 
might have rested more on the authors’ conceptual beliefs than on mathematical/statistical 
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criteria. In addition, the degree of arbitrariness involved in Cattell, Norman, and Goldberg’s 
selection of trait terms and construction of clusters remains unknown. The model has 
received additional criticism for failing to account for intra-individual personality structure 
and personality functioning. A factor analysis of common English terms describing laptop 
computers, for instance, might yield size, processing speed, random-access memory 
capacity, storage capacity, and operating system as five orthogonal factors; however, one 
may wonder to what extent these factors are informative about the physical structure of a 
laptop computer, or its functional architecture (Cervone, 2005). The model has also been 
criticized on psychometric grounds for a number of problems including failure of 
orthogonality (J. H. Block & Block, 1980; Costa & McCrae, 1992; Goldberg, 1992; Mroczek, 
1992; Peabody & Goldberg, 1989), the presence of cross-loadings (J. Block, 1995; Costa & 
McCrae, 2008; Parker, Bagby, & Summerfeldt, 1993), low validity coefficients (Pervin, 1994), 
lack of reproducibility of the five-factor structure from other personality inventories 
(Caprara, Barbaranelli, & Comrey, 1995; Hahn & Comrey, 1994), and lack of fit in 
confirmatory context (McCrae, Zonderman, Costa, Bond, & Paurnonen, 1996; Parker et al., 
1993). The FF model is derived through, and based on, exploratory techniques such as 
exploratory factor analysis (EFA) and principal components analysis (PCA); in the 
confirmatory factor analysis (CFA) context, however, the model typically obtains 
unsatisfactory fit. 

Another, arguably more fundamental issue, concerns a possible misinterpretation of 
principal components (Markus & Borsboom, 2013) and, more broadly, the ontological nature 
of the five factors. Being generated in a formative model, the components obtained in PCA 
are efficient statistical summaries of the data. Their standard interpretation amongst FF 
model proponents, however, is of a realist nature; they are considered to be behavior-
generating entities (e.g., extraversion causes party-going behavior; McCrae & Costa, 2008). 
This possible misinterpretation of principal components, along with some of the other 
criticism listed above, has prompted questions about whether the Big Five factors are truly a 
discovery, as advocated by its proponents, or should rather be seen as a set of statistical 
constructs emanating from factor analysis of possibly preselected sets of variables.  

In the present chapter, we address the last issue using quantitative genetic 
methodology. As outlined in Chapter 3 (see also Franić, Dolan, Borsboom, Hudziak, et al., 
2013), quantitative genetic methods can be used to test hypotheses regarding the ontological 
nature of latent variables. In particular, we address the question of whether the realist 
interpretation of the Big Five personality factors (in which the factors represent entities 
causing the observed item responses) is supported by the data, or whether the factors would 
more correctly be interpreted as statistical constructs. To this end, we examine the 
dimensionality of the latent genetic and environmental structures underlying the observed 
covariation in NEO-FFI items. Behavior genetic studies have been performed on personality 
data before (e.g., Bouchard Jr & Loehlin, 2001; Loehlin, 1989; Loehlin & Martin, 2001; Plomin 
& Caspi, 1990), but item-level analyses, which enable us to address the specific research 
question above, have seldom been undertaken on NEO-FFI or NEO-PI-R data (Johnson & 
Krueger, 2004).  
 
Method 
 
Data 
 
The data were obtained from the Netherlands Twin Register at VU University Amsterdam 
(Willemsen et al., 2013), and consist of item scores of a population-based sample of 7900 
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adult twins (including 2805 complete twin pairs; 1528 MZ and 1277 DZ) on the Dutch 
version of the NEO-FFI (Costa & McCrae, 1992; H. A. Hoekstra et al., 1996). The participants 
were aged between 18 and 86 (M = 32.3, SD = 12.7) at time of measurement. 68.3% of the 
participants were female. The NEO-FFI is a 60-item personality questionnaire consisting of 5 
subscales: Neuroticism (N), Extraversion (E), Openness (O), Agreeableness (A), and 
Conscientiousness (C). Item content is given in Table 1. The responses are given on a 5-point 
scale (‘strongly disagree’, ‘disagree’, ‘neutral’, ‘agree’, ‘strongly agree’).  

Initially, the sample consisted of 8090 twins, and missingness was limited to .9%. In 
treating missingness, we adopted the guidelines outlined in the NEO-FFI manual (Costa & 
McCrae, 1992; H. A. Hoekstra, et al., 1996): if missingness per participant exceeded 15%, the 
participant’s scores were excluded from the analyses. The application of this criterion 
reduced the missingness to .4%, and the sample size to N=7900. The remaining missing 
values were assigned the ‘neutral’ value of 3. Application of LISREL’s (Jöreskog & Sörbom, 
2006) test for underlying bivariate normality indicated no significant departures from 
normality for any of the items. The MZ and DZ twin item correlations are depicted in Figure 
2.  
 
Table 1 
Item content of the NEO-FFI. Item numbering in the parentheses corresponds to that in the 
text/Tables/Figures. Reverse-scored items are marked with an asterisk 
 

Item no. Item content Scale 

1 
6 
11 
16 
21 
26 
31 
36 
41 
46 
51 
56 

(n1) 
(n2) 
(n3) 
(n4) 
(n5) 
(n6) 
(n7) 
(n8) 
(n9) 
(n10) 
(n11) 
(n12) 

Not a worrier * 
Feels inferior 
Goes to pieces under stress 
Rarely lonely or blue * 
Tense, jittery 
Feels worthless 
Rarely fearful or anxious * 
Angry at the way people treat him 
Easily discouraged 
Seldom sad or depressed * 
Feels helpless 
Ashamed 
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2 
7 
12 
17 
22 
27 
32 
37 
42 
47 
52 
57 

(e1) 
(e2) 
(e3) 
(e4) 
(e5) 
(e6) 
(e7) 
(e8) 
(e9) 
(e10) 
(e11) 
(e12) 

Likes having many people around 
Laughs easily 
Not cheerful or light-hearted * 
Enjoys talking to people 
Likes to be where the action is 
Prefers to do things alone * 
Bursting with energy 
Cheerful, vivacious 
Not a cheerful optimist * 
Leads a fast-paced life 
Very active 
Rather go his own way than lead others * 
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3 
8 
13 
18 
23 
28 
33 
38 
43 
48 
53 
58 

(o1) 
(o2) 
(o3) 
(o4) 
(o5) 
(o6) 
(o7) 
(o8) 
(o9) 
(o10) 
(o11) 
(o12) 

Doesn't waste time daydreaming * 
Sticks to a single way of doing things * 
Intrigued by patterns 
Thinks controversial speakers only confuse students * 
Not affected by poetry * 
Tries new foods 
Doesn't notice moods different environments produce * 
Looks to religious authorities for moral decisions * 
Excited by poetry or art 
Little interest in speculating about nature of universe * 
Wide range of intellectual interests 
Enjoys playing with theories 
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4 
9 
14 
19 
24 
29 
34 
39 
44 
49 
54 
59 

(a1) 
(a2) 
(a3) 
(a4) 
(a5) 
(a6) 
(a7) 
(a8) 
(a9) 
(a10) 
(a11) 
(a12) 

Courteous 
Often gets into arguments * 
Some consider him selfish or egotistical * 
Prefers cooperation to competition 
Cynical, skeptical * 
Thinks people will take advantage * 
Most people like him 
Some consider him cold or calculating * 
Business-like, unsentimental * 
Thoughtful, considerate 
Shows if he doesn't like people * 
Prepared to manipulate * 
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5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

(c1) 
(c2) 
(c3) 
(c4) 
(c5) 
(c6) 
(c7) 
(c8) 
(c9) 
(c10) 
(c11) 
(c12) 

Keeps belongings neat and clean 
Good at pacing himself 
Not very methodical * 
Performs tasks conscientiously 
Has a clear set of goals 
Wastes time before settling down to work * 
Works hard 
Follows through on commitments 
Not dependable * 
Productive 
Unable to get organized * 
Strives for excellence 
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Figure 2. Phenotypic MZ and DZ polychoric twin item correlations. 

 
The analytic framework employed in the present study has been outlined in Chapters 3 and 
4, but is repeated below (Approach section) for completeness. The reader familiar with 
Chapters 3 or 4 may skip to the Analyses section.  
 
Approach 
 
Genetic covariance structure modeling (Martin & Eaves, 1977) is the application of structural 
equation modeling (Bollen, 1989; Kline, 2005) to data collected in genetically informative 
samples, such as samples of twins (Franić et al., 2012; M. C. Neale & Cardon, 1992). In the 
classical twin design, the sample consists of monozygotic (MZ) and dizygotic (DZ) twin 
pairs. DZ twins share an average of 50% of their segregating genes, while MZ twins share 
nearly their entire genome (Falconer & Mackay, 1996; J. P. van Dongen et al., 2012). The 
covariance structure of the phenotypes (i.e., observed traits) is modeled as a function of 
latent factors representing several sources of individual differences: additive genetic (A), 
non-additive genetic (D), shared environmental (C), and individual-specific environmental 
(E) sources. Additive genetic influences are modeled by one or more A factors, which 
represent the total additive effects of genes relevant to the phenotype. Non-additive genetic 
influences are modeled by one or more D factors, representing the total non-additive effects 
of genes relevant to the phenotype. Non-additive effects arise from interactions of alleles 
within the same locus (genetic dominance) and/or across different loci (epistasis). Based on 
quantitative genetic theory (Falconer & Mackay, 1996; Jinks & Fulker, 1970), the A factors 
are known to correlate 1 across MZ twins and .5 across DZ twins, and D factors are known 
to correlate 1 across MZ twins and .25 across DZ twins. Environmental influences affecting 
the phenotype of both twins in an identical way, thereby increasing their similarity beyond 
what is expected based on genetic resemblance alone, are represented by one or more C 
factors. Therefore, by definition, the C factors correlate unity across twins (regardless of 
zygosity). All environmental influences causing the phenotype of two family members to 
differ are represented by one or more E factors. Thus, by definition, the E factors are 
uncorrelated across twins.  

The classical twin design does not allow for simultaneous estimation of A, C and D 
effects (Keller & Coventry, 2005); two of these sources of individual differences can be 
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modeled at most.24 Assuming, for instance, an ADE model, the expected covariance 
structure in a multivariate twin model is:  
 

Σ11 Σ12
Σ21 Σ22

 = ΣA + ΣD + ΣE rAΣA + rDΣD 
rAΣA + rDΣD)t ΣA + ΣD + ΣE  

 
where, given p phenotypes, Σ11 (Σ 22) is the p x p covariance matrix of twin 1 (twin 2), Σ12 
(Σ21) is the twin 1 - twin 2 p x p covariance matrix, and ΣA, ΣD and ΣE are the additive 
genetic, non-additive genetic, and unique environmental p x p covariance matrices, 
respectively. The coefficients rA and rD are the additive and the non-additive genetic twin 
correlations, respectively (MZ: rA = rD = 1; DZ: rA = 1/2, rD = 1/4).  

 

 
Figure 1. A common (left) and an independent (right) pathway model. 

 
Figure 1 gives two examples of the multivariate twin models used in the present study. The 
first model in Figure 1 is a common pathway model (Kendler et al., 1987), also known as the 
psychometric factor model (McArdle & Goldsmith, 1990). In a common pathway model, all 
of the A,C( D), and E influences on the item responses are mediated by a latent variable, also 
referred to as the psychometric factor (factors P1 and P2 in Figure 1). P1 and P2 may be 
viewed as latent factors obtained in standard psychological research, e.g. ‘neuroticism’ or 
‘g’. The second model in Figure 1 is an independent pathway model (Kendler et al., 1987), also 
known as the biometric factor model (McArdle & Goldsmith, 1990). In the independent 
pathway model, there is no phenotypic latent variable that mediates genetic and 
environmental effects on the item responses. Rather, the A, C(D), and E factors influence 
item responses directly.  

In the present text, we distinguish between genetic factor models (introduced above), 
and phenotypic factor models. By ‘phenotypic factor model’, we refer to the factor model as 
usually formulated and applied in psychological research. The term ‘phenotypic’ is used to 
indicate the model as applied to observed (i.e., phenotypic) covariation; no genetic 
information is used. The 8-factor cross-informant model of the CBCL (Achenbach 1991) and 
the FF model of personality (McCrae & Costa, 2003; McCrae & John, 1992) are examples of a 
phenotypic factor model.  

                                                
24 Other designs, e.g., the nuclear twin family design, the stealth design, or the cascade design permit simultaneous 
estimation of A, C, D and E effects (Keller, Medland, & Duncan, 2010). 
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The common pathway model bears a number of similarities to the phenotypic factor 
model. Notably, both the phenotypic factor model and the common pathway model are 
based on the premise that all covariation in item responses is attributable to one or more 
latent variables. In phenotypic factor modeling, this hypothesis can be formulated in terms 
of measurement invariance: all external variables that produce covariation in item responses 
exert their influence via the latent variable (Mellenbergh, 1989; Meredith, 1993). Likewise, in 
common pathway modeling, one assumes that all of the A, C(D), and E effects on item 
covariation are mediated by the psychometric factor. That is, there are no direct effects of A, 
C(D), and E on the items.  

The assumption of full mediation of external influences by the latent phenotypic 
variable(s) has strong implications. For instance, different external variables affecting a set of 
item responses via the same latent variable exert the same magnitude of influence relative to 
each other on all the items that depend on that latent variable. For instance, if an A and an E 
variable affect a set of items via the same psychometric factor, then the magnitude of 
influence exerted by the variable A on any individual item will be a scalar multiple of the 
magnitude of influence exerted by the variable E on the same item, and this scalar multiple 
(k) will be a constant across all the items depending on the same psychometric factor. This 
means that one can derive a common pathway model from an independent pathway model 
by imposing proportionality constraints on the factor loadings, such that a1/a2 = d1/d2 = 
e1/e2 = k (following the notation in the right panel of Figure 1).  

Thus, the common pathway model makes explicit an assumption of the phenotypic 
latent variable model concerning the sources of item covariation: all influences on item 
covariation are mediated by the phenotypic latent variable. Barring exceptional cases of 
model equivalence, this means that a latent variable model cannot hold unless the 
corresponding common pathway model holds (Franić, Dolan, Borsboom, Hudziak, et al., 
2013). Because any given latent variable hypothesis implies a corresponding common 
pathway model, a refutation of that common pathway model would constitute evidence 
against the latent variable hypothesis.  

For this reason, one may test the latent variable hypothesis by comparing the fit of a 
common pathway model to that of a corresponding independent pathway model. 
Specifically, if a model in which all of the A, C(D), and E factors exert direct influence on the 
phenotype fits the data statistically better than a model in which these influences are 
mediated by a phenotypic latent variable, this provides evidence against the hypothesis that 
the effects on the observed item covariation are completely mediated by the phenotypic 
latent variable. In that case, the latent factors employed in the phenotypic factor model may 
be no more than an amalgamation of the direct influences of the A, C(D), and E factors on 
the observed item responses. If, on the other hand, an independent pathway model does not 
fit the data better than the corresponding common pathway model, this would provide 
support for the structure employed in the common pathway model, and substantiation for 
the corresponding phenotypic latent variable hypothesis. Comparison of an independent 
pathway model and a common pathway model may be conducted using a likelihood ratio 
test, because, as shown, a common pathway model can be derived from an independent 
pathway model by imposing appropriate proportionality constraints on the factor loadings 
(i.e., the models are nested).  
 
Analyses 
 
In the first phase of the analyses, the phenotypic structure of the NEO-FFI was examined 
using exploratory (EFA) and confirmatory (CFA) factor analysis. Here, the data were treated 
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as if the sample consisted of unrelated individuals. To correct for the clustering in the data 
due to the genetic relatedness, we employed a correction for clustering available in MPlus 
(L. K. Muthén & Muthén, 1998-2007; Rebollo et al., 2006). EFA and CFA were performed 
using split-half validation: EFA was performed on one randomly selected half of the sample 
(N=3950), and CFA on the other (N=3950). In EFA, 3-6 factor solutions with the oblique 
geomin rotation were tested. We opted for an oblique criterion because the NEO-PI-R and 
NEO-FFI data conform appreciably better to a model with oblique factors, despite the initial 
idea of orthogonality (Goldberg, 1993; Mroczek, 1992; Peabody & Goldberg, 1989). The best-
fitting substantively interpretable model indicated by EFA was subsequently tested in CFA.  

In the second phase of the analyses, the results of the phenotypic analyses were used 
as a basis for specifying multivariate common and independent pathway genetic factor 
models. Here, only data on complete twin pairs (1528 MZ and 1277 DZ twin pairs) were 
used. The genetic and environmental etiology of the items was first examined using 
univariate modeling: a number of competing models (ACE, ADE, AE) were fitted to each of 
the 60 items, and likelihood ratio testing was employed to determine the best model for each 
item. The same approach was used on subscale level: univariate (ACE, ADE, AE) models 
were fitted to each of the five subscales. The results of these preliminary analyses were 
subsequently used as a basis for specifying multivariate common and independent pathway 
models.25 

To address the central question concerning the ontological nature of the latent 
personality factors, the common and independent pathway models were compared against 
each other using likelihood ratio testing. Finally, to explore the structure of the genetic and 
environmental influences on the NEO-FFI items in a hypothesis-free fashion, the 60x60 
phenotypic covariance matrix was decomposed into 60x60 genetic and environmental 
correlation matrices, and each of these matrices was subjected to EFA. The genetic and 
environmental correlations matrices were obtained in a standard twin model using 
Cholesky decompositions in Mx (Neale 2000). We used the phenotypic 120x120 (60 per twin) 
polychoric correlation matrix as input, because Pearson product moment correlations based 
on discrete data tend to be slightly biased (Dolan, 1994).  

The analyses were carried out using Mplus 5 (L. K. Muthén & Muthén, 1998-2007), 
Mx, and R (R Core Team, 2013). Given the discrete nature of the items, we fitted discrete 
factor models (i.e., we assumed the discrete indicator variables to be a realization of a 
continuous normal latent process, and modeled polychoric correlations; Flora & Curran, 
2004) using the robust weighted least squares estimator (WLSMV; L. K. Muthén & Muthén, 
1998-2007). The polychoric correlations between the 60 items and between the 120 (60 per 
twin) items served as input in the phenotypic and the genetic factor analyses, respectively. 
In evaluating model fit, the Tucker Lewis Index (TLI)26 and the Root Mean Square Error of 
Approximation (RMSEA) were used. Cut-off values of >.90 (TLI) and <.08 (RMSEA) were 
employed as criteria for acceptable fit. As both our sample size and the models employed 
were large, the chi-square statistic was of limited use as an overall fit measure (Jöreskog, 
1993), and was employed only to test local hypotheses concerning comparisons of nested 
models, as these comparisons are associated with a smaller approximation error. 

                                                
25 Although item-specific residual factors can be subjected to their own AC(D)E decomposition, in the present chapter 
this was not done given our focus on dimensionality assessment and the common/independent pathway model 
comparison. The covariances among the residuals between the twins were however added. These covariances were 
estimated separately in the MZs and DZs, given the possible genetic residual effects. 
26 TLI is an incremental fit index based on the difference in fit of a baseline model with uncorrelated variables and the 
fitted model. The standard rule of thumb was formulated for the analyses of scale scores, not item score. As item scores 
tend to correlate to a lesser extent than scale scores (often based on multiple items), the standard TLI rule of thumb is 
hard to satisfy. See e.g. Kenny (2012). 

89



 

 
Results 
 
The results of the phenotypic EFA are given in Tables 2 and 3. As evident from Table 2, the 
5- and the 6-factor phenotypic solution both fitted adequately (TLI>.94, RMSEA<.055). 
However, as the 6-factor solution was difficult to interpret substantively, in further analyses 
we focused on the 5-factor solution. This solution, detailed in Table 3, resembles closely 
Costa and McCrae’s (Costa & McCrae, 1992) FF model. Thus, the basic structure of the FF 
model replicated well in our sample. 

Based on the EFA results, a 5-factor model (corresponding exactly to Costa and 
McCrae’s (Costa & McCrae, 1992) FF model) was formulated and tested in CFA. The fit 
measures, given in Table 2, indicated a suboptimal fit. This is not unexpected considering 
the literature, which frequently reports a misfit of the FF model to empirical data (e.g., 
McCrae et al., 1996; Parker et al., 1993). To examine the extent to which the misfit is due to 
presence of cross-loadings, in the next step we freed all the cross-loadings with a 
modification index (MI) larger than 50, and re-fitted the model. This resulted in an 
acceptable model fit (χ2= 9708, df=499, TLI=.899, RMSEA=.068). However, the modified 
model contained 94 cross-loadings.  

Table 4 shows the factor loadings, residual variances and inter-factor correlations 
associated with the simple structure 5-factor model. The average variance explained by the 
factors ranges from 22% (O and A factors) to 42% (N factor). The factor correlations between 
Openness and the other factors are generally low (r<.12). The correlations between 
Neuroticism and the other factors are substantial and negative (from -.41, to -.62), and the 
remaining factors (Extraversion, Agreeableness, and Conscientiousness) are substantially 
and positively intercorrelated; from .45 to .48. This is line with the literature, which 
frequently reports substantial correlations between the five factors (e.g., J. Block, 1995).  

In the first step of the genotypic analyses, the genetic and environmental etiology of 
the items was examined in a univariate fashion. The same was done on the subscale level, 
with the subscale scores being defined as the sum scores across the relevant items. Overall, 
none of the items or scales contained a detectable C component. With regard to the A, D, 
and E influences, the items displayed two major patterns: some appeared additive genetic 
and unique environmental in origin (AE model), while for the rest neither additive nor non-
additive genetic influences could be detected (E model). On subscale level, only the 
Agreeableness scale displayed a significant D component, and the remaining scales 
conformed to an AE model. As another set of our preliminary analyses showed that the D 
component did not exceed 5% for any of the items (M=2.1%, SD=1%), and that a D 
component was only detected for a limited number of items, D was not modeled in the 
subsequent analyses. Considering that the power to detect sources of variation is greater at 
the subscale level, which conformed predominantly to an AE model, we proceeded with the 
multivariate analyses using an AE model. 
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Table 2 
Fit measures for the 3-6 -factor geomin-rotated EFA solutions and the 5-factor CFA model 

Method Factors χ2 df TLI RMSEA 

EFA 

3f 19932 535 .822 .094 

4f 13918 599 .887 .075 

5f 8266 648 .940 .055 

6f 6827 642 .951 .049 

CFA 5f 17222 436 .789 .099 

 
 
Table 3 
Standardized factor loadings (λ), residual variance (μR = mean residual variance) and inter-factor 
correlations in the geomin–rotated 5-factor phenotypic EFA solution. The highest loading for each 
item is highlighted. Factor loadings smaller than .10 are omitted 
 

Item λN λE λO λC λA Res 
n1 
n2 
n3 
n4 
n5 
n6 
n7 
n8 
n9 
n10 
n11 
n12 

.55 

.63 

.65 

.57 

.76 

.75 

.66 

.56 

.57 

.67 

.59 

.56 

 
 
 

-.15 
 
 
 
 
 

-.12 
 
 

 
 
 
 
 
 
 
 

-.11 
 
 
 

 
 
 
 
 

-.10 
 
 

-.28 
 

-.27 
-.13 

.15 
 

.13 
 
 
 

.18 
-.28 

 
.18 

 
 

.67 

.55 

.56 

.61 

.43 

.37 

.54 

.61 

.49 

.49 

.48 

.64 

 μR = .54 
e1 
e2 
e3 
e4 
e5 
e6 
e7 
e8 
e9 
e10 
e11 
e12 

 
-.18 
-.45 

 
 

-.19 
-.22 
-.31 
-.43 

. 
-.15 
-.26 

.67 

.65 

.53 

.63 

.61 

.32 

.34 

.71 

.44 

.23 

.41 

.14 

-.11 
 
 
 
 
 
 
 
 
 
 

.11 

 
 
 
 
 

-.15 
.21 

 
 

.14 

.41 
 

 
 

.11 

.13 
-.21 
.21 

-.26 
 
 

-.29 
-.19 
-.14 

.58 

.49 

.39 

.53 

.61 

.80 

.64 

.26 

.50 

.83 

.48 

.86 

 μR = .58 
o1 
o2 
o3 
o4 

.14 
-.11 

 
-.19 

 
-.13 
-.11 

 

.26 

.22 

.60 

.36 

-.32 
-.20 

 
 

.12 
 
 

.16 

.79 

.91 

.64 

.82 
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o5 
o6 
o7 
o8 
o9 
o10 
o11 
o12 

 
 
 

-.11 
 
 

-.13 
 

 
.15 

 
 
 
 

.14 
 

.62 

.26 

.31 

.15 

.67 

.53 

.53 

.58 

 
 

.10 
 
 
 

.17 
 

.16 
 

.25 
 
 
 

-.14 
-.21 

.60 

.90 

.81 

.96 

.53 

.71 

.59 

.63 

 μR = .74 
a1 
a2 
a3 
a4 
a5 
a6 
a7 
a8 
a9 
a10 
a11 
a12 

.13 
-.27 

 
 

-.37 
-.43 
-.13 

 
 

.21 
 
 

.18 
-.13 

 
.13 

 
 

.36 

.11 

.20 

.29 
 
 

 
 
 
 
 

.12 
 
 
 
 
 

-.16 

.27 
 

.16 
 
 
 

.20 
 
 

.39 
 

.12 

.25 

.43 

.53 

.38 

.44 

.34 

.20 

.63 

.58 

.40 

.42 

.54 

.80 

.71 

.63 

.83 

.62 

.70 

.68 

.58 

.63 

.55 

.81 

.65 

 μR = .68 
c1 
c2 
c3 
c4 
c5 
c6 
c7 
c8 
c9 
c10 
c11 
c12 

 
-.16 

 
.10 

 
-.19 

 
 

-.14 
 

-.46 
.16 

-.14 
 

-.17 
 
 

-.18 
.19 

 
 

.12 
 

.19 

-.11 
 
 
 
 

-.15 
 
 

-.12 
 
 

.13 

.57 

.62 

.49 

.45 

.62 

.55 

.67 

.56 

.41 

.61 

.46 

.38 

.14 
 
 

.29 
-.24 

 
-.10 
.20 
.29 

-.12 
.11 

-.27 

.66 

.55 

.74 

.70 

.56 

.58 

.49 

.62 

.66 

.53 

.44 

.72 

 μR = .60 

Factor correlations:  

 N E O A  

E -.25  

O .08 .13  

A -.31 .24 .07  

C -.06 .03 .00 .09  
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Figure 3. The common (upper panel) and independent (lower panel) pathway models fitted 
to the NEO-FFI data. The models are only partially depicted; the full models include a 
‘twin1’ and a ‘twin2’ part, analogous to Figure 1. The ‘within twin’ A factors are mutually 
correlated, as are the ‘within twin’ E factors. The item-specific factors were modeled as 
correlated over twin 1 and twin 2 (i.e., the 60x60 twin 1 - twin 2 residual covariance matrix is 
diagonal). 
 
To test the mediation of the genetic and environmental influences by the latent personality 
factors, in the next step a common pathway and an independent pathway AE model were 
tested (Figure 3). In the common pathway model, the variation in the latent personality 
factors was decomposed into additive genetic and unique environmental components. 
Additive genetic influences explained around half of the variance in the latent traits (.48, .48, 
.58, .43, and .47 for the N, E, O, A, and C factors, respectively), the remainder of the trait 
variance being determined by unique environmental factors. The fit measures associated 
with the model were: χ2=112786, df=14776, TLI=.832, RMSEA=.06927. The independent 
pathway model was formulated by disposing of the phenotypic factors employed in the 
common pathway model. The fit measures associated with this model were: χ2=94852, 
df=14721, TLI=.862, RMSEA=.0624. As the difference between chi-square values obtained 
using the WLSM estimator is not chi-square distributed (L. K. Muthén & Muthén, 1998-
2007), the comparison of the common and the independent pathway model was carried out 
using a chi-square difference test with scaling correction factors (Satorra & Bentler, 2001). 
The resulting chi-square difference was Δχ2=123646, df=55. Additionally, the comparison 
was performed using maximum likelihood estimation with robust standard errors (MLR; L. 
K. Muthén & Muthén, 1998-2007). The results converged with those obtained using the 
WLSM estimator (common pathway: χ2=40477, df=14195, TLI=.699, RMSEA=.036; 

                                                
27 As MPlus output obtained using the WLSMV estimator could not be used for subsequent chi-square difference 
testing due to the non-linear constraints in the model, estimation was performed using the WLSM estimator.  
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independent pathway: χ2=35423, df=14140, TLI=.756, RMSEA=.033; chi-square difference: 
Δχ2=3115, df=55). The significant difference between the fit of the two models indicates 
incomplete mediation of the genetic and environmental influences by the latent personality 
factors. 

In the light of the well-established presence of cross-loadings in the NEO-PI-R and 
the NEO-FFI (J. Block, 1995; McCrae & Costa, 2008; Parker et al., 1993), an additional test 
was performed: a common and an independent pathway model based on the phenotypic 
model with 94 cross-loadings were formulated and fitted to the data. Due to the 
computational intensity of fitting these models using the WLSMV estimator, the MLR 
estimator was used. The resulting fit measures were χ2= 31176, df=14101, TLI=.803, 
RMSEA=.029, and χ2= 25831, df= 13952, TLI=.862, RMSEA=.025, respectively. Consistently 
with the results obtained for the simple structure models, the fit of the two models differed 
significantly (Δχ2=4034, df=149), indicating incomplete mediation of the genetic and 
environmental effects by the latent personality factors, despite the assumption of simple 
structure being discarded. 
 

 
 
Figure 4. Eigenvalues of ΣA and ΣE matrices (upper panel) and factor loadings obtained in 
EFA solutions with 5 A and 5 E factors (lower panel). Shapes/shading code for different 
latent factors. Only the highest factor loading for each item is shown. 
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Figure 5. Graphical representations (Epskamp et al., 2012) of the A (left) and E (right) 
covariance components of the NEO-FFI. Positive (upper panel) and negative (lower panel) 
covariances are shown separately. Nodes (i.e., circles) represent items. The thickness of the 
edges (i.e., of the lines connecting the nodes) represents the magnitude of covariance 
between the items.  
 
Finally, to further explore the structures of the genetic and environmental influences on the 
item covariation, the 60x60 phenotypic polychoric covariance matrix was decomposed into 
60x60 additive genetic and unique environmental matrices, and the dimensionality of these 
two covariance matrices was assessed using EFA (geomin rotation). The results are given in 
Figure 4. As evident from the Figure, the scree plots (upper panel) for the A and the E 
matrix both indicate a 5-factor model. Furthermore, the factor structures of the additive 
genetic and the unique environmental influences (lower panel Figure 4) resemble very 
closely the 5-factor phenotypic structure of the NEO-FFI. This can also be seen in Figure 5, 
which depicts the pattern and the magnitude of the A and E intercorrelations between the 
items; as evident, the A and the E covariance structure resemble each other to a high degree. 
Finally, the magnitudes of the A and E variance components of each of the 60 items are 
depicted in Figure 6; on average, these are .33 and .67, respectively. 
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Figure 6. Magnitude of the A and E variance components of the 60 items of NEO-FFI. 

  
Discussion 
 
In the present study, we tested the hypothesis that the Big Five factors are causally efficient 
entities, which serve to mediate the genetic and environmental effects on phenotypic data. 
This hypothesis was tested by comparing the fit of independent pathway models to the fit of 
common pathway models. If the latent variables in the FF model indeed act as causes of 
behavior, which fully mediate genetic effects, the independent and common pathway 
models should fit equally well. If, however, the latent variables are merely statistical 
constructs that organize phenotypic correlations but do not have the status of causally 
efficient entities, the independent pathway model should show superior fit. In addition to 
these hypothesis tests, the structures and the dimensionalities of the latent genetic and 
environmental effects were examined in an exploratory factor analysis. Two findings 
emerged: 1) the constraints associated with the common pathway model were not tenable, 
i.e., the fit indices favored the independent pathway model, and 2) the rotated 5-factor 
structures as obtained in the EFA of genetic and environmental correlation matrices are 
quite similar.   

The fact that our analyses favor the independent pathway model constitutes 
evidence against the realist interpretation of the Big Five dimensions. Even when we allow 
cross-loadings to be present, the magnitude of the test statistic based on the models is such 
(Δχ2= 4034, df=149, based on MLR) that the degree of misfit associated with the common 
pathway model is considerable. Perhaps, one could argue that both models fit well in view 
of the acceptable approximation error (common pathway model RMSEA: .029; independent 
pathway model RMSEA: .025). However, in our view, the acid test here is not the overall 
degree approximation error of the individual models. Rather, it is the model comparison, 
which reveals the specific source of approximation error, namely the proportionality 
constraints associated with the common pathway model. These are evidently untenable.  
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The fact that the exploratory factor analyses of the additive genetic and unshared 
environmental correlation matrices produced highly similar 5-factor models is interesting in 
its own right, and by no means a trivial finding. The phenotypic FF model does not imply 
five genetic and environmental factors to surface: the latter implies the former, but not vice 
versa, and several examples are known in which the structures diverge (Franić, Dolan, 
Borsboom, van Beijsterveldt, & Boomsma, 2014; Kendler et al., 1987). Thus, although the 
data unambiguously reject the proportionality constraints derived from the latent variable 
hypothesis, it is certainly not the case that the A and E covariance structures are radically 
different.   

Therefore, although the formal tests indicate that the independent pathway model is 
preferable, the exploratory results do lend some credence to the latent variable hypothesis. 
One possible explanation for this finding is that, although the full mediation hypothesis is 
not precisely true, it does provide a reasonable approximation to the generating model. The 
specific reasons for rejecting the common pathway model may, for instance, be highly local 
(due only to a subset of observed variables), and thus the violation may be accommodated 
by the addition of parameters or by the removal of offending variables. A second possible 
explanation is that, even though we have fitted highly relaxed versions of the FF model, the 
models still embodied auxiliary hypotheses that were not exactly true (e.g., linearity, 
normality, continuity, discarding C and D effects) which may have produced misfit evident 
in the likelihood ratio tests (which are derived on the hypothesis that the least restricted 
model fits the data). A third possibility is that the similar structure of A and E matrices, as 
evidenced in the present chapter, is simply a chance finding that has little to do with the 
realist interpretation of the Big Five dimensions. This hypothesis is tenable, because the 
truth of an independent pathway model does not preclude that the genetic and 
environmental covariance structures comprise 5 factors, with or without configurally similar 
loadings. 

In our view, the formal test on the proportionality of loadings should carry the 
primary weight of the evidence, as it was designed specifically to distinguish between the 
tested models. However, it is certainly notable that the A and E covariance matrices showed 
strikingly similar structures, and even though this equivalence is not a formal test of the 
common pathway hypothesis, it does confirm an indirect consequence of that hypothesis. 
Further research may investigate the relevance of this finding to the veracity of the FF 
model.   

In the present analyses, the genetic and environmental variables are all-
encompassing in the sense that they represent all (unmeasured) polygenic and unshared 
environmental influences. However, the mediation hypothesis can be formulated with 
respect to any measured variable. It is a drawback of much of the research concerning the 
covariates of the Big Five dimensions that they generally involve Big Five subscale scores 
rather than items. We consider the demonstration of the mediatory role of, say, neuroticism 
in the relationship between a covariate (e.g., sex) and the neuroticism items, to be a stronger 
result than the demonstration of a sex difference in the neuroticism scale scores. In this 
regard the present results are relevant to gene-finding studies (e.g., genome-wide 
association studies; GWAS). If a measured genetic variant has its effect on the common 
factor “neuroticism”, then its effect is present in all the relevant items, and the interpretation 
of the gene as a "gene for neuroticism" is tenable. This is not so if the effect is limited to a 
subset of the items, or perhaps even a single item. 
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Chapter 6 
 
Childhood and Adolescent Anxiety and 
Depression: Beyond Heritability 
 
 
Abstract 
 
The present chapter reviews the methodology of behavior genetics studies addressing 
research questions that go beyond simple heritability estimation, and illustrates using 
representative studies on childhood and adolescent anxiety and depression. The classical 
twin design and its extensions have been employed to investigate age and sex differences in 
the genetic determinants of complex traits and disorders, the role of genetic factors in 
explaining comorbidity, gene-environment interaction, and the effects of social interaction 
among family members. The review provides relatively consistent evidence for: a) small to 
negligible sex differences in the genetic etiology of childhood anxiety and depression, b) a 
substantial role of genetic factors in accounting for the temporal stability of these disorders, 
c) a genetic basis for the comorbidity between anxiety and depression, d) a possible role of 
interaction between genotype and environment in affecting liability to these disorders, e) a 
role of genotype-environment correlation, and f) a minor, if any, etiological role of sibling 
interaction. Implications for treatment are discussed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Middeldorp, C. M., Dolan, C. V., Ligthart, L., & Boomsma, D. I. (2010) 
Childhood and Adolescent Anxiety and Depression: Beyond Heritability. Journal of the 
American Academy of Child and Adolescent Psychiatry, 49(8), 820-829. 
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An important role of twin and family studies in psychiatry has been to establish the 
contributions of genetic and environmental factors to the observed or phenotypic individual 
differences in psychiatric disorders. Genetic research, frequently employing the classical 
twin design, has demonstrated the pervasive importance of both genetic and environmental 
factors in complex psychiatric disorders and related traits (e.g., personality). These findings 
can be seen as guiding molecular genetic studies, as there would be no use of searching for 
genes that influence individual differences in a behavior that is not influenced at least in 
part by genetic factors. Twin studies have evolved, however.  At present, thanks to 
developments in statistical methodology and the establishment of large twin registries in 
which both measured genotypes and environmental variables are available, psychiatric 
genetic research is moving beyond the relatively simple task of assessing the contributions 
of genetic and environmental factors. Present research often focuses on more subtle issues, 
such as how genetic and environmental influences are modulated by age and sex, or how 
gene expression is affected by the environment.  

In the present chapter, we review the recent findings of genetic research in the area of 
childhood and adolescent anxiety and depression. The aim is not to provide a 
comprehensive overview of all existing literature, but rather to introduce the reader to the 
methods employed in behavior genetics while presenting the results of representative 
research relevant to the current key issues. To this end, we first introduce the classical twin 
design and a number of recent extensions thereof. These extensions serve to address specific 
issues, which we discuss in the context of research findings. The issues include 1) sex and 
age differences in the genetic etiology of childhood anxiety and depression, 2) the nature of 
the comorbidity of these disorders, 3) the interplay between genes and the environment, and 
4) social interactions among family members. We conclude with a discussion of the clinical 
implications of recent findings.  
 
Classical twin design and heritability estimation 
 
The classical twin design may be employed to decompose the variance of a phenotype into 
components due to genetic (G), shared environmental (C), and unique environmental (E) 
factors. Genetic and environmental variances are attributable to the contribution of an 
unspecified number of genes and environmental exposures, respectively. As genes come in 
pairs, each autosomal genetic locus comprises two alleles, one contributed by each parent. 
The alleles may be the same (the individual is a homozygote) or different (the individual is a 
heterozygote). The phenotypic effects of alleles may add up (additive genetic influences; A) 
or interact (non-additive genetic influences; D). Because dominance effects are rarely 
observed in genetic studies of anxiety and depression (Gregory & Eley, 2007), we limit our 
discussion primarily to additive genetic effects. Common environmental factors (C) are 
shared among family members, and contribute to their similarity (for instance, parental 
socio-economic status or parenting style may increase similarity between two siblings 
growing up in the same home). Unique environmental factors generate differences between 
family members.   

Table 1 details the decomposition of the phenotypic variance. Under the assumption 
that the phenotype is affected by additive genetic, common environmental, and unique 
environmental factors (ACE model), the variance (V) is decomposed as follows: V = VA

 + VC 
+ VE. The phenotypic correlation between monozygotic (MZ) twins is a function of their 
staring their additive genetic  (as they develop from the a single fertilized egg) and common 
environmental influences. On average, dizygotic (DZ) twins share 50% of their segregating 
genes, as do other first-degree relatives. Based on the phenotypic (i.e., observed) degrees of 
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resemblance between MZ and DZ relatives, one may estimate the contribution of the 
additive genetic variance to the total trait variance (i.e., the heritability), as detailed in table 
1: h2 = 2(rMZ - rDZ). Table 1 also details the estimation of c2 and e2 (the proportions of variance 
explained by shared and non-shared environmental factors, respectively). 
 
Table 1 
Decomposition of phenotypic variance into additive genetic, shared environmental and unique 
environmental components, under an ACE model. 
 

Expression Meaning 
V = VA

 + VC + VE The variance of an observed trait (i.e., phenotype), may
be decomposed into additive genetic, shared
environmental, and unique environmental components 
(VA, VC, and VE, respectively) 

rMZ =  (VA
 + VC) / V Correlation between monozygotic (MZ) twins  

rDZ=  (½VA
 + VC) / V Correlation between dizygotic (DZ) twins  

VA = 2V(rMZ - rDZ)   Contribution of additive genetic factors to the 
phenotypic variance 

VC = rMZ V- VA Contribution of shared environmental factors to the
phenotypic variance 

VE = V – rMZ V Contribution of unique environmental factors to the
phenotypic variance 

h2 = 2(rMZ - rDZ)   
= 2(VA + VC - ½VA - VC) / V   
= 2(VA - ½VA) / V  = VA / V 

Standardized contribution of additive genetic factors to
the phenotypic variance (i.e., the heritability coefficient;
h2) 

 
 
For the classical twin design to yield correct and generalizable estimates of the magnitudes 
of genetic and environmental influences, a number of assumptions have to hold (for a 
review we refer to G. Carey, 2009; Falconer & Mackay, 1996; Keller & Coventry, 2005; Martin 
et al., 1997; Plomin et al., 2008). First, it is assumed that the environmental sharing is equal in 
MZ and DZ twins – an assumption that may be challenged, for instance, due to the 
assumption that MZ twins may experience more similar environments than DZ twins. 
However, with regard to environmental aspects relevant to psychopathology, it has been 
shown that greater environmental sharing in MZs is a consequence, rather than a cause of 
their phenotypic similarity (Martin et al., 1997). Second, results obtained on twin samples 
are assumed to generalize to non-twin populations. This assumption appears to hold, as 
estimates of environmental and genetic parameters obtained in twin studies tend to differ 
little from those obtained in the general population (Martin et al., 1997). Other assumptions 
of the classical twin design include (but are not limited to) the absence of assortative mating 
(i.e., the tendency to mate with individuals with a phenotype similar to one’s own), 
genotype-environment interaction (i.e., dependency of genetic effects on the environment 
and vice versa), and genotype-environment correlation (i.e., non-random placement of 
genotypes in the range of available environments). These effects may be assessed if the 
appropriate data are collected and, when assumptions are not met, may be modeled. For 
instance, data on parents or spouses of twins can be employed to examine and model 
possible effects of assortative mating.  

The classical twin design does not allow for the simultaneous estimation of the 
additive and dominance genetic, and common and unique environmental effects. 
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Consequently, one of these sources of variance is typically assumed to be absent. The choice 
may be informed by model comparison (e.g., an ACE against an ADE model), or by 
inspection of phenotypic MZ and DZ correlations: a DZ correlation greater than half of the 
MZ correlation suggests an effect of C on the trait; a DZ correlation smaller than half of the 
MZ correlation suggests D.  
 
Beyond heritability 
 
Using the classical twin design, researchers have established the role of genetic and 
environmental factors in virtually all psychiatric traits. Presently, thanks to several 
developments over the last half of the past century, it is possible to move beyond the basic 
question of heritability. These developments include the large-scale collection of phenotypic 
data by means of well-validated standardized questionnaires and the collection of extensive 
genotypic and environmental data. Furthermore, the realization that the resolution of 
relatively subtle effects requires large sample sizes has provided the impetus for the 
establishment of large twin and family registries. In case of children, survey data obtained 
from teachers, in addition to parental ratings, form an important source of information 
concerning childhood development and psychopathology. Finally, an important 
development have been the possibilities offered by advances in statistical and psychometric 
modeling.  

These developments are now coming together and researchers are looking into more 
subtle aspects of genetic and environmental effects. These include the dependency of these 
effects on sex and age. Age or developmental effects are important in understanding the role 
of genetics in the development of psychopathology; also, such effects negate the perception 
of the heritability of a phenotype or disorder as a fixed entity. In addition, the availability of 
measured genotypes and environments allow researchers to address the often neglected 
issue of gene-environment interaction in the development of psychopathology. Finally, 
given the genotype data, researchers are increasingly turning to the detection of individual 
genes associated with particular phenotypes by means of genome-wide association (GWA) 
studies (McCarthy et al., 2008; Teare & Barrett, 2005).  
 
Sex differences in the genetic architecture of anxiety and depression 
 
Can heritability differ across the sexes? Are genetic effects in males and females attributable 
to the same genes (whose effect may be modulated by sex), or different genes? The former 
suggests a quantitative sex difference in the genetic architecture; the latter a qualitative 
difference. Both quantitative and qualitative effects can result in sex differences in the 
estimated variance components. Quantitative differences are apparent if estimates of genetic 
and environmental variances differ in males and females; qualitative differences can be 
detected by testing whether the genetic correlation in opposite-sex DZ twins is significantly 
different from its expected value based on the correlations in same-sex DZ twins. A 
correlation lower than expected suggests that genetic risk factors differ across the sexes. An 
analogous method can be used to establish whether different shared environmental factors 
are implicated in the trait in males and females.  

The applications of this methodology to childhood anxiety and depression have 
generally revealed small to negligible differences in heritabilities in boys and girls. 
However, the results do appear to vary with the exact definition of the phenotype (e.g., 
general anxiety vs. separation anxiety). In addition, the variation in the results may depend 
on age or measurement scale (e.g., a continuous variable vs. a dichotomy). The majority of 
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studies included in the present review employed continuous measures of anxiety and 
depression, defined as summed scores on standardized questionnaires such as the Child 
Behavior Checklist (CBCL; Achenbach, 1991). In case a categorical measure of 
psychopathology was used, this was noted in the text.  

Recently, Lamb et al. (Lamb et al., 2010) examined anxious depression and 
withdrawn behavior (defined on a 3-point scale) in 12, 14, and 16 year-olds, and found no 
evidence for differential heritabilities across the sexes. Similarly, Rettew et al. found the 
genetic and environmental influences on neuroticism to be of equal importance in 12-17 
year-old male and female adolescents (Rettew et al., 2006). A similar result was obtained by 
Rice et al. (Rice et al., 2002b) for parental ratings of depression in 8-17 year-olds. For self-
rated symptoms, however, the same study obtained evidence for greater genetic and a 
smaller shared environmental influence in boys. For separation anxiety in 3-18 year-olds the 
opposite pattern was observed, i.e., a greater genetic and a smaller shared environmental 
influence was found in girls (Hettema et al., 2001). A similar result was obtained by 
Happonen et al., using teacher ratings of depression symptoms in 11 and 12 year-olds 
(Happonen et al., 2002). For self-, parent-, and peer-ratings, however, the same study found 
equal heritabilities across sexes. In addition, several recent studies examined possible 
qualitative sex differences. Rettew et al. obtained some support for qualitative sex 
differences with respect to neuroticism in adolescent twins (Rettew et al., 2006). However, in 
a study of anxiety and depression in 3 and 12 year-olds, Boomsma et al. concluded that the 
same genes were expressed in girls and boys (Boomsma et al., 2005b).   

In conclusion, most studies suggest that sex differences in the genetic architecture of 
childhood anxiety and depression, if present, are small. The detection of sex effects may 
depend on other factors such as age and definition of phenotype, and additional research 
may elucidate the role of such factors. 
 
Age differences in the genetic architecture of anxiety and depression 
 
Genetic and environmental effects may be age-dependent. For instance, there is no reason to 
assume that environmental or genetic influences on anxiety or depression at age 5 are 
identical to those at age 10. To establish such differences one can study twins who differ 
with respect to age. However, the correct interpretation of any established difference 
requires a study of twins in a longitudinal design, in which phenotypes are measured in the 
same twins at two or more occasions. Such data allow one to determine the role of genetic 
and environmental factors in the stability of individual differences over time. For instance, 
one may address the question of whether the same genes contribute to individual 
differences over time (which would result in a high degree of genetic stability), or whether, 
for instance, shared environmental effects tend to diminish over time.    

Studies of age-related changes in anxiety and depression have generally 
demonstrated these disorders to be moderately stable during childhood. However, many 
children who initially display relatively high levels of anxiety or depression go on develop 
normally, whereas some other children, who displayed initial normal development, go on to 
develop anxiety or depression at a later age (Middeldorp & Boomsma, 2009). Furthermore, 
studies on age-related differences generally report an influence of shared environment on 
anxiety and depression during childhood that fades as children enter adolescence (Hettema 
et al., 2001; Middeldorp & Boomsma, 2009; Rapee et al., 2009; Rice et al., 2002b; Sullivan, 
Neale, & Kendler, 2000). In adulthood, the influence of shared environment disappears, and 
the relative influence of genetic factors increases; as a consequence, the heritability of these 
traits increases with age. Similar results have been obtained for related phenotypes, such as 
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withdrawn behavior and obsessive-compulsive symptoms (Hudziak et al., 2004; Lamb et al., 
2010; Van Grootheest et al., 2008). A recent meta-analysis supported the increase in 
heritability of anxiety and depression after childhood, and found this increase to be greater 
for anxiety-related symptoms than for symptoms of depression (Bergen, Gardner, & 
Kendler, 2007). 

In addition, longitudinal studies have established qualitative age-related differences. 
In a study of anxious/depressed behavior as reported by parents, Boomsma et al. found 
relatively low stability of genetic effects on anxious depression at ages 3 to 7, and an 
increase in genetic stability from ages 7 to 12 (Boomsma, Van Beijsterveldt, Bartels, & 
Hudziak, 2008). Kendler et al. reported a high genetic stability of anxiety and depression 
throughout ages 8 to 20 (Kendler, Gardner, & Lichtenstein, 2008). However, additional, age-
specific genetic influences emerged in adolescence and early adulthood. Hoekstra et al. (R. 
A. Hoekstra, Bartels, Hudziak, Van Beijsterveldt, & Boomsma, 2008) examined withdrawn 
behavior, a trait found to predict later anxiety and depression (Goodwin, Fergusson, & 
Horwood, 2004), and observed considerable stability of genetic influences throughout 
childhood. Finally, Kendler et al. studied the development of situational, social, animal, and 
blood/injury fears, and found that genetic effects on these fears become more fear-specific 
as a function of age, and that in late adolescence new genetic influences relevant to social 
fears emerge (Kendler, Gardner, Annas, & Lichtenstein, 2008).  

In summary, most longitudinal studies report a small to moderate temporal stability 
of childhood anxiety and depression. While genetic factors appear to account for most of 
this stability, additional age-specific genetic factors have also been found to emerge over 
time, possibly accounting for some of the temporal instability of these disorders. It should, 
however, be mentioned that the role of the informant remain a contentious issue. Estimates 
of genetic influences on psychopathology are known to depend on whether the data are 
obtained from the child itself or from an informant such as a parent (Rapee, Barrett, Dadds, 
& Evans, 1994). This is especially relevant for studies of age-related changes, as such studies 
often use informants (parent, teachers) to assess the behavior of young children, and self-
report in older children.  
 
Comorbidity 
 
Twin designs may be employed to address the question of whether the co-occurrence of two 
disorders has a genetic or an environmental basis, or arises from a direct causal interaction 
between the disorders (e.g., depression directly causing anxiety). To address the question of 
comorbidity, MZ and DZ correlations on different measures (e.g., depression in twin 1 and 
anxiety in twin 2) may be compared; a comparatively higher MZ correlation indicates a 
genetic basis for the comorbidity. 

Multiple studies have demonstrated comorbidity within anxiety disorders, as well as 
between anxiety disorders and depression, both in children and adults (Angold et al., 1999; 
Brady & Kendall, 1992; Middeldorp et al., 2005). This comorbidity is explained partly by 
shared genetic risk factors (Middeldorp, et al., 2005). For instance, Eley at al. studied five 
anxiety-related syndromes (general distress, separation anxiety, fears, obsessive-compulsive 
behaviors, and shyness/inhibition) and found moderate genetic overlap among these 
syndromes (Eley et al., 2003). Silberg et al. found that depression in girls after age 14 was 
genetically correlated with earlier symptoms of simple phobias and overanxious disorder, 
but environmentally correlated with separation anxiety (Silberg, Rutter, & Eaves, 2001). 
Direct causality may also been inferred; for instance, prolonged anxiety may lead to a 
depressive episode. If such a direct causal relationship is present, all the genetic and 
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environmental effects on the causal disorder will also be present in the “caused” disorder. A 
recent study of direct causal effects of exercise on depression in adults yielded no evidence 
for direct causal effects (de Moor et al., 2008). 
 
Genotype-environment interaction (GEI) 
 
Most studies do not examine how genetic and environmental factors combine in affecting 
liability to illness. It is frequently assumed, implicitly or explicitly, that genes and the 
environment do not interact, i.e. that they affect the phenotype independently of each other. 
This is not necessarily the case. For instance, assume an environmental factor, say an 
important life event, and a single gene with 3 possible genotypes: AA, Aa, and aa. If the life 
event increases the risk of disease to the same extent in individuals with any genotype, the 
genotype and environment are said to have an additive effect (Figure 1a). However, if the 
average change in risk associated with the life event is different in individuals with different 
genotypes, the genotype and the environment interact (Figure 1b). For instance, the liability 
of individuals with the AA genotype may increase substantially as a result of the life event, 
whereas those with the aa genotype may barely be affected.  
 

 
 
Figure 1. Liability to developing a disorder as a function of genotype (AA, Aa or aa) and 
environmental exposure (protective or predisposing). The predisposing environment is 
associated with an increase in disease liability. a) This increase is equal in individuals with 
the AA, Aa and aa genotype (additive effects). b) The increase is different in individuals 
with different genotypes. Individuals with the AA genotype have a disproportionately low 
chance of developing a disease in the protective environment, but suffer from a 
disproportional increase in liability when exposed to the predisposing environment 
(Kendler & Eaves, 1986). 
 
GEI may be examined by estimating the relative contributions of genetic and environmental 
factors to a trait across different levels of environmental exposure (Eaves, 1982). A difference 
in the genetic contribution to a phenotype as a function of an environmental moderator (for 
instance, a higher heritability of depression in people with lower levels of social support) 
would constitute evidence for GEI. One may also estimate whether different genes are 
expressed across different levels of environmental exposure. This can be accomplished using 
a twin design in which each individual is measured at two different levels of environmental 
exposure (e.g. before and after an important life event). The correlation between the 
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measures in these two conditions is partitioned into components due to genetic and 
environmental factors. A low genetic component would suggest that different genes are 
expressed across the environmental exposures (Falconer & Mackay, 1996). 

A number of recent studies of childhood psychopathology found evidence of GEI 
(Eley et al., 2004; Lau & Eley, 2008b; Silberg, Rutter, Neale, & Eaves, 2001). For instance, 
Silberg et al. found greater genetic effects on anxiety/depression in adolescent girls who had 
experienced recent negative life events than in those who had not (Silberg, Rutter, Neale, et 
al., 2001). Similar findings were obtained for separation anxiety symptoms in childhood and 
panic anxiety symptoms in adolescence. Lau and Eley (Lau & Eley, 2008b) observed that 15-
year-old adolescent girls at a genetic risk for developing depression tend to experience more 
negative life events and maternal punitive discipline (an instance of genotype-environment 
correlation, addressed in the next section), and were at a higher risk of developing 
depressive symptoms in response to those events (GEI). Feinberg et al. (Feinberg, Button, 
Neiderhiser, Reiss, & Hetherington, 2007) found no evidence for interaction of parental 
negativity and warmth with the heritability of interview-assessed depression in adolescents, 
but showed that effects of individual-specific environment (E) on depression changed as a 
function of parental negativity. As parental negativity increased, the effects of unique 
environment on depression increased. The latter finding is consistent with a recent study 
that examined the moderating role of six environmental factors (mother- and father-child 
relationship problems, antisocial and pro-social peer affiliation, academic achievement and 
engagement, and stressful life events), and found that the effects of individual-specific 
environment on symptoms of depression and anxiety increased as the environmental 
adversity increased (Hicks, DiRago, Iacono, & McGue, 2009). 

When measures of the genotype are available, it is possible to test for an interaction 
of the environment with a specific gene variant. For instance, Caspi et al. investigated the 
association between the serotonin transporter gene and depression in adults who had 
experienced stressful life events and those who had not (Caspi et al., 2003). Stressful life 
events were associated with depression, but only in individuals who carried at least one 
copy of the short allele of the serotonin transporter gene polymorphism (5-HTTLPR). 
However, a meta-analyses of replication efforts has failed to confirm this finding (Risch et 
al., 2009). 

Finally, it should be noted that the variation in the phenotype due to GEI, when not 
explicitly accounted for, inflates either the heritability estimate or the estimate of unique 
environment (Purcell, 2002). In particular, unmodeled variance due to the interaction of 
genotype and shared environment (AxC) inflates the estimate of heritability, and 
unmodeled variance due to the interaction of genotype and unique environment (AxE) 
inflates the estimate of variance due to unique environmental factors. If they are expected, 
but not explicitly modeled, these effects should be borne in mind in interpreting the results 
of twin studies. 
 
Genotype-environment correlation 
 
In the traditional twin design, genetic and environmental contributions to individual 
differences are usually assumed to be independent or uncorrelated. However, the possibility 
of genotype-environment correlation (rGE) is widely recognized. In fact, three types of rGE 
are distinguished, namely passive, evocative, and active rGE. Passive rGE refers to the case 
in which children inherit genes and an environment that both predispose them to a given 
phenotypic outcome (Eaves, 1987). For an example of this, think of a parent who suffers 
from depression. This parent may pass on genes that predispose their child to develop 

108



 

depression, but in addition may inadvertently create a depressogenic environment for the 
child (by being unresponsive, unhappy, demoralized, etc.). Evocative rGE refers to the 
situation in which person's genetically influenced characteristics evoke environmental 
reactions which exacerbate the characteristics (Plomin, Defries, & Loehlin, 1977). For 
instance, an anxious and withdrawn child, simply by behaving anxiously may elicit certain 
responses in other children (e.g. shunning) or in parents (more protective parenting), which 
contribute to the child's anxiety. Finally, active rGE refers to the situation in which 
individuals, as a consequence of certain characteristics, actively seek out or create 
environments which are conducive of these characteristics (Eaves, 1987; Plomin et al., 1977). 
For instance, a withdrawn child may actively avoid social situations, such as birthday 
parties and sports activities, and thereby create an environment that fosters the child's 
general withdrawal.  

One way of detecting rGE is by decomposing the correlation between a measured 
environmental factor and the phenotype of interest into A, C, and E components. Any 
contribution of genetic factors to the observed correlation means that the same genetic 
factors influence the environmental phenotype and the trait, thus creating a correlation 
between the two (Eaves, 1987; Plomin, et al., 1977). 

A number of recent studies of childhood and adolescent anxiety and depression 
obtained evidence of rGE. Kendler and Baker (Kendler & Baker, 2007) reviewed 55 studies 
and found that environmental variables, such as stressful life events, parenting, family 
environment, social support, peer interactions and marital quality, are all under significant 
genetic influence (with heritability estimates ranging from .07 to .39). Narusyte et al. 
examined the association between maternal emotional overinvolvement and adolescent 
internalizing problems, and found that the latter evoked the former (Narusyte et al., 2008). 
Kendler  demonstrated that the (genetically influenced) temperamental traits of the children 
elicited parental warmth, protectiveness, and authoritarianism (Kendler, 1996).  
  
Social interaction among family members 
 
Like other siblings, MZ and DZ twins interact as they grow up together. In this process the 
behavior of one sibling may influence the behavior of the other. If variance in the behavior 
of interest is in part genetic, then via their interaction, the genotype of one sibling exerts an 
influence on the phenotypic behavior of the other. Such interaction effects may be 
cooperative or competitive, depending on whether the behavior of one sibling facilitates or 
inhibits the behavior of the other. Cooperation, or positive interaction, leads to increased 
phenotypic MZ and DZ twin resemblance, while competitive or negative interaction tends 
to decrease it. In addition, sibling interaction affects the total phenotypic variance in MZ and 
DZ twins. If the interaction is cooperative and there is some genetic influence on the trait, 
the variance in both MZ and DZ twins is increased, but the increase is greater in the MZs. If 
the interaction is competitive and there is genetic influence on the trait, both MZ and DZ 
variability is decreased, but the decrease is greater in the MZs. Therefore, depending on the 
pattern of MZ and DZ resemblance and the total phenotypic variance observed in MZ and 
DZ twins, interaction effects may be detected, and cooperative and competitive interaction 
distinguished (G. Carey, 1986). 

With respect to childhood anxiety and depression, studies have shown sibling 
interaction to play a minor, if any, etiological role. No evidence for sibling interaction effects 
on internalizing problems was observed in 3 and 10-15 year-old twins (van den Oord, 
Boomsma, & Verhulst, 1994; van den Oord, Verhulst, & Boomsma, 1996; Van der Valk, 
Stroet, & Boomsma, 1998), and only one study indicated possible twin contrast effects on 
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separation anxiety and depression (Eaves et al., 1997). However, pervasive effects of sibling 
interaction have been demonstrated in externalizing disorders (G. Carey, 1992). 
 
Discussion 
 
The present review demonstrates a substantial role of genetic factors in the etiology of 
depression and anxiety in the normal distribution. Insofar as one subscribes to a 
dimensional model of psychopathology (e.g., Widiger, 2005) in which affected children 
are considered to occupy the extreme of the population distribution, these results are highly 
relevant. The implication of genetic factors per se clearly does not mean that the child's level 
of anxiety or depression is immutable, or that environmental interventions are essentially 
pointless. In fact, the implication is quite the opposite: the substantial heritability of anxiety 
may imply that the biological parents also display increased levels of anxiety, which could 
affect the child through passive rGE. This could mean that treatment should involve the 
parents and possibly siblings. Moreover, through reactive rGE, anxious and depressed 
children can elicit a certain parenting style, such as punitive discipline or overprotective 
behavior, which may, in turn, create an environment that sustains the symptoms. It is 
important to explain this mechanism to parents. Similarly, the child's diagnosis may stem 
from an interaction of a genetic predisposition and adverse environmental factors, such as a 
divorce, or being bullied at school. Such information further supports that a strategy aimed 
at improving the child’s environment may yield improvements in their overall emotional 
behavioral health.   

As longitudinal studies have demonstrated, the chance that childhood anxiety or 
depression symptoms are transient is substantial; however, in case of persistent or recurrent 
symptoms, it is feasible to assume that genetic factors (which may be correlated with 
environmental risk, or interact with the environment) may play a greater role in their 
stability. In case of persistent symptoms, in addition to addressing environmental factors, 
therapy should also focus on individual characteristics (such as attributional style, coping 
style, or the tendency to ruminate) that could maintain the symptoms (Ciesla & Roberts, 
2007; Hammen, 1992; Lau & Eley, 2008a). Of course, one should bear in mind that the 
framework informed by the results of behavioral genetic studies is probabilistic and 
predicated on a dimensional model of psychopathology. However, we believe that this 
framework is useful for thinking about the way in which genes and environment may 
contribute to childhood depression or anxiety.  

Establishing significant heritability for childhood psychiatric disorders has promoted 
the attempts at localization and identification of genes that contribute to risk. Identification 
of genetic variants through genome-wide association (GWA) studies, which are hypothesis-
free, is a feasible and appealing option that is increasingly employed for childhood traits. 
Two examples include a successful association study for fetal growth and birth weight, and 
studies of childhood ADHD (Freathy, Mook-Kanamori, Sovio, & Prokopenko, 2010). 
Although ADHD studies need to be improved and replicated, they are starting to implicate 
processes such as neuronal migration and cell adhesion and division as potentially 
important in the etiology of ADHD (Banaschewski, Becker, Scherag, Franke, & Coghill, 
2010). Some researchers have voiced major concerns at the feasibility of explaining 
heritability by GWA studies (the famous ‘missing heritability’ problem) and a diversity of 
solutions has been proposed (Eichler et al., 2010). One solution might be the study of 
identical twins. The search for differences in genotypes within discordant MZ twin pairs 
seems to be a promising approach in gene finding. With future possibilities for human 
genome sequencing of large numbers of individuals it may even become feasible to turn this 
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strategy around and sequence large numbers of unselected MZ pairs, after which 
differences within pairs can be correlated with differences in phenotypes (Zwijnenburg, 
Meijers-Heijboer, & Boomsma, 2010). Ultimately, once the relevant genes are identified and 
their function understood, one may be able to move towards an effective combination of 
personalized treatment that includes both pharmacological and environmental (family-
based) intervention.  

111



 112



 

Chapter 7 
 
Genetic and Environmental Stability of Intelligence 
in Childhood and Adolescence 
 
 
Abstract 
 
The present study examined the genetic and environmental contributions to the temporal 
stability of verbal, nonverbal and general intelligence across a developmental period 
spanning childhood and adolescence (5-18 years). Longitudinal twin data collected in four 
different studies on a total of 1748 twins, comprising 4641 measurement points in total, were 
analyzed using genetic adaptations of the simplex model. The heterogeneity in the type of 
instrument used to assess psychometric intelligence across the different subsamples and 
ages allowed us to address the auxiliary question of how to optimally utilize the existing 
longitudinal data in the context of gene-finding studies. The results were consistent across 
domains (verbal, nonverbal and general intelligence), and indicated that phenotypic 
stability was driven primarily by the high stability of additive genetic factors, that the 
stability of common environment was moderate, and that the unique environment 
contributed primarily to change. The cross-subscale stability was consistently low, 
indicating a small overlap between different domains of intelligence over time. The high 
stability of additive genetic factors justifies the use of a linear combination of scores across 
the different ages in the context of gene-finding studies. 
 
Appendices can be obtained at http://sanjafranic.com/dissertation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Dolan, C. V., van Beijsterveldt, C. E. M., Hulshoff Pol, H. E., Bartels, M., 
& Boomsma, D. I. (2014). Genetic and Environmental Stability of Intelligence in Childhood 
and Adolescence. Twin Research and Human Genetics, 17(03), 151-163. 

113



 

Intelligence is one of the most frequently studied human behavioral traits. Over the past 
century it has motivated research across a diverse range of fields including not only the 
behavioral sciences, but also genetics, neuroscience, molecular biology, and economics. It is 
one of the strongest known determinants of major life outcome such as educational 
attainment, occupational success, health and longevity (Deary, Whiteman, Starr, Whalley, & 
Fox, 2004; Gottfredson, 1997b; Gottfredson & Deary, 2004; Neisser et al., 1996; Schmidt & 
Hunter, 2004). Over the past several decades, developments in multivariate statistical 
modeling coupled with the availability of large data sets collected in twins and relatives 
have allowed for the examination of the genetic and environmental etiology of individual 
differences in intelligence, and the more recent advances in genotyping and DNA 
sequencing have enabled the search the for specific genetic variants underlying the observed 
variation (e.g., Benyamin, Pourcain, et al., 2013b; Davies et al., 2011; Franić, Groen-Blokhuis, 
et al., 2013; Najmabadi et al., 2007). The findings emerging from twin and family studies 
have univocally indicated 1) a role of genetic factors in the etiology of intelligence (e.g., 
Bouchard & McGue, 1981; Deary, Spinath, & Bates, 2006; Plomin et al., 2008; Plomin & 
Spinath, 2004), and 2) an age-dependent pattern of heritability, with individual differences 
in late adolescence and adulthood being more strongly influenced by genetic factors than 
those in childhood (the heritability estimates typically ranging from ~20% in infancy to ~40-
50% in middle childhood and ~60-80% in adulthood; e.g., Bartels et al., 2002; Bishop et al., 
2003; Boomsma & Van Baal, 1998; Deary et al., 2006; Haworth et al., 2009a; R. A. Hoekstra et 
al., 2007; McGue, Bouchard Jr, Iacono, & Lykken, 1993a; Petrill et et al., 2004; Plomin, 1986; 
Polderman et al., 2006). Environmental factors that contribute to similarity between family 
members (e.g., shared family environment) typically decline in etiological relevance 
throughout childhood and adolescence, while environmental factors that facilitate 
differentiation between family members appear to play a persistently modest to moderate 
role (e.g., Bartels et al., 2002; Boomsma & Van Baal, 1998; Haworth et al., 2009a). The 
temporal stability of intelligence (i.e., the conservation of the rank order of individuals over 
time) is estimated to be fairly high, with around 45-60% of the variance in childhood being 
preserved over any given ~2-year interval (e.g., Bartels et al., 2002). This continuity in the 
observed individual differences is attributable predominantly to genetic factors, i.e., to the 
expression of a single set of genes throughout development (e.g., Bartels et al., 2002; Bishop 
et al., 2003; Eaves et al., 1986; R. A. Hoekstra et al., 2007; Petrill et et al., 2004; Rietveld et al., 
2003). In addition to contributing to stability, genetic factors also generate change: age-
specific genetic factors emerge at different ages, partly accounting for the lack of complete 
temporal stability. Environmental influences shared amongst family members, insofar as 
they are relevant, contribute mostly to stability, whereas the unshared environment 
contributes predominantly to change. 

The aim of the present study is to contribute to the existing body of literature by 
providing one of the most comprehensive examinations of the genetic and environmental 
etiology of the observed stability of intelligence to date. We analyzed longitudinal twin data 
collected in four different studies on a total of 1748 twins, measured across a developmental 
period spanning childhood and adolescence (5-18 years of age). In contrast to many of the 
previous examinations of the genetic and environmental stability of intelligence (but see R. 
A. Hoekstra et al., 2007; Rietveld et al., 2003), we examine the stability of verbal and 
nonverbal abilities separately. In addition, we examine the stability of general intelligence 
(g; Jensen, 1998; Spearman, 1904). Because the choice of the psychometric instrument used to 
assess intelligence is inevitably dependent on the age of the participant, and because we 
combine data from four different studies (comprising 14 different subprojects), there is 
considerable heterogeneity in the measurement instrument used to assess intelligence across 
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the different samples and ages. This is not dissimilar to the situation in many other data 
registries, where longitudinal measures are often collected using different instruments 
across the life span. In twin registries in particular, this issue becomes especially prominent 
in the context of gene-finding studies (e.g., Flint, 2013; Goldstein et al., 2013a; Visscher et al., 
2012), where specific genetic variants contributing to the variation in the observed trait (i.e., 
the phenotype) are sought. Here, the definition of the ‘observed trait’, or phenotype, is of 
considerable relevance (e.g., van der Sluis et al., 2010): how does one define a single 
‘observed trait’ to be used in the analyses, given multiple measures over time? The presence 
of longitudinal data collected using different psychometric instruments allows us to address 
the auxiliary question of how to optimally utilize the existing twin registry data on 
intelligence in the context of gene finding studies, i.e. of whether data summarization is 
likely to diminish the power to detect genetic effects (see e.g. Medland & Neale, 2010; 
Minică et al., 2010; van der Sluis et al., 2010). 

In summary, the present study aims to 1) assess the observed stability of verbal 
abilities, nonverbal abilities, and general intelligence, and 2) study the observed stability as a 
function of the underlying genetic and environmental factors. The structure of the dataset 
allows for an evaluation of how the results replicate and integrate across the different 
samples, and the presence of measures collected using multiple psychometric instruments 
allows us to address the practical question of how to optimally utilize the existing data in 
the context of gene-finding studies. Although the terms ‘intelligence’ and ‘cognitive ability’ 
have each been given a multitude of definitions (e.g., Jensen, 1998; Spearman, 1904), in the 
present chapter we use the two terms interchangeably.  
 
Method 
 
Sample 
 
The data were obtained from the Young Netherlands Twin Register (YNTR; van 
Beijsterveldt, Groen-Blokhuis, Hottenga, Franić, et al., 2013). YNTR is a population-based 
register of Dutch twins born after 1986, recruited at birth and measured longitudinally at 
ages 1 through 18. The sample consisted of 1748 twins (including 872 complete twin pairs; 
399 monozygotic (MZ) and 473 dizygotic (DZ)), and was composed of four longitudinally 
measured subsamples (sample sizes: 544, 226, 552, and 426 individuals). A detailed structure 
of the data is given in Figure 1 in Appendix 4. The twins were measured longitudinally at 
ages 5-18. This generated 4641 data points in total: 1946, 808, 1076, and 811 data points were 
available for the four subsamples, respectively. 47.5% of the participants were male.  
 
Measures 
 
Cognitive abilities were assessed longitudinally, using the Revised Amsterdam Children 
Intelligence Test (RAKIT; Bleichrodt, Drenth, Zaal, & Resing, 1984), Wechsler Intelligence 
Scale for Children (WISC-R and WISC-III; Sattler, 1992; Van Haasen et al., 1986; Wechsler et 
al., 2002), Raven’s Standard and Advanced Progressive Matrices (SPM, APM; Raven, Raven, 
& Court, 1998; Raven, 1960), and the Wechsler Adult Intelligence Scale (WAIS; Stinissen, 
Willems, Coetsier, & Hulsman, 1970; Wechsler, 1997), the choice of test being largely 
dependent on the participants’ age. Subscale scores were derived following the guidelines in 
the tests’ manuals (Bleichrodt et al., 1984; Sattler, 1992; Van Haasen et al., 1986; Wechsler et 
al., 2002; Stinissen et al., 1970; Wechsler, 1997): for RAKIT, a verbal (V) and a nonverbal 
(NV) score were defined; for the WISC and the WAIS, the Verbal Comprehension Index 
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(VCI), Perceptual Organization Index (POI), and Freedom from Distractibility Index (FDI) 
were defined. For Raven’s SPM and APM, the total score (defined as the total number of 
items answered correctly) was used in the analyses. Because the variances of the subscale 
scores across the different tests were quite heterogeneous in magnitude, to ease subsequent 
computation we standardized by dividing each variable by the product of its standard 
deviation and √5. This resulted in variances of an equal order of magnitude across the 
different tests.  
 
Approach 
 
Genetic covariance structure modeling (Martin & Eaves, 1977) is the application of structural 
equation modeling (Bollen, 1989; Kline, 2005) to data collected in genetically informative 
samples, such as samples of twins (Franić et al., 2012; M. C. Neale & Cardon, 1992). In the 
classical twin design, the sample consists of MZ and DZ twin pairs. DZ twins share 50% of 
their segregating genes on average, while MZ twins share nearly their entire genome 
(Falconer & Mackay, 1996; J. P. van Dongen et al., 2012). The covariance structure of the 
phenotypes (i.e., observed traits) is typically modeled as a function of latent factors 
representing several sources of individual differences: additive genetic (A), shared 
environmental (C), and individual-specific environmental (E) sources28. Additive genetic 
influences are modeled by one or more A factors, which represent the total additive effects 
of genes relevant to the phenotype. Based on quantitative genetic theory (Falconer & 
Mackay, 1996; Mather & Jinks, 1971), the A factors are expected to correlate 1 across MZ 
twins and .5 across DZ twins. Environmental influences affecting the phenotype of both 
twins in an identical way, thereby increasing their similarity beyond what is expected based 
on genetic resemblance alone, are represented by one or more C factors. Therefore, by 
definition, the C factors correlate unity across twins (regardless of zygosity). All 
environmental influences causing phenotypic differences among family members to differ 
are represented by one or more E factors. Thus, by definition, the E factors are uncorrelated 
across twins. Assuming an ACE model, the expected covariance structure in a multivariate 
twin model is thus:  
 

Σ11 Σ12
Σ21 Σ22

 = ΣA + ΣC + ΣE rAΣA + ΣC  
rAΣA + ΣC)t ΣA + ΣC + ΣE  

 
where, given p phenotypes, Σ11 (Σ22) is the p x p covariance matrix of twin 1 (twin 2), Σ12 
(Σ21) is the twin 1 - twin 2 p x p covariance matrix, and ΣA, ΣC and ΣE are the additive 
genetic, shared environmental, and unique environmental p x p covariance matrices, 
respectively. The coefficient rA is the correlation between the additive genetic factors in twin 
1 and twin 2 (1 in MZ and .5 in DZ twins). 

In the present study, the temporal stability of intelligence (i.e., the stability of 
individual differences in performance on intelligence tests over time) and the temporal 
stability of genetic and environmental influences on intelligence (i.e., the degree to which 
the observed stability is attributable to the continuity of the genetic/environmental factors 
that affect intelligence over time) were modeled using the simplex model (Guttman, 1954; 
Jöreskog, 1970). An example of a simplex model is depicted in Figure 1. In this model, the 

                                                
28 In addition, the trait may be influenced by non-additive genetic factors (D), which include genetic interactions within 
the same locus (genetic dominance) or across different genetic loci (epistasis). In the present chapter, non-additive 
genetic effects were not modeled because the classical twin design does not allow for the simultaneous estimation of A, 
C, and D effects, and both the existing literature and our preliminary analyses favored an ACE over an ADE model. 
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data at occasion t (t = 1…T) are regressed on data at the preceding measurement occasion (t 
– 1), and the regression coefficient βt,t-1 obtained in this regression is used as an indicator of 
temporal stability. For instance, a high β in the regression of verbal abilities at age 7 on 
verbal abilities at age 5 would indicate that the individual differences in verbal abilities are 
highly stable across this age span, i.e., that the rank order of individuals is largely preserved. 
Thus, the variance of a measure at a given time point is modeled as a function of factors that 
are stable over time (e.g., the variance at time point t is a function of the variance at time 
point t-1 and of the regression coefficient βt,t-1: σ2

t-1*βt,t-1
2) and newly-emerging factors that 

affect the phenotype at the given time point but were absent at the preceding time point. 
The variance of a measure at time point t can thus be expressed as: σ2

t = βt,t-1
2*σ2

t-1 + ζt, where 
ζt denotes the variance due to innovation. A high βt,t-1 in combination with low ζt indicates 
high temporal stability; conversely, a low βt,t-1 and a high ζt indicate low stability, implying 
that the factors relevant to the phenotype at time t-1 decrease in relevance by time t, and 
newly emerging factors gain in relevance.  
 

 
Figure 1. Phenotypic simplex model fitted to the data in Sample 1. Subscale scores on the 
RAKIT, WISC, and WAIS at five measurement occasions are modeled. For simplicity, 
parameter notation is only given for the first three measurement occasions. σ2=variance, 
ζ=residual variance, c=(residual) covariance, β=regression coefficient. ‘c’ denotes covariance 
(between V5 and NV5) at the first measurement occasion, and residual covariance (i.e., 
covariance between the innovation factors) at subsequent measurement occasions. 
 
In a simplex model with p observed variables, the expected p x p covariance matrix Σ equals 
(I – B)-1 Ψ (I – B)-1t, where I is a p x p identity matrix, B is a p x p matrix containing the 
autoregressive coefficients (βs) in the model, and Ψ is a p x p matrix containing the 
variances and covariances (for the first measurement occasion) and the residual variances 
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and covariances (for all the subsequent measurement occasions) of the observed variables. 
Thus, for the first three measurement occasions in Figure 1: 
 

Ψ = 

σ2V5 c5 0 0 0 0
c5 σ2NV5 0 0 0 0
0 0 ζV7 c7 0 0
0 0 c7 ζNV7 0 0
0 0 0 0 ζV10 c10
0 0 0 0 c10 ζNV10

 , 

 
where σ2 denotes variance, ζ denotes residual (innovation) variance, and c denotes 
(residual) covariance. Further, 
 

Β = 

0 0 0 0 0 0
0 0 0 0 0 0

βV7V5 βV7NV5 0 0 0 0
βNV7V5 βNV7NV5 0 0 0 0
0 0 βV10V7 βV10NV7 0 0
0 0 βNV10V7 βNV10NV7 0 0

 , 

 
where βt,t-1 is the regression coefficient in the linear regression of a variable at time t on a 
variable at time t–1 (e.g., βV7V5 denotes the regression of variable V7 on variable V5).  

To assess the contributions of genes and the environment to the observed stability 
and change in intelligence scores, a genetic adaptation of the simplex model was used 
(Boomsma, Martin, & Molenaar, 1989; Boomsma & Molenaar, 1987; Franić et al., 2012; M. C. 
Neale & Cardon, 1992). In genetic adaptations of the simplex model, in contrast to modeling 
a single time series, the phenotype is modeled as a function of several (genetic and 
environmental) latent time series. For instance, in a model containing only additive genetic 
and unique environmental latent factors (AE model; Figure 2)29, the phenotypic variable V 
measured at age t, Vt, is related to the additive genetic and unshared environmental factors 
At and Et (t=1,…,T), and simplex models, or first order autoregressions, are specified to 
account for the stability and change at the level of A and E (e.g., σ2

Et=βEt,t-1
2*σ2

Et-1+ζEt) 30. The 
expected covariance structure of the phenotype(s) is thus: 
 

Σ11 Σ12
Σ21 Σ22

= ΣA+ ΣE rAΣA
rAΣA ΣA+ ΣE

 , 

 
where (assuming the latent factors are expressed on the same scale as the phenotype) the 
covariance matrices ΣA and ΣE are modeled as follows: 
 

ΣA =  (I – BA)-1ΨA(I – BA)-1t, 
ΣE =  (I – BE)-1ΨE(I – BE)-1t. 

 
This means that one can assess the contributions of genetic and environmental factors to the 
observed stability and the change in stability. The phenotypic covariance between 
consecutive time points may be due to genetic influences (βAt,t-1 ≠ 0), environmental 

                                                
29 The Figure assumes that the variances of the latent innovation factors (ζA and ζE) are scaled to 1.  
30 Here, σ2

Et and σ2
Et-1 are the variances of the unique environmental factors at times t and t-1, βEt,t-1 is the regression of 

the E factor at time t on the E factor at t-1, and ζEt is the variance of the unique-environmental residual (i.e., innovation) 
at time t. 
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influences (βEt,t-1 ≠ 0), or both (βAt,t-1 ≠ 0 and βEt,t-1 ≠ 0). Likewise, any lack of stability may be 
due to either or both sources of individual differences. For instance, intermediate 
phenotypic stability (e.g., a correlation of .5) may be due to perfect genetic stability (ζAt = 0), 
in combination with complete environmental instability (βEt,t-1 = 0). 
 

 
Figure 2. An example of an AE simplex model. Data observed at three measurement 
occasions are modeled as a function of additive genetic and unique environmental factors 
(A and E, respectively), and simplex models are specified to account for the stability and 
change at the level of A and E. 
 
Analyses. The analyses were designed to examine the degree of phenotypic stability of 
intelligence, and assess the contributions of genes and the environment to the observed 
stability and change. This was achieved by fitting simplex models (described in detail 
below) to intelligence tests subscale scores: RAKIT V and NV, WISC and WAIS VCI, POI, 
and FDI, and Raven sum scores. In addition to modeling the subscale scores, the stability of 
general cognitive ability (g; Jensen, 1998, Spearman, 1904) was assessed. The g factor was 
defined as a first-order factor underlying performance on the different subscales at a given 
age, and the temporal stability of g was examined on both the phenotypic, and the genetic 
and environmental level. Thus, overall, four different types of models were fitted: a) 
phenotypic simplex models, b) phenotypic simplex models with a g factor, c) ACE simplex 
models, and d) ACE simplex models with a g factor. These models were fitted to each of the 
four samples separately, resulting in 16 distinct sets of results. To accommodate for any 
possible mean differences across the sexes, means were modeled separately for males and 
females in all analyses.  

Phenotypic simplex models. The phenotypic simplex models fitted to each of the four 
samples are depicted in Figure 3. Here, age is given on the x-axis; thus the spatial distance 
between the variables at the different measurement occasions corresponds to the temporal 
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distance between these measurement occasions. The temporal distance between the 
measurement occasions is important, because the interpretation of the stability parameters 
depends on it: with equal stability over time, the estimate of stability between two 
measurement points decreases as a quadratic function of the temporal distance between 
those measurement points. For instance, with a constant stability of .5 between any two 
measurement points 2 years apart (e.g., from age 4 to age 6, from age 6 to age 8, etc.), the 
stability estimate would be .52 = .25 if one were to estimate the stability between two 
measurement points 4 years apart (e.g., age 4 to age 8). Therefore, the stability estimate is a 
function not only of the underlying stability, but also of the temporal distance between the 
measurement points used for estimation. Thus fact will be brought in mind while 
interpreting the results.  

In all of the models depicted in Figure 3, each of the subscales measured at a given 
time point is specified to predict each of the subscales measured at the subsequent time 
point. Thus, not only the main regression paths (e.g., from RAKIT V at age 5 to RAKIT V at 
age 7), but also the cross-paths (e.g. from RAKIT V at age 5 to RAKIT NV at age 7), are 
estimated. In other words, any possible temporal contribution of one domain of intelligence 
to another is assessed. Although in Figure 3 we depict the phenotypic models for all the four 
samples, in subsequent text (the phenotypic model with a g factor, the ACE simplex model 
and the ACE model with a g factor) the models will only be illustrated for Sample 1. The 
structure of the models for the remaining samples, however, can be deduced from Figure 3: 
for instance, in the ACE simplex model for Sample 2, the structure of each of the three 
variance components (A, C, and E) is equal to the phenotypic structure for Sample 2 
depicted in Figure 3. 
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Figure 3. Phenotypic simplex models fitted to the four samples. The spatial distance between 
the measurement points within a model corresponds to their temporal distance. 

 
Phenotypic simplex models with a g factor. In addition to assessing the phenotypic stability at 
the subscale level (Figure 3), a series of models assessing the phenotypic stability at the level 
of general cognitive ability (g) was fitted. Here, g was defined as a first-order latent factor 
underlying overall subscale performance at a given age, and autoregressions were specified 
to account for the stability and change at the level of g (upper right panel Figure 4). In 
addition to the autoregressions at the level of g, simplex models were also specified to 
account for the stability and change at the level of subscale-specific abilities, i.e., the 
residuals in the model: the Verbal scores at t-1 predict the Verbal scores at t, the Nonverbal 
scores at t-1 predict the Nonverbal scores at t, and the VCI, POI, and FDI factors at t-1 
predict the VCI, POI, and FDI factors at t, respectively (upper right panel Figure 4). 

ACE simplex models. In addition to assessing phenotypic stability, a series of ACE 
simplex models was fitted to the subscale scores in order to assess the contributions of genes 
and the environment to the observed stability. An example model (fitted to Sample 1) is 
depicted in the lower left panel of Figure 4. To avoid clutter in the Figure, the A, C, and E 
components are depicted separately; however, the three components are part of the same 
model, in which the subscale scores are modeled as a function of genetic and environmental 
latent series. 
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ACE models with a g factor. In addition to modeling subscale scores, the contributions 
of genes and the environment to the observed stability in the g factor were assessed. This 
was achieved by modeling the subscale scores at each time point as a function of underlying 
genetic and environmental g factors (Ag, Cg, and Eg), and specifying simplex models to 
account for the stability and change at the level of these genetic and environmental factors, 
as depicted in the lower right panel of Figure 4. Although the A, C, and E components of the 
model are depicted separately, they are part of the same model. In addition to modeling the 
genetic and environmental g factors, we assessed the extent to which any possible subscale-
specific stability is due to genetic/environmental factors, by fitting an ACE simplex model 
to the subscale residuals (lower right panel Figure 4). 
  
Results 
 
For concision, the results pertaining to Sample 1 are presented in detail, while the results 
pertaining to the other three samples are summarized and discussed in view of their 
compatibility with the results in Sample 1. The full list of results (i.e., the parameter 
estimates obtained for all the four samples) is given in Appendix 4A. Figure 4 displays the 
results obtained for Sample 1. For ease of interpretation, the results we present are fully 
standardized, i.e., the variance of each (observed and latent) variable is 1. Stability is 
expressed as the proportion of variance of a variable at age t explained by the variables at t – 
1; this proportion is easily obtainable by subtracting the magnitude of innovation variance 
from the total variance, i.e., as 1-ζt. A different standardization (allowing for a comparison of 
the relative magnitude of the A, C, and E variance components) is presented at the end of 
the Results section. The stability of the different subscales at a given age was largely 
comparable; thus, whenever possible, we describe general trends. When this is not 
warranted, we address the stability of the subscales separately.  
 
Phenotypic simplex model. The temporal stability of intelligence subscales, as assessed using a 
phenotypic simplex model (upper left panel Figure 4), is in the intermediate range, varying 
from 34% to 66% in Sample 1. Averaging over the subscale stabilities at each given age gives 
the mean stabilities of 38%, 43%, 43%, and 54% at the age intervals 5-7, 7-10, 10-12, and 12-
18, respectively, indicating that the phenotypic stability of intelligence increases with age. 
This is especially evident if one considers that the time interval between the last two 
measurement points (ages 12 to 18) is more than twice the average time interval between the 
remaining consecutive measurement points, and that the correlation between measurement 
points is expected to decrease as an exponential function of their temporal distance, given 
equal stability over time. Thus, with stability being constant over age, one would expect a 
drop in the stability estimate from the observed 43% in the 10-12 interval to around 3.5% in 
the 12-18 interval; however, the actual stability estimate in the 12-18 interval is a high 54%, 
indicating a sharp increase in stability over this period. The cross-lag regression coefficients 
(e.g., RAKIT V to RAKIT NV) were generally small in magnitude compared to the main 
regression coefficients (e.g., RAKIT V to RAKIT V); estimates of variance explained by any 
single cross-lagged relationship ranged from 0.2% to 5.8% (see Figure 4 for estimates). 
Notably, the stability remained moderate to high despite the use of different tests (RAKIT, 
WISC, and WAIS). 

In Sample 2, the average subscale stability at age 12 was 40%; an estimate comparable 
to the 43% stability at the same age interval in Sample 1. In Sample 3, the average subscale 
stabilities between the ages of 5-12 and 12-17 were 18% and 44%, respectively. An estimate 
of 18% in the 7-year interval prior to age 12 implies that, were the time intervals equal to 
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those in Sample 1 (an average of 2.3 years prior to age 12), the stability would be estimated 
at 42%; highly consistent with the estimate obtained in Sample 1. The estimate of 44% in the 
5-year interval between the ages of 12 and 17 implies that the stability would equal 58%, 
given a test-retest interval comparable to that of Sample 1 (i.e., 2.5 years). Thus, the temporal 
stability of intelligence as estimated in Sample 3 increases with age, and is consistent in both 
its magnitude and its observed increase with that estimated in Samples 1 and 2. In Sample 4, 
the mean subscale stability between the ages 15 and 18 is estimated at 30%. This is lower 
than the estimates obtained for the other samples; however, in Sample 4 the Raven sum 
score alone is used as a predictor of the three WAIS subscales (Figure 3). Thus, while the 
30% estimate may reflect a lower temporal stability, it is also attributable to the relatively 
low correlation between the WISC subscales and the Raven.  

Overall, the phenotypic subscale analyses indicate moderate to high stability of 
individual differences in intelligence across childhood and adolescence. The stability 
increases with age; i.e., the individual differences in intelligence become increasingly stable 
as individuals transition from childhood to adolescence. Notably, the stability remains in the 
intermediate to high range despite the variation in the instruments used to assess 
intelligence, and the results replicate well despite the differences in tests and measurement 
intervals across the four different samples.  
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Figure 4. Parameter estimates obtained for Sample 1. Top left: phenotypic simplex model; 
top right: phenotypic simplex model with a g factor; bottom left: ACE simplex model; 
bottom right: ACE simplex model with a g factor. The results are completely standardized, 
i.e., the total variance of each (latent and observed) variable in the model is 1. In the right 
panels, the numbers in the bottom of the figures denote residual innovation variance (ζ), 
rather than residual regression coefficients (βs). The residual bs are not depicted, but may be 
inferred from the residual variances (i.e., ζs). To minimize clutter in the figure, residual 
covariances are depicted as double-headed arrows connecting the observed variables (or the 
genetic/environmental components thereof), rather than the residuals. 
 
Phenotypic simplex model with a g factor. The upper right panel of Figure 4 shows the 
phenotypic simplex model with a g factor fitted to Sample 1. On average, the g factor 
explained around 37%, 31%, 38%, 47%, and 55% of subscale variance at ages 5, 7, 10, 12, and 
18, respectively (possibly indicating an increasing role of g in intelligence over time, but also 
possibly reflecting the differences in the tests used). The temporal stability of the g factor is 
remarkably high: nearly the entire inter-individual variation at a given age can be predicted 
by the variation at the preceding age. The residual, subscale-specific variation displays a 
modest degree stability over time: 20% on average. It should, however, be noted that this is 
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a lower estimate of residual stability, as the estimates of the subscale-specific variation also 
include measurement error.  

In Sample 2, the g factor explained an average of 47% and 37% of subscale variance at 
ages 9 and 12, respectively. The stability of g from age 9 to age 12 was around 80%, and the 
stability of the residual scores was modest (~15%), as in Sample 1. In Sample 3, the stability 
estimates were somewhat lower (42% and 65% at intervals 5-12 and 12-17, respectively). 
Note, however, that stability estimates of 42% and 65% over 7 and 5 years, respectively, 
imply that the stability would have been estimated at around 75% and 80%, respectively, 
had the time intervals been comparable to those of Samples 1 and 2 (2-2.5 years). In Sample 
4, the stability was estimated at 60%. Again, it should be borne in mind that in Sample 4, 
Raven alone was used as a predictor of all three WAIS subscales; therefore, the lower 
stability estimate may reflect a lower temporal stability in Sample 4, but may also be due to 
the relatively low correlation between the Raven sum score and the WAIS subscale scores. 

In summary, the phenotypic stability of g over childhood and adolescence is high, 
and exceeds the stability of individual subscales. The g factor explains around 30%-55% of 
subscale variance, regardless of the test used. Across all four samples, the stability of the 
subscale-specific scores is modest (around 15%-20%).  
 
ACE simplex model.  The lower left panel of Figure 4 shows the parameter estimates obtained 
for the ACE simplex model fitted to Sample 1. As evident from the Figure, the additive 
genetic influences on intelligence are highly stable; the stability estimates range from 
approximately 90% to 100%, and display an increase with age. Therefore, the genes that 
influence intelligence in early childhood overlap largely, if not entirely, with those that 
affect it throughout childhood and adolescence. Cross-lag regressions across measurement 
points and residual correlations within measurement points are fairly low, indicating that 
the genetic factors affecting e.g. verbal abilities are largely distinct from those affecting e.g. 
non-verbal abilities, both within and across measurement points. The stability of common 
environmental influences is in the intermediate range, and differs per subscale: the common 
environmental stability of verbal abilities before the age 10 is considerably higher than the 
common environmental stability of non-verbal abilities in this period; at later ages, however, 
the difference in stability between the subscales appears to disappear. However, as the 
magnitude of C component is small and decreases over time (see end of the Results section), 
the apparent differences in subscale stabilities are likely attributable to the unreliability of 
the relevant parameters. The unique environmental influences display virtually no stability 
over time; the stability estimates are close to zero at all time points.  

In Sample 2, the additive genetic influences are highly stable (over 90% on average), 
the common environmental stability is high (~85% on average), and unique  
environmental stability is low (12% on average). Similarly, in Sample 3, the additive genetic 
stability is high (close to 100% except for the FOI subscale at age 12, the stability of which is 
estimated at 38%), the common environmental stability is estimated at 47% in the 5-12 
interval and 100% in the 12-17 interval, and the E stability is virtually zero. In Sample 4, the 
A influences are estimated to be around 80% stable, the C influences around 60% stable, 
while the E influences display virtually zero stability.  

Overall, the results indicate a high additive genetic stability (largely 90%-100%), a 
moderate to high common environmental stability, and a complete absence of unique 
environmental stability for both verbal and nonverbal abilities. The cross-subscale (e.g., 
verbal-nonverbal) stability is consistently low.  
 

125



 

ACE simplex model with a g factor. The ACE simplex model with a g factor fitted to Sample 1 
is shown in the lower right panel of Figure 4. In this sample, the additive genetic g factor 
explains around 60% of the additive genetic subscale variance and displays nearly perfect 
stability; 100% at most time points. Similarly, the additive genetic subscale residuals 
generally display a high temporal stability. The common environmental g factor explains 
around 40% of the common environmental subscale variance. The stability of common 
environmental influences appears to increase after age 10: the stability estimates are 5%, 
24%, 100%, and 100% at ages 7, 10, 12, and 18, respectively. However, the magnitude of the 
C (and E) variance is relatively small, and thus the reliability of the C (and the E) stability 
parameters is likely low. Overall, the residual C stability is estimated to be high. The unique 
environmental component displays an opposite pattern to the common environmental 
component: the stability of g before the age 10 is high, and declines substantially thereafter. 
However, the unique environmental g factor explains only 16% of the unique environmental 
subscale variance on average; the rest is explained by the subscale-specific E factors, which 
display virtually no stability.  

In Sample 2, the additive genetic g factor explains 52% of the additive genetic 
subscale variance, and is 70% stable on average. Similarly, the residuals are highly stable 
(85%). The Cg factor displays complete stability, and explains 90% of the C subscale 
variance. The Eg factor explains only 24% of the unique environmental subscale variance, 
and is 30% stable on average, with highly unstable residuals. In Sample 3, the additive 
genetic g factor explains 70% of the subscale variance and is 93%-100% stable. The Cg factor 
explains around 60% of the C subscale variance, and declines in stability from 100% at ages 
5-12 to 34% at ages 12-17. Again, however, the variance in the C stability estimates is likely 
due to the small magnitude of C. The E subscale variance was only modestly explained by 
Eg (~25%), and displayed stability neither at the g level, nor at the residual level. In Sample 
4, the Ag, Cg, and Eg factors explained around 76%, 52%, and 11% of their respective 
variance, and were 100%, 100%, and 16% stable, respectively.  

In summary, the Ag, Cg, and Eg factors explained an average of ~65%, ~60%, and 
~20% of the A, C, and E variance, respectively. The Ag factor was highly stable over time 
(mostly close to 100%), with highly stable residuals. The Cg factor was generally highly 
stable (close to 100%), with some exceptions (ages 5-10 in Sample 1 and ages 12-17 in Sample 
3; however, considering the small magnitude of the C variance component, these exceptions 
likely reflect the unreliability of the estimates). The Eg factor displayed modest stability 
(around 35% on average), but explained only around 30% of the E variance, the remainder 
of the variance being entirely unstable (close to 0%) across all samples.  
 
Magnitude of variance components. The relative magnitude of the A, C, and E variance 
components, as estimated in the ACE simplex models and averaged over subscales at each 
age, is depicted in Figure 2 in Appendix 4. An age-related increase in heritability 
accompanied by a relative decline in common environmental variance, expected based on 
the literature (e.g., Bartels et al., 2002; Bishop et al., 2003; Boomsma & Van Baal, 1998; Deary 
et al., 2006; Haworth et al., 2009a; R. A. Hoekstra et al., 2007; McGue et al., 1993a; Petrill et et 
al., 2004; Plomin, 1986; Polderman et al., 2006), is evident in Samples 1, 3, and 4. In Sample 2, 
where only two measurement points were available (ages 9 and 12), this trend was not 
apparent. This lack of trend can presumably be attributed to the brevity of test-retest time 
interval.  
 
Integrated results. Figures 5 and 6 depict estimates of standardized variance components and 
A, C, and E stabilities, respectively, obtained across all four samples and shown for verbal 
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and nonverbal abilities separately. Unlike data in Figure 6, the data in Figure 5 did not 
appear to show considerable deviations from linearity; therefore the general trends are 
represented by linear regression lines weighted by sample size in Figure 5 and by a 
smoothing function (lowess function as implemented in R; R Core Team, 2013) in Figure 6. 
Consistently with Figure 2 in Appendix 4, an increase in the relative magnitude of additive 
genetic variance accompanied by a decrease in common (and, to some extent, unique) 
environmental variance is evident from Figure 5. Figure 6 indicates an increase in stability of 
all three components over time, and suggests that the observed phenotypic stability is 
driven primarily by additive genetic factors, with unique environment contributing 
primarily to change. Note that, for comparability, Figure 5 re-expresses the stability 
estimates on a scale on which all measurement points are equidistant (6 years). As explained 
earlier, the stability estimates are dependent on the time interval one uses for estimation and 
therefore the absolute magnitude of stability estimates is not interpretable in itself. The 
choice of time interval used to re-express the estimates is therefore arbitrary; the reason a 6-
year period was chosen in this case is the fact that, with smaller (e.g., 1-year) time intervals 
the stability estimates reach an upper bound, making it impossible to distinguish between 
the stability of the different variance components (i.e., the C and E stability estimates 
increase, whereas the A stability estimates readily hit the upper bound of 1). Finally, Table 1 
gives all available estimates of the phenotypic, genetic and environmental correlations 
obtained under an ACE simplex model, for verbal and nonverbal abilities separately. Again, 
it is evident that the observed stability of intelligence is driven primarily by additive genetic 
factors, with common environment contributing both to stability and change, and the 
unique environment predominantly generating change. 
 

 
Figure 5. The relative magnitude of the A, C, and E variance components (y-axis) as a 
function of age, for verbal (left) and nonverbal (right) abilities. All available estimates from 
the four samples are included. Regression lines (weighted by sample size) represent the 
general trends. 
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Figure 6. The ACE stability of verbal (left) and nonverbal (right) abilities. All available 
estimates from the four samples are included, and re-expressed on a scale on which all 
measurement points are equidistant (6 years). Lines (locally weighted scatterplot smoothing 
functions) represent general trends. 
 
Discussion 
 
The present study examined the stability of verbal abilities, nonverbal abilities, and general 
intelligence across childhood and adolescence, and assessed the genetic and environmental 
etiology of this stability. Other questions included the feasibility of combining results on 
multiple types of intelligence tests administered in a longitudinal design with the aim of 
utilizing the combined score in the context of gene-finding studies, and the relationship 
between different types of intellectual abilities over time (and the genetic/environmental 
etiology thereof).  

The results indicate an intermediate to high phenotypic stability of individual 
differences in intelligence across the developmental period under study, with an increase in 
stability as individuals transition from childhood to adolescence. General intelligence, 
defined as a first first-order latent factor underlying subscale performance at a given age, 
explained around 30-55% of variance in subscale performance and displayed high temporal 
stability, exceeding that of individual subscales. The phenotypic stability appears to be 
driven primarily by genetic factors: the additive genetic influences were highly to entirely 
stable. The environment shared by family members appeared to contribute to stability to a 
moderate degree, while environmental factors unique to family members contributed 
mainly to innovation (i.e., to temporal instability). Similarly, the observed stability in the g 
factor was driven primarily by genetic factors: the additive genetic g factor displayed near 
complete stability, the common environmental g factor was generally stable but explained 
less of the phenotypic variance than the Ag factor, while the unique environmental g factor 
was modestly stable but explained only a minor fraction of the phenotypic variance in g. An 
age-related increase in heritability accompanied by a relative decline in common 
environmental variance, expected based on the literature (e.g., Bartels et al., 2002; Bishop et 
al., 2003; Boomsma & Van Baal, 1998; Deary et al., 2006; Haworth et al., 2009a; R. A. 
Hoekstra et al., 2007; McGue et al., 1993a; Petrill et et al., 2004; Plomin, 1986; Polderman et 
al., 2006), was observed. In addition, the cross-subscale stability was consistently low, 
indicating a small to non-existent contribution of one domain of intelligence to another over 
time. 
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The stability of intelligence remained in the intermediate to high range despite the variation 
in the instruments used to assess it, and the results replicated well across the four samples 
despite the variation in tests and the time intervals used for estimation. The former relates to 
a common situation in data registries (e.g., twin registries), where data are often collected 
using a number of different psychometric instruments, the choice of test often being 
dependent on participants’ age. Given the increased accessibility of genotyping and 
sequencing technologies and the consequent increase in the use of twin registry data in 
gene-finding studies, the question of how to optimally combine the existing longitudinal 
data in defining the phenotype for such studies is gaining in relevance. In this context, there 
are two prominent issues: 1) the actual modeling of a measured genetic variant in 
multivariate data; and 2) the accommodation of family members in the analysis. The latter 
does not pose a problem as the methods and software for family-based gene finding studies 
are well developed (e.g., Chen & Abecasis, 2007; Lippert et al., 2011; Minică et al., 2013; 
Minică, Dolan, Kampert, Boomsma, & Vink, 2014; Purcell et al., 2007). The former is 
potentially more problematic as full multivariate phenotypic modeling of family data is not 
computationally feasible, or perhaps even desirable. There are many possible loci of a 
genetic variant effect in a multivariate model, and therefore many possible models to 
consider. The present results, as pertaining to the longitudinal genetic covariance structure, 
suggest that a simple phenotypic sum score based on the repeated measures within a 
cognitive domain (e.g. verbal) should not result in any appreciable loss of information in a 
genetic association study (see Minică et al., 2010). Whether one should sum over cognitive 
domains is a different question. The genetic g factor accounted for about 60% of the genetic 
variance of the subtest scores. Summing over domains will only improve the power to 
detect a genetic variant if it contributes to this common genetic variance. Rather than 
running the risk of missing genetic variants, it is advisable to carry out gene-finding studies 
for each domain separately. One can still arrive at an omnibus test of the genetic variant (i.e., 
address the question of whether the genetic effect generalizes over domains) by combining 
the statistical results (van der Sluis, Posthuma, & Dolan, 2013).  

While we believe that the high genetic stability provides a reasonable justification for 
summing over repeated measures within an individual, we note that this recommendation 
is limited in two ways. First, it applies to the present longitudinal results as obtained in the 
repeated measures design. From the point of view of power, a cross-sectional design may be 
preferable (and is certainly more efficient and cheaper to implement). However, the exact 
relationship between power and design is beyond the present scope (Minică et al., 2010 do 
consider different multivariate designs). Second, the recommendation is based strictly on 
the present choice to model the covariance structure by means of autoregressive and cross-
lagged modeling. This approach is informative with respect to stability, but does not 
consider developmental change from the point of view of individual growth curves 
(Ramsden et al., 2011). We did not consider growth curve modeling as our IQ test scores 
were age-corrected, meaning that the present data were not informative with respect to 
individual developmental growth curves. Finally, the results present here were based on the 
standard genetic simplex model, in which A, C and E are assumed to be uncorrelated 
sources of individual differences. Whether this assumption (e.g., the absence of genotype-
environment covariance) is valid to a reasonable approximation is an open question. Any 
genotype-environment covariance is unlikely to undermine our recommendations 
concerning data summarization in gene finding studies. However, a representation 
involving phenotype to environment transmission, typically envisaged as smart children 
contributing to their own “smart” environment (a.k.a. niche picking; Eaves, Last, Martin, & 
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Jinks, 1977) is possible (Dolan, de Kort, Kan, et al., 2014; Dolan, de Kort, van Beijsterveldt, 
Bartels, & Boomsma, 2014).  

 

131



 132



 

Chapter 8 
 
Intelligence: Shared Genetic Basis between 
Mendelian Disorders and a Polygenic Trait 
 
 
Abstract 
 
Multiple inquiries into the genetic etiology of human traits indicated an overlap between 
genes underlying monogenic disorders (e.g., skeletal growth defects) and those affecting 
continuous variability of related quantitative traits (e.g., height). Extending the idea of a 
shared genetic basis between a Mendelian disorder and a classic polygenic trait, we 
performed an association study to examine the effect of 43 genes implicated in autosomal 
recessive intellectual disability on intelligence in an unselected Dutch population (N=1316). 
Using both single nucleotide polymorphism (SNP)- and gene-based association testing, we 
showed support for an association between intelligence and the genes of interest, with genes 
ELP2, TMEM135, PRMT10, and RGS7 showing the strongest associations. This is the first 
demonstration of the functional relevance of genes implicated in monogenic disorders of 
intelligence on normal-range intellectual ability, and a corroboration of the utility of 
employing knowledge on monogenic disorders in identifying the genetic variability 
underlying complex traits. 
 
Appendices can be obtained at http://sanjafranic.com/dissertation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Groen-Blokhuis, M.M., Dolan, C.V., Kattenberg, M.V., Xiao, X., Scheet, 
P.A., Ehli, E.A., Davies, G.E., van der Sluis, S., Abdellaoui, A., Hansell, N.K., Martin, 
N.G., Hudziak, J.J., van Beijsterveldt, C.E.M., Swagerman, S., Hulshoff Pol, H.E., de Geus, 
E.J.C., Bartels, M., Ropers, H.H., Hottenga, J.J., & Boomsma, D.I. (2014) IQ: Shared Genetic 
Basis between Mendelian Disorders and a Polygenic Trait. Under review. 
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Multiple inquiries into the genetic etiology of complex human traits have shown that, for a 
number of phenotypes, the genetic variants affecting continuous, polygenic phenotypic 
variation may be concentrated in the same genes as those giving rise to monogenic (i.e., 
Mendelian) disorders. For instance, 180 loci associated with normal variation in the classic 
polygenic trait of adult height were shown to be enriched in genes underlying skeletal 
growth disorders (Allen et al., 2010). Many rare genetic variants in three candidate genes 
(ABCA1, APOA1, and LCAT), which give rise to pathogenically low levels of HDL-
cholesterol in plasma, are also found in individuals with the common, complex version of 
the low-HDL-cholesterol trait (Antonarakis & Beckmann, 2006; Cohen et al., 2004; Frikke-
Schmidt, Nordestgaard, Jensen, & Tybjærg-Hansen, 2004). Genes underlying Mendelian 
disorders of lipid levels and those affecting their normal concentration overlap almost 
entirely (Hirschhorn & Gajdos, 2011). Other examples include hemoglobin F levels 
(Hirschhorn & Gajdos, 2011), fat mass (Loos et al., 2008), type 2 diabetes (Hirschhorn & 
Gajdos, 2011; Sandhu et al., 2007; Winckler et al., 2007), and Parkinson’s disease (Gasser, 
2009; Lesage & Brice, 2009).  

Genes underlying Mendelian disorders, in which protein functioning is severely 
altered, may therefore provide an opportunity to localize and understand the genetic 
variability that underlies susceptibility to a similar common polygenic phenotype 
(Antonarakis & Beckmann, 2006). In the present study, we utilize this idea to examine the 
effects of 43 genes implicated in autosomal recessive intellectual disability (Najmabadi, Hu, 
Garshasbi, Zemojtel, Abedini, Chen, Hosseini, Behjati, Haas, & Jamali, 2011) on intelligence 
in a Dutch sample from the general population (N=1316; see Methods and Figures 1-2 in 
Appendix 5A). Despite its being one of the most heritable human traits (with heritability 
estimates ranging from .6 to .8 in adolescence and adulthood; Deary, Johnson, & Houlihan, 
2009; Plomin et al., 2008), no loci consistently associated with normal-range variation in 
intelligence have thus far been reported (Butcher, Davis, Craig, & Plomin, 2008; Chabris et 
al., 2012; Deary et al., 2009). The two largest genome-wide association studies (GWAS) to 
date failed to find replicable genome-wide association in SNP-based analyses in adults and 
children, respectively (Benyamin, Pourcain, et al., 2013b; Davies et al., 2011). On the other 
hand, hundreds of genes underlying monogenic disorders of intelligence have been 
identified (Inlow & Restifo, 2004; Najmabadi, Hu, Garshasbi, Zemojtel, Abedini, Chen, 
Hosseini, Behjati, Haas, & Jamali, 2011; Najmabadi et al., 2007).  

The 43 genes used in the present study are a subset of the genes identified in a recent 
study that used homozygosity mapping, exon enrichment and next-generation sequencing 
in consanguineous families with autosomal-recessive intellectual disabilities to identify 
single, presumably disease-causing variants in 50 novel candidate genes (Najmabadi, Hu, 
Garshasbi, Zemojtel, Abedini, Chen, Hosseini, Behjati, Haas, & Jamali, 2011). The genome-
wide dataset of the Netherlands Twin Register (NTR; van Beijsterveldt, Groen-Blokhuis, 
Hottenga, Franić, et al., 2013), used in the present study, contains SNP data on 43 out of 
these 50 genes (Table 1), including 1227 genotyped SNPs in total (see Appendix 5C).  

 
Method 
 
Sample 
 
The data were obtained from the Netherlands Twin Register (NTR; Boomsma et al., 2006; 
van Beijsterveldt, Groen-Blokhuis, Hottenga, Franić, et al., 2013). The NTR is a population-
based register of Dutch twins born after 1986, recruited at birth and measured 
longitudinally at ages 1 through 18. The sample consisted of 1316 individuals from 662 
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families (978 twins, 231 siblings, and 107 of their parents). To keep the genetic within-family 
covariance matrix approximately compound symmetric (i.e., to keep the genetic covariances 
between each type or relatives approximately equal), the data were selected so as to contain 
no complete MZ twin pairs and no more than one parent per family. Thus, each family 
consisted of individuals who are genetically either siblings or parent-offspring, i.e., the 
expected genetic correlation between any given pair of family members was .5. The 
observed intraclass correlation between the family members was .57 (s.e.=.025). 45.8% of the 
sample were males. The mean ages of children and parents were 12.7 (sd=4.1) and 43.9 
(sd=4.1), respectively. The age distribution (showing each participant’s mean age across 
measurement occasions) is given in Figure 1 in Appendix 5A.  
 
Phenotype data 
 
Intelligence was assessed longitudinally using the Revised Amsterdam Children Intelligence 
Test (RAKIT; Bleichrodt et al., 1984), Wechsler Intelligence Scale for Children (WISC; Sattler, 
1992; Van Haasen et al., 1986; Wechsler et al., 2002), Raven’s Standard and Advanced 
Progressive Matrices (SPM, APM; Raven et al., 1998; Raven, 1960), and the Wechsler Adult 
Intelligence Scale (WAIS; Stinissen et al., 1970; Wechsler, 1997), the choice of test being 
largely dependent on participants’ age. A previous study employing the same dataset found 
high genetic stability of intelligence scores as assessed by the different tests (the 
autoregressive coefficients between the additive genetic factors at consecutive measurement 
occasions ranging from .8 to 1; Franić et al., 2014). Therefore, the individuals’ mean scores 
across the different ages were used as measure of the phenotype. The IQ scores were 
derived based on the age- and sex-appropriate norms for the RAKIT, WISC, or WAIS, and 
subsequently converted to z-scale within each measurement occasion and averaged over 
measurement occasions. For 154 participants, we used z-transformed scores on Raven’s 
Matrices. The distribution of intelligence scores is given in Figure 2 in Appendix 5A. 
 
Genotype data 
 
Blood and/or buccal samples for DNA extraction were collected as part of several projects 
within the NTR. Genotyping was performed using the Affymetrix Human SNP Array 6.0. 
Genotypes were called using the BIRDSEED V2 algorithm. SNPs in Hardy-Weinberg 
equilibrium (p>.00001) with a minor allele frequency exceeding .01 and a missingness rate 
below 5% were included in the analyses. Samples were selected if their call rate exceeded 
95% and were checked for Mendelian errors, excessive heterozygosity (-.1<F<.1), and 
discrepancies in relatedness (Scheet et al., 2012). Genotypes displaying Mendelian 
inheritance errors were excluded from the analyses. 

For the present study we selected all genotyped SNPs from the 50 genes of interest, 
including a 5 kb border around each gene. 7 out of the 50 genes contained no genotyped 
SNPs. The distribution of the SNPs (1227 in total) over the remaining 43 genes is shown in 
Table 1. The full list of SNPs is given in Appendix 5C. 
 
SNP-based analyses 
 
As a first step, we tested for an association between the phenotype and each of the 1227 
SNPs. As the observations were clustered in families, the analyses were performed using a 
multilevel regression model with random intercepts to account for the within-family 
covariance structure. Specifically, the model for phenotype of person i in family j was: phij = 
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b0j + b1*SNPij + resij, where ph denotes phenotype, b0j is intercept in family j, b1 is a (fixed) 
slope parameter, and resij denotes an individual-specific residual term. The intercept term 
can be further decomposed as b0j = g0 + k0j, where g0 is a fixed component and k0j is a 
component that is random over families. Using random intercepts prevents the inflation of 
type I error associated with applying a standard (fixed-effects) regression model to family-
clustered data. The within-family genetic covariance structure was approximately 
compound symmetric (i.e., the expected genetic correlation between any given type of 
relatives was .5). The analyses were implemented using the “nlme” package in R (R Core 
Team, 2013). The code used to carry out the analyses is given in Script 1 in Appendix 5B. 

Additionally, we performed association testing using the Plink software package 
(Purcell et al., 2007). Here the association between the phenotype and each of the 1227 SNPs 
was examined using the Huber-White sandwich variance estimator to account for the family 
structure in the data. The results were compared to those obtained using the multilevel 
regression model in R. A high degree of correspondence between the results obtained using 
the multilevel regression model (which effectively assumes an AE background covariance 
structure among first degree relatives) and those obtained using the Huber-White sandwich 
estimator (which corrects for relatedness without assuming a background model) would 
imply that any background misspecification in the random effects model has not affected 
the conclusions. A high degree of correspondence is expected, because the test of a fixed 
effect in the multilevel regression model is fairly robust to possible background 
misspecification (Minică et al., 2013).  

To empirically evaluate the results obtained for the 1227 SNPs, we drew a number of 
random samples of: a) 1227 SNPs from the entire genome, b) 1227 SNPs from intragenic 
regions of the genome, and c) 43 genes (including all SNPs on those genes) from the entire 
autosomal genome. All samples excluded the 1227 SNPs of interest. Each of the random 
samples was subjected to the analyses described above. The resulting QQ plots and genomic 
inflation factors (λ) were compared to those obtained for the 1227 SNPs of interest.  

As additional verification of the results, permutation testing was employed to 
generate an empirical distribution of λ values under the null hypothesis of no association. 
The genotypes (i.e., the 1227 SNPs) were randomly reallocated over the phenotypes 1000 
times, and each of the 1000 permuted datasets was analyzed using the random intercept 
multilevel regression model described above. To account for the background covariance 
structure arising from the clustering of data in families, family data were relocated jointly: 
the genotypes of any 2-member family were reassigned to phenotypes of another randomly 
selected 2-member family, and the same was done for 3- and 4-member families. Thus, the 
family structure in the permuted datasets remained intact. As in the original analysis, the 
family structure was subsequently corrected for using a multilevel model. The null 
distribution of λ values generated using the permuted datasets was compared to the λ 
obtained for the 1227 SNPs of interest. 

Finally, a genome-wide association study was performed. Here, the phenotype was 
regressed on each of the available genotyped SNPs (538652 SNPs) using the Plink software 
package (Purcell et al., 2007). 

All analyses were performed using an additive model and included 8 genotypic 
principal components (Abdellaoui et al., 2013a) as covariates to account for the possible 
effects of population stratification. All l values were estimated as regression coefficients of 
the observed on the expected -log10 of the p-values, using the GenABEL package in R (R 
Core Team, 2013). 

 
Gene-based analyses 

136



 

 
Next, the SNP-based p-values obtained using the multilevel regression model were used as 
input for gene-based analysis. A gene-based association test that employs the extended 
Simes procedure (GATES) was used (M.-X. Li, Gui, Kwan, & Sham, 2011). GATES involves 
jointly analyzing all available SNPs in a gene to obtain a single p-value associated with the 
gene. The method assumes that an association test between the phenotype and all available 
SNPs on the gene has been carried out, and that the resulting p-values and pair-wise allelic 
correlation coefficients r for all SNPs are available. In the present case, we used the p-values 
obtained in the SNP-based multilevel regression analysis, and pair-wise allelic correlation 
coefficients obtained using the --r option in Plink. Given m SNPs on a gene, a gene-based p-
value is obtained through an iterative procedure by combining the ascendingly ordered m p-
values in the following way: PG = min (mep(j) / me(j)), where me is the effective number of 
independent p-values among the m SNPs, me(j) is the effective number of independent p-
values among the top j SNPs (j = 1, …, m), and pj is the j-th lowest p-value (i.e., the p-value 
associated with the j-th top SNP). The null hypothesis of this gene-based test is that none of 
the SNPs are associated with the phenotype; the alternative is that at least one SNP is 
associated. The effective number of independent p-values among the m SNPs, me, is 
estimated as me=m - [I(λi>1)(λi-1)] λi>0m

i=1 , where I(x) is an indicator function and λi is the 
i-th eigenvalue of the m x m correlation matrix (ρ) of the p-values obtained in the SNP-based 
association test. The pair-wise p-value correlation coefficient, ρij, can be approximated by a 
6th order polynomial function of the allelic correlation coefficient rij: ρij = .2982rij

6 - .0127rij
5 + 

.0588rij
4 + .0099rij

3 + .6281rij
2 - .0009rij, where ρij and rij are the ij-th elements of the SNP p-

value correlation matrix ρ, and of the allelic correlation matrix r, respectively. For a full 
overview of the method, we refer the reader to the original publication (M.-X. Li et al., 2011) 
and to Script 2 in Appendix 5B, which contains our implementation of GATES in R. The R 
script performs the test k times given k genes in the input file. 

Additionally, we performed a gene-based association test using the Versatile Gene-
Based Test for Genome-wide Association Studies (VEGAS; J. Z. Liu et al., 2010), and 
compared the results to those obtained using GATES. VEGAS is a simulation-based method 
that uses information from the full set of SNPs within a gene and accounts for linkage 
disequilibrium (LD) by using simulations from the multivariate normal distribution. The 
analyses were performed using the VEGAS web-interface (J. Z. Liu et al., 2010). 

 
Results 
 
SNP-based analyses 
 
Association between intelligence scores and each of the 1227 SNPs (see Methods) was 
examined using an additive model and 8 principal components (Abdellaoui et al., 2013a) to 
account for the possible effects of population stratification (Script 1 in Appendix 5B). The left 
panel of Figure 1 shows a quantile-quantile (QQ)-plot, including 95% confidence intervals 
(CIs)31, of the association p-values (also see Figures 3 and 4 and Table 1 in Appendix 5A). As 
evident from the Figure, the distribution of the observed p-values differs markedly from 
that expected under the null hypothesis of no effect, indicating an enrichment of the 43 
candidate genes for polymorphisms associated with intelligence. Note that the significant 
                                                
31 The CI estimates were obtained while taking into account the linkage disequilibrium (LD) structure between the 
SNPs: instead of N=1227, we used an estimate of the effective number of independent p-values (N=625).22 This 
approach produces relatively broader CIs; we thus adopt a more stringent approach to evaluating the significance of 
the difference between the expected and the observed distributions. 
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inflation along nearly the entire length of the QQ plot (genomic inflation factor λ=1.26) is 
not necessarily indicative of population stratification, particularly in the context of a 
candidate SNP study. Here, the observed inflation is expected under the alternative 
hypothesis of (polygenic) effects of a relatively large number of the candidate SNPs tested 
(Yang, Weedon, et al., 2011). As the analyses were performed while adjusting for 8 principal 
components (seven of which were highly correlated with geographic latitude and longitude 
in the present sample, thereby feasibly representing differences in ancestry), population 
stratification does not appear to be a likely cause of the inflation. This was empirically 
verified in subsequent analyses. 

 
Figure 1. Left: QQ-plot based on the 1227 candidate SNPs. Right: Genome-wide QQ-plot 
based on 538652 SNPs. Dashed lines: 95% confidence intervals (CIs). 
 
To empirically verify the present finding and confirm the absence of population 
stratification, we performed SNP-based association testing on samples of SNPs drawn 
randomly from the genome. In particular, we drew 1000 random samples of: a) 1227 SNPs 
from the entire genome, b) 1227 SNPs from intragenic regions of the genome, and c) 43 
genes (including all SNPs on those genes) approximately matched for size with the 43 
candidate genes and sampled from the entire autosomal genome. All random samples 
excluded the 1227 SNPs of interest. The distributions of the λ values obtained for each set of 
random samples, along with the λ obtained for the 1227 SNPs of interest (marked by a 
horizontal line), are depicted in Figure 2. As evident from the Figure (Panels a and b), the 
effect found for the SNPs of interest did not replicate in any of the 2000 random samples 
obtained by sampling SNPs from the entire genome or from the intragenic regions of the 
genome. For SNPs residing on randomly sampled sets of 43 genes (Panel c Figure 2), only 
3.6% of λ values exceed the λ obtained for the candidate SNPs.32 

As further empirical verification, we performed permutation testing to obtain an 
empirical distribution of λ values under the null hypothesis of no association: the genotypes 
(i.e., the 1227 SNPs of interest) were randomly reallocated over the phenotypes 1000 times, 
and each of the 1000 permuted datasets was analyzed using SNP-based association testing. 
The resulting distribution of λ values and the λ obtained for the non-permuted dataset 

                                                
32 Note that the higher variance in Panel c of Figure 2 relative to that in Panels a and b is expected given that the degree 
of non-independence of SNPs (i.e., linkage disequilibrium (LD)) is considerably higher in SNPs sampled from the same 
gene relative to those sampled from the entire genome. A reduced effective number of independent SNPs is expected 
to result in a less precise estimate of λ, i.e., in a higher dispersion around the mean λ value. 
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(λ=1.26) are shown in Panel d of Figure 2. Here, only 2.9% of the λ values exceed the λ value 
of interest; an empirical p-value highly consistent with that obtained from random 
sampling.  

Finally, a genome-wide association analysis was performed. Here, the phenotype 
was regressed on each of the available genotyped SNPs (538652 SNPs). The resulting QQ-
plot is depicted in the right panel of Figure 1. As evident from the Figure, the genome-wide 
p-values in the right panel show no notable inflation (λ=1.03), in contrast to the left panel 
(λ=1.26).  

The present results thus unequivocally indicate an enrichment of the candidate set of 
genes for polymorphisms associated with intelligence, while plausibly ruling out population 
structure as the cause of the observed effect. The former is demonstrated by the significant 
inflation of the association p-values for the candidate set of SNPs as compared to random 
subsets of SNPs (empirical p-value p=.036) and to a permutation-based null-distribution 
(empirical p=.029). The latter is established by a) the inclusion of genetic principal 
components into the association study, b) the near absence of comparable p-value inflation 
in randomly selected sets of SNPs, and c) the absence of genome-wide p-value inflation. 

 

 
Figure 2. Distribution of genomic inflation factors (λ) obtained for 1000 a) random samples of 
1227 SNPs from the entire genome, b) random samples of 1227 SNPs from intragenic regions 
of the genome, c) random samples of 43 genes from the entire genome, d) permuted 
datasets. Horizontal line: λ obtained for in the non-permuted dataset for the 1227 SNPs of 
interest. 
 
Gene-based analyses 
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Next, gene-based testing was carried out (see Methods and Script 2 in Appendix 5B). The 
full list of gene-based results is given in Table 2 in Appendix 5A. Genes ELP2 (p=.007), 
TMEM135 (p=.007), PRMT10 (p=.019), and RGS7 (p=.044) displayed the strongest 
associations. Notably, two out of the 50 genes from the Najmabadi et al. (2011) study harbor 
more than one mutation associated with intellectual disability; one of those genes is ELP2, 
which, in the present study, shows the strongest evidence of association.  

Focusing our interest on the top four genes, we examined the positions of the most 
strongly associated SNPs in these genes relative to the mutations in Najmabadi et al. (Figure 
5, Appendix 5A). As evident from the Figure, both mutations in ELP2, as well as the 
mutations in TMEME135 and PRMT10, are relatively close to our top SNP for their 
respective genes; the distances range from 4.8 kb to 31.4 kb. On RGS7, the distance between 
the mutation and the top SNP is relatively large (535.7 kb). Note that any distance between 
the disease-causing mutation and our top SNP is consistent with the logic of the present 
study however, as the gene is viewed as a functional unit with regard to its etiological 
relevance to intelligence, regardless of the distribution of the functionally relevant 
polymorphisms along the gene.  

 
For validation, both the gene-based analyses and the SNP-based analyses were performed 
using several different methods, as implemented in different software packages (see 
Methods). The results obtained using the different methods converged highly: the log10 of 
the p-values obtained using two methods of SNP-based testing correlated .88, and the p-
values obtained using two different gene-based tests correlated .89 (Table 2 in Appendix 
5A).  
 
Discussion 
 
The present study demonstrated an enrichment of 43 genes implicated in autosomal 
recessive intellectual disability in consanguineous Iranian families (Najmabadi, Hu, 
Garshasbi, Zemojtel, Abedini, Chen, Hosseini, Behjati, Haas, & Jamali, 2011) for 
polymorphisms associated with normal-range intelligence in a Dutch population-based 
sample. This is the first demonstration of the functional relevance of genes implicated in 
monogenic disorders of cognitive ability on continuous variability in intelligence. Despite 
the high heritability of intelligence (Deary et al., 2009; Franić, Dolan, Borsboom, van 
Beijsterveldt, & Boomsma, 2010; Haworth et al., 2009a; Plomin et al., 2008), the progress in 
the identification of loci consistently associated with variation in its normal range has thus 
far been limited (Benyamin, Pourcain, et al., 2013b; Butcher et al., 2008; Chabris et al., 2012; 
Davies et al., 2011; Deary et al., 2009; Need et al., 2009). Exceptions are the apolipoprotein E 
(APOE) gene at older ages (Deary et al., 2002) and formin binding protein 1-like (FNBP1L), 
the latter having recently been shown to be associated with both childhood and adulthood 
intelligence (Davies, et al., 2011; Benyamin, et al., 2013). The present approach utilizes the 
idea that the differentially sized effects of individual mutations located within a gene 
functionally relevant to the phenotype may range from severe disruptions of protein 
functioning resulting in a Mendelian disorder, to smaller effects underlying polygenic 
variation. Utilizing pre-existing knowledge on genetics of Mendelian disorders may 
therefore prove a valuable approach to the identification of genetic variability underlying 
polygenic traits, with the advantage of requiring considerably smaller sample sizes than 
GWAS. This may prove especially useful in the study of phenotypes for which large 
samples are difficult to obtain, for instance because the phenotype is difficult or costly to 
measure (e.g., neuropsychological or fMRI measures), and/or in detection of genetic 
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variants characterized by small effect sizes. For instance, in the present study we clearly 
demonstrate enrichment, although none of the p-values for individual SNPs fall below a 
Bonferroni-corrected significance threshold (a=.05/1227=.00004, or a=.05/625=.00008 if one 
corrects by the number of independent SNPs (M.-X. Li et al., 2011)), indicating that the 
magnitudes of individual SNP effects are too small to be detected in regular GWAS.  

Although larger sample sizes are needed to identify the exact genes and genetic 
variants driving the association in the present study, we tentatively focus on the top four 
genes that reach nominal significance. The most strongly associated gene, ELP2 (elongator 
complex protein 2), encodes a subunit of the RNA polymerase II elongator complex, 
involved in acetylation of histones H3 and probably H4 and possibly in chromatin 
remodeling (Fellows, Erdjument-Bromage, Tempst, & Svejstrup, 2000). TMEM135 
(transmembrane protein 135) is involved in fat metabolism and energy expenditure (Exil et 
al., 2010). PRMT10 (protein arginine methyltransferase 10) affects chromatin remodeling 
leading to transcriptional regulation, RNA processing, DNA repair and cell signaling (Fisk 
et al., 2010). RGS7 (regulator of G-protein signaling 7) interacts with 14-3-3 protein, tau and 
snapin (a component of the SNARE complex required for synaptic vesicle docking and 
fusion) (Ilardi, Mochida, & Sheng, 1999).  

The utilization of knowledge on monogenic disorders to identify polymorphisms 
that affect the variability of continuous phenotypes is a cost-efficient approach to 
understanding the genetic variability underlying polygenic traits. At present, the causal 
variants for a large number of monogenic disorders have been identified (over 3,000 
disorders; Online Mendelian Inheritance in Man (OMIM): 
http://www.ncbi.nlm.nih.gov/omim), and recent developments in sequencing technologies 
have made it increasingly possible to employ exome sequencing or whole-genome 
sequencing, possibly in combination with homozygosity mapping, as an efficient approach 
to identifying novel causal variants underlying Mendelian disorders (Ku, Naidoo, & 
Pawitan, 2011). The National Human Genome Research Institute has opened Centers for 
Mendelian Genomics (NHGRI Genome Sequencing Program, http://www.genome.gov/), 
whose primary goal is the discovery of as yet unknown variation underlying Mendelian 
disorders. Thus, at present, the utilization of existing and impending knowledge on variants 
underlying Mendelian disorders to identify the variation underlying polygenic traits may 
prove a viable, efficient and cost-effective complement to standard approaches such as 
GWAS. The present finding highlights the importance of continuing the efforts directed at 
studying monogenic diseases (Ku et al., 2011; Ropers, 2010b) at a time when focus has 
shifted away from them, as they can advance our understanding of multifactorial traits.  
 

141



 

Table 1 
Chromosomal position (hg19), length, and number of genotyped SNPs for the 43 genes 
Gene Chr Start (bp) End (bp) Length (kb) N of SNPs 
PARP1 
RGS7 
TMEM135 
LAMA1 
FRY 
ADK 
SCAPER 
ASCC3 
PECR 
POLR3B 
ENTPD1 
ACBD6 
NDST1 
ZBTB40 
INPP4A 
ELP2 
TAF2 
LINS 
KDM5A 
CACNA1G 
SLC31A1 
CAPN10 
KIF7 
RALGDS 
WDR45L 
GON4L 
C9orf86 
TTI2 
UBR7 
ZCCHC8 
CCNA2 
C11orf46 
FASN 
PRMT10 
MAN1B1 
CNKSR1 
HIST1H4B 
HIST3H3 
EEF1B2 
CASP2 
ASCL1 
KDM6B 
ERLIN2 

1 
1 
11 
18 
13 
10 
15 
6 
2 
12 
10 
1 
5 
1 
2 
18 
8 
15 
12 
17 
9 
2 
15 
9 
17 
1 
9 
8 
14 
12 
4 
11 
17 
4 
9 
1 
6 
1 
2 
7 
12 
17 
8 

224097741 
240926554 
86743886 
6936743 
32600437 
75905960 
76635526 
100951070 
216856052 
106746436 
97449774 
180239515 
149860381 
22773344 
99056317 
33704407 
120738015 
101094574 
384223 
48633429 
115978842 
241521133 
90147020 
135968107 
80567438 
155714508 
139689818 
33325904 
93668401 
122952417 
122732599 
30339598 
80031215 
148553936 
139976379 
26498894 
26022124 
228607546 
207019309 
142980308 
103346464 
7738222 
37589117 

226600780 
241525530 
87039756 
7122813 
32875794 
76474061 
77202785 
101334248 
216952678 
106908976 
97642023 
180477089 
149942773 
22862650 
99212496 
33762909 
120850103 
101148435 
503620 
48709835 
116034217 
241562122 
90203682 
136044301 
80611411 
155834191 
139740639 
33376119 
93700561 
122990518 
122750087 
30364774 
80061106 
148610381 
140008635 
26521377 
26032480 
228618026 
207032652 
143009789 
103359294 
7763106 
37621619 

2503.039 
598.976 
295.870 
186.070 
275.357 
568.101 
567.259 
383.178 
96.626 
162.540 
192.249 
237.574 
82.392 
89.306 
156.179 
58.502 
112.088 
53.861 
119.397 
76.406 
55.375 
40.989 
56.662 
76.194 
43.973 
11.9683 
50.821 
50.215 
32.160 
38.101 
17.488 
25.176 
29.891 
56.445 
32.256 
22.483 
10.356 
10.480 
13.343 
29.481 
12.830 
24.884 
32.502 

385 
177 
83 
68 
67 
48 
48 
31 
27 
24 
23 
23 
18 
17 
17 
16 
14 
14 
13 
13 
11 
9 
8 
8 
8 
8 
6 
5 
4 
4 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
1 
1 

    Total 1227 
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Chapter 9 
 
Mendelian and polygenic inheritance of 
intelligence: a common set of causal genes?  
 
 
Abstract 
 
Despite twin and family studies having demonstrated a substantial heritability of individual 
differences in intelligence, no genetic variants have been robustly associated with normal-
range intelligence to date. This is largely ascribed to the high polygenicity of intelligence, 
i.e., to its being subject to the effects of a large number of genes of individually small effect. 
Intellectual disability, on the other hand, frequently involves large effects of single genetic 
mutations, many of which have been identified. The present paper aims to 1) introduce the 
reader to the current state of genetic intelligence research, including next-generation 
sequencing and the analysis of rare genetic variants, and 2) examine the possible effects of 
known disability genes on normal-range intelligence. The rationale for the latter rests on the 
fact that genetic variants affecting continuous, polygenic traits are often concentrated in the 
same areas of the genome as those underlying related monogenic phenotypes.  Using an 
existing pool of known intellectual disability genes, we constructed a set of 168 candidate 
genes for normal-range intelligence, and tested their association with intelligence in 191 
individuals sampled from the high and low ends of the IQ distribution. In particular, we 1) 
employed exon sequencing to examine the possible effects of rare genetic variants in the 168 
genes, and 2) used polygenic prediction to examine the overall effect of common genetic 
variants in the candidate gene set in a larger sample (N=2125). No significant association 
between the candidate gene set and intelligence was detected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: Franić, S., Dolan, C.V., Broxholme, J., Hu, H., Zemojtel, T., Davies, G.E., Nelson, 
K., Ehli, E.A., the Childhood Intelligence Consortium, Ropers, H.-H., & Boomsma, 
D.I. (2014) Mendelian and polygenic inheritance of intelligence: a common set of causal 
genes? Using Next-Generation Sequencing to examine the effects of 168 cognitive disability 
genes on normal-range intelligence. Under review. 
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Intelligence is one of the most frequently studied human behavioral traits and one of the 
strongest known determinants of major life outcomes such as educational attainment, 
occupational success, health and longevity (Deary, Johnson, & Houlihan, 2009; Deary et al., 
2004; Gottfredson, 1997b; Gottfredson & Deary, 2004; Neisser et al., 1996; Schmidt & Hunter, 
2004). Over the past century it has motivated research across a diverse range of fields 
including not only the behavioral sciences, but also neurosciences, molecular biology, 
economics, and genetics. Interestingly, behavior genetic studies of intelligence frequently 
converge on two seemingly incompatible findings. On the one hand, twin and family 
studies have demonstrated 1) a substantial genetic component of individual differences in 
intelligence (e.g., Bouchard & McGue, 1981; Deary et al., 2006; Plomin et al., 2008; Plomin & 
Spinath, 2004), and 2) an increase in the relative magnitude of this component across 
development (from around 20% in infancy, to ~40-50% in middle childhood and ~60-80% in 
adulthood (e.g., Bartels et al., 2002; Bishop et al., 2003; Boomsma & Van Baal, 1998; Deary et 
al., 2006; Haworth et al., 2009b; R. A. Hoekstra et al., 2007; McGue, Bouchard Jr, Iacono, & 
Lykken, 1993b; Petrill et al., 2004; Plomin, 1986; Polderman et al., 2006). On the other hand, 
genetic association studies aiming to identify the genetic variation driving the observed 
individual differences have cumulatively identified genetic variants that explain less than 
1% of the observed variability (Benyamin, Pourcain, Davis, Davies, Hansell, Brion, 
Kirkpatrick, Cents, et al., 2013; Chabris et al., 2012; Davies et al., 2011). This gap between the 
estimated heritability and the variance explained by known variants, frequently termed the 
‘missing heritability’ (Maher, 2008), has been assigned a multitude of explanations, 
including the insufficient statistical power to detect genetic variants of small effect size, the 
potential overestimation of heritability by twin studies, problems pertaining to the 
measurement and operationalization of intelligence, and the possibility of genetic variants 
not tagged on present genotyping platforms (including rare and structural variation) 
underlying the heritability (see, e.g., Dickson, Wang, Krantz, Hakonarson, & Goldstein, 
2010; Eichler et al., 2010; Goldstein et al., 2013b; Manolio et al., 2009; van der Sluis et al., 
2010; Zuk, Hechter, Sunyaev, & Lander, 2012). The largest genome-wide association (GWA) 
studies to date identified no genetic variants robustly associated with intelligence, and only 
one gene, FNBP1L, has been tentatively implicated in the etiology of normal-range 
intelligence to date (Benyamin, Pourcain, Davis, Davies, Hansell, Brion, Kirkpatrick, Cents, 
et al., 2013; Davies, et al., 2011). 

Recent years have seen an increase in the use of several additional approaches to 
addressing the missing heritability issue. Firstly, the development of the methodology for 
the estimation of heritability using measured genetic information, implemented in the 
genome-wide complex trait analysis tool (GCTA; Yang, Lee, Goddard, & Visscher, 2011), has 
enabled the estimation of the proportion of the variance in intelligence explained by the total 
additive effects of common genetic variants tagged on the present genotyping platforms. 
Ranging from ~22-46% in children and adolescents (Benyamin, Pourcain, et al., 2013a; 
Plomin, Haworth, Meaburn, Price, & Davis, 2013; Trzaskowski et al., 2014; Trzaskowski, 
Yang, Visscher, & Plomin, 2013; Trzaskowski, Shakeshaft, & Plomin, 2013) to ~29-51% in 
adults (Davies et al., 2011; Marioni, Davies, et al., 2014), the estimates of this proportion are 
substantially larger than the variance presently explained by the presently underpowered 
GWA studies. However, they remain lower than the estimates of the total genetic variance 
of intelligence. In addition, while demonstrating that a substantial proportion of the 
variance in intelligence is attributable to the additive effects of common genetic variation, 
GCTA estimates provide no information on the specific genetic variants associated with 
intelligence. Secondly, the recent advent of the large-scale use of sequencing technologies, 
which enable the measurement of the complete nucleotide sequence of a genome, has 
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opened a wealth of possibilities for the study of intellectual disability (much of which is 
monogenic, i.e., caused by a single genetic mutation), leading to the discoveries of many 
previously unknown genetic causes of cognitive impairment (e.g., Najmabadi, Hu, 
Garshasbi, Zemojtel, Abedini, Chen, Hosseini, Behjati, Haas, Jamali, et al., 2011, Najmabadi 
et al., 2007). For instance, DNA sequencing has enabled the identification of genes 
underlying a range of sporadic, syndromic conditions involving intellectual disability (e.g. 
Schinzel–Giedion syndrome, Kabuki syndrome; Hoischen et al., 2010; Ng et al., 2010), and 
many sporadic and familial causes of non-syndromic intellectual disability (see Topper, 
Ober, & Das, 2011). However, sequencing technologies are seldom employed to study the 
genetics of normal-range intelligence. This is partly due to the highly polygenic nature of 
intelligence (i.e., its being subject to a large number of very small genetic effects), and the 
consequent need for (often prohibitively) large samples to achieve sufficient statistical 
power for the detection of individual causal variants.  

In the present study, we utilize the existing knowledge on the genetics of monogenic 
(i.e., Mendelian) disorders to construct a plausible set of candidate genes for normal-range 
intelligence. The study utilizes a simple rationale, namely the idea that the genetic variants 
giving rise to monogenic disorders may be localized in the same areas of the genome as 
those affecting continuous variation in related polygenic traits. Previous research has amply 
demonstrated the plausibility of this with respect to several other phenotypes. For instance, 
several genes causing monogenic forms of Parkinson’s disease have been associated with 
the common, polygenic form of the disease (Gasser, 2009). Rare genetic variants in three 
candidate genes (ABCA1, APOA1, and LCAT), giving rise to pathogenically low levels of 
HDL-cholesterol in plasma, are also found in individuals with the common, polygenic 
version of the low-HDL-cholesterol trait (Cohen et al., 2004; Frikke-Schmidt et al., 2004). 
Other examples include height (Allen et al., 2010), body mass index (Loos et al., 2008), lipid 
levels (Hirschhorn & Gajdos, 2011), hemoglobin F levels (Hirschhorn & Gajdos, 2011), and 
type 2 diabetes (Sandhu et al., 2007). Genes underlying monogenic disorders, in which 
protein functioning is severely altered, may therefore provide an opportunity to localize the 
genetic variation underlying a similar, polygenic phenotype. Utilizing this idea, we 
sequenced the exons (i.e., expressed regions) of 168 genes known to underlie intellectual 
disability, and examined their association with intelligence in a sample of 191 individuals. 
By design, we focused on the detection of the possible effects of rare genetic variation. This 
is in line with the assumption of inter-individual variability in intelligence being maintained 
by low-frequency, disruptive mutations of small effect size (e.g., Hsu, 2012; Marioni, Penke, 
et al., 2014). Because selection on fitness-related traits, including intelligence, is expected to 
a) prevent mutations with large negative effects from becoming common in the population, 
and b) lead to an accumulation of mutations with large positive effects, resulting in their 
uniform presence in the population (as monomorphisms, i.e., non-variable DNA sites), the 
genetic architecture of intelligence is expected to be marked by the absence of genetic 
variants of large effect sizes. Mutations of small negative effects, however, are expected to 
linger at a low frequency (e.g., Hsu, 2012), and the genetic architecture of high intelligence 
may potentially be conceptualized as the absence of a large number of these disruptive 
mutations (e.g., Hsu, 2012; Marioni, Penke, et al., 2014). While the above argues in favor of 
rare deleterious variants, we also consider common variants, as these may be present in the 
form of effectively neutral mutations (subject to genetic drift), or as relatively positive 
mutations (subject to positive selection), which have yet to become fixed in the population.  
The possible effects of common genetic variants were tested for by examining whether 
polygenic scores (Purcell et al., 2007) summarizing the effects of common single-nucleotide 
polymorphisms (SNPs) in the 168 genes of interest were predictive of intelligence, in a larger 
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random sample of 2125 individuals. More details on the polygenic score prediction, next-
generation sequencing and the analysis of rare variants can be found in the Methods section.  
 
Method 
 
Phenotype data 
 
Data on psychometric intelligence were obtained from the Young Netherlands Twin 
Register (YNTR, Boomsma et al., 2006; van Beijsterveldt, Groen-Blokhuis, Hottenga, Franić, 
et al., 2013). YNTR is a population-based register of Dutch twins born after 1986, recruited at 
birth and measured longitudinally at ages 1 through 18. The sequenced sample consisted of 
191 unrelated children and adolescents of Dutch ancestry (Abdellaoui et al., 2013b), aged 5-
18 at the time of measurement. 46% of the participants were male. Intelligence was assessed 
longitudinally, using the Revised Amsterdam Children Intelligence Test (RAKIT; Bleichrodt 
et al., 1984), the Wechsler Intelligence Scale for Children (WISC; Sattler, 1992; Van Haasen et 
al., 1986; Wechsler et al., 2002), and the Wechsler Adult Intelligence Scale (WAIS; Stinissen et 
al., 1970; Wechsler, 1997), the choice of instrument being partly dependent on the 
participants’ age. IQ scores were derived based on the respective age- and sex-appropriate 
norms for RAKIT, WISC, or WAIS, and subsequently converted to z-scale within each 
measurement occasion (i.e., within each time point used for assessment), and averaged over 
measurement occasions (i.e., across the different time points, within each participant). A 
previous study employing the same dataset found a high temporal stability of the additive 
genetic effects on intelligence (with the correlations between the additive genetic factors at 
consecutive measurement occasions ranging from .8 to 1; Franić et al., 2014), implying that 
the same genetic factors are relevant to intelligence over the developmental period under 
study (5-18 years of age). In situations of high genetic stability, averaging over the 
measurement occasions has been shown to be a sensible approach from the perspective of 
statistical power (Minică et al., 2010).  

The scores of the 191 individuals belonged to the tails of the IQ distribution: 
individuals were included into the study if their IQ z-score exceeded .8 (~112 IQ points) or 
was below -.8 (~88 IQ points), but above -1.33 (~80 IQ points). The rationale for excluding 
the individuals with an IQ below 80 is the focus of the present study on non-monogenic 
inheritance, i.e., the fact that the genetic architecture underlying their intellectual (dis)ability 
may differ from that of individuals from the rest of the distribution. Several additional 
exclusion criteria were applied during sample selection. Participants were not included into 
the study if their IQ scores displayed excessive variation across the different measurement 
points (SD>1 on a z-scale) or differed excessively from the IQ scores of their family members 
(‘excessive’ being defined as a difference of ~18 and ~11 IQ points for monozygotic (MZ) 
and dizygotic (DZ) twins, respectively; these numbers correspond to a difference at least one 
standard deviation greater than the average twin difference in our sample). Additional 
exclusion criteria included low birth weight (under 1000g), known genetic defects, and 
discordance between IQ and educational attainment scores (individuals in the low IQ group 
were not included into the study if their educational attainment score on the Dutch national 
test of educational attainment (CITO, 2002) exceeded 539, i.e., belonged to the top 40% of the 
distribution). The IQ scores were dichotomized (‘high’ and ’low’; N=104 and N=87, 
respectively) for the first set of the analyses (gene-based testing).  

In the second set of the analyses (polygenic prediction), all individuals from the 
Netherlands Twin Register (NTR; Boomsma et al., 2002; Boomsma et al., 2006; Willemsen et 
al., 2013) with psychometric intelligence and SNP microarray data were included into the 
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sample (N=2125, 45.4% male). The age distribution of the participants at the time of 
measurement is given in Appendix 6 (mean=20.4, SD=14.1). The testing and the 
computation of IQ scores were performed in the same way as above, with the exception of 
participants for whom only the scores on Raven’s Progressive Matrices (Raven et al., 1998; 
Raven, 1960) were available; for these participants, a z-transformed number of correct 
answers, rather than a z-transformed IQ score, was analyzed. Unlike the sample used for 
exon sequencing (N=191), the larger sample was unselected on phenotype, i.e., the 
intelligence scores followed a normal distribution.   
 
Next-generation sequencing 
 
Nucleic acid sequencing is a set of methods used in the determination of the precise order of 
nucleotides in a nucleic acid molecule (see e.g. Grada & Weinbrecht, 2013 for a nontechnical 
overview). Initially accomplished through chain-termination methods (i.e., so-called Sanger 
or first-generation sequencing; Sanger et al., 1977), DNA sequencing is presently performed 
using a set of methodologies commonly denoted next-generation sequencing (e.g., Metzker, 
2010; Rusk & Kiermer, 2008; Shendure & Ji, 2008). Next-generation sequencing is an 
umbrella term denoting a set of technologies (e.g., Illumina (Solexa) sequencing, Roche 454 
sequencing, Ion torrent: Proton / PGM sequencing, SOLiD sequencing) that perform 
sequencing in a massively parallel fashion, sequencing millions of DNA fragments 
simultaneously. Unlike SNP microarrays that only measure common genetic variation (i.e., 
variants whose population frequency exceeds ~1%), sequencing technologies enable the 
interrogation of the entire nucleotide sequence of the genome, including rare and structural 
variation. The development of next-generation sequencing technologies was accompanied 
by a rapid decline in the cost of DNA sequencing, resulting in a sharp increase in the 
accessibility of sequence data over the past decade. In addition, next-generation sequencing 
coupled with efficient DNA capture (i.e., the isolation of specific DNA targets) has 
facilitated the emergence of exome sequencing as a novel approach to the identification of 
rare variants underlying polygenic phenotypes, and a cost-efficient alternative to whole-
genome sequencing (see Kiezun et al., 2012). Exome sequencing (i.e., targeted exome 
capture) denotes the sequencing of the entire set of expressed regions of the genome (i.e., 
exome, comprising of all exons or ‘EXpressed regiONs’ of the genome), while exon 
sequencing refers to the sequencing of a particular exon or a set of exons. The present study 
employed the latter approach.  
 
Genotype data 
 
The genes examined in the present study were selected from the pool of genes presently 
known to underlie various forms of syndromic and non-syndromic intellectual disability 
(Najmabadi, Hu, Garshasbi, Zemojtel, Abedini, Chen, Hosseini, Behjati, Haas, Jamali, et al., 
2011; Ropers, 2008, 2010a). The selection of the genes was partially guided by practical 
considerations, e.g., by the limited target size allowed by the HaloPlex G9901B exon 
enrichment kit, which was used to selectively capture the genomic regions of interest from 
DNA samples prior to sequencing. 107 of the 168 genes were autosomal. Table 1 and 
Appendix 6A provide an overview of the genes and their function. Exon sequencing was 
performed using an Illumina HiSeq2000 sequencer with 100bp paired-end reads. The raw 
reads were aligned to the NCBI37 human reference genome using the Stampy package 
(Lunter & Goodson, 2011). Variants were called using Platypus (Rimmer, Phan, Mathieson, 
Lunter, & McVean, 2013). The information on quality control and filtering of the genotype 
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data can be found in Supplementary Methods. Mean sequencing depth (i.e., the mean 
number of times each nucleotide base was sequenced) was ~212x.  

The second set of analyses (i.e., polygenic prediction) employed all common SNPs 
(i.e., SNPs with a minor allele frequency exceeding 1%) in the 168 genes that were both a) 
measured in the 2125 individuals, and b) analyzed in a recent meta-analysis of childhood 
intelligence (Benyamin, Pourcain, et al., 2013a). The reason for applying the latter criterion is 
our subsequent use of the effect size estimates from the meta-analysis as weights in the 
construction of the polygenic predictor (see Analyses). In total, this resulted in 8559 SNPs 
from 99 autosomal genes being used in the polygenic prediction (8 out of the 107 autosomal 
genes were not present in the meta-analysis dataset). Information on imputation and quality 
control of the SNP data can be found in Supplementary Methods.  
                                                  
Analyses 
 
Association testing. To examine the association between intelligence and the rare genetic 
variants in the genes of interest, we applied a series of gene-based association tests 
implemented in the PLINK/SEQ tool (https://atgu.mgh.harvard.edu/plinkseq/), using the 
data on 2900 variants as input. Gene-based as opposed to single-locus testing was used as a 
means of increasing statistical power (Kiezun et al., 2012; Purcell, Cherny, & Sham, 2003), 
seeing as the inherently small number of observations of rare variants limits the statistical 
power for their individual detection. Six gene-based association tests were employed: a 
burden test using adaptive permutation to test for excess of rare alleles in cases relative to 
controls (--assoc keyword in PLINK/SEQ), a test based on the count of case-unique rare 
alleles (--uniq command in PLINK/SEQ), a frequency-weighted test (see Madsen & 
Browning, 2009; --fw command), the variable threshold test (Price et al., 2010; --vt command 
in PLINK/SEQ), the c-alpha test (B. M. Neale et al., 2011; --calpha), and a sum of single-site 
statistics (--sumstat). Overall, the tests aim to assess the genetic burden due to the effects of 
rare genetic variants, working on the assumption that the phenotypic variation may be 
explained by the overall burden of rare deleterious mutations, while the individual causal 
variants may be heterogeneous and interchangeable.  

The first test uses adaptive permutation to test for excess of rare alleles in the 
individuals in the low IQ group relative to those in the high IQ group. Permutation entails 
random re-allocation of genotypes over the phenotypes to generate an empirical distribution 
of p-values under the null-hypothesis, against which the p-value of interest can be 
compared. The permutation is adaptive in the sense that the variants that are highly 
unlikely to achieve statistical significance are dropped from the procedure. The second test 
is based on the count of alleles exclusive to the low end of the phenotypic distribution (i.e., 
low IQ). This strategy effectively eliminates common alleles from the test, because they 
would be present in individuals at both extremes unless they have a very large effect. The 
frequency-weighted test (similar to Madsen & Browning, 2009) scores each individual by a 
weighted sum of mutation counts within each gene. The weighing scheme assigns higher 
weights to variants that are rare in individuals from the high end of the phenotypic 
distribution (and thus presumably detrimental), effectively preventing common variants 
from dominating the test. Group counts (i.e., weighted sums in cases and controls) are 
compared, and permutation is used to evaluate the significance of the result. The variable 
threshold test (Price et al., 2010) is based on the regression of the phenotype on the 
genotype. The test assumes that there is an unknown threshold T, such that variants with a 
minor allele frequency below T are substantially more likely to have a functional effect than 
variants with a minor allele frequency above T. The test consists of computing a test statistic 
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using only the variants that fall below a certain minor allele frequency cutoff, for the full 
range of cutoffs. The final test statistic is subsequently defined as the maximum of the test 
statistics across all the cutoffs. By optimizing the test statistic in this way, the test effectively 
gives higher weight to variants predicted to be functionally significant (i.e., to variants that 
fall below a minor allele frequency cutoff that resulted in the best test statistic). All of the 
aforementioned tests entail the assumption of rare variants within a given gene acting in the 
same direction (either increasing or decreasing intelligence). The c-alpha test (B. M. Neale et 
al., 2011) does not involve this assumption, i.e., it accommodates possible differences in the 
direction of effect across the measured variants. The test assesses the imbalance in the 
distribution of alleles over cases and controls, such that, e.g., the risk variants are more 
present in cases and protective variants more present in controls. Under the null hypothesis 
of no effect, the risk and the protective variants are expected to be distributed randomly 
over the cases and controls. An excess of, for instance, a risk allele in the cases, would result 
in an overdispersion in the distribution of this allele. C-alpha assesses this overdispersion, 
regardless of its origin (risk or protective), and is ideally suited for detecting a mixture of 
effects, such that some variants confer risk while others are neutral or protective. As evident, 
all of the six tests focus on the detection of the possible effects of rare genetic variants. This 
is consistent with our expectation of rare variants being enriched for functional alleles, and 
exhibiting stronger effect sizes than common genetic variants (e.g., Frazer, Murray, Schork, 
& Topol, 2009; Kryukov, Pennacchio, & Sunyaev, 2007; Pritchard, 2001).  

Correction for multiple testing was performed by dividing the desired significance 
threshold (.05) by the total effective number of independent tests in the study. The estimate 
of the number of independent tests was based on the number of genes for which 
PLINK/SEQ’s I-statistic (i.e., estimate of the minimal achievable p-value for a gene) was 
smaller than .05, as genes with an I-statistic greater than .05 are considered insufficiently 
powered and thus necessitate no correction (Kiezun et al., 2012). Bonferroni correction 
would be too stringent in the present context, as it assumes that each gene displays 
sufficient variation to achieve the asymptotic properties for the test statistic (Kiezun et al., 
2012); an assumption that is not necessarily realistic in the context of rare variant data and 
the present sample size. For genes on the X chromosome, in addition to being performed on 
the entire sample, the analyses were performed for the males and the females separately. 
 
Polygenic prediction. Subsequently, we examined whether continuous intelligence scores in 
the larger (N=2125) sample can be predicted from a polygenic score constructed on the basis 
of the common SNPs in the candidate gene set. Here, the polygenic score is used as a means 
of summarization of genetic effects across the relevant genes: it is obtained as a weighted 
sum of the number of effect alleles within an individual, across all common SNPs in the 
candidate gene set. The weighing of the SNPs, and the determination of ‘effect allele’, were 
informed by prior knowledge: the weights were the effect size estimates for individual SNPs 
obtained in a large meta-analysis of GWA studies on childhood intelligence (Benyamin, 
Pourcain, Davis, Davies, Hansell, Brion, Kirkpatrick, RAM Cents, et al., 2013). The 
continuous intelligence scores were subsequently regressed on the polygenic scores. A 
significant regression coefficient would imply a genetic signal amongst the variants (see, 
e.g., Dudbridge, 2013). 

The meta-analysis results were based on an analysis of six independent cohorts 
(combined N=12,441): the Avon Longitudinal Study of Parents and Children, the Lothian 
Birth Cohorts, the Brisbane Adolescent Twin Study, the Western Australian Pregnancy 
Cohort Study, and the Twins Early Development Study (Benyamin, Pourcain, Davis, Davies, 
Hansell, Brion, Kirkpatrick, RAM Cents, et al., 2013). The polygenic scores were constructed 
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by multiplying the number of effect alleles (0, 1, or 2) at a given locus in the present dataset 
by the meta-analysis regression coefficient for that locus, and summing the resulting scores 
over all relevant loci within an individual. The subsequent regression of intelligence on the 
polygenic scores was performed using generalized estimating equations (‘gee’ package in R; 
V. J. Carey, Lumley, & Ripley, 2012; Minică et al., 2014; R Core Team, 2013) to control for the 
dependency in the data arising from the fact that some individuals in the sample are closely 
genetically related (e.g., twins, parents). To control for possible spurious association arising 
from population stratification (i.e., from any possible systematic differences in allele 
frequencies between the high and low IQ groups due to differences in ancestry; see, e.g., 
Cardon & Palmer, 2003; Freedman et al., 2004; Price et al., 2006) and to remove any 
phenotypic variance associated with sex, sex and nine principal components reflective of the 
Dutch population structure (Abdellaoui et al., 2013b) were included into the regression as 
covariates. As different populations frequently exhibit systematic differences in allele 
frequencies, principal components of a genome-wide covariance matrix of the individuals’ 
allelic values frequently reflect variation in ancestry, and are known to efficiently control for 
population stratification (e.g., Price, et al., 2006).  

 
Results 
 
The application of deep sequencing to the 168 genes of interest revealed 2900 point-
mutations that passed quality control filters and differed from the reference dataset 
(Genomes Project Consortium, 2012) in at least one of the 191 DNA samples. Of these 2900 
variants, 972 and 61 were observed only once and twice in the 191 samples, respectively. 
The frequency distribution of the 2900 variants is displayed in Figure 1. As evident from the 
Figure, ~70% and ~76% of the variants were observed in less than 10% and 20% of the 
samples, respectively. Around 50% of the exonic variants were synonymous (i.e., base 
substitutions did not affect the produced amino acid sequence), with the remainder being 
non-synonymous. The distribution of the variants over the 168 genes is displayed in Figure 
2.  

The QQ plots of the gene-based p-values obtained using the six association tests in 
Plink/SEQ are shown in Figure 3. An inflation of the QQ plot, i.e., an excess of low p-values 
relative to the uniform expectation, would indicate a possible genetic signal in the candidate 
set of genes. As visible in the Figure, no inflation was observed for any of the six gene-based 
tests. After correction for multiple testing, none of the individual genes displayed a 
significant association with intelligence. Sex-stratified analysis confirmed the absence of a 
detectable association for the genes on the X chromosome. In addition, the polygenic score 
was not predictive of intelligence (p=.69).  
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Figure 1. Distribution of non-reference allele frequencies33 at diallelic sites (97.25% sites in 
the present dataset). 
 
 

 
Figure 2. Distribution of the 2900 variants over the 168 genes. x-axis: gene index, y-axis: 
number of variants on the gene. 
 
 

33 Polymorphic sites in a DNA sequence can be described by the frequency of one of their alleles. The figure shows the 
distribution of these frequencies for all diallelic sites (i.e., all sites displaying two alternate forms) in the present 
dataset. 
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Figure 3. QQ plots of the gene-based p-values obtained using six different association tests in 
PLINK/SEQ. Grey lines represent 95% confidence intervals. 
 
Discussion 
 
Utilizing existing knowledge on the genetics of monogenic disorders, the present study 
sought to examine the association of 168 genes implicated in genetics of intellectual 
disability with normal-range intelligence. Using exon sequencing and focusing primarily on 
rare genetic variation, we addressed this question in a sample of 191 individuals sampled 
from the ends of the IQ distribution (>112, <88 and >80). Several different methods of gene-
based testing, implemented in the PLINK/SEQ tool, indicated the absence of a detectable 
association at the present sample size. Additionally, we employed polygenic prediction to 
examine the overall effect of common genetic variation in the candidate gene set, and found 
no significant prediction.  

The first set of analyses focused on the detection of the possible effects of rare genetic 
variation, in line with the assumption of the inter-individual variability in intelligence being 
maintained by low-frequency, disruptive mutations of small effect size. The consistent 
positive associations between intelligence and fitness components across the life span 
(Arden, Gottfredson, Miller, & Pierce, 2009; Banks, Batchelor, & McDaniel, 2010; Batty, 
Deary, & Gottfredson, 2007; Deary, Strand, Smith, & Fernandes, 2007; Deary, Whalley, Batty, 
& Starr, 2006; Gale, Batty, Tynelius, Deary, & Rasmussen, 2010; Silventoinen, Posthuma, Van 
Beijsterveldt, Bartels, & Boomsma, 2006; Strenze, 2007; S. Van Dongen & Gangestad, 2011) in 
combination with the absence of the consequently expected depletion of the underlying 
genetic variation, indicates that the existing genetic variation is likely to be retained through 
mutation-selection balance, i.e., a balance between the rate of occurrence of new, mostly 
deleterious mutations and the rate of their removal by selection (Falconer & Mackay, 1996; 
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Marioni, Penke, et al., 2014). Because selection will quickly eliminate mutations of strong 
deleterious effect on fitness-related traits, this mechanism suggests a genetic architecture 
that lacks common genetic variants of large effect size (Gibson, 2012; Marioni, Penke, et al., 
2014); an expectation consistent with the lack of replicable findings from candidate gene and 
GWA studies (e.g., Benyamin, Pourcain, et al., 2013a; Chabris et al., 2012; Davies et al., 2011). 
Utilizing the same rationale, Marioni et al. (Marioni, Penke, et al., 2014) recently examined 
the relationship between the genome-wide count of rare exonic variants and cognitive 
ability in childhood and old age (N=1596), and detected no significant association. Yeo et al. 
(Yeo, Gangestad, Liu, Calhoun, & Hutchison, 2011) found a negative association between 
the genome-wide burden of rare copy number variants and psychometric intelligence in a 
sample of 74 individuals. However, subsequent studies using larger samples were unable to 
replicate this finding (Bagshaw et al., 2013; MacLeod et al., 2012; McRae, Wright, Hansell, 
Montgomery, & Martin, 2013). The present study focused on a smaller part of the genome, 
in line with the hypothesis that the genetic variation affecting continuous variation in 
quantitative traits may be concentrated in the same areas of the genome as that underlying 
similar monogenic phenotypes. Although the lack of detectable association is consistent 
with the aforementioned studies, a larger study may still be advisable to minimize the 
probability of the finding reflecting a power issue. Considering the diverse nature of 
intellectual abilities, as well as the pervasive disagreement between intelligence researchers 
on the existence and causal relevance of general intelligence (e.g., Gottfredson, 1997a; 
Neisser et al., 1996), future studies may also employ a finer-grained definition of the 
phenotype (e.g., verbal and nonverbal intelligence, specific subscale scores, or additive 
genetic factor(s) derived through the application of genetic covariance structure modeling to 
twin data; e.g., Franić et al., 2012; M. C. Neale & Cardon, 1992). A substantial heterogeneity 
in the genetic etiology of intelligence has been demonstrated by previous studies (e.g., 
Johnson et al., 2007; Luo, Petrill, & Thompson, 1994; Rijsdijk et al., 2002), which typically 
show significant additive genetic influences specific to cognitive abilities (e.g., verbal, 
special, perceptual, arithmetic, etc.), in addition to a genetic g factor. Provided that such 
subscale-specific influences are a significant contributor to the genetic etiology of 
intelligence, future studies may consider their explicit modeling (using, for instance, a 
multivariate approach). More fundamentally, the question of the ontological and biological 
reality of the g factor has been debated widely (Jensen, 1998; van der Maas et al., 2006; van 
der Maas, Kan, & Borsboom, 2014); if g is a causal entity generating the observed covariation 
between distinct cognitive abilities, as assumed throughout much of the literature, the 
approach of attempting to identify genes for g is sensible both from a substantive 
perspective and the perspective of statistical power. However, if g is simply an index 
variable summarizing the covariation between different cognitive abilities without playing a 
causal role, then seeking genetic influences at the level of g will diminish the statistical 
power to detect the effects of measured genetic variants, relative to seeking genetic 
influences at the level of its constituent abilities. Genetically informed item-level analyses 
that assess the mediatory role of intelligence with respect to genetic and environmental 
effects (Franić, Dolan, Borsboom, Hudziak, et al., 2013) can be used to address some of the 
above issues.  

The rationale behind the present study, namely the supposition of the relevance of 
genes involved in intellectual disability to normal-range intelligence, is based on ample 
similar examples in the literature, including height (Allen et al., 2010), body mass index 
(Loos et al., 2008), lipid levels (Hirschhorn & Gajdos, 2011 review), hemoglobin F levels 
(Hirschhorn & Gajdos, 2011), type 2 diabetes (Sandhu et al., 2007), Parkinson’s disease 
(Gasser, 2009; Lesage & Brice, 2009), and others. A recent study by Blair et al. (Blair et al., 
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2013) identified nearly 3,000 comorbidities between Mendelian disorders and complex 
diseases present in the electronic medical records in the United States and Denmark. 
Importantly, each complex disease displayed an association with a unique set of Mendelian 
disorders, implying a sharing of the causal pathways between the Mendelian and the 
polygenic phenotypes. Presumably, a monogenic disorder stems from a severely damaging 
mutation in a gene that normally affects healthy variation in the same phenotype. 
Consistently with the above findings, we recently demonstrated an enrichment of 43 genes 
underlying Mendelian disorders of intellectual functioning (39 of which were included in 
the present study) for common polymorphisms associated with intelligence (Franić, Groen-
Blokhuis, et al., 2013). The present study aimed to extend this work to a larger set of genes 
(i.e., all of the presently identified intellectual disability genes that could be accommodated 
by our methodology) and examine the effect of rare variants, in addition to common genetic 
variation. The absence of a detectable association at the present sample size may be 
considered a (partial) non-replication, although, as mentioned, minimizing the probability 
of a power issue by employing a larger sample size may be advisable. Other improvements 
to the present study may include the examination of structural variation (including, for 
instance, copy-number variants; Redon et al., 2006), gene-by-gene interactions, 
heterogeneity of genetic effects across different environments, or the intronic regions of the 
genome. The increasing availability of next-generation sequencing technologies and the 
rising number of collaborative projects are expected to facilitate a more detailed study into 
some of the above issues. 
 
Supplementary Methods 
 
Exon sequence data. Quality control and filtering of the genotype data were performed using 
the VCFtools software (Danecek et al., 2011) and R (R Core Team, 2013). Sites were included 
into the study based on read quality (Phred-scaled quality > 20), the quality of the bases 
surrounding the variant (median minimum base quality > 0), strand bias (binomial p-value 
for strand bias test > .1), mapping quality (root mean square of mapping qualities of reads at 
the variant position > 20), average variant quality (variant quality / read depth for the 
variant > 5), probability that the variant segregates in the data (Phred-scaled posterior 
probability > 20), and proportion of missing data per site. Sites were retained if the sample 
missingness per site did not exceed 5% (i.e. if at least 95% of samples had at least one read at 
the site), and sites with sample missingness between 5% and 20% were retained only if their 
mean depth per sample exceeded 20x. The application of these criteria reduced the number 
of variants to 2900 (including 972 singletons and 61 doubletons) and the number of genes to 
168 (from an initial pool of 175). The frequency distribution of the 2900 variants, and their 
distribution over the 168 genes, are given in Figures 1 and 2. The mean depth was ~212x, 
with an average of ~2% sites missing per individual.  
 
SNP data. The SNP data for the polygenic risk prediction were obtained from a larger NTR 
dataset (N=14,003; see Lin et al., 2014; Nivard et al., 2013). Buccal or blood samples for DNA 
extraction were collected as part of multiple projects within NTR. DNA extraction and 
purification were performed at various points in time, following several manufacturer-
specific protocols. Genotyping of several partly overlapping subsets was performed on 
multiple platforms. Chronologically, the following platforms were used: Affymetrix 
Perlegen 5.0, Illumina 370, Illumina 660, Illumina Omni Express 1M, and Affymetrix 6.0. 
Genotype calls were made using platform-specific software (APT Genotyper, Beadstudio 
(Illumina)). 
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Quality control was performed within and between platforms and subsets. For each 
platform, the individual SNPs were lifted over to build 37 (HG19) of the Human reference 
genome using the LiftOver tool (Kuhn et al., 2007). SNPs that did not map at all, had 
ambiguous locations, or did not have matching (or strand-opposite) alleles were removed. 
Subsequently, the data were strand-aligned with the 1000 Genomes phase 1 release v3 
panel. SNPs were removed based on mismatches of alleles with those in the reference set, 
differences of allele frequencies (larger than .2) from those in the reference set, minor allele 
frequency (<1%), absence of Hardy-Weinberg equilibrium (p<.00001), and call rate (<95%). 
Samples were excluded from the dataset based on mismatch of expected sex and the sex 
derived from the genotype data, genotype missing rate (>10%), and the coefficient of 
inbreeding (F>0.10 or < -0.10).  

Following these steps, the data from the individual arrays were merged into a single 
dataset using PLINK 1.07 (Purcell et al., 2007). Within the merged set, identity by state (IBS) 
sharing was calculated between all possible pairs of individuals; subsequently, IBS was 
compared to the known family structure within the NTR. Samples that did not display the 
expected IBS sharing were removed. DNA samples that were typed on multiple platforms 
and displayed discordance between the overlapping SNPs (concordance rate <99%) were 
removed. Subsequently, a single DNA sample was selected from each MZ twin pair, 
resulting in a total of 12,240 unique DNA samples to be imputed. Hardy-Weinberg 
equilibrium, minor allele frequency, and allele frequency (>.2) filters were re-applied to the 
merged data. To avoid erroneous strand alignment, SNPs with the allele combinations C/G 
and A/T and a minor allele frequency between .35 and .5 were removed.  

Phasing of the samples and the imputation of the SNPs missing across some 
platforms were performed using MACH 1.0 (Y. Li & Abecasis, 2006). The phased data were 
imputed using Minimac (Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012), in 
batches of ~500 individuals for 561 chromosome chunks obtained using the 
CHUNKCHROMOSOME software (E. Y. Liu, Li, Wang, & Li, 2013). After imputation, the 
data on DNA-confirmed MZ twins were duplicated back into the dataset, resulting in a 
dataset containing a total of 14,003 individuals. The mean imputation R2 was 0.38. The 
imputed dataset contained 30,051,533 autosomal SNPs. Post-imputation, SNPs were filtered 
based on Mendelian error rate in families (>2%), Hardy-Weinberg equilibrium (<0.00001), 
imputation quality R2 (<.3), minor allele frequency (<.005), and a discrepancy in allele 
frequencies of the imputed SNPs and the 1000 Genomes reference panel (>.15). This resulted 
in a final dataset containing 7,981,681 autosomal SNPs with a mean R2 of .86.  
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Chapter 10 
 
Summary and Discussion 
 
The present dissertation has focused broadly on the ontology of latent psychometric 
variables, and the genetics of intelligence. Below I provide a summary of the preceding eight 
chapters, followed by a general discussion.  

Chapter 2 introduces the basics of structural equation modeling, as applied in the 
classical twin design. After introducing the basic method of exploiting familial relationships 
to infer the effects of unmeasured genetic and environmental factors, the chapter reviews 
the implementation of models from the structural equation modeling literature into 
genetically informative designs, and structural equation models developed specifically 
within genetics. The former include simplex and latent growth curve models, and the latter 
include common and independent genetic factor models, genotype-environment interaction 
models, sex-limitation models, and direction of causation models. The chapter concludes 
with a discussion of the incorporation of measured genetic variables into structural equation 
modeling-based association analysis.  

Chapter 3 discusses the application of genetically informed item-level analyses in 
addressing questions regarding the ontology of latent behavioral phenotypes (e.g., 
depression, general cognitive ability), via the study of their mediatory role with respect to 
genetic and environmental influences. The presence of genetically informative item-level 
data allows one to 1) test an empirical implication of the realist interpretation of latent 
psychological traits, namely its mediation of genetic and environmental influences on the 
observed item covariation, and 2) study the (possibly different) dimensionalities of the latent 
genetic and environmental covariance structures giving rise to the observed item 
covariation. I note that the frequently encountered problems in psychometric dimensionality 
assessment may be viewed as a function of the differences between these genetic and 
environmental covariance structures, and propose using genetically informative item-level 
analyses as a tool in improving phenotypic dimensionality assessment.  

Chapter 4 employs the methodology discussed in Chapter 3 to examine the ontology 
and the genetic and environmental etiology of the Internalizing syndrome dimensions of the 
Child Behavior Checklist (CBCL; Achenbach, 1991; Verhulst et al., 1996). The results 1) 
suggest that the syndrome dimensions may be better understood as a composite of 
unconstrained genetic and environmental influences than as causally relevant entities 
generating the observed symptom covariation, and 2) indicate a common genetic basis for 
anxiety, depression, and withdrawn behavior, with the distinction between these syndromes 
being driven by the individual-specific environment. The finding is discussed in the context 
of the frequently encountered difficulties in phenotypic delineation between different 
diagnostic categories, e.g., anxiety and depression.  

Chapter 5 employs the same methodology to examine 1) the tenability of the realist 
interpretation of the Big Five personality dimensions (McCrae & Costa, 2008), and 2) the 
structure of the genetic and environmental covariance matrices underlying the observed 
covariation of NEO Five Factor Inventory (NEO-FFI; Costa & McCrae, 1992) personality 
items. Interestingly, and unlike the case of the CBCL, the genetic and the environmental 
covariance matrices underlying NEO-FFI item covariation exhibit similar (5-factor) 
structures. However, the latent personality dimensions do not appear to fully mediate the 
genetic and environmental effects on the items, as would be expected under the realist 
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interpretation of the Big Five. Implications for the substantive interpretation of the Big Five 
are discussed.  

Chapter 6 provides an overview of the genetic covariance structure modeling-based 
methodology for the study of childhood anxiety and depression, and a cross-section of the 
relevant findings. The review focuses on questions that go beyond the relatively simple task 
of assessing the contributions of genetic and environmental factors to anxiety and 
depression. The review presents relatively consistent evidence for: a) small to negligible sex 
differences in the genetic etiology of these disorders, b) a substantial role of genetic factors 
in accounting for their temporal stability, c) a contribution of genetic factors to the 
comorbidity between them, d) a possible role of genotype-environment interaction in 
affecting their liability, e) a role of genotype-environment correlation, and f) a minor, if any, 
etiological role of sibling interaction.  

Chapters 7-9 focus on the genetics of intelligence. Chapter 7 reports on a combined 
analysis of all longitudinal measures of verbal, nonverbal, and general intelligence present 
in the Young Netherlands Twin Register (Bartels, Beijsterveldt, et al., 2007) in 2009. Simplex 
modeling was used to examine the genetic and environmental etiology of the temporal 
stability of the measures. Given the information on stability, I subsequently address the 
question of how to optimally utilize the existing longitudinal data in the context of gene-
finding studies. The high stability of the additive genetic factors indicates that a single set of 
genes underlies the variation in intelligence throughout the developmental period under 
study, justifying the use of a linear combination of scores across the different ages in the 
context of genetic association studies.  

The results obtained in Chapter 7 were used to inform the modeling of the 
phenotype in the association studies reported in Chapters 8 and 9. Chapter 8 reports on a 
study testing for an association between normal-range intelligence and common single-
nucleotide polymorphisms (SNPs) in 43 known cognitive disability genes. The study 
utilized a simple rationale, namely the fact that the genetic variation affecting continuous, 
polygenic traits (e.g., normal-range intelligence) may be concentrated in the same areas of 
the genome as that underlying similar, monogenic phenotypes (e.g., intellectual disability). 
Although no individual single-nucleotide polymorphism (SNP) reached statistical 
significance, SNP-based analyses indicated an enrichment of the candidate gene set for 
polymorphisms associated with intelligence. The study is the first demonstration of the 
relevance of genes implicated in monogenic disorders of intellectual functioning to normal-
range intelligence.  

Chapter 9 extends the work reported in Chapter 8 to 168 known intellectual disability 
genes, but, unlike Chapter 8, uses next-generation exon sequencing and focuses on the 
detection of the possible effects of rare genetic variation. Consistently with the literature to 
date, no enrichment of the candidate gene set for mutations associated with normal-range 
intelligence was detected at the present sample size. The finding is discussed in the context 
of literature.  
 

Discussion 
 
The present dissertation has focused on a) the use of genetically informed item-level 
analyses in psychometric dimensionality assessment and the study of the ontology and the 
genetic and environmental etiology of latent traits, with application to childhood 
internalizing problems and the Big Five personality dimensions in adults, and b) the 
genetics of intelligence. A variety of techniques were used to address these topics and 
various issues therein, discussed in turn below.  
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The role of genetics in psychometric dimensionality assessment 
 
The past several decades have seen major developments in the methodology for the 
assessment of psychometric dimensionality, i.e., the determination of the number of latent 
attributes underlying a set of indicators (e.g., item responses, symptoms). The standard 
toolkit for dimensionality assessment, including exploratory factor analysis and related 
models (e.g., principal components analysis), has been expanded to include confirmatory 
methods, e.g., item response theory modeling and confirmatory factor analysis. A good deal 
of work has gone into the development of heuristics to facilitate this process, resulting in an 
impressive statistical toolbox of methods (including, e.g., the scree plot, the "eigenvalue-
greater-than-one" rule, the minimum average partial correlation, the Chi-square test, and 
parallel analysis). A variety of fit indices developed in structural equation modeling (e.g., 
RMSEA, ECVI, incremental fit indices, and information criteria) found widespread 
application in both the exploratory and confirmatory approach, and IRT-based methods 
have given rise to specialized software for dimensionality assessment (e.g., DIMTEST; Stout, 
1987). 

Notwithstanding the availability of these tools, the assessment of dimensionality has 
remained difficult. One only needs to look at fields of intelligence, psychopathology and 
personality assessment, where substantial controversy still exists regarding the origin of 
covariation between different symptoms/behaviors/questionnaire items. For instance, there 
is presently a lack of consensus on whether the general intelligence (g) factor can be equated 
with some of the more specific intellectual abilities, such as working memory or fluid 
reasoning (Ackerman et al., 2005). In internalizing psychopathology research, the 
covariation of symptoms of anxiety and depression has given rise to a host of theories, 
ranging from those that view the two disorders as separate entities with overlapping 
features, to those that view them as different points along a single continuum (Clark, 1989).  

The present dissertation has inquired why dimensionality assessment is so difficult, 
and proposed that one of the reasons lies in the fact that the genetic and environmental 
influences, of which the observed covariation is a function, differ from each other in 
structure and dimensionality. Employing item-level analyses on genetically informative 
data enables the explicit study of the dimensionality of these genetic and environmental 
influences, thereby moving the question of dimensionality from the observed to the genetic 
and environmental level. As demonstrated, the increased resolution afforded by this 
approach may further the understanding of the nature of problems arising in dimensionality 
assessment, elucidate the origin of the phenotypic dimensionality of observed 
symptoms/behaviors/item responses, and help improve the definition of phenotype in 
genetic association studies. On a conceptual level, the approach can inform the discussion 
on the ontology of the latent variables obtained in psychological research. The present 
dissertation has laid out the tools that may be used to this end, and examined the feasibility 
of the analyses proposed. Can genetics thus help psychometrics? The present dissertation 
has argued that the answer is yes. Applications to childhood internalizing problems and 
personality dimensions illustrate this point in practice.  

Despite decades of research into the origin of covariation between psychometric 
items (including both internalizing symptoms and personality indicators), the development 
of noncontroversial taxonomies has proven challenging. In internalizing psychopathology 
research this has given rise to a host of questions, ranging from those that inquire, e.g., 
whether anxiety and depression are different manifestations of a single entity (Clark, 1989), 
to those inquiring whether they are entities at all. In personality research similar questions 
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arise: can the fundamental structure of personality be uncovered by the application of factor 
analysis to personality items, what is the number and the interpretation of the relevant 
latent factors, and should the structure of personality be conceptualized as entailing latent 
factors at all (J. Block, 1995)? For both of the empirical datasets analyzed in the present 
dissertation, the answer with respect to the ontology of latent variables has proven negative: 
neither personality factors nor internalizing dimensions appeared to fully mediate genetic 
and environmental effects on the items, implying that one cannot interpret them as 
behavior-generating entities in the realist sense, at least not as they are currently defined. In 
the case of personality dimensions the answer is somewhat more complicated as the 
structures of genetic and environmental covariance matrices, seemingly paradoxically with 
respect to our conclusion regarding their ontology, both display highly similar, five-factor 
structures. Is this a result of the careful pre-selection of items during the decades of 
psychometric construction and refinement of the item set, or a finding reflecting a fact of 
nature, namely a five-factor structure of personality? Could one think of a defendable way 
to accept diluted versions of realist latent constructs that only partially mediate genetic and 
environmental influences? What would the theory of such partial mediation be? Are there 
other reasonable hypotheses that one could construct about the finding? These and similar 
questions may motivate future research, examining for instance whether the misfit of the 
common pathway model was due to local as opposed to global violations, or whether the 
same analyses on a different set of personality items would produce similar results.  

How do the results of this type of analyses relate to genetic association studies? If, for 
instance, the Anxious/Depressed dimension of the CBCL is not a unitary construct, should 
attempts be made to identify genes that predispose individuals for a high standing on this 
dimension? Is this comparable to deriving a factor score from items measuring, say, shoe 
size, cholesterol levels, and income (which may well display a positive manifold of 
correlations unless one controls for age), and attempting a search for genes that predispose 
individuals for a high standing on this trait? Yes, and no. The situations are comparable in 
that neither the Anxious/Depressed variable, nor (presumably) the shoe 
size/cholesterol/income variable, would mediate all the genetic and environmental effects 
on their indicators, as neither appear to be entities in the realist sense. Importantly, however, 
they are not comparable in that, unlike the shoe size/cholesterol/income indicators, the 
Anxious/Depressed indicators appear to be genetically unidimensional, i.e., affected by a 
single set of genes. The pertinent question for gene-finding purposes is that of genetic 
unidimensionality: a genetically unitary construct (such as the Anxious/Depressed 
dimension) need not necessarily be problematic in the context of gene finding, regardless of 
its phenotypic complexity. A related question is that of genetic and environmental 
unidimensionality over time. In the presence of longitudinal data, one may inquire how to 
construct a phenotype that optimally indexes genetic effects. For instance, intelligence 
measures collected in late adolescence display a larger heritability than those collected in 
childhood, but the use of those collected at earlier ages may imply a larger sample size. 
Using data from a single age may be inefficient in terms of discarding other data (the 
addition of which could increase the measure’s reliability), while using all measures 
simultaneously may dilute the genetic signal if different sets of genes affect the measure 
across development. If one opts to use all available data, should one employ a multivariate 
model, or can a summary statistic (e.g., a mean across ages) adequately represent the 
phenotype? Finally, how do the above choices affect the statistical power to detect genetic 
effects? The above issues were addressed in Chapter 7 with respect to intelligence. The 
results, and the subsequent gene-finding efforts that used them, are discussed below.  
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Intelligence: temporal stability and the search for genes  
 
The ‘missing heritability’ problem (i.e., the discrepancy between heritability estimates 
yielded by twin and family studies and the proportion of variance explained by significantly 
associated variants; Maher, 2008) appears pervasive in the genetic study of complex traits, 
with examples ranging from anthropometric traits (e.g., height, body mass index), metabolic 
traits (e.g., fasting glucose and insulin levels), and common diseases (e.g., cardiovascular, 
metabolic, neurological, or immune system disease), to behavioral traits (e.g., neuroticism, 
extraversion) and psychiatric disorders (e.g., depression, schizophrenia, autism, personality 
disorders). As evident in the present dissertation, the situation is not dissimilar with respect 
to intelligence: despite major efforts by large consortia, no significantly associated single-
nucleotide polymorphisms (SNPs) have been identified, and only one gene (FNBP1L) has 
been tentatively implicated in the etiology of normal-range intelligence to date (Benyamin, 
Pourcain, et al., 2013b; Davies et al., 2011). A plethora of explanations have been put 
forward to account for the missing heritability phenomenon; these include the presently 
insufficient statistical power of genome-wide association (GWA) studies to detect genetic 
variants of small effect size, the potential overestimation of heritability by twin studies, 
problems pertaining to the measurement and operationalization of the phenotype, and the 
possibility of genetic variants not tagged on the present genotyping platforms (including 
rare and structural variation) underlying the heritability (e.g., Dickson et al., 2010; Eichler et 
al., 2010; Goldstein et al., 2013a; Teri A Manolio et al., 2009; van der Sluis et al., 2010; Zuk et 
al., 2012).  

With respect to statistical power, the consensus view is clear: larger samples are 
preferable, and with respect to intelligence it appears that large enough sample sizes in 
GWA studies are yet to be reached (the largest to date GWA (meta-)analyses comprised 
N≈18,000 and N≈3,500 in children and adults, respectively; Benyamin, Pourcain, et al., 
2013b; Davies et al., 2011). The potential overestimation of heritability by twin studies 
remains a looming issue in the study of many phenotypes, seeing as the estimation of 
epistatic interactions (i.e., interactions of alleles across different genetic loci), on which the 
degree of potential overestimation of heritability in the classical twin design will depend 
(Keller & Coventry, 2005), is a difficult issue to tackle empirically. Indeed, while fixing 
certain parameters (including the non-additive variance component) to zero is expedient to 
circumvent parameter indeterminacy inherent to the classical twin design, there is no a 
priori reason not to expect additive and non-additive genetic, and common and unique 
environmental factors to all jointly affect the phenotype. With respect to intelligence, 
previous analyses have indicated the empirical data to be consistent with non-additivity 
(Devlin, Daniels, & Roeder, 1997; Lindon J Eaves, 1973), although non-additivity alone is 
unlikely to explain the entire missing heritability gap, seeing as a) its estimated magnitude is 
small, and b) an estimated ~22-46% and ~29-51% of the variance in intelligence in children 
and adults, respectively, have been shown to be explained by the additive effects of 
common genetic variants measured on the present SNP microarrays (Benyamin, Pourcain, et 
al., 2013b; Davies et al., 2011). A number of other phenomena that may inflate heritability 
estimates, including the possible interaction between the additive genetic and common 
environmental factors, sibling competition effects, and systematic differences in the 
treatment of MZ and DZ twins, have been examined with respect to many phenotypes and 
appear to not pose problems for the interpretation of variance components obtained in the 
twin design (e.g., Borkenau, Riemann, Angleitner, & Spinath, 2002; Kendler, Neale, Kessler, 
Heath, & Eaves, 1993; Molenaar, van der Sluis, Boomsma, & Dolan, 2012).  
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A major issue in the analysis of intelligence data concerns the definition and the 
modeling of the phenotype. What exactly are we looking for genes for? Chapter 7 dealt with 
this question in view of optimally utilizing longitudinal data, i.e., establishing whether data 
summarization over ages is likely to diminish the power to detect genetic effects. More 
generally, one can think about the resolution of the phenotype – would modeling individual 
items or subscales be more beneficial than modeling general intelligence? In this light, the 
study of the genetic dimensionality of intelligence items and the mediatory role of general 
intelligence, or that of more specific abilities (e.g., verbal, nonverbal), a proposed in 
Chapters 3-5, would be highly informative. The present capacities of computing resources 
and the development of the relevant software (e.g., openMx; Boker et al., 2010) would likely 
make this a feasible task, despite the typically large number of items included in intelligence 
tests.  

Finally, part of the variation in intelligence may potentially be explained by the 
effects of variants not tagged on the present genotyping platforms, including rare and 
structural variation. For instance, it has recently been demonstrated that individual 
dinucleotide short tandem repeats (STRs) may explain over six times more phenotypic 
variance than individual diallelic SNPs (Willems, Gymrek, Highnam, Mittelman, & Erlich, 
2014). This potential of STRs to contribute to phenotypic variance, in combination with their 
poor tagging on SNP arrays, suggests that they may be a significant contributor to the 
missing heritability phenomenon. Another issue concerns the possible role of rare variants. 
While there is no a priori reason to exclude variants from any part of the allelic frequency 
spectrum as potentially relevant to intelligence, most of the research to date has dealt with 
the estimation of the possible effects of common genetic variation. Arguments can be made 
in favor of both rare and common variants, however. As proposed by, e.g., Hsu (Hsu, 2012; 
Marioni, Penke, et al., 2014), part of the genetic variability in intelligence can be maintained 
by rare deleterious mutations of small effect size, whose modest effects make their 
elimination by selection unlikely. Common variants, on the other hand, may be present in 
the form of effectively neutral mutations (subject to genetic drift), or as relatively positive 
mutations (subject to positive selection), which have yet to become fixed in the population.  

The role of rare genetic variation in the etiology of normal-range intelligence is still a 
largely unexplored issue, although the declining costs of exome- and whole-genome 
sequencing will enable more extensive investigations into this issue in the near future. The 
present dissertation has already taken a step in this direction, albeit with a limited sample 
size. The study design, utilizing knowledge on Mendelian disorders to study a related 
polygenic phenotype, may be a useful tool in the identification of genomic areas harboring 
causal variants, as has been exemplified both by the enrichment reported in Chapter 8, and 
by a recent study that revealed nearly 3,000 comorbidities between Mendelian disorders and 
complex diseases present in the electronic medical records in the United States and 
Denmark (Blair et al., 2013). Importantly, the study reported each complex disease to be 
associated with a unique set of Mendelian disorders, implying shared causal pathways 
between the Mendelian and the polygenic phenotypes. In combination with the widely 
observed enrichment of associations for complex traits in genes known to underlie related 
monogenic conditions (e.g. body mass index – monogenic obesity, height – skeletal growth 
disorders; Allen et al., 2010; Loos et al., 2008), this finding suggests that Mendelian disorders 
will provide a guiding light in mapping the normal variability underlying complex traits. 
Ultimately, theoretically informed approaches in tandem with a better understanding of the 
phenotype and the consequent improvements in its modeling, along with the increasing 
accessibility of larger amounts of whole-genome sequence data, will help make significant 
strides in this direction.  
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The broader context: the twin design in the 21st century 
 
As evident from the diversity in the methodology employed in the present dissertation - 
ranging from genetic covariance structure modeling to next-generation sequencing - the 
field of behavior genetics has undergone radical development over the past half a decade. 
One of the questions arising in this context concerns the relevance of the methodologies 
outlined at the beginning of this dissertation in the present era of genomics: are twin designs 
still relevant, or do the new technologies render them obsolete? Does the era of next-
generation sequencing leave any questions that may be uniquely addressed by the study of 
twins? Related to that, what is the practical applicability of the results obtained by the twin 
method? The following sections will address these issues in turn.  
 
The utility of twins in the genomics era 
 
Some of the traditional uses of the twin design and its various extensions have been outlined 
in the introduction of this dissertation. Beyond the estimation of heritability, twin designs 
have enabled the study of a range of issues including the genetic and environmental 
etiology of developmental stability and change in behavioral phenotypes, the dependency of 
polygenic effects on measured environmental exposures, the etiology of inter-individual 
variation in age-related growth and decline, the direction of phenotypic causality between 
traits, rater bias, sibling imitation and contrast effects, and the ontology of latent 
psychological traits. Now that many of the aforementioned issues have been settled with 
respect to many phenotypes and genetics has well entered the age of the widespread 
availability of measured genetic information, one may pose the obvious question of whether 
there is further utility in the study of twins. The present section will attempt to address this 
question by reviewing some of the main areas of application of twin designs that go beyond 
the standard applications outlined in this dissertation, and are poised to address novel 
issues arising in the context of the recent technological advances in the biomedical sciences 
(J. P. van Dongen et al., 2012). The issues include the timing of de novo mutagenesis, the role 
of epigenetic changes and gene expression in disease pathogenesis, disease-associated 
changes in metabolite levels, and the identification of microbial signatures associated with 
disease. In addition, I discuss how the recent advances in sequencing technologies can be 
employed to verify fundamental assumptions of the twin design concerning the degree of 
genetic and environmental sharing between monozygotic (MZ) and dizygotic (DZ) twins.  

Although a number of twin designs may be employed to address the issues listed 
above, the continuing utility of twins is perhaps most discernibly exemplified by the 
discordant MZ twin design. By comparing the biological feature of interest (e.g., the genome 
or the metabolome) in MZ twins discordant for a given phenotype, the application of this 
design can provide insight into disease pathogenesis and aid in the detection of biomarker 
profiles for medical conditions (J. P. van Dongen et al., 2012). For instance, a comparison of 
gene expression in subcutaneous fat of MZ twins discordant for obesity has demonstrated 
differential expression in a range of genes, including those involved in inflammatory 
pathways (upregulated in obese twins) and in mitochondrial branched-chain amino acid 
catabolism (downregulated in obese twins) (Pietiläinen et al., 2008). Similar designs 
employing metabolomics data have detected differences in serum and fat tissue lipid 
profiles of discordant MZ twin pair members; this work prompted subsequent simulation of 
lipid bilayer dynamics using lipidomics and gene expression data, which provided novel 
functional insights into the biological pathways underlying adipocyte expansion (Pietiläinen 
et al., 2011; Pietiläinen et al., 2007). Twin studies of obesity have also been carried out using 
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the microbiome; for instance, a comparison of faecal microbial communities in obese and 
lean MZ twins have indicated that obesity is associated with a reduced bacterial diversity 
and differential representation of specific bacterial genes and metabolic pathways 
(Turnbaugh et al., 2009). Interestingly, a study of ulcerative colitis (a form of inflammatory 
bowel disease) indicated that the condition may be associated with a loss of interaction 
between the mucosal transcriptional profile and the colonic microbiota, based on a 
comparison of discordant twins MZ that showed that fewer RNA transcripts correlate with 
bacterial genera in the affected than in the unaffected twins (Lepage et al., 2011). Another 
area of application concerns the study of the role of epigenetic variation (i.e., changes in 
gene activity that are not caused by changes in the DNA sequence) in disease pathogenesis. 
For instance, differential regulation of miRNA transcripts in lymphoblastoid cell lines in 
twins discordant for autism aided in the subsequent identification of ID3 and PLK2 genes 
(the target genes for two of the differentially expressed miRNAs) as candidate genes for 
autism (Sarachana, Zhou, Chen, Manji, & Hu, 2010). The analysis of DNA methylation 
patterns of MZ twins discordant for systemic lupus erythematosus (a chronic autoimmune 
inflammatory disease) identified several genomic regions in which DNA methylation was 
associated with the disease (Javierre et al., 2010).  

Aside from the study of disease etiology, the discordant MZ twin design can be used 
to study the timing of the occurrence of de novo mutations (i.e., mutations that arise in the 
offspring without being present in either parent; Veltman & Brunner, 2012). For instance, a 
de novo mutation present in a single MZ twin pair member only would indicate post-
twinning mutagenesis; a de novo mutation present in both MZ twin pair members indicates a 
pre-twinning mutation event. The presence of a mutation in the sodium channel α1 subunit 
gene (SCN1A) in multiple embryonic tissue lines in a twin affected by Dravet’s syndrome 
coupled with its absence in the unaffected twin, for instance, indicated that the mutation 
had likely occurred at the two-cell stage in the pre-morula embryo (Vadlamudi et al., 2010). 
Information on the timing of mutagenesis is of crucial importance in genetic counseling, as a 
mutation that occurred in the parental gamete is associated with a negligible risk of 
recurrence in additional offspring.  

Uni- and multivariate implementations of the classical twin design, as presented in 
Chapter 2, remain of utility too. These are increasingly employed to study a host of newly 
emerging phenotypes, including the epigenome, the transcriptome, the metabolome, the 
proteome, and the microbiome (J. P. van Dongen et al., 2012). The application of the classical 
twin design to gene expression data, for instance, has demonstrated the importance of both 
genetic and environmental factors in genome-wide expression levels, with the relevance of 
genetic and environmental influences varying over different genes and tissues (Mcrae et al., 
2007; York et al., 2005). Multivariate analyses can be employed to quantify the extent to 
which genetic and environmental factors that are shared across different genomic regions 
affect epigenetic regulation and gene expression, or biological variation across different cells 
and tissues (J. P. van Dongen et al., 2012). In addition, the quantification of the effect of 
genetic factors on epigenetic changes may be accomplished using the classical twin design. 
Thus far, such applications have demonstrated a low overall heritability of epigenetic 
changes across all loci, although substantial genetic influences on some loci (e.g., the 
imprinted IGF2–H19 locus) have been detected (Heijmans, Kremer, Tobi, Boomsma, & 
Slagboom, 2007).  

A number of other twin designs can be employed in the study of newly emerging 
biomedical phenotypes. For instance, the offspring-of-twins design can be used to study 
transgenerational inheritance of epigenetic regulation and the role of maternal effects on 
epigenetic marks (J. P. van Dongen et al., 2012), and longitudinal twin studies can be 
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employed to identify biomarkers associated with ageing (e.g., telomere length in relation to 
longevity; e.g., Bakaysa et al., 2007). Longitudinal twin designs may also be employed to 
resolve the direction of causation with respect to epigenetic changes, i.e., to distinguish 
between a situation in which an epigenetic change brought about a phenotypic condition 
from one in which an underlying cause brought about both the epigenetic change and the 
phenotypic condition.  

As evident from the above examples, the twin design remains a useful tool in 
present-day biomedical and psychiatric research. In return, modern technologies have aided 
the twin design, by enabling the explicit verification of some of its fundamental 
assumptions. For instance, next-generation sequencing has demonstrated that genetic 
sharing between MZ twins is, as expected, nearly 100% (although minor differences are 
sometimes detected), and genome-wide microsatellite data have indicated that the 
proportion of genetic sharing between DZ twins mostly lies between 42% and 58%, with an 
average close to 50% (Visscher et al., 2007). Aside from the evident value of disease-
discordant MZ twins in the study of a range of newly emerging phenotypes, the existence of 
discordant MZ twins also has implications for the prospect of genomic risk prediction and 
the ethical concerns that have been raised in this context. Namely, the existence of 
phenotype-discordant MZ twins indicates that the genome does not necessarily fully predict 
the phenotypic outcome of individuals. Thus, barring the case of fully penetrant traits, 
precise individual risk prediction based only on the DNA sequence is likely to remain 
unfeasible, even if all the genetic variation contributing to disease risk is identified. 
Moreover, this is true regardless of the trait’s heritability – for instance, despite 80% of 
individual differences in liability to schizophrenia being explained by genetic factors, MZ 
twin concordance for this disease is only ~40-50%. Similarly to various other phenomena 
related to the concept of heritability, this may sound somewhat counterintuitive. To place 
this in a broader context and outline what the definition of heritability does – and does not – 
entail, in the next section I review some of the other (mis)conceptions related to this concept, 
and their implications for prevention and treatment.  
 
Heritability – (mis)interpretations and implications for prevention and 
intervention 
 
As outlined in the present dissertation, research has highlighted the relevance of both 
genetic and environmental factors to observed individual differences in behavioral traits. 
For instance, the heritability of internalizing behaviors in 10-12 year old children is ~30% 
(Chapters 3 and 4), the heritabilities of NEO-FFI personality indicators in adults range from 
~60% to ~80% (Chapter 5), and the heritability of general cognitive ability increases from 
~40% in early childhood to ~70% in adolescence (Chapter 7). However, while the 
importance of environmental factors is usually interpreted as implying modifiability, 
heritability is frequently taken to imply immutability. In the present section I consider this 
issue (i.e., the implications of heritability for the prospects of modifying the level of a 
phenotype - e.g., is an 80% heritable trait easier to modify than a 20% heritable trait?), and, 
related to this, address several common misconceptions about the concept of heritability.  

Being a proportion of variance, heritability quantifies inter-individual differences, 
i.e., the proportion of individual differences in a phenotype explained by the variation in 
genetic polymorphisms relevant to the trait. This implies, amongst other things, that 1) 
heritability only gauges the relative contribution of the genetic loci that segregate in the 
population, i.e., it ignores the contributions of genetic loci that are monomorphic (although 
such loci contribute to many crucial aspects of human development, including those that are 
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prerequisites for the phenotype of interest to develop), 2) related to this, heritability pertains 
to variability, not to the absolute level of a trait, and 3) a heritability estimate cannot be 
interpreted on an individual level (e.g., a heritability estimate of 30% does not imply that 
30% of a child’s internalizing problems are due to his or her genes, with the remaining 70% 
being due to environmental factors). Related to this is the perceived immutability of the 
degree of importance of genetic factors in the etiology of a trait, as represented by a 
heritability estimate. Is heritability an immutable intrinsic property of a trait? For several 
reasons, no. Firstly, per definition, heritability depends on the population in which it is 
estimated, as both genetic and environmental variation are population-specific. The genetic 
variance depends on the segregation of alleles relevant to the trait, allele frequencies, and 
their effect sizes and mode of action, all of which may differ across populations. Similarly, 
the variance of environmental factors relevant to the trait can differ across populations. 
Think of an environment with a low degree of relevant non-genetic variability in which 
most of the variation in the phenotype is accounted for by genetic factors, in contrast to an 
environment with a high degree of non-genetic variability, in which the same phenotype is 
consequently less heritable. In relation to this, heritability may also be influenced by the 
level of the environment, as it has been shown that some environments facilitate the genetic 
expression of a trait, while others may suppress it. For instance, an intellectually stimulating 
environment might facilitate the (genetically influenced) differentiation between children in 
terms of their cognitive abilities, relative to a less stimulating environment in which there is 
nothing to elicit the bright children’s potential, thereby fostering a more uniform 
development. Another feature of heritability that highlights its dynamic nature is its age-
dependency: the heritabilities of many traits, including intelligence and internalizing 
problems, display an age-related increase (Bergen et al., 2007). This phenomenon may be 
partly due to active gene-environment correlation, i.e., to individuals selecting 
environments compatible with their genetic propensities, which in turn reinforces the 
expression of those propensities (e.g., Haworth & Davis, 2014; Plomin et al., 2008).  

Importantly, as mentioned, because it pertains only to individual differences, 
heritability is inherently uninformative on, and independent of, the absolute value of the 
phenotype. For instance, the steady increase in intelligence test scores over the past decades 
has not been accompanied by a change in heritability (Flynn, 1987; Kan, Wicherts, Dolan, & 
van der Maas, 2013; Sundet, Tambs, Magnus, & Berg, 1988). For similar reasons, heritability 
estimates are not necessarily informative on how modifiable the value of a trait is and, 
conversely, the success in changing the value of a trait is not necessarily informative on the 
importance of genes in explaining its variation (Haworth & Davis, 2014). To illustrate some 
of the above points, think of interpreting a statistic such as the mean number of bicycles per 
person in The Netherlands (presently .98) as immutable. Similarly as a change in the number 
of bicycles per person would lead to a change in the mean statistic, changes in trait values 
due to an environmental intervention may, depending on their pattern of influence, change 
the statistic describing its heritability. In this sense heritability is a descriptive; a statistic 
describing the state of affairs as it is, given various contextual factors that directly or 
indirectly enter the equation (e.g., the conduciveness of the environment to the genetic 
expression of a trait, the age of the population measured, the presence and magnitude of 
relevant environmental variation, etc.). The heritability estimate does not provide any 
information on what might be, were those factors different (in this sense, the use of the word 
‘estimate’ may perhaps be questioned as it implies the assessment of an intrinsic property of 
a trait, and a term along the lines of ‘descriptive’ may be more appropriate).  

Now that I have laid out several issues with respect to which the heritability estimate 
is uninformative (e.g., the absolute value of a phenotype, its intra-individual etiology, and 
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the potential to modify its value), the question of what heritability estimation and, more 
broadly, the findings of genetic research, can inform us on emerges as relevant. As 
mentioned, the heritability of a phenotype need not have implications for the potential 
success of environmental interventions. The intuition that the opposite is the case seems to 
stem from the idea that underlying biology is difficult to change. Indeed, the prospect of 
genetic engineering for complex traits is presently slim. However, genetic research can aid 
interventions insofar as it may provide information on mechanisms and causal pathways 
involved in the genetic etiology of disease (Haworth & Davis, 2014). Subsequent 
environmental interventions, which may target any level of physiology and behavior – from 
biological causal pathways to behavioral endpoints of interest – can significantly benefit 
from such information. While interventions of this type are, strictly speaking, not ‘genetic’ 
(as they do not alter the DNA sequence), they can utilize mechanistic knowledge on the 
phenotype’s genetic etiology to modify the connection between the genotype and the 
phenotype. A classic example is Phenylketonuria (a congenital condition characterized by a 
defective gene for the enzyme that breaks down phenylalanine, leading to abnormal brain 
development), whose heritability dropped from 100% to 0% due to an entirely 
environmental intervention, namely the elimination of phenylalanine from the affected 
children’s diet. In this case the connection between the phenotype and the genotype was 
effectively broken, resulting in the recessive homozygotes no longer developing the 
phenotype despite possessing the relevant alleles. Similar examples are found amongst 
complex traits, the genetic risk for many of which is commonly mitigated via environmental 
interventions (e.g., diabetes, obesity). A related, and presently underexplored issue is the 
genetic etiology of individual differences in treatment response and, in particular, the 
question of whether the same or different genes are involved in baseline phenotype and 
treatment response. Treated as error term in traditional intervention designs that focus on 
mean changes, individual differences in treatment response may potentially provide 
mechanistic insight into the efficacy of interventions (i.e., understanding why treatment 
works better for some people may help understand why it works at all), and inform future 
efforts on the potential value of personalizing treatment. Twin and family designs can make 
a significant contribution to addressing this and related questions (for instance, why 
individuals often rebound to their pre-intervention state, whether there are critical periods 
in which intervention is most effective, and how interventions exert their influence (e.g., 
epigenetic processes); Haworth & Davis, 2014). Ultimately, a better understanding of the 
genetic and environmental etiology of individual differences may result in better-informed 
and more efficient intervention and prevention designs.  
 
Conclusion 
 
As evident from the present dissertation, behavior genetic research has undergone radical 
development over the past half a decade. Numerous and varied features of the genetic 
etiology of behavioral traits, including internalizing psychopathology, personality, and 
intelligence, have been studied extensively and successfully using the existing methods. 
Presumably, the coming five years will entail improvements in the continuing efforts 
towards the identification of the relevant genetic variation, and the enhancement of the 
prospects of genetically informed prevention and intervention. The future developments in 
the relevant methodology in combination with the existing approaches (e.g., the use of twin 
designs in the study of newly emerging biomedical phenotypes, functional studies, and 
research on treatment response) should greatly increase the feasibility of this.  
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Appendices  
Appendices 2-5 can be obtained at http://sanjafranic.com/dissertation. 

 
Appendix 1. Introduction to Quantitative Genetic Theory 
 
Genetics: basic terms and concepts 
 
The human genome consists of DNA (deoxyribonucleic acid), a polymeric molecule 
comprised of a chain of monomeric subunits termed nucleotides. The bulk of the human 
genome - around 3,200,000,000 DNA nucleotides - is contained in the cell’s nucleus. The 
nucleotides are organized into 24 types of linear molecules, each contained in a different 
chromosome (22 autosomes, i.e., non-sex chromosomes, and 2 sex chromosomes). Vast 
majority of cells are diploid, i.e., they contain two copies of each autosome and two sex 
chromosomes (XX for females and XY for males), 46 chromosomes in total. These are 
somatic cells, in contrast to haploid sex cells or gametes, which contain a single copy of each 
autosome and a single sex chromosome.  

A gene is traditionally thought of as a sequence of DNA nucleotides coding for an 
RNA and/or polypeptide molecule (ref);34 for the current purpose we will adopt the 
definition of a gene as a region of the genomic sequence corresponding to a unit of 
inheritance. Genes may correspond to regulatory regions, transcribing regions and/or other 
functional sequence regions typically associated with the production of proteins; via this 
association, genes influence observable traits, also denoted phenotypes. Locus is the site of 
the gene on the chromosome. Alternative forms of a gene occupying a locus are denoted 
alleles. Genes with only one allele present in the population are termed monomorphic; those 
with two or more alleles are termed polymorphic (or segregating) genes. Despite the large 
number of alleles associated with certain genes (e.g., the HLA-B gene has over 400 alleles, 
ref), the descriptions that follow will be illustrated using the simplest instance, i.e., a diallelic 
gene (gene with only 2 alleles). 

In diploid cells, each chromosomal locus consists of a pair of alleles, each allele 
contained in one of the chromosomes of a chromosomal pair. The two corresponding alleles 
constitute the genotype for that particular locus. For instance, denoting alleles at a single 
diallelic locus A1 and A2, the possible genotypes for this locus are A1A1, A1A2, and A2A2. 
Considering two diallelic loci, the possible genotypes are A1A1B1B1, A1A1B1B2, A1A1B2B2, 
A1A2B1B1, A1A2B1B2, A1A2B2B2, A2A2B1B1, A2A2B1B2, and A2A2B2B2. Homozygosity refers to 
the presence of identical alleles at both corresponding loci of a chromosomal pair; e.g. A1A1 
for a single locus, or A1A1B2B2 for two loci. Heterozygosity denotes the opposite (e.g., A1A2 
or A1A2B1B2). Polygenicity is the phenomenon of a trait being affected by genes at multiple 
loci. Pleiotropy is the phenomenon of a gene affecting the expression of more than one trait.  
   
Quantitative genetic theory: means, variances, and resemblance 
between relatives 
 
Genetic applications of SEM are rooted in quantitative genetic theory. In contrast to classical 
Mendelian genetics, which deals with the inheritance of inter-individual differences in traits 

                                                
34 The definition of a gene is becoming increasingly replete with controversy. See e.g. Pearson, 2006. 
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along which individuals can be divided into distinct categories (e.g., eye color), quantitative 
or biometrical genetics is concerned with inheritance of inter-individual differences in traits 
which vary continuously (i.e., quantitative traits, e.g. height). The fact that the intrinsically 
discontinuous variation in the type of alleles present at the genome may yield continuous 
variation in observed traits is explained by a) the supposition of polygenic inheritance 
(quantitative traits are assumed to be affected by genes at multiple genetic loci, whose 
contribution to the variation in the phenotype is small in comparison to effects of other 
sources of variation), and b) non-genetic variation, which is truly continuous, being 
superimposed on the genetic effects on the phenotype. Given the intrinsic reliance of genetic 
structural equation models on the quantitative genetic theory-based predictions of genetic 
and environmental covariation between individuals of differing degrees of genetic 
relatedness, before addressing genetic applications of SEM, we will first review how those 
predictions are derived (Falconer & Mackay, 1996).  
 
Values and means 
 
The measured value of a trait, or its phenotypic value (P), is typically conceptualized as a sum 
of two components, one attributable to the particular assemblage of segregating genes 
relevant to the phenotype in question (the genotypic value, G), and the other to all of the non-
genetic factors affecting the phenotype (environmental deviation, E).35 The mean 
environmental deviation in the population is typically scaled at zero; thus the mean 
phenotypic value equals the mean genotypic value. The aim of succeeding sections will be 
to demonstrate the derivation of the average degree of genetic resemblance between 
relatives; in this light, we focus primarily on the genotypic value.  

Consider, for instance, a single locus with two alleles, A1 and A2. The genotypic 
values of the two homozygotes (A1A1 and A2A2) and that of the heterozygote (A1A2) may be 
denoted +a, -a, and d, respectively (Figure 1). The point of zero genotypic value is defined as 
the midpoint between the two homozygotes. The value of d reflects the degree of genetic 
dominance: in the absence of dominance, d = 0; if A1 is dominant over A2, d > 0; if A2 is 
dominant over A1, d < 0; in case of overdominance, d > a or d < -a.  
 

 
 

Figure 1. Arbitrarily assigned genotypic values in a system with 2 alleles (Falconer & 
Mackay, 1996). 
 
If the relative frequencies with which the A1 and A2 alleles occur in the population of 
interest are denoted p and q, respectively (p + q = 1), the frequencies of the genotypes 
arising from the process of random mating36 between individuals within this population are  

                                                
35 In the text that follows we refer only to the component of P that varies in the population; thus the effects of 
monomorphic genes, as well as the non-variable aspects of the environment, are ignored (but may be modeled by 
addition of appropriate constants).  
36 Mating is random if an individual has an equal chance of mating with any other individual in the population. For 
effects of non-random mating see e.g. Falconer & Mackay (1996).   
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given by the binomial expansion (p + q)2 = p2 + 2pq + q2, as shown in Table 1.37 The mean 
genotypic value of this locus may be obtained by multiplying the value of each genotype by 
its frequency and summing over the three genotypes: 
 
μG = p2a + 2pqd - q2a = a(p – q)(p + q) + 2dpq = a(p – q) + 2dpq. 
 
The allelic equivalent of the genotypic value is average effect of the allele. The average effect 
of an allele is the mean deviation from the population mean of individuals who received 
that allele from one parent, the other allele having come at random from the population 
(Table 2). For instance, if a number of gametes carrying the A1 allele unite at random with 
gametes from the population (where p is the frequency of the A1 allele and q of the A2 
allele), the frequencies of the genotypes produced will be p of A1A1 and q of A1A2. Taking 
into account these frequencies and the genotypic values associated with each genotype, the 
mean genotypic value of the locus may be expressed as pa + qd. Subtracting the population 
mean from this expression yields the expression for the average effect of the A1 allele: α1 = 
q[a + d(q – p)]. Correspondingly, the average effect of A2 is α2 = – p[a + d(q – p)]. The 
average effect may also be expressed in terms of the average effect of gene substitution, which is 
simply the difference between the average effects of the two alleles: α = α1 – α2 = a + d(q – 
p). The average effects of the two alleles may be conveyed in terms of the average effect of 
gene substitution: α1 = qα, and α2 = -pα (Table 2). 
 Summing the average effects over the two alleles at a locus yields a component of 
the genotypic value termed the breeding value or the additive genotype (A). The remainder of 
the genotypic value is the dominance deviation (D). Dominance deviation arises in the 
presence of genetic dominance (i.e., within-locus interaction between alleles), and reflects the 
possible non-additive effects arising from the allelic pairing at a locus. It may be derived as 
D = G – A (Table 2). If the genotypic value refers to an aggregate value of genotypes across 
more than one locus, the expression for G takes on the form: G = A + D + I, where I stands 
for interaction deviation38 arising from possible non-additive gene co-action across loci (i.e., 
epistasis). 
 
Variance 
 
Questions formulated within the context of genetic study of quantitative traits pertain 
predominantly to variation, the basic idea being the decomposition of phenotypic variance 
into components attributable to different causes. These variance components correspond to 
components of value described in the last section, so that e.g. the genotypic variance is the 
variance of the genotypic values. Assuming that the genotypic values and the 
environmental deviations are not correlated and do not interact, the variance decomposition 
is: 
 
VP = VG + VE 

= VA + VD + VI + VE, 
 
the more general expression being VP = VG + VE + 2covGE + VGE, where covGE is the 
covariance between genotypic values and the environmental deviations, and VGE the 

                                                
37 p2, 2pq, and q2 adequately describe the proportions of genotypes in the offspring generation in populations with no 
migration, mutation or selection. For effects of migration, mutation and selection see e.g. Falconer & Mackay (1996).   
38 Alleles may interact in pairs or threes or higher numbers.  In the expression above, aggregate interactions of all sorts 
are treated together as a single interaction deviation. 
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variance due to interaction between genotypes and the environment. The ratio VA/VP 
represents the degree to which the variation in the phenotype is due to variation in the 
breeding values, and is known as the heritability coefficient.  
 
Covariance 
 
The phenotypic covariance between individuals may generally be expressed in terms of the 
aforementioned variance components. In terms of the covariation between genotypic values, 
for instance, the resemblance between offspring and parent may be represented as the 
covariance of the parents’ genotypic values of with the mean genotypic values of their 
offspring. Since the mean value of the offspring is by definition half the breeding value of 
the parent, the covariance to be deduced is that of the parent’s genotypic value (G = A + D) 
with half of their breeding value (½A): covG_OP = [∑½A(A + D)]/N = (½∑A2 + ½∑AD)/N = 
½∑A2/N + ½∑AD/N = ½VA + ½covAD. The covariance between the breeding values and 
dominance deviations (covAD) is zero, as can be verified by multiplying each of the breeding 
values by the corresponding dominance deviation and frequency (given in Table 2) and 
summing over the three genotypes: –4p2q3αd + 4p2q2(q – p)αd + 4p3q2αd = 4p2q2αd(– q + q – 
p + p) = 0. Thus the genetic component of the parent-offspring covariance equals covG_OP = 
½VA. 
 In full siblings, the mean additive genotypic value of a group of siblings is the 
mean breeding value of the two parents. Denoting the breeding values of the two parents A 
and A’, the covariance between the additive genotypic values of offspring is covA_FS = ∑½(A 
+ A’)½( A + A’)/N = ∑¼(A + A’)2/N = ∑¼(A2 + 2AA’ + A’2)/N = ¼VA + ¼VA’ + ½covAA’. The 
assumption of random mating implies that the covariance between the parents’ breeding 
values (covAA’) is zero. Thus the covariance of the breeding values of full siblings reduces to 
covA_FS = ¼VA + ¼VA’. If the additive genetic variance is equal in the two sexes, this 
expression becomes covA_FS = ¼VA + ¼VA = ½VA. In addition, if parental genotypes at a 
single locus are A1A2 and A3A4, the offspring may have one of the four possible genotypes: 
A1A2, A1A4, A2A3, and A2A4. If the first sibling has any of these genotypes, the probability 
that the second sibling has the same genotype is ¼. Thus, one quarter of full siblings have 
the same genotype for this locus, and consequently the same dominance deviation. For these 
pairs, the covariance due to dominance deviations is cov = ∑D2/N = VD. In other pairs the 
covariance due to dominance deviations is zero. Thus, over all pairs of siblings, the 
covariance due to dominance deviations is ¼VD. The total genotypic covariance between full 
siblings is therefore covG_FS = ½VA + ¼VD.  
 The same expression holds true for dizygotic (fraternal, DZ) twins, whose degree 
of genetic relatedness is the same as that of full siblings. Monozygotic (identical, MZ) twins 
have identical genotypes and therefore share their entire genotypic variance, thus covG_MZ = 
VA + VD. 
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Nederlandse Samenvatting 
 
Dit proefschrift, getiteld Van Structural Equation Modeling naar Next-Generation Sequencing: 
Het Evoluerende Landschap van de Moderne Gedragsgenetica, gaat over de ontologie van latente 
psychometrische variabelen en over de genetica van intelligentie. Hieronder geef ik een 
samenvatting van de voorgaande acht hoofdstukken. 

In hoofdstuk 2 wordt de techniek van het structural equation modeling geïntroduceerd, 
zoals deze toegepast wordt in het klassieke tweelingonderzoek. Eerst bespreek ik de 
basismethode voor het analyseren van overeenkomsten tussen familieleden om conclusies te 
kunnen trekken over de effecten van niet-geobserveerde genetische factoren en 
omgevingsfactoren. Daarna komt de implementatie van verschillende modellen in structural 
equation modeling aan bod voor genetisch-informatieve studies, waaronder simplex en 
latente groeicurvemodellen. Vervolgens worden structural equation-modellen besproken die 
speciaal in de genetica zijn ontwikkeld, waaronder factoranalysemodellen met 
gemeenschappelijke en onafhankelijke factoren, modellen voor de interactie tussen 
genotype en omgeving, sekse-limitatiemodellen, en causale modellen waarbinnen wordt 
getracht de richting van causale effecten te bepalen. Het hoofdstuk eindigt met een discussie 
over het opnemen van gemeten genetische varianten in associatieanalyses gebaseerd op 
structural equation modeling.  

Hoofdstuk 3 gaat over het gebruik van genetisch-informatieve analyses op het 
niveau van afzonderlijke items om meer te weten te komen over de ontologie van latente 
gedragsfenotypes (bijvoorbeeld depressie en algemene cognitieve vaardigheden). Hiervoor 
wordt gekeken naar de mediërende rol die ze spelen met betrekking tot genetische en 
omgevingsinvloeden. De beschikbaarheid van genetisch-informatieve data op itemniveau 
maakt het mogelijk om 1) te onderzoeken wat de empirische implicaties zijn van de 
realistische interpretatie van latente psychometrische eigenschappen, te weten hoe de 
geobserveerde covariatie gemedieerd wordt door genetische en omgevingsinvloeden, en 2) 
de dimensionaliteit van de latente covariantiestructuren (zowel genetisch als van de 
omgeving) te bestuderen die leidt tot de geobserveerde itemcovariatie. Ik merk op dat de 
typische problemen in het vaststellen van dimensionaliteit in psychometrisch onderzoek een 
gevolg kunnen zijn van de verschillen in de dimensionaliteit van genetische en 
omgevingscovariantiestructuren, en stel voor om genetisch-informatieve data op itemniveau 
te gebruiken als een hulpmiddel om meer inzicht te krijgen in de fenotypische 
dimensionaliteit.  

In hoofdstuk 4 wordt de methodologie uit hoofdstuk 3 gebruikt om de ontologie en 
de genetische en omgevingsetiologie van de internalizing syndrome dimensions van de Child 
Behavior Checklist te onderzoeken (CBCL; Achenbach, 1991; Verhulst, Van der Ende, & Koot, 
1996). De resultaten suggereren dat de verschillende syndromen van de CBCL beter 
begrepen kunnen worden als een samengesteld geheel van vrij te schatten genetische en 
omgevingsinvloeden dan als causale entiteiten die zouden leiden tot de waargenomen 
covariatie tussen symptomen. Bovendien geven de resultaten aan dat er een 
gemeenschappelijke genetische basis is voor angst, depressie en teruggetrokken gedrag, 
waarbij het onderscheid tussen deze syndromen voornamelijk ontstaat door individu-
specifieke omgevingsfactoren. De bevindingen worden besproken in de context van de 
bekende moeilijkheid een onderscheid te maken tussen verschillende diagnostische 
categorieën zoals angst en depressie. 

In hoofdstuk 5 wordt dezelfde methodologie gebruikt om 1) de houdbaarheid van de 
realistische interpretatie van de Big Five persoonlijkheidsdimensies (McCrae & Costa, 2008) 
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te onderzoeken, en 2) om de structuur van de genetische en omgevingscovariantiematrices 
te analyseren die ten grondslag liggen aan de geobserveerde covariatie van de 
persoonlijkheidsitems van de NEO Five Factor Inventory (NEO-FFI; Costa & McCrae, 1992). 
Het is opmerkelijk dat deze covariantiematrices vergelijkbare (vijf-factor) structuren 
vertonen, in tegenstelling tot de resultaten voor de CBCL. Echter, de latente 
persoonlijkheidsdimensies lijken de genetische en omgevingseffecten op de items niet 
volledig te verklaren, zoals te verwachten zou zijn onder de realistische interpretatie van de 
Big Five. Ik bespreek de implicaties hiervan voor de substantieve interpretatie van de Big 
Five. 

Hoofdstuk 6 geeft een overzicht van de methodologie die gebaseerd is op het 
modelleren van genetische covariantiestructuren voor onderzoek naar angst en depressie bij 
kinderen, en het geeft een overzicht van de relevante bevindingen. De vragen die aan bod 
komen gaan verder dan alleen het inschatten van de bijdragen van genetische en 
omgevingsfactoren aan angst en depressie, wat relatief simpel is. Het blijkt dat er relatief 
consistente evidentie is voor a) kleine tot verwaarloosbare sekseverschillen in de genetische 
etiologie van deze aandoeningen, b) een belangrijke rol voor genetische factoren in het 
verklaren van stabiliteit door de tijd heen, c) een bijdrage van genetische factoren aan de 
comorbiditeit tussen angst en depressie, d) een mogelijke rol van genotype-
omgevingsinteractie, e) een rol voor een correlatie tussen genotype en omgeving, en f) een 
ondergeschikte, misschien zelfs helemaal geen etiologische rol voor interactie tussen 
broertjes en zusjes. 

De hoofdstukken 7-9 gaan over de genetica van intelligentie. In hoofdstuk 7 worden 
alle longitudinale data met betrekking tot verbale, non-verbale en algemene intelligentie 
samen geanalyseerd, zoals verzameld in het Jonge Nederlands Tweelingen Register (Bartels 
et al., 2007) in 2009. Ik heb een simplex model gebruikt om de genetische en niet-genetische 
oorzaken van de temporele stabiliteit van de data te analyseren. Gegeven deze uitkomsten 
bespreek ik vervolgens hoe de al bestaande longitudinale data het beste gebruikt kunnen 
worden in de context van gene finding studies. De hoge mate van stabiliteit van de 
gesommeerde genetische factoren geeft aan dat dezelfde set genen ten grondslag ligt aan de 
variatie in intelligentie tijdens de kinderjaren; dit rechtvaardigt het gebruik van een lineaire 
combinatie van scores van de verschillende leeftijdsgroepen voor genetisch 
associatieonderzoek.  

De resultaten uit hoofdstuk 7 zijn gebruikt voor het modelleren van het fenotype in 
de associatiestudies van hoofdstuk 8 en 9. In hoofdstuk 8 wordt een onderzoek besproken 
waarin de associatie wordt getest tussen normale intelligentie en veelvoorkomende single-
nucleotide polymorphisms (SNP's) in 43 genen die betrokken zijn bij intellectuele stoornissen. 
Het uitgangspunt was redelijk eenvoudig, namelijk dat de genetische variatie die van 
invloed is op continue, polygenetische eigenschappen (bijvoorbeeld normale intelligentie) 
op dezelfde plekken van het genoom kan liggen die ook verantwoordelijk zijn voor 
vergelijkbare monogenetische fenotypes (bijvoorbeeld intellectuele stoornissen). Hoewel er 
voor de afzonderlijke SNP's geen significanties werden gevonden, wezen de analyses met 
SNP's wel op een verrijking van de set van kandidaatgenen voor polymorfismes met 
betrekking tot intelligentie. Dit is het eerste onderzoek dat laat zien dat genen die betrokken 
zijn bij monogenetische aandoeningen met betrekking tot intellectueel functioneren ook 
normale intelligentie beïnvloeden.  

In hoofdstuk 9 wordt het werk uit hoofdstuk 8 uitgebreid tot 168 genen die 
betrokken zijn bij intellectuele stoornissen, nu ook met gebruik van next-generation exon 
sequencing. Het gaat daarbij om de mogelijke effecten van zeldzame genetische variatie. In 
overeenstemming met de literatuur werd geen verrijking gevonden van de set van 
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kandidaatgenen voor mutaties die betrokken zijn bij normale intelligentie. Dit resultaat 
wordt besproken in de context van de literatuur. 
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