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CHAPTER 1. GENERAL INTRODUCTION 
There is a well-established association between the level of education attained by parents 
and their children1. This intergenerational transmission of educational attainment is a 
phenomenon observed since the 19th century, prevalent in most countries, and strongly 
linked to the transmission of broader socioeconomic status (SES)1–5. Many other traits have 
been found to be correlated across generations, including mental health indicators. Offspring 
of parents with mental health issues are at an increased risk of developing such issues 
themselves6. Furthermore, there is an unequal educational distribution of mental illness, 
with individuals with lower levels of education being more likely to exhibit symptoms and 
to be diagnosed, and individuals with mental illness being more likely to attain lower levels 
of education7. However, the underlying causal mechanisms of these relationships remain 
poorly understood. 

In this doctoral thesis, I aim to deepen our understanding of the mechanisms underlying the 
correlations between educational attainment and mental health, and the intergenerational 
transmission of these traits. The set of (intergenerational) relationships that might exist can 
be found in Figure 1. To investigate the highlighted relationships, I employ genetics as a tool. 
Genetically-informed designs exploit genetic information inferred from measured genetic 
variation (difference in DNA between people) and/or from the genetic similarity expected 
from familial relationships. These designs are uniquely qualified to help to unveil these 
mechanisms8–12: they offer new approaches to investigate the aetiology of traits and they 
represent powerful tools to account for genetic and environmental confounding, enhancing 
causal inference.

When possible, I triangulate across datasets and across various complementary research 
designs. Triangulation is the practice of integrating results from multiple sources of data, 
methodological approaches, or multiple analytical designs, thus reducing the impact of 
biases, errors, or limitations that may arise from relying on a single method or source of data. 
By examining the same phenomenon using several approaches, triangulation increases the 
reliability of our findings and provides a more comprehensive understanding of the research 
question at hand13–16.
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Figure 1 | Hypothesized intergenerational effects of education and mental health. Double-headed 
arrows are pathways for which I do not have a strong hypothesis on the direction of causation, or for 
which bidirectional effects are hypothesized. Single-headed arrows are pathways for which a direction of 
causation is hypothesized: parents’ education is only believed to be affected by their offspring’s education 
or mental health in the rare case of parents being in education during or after the child is of school age. In 
this thesis, I investigate the highlighted pathways.

By using triangulation across genetically-informed designs, I hope to strengthen causal 
inferences and provide a more comprehensive understanding of educational success, 
and its link with mental health, as well as the factors involved in the transmission of these 
traits across generations. I investigate what contributes to educational attainment, notably 
cognitive and noncognitive aspects of educational attainment (Chapter 2), and how 
genetically-informed designs might reveal parental environmental effects on their offspring’s 
education (Chapter 3). I investigate the causal relationship between educational attainment 
and mental health (Chapter 4), and the effect of parental mental health on their children’s 
academic achievement (Chapter 5).

Noncognitive aspects of educational attainment
Many individual traits might contribute to the education success of one individual, especially 
regarding their educational attainment. Educational attainment is the level of education a 
person has completed, while educational achievement refers to academic performance, used 
as a measure of the knowledge and abilities acquired during education. One well-studied 
trait contributing to education is cognitive performance (i.e. cognitive skills or intelligence), as 
measured by cognitive tests. Cognitive performance is known to be correlated to educational 
achievement and attainment between 0.4 and 0.817–20, sharing large overlapping genetic 
influences (genetic correlations ~ 0.7)21–23. Though it should be noted the relation between 
cognition and education is likely bidirectional24, higher cognitive performance increases 
educational opportunities. However, traits beyond cognitive performance also contribute 



Chapter 1

12

to educational attainment. These traits have been named according to what they are not: 
noncognitive skills. They are also sometimes referred to as soft skills or socio-emotional 
competencies. But what are these noncognitive skills? Do they matter for educational 
attainment and other life outcomes? 

Noncognitive skills suspected to matter for education include self-control, persistence, 
attention, motivation, curiosity, and consciousness25–29. So far, research has not reached a 
consensus on a definition of these noncognitive aspects of education. These factors have 
been measured and defined in many ways across different individual’s ages, cohorts and 
scientific fields. Different measures differ in their consistency over time, in how heritable they 
are and, notably, they differ in their association with educational outcomes25,30. 

Genetic analyses can help us clarify the contribution of noncognitive skills to educational 
attainment and what these skills are and/or how they relate to other traits. A genome-wide 
association study (GWAS) examines the association of millions of genetic variants (single 
nucleotide polymorphisms: SNPs) with a trait. This information allows an understanding of 
the genetic architecture of the trait, including which genes and biological pathways might 
be involved in the expression of this trait. GWAS data makes it possible to calculate genetic 
correlations between any two GWAS-ed traits, even when they have not been measured 
in the same sample. A GWAS of noncognitive aspects of educational attainment could 
therefore help us clarify the genetic aetiology of noncognitive skills and their contribution to 
the (genetic) correlations between education attainment and other behavioural and health 
outcomes.

There has been an increase in our understanding of the genetic aetiology of cognitive skills 
and education attainment in the last years, whereas the genetics of noncognitive aspects 
of education are still mostly unknown. As GWAS requires the measure of the target trait in 
a large genotyped sample, the heterogeneity and lack of consistent noncognitive measures 
across large cohorts with genetic data prohibit a direct GWAS of noncognitive skills. 

In Chapter 2, I develop a new approach to run a GWAS, which we named “GWAS-by-
subtraction”. I apply this approach to identify genetic variants associated with noncognitive 
aspects of educational attainment. As it is difficult to obtain noncognitive measures in large 
samples, I rely on previously published GWAS data and develop a method that allows to 
study a phenotype that was never directly measured. As the nature of noncognitive skills is 
unclear, noncognitive skills were conceptualized as the broad phenotype it was first defined 
as: all contributions to educational attainment that are not cognitive skills31,32. This GWAS-
by-subtraction relies on structural equation modelling to subtract the genetic variance of 
cognitive performance from the genetic variance of educational attainment, giving us access 
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to the genetic variance of noncognitive aspects of educational attainment. This GWAS of 
noncognitive aspects of educational attainment should therefore be highly associated with 
educational attainment but not with cognitive performance. 

To perform the GWAS-by-subtraction, well-powered GWASs of educational attainment (EA; 
N = 1.1M)21 and of cognitive performance (N = 257,841)21, executed in European-ancestry 
populations, were available. To confirm the GWAS of noncognitive aspects of EA is highly 
associated with EA but not with cognitive performance, I investigate its associations in out-
of-sample data, including the Netherlands Twin Registry, the National Longitudinal Study of 
Adolescent to Adult Health, the Texas Twins Project, the Dunedin Longitudinal Study, E-Risk 
Longitudinal Twin Study, and the Wisconsin Longitudinal Study cohorts. Using cognitive 
and educational measures in these cohorts and existing GWAS summary statistics, I 
perform a phenotypic annotation to identify behavioural, psychological, and health traits 
associated with the cognitive and/or noncognitive components of education. Using several 
gene-expression datasets and brain imaging GWASs, biological annotation was done to 
identify shared and specific neurobiological correlates of the cognitive and noncognitive 
components of education. 

Parental noncognitive influences on offspring’s education 
Parents and their offspring tend to have similar educational outcomes. Many studies have 
investigated how much certain parental characteristics might influence offspring education, 
but relatively few have considered noncognitive aspects of educational attainment. Do 
parents’ noncognitive skills affect their offspring’s educational outcomes? Research 
suggests that parents socially influence their children’s noncognitive skills including emotion 
regulation, social capacities, attitudes and motivations33,34. Given that noncognitive skills 
seems to support education, we expect parents’ noncognitive skills to also affect children’s 
educational outcomes possibly through parenting and creating a nurturing environment.

Answering this question is challenging. As discussed for Chapter 2, the assessment of 
parental noncognitive skills is not straightforward. An additional challenge is the need to 
distinguish the social transmission of skills from parent to child from genetic transmission. 
Parents not only shape their children’s environment, but they also pass on their genetic 
predispositions, which makes it difficult to distinguish the effects of one from the other35. We 
cannot simply correlate parental noncognitive skills to child school outcomes to establish a 
causal relation.

Genetically-informed designs can help us assess the potential environmental effect of 
parental noncognitive skills, controlling for genetic transmission. Relying on the GWAS 
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of noncognitive aspects of educational attainment developed in Chapter 2, I compute 
polygenic scores (PGS) of cognitive and of noncognitive aspects of EA. By aggregating the 
effects of one person’s genetic variants based on the effect sizes from the GWAS, I obtain 
an index summarizing the individual’s trait-specific genetic endowment. I therefore obtain 
a proxy measure of (the genetics of) noncognitive skills in large cohorts with genotyped 
individuals. While this proxy measure is imperfect, it is comparable across cohorts and 
allows to obtain information for individuals whose noncognitive skills were never measured. 

Additionally, several designs leveraging PGS and family relationships allow to disentangle 
a genetic effect of the offspring’s PGS on the offspring’s trait (direct genetic effect), and an 
environmentally-mediated effect of the parental PGS on the offspring’s phenotype (parental 
indirect genetic effect). The presence of indirect genetic effects of noncognitive skills would 
therefore suggest that environmental factors related to the parents’ noncognitive skills also 
influence the offspring’s educational outcomes.

These family-based designs typically leverage parents-offspring trios, siblings (notably twins), 
or adopted individuals. The idea behind them is either to break up or control for the gene-
environment correlation resulting from the transmission of both genes and environment from 
parents to children. For parents-offspring trios, knowing the genetic variants of both parents 
and offspring permits to identify genetic variants not transmitted to the child, variants which 
could therefore only be associated with the child’s education via the child’s environment. In 
the case of an adopted child, the child is not genetically related to their adoptive parents, 
so the estimated effect of the child’s PGS on the child trait only reflects their direct genetic 
effects (no inflation by parental indirect genetic effects). For siblings, comparing the siblings’ 
PGS adjusts for shared genetic effects (which include parental indirect genetic effects). In 
Chapter 3, I extend the adoption and siblings designs to recover an estimate of the parental 
indirect genetic effects: by contrasting PGS estimates for adopted and non-adopted children 
and contrasting PGS effects obtained with and without comparing siblings.

To estimate the indirect genetic effects of noncognitive skills on education in Chapter 3, I 
triangulate across these three family-based PGS designs using parents-offspring trio, using 
adoptees, and using siblings. I do so in three large family cohorts: the Netherlands Twin 
Register, UK Biobank, and UK Twins Early Development Study. Triangulation across these 
designs and across cohorts strengthens our conclusions. 

As the designs to identify (in)direct genetic effects were new (post 2018), little was known 
about the sources of biases and the expected direction of biases of each of these approaches. 
In Chapter 3, I additionally performed extensive simulations to investigate the sensitivity of 
the three designs to common biases in PGS studies. Supplementary sensitivity analyses 
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were then performed in the three cohorts to estimate the presence of these biases. 

Educational attainment and mental health 
Previous studies show that the risk of being diagnosed with a mental disorder is higher 
among those with lower educational attainment36–38. Does this correlation reflect a causal 
relationship between educational attainment and mental health? This association 
could indeed result from the causal effect of education attainment on mental health, or from 
the causal effect of mental health on educational attainment. Alternatively, it could result 
from confounding factors influencing both education and mental health, such as childhood 
socioeconomic status. 

Genetically-informed designs can help to examine causality (or its lack thereof). In Chapter 
4, I apply two quasi-experimental designs that can, given that a set of assumptions are met, 
test for a plausible causal effect. Triangulating these two designs with different assumptions 
and bias additionally strengthens our conclusions. 

I first employ a within-sibship design: Comparing siblings allows to adjust the association 
between EA and psychiatric disorders for confounding factors that are shared between 
siblings, without having to measure them. I contrast this approach with a two-sample 
mendelian randomization approach. Mendelian randomization39 leverages the fact that 
genetic variants can be used as instrumental variables due to two characteristics: genetic 
variants are fixed at birth and therefore free from reverse causation, and they are randomly 
inherited from parents. Mendelian randomization, under specific assumptions, therefore 
provides us with a causal estimate, for a causal effect in a specific direction. 

In Dutch national registry data (i.e. Statistics Netherlands, or CBS), I compare the relationship 
between the number of years of education and diagnoses for 17 psychiatric disorders within 
1.7 million siblings. The national register offers an almost unbiased view of DSM-IV diagnosis 
of 17 psychiatric diagnoses in second-line psychiatric care. For the two-sample mendelian 
randomization, I use genetic variants associated with EA and 9 psychiatric diagnoses, based 
on data aggregated across millions of individuals in numerous large GWAS studies. 

Parental mental health and children’s education
Children of parents with psychopathology generally do less well in school than their 
peers. However, parental symptoms or disorders need not be responsible for a child’s 
lower achievement, as other familial factors could be at play. As mentioned earlier, genetic 
transmission or the effect of other confounding factors such as socioeconomic status might 
create this association. So does parents’ mental health affect the education of their 
children?
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To account for confounding factors, in Chapter 5, I extend the within-sibship design to 
compare siblings and their children: Is the sibling with worse mental health more likely to have 
children who do poorly in school? Comparing families whose parents are siblings controls 
for unmeasured factors shared among adult siblings (e.g. genetics and socioeconomic 
status) that might confound the relationship between parental mental health and offspring’s 
academic achievement. I analyse data from up to 9,000 families of the longitudinal Norwegian 
Mother, Father, and Child Study (MoBa). Parents filled out surveys on their symptoms of 
anxiety, depression, eating disorders, attention deficit hyperactivity disorder, and alcohol 
problematic use. I specifically focus on the questionnaire administered during pregnancy 
and at the closest time to the child’s outcome. Children in 5th Grade (aged 10) participated 
in nationally-standardised tests of mathematics, reading comprehension, and English (as an 
additional language). 

Synthesizing findings and future directions
Finally, in Chapter 6, I summarize my research. In Chapter 7, I integrate the knowledge 
acquired during this thesis and discuss the potential impact of my research. I reflect on 
my use of observational data, triangulation, and genetically-informed designs, and suggest 
future research directions. 

The work done in this thesis would not have been possible without the generosity of many. 
Notably, my analyses relied on the data from the Netherlands Twin Register, the National 
Longitudinal Study of Adolescent to Adult Health, the Texas Twins Project, the Dunedin 
Longitudinal Study, the E-Risk Longitudinal Twin Study, the Wisconsin Longitudinal Study, 
the UK Biobank, the UK Twins Early Development Study, the Norwegian Mother, Father and 
Child Study, the Dutch and the Norwegian national population registries and many other 
cohorts whose data was used within published GWAS summary statistics. This dissertation 
would not have been possible without the participants and everyone else involved with these 
data.
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GWAS-by-subtraction of noncognitive skills 

CHAPTER 2

INVESTIGATING THE 
GENETIC ARCHITECTURE OF 
NONCOGNITIVE SKILLS USING 
GWAS-BY-SUBTRACTION

Published as: Demange, P.A.*, Malanchini, M.*, Mallard, T.T., Biroli, P., Cox, S.R., 
Grotzinger, A.D., Tucker-Drob, E.M., Abdellaoui, A., Arseneault, L., van Bergen, E., 
Boomsma, D.I., Caspi, A., Corcoran, D.L., Domingue, B. W., Harris, K.M., Ip, H.F., 
Mitchell, C., Moffitt, T.E., Poulton, R., Prinz, J.A., Sugden, K., Wertz, J., Williams, 
B.S., de Zeeuw, E.L., Belsky, D.W.*, Harden, K.P.* & Nivard, M.G.* (2021). Investigating 
the genetic architecture of noncognitive skills using GWAS-by-subtraction. Nature 
Genetics, 53(1), 35–44. https://doi.org/10.1038/s41588-020-00754-2  

Supplementary materials accessible at:

https://www.nature.com/articles/s41588-020-00754-2#Sec32
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ABSTRACT
Little is known about the genetic architecture of traits affecting educational attainment other 
than cognitive ability. We used genomic structural equation modelling and prior genome-
wide association studies (GWASs) of educational attainment (N = 1,131,881) and cognitive 
test performance (N = 257,841) to estimate SNP associations with educational attainment 
variation that is independent of cognitive ability. We identified 157 genome-wide significant 
loci and a polygenic architecture accounting for 57% of genetic variance in educational 
attainment. Noncognitive genetics were enriched in the same brain tissues and cell types as 
cognitive performance but showed different associations with grey-matter brain volumes. 
Noncognitive genetics were further distinguished by associations with personality traits, 
less risky behaviour, and increased risk for certain psychiatric disorders. For socioeconomic 
success and longevity, noncognitive and cognitive-performance genetics demonstrated 
associations of similar magnitude. By conducting a GWAS of a phenotype that was not 
directly measured, we offer a view of genetic architecture of noncognitive skills influencing 
educational success. 
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INTRODUCTION 
“It takes something more than intelligence to act intelligently.”
– Fyodor Dostoyevsky, Crime and Punishment

Success in school – and life – depends on skills beyond cognitive ability. Randomized 
trials of early life education interventions find substantial benefits to educational outcomes, 
employment and adult health, even though the interventions have no lasting effects on 
children’s cognitive functions40,41. These results have captured the attention of educators 
and policy-makers, motivating interest in so-called “noncognitive skills”42–44. Noncognitive 
skills suspected to be important for educational success include motivation, curiosity, 
persistence, and self-control26–28,45,46. However, questions have been raised about the 
substance of these skills and the magnitudes of their impacts on life outcomes47. 

Twin studies find evidence that noncognitive skills are heritable48–52. Genetic analysis could 
help clarify the contribution of these skills to educational attainment and elucidate their 
connections with other traits. However, lack of consistent and reliable measurements of 
noncognitive skills in existing genetic datasets poses challenges30. 

To overcome these challenges, we designed a GWAS of a latent trait, that is, a trait not 
measured in any of the genotyped subjects53. We borrowed the strategy used in the original 
analysis of noncognitive skills within the discipline of economics54,55: we defined genetic 
influences on noncognitive skills as the genetic variation in educational attainment that was 
not explained by cognitive skills. We then performed GWAS on this residual “noncognitive” 
genetic variation in educational attainment. This approach is a necessarily imperfect 
representation of the true relationship between cognitive and noncognitive skills; in human 
development, cognitive abilities and other skills relevant for educational attainment probably 
interact dynamically, each influencing the other56. Our analysis excludes genetic influences 
on education-relevant skills that also influence measured cognitive abilities. The value of this 
imperfect approach is to make a quantity otherwise difficult to study tractable for analysis. 

We conducted analysis using Genomic Structural Equation Modelling (Genomic-SEM)57 
applied to published GWAS summary statistics for educational attainment and cognitive 
performance58. Our analysis used these summary statistics to “subtract” genetic influence 
on cognitive performance from the association of each SNP with educational attainment. 
The remaining associations of each SNP with educational attainment formed a new GWAS of 
a noncognitive skills phenotype that was never directly measured. We call this new statistical 
approach GWAS-by-subtraction. 
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We used results from the GWAS-by-subtraction of noncognitive skills to conduct two sets of 
analyses. First, we conducted hypothesis-driven analysis using the phenotypic annotation 
approach59. We used genetic correlation and polygenic score analysis to test the hypothesis 
that noncognitive skills influence educational and economic attainments and longevity 
and to investigate traits and behaviours that constitute noncognitive skills. Second, we 
conducted hypothesis-free bioinformatic annotation analysis to explore the tissues, cell-
types, and brain structures that might distinguish the biology of noncognitive skills from the 
biology mediating cognitive influences on educational attainment. 

RESULTS

GWAS-by-subtraction identifies genetic associations with noncogni-
tive variance in educational attainment. 
The term “noncognitive skills” was originally coined by economists studying individuals 
who were equivalent in cognitive ability but differed in educational attainment55. Our 
analysis of noncognitive skills was designed to mirror this original approach: we focused 
on genetic variation in educational outcomes not explained by genetic variation in cognitive 
ability. Specifically, we applied Genomic-SEM57 to summary statistics from GWASs of 
educational attainment58 and cognitive performance58. Both phenotypes were regressed on 
a latent factor representing genetic variance in cognitive performance (hereafter “Cog”). 
Educational attainment was further regressed on a second latent factor representing the 
residual genetic variance in educational attainment left over after regressing out variance 
related to cognitive performance (hereafter “NonCog”). By construction, NonCog genetic 
variance was independent of Cog genetic variance (rg = 0). In other words, the NonCog factor 
represents genetic variation in educational attainment that is not accounted for by the Cog 
factor. These two latent factors were then regressed on individual SNPs, yielding a GWAS of 
the latent constructs NonCog and Cog. A graphical representation of the model is presented 
in Figure 1. Parameters are derived in terms of the observed moments of the joint distribution 
of educational attainment, cognitive performance, and an SNP (see Supplementary Note). 

The NonCog latent factor accounted for 57% of total genetic variance in educational 
attainment. Using linkage disequilibrium (LD) score regression60, we estimated SNP 
heritability for NonCog to be h2

NonCog = 0.0637 (SE = 0.0021). After conventional GWAS 
significance threshold correction, GWAS of NonCog identified 157 independent genome-
wide-significant lead SNPs (independent SNPs defined as outside a 250-kb window, or 
within a 250-kb window and r2 < 0.1). The results from the NonCog GWAS are shown as a 
Manhattan plot in Figure 2. NonCog and Cog GWAS details are reported in Supplementary 
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Tables 1-4, Supplementary Figure 1, and the Supplementary Note. In addition, we report a 
series of sensitivity analyses as follows: analysis of potential biases due to cohort differences 
(Supplementary Table 5 and Supplementary Figures 2-4); analysis of impact of allowing for 
positive genetic correlations between NonCog and Cog (Supplementary Tables 6 and 7, 
and Supplementary Figures 5 and 6; analysis of impact of allowing for a moderate causal 
effect of educational attainment on cognitive performance24 (Supplementary Table 8 and 
Supplementary Figures 7-9).

Figure 1 | GWAS-by-subtraction Genomic-SEM model. Cholesky model as fitted in Genomic-SEM, 
with path estimates for a single SNP included as illustration. SNP, cognitive performance (CP), and 
educational attainment (EA) are observed variables based on GWAS summary statistics. The genetic 
covariance between CP and EA is estimated based on their GWAS summary statistics. The model is 
fitted to a 3 x 3 observed variance-covariance matrix (i.e. SNP, CP, EA). Cog and NonCog are latent 
(unobserved) variables. The covariances between CP and EA and between Cog and NonCog are fixed 
to 0. The variance of the SNP is fixed to the value of 2pq (p = reference allele frequency, q = alternative 
allele frequency, based on 1000 Genomes phase 3). The residual variances of CP and EA are fixed to 
0, so that all variance is explained by the latent factors. The variances of the latent factors are fixed to 
1. The observed variables CP and EA were regressed on the latent variables resulting in the estimates 
for the path loadings: λCog-CP = 0.4465; λCog-EA = 0.2237; λNonCog-EA = 0.2565. The latent variables were then 
regressed on each SNP that met QC criteria.
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Figure 2 | Manhattan plot of SNP associations with NonCog. Plot of the -log10(p-value) associated 
with the Wald test (two-sided) of βNonCog for all SNPs, ordered by chromosome and base position. Purple 
triangles indicate genome-wide significant (p < 5 × 10-8) and independent (within a 250-kb window and r2 
< 0.1) associations. The red dashed line marks the threshold for genome-wide significance (p= 5 × 10−8), 
and the black dashed line the threshold for nominal significance (p= 1 × 10−5).

Phenotypic annotation analysis elucidates correlates of noncognitive 
skills genetics. 
Our phenotypic annotation analyses proceeded in two steps. First, we conducted polygenic 
score (PGS) and genetic correlation (rg) analysis to test whether our GWAS-by-subtraction 
succeeded in identifying genetic influences that were important to educational attainment 
and also distinct from genetic influences on cognitive ability. Second, we conducted PGS 
and rg analyses to explore how NonCog related to a network of phenotypes that psychology 
and economics research suggests might form the basis of noncognitive influences on 
educational attainment. 

NonCog genetics are associated with education, socioeconomic attainment 

and longevity. 

To establish whether the Genomic-SEM GWAS-by-subtraction succeeded in isolating genetic 
variance in education that was independent of cognitive function, we compared genetic 
associations of NonCog and Cog with educational attainment and cognitive test performance. 
Results for analysis of education and cognitive test phenotypes are shown in Figure 3. 
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Figure 3 | Polygenic prediction and genetic correlations with IQ and educational achievement. 
a, Genetic correlations of NonCog and Cog with educational attainment, highest math class taken, 
self-reported math ability, and childhood IQ. The dots represent genetic correlations estimated using 
Genomic-SEM. Correlations with NonCog are in orange, and with Cog in blue. Error bars represent 
95% CIs. Exact estimates and P-values are reported in Supplementary Table 14. For analysis of genetic 
correlations with educational attainment, we re-ran the Genomic-SEM model to compute NonCog 
and Cog using summary statistics that omitted the 23andMe sample from the educational attainment 
GWAS. We then used the 23andMe sample to run the GWAS of educational attainment. Thus, there is 
no sample overlap in this analysis. b, Effect-size distributions from meta-analysis of NonCog and Cog 
polygenic score associations with cognitive test performance and educational attainment. Outcomes 
were regressed simultaneously on NonCog and Cog polygenic scores. Effect-sizes entered into the 
meta-analysis were standardized regression coefficients interpretable as Pearson r. Exact estimates and 
P-values are reported in Supplementary Table 12. Samples and measures are detailed in Supplementary 
Tables 9 and 10. Traits were measured in different samples: educational attainment was measured in the 
AddHealth, Dunedin, E-Risk, NTR and WLS samples (N = 24,056); reading achievement and mathematics 
achievement were measured in the AddHealth, NTR, and Texas-Twin samples (N = 9,274 for reading 
achievement; N = 10,747 for mathematics achievement); cognitive test performance (IQ) was measured 
in the Dunedin, E-Risk, NTR, Texas Twins and WLS samples (N = 11,351). The densities were obtained by 
randomly generating normal distributions where the meta-analytic estimate was included as the mean 
and the meta-analytic standard error as the standard deviation.



Chapter 2

26

We conducted PGS analysis of educational attainment in the Netherlands Twin Register61 
(NTR), National Longitudinal Study of Adolescent to Adult Health62 (AddHealth), Dunedin 
Longitudinal Study63, E-Risk64, and Wisconsin Longitudinal Study65 (WLS) cohorts 
(meta-analysis N = 24,056; cohort descriptions in Supplementary Tables 9 and 10 and 
Supplementary Note). PGS effect sizes were the same for NonCog and Cog (NonCog β 
= 0.24 (SE = 0.03), Cog β = 0.24 (SE = 0.02), pdiff = 0.702; all PGS results are reported in 
Supplementary Tables 11 and 12). We conducted complementary genetic correlation 
analysis using Genomic-SEM and GWAS summary statistics from a hold-out-sample GWAS 
of educational attainment (Supplementary Note). This analysis allowed us to compute an 
out-of-sample genetic correlation of NonCog with educational attainment. NonCog showed 
a stronger genetic correlation with educational attainment as compared to Cog (NonCog rg 
= 0.71 (SE = 0.02), Cog rg = 0.57 (SE = 0.02), pdiff < 0.0001; all genetic correlation results are 
reported in Supplementary Tables 13 and 14). 

We conducted PGS analysis of cognitive test performance in the NTR, Texas Twin Project66, 
Dunedin, E-Risk, and WLS cohorts (combined N = 11,351). The goal of our GWAS-by-
subtraction analysis was to exclude, as much as possible, genetic variance in cognitive ability 
from genetic variance in skills relevant for education. Consistent with this goal, effect-sizes 
for NonCog PGS associations with full-scale intelligence quotient (IQ) were smaller by half as 
compared to Cog PGS associations (NonCog β = 0.17 (SE = 0.02), Cog β = 0.29 (SE = 0.03); 
pdiff < 0.0001). However, the non-zero correlation between the NonCog PGS and full-scale 
IQ is a reminder that the cognitive performance GWAS used in our GWAS-by-subtraction 
analyses does not capture the entirety of genetic influences on all forms of cognitive tests 
measured at all points in the lifespan. Additional PGS analyses of IQ subscales are reported 
in Supplementary Figure 10 and Supplementary Tables 11 and 12. 

We conducted complementary genetic correlation analysis using results from a published 
GWAS of childhood IQ67. Parallel to PGS analysis, the NonCog genetic correlation with 
childhood IQ was smaller by more than half as compared to the Cog genetic correlation 
(NonCog rg = 0.31 (SE = 0.06), Cog rg = 0.75 (SE = 0.08), pdiff_fdr < 0.0001). Of the total genetic 
correlation between childhood IQ and educational attainment, 31% of the covariance was 
explained by NonCog and 69% by Cog. 

We next examined downstream economic and health outcomes associated with greater 
educational attainment68,69. In PGS analysis in the AddHealth and Dunedin cohorts (N = 
6,358), NonCog and Cog PGSs showed similar associations with occupational attainment 
(NonCog β = 0.21 (SE = 0.01), Cog β = 0.21 (SE = 0.01), pdiff = 0.902). In genetic correlation 
analysis, NonCog showed a similar relationship to income70 as Cog (NonCog rg = 0.62, (SE = 
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0.04), Cog rg = 0.62 (SE = 0.04), pdiff_fdr = 0.947) and a stronger relationship with neighborhood 
deprivation70, a measure related to where a person can afford to live (NonCog rg = -0.51 
(SE = 0.05), Cog rg = -0.32 (SE = 0.04), pdiff_fdr = 0.001). In Genomic-SEM analysis, NonCog 
explained 53% of the genetic correlation between educational attainment and income 
and 65% of the genetic correlation between educational attainment and neighborhood 
deprivation (Supplementary Table 15). 

We conducted genetic correlation analysis of longevity based on GWAS of parental lifespan71. 
Genetic correlations were stronger for NonCog as compared to Cog (NonCog rg = 0.37 (SE = 
0.03); Cog rg = 0.27 (SE = 0.03); pdiff_fdr = 0.024). In Genomic-SEM analysis, NonCog explained 
61% of the genetic correlation between educational attainment and longevity.

In summary, NonCog and Cog genetics showed similar relationships with educational 
attainment and its long-term outcomes, despite NonCog genetic having a much weaker 
relationship to measured cognitive test performance than Cog genetics. These findings 
broadly support the hypothesis that noncognitive skills distinct from cognitive abilities are 
an important contributor to success across the life course. 

We next conducted a series of genetic correlation analyses to explore the network of 
phenotypes to which NonCog was genetically correlated. To develop understanding of the 
substance of noncognitive skills, we tested where in that network of phenotypes genetic 
correlations with NonCog diverged from genetic correlations with Cog. Our analysis was 
organized around four themes: decision-making preferences, health-risk and fertility 
behaviours, personality traits, and psychiatric disorders. Results of genetic correlation 
analyses are shown in Figure 4 and Supplementary Figure 11. Results are reported in 
Supplementary Table 14. 

NonCog genetics were associated with decision-making preferences. 

In economics, noncognitive influences on achievement and health are often studied in 
relation to decision-making preferences72–75. NonCog was genetically correlated with higher 
tolerance of risks76 (rg = 0.10 (SE = 0.03)) and willingness to forego immediate gratification in 
favor of a larger reward at a later time77 (delay discounting rg = -0.52 (SE = 0.08)). In contrast, 
Cog was genetically correlated with generally more cautious decision-making characterized 
by lower levels of risk tolerance (rg = -0.35 (SE = 0.07), pdiff_fdr < 0.0001) and delay discounting 
(rg = -0.35 (SE = 0.07), pdiff_fdr = 0.082).
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Figure 4 | Estimates of genetic correlations with NonCog, Cog, and educational attainment. Genetic 
correlations of NonCog, Cog, and educational attainment with selected phenotypes. The dots represent 
genetic correlations estimated in Genomic-SEM. Correlations with NonCog are in orange, with Cog in blue, 
and with educational attainment in gray. Error bars represent 95% CIs. Red stars indicate a statistically 
significant (FDR corrected p < 0.05, two-tailed test) difference in the magnitude of the correlation with 
NonCog versus Cog. Exact p-values for all associations are reported in Supplementary Table 14. The 
FDR correction was applied based on all genetic correlations tested (including in Supplementary Figure 
11). The difference test is based on a chi-squared test associated with a comparison between a model 
constraining these two correlations to be identical versus a model where the correlations are freely 
estimated. Source GWASs are listed in Supplementary Table 13.

NonCog genetics were associated with less health-risk behavior and delayed 

fertility.

An alternative approach to studying specific noncognitive skills is to infer individual 
differences in noncognitive skills from patterns of health-risk behavior. NonCog was 
genetically correlated with less health-risk behavior as indicated by analysis of obesity78, 
substance use76,79–82, and sexual behaviors and early fertility76,83,84 (rg range 0.2–0.5), with the 
exception that the rg with alcohol use was not different from zero and rg with cannabis use 
was positive. Genetic correlations for Cog were generally in the same direction but of smaller 
magnitude.

NonCog genetics were associated with personality characteristics linked with 

social and professional competency. 

In psychology, noncognitive influences on achievement are conceptualized as personality 
traits, i.e. patterns of stable individual differences in emotion and behavior. The model of 
personality that has received the most attention in genetics is a five-factor model referred 
to as the Big Five. Genetic correlation analysis of the Big Five personality traits85–87 revealed 
that NonCog genetics were most strongly associated with Openness to Experience (being 
curious and eager to learn; rg = 0.30 (SE = 0.04)) and were further associated with a pattern 
of personality characteristic of changes that occur as people mature in adulthood88. 
Specifically, NonCog showed a positive rg with Conscientiousness (being industrious and 
orderly; rg = 0.13 (SE = 0.03)), Extraversion (being enthusiastic and assertive; rg = 0.14 (SE 
= 0.03)), and Agreeableness (being polite and compassionate; rg = 0.14 (SE = 0.05)), and 
negative rg with Neuroticism (being emotionally volatile; rg = -0.15 (SE = 0.04)). Genetic 
correlations of Cog with Openness to Experience and Neuroticism were similar to those 
for NonCog (pdiff_fdr-Openness = 0.040, pdiff_fdr-Neuroticism = 0.470). In contrast, genetic correlations 
of Cog with Conscientiousness, Extraversion, and Agreeableness were in the opposite 
direction (rg = -0.25 to -0.12, pdiff_fdr < 0.0005). PGS analysis of personality traits is reported in 
Supplementary Table 12, Supplementary Figure 12, and the Supplementary Note. 
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NonCog genetics were associated with higher risk for multiple psychiatric di-

sorders. 

In clinical psychology and psychiatry, research is focused on mental disorders. Mental 
disorders are generally associated with impairments in academic achievement and social 
role functioning89,90. However, positive genetic correlations with educational attainment and 
creativity have been reported for some disorders91,92. We therefore tested NonCog rg with 
psychiatric disorders based on published case-control GWASs of mental disorders93–99. 
NonCog was associated with higher risk for multiple clinically defined disorders, including 
anorexia nervosa (rg = 0.26 (SE = 0.04)), obsessive-compulsive disorder (rg = 0.31 (SE = 
0.06)), bipolar disorder (rg = 0.27 (SE = 0.03)), and schizophrenia (rg = 0.26 (SE = 0.02)). 
Genetic correlations between Cog and psychiatric disorders were either smaller in magnitude 
(anorexia nervosa rg = 0.08 (SE = 0.03), pdiff_fdr < 0.001; obsessive-compulsive disorder rg = 
0.05 (SE = 0.05), pdiff_fdr = 0.002) or in the opposite direction (bipolar disorder rg = -0.07 (SE 
= 0.03), pdiff_fdr < 0.001; schizophrenia rg = -0.22 (SE = 0.02), pdiff_fdr < 0.001). Both NonCog 
and Cog showed negative genetic correlations with attention deficit hyperactivity disorder 
(NonCog rg = -0.37 (SE = 0.03), Cog rg = -0.37 (SE = 0.04), pdiff_fdr = 0.947). 

In summary, NonCog genetics were associated with phenotypes from economics and 
psychology thought to mediate noncognitive influences on educational success. These 
associations contrasted with associations for Cog genetics, supporting distinct pathways 
of influence on achievement in school and later in life. Opposing patterns of association 
were also observed for psychiatric disorders, suggesting that the unexpected positive 
genetic correlation between educational attainment and mental health problems uncovered 
in previous studies92,100,101 arises from noncognitive genetic influences on educational 
attainment. 

Biological annotation analyses reveal shared and specific neurobiolo-
gical correlates. 
The goal of biological annotation of GWAS discoveries is to elucidate molecular mechanisms 
mediating genetic influences on the phenotype of interest. Our biological annotation 
analysis proceeded in two steps. First, we conducted enrichment analysis to test whether 
some tissues and cell types were more likely to mediate NonCog and Cog heritabilities than 
others. Second, we conducted genetic correlation analysis to explore how NonCog and Cog 
genetics related to different brain structures.

NonCog and Cog genetics were enriched in similar tissues and cells. 

We tested whether common variants in genes specifically expressed in 53 Genotype-
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Tissue Expression (GTEx) tissues102 or in 152 tissues captured in a previous aggregation 
of RNA-sequencing studies103,104 were enriched in their effects on Cog or NonCog. Genes 
predominantly expressed in the brain rather than peripheral tissues were enriched in both 
NonCog and Cog (Supplementary Table 16). 

To examine expression patterns at a more granular level of analysis, we used MAGMA105 and 
stratified the LD score regression106 to test enrichment of common variants in 265 nervous 
system cell-type-specific gene sets107 (Supplementary Table 17). In MAGMA analysis, 
common variants in 95 of 265 gene-sets were enriched for association with NonCog. The 
enriched cell types were predominantly neurons (97%), with enrichment most pronounced 
for telencephalon-projecting neurons, di- and mesencephalon neurons, and to a lesser 
extent, telencephalon interneurons (Supplementary Figure 13 and Supplementary Table 18). 
Enrichment for Cog was similar to NonCog (correlation between Z-statistics Pearson’s r = 
0.85), and there were no differences in cell-type-specific enrichment, suggesting that the 
same types of brain cells mediate genetic influences on NonCog and Cog (Supplementary 
Figure 14). Stratified LDSC results were similar to results from MAGMA (Supplementary 
Note, Supplementary Figure 15, and Supplementary Table 19). 

The absence of differences in cell-type-specific enrichment is surprising given that NonCog 
and Cog are genetically uncorrelated. We therefore used the TWAS/Fusion tool108 to conduct 
gene-level analysis. This analysis revealed a mixture of concordant and discordant gene 
effects on NonCog and Cog consistent with the genetic correlation of 0 (Supplementary 
Note, Supplementary Figure 16, and Supplementary Table 20).

NonCog and Cog genetics show diverging associations with total and regional 

brain volumes. 

Educational attainment has previously been found to be genetically correlated with greater 
total brain volume109,110. We therefore used a GWAS of regional brain volume to compare 
the rg of NonCog and Cog with total brain volume and 100 regional brain volumes (99 grey-
matter volumes and 1 white matter volume) controlling for total brain volume (Supplementary 
Table 21)111. For total brain volume, genetic correlation was stronger for Cog as compared 
to NonCog (Cog rg = 0.22 (SE = 0.04), NonCog rg = 0.07 (SE = 0.03), pdiff = 0.005). Total grey-
matter volume, controlling for total brain volume, was not associated with either NonCog or 
Cog (NonCog: rg = 0.07 (SE = 0.04); Cog: rg = 0.06 (SE = 0.04)). For total white matter volume, 
conditional on total brain volume, genetic correlation was weakly negative for NonCog 
compared with Cog (NonCog rg = -0.12 (SE = 0.04), Cog (rg = -0.01 (SE = 0.04), pdiff = 0.04).

NonCog was not associated with any of the regional grey-matter volumes after false 
discovery rate (FDR) correction. In contrast, Cog was significantly associated with regional 
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grey-matter volumes for the bilateral fusiform, insula and posterior cingulate (rg range 0.11-
0.17), as well as left superior temporal (rg = 0.11 (SE = 0.04)), left pericalcarine (rg = -0.16 (SE 
= 0.05)) and right superior parietal volumes (rg = -0.22 (SE = 0.06)) (Figure 5). 

Figure 5 | Genetic correlations with regional gray-matter volumes and white-matter tracts. a. 
Cortical patterning of FDR-corrected significant genetic correlations with regional gray-matter volumes 
for Cog versus NonCog, after correction for total brain volume. Regions of interest are plotted according 
to the Desikan-Killiany-Tourville atlas112, shown on a single manually-edited surface (http://mindboggle.
info113). Exact estimates and p-values are reported in Supplementary Table 21. Cog showed significant 
associations with gray-matter volume for the bilateral fusiform, insula and posterior cingulate, the left 
superior temporal and left pericalcarine and right superior parietal volumes. NonCog was not associated 
with any of the regional brain volumes. b. White matter tract patterning of FDR-corrected significant 
genetic correlations with regional mode of anisotropy (MO) for Cog versus NonCog. White matter tract 
probability maps are plotted according to the Johns Hopkins University DTI atlas (https://identifiers.org/
neurovault.image:1401)114. Exact estimates and p-values are reported in Supplementary Table 21. Cog was 
not associated with regional MO. NonCog showed significant associations with MO in the corticospinal 
tract, the retrolenticular limb of the internal capsule and the splenium of the corpus callosum.

Finally, we tested genetic correlation of NonCog and Cog with white-matter tract integrity 
as measured using diffusion tensor imaging (DTI)115. Analyses included 5 DTI parameters in 
each of 22 white-matter tracts (Supplementary Table 22). NonCog was positively associated 
with the mode of anisotropy parameter (which denotes a more tubular, as opposed to planar, 
water diffusion) in the corticospinal tract, retrolenticular limb of the internal capsule, and 
splenium of the corpus callosum (Figure 5). However, all correlations were small (0.10 < rg 
< 0.14), and we detected no genetic correlations that differed between NonCog and Cog 
(Supplementary Note).
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DISCUSSION
GWAS of noncognitive influences on educational attainment identified 157 independent loci 
and polygenic architecture accounting for more than half the genetic variance in educational 
attainment. In genetic correlation and PGS analysis, these NonCog genetics showed a 
similar magnitude of associations with educational attainment, economic attainment, and 
longevity to genetics associated with cognitive influences on educational attainment (Cog). 
As expected, NonCog genetics had much weaker associations with cognition phenotypes 
compared with Cog genetics. These results contribute new GWAS evidence in support 
of the hypothesis that heritable noncognitive skills influence educational attainment and 
downstream life-course economic and health outcomes.

Phenotypic and biological annotation analyses shed light on the substance of heritable 
noncognitive skills influencing education. Economists hypothesize that preferences that 
guide decision-making in the face of risk and delayed rewards represent noncognitive 
influences on educational attainment. Consistent with this hypothesis, NonCog genetics 
were associated with higher risk tolerance and lower time discounting. These decision-
making preferences are associated with financial wealth, whereas the opposite preferences 
are hypothesized to contribute to a feedback loop perpetuating poverty116. Consistent with 
results from the analysis of decision-making preferences, NonCog genetics were also 
associated with healthier behaviour and later fertility. 

Psychologists hypothesize that the Big Five personality characteristics of conscientiousness 
and openness are the two “pillars of educational success”48,117,118. Our results provide some 
support for this hypothesis, with the strongest genetic correlation evident for openness. 
However, they also show that noncognitive skills encompass the full range of personality 
traits, including agreeableness, extraversion and the absence of neuroticism. This pattern 
mirrors the pattern of personality change that occurs as young people mature into 
adulthood88. Thus, noncognitive skills share genetic aetiology with what might be termed 
as “mature personality”. The absolute magnitudes of genetic correlations between NonCog 
and individual personality traits are modest. This result suggests that the personality traits 
described by psychologists capture some, but not all, genetic influence on noncognitive 
skills. 

Although the general pattern of findings in our phenotypic annotation analysis indicated 
noncognitive skills were genetically related to socially desirable characteristics and 
behaviours, there was an important exception. Genetic correlation analysis of psychiatric 
disorder GWASs revealed positive associations of NonCog genetics with schizophrenia, 
bipolar disorder, anorexia nervosa, and obsessive-compulsive disorder. Previously, these 
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psychiatric disorders have been shown to have a positive rg with educational attainment, 
a result that has been characterized as paradoxical given the impairments in educational 
and occupational functioning typical of serious mental illness. Our results clarify that these 
associations are driven by noncognitive factors associated with success in education. These 
results align with the theory that clinically defined psychiatric disorders represent extreme 
manifestations of dimensional psychological traits, which might be associated with adaptive 
functioning within the normal range119–121.

Finally, biological annotation analyses suggested that genetic variants contributing to 
educational attainment not mediated through cognitive abilities are enriched in genes 
expressed in the brain, specifically in neurons. Even though NonCog and Cog were 
genetically uncorrelated, variants in the same neuron-specific gene-sets were enriched for 
both traits. Although we found some evidence of differences between NonCog and Cog in 
associations with grey matter volumes, moderate sample sizes in neuroimaging GWASs 
mean these results must be treated as preliminary, requiring replication with data from 
larger-scale GWASs of white-matter and grey-matter phenotypes. Limited differentiation of 
NonCog and Cog in biological annotation analyses focused at the levels of tissue and cell 
type highlights need for finer-grained molecular data resources to inform these analyses 
and the complementary value of phenotypic annotation analyses focused at the level of 
psychology and behaviour.

We acknowledge limitations. Cognitive and noncognitive skills develop in interaction with 
one another. For example, the dynamic mutualism hypothesis122 proposes that noncognitive 
characteristics shape investments of time and effort, leading to differences in the pace of 
cognitive development123,124. However, in Genomic-SEM analysis, the NonCog factor is, 
by construction, uncorrelated with genetic influences on adult cognition as measured in 
the Cog GWAS. Our statistical separation of NonCog from cognition is thus a simplified 
representation of development. Longitudinal studies with repeated measures of cognitive 
and candidate noncognitive skills are needed to study their reciprocal relationships across 
development125,126. Our statistical separation of NonCog from cognition is also incomplete. 
The ability to control statistically for any variable, genetic or otherwise, depends on how 
well and comprehensively that variable is measured127. The tests of cognitive performance 
included in the Cog GWAS probably do not capture all genetic influences on all forms of 
cognitive ability across the lifespan128,129. Despite these limitations, our simplified and 
incomplete statistical separation of NonCog from Cog allowed us to test whether heritable 
traits other than cognitive ability influenced educational attainment and to explore what 
those traits might be. 
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As our analysis was based on GWAS of educational attainment, noncognitive genetics 
identified in the present study may differ from noncognitive genetics affecting other 
socioeconomic attainments like income, or traits and behaviours that mediate responses 
to early childhood interventions, to the extent that those genetics do not affect educational 
attainment. Parallel analysis of alternative attainment phenotypes will clarify the specificity 
of discovered noncognitive genetics.

In the case of the GWAS of educational attainment, the included samples were drawn mainly 
from western Europe and the USA, and participants completed their education in the late 
20th and early 21st centuries. The phenotype of educational attainment reflects an interaction 
between an individual and the social system in which they are educated. Differences across 
social systems, including education policy, culture, and historical context, may result in 
different heritable traits influencing educational attainment130. Results therefore may not 
generalize beyond the times and places GWAS samples were collected. 

Generalization of the NonCog factor is also limited by restriction of the included GWASs to 
individuals of European ancestry. Lack of methods for integrating genome-scale genetic 
data across populations with different ancestries131,132 requires this restriction, but raises 
threats to external validity. GWASs of other ancestries and development of methods for 
trans-ancestry analysis can enable analysis of (Non)Cog in non-European populations.

Within the bounds of these limitations, results illustrate the application of Genomic-SEM to 
conduct GWASs of a phenotype not directly measured in GWAS databases. This application 
could have broad utility beyond the genetics of educational attainment. The GWAS-by-
subtraction method allowed us to study a previously hard-to-interpret residual value. 
Our analysis provides a view of the genetic architecture of noncognitive skills influencing 
educational success. These skills are central to theories of human capital formation 
within the social and behavioural sciences and are increasingly the targets of social policy 
interventions. Our results establish that noncognitive skills are central to the heritability of 
educational attainment and illuminate connections between genetic influences on these 
skills and social and behavioural science phenotypes.

METHODS

Meta-analysis of educational attainment GWAS 
We reproduced the Social Science Genetic Association Consortium (SSGAC) 2018 GWAS 
of educational attainment58 by meta-analysing published summary statistics for N = 
766,345 (www.thessgac.org/data) with summary statistics obtained from 23andMe, Inc. 
(N = 365,538). We included SNPs with sample size > 500,000 and minor allele frequency 
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> 0.005 in the 1000 Genomes Project reference set (10,101,243 SNPs). We did not apply 
genomic control, as standard errors of publicly available and 23andMe summary statistics 
were already corrected58. Meta-analysis was performed using METAL133. 

GWAS-by-subtraction 
The objective of our GWAS-by-subtraction analysis was to estimate, for each SNP, the 
association with educational attainment that was independent of that SNP’s association 
with cognition (hereafter, the NonCog SNP effect). We used Genomic-SEM57 in R 3.4.3 to 
analyse GWAS summary statistics for the educational attainment and cognitive performance 
phenotypes in the SSGAC’s 2018 GWAS58. The model regressed the educational attainment 
and cognitive performance summary statistics on two latent variables, Cog and NonCog 
(Figure 1). Cog and NonCog were then regressed on each SNP in the genome. This analysis 
allowed for two paths of association with educational attainment for each SNP. One path 
was fully mediated by Cog. The other path was independent of Cog and measured the 
noncognitive SNP effect, NonCog. To identify independent hits with p < 5 × 10-8 (the customary 
p-value threshold to approximate an alpha value of 0.05 in GWAS), we pruned the results 
using a radius of 250 kb and an LD threshold of r2 < 0.1 (Supplementary Tables 1-3). We 
explore alternative lead SNPs and loci definition in Supplementary Table 4. The parameters 
estimated in a GWAS-by-subtraction and their derivation in terms of the genetic covariance 
are described in the Supplementary Note (model specification), and practical analysis 
steps are further described in the Supplementary Note (SNP filtering). The effective sample 
size of the NonCog and Cog GWAS was estimated to 510,795 and 257,700, respectively 
(Supplementary Note). We investigated biases from unaccounted-for heterogeneity in 
overlap across SNPs in the educational attainment and cognitive performance GWASs and 
describe a possible strategy to deal with it (Supplementary Note). We investigated potential 
biases due to cohort differences in SNP heritability in the Supplementary Note. We evaluated 
the consequences of modifying rg(NonCog, Cog) = 0 by evaluating rg = 0.1, 0.2 or 0.3, and we 
investigated the consequences of a violation of the assumed causation between cognitive 
performance and educational attainment in the Supplementary Note. 

PGS analysis 
PGS analyses were conducted in data drawn from six population-based cohorts from 
the Netherlands, the UK, the USA, and New Zealand: (1) the Netherlands Twin Register 
(NTR)61,134, (2) E-Risk64, (3) the Texas Twin Project66, (4) the AddHealth62,135, dbGaP accession 
no. phs001367.v1.p1; (5) WLS65, dbGaP accession no. phs001157.v1.p1; and (6) the Dunedin 
Multidisciplinary Health and Development Study63. Supplementary Tables 9 and 10 describe 
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cohort-specific metrics, and we include a short description of the cohorts’ populations and 
recruitment in Supplementary Note. Only participants with European ancestry were included 
in the analysis, due to the low portability of PGSs between different ancestry populations. 
PGSs were computed with PLINK based on weights derived using the LD-pred136 software 
with an infinitesimal prior and the 1000 Genomes Project phase 3 sample as a reference 
for the LD structure. LD-pred weights were computed in a shared pipeline to ensure 
comparability between cohorts. Each outcome (for example, IQ score) was regressed on the 
Cog and NonCog PGSs and a set of control variables (sex, 10 principal components derived 
from the genetic data and, for cohorts in which these quantities varied, genotyping chip and 
age), using Stata 14 for WLS, Stata 15 for E-Risk and the Dunedin Study, and R (versions 
3.4.3 and newer) for NTR, AddHealth, and the Texas Twin Project. In cohorts containing 
related individuals, non-independence of observations from relatives was accounted for 
using generalized estimation equations (GEE) or by clustering of standard errors at the family 
level. We used a random effects meta-analysis to aggregate the results across the cohorts. 
This analysis allows a cohort-specific random intercept. Individual cohort results are in 
Supplementary Table 11 and meta-analytic estimates in Supplementary Table 12. 

Biological annotation

Enrichment of tissue-specific gene expression 
We used gene sets defined in Finucane et al.137 to test for the enrichment of genes 
specifically expressed in one of 53 GTEx tissues102, or 152 tissues captured by the Franke 
et al. aggregation of RNA-sequencing studies103,104. This analysis seeks to confirm the role 
of brain tissues in mediating Cog and NonCog influences on educational attainment. The 
exact analysis pipeline used is available online (https://github.com/bulik/ldsc/wiki/Cell-type-
specific-analyses).

Enrichment of cell-type-specific expression 
We leveraged single-cell RNA-sequencing data of cells sampled from the mouse nervous 
system107 to identify cell-type-specific RNA expression. Zeisel et al.107 sequenced cells 
obtained from 19 regions in the contiguous anatomical regions in the peripheral sensory, 
enteric, and sympathetic nervous system. After initial quality control, they retained 492,949 
cells, which were sampled down to 160,796 high-quality cells. These cells were further 
grouped into clusters representing 265 broad cell types. We analysed the dataset published 
by Zeisel et al. containing mean transcript counts for all genes with count >1 for each of 
the 265 clusters (Supplementary Table 17). We restricted analysis to genes with expression 
levels above the 25th percentile. For each gene in each cell type, we computed the cell-
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type-specific proportion of reads for the gene (normalizing the expression within cell type). 
We then computed the proportion of proportions over the 265 cell types (computing the 
specificity of the gene to a specific cell type). We ranked the 12,119 genes retained in terms 
of specificity to each cell type and then retained the 10% of genes most specific to a cell 
type as the “cell-type-specific” gene set. We then tested whether any of the 265 cell-type-
specific gene sets were enriched in the Cog or NonCog GWAS. This analysis sought to 
identify specific cell types and specific regions in the brain involved in the aetiology of Cog 
and NonCog. We further computed the difference in enrichment for Cog and NonCog to 
test whether any cell types were specific to either trait. For these analyses, we leveraged 
two widely used enrichment analysis tools: MAGMA105 and stratified LDSC106 with the 
European reference panel from 1000 Genomes Project Phase 3 as SNP location and LD 
structure reference, Gencode release 19 as gene location reference and the human-mouse 
homology reference from MGI (http://www.informatics.jax.org/downloads/reports/HOM_
MouseHumanSequence.rpt).

MAGMA 

We used MAGMA (v1.07b105), a program for gene-set analysis based on GWAS summary 
statistics. We computed gene-level association statistics using a window of 10 kb around 
the gene for both Cog and NonCog. We then used MAGMA to run a competitive gene-set 
analysis, using the gene p values and gene-correlation matrix (reflecting LD structure) 
produced in the gene-level analysis. The competitive gene-set analysis tests whether the 
genes within the cell-type-specific gene set described above are more strongly associated 
with Cog/NonCog than other genes. 

Stratified LDSC 
We used LDSC to compute LD scores for the SNPs in each of our “cell-type-specific” gene 
sets. Parallel to MAGMA analysis, we added a 10-kb window around each gene. We ran 
partitioned LDSC to compute the contribution of each gene set to the heritability of Cog and 
NonCog. To guard against inflation, we used LD score best practices, and included the LD 
score baseline model (baselineLD.v2.2) in the analysis. We judged the statistical significance 
of the enrichment based on the p value associated with the tau coefficient. 

Difference in enrichment between Cog and NonCog 
To compute differences in enrichment, we compute a standardized difference between the 
per-annotation enrichment for Cog and NonCog as:
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where eCog is the enrichment of a particular gene set for Cog, eNonCog is the enrichment for the 
same gene set for NonCog, seCog is the standard error of the enrichment for Cog, seNonCog 
is the standard error of the enrichment for NonCog, and CTI is the LD score cross-trait 
intercept, a metric of dependence between the GWASs of Cog and NonCog.

We investigated the significance of the difference between Cog and NonCog tau coefficient 
with Eq. (1) as well as by computing jack-knifed standard errors. From the jack-knifed 
estimates of the coefficient output by the LDSC software, we computed the jack-knifed 
estimates and standard errors of the difference between Cog and NonCog tau coefficients, 
as well as a z-statistic for each annotation. 

Enrichment of gene expression in the brain 
We performed a transcriptome-wide association study (TWAS) using FUSION108 (http://
gusevlab.org/projects/fusion/). We used pre-computed brain-gene-expression weights 
available on the FUSION website, generated from 452 human individuals as part of the 
CommonMind Consortium. We then superimposed the bivariate distribution of the results 
of the TWAS for Cog and NonCog over the bivariate distribution expected given the sample 
overlap between educational attainment and cognitive performance (the GWAS on which 
our GWASs of Cog and NonCog are based, see Supplementary Note). 

Brain modalities 

Brain volumes 

We conducted genetic correlation analysis of brain volumes using GWAS results published 
by Zhao et al.111, who performed GWASs of total brain volume and 100 regional brain volumes, 
including 99 grey-matter volumes and total white-matter volume (Supplementary Table 21). 
Analyses included covariate adjustment for sex, age, their square interaction and 20 principle 
components. Analyses of regional brain volumes additionally included covariate adjustment 
for total brain volume. GWAS summary statistics for these 101 brain volumes were obtained 
from https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. Summary statistics 
were filtered and pre-processed using Genomic-SEM’s “munge” function, retaining all 
HapMap3 SNPs with allele frequency > 0.01 outside the major histocompatibility complex 
region. We used Genomic-SEM to compute the genetic correlations between Cog, NonCog 
and brain volumes. Analyses of regional volumes controlled for total brain volume. For each 
volume, we tested whether correlations differed between Cog and NonCog. Specifically, 
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we used a chi-squared test to evaluate the null hypothesis that the two genetic correlations 
were equal. We used FDR adjustment to correct for multiple testing. The FDR adjustment is 
applied to the results for all grey-matter volumes for Cog and NonCog separately. 

White-matter structures 

We conducted genetic correlation analysis of white-matter structures using GWAS results 
published by Zhao et al.115, who performed GWASs of DTI measures of the integrity of white-
matter tracts. DTI parameters were derived for fractional anisotropy, mean diffusivity, axial 
diffusivity, radial diffusivity, and mode of anisotropy. Each of these parameters was measured 
for 22 white-matter tracts of interests (Supplementary Table 22), resulting in 110 GWASs. 
GWAS summary statistics for these 110 GWASs were obtained from https://med.sites.unc.
edu/bigs2/data/gwas-summary-statistics/. Summary statistics were filtered and processed 
using Genomic-SEM’s “munge” function, retaining all HapMap3 SNPs with allele frequency 
> 0.01 outside the major histocompatibility complex region. For each white-matter structure, 
we tested whether genetic correlations differed between Cog and NonCog. Specifically, we 
used a chi-squared test to evaluate the null hypothesis that the two genetic correlations were 
equal. We used FDR adjustment to correct for multiple testing. As these different diffusion 
parameters are statistically and logically interdependent, having been derived from the same 
tensor, FDR adjustment was applied to the results for each type of white-matter diffusion 
parameter separately. FDR correction was applied separately for Cog and NonCog.

ADDITIONAL RESOURCES
A FAQ on why, how and what we studied is available here: https://medium.com/@kph3k/
investigating-the-genetic-architecture-of-non-cognitive-skills-using-gwas-by-subtraction-
b8743773ce44 

A tutorial on how to perform GWAS-by-subtraction: 
http://rpubs.com/MichelNivard/565885 

Additional resources to Genomic-SEM software: 

• A wiki including numerous tutorials:  
https://github.com/MichelNivard/GenomicSEM/wiki

• A Genomic-SEM user group for specific questions relating to models and software: 
https://groups.google.com/g/genomic-sem-users

• A venue to report technical issues:  
https://github.com/MichelNivard/GenomicSEM/issues 
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CODE AND DATA AVAILABILITY
Code used to run the analyses is available at: https://github.com/PerlineDemange/non-
cognitive 

A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885

All additional software used to perform these analyses are available online.

GWAS summary data for NonCog and Cog (excluding 23andMe) have been deposited in the 
GWAS Catalog with accession nos GCST90011874 and GCST90011875, respectively (NonCog 
GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011874, Cog 
GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90011875).

For 23andMe dataset access, see https://research.23andme.com/dataset-access/.

Part of the National Longitudinal Study of Adolescent to Adult Health (Add Health) data is 
publicly available and can be downloaded at the following link: https://data.cpc.unc.edu/
projects/2/view#public_li. For restricted access data, details of the data sharing agreement 
and data access requirements can be found at the following link: https://data.cpc.unc.edu/
projects/2/view 

The Dunedin study datasets reported in the current article are not publicly available due 
to lack of informed consent and ethical approval, but are available on request by qualified 
scientists. Requests require a concept paper describing the purpose of data access, ethical 
approval at the applicant’s university, and provision for secure data access. We offer secure 
access on the Duke, Otago and King’s College campuses. All data analysis scripts and 
results files are available for review (https://moffittcaspi.trinity.duke.edu/research-topics/
dunedin).

The E-Risk Longitudinal Twin Study datasets reported in the current article are not publicly 
available due to lack of informed consent and ethical approval, but are available on request 
by qualified scientists. Requests require a concept paper describing the purpose of data 
access, ethical approval at the applicant’s university, and provision for secure data access. 
We offer secure access on the Duke and King’s College campuses. All data analysis scripts 
and results files are available for review (https://moffittcaspi.trinity.duke.edu/research-
topics/erisk).

Netherlands Twin Register data may be accessed, upon approval of the data access 
committee (email: ntr.datamanagement.fgb@vu.nl).

Researchers will be able to obtain Texas Twins data through managed access. Requests for 
managed access should be sent to Dr. Elliot Tucker-Drob (tuckerdrob@utexas.edu) and Dr. 
Paige Harden (harden@utexas.edu), joint principal investigators of the Texas Twin Project.
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Wisconsin Longitudinal study data can be requested following this form: https://www.ssc.
wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf

SELECTED SUPPLEMENTARY INFORMATION
Full Supplementary Information and Supplementary Tables can be downloaded at: https://
www.nature.com/articles/s41588-020-00754-2#Sec32 

Sensitivity test for non-zero correlation of Cog and NonCog
When running GWAS-by-subtraction we assume the model as defined is a correct 
representation of the relation between cognitive performance (CP) and educational 
attainment (EA). As the Cog and NonCog latent factors are specified to be uncorrelated, all 
SNPs that influence Cog will effect both CP and EA, and all SNPs influencing NonCog will 
only influence EA. 

To investigate how a positive non-zero correlation between the Cog and NonCog latent 
factors could affect results, we re-ran the Genomic-SEM model setting the standardized 
covariance (i.e. correlation) of NonCog and Cog to 0, 0.1, 0.2, and 0.3. At higher levels 
of correlation between NonCog and Cog, the NonCog factor explained an increasing 
percentage of variance in EA: 57% with rg(Cog, NonCog) = 0 increasing to 78% when rg(Cog, 
NonCog) = 0.3. We report the path loadings and the percentage of EA genetic variance 
explained in Supplementary Table 6.

We next re-estimated genetic correlations of NonCog and Cog with the set of traits in Figure 
4 and Supplementary Figure 11. We performed this analysis using models that again set the 
correlation NonCog and Cog to 0, 0.1, 0.2, and 0,3, as shown in Supplementary Figure 17 for 
rg(Cog, NonCog) = 0. Results show a consistent pattern of change in NonCog rg with target 
traits. As the correlation of NonCog and Cog is increased, the NonCog rg with a target trait 
changes in the direction of the rg of Cog with that trait. For example, in the case of household 
income, Cog is positively associated with the trait, therefore as the rg(Cog, NonCog) increases, 
the correlation of household income with NonCog increases positively (at rg(Cog, NonCog) 
= 0 the rg is 0.61, at rg(Cog, NonCog) = 0.3 it is 0.76). These changes are small in magnitude, 
but sometimes alter the statistical significance of the rg. When rg(Cog, NonCog) is set to 
0.3, the following rgs with NonCog, which were not statistically different from zero under 
the rg(Cog, NonCog) = 0 specification, become statistically significant: Age at menopause, 
Autism Spectrum Disorder and Chronotype. In contrast, only Conscientiousness and Self-
report empathy had a statistically significant rg with NonCog under rg(Cog, NonCog) = 0 but 
were not significantly genetically correlated with NonCog when when rg(Cog, NonCog) = 0.3. 
Results are presented in Supplementary Table 7 and Supplementary Figure 5. 
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The magnitude of the change of the genetic correlation with NonCog is dependent on the 
genetic correlation of Cog with the trait: the stronger the genetic correlation with Cog, the 
bigger increase/decrease of the genetic correlation with NonCog (Supplementary Figure 6). 

Sensitivity test for causal relation between CP and EA 
Our primary model (Figure 1) assumes all genetic effects on CP also affect EA. This 
assumption is reasonable here, as cognitive ability is an important driver of educational 
success. In fact, many high-income countries mandate cognitive test-scores as entry to 
higher education. Furthermore, tests of polygenicity consistently find that a smaller portion 
of the genome has an effect on CP then on EA, consistent with a model where CP causes 
EA. 

However, we can consider a violation of our assumed model based on reasonable estimates 
from the literature. Ritchie and Tucker-Drob (2018)24 find across multiple studies, which 
rely on control variables or natural experiments, that there is a robust but small effect of 
education on IQ. Consistent with these results, Savage et al. (2018)138 performed a GWAS 
of intelligence and, using Mendelian randomization, found a bidirectional effect between IQ 
and educational attainment. 

We investigated the impact of a reciprocal effect of EA on CP on our results. We can only 
allow for, but not estimate, such an effect in the context of our model, as the effect is not 
identified (Supplementary Figure 7); we chose a small standardized effect size of 0.2. Based 
on this alternative model, we reanalysed the genome-wide significant SNPs for Cog and 
NonCog and found minimal change in Z-statistics (see Supplementary Figure 8). We further 
re-computed the genetic correlations between Cog and NonCog and the external traits in 
Figure 4 and Supplementary Figure 11 (by adapting the model Supplementary Figure 17). We 
observe minimal changes in the genetic correlations as well (Supplementary Figure 9 and 
Table 8). Therefore, our results appear robust to the relaxation of the assumption that the 
primary causal relationship is from CP to EA and not vice versa.
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CHAPTER 3

ESTIMATING EFFECTS  
OF PARENTS’ COGNITIVE 
AND NONCOGNITIVE SKILLS 
ON OFFSPRING EDUCATION 
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ABSTRACT 
Understanding how parents’ cognitive and noncognitive skills influence offspring education 
is essential for educational, family and economic policy. We use genetics (GWAS-by-
subtraction) to assess a latent, broad noncognitive skills dimension. To index parental 
effects controlling for genetic transmission, we estimate indirect parental genetic effects 
of polygenic scores on childhood and adulthood educational outcomes, using siblings (N = 
47,459), adoptees (N = 6,407), and parent-offspring trios (N = 2,534) in three UK and Dutch 
cohorts. We find that parental cognitive and noncognitive skills affect offspring education 
through their environment: on average across cohorts and designs, indirect genetic effects 
explain 36-40% of population polygenic score associations. However, indirect genetic 
effects are lower for achievement in the Dutch cohort, and for the adoption design. We 
identify potential causes of higher sibling- and trio-based estimates: prenatal indirect 
genetic effects, population stratification, and assortative mating. Our phenotype-agnostic, 
genetically sensitive approach has established overall environmental effects of parents’ 
skills, facilitating future mechanistic work.
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INTRODUCTION
Parents and children tend to have similar educational outcomes1. Since education is highly 
predictive of social mobility and health across the lifespan139,140, understanding the mechanisms 
underlying the intergenerational transmission of education could inform efforts to alleviate 
inequalities. Many studies have investigated how much certain parental characteristics 
influence offspring education, but relatively few have considered noncognitive skills. The 
term ‘noncognitive’ describes skills that differ from what has traditionally been education’s 
primary focus: academic and cognitive performance. The umbrella of noncognitive skills 
encompasses a wide range of competencies, including academic motivation, perseverance, 
mindsets, learning strategies, and social skills29,141. Cognitive skills like executive functioning, 
working memory, and verbal IQ are more precisely integral to cognitive functioning, but 
both cognitive and noncognitive skills are critical for educational success29. Research in 
developmental psychology142, economics143, and sociology144 has suggested that parents 
socially influence their children’s noncognitive skills including emotion regulation, social 
capacities, attitudes and motivations33,34. Given that noncognitive skills (particularly self-
control and emotion regulation26,145) support education, it follows that parents’ noncognitive 
skills may also affect children’s educational outcomes. 

Prior research has detected small associations between measured parental noncognitive 
skills and offspring educational outcomes. In one study, mothers’ locus of control was the 
only significant noncognitive predictor of offspring college attendance (β = 0.02, p<0.05; β = 
~0.01 for maternal self-concept and self-esteem, both non-significant)146. Mothers’ cognitive 
skills, measured by the U.S. Armed Forces Qualifying Test, were a stronger predictor (β = 
0.06, p<0.01). Another study found that fathers’ noncognitive skills were associated with 
sons’ standardised test scores at age 16 (β = 0.09)147. Here, noncognitive skills were measured 
by a single composite of extraversion, neuroticism, persistence, and perseverance from 
a standardised Swedish military-oriented psychological evaluation. Additionally, parents’ 
attitudes towards education and social skills have been found to account for 8% of the 
socioeconomic gap in children’s achievement148. The contributions of specific measured 
parental traits that were included were also not stated. 

Two key limitations weaken this base of evidence on the effects of parents’ skills on offspring 
education: challenges with phenotypic assessments of parents’ noncognitive skills, and 
genetic confounding. 

First, regarding assessment, whereas cognitive skills can be directly measured by tests of 
domain-specific or general cognitive performance, noncognitive skills are more challenging 
to capture30,149. There is little agreement on what noncognitive skills to measure. Some 
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researchers focus on personality, whereas others include self-control, self-esteem, 
motivation, and interests. Importantly, studies identifying partial effects of specific parental 
cognitive and noncognitive skills are less informative about the overall influences of these 
domains. Measurement error could also mean that effects of parents’ noncognitive skills 
have been underestimated. 

Genetic methods offer an alternative approach to defining parents’ noncognitive skills. 
Both cognitive and typically-studied noncognitive skills are substantially genetically 
influenced, with twin study heritability estimates of 40-70%150,151. A new method – ‘GWAS-
by-subtraction’ – makes it possible to assess a broad latent genetic noncognitive construct, 
by ‘subtracting’ cognitive ability-related genetic variation from educational attainment 
genetic variation152. This follows an influential definition of noncognitive skills from 
economics32 as all traits positively contributing to educational and professional success that 
are not cognitive skills. This noncognitive genetic construct — which could otherwise be 
conceptualized as ‘not-cognitive’ — is associated with higher socioeconomic attainment, 
more open and conscientious personality, and some psychiatric disorders (e.g. higher risk 
for schizophrenia, lower risk for attention deficit/hyperactivity disorder). In the present study, 
we use this GWAS-by-subtraction measure of noncognitive skills to capture the overall effect 
of all noncognitive parent phenotypes on offspring education. This phenotype-agnostic 
approach is somewhat loose: it could include parental phenotypes not traditionally classed 
as ‘noncognitive’ or ‘skills’. However, it provides a useful first step towards characterizing 
pathways from specific parental skills to offspring educational outcomes. After establishing 
overall effects, complementary research designs using measured parental noncognitive 
skills can subsequently be used to identify specific mediating mechanisms.

A second challenge is to distinguish social (i.e. environmental) from genetic transmission. 
None of the associations between parental skills and offspring education cited above were 
estimated using genetically sensitive designs. This is problematic, because from just parent-
offspring correlations one cannot conclude that parents’ skills shape offspring education, 
for instance by providing resources, experiences, and support. Ignoring any shared genetic 
influences on parents’ skills and child educational outcomes confounds estimation of the 
effects of parental phenotypes on offspring outcome35. To establish the extent that parents’ 
(non-)cognitive skills influence child educational outcomes socially, it is vital to control for 
inherited genetic effects. 

Genetic study designs can isolate environmental effects of parental skills on offspring 
education, controlling for genetic transmission. Several designs estimate a genetic effect of 
the child’s genotype on the child phenotype (direct genetic effect), and an environmentally 
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mediated effect of the parental genotype on the child’s phenotype (parental indirect genetic 
effect). For example, non-transmitted genetic variants affect offspring phenotypes indirectly 
via the environment shaped by parental phenotypes153,154. Polygenic scores (individual-
level indices of trait-specific genetic endowment; PGS) for educational attainment based 
on parents’ non-transmitted variants, are associated with offspring attainment155–157. 
Complementary evidence of indirect effects of parents’ education-linked genetics on 
offspring education has also accumulated from sibling and adoption PGS designs155,156,158,159. 
To obtain estimates of indirect genetic effects using sibling data, within-sibling genetic 
associations (first developed to estimate direct genetic effects independent of population 
biases160,161) are compared to population-based associations. To obtain estimates of 
indirect genetic effects using adoption data, genetic associations estimated for adoptees 
and non-adopted individuals are compared159. Notably, variance decomposition as well as 
PGS methods can be applied to disentangle direct and indirect genetic effects, but the 
former requires much larger sample sizes162–165. It is not known whether parental indirect 
genetic effects on offspring education occur through cognitive or noncognitive pathways 
(or both), because studies have not parsed out the contributions of sub-components of the 
educational attainment PGS.

Here, we directly compare estimates of parental indirect genetic effects obtained from 
different designs. Estimation of genetic associations may involve numerous biases166–168. 
Sibling, adoption, and non-transmitted allele designs have different assumptions and subtle 
differences in biases and components affecting the estimated indirect genetic effect. As 
shown by our data simulations indirect genetic effect estimates from the adoption design 
may be less biased by population stratification and assortative mating than the sibling and 
non-transmitted allele designs (see Supplementary Note 6 and our GitHub repository169). 
However, estimates obtained from the adoption design do not capture prenatal parental 
environmental effects on child education and may be less generalisable to the population. 
The sibling design may estimate parental indirect genetic effects with more bias from sibling 
genetic effects. Triangulation across designs and sensitivity analyses can help detect 
possible biases and quantify parental indirect genetic effects and other environmental 
effects13,167.

In the current study (pre-registration: https://osf.io/mk938/), we use a novel approach 
to estimate the social effects of parents’ cognitive and noncognitive skills on offspring 
education. We deploy GWAS-by-subtraction to estimate individuals’ genetic endowments 
(PGS) for cognitive and noncognitive skills, and test how much these operate environmentally 
via parental influences on offspring educational outcomes. We provide a comparison of 
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parental indirect genetic effects in three cohorts of genotyped families in two countries 
(UK Biobank, UK Twins Early Development Study, Netherlands Twin Register). Each 
cohort includes multiple achievement outcome measures (i.e. standardised test results 
and teacher-reported grades in childhood and adolescence) and attainment (i.e. years of 
completed education reported in adulthood). We triangulate across three complementary 
study designs for estimating parental indirect genetic effects and assess the presence of 
components and biases.

RESULTS 

GWAS-by-subtraction results
We identified the genetic components of cognitive and noncognitive skills using 
Genomic-SEM, following Demange et al.152, in samples that excluded participants used for 
polygenic score analyses. Educational attainment and cognitive performance meta-analytic 
summary statistics (see Methods) were regressed on two independent latent variables, Cog 
and NonCog (see Supplementary Figure 1). These two latent factors were then regressed 
on 1,071,804 HapMap3 SNPs in a genome wide association (GWA) design. The LD score 
regression-based SNP heritabilities of Cog and NonCog were 0.184 (SE = 0.007) and 0.054 
(SE = 0.002), respectively. More information on the GWASs is presented in Supplementary 
Data 1. 

Descriptive statistics 
SNP associations with the Cog and NonCog latent variables provided the weights to create 
individual-level polygenic scores in 3 cohorts with family data and educational achievement 
and/or attainment outcomes. Sample sizes for individuals with polygenic score and 
educational outcome data were: 39,500 UK Biobank siblings, 6,409 UK Biobank adoptees, 
up to 4,796 DZ twins in the Twins Early Development Study (TEDS), up to 3,163 twins and 
siblings in the Netherlands Twin Register (NTR), and up to 2,534 NTR individuals with both 
parents genotyped. Full phenotypic descriptive statistics are available in Supplementary 
Data 2. 

Overview of three family-based polygenic score designs 
To estimate direct offspring-led and indirect parent-led effects of PGS for cognitive and 
noncognitive skills on educational outcomes, we considered three family-based genomic 
designs. The designs are illustrated in Figure 1. All models jointly included Cog and NonCog 
PGS. Note that population effects are equivalent to PGS effects estimated in standard 
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population analyses that do not use within-family data. In contrast, within-family designs 
exploit the principles of Mendelian segregation or the natural experiment of adoption to 
separate direct and indirect/social components of the overall population PGS effect. 
Importantly, a direct genetic effect is only direct in the sense that it does not originate 
from another individual’s genotype. Direct effects are also not ‘purely’ genetic, but lead 
to educational outcomes via intermediate pathways, and are expressed in the context of 
environments.

Figure 1 | Analytical designs to estimate direct and parental indirect genetic effects. Note: square = 
observed variable, circle = unobserved / latent variable; β = estimated effect of polygenic score (PGS) on 
outcome; the population effect of a PGS captures both direct and indirect genetic effects; direct genetic 
effects (controlling for indirect genetic effects) are represented with solid arrows. Icons made by Freepik 
from www.flaticon.com.

First, the sibling design estimates indirect genetic effects by comparing population-level and 
within-family (i.e. within-sibling or within-DZ twin) PGS associations (Eq. (1))158. The direct 
effect of a polygenic score is estimated based on genetic differences between siblings, 
which are due to random segregations of parental genetic material, independent of shared 
family effects (including parental indirect genetic effects). Specifically, the direct effect is 
estimated using a variable representing individuals’ (i) polygenic scores minus the average 
polygenic score for their family (j): the within-family beta (βWithin in Eq. (1)). The population 
effect of a polygenic score is estimated in a separate model, simply regressing the outcome 
variable on polygenic score differences between individuals from different families (Eq. (2)). 
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The indirect genetic effect is obtained by subtracting the within-family PGS effect estimate 
from the population effect estimate. 

Note: EA is the educational outcome, PGS is the polygenic score (for Cog PGSCog and NonCog PGSNonCog). 
PGS refers to the average polygenic score in the family j. i refers to the individual sibling. α0 refers to the 
intercept, Z are covariates for the individual i: sex, age, sex*age, the first 10 principal components, and 
genotyping platform. See Supplementary Note 5 for a comparison of different versions of this sibling 
design, using data simulations.

Second, indirect genetic effects can be estimated by comparing polygenic score associations 
estimated in a sample of adoptees against those estimated for individuals who were reared 
by their biological parents159. Therefore, we estimate the regression model shown in Eq. (2) 
separately for adoptees and for non-adopted individuals.

The population effect is estimated as the polygenic score effect on phenotypic variation among 
non-adopted individuals (i.e. a combination of direct and indirect genetic mechanisms). The 
direct genetic effect is the effect of the polygenic score among adoptees. Adoptees do not 
share genes by descent with their adoptive parents, so we expect their polygenic scores 
to be uncorrelated with the genotypes of their adoptive parents. Therefore, the polygenic 
score effect in adoptees cannot be inflated by environmentally mediated parental indirect 
genetic effects. In this design, the indirect genetic effect is estimated by subtracting this 
direct PGS effect from the population effect estimated in the non-adopted group. When 
taking the difference, it is important that the groups are similar in terms of all observed 
and unobserved confounders, an untestable assumption that is unlikely to always hold. We 
found small differences between adoptees and non-adopted individuals in the UK Biobank in 
their demographic and early-life characteristics. Cohen’s d values were d<0.15 for Cog and 
NonCog PGS and educational attainment, and d = 0.31 for the birth weight. The pattern of 
geographical clustering of adopted and non-adopted participants across the UK was highly 
similar (see Supplementary Data 11, Supplementary Note 3, and Supplementary Figure 2). 

Third, indirect genetic effects can be estimated, and disentangled from direct genetic effects, 
using information on parental genetic variation that was not transmitted to offspring155,156  (Eq. (3)). 
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The population effect is estimated from a polygenic score based on transmitted variants 
(βT). Transmitted genetic variants are present in an offspring and in at least one of their 
parents, and so may influence offspring education via both direct and indirect mechanisms. 
The parental indirect genetic effect is estimated as the effect of a polygenic score based on 
parental variants that were not transmitted to offspring (βNT). Non-transmitted variants can 
only take effect on offspring education through the environment. The direct genetic effect 
is estimated by partialling out the effect of the non-transmitted polygenic score from that 
of the transmitted polygenic score (βT - βNT). Maternal and paternal scores are averaged to 
create overall parental non-transmitted polygenic scores. We did not distinguish between 
maternal and paternal PGS, due to the replicated evidence that mothers’ and fathers’ PGS 
for educational attainment have equal effects on offspring education170,171, and to enable 
closer comparison with the adoption and sibling designs, which yield estimates of the 
overall parental genetic effect. Notably, regressing offspring phenotype on offspring PGS 
and parental PGS would allow equivalent estimation of the parental indirect genetic effect 
without haplotype estimation172.

Parents’ heritable cognitive and noncognitive skills environmentally in-
fluence offspring education.
We investigated environmental effects of parents’ noncognitive and cognitive skills on 
offspring education by estimating parental indirect genetic effects of NonCog and Cog PGS. 
Figure 2a shows that, for both NonCog and Cog PGS, indirect genetic effects of parents on 
offspring education were present (meta-analytic indirect βNonCog = 0.08, SE = 0.03; indirect 
βCog = 0.10, SE = 0.01), in addition to direct genetic effects (direct βNonCog = 0.14, SE = 0.03; 
direct βCog = 0.15, SE = 0.02). Averaged across all designs, outcomes and cohorts, indirect 
environmentally mediated effects explained 36% of the population effect of the NonCog 
PGS, and 40% of the population effect of the Cog PGS. However, results varied depending 
on the methods used and outcomes investigated. Results per cohort, outcome and design, 
as well as population genetic effects and the ratio of indirect to population effects are 
reported in Supplementary Data 3 and Supplementary Figure 3, 4 and 5. Meta-analytic 
results are reported in Supplementary Data 4. Z-tests results comparing direct and indirect 
effects are reported Supplementary Data 5.
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Estimates of indirect genetic effects vary by age, outcome and cohort
Figure 2b shows estimates of direct and indirect genetic effects of NonCog and Cog PGS 
for different cohorts and educational outcomes, holding the design constant (i.e. the sibling 
design, which was available for all cohorts and outcomes). Estimates were highly consistent 
across cohorts except for age 12 achievement in Dutch versus UK cohorts: indirect genetic 
effects were negligible and represented a small fraction of the population effect in NTR (3% 
and 23% for NonCog and Cog, respectively), whereas they accounted for 56% and 48% of 
the population effects of NonCog and Cog PGS in TEDS. For adult educational attainment, 
estimates of direct and indirect effects were more similar for the Dutch (NTR: indirect βNonCog 
= 0.11, SE = 0.03; indirect βCog = 0.06, SE = 0.03) and UK (UKB: indirect βNonCog = 0.12, SE = 
0.01; indirect βCog = 0.12, SE = 0.01) cohorts. See Supplementary Data 3 for full results.
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Figure 2 | Estimated direct and indirect genetic effects of NonCog and Cog PGS on educational 
outcomes. a. Meta-analytic results. Meta-analysed estimates of direct and indirect genetic effects of 
NonCog and Cog PGS on educational outcomes (N = 68,919). Indirect genetic effects work through the 
environment that parents provide for their children. Notes: beta coefficients were obtained from meta-
analysis of effects across cohorts, designs and outcome phenotypes; bars = 95% CIs. b. Sibling design 
by cohort. Estimates of direct and indirect effects of NonCog and Cog PGS by cohort (for age 12 and 
adult outcomes), using the sibling design only. NTR is a Dutch cohort (N = 1631 and N = 3163 respectively), 
TEDS (N = 2862) and UKB (N = 16,624) are UK cohorts; bars = 95% CIs. c. Educational attainment by 
design. Estimates of direct and indirect effect of NonCog and Cog PGS by analytic design (for adult 
educational attainment outcomes only). Samples sizes: N = 42,663 (results meta-analysed across UKB 
and NTR); N = 6407 adoptees and 6500 non-adopted individuals (UKB); N = 2534 trios in NTR; bars = 
95% CIs.

Estimates of indirect genetic effects depend on the analytical design
Figure 2c shows estimates of direct and indirect genetic effects of NonCog and Cog PGS for 
different designs, holding the phenotype constant (i.e. educational attainment, which was 
available for all three methods). While estimates obtained with sibling and non-transmitted 
PGS methods indicate equal indirect effect sizes (indirect βs for educational attainment 
ranged between 0.11-0.12; see Supplementary Data 3 and 4), the adoption design yielded 
low to null indirect genetic effects for both NonCog and Cog PGS (indirect βNonCog = 0.02, SE 
= 0.02; indirect βCog = 0.08, SE = 0.02). 

Figure 3 summarises how the three designs estimate parental indirect genetic effects in 
the presence of different contributors, thus highlighting possible explanations for lower 
adoption-based estimates. This information is based on simulations (see Supplementary 
Notes 4 and 6, Supplementary Figure 9, and our GitHub repository169). We consider prenatal 
and postnatal parental indirect genetic effects as components of the total parental indirect 
genetic effect, and other simulated contributors as biases. First, unlike the sibling and non-
transmitted allele designs, the adoption design does not capture indirect genetic effects 
occurring in the prenatal period. Second, the adoption design estimates indirect genetic 
effects with less bias from population stratification. Third, the adoption design estimates 
indirect genetic effects with less bias from assortative mating than the sibling design, and, 
most likely, than the non-transmitted alleles design. How the bias in the adoption design 
estimates compares to the non-transmitted design depends on the precision of the polygenic 
score, see Supplementary Information. Any excess indirect genetic effect estimated in 
the sibling/non-transmitted allele designs compared to the adoption design therefore 
indicates the overall impact of prenatal indirect genetic effects, population stratification, and 
assortative mating. 

With the adoption design, the indirect genetic effect of the NonCog PGS on educational 
attainment in UK Biobank is 83% lower than with the sibling design, while it is only 33% 
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lower for Cog. This suggests that estimates for NonCog are affected more strongly than 
Cog by population stratification, assortative mating and/or prenatal indirect genetic effects.

Figure 3 | Estimates of parental indirect genetic effects from the three designs, based on data 
simulated to include different components and biases. Components include parental prenatal and 
postnatal indirect genetic effects. Biases include sibling indirect genetic effects, assortative mating, and 
population stratification. Boxplots of 100 replicates based on a simulated sample of 20,000 families. 
The centre line represents the median, the box limits are the 1st and 3rd quartile, and the whiskers reach 
the maximum value within 1.5 times the interquartile range. Outlying values are not represented. For 
clarity, the red line benchmarks the true simulated postnatal parental indirect effect, although we note that 
prenatal parental genetic effects are a component rather than a bias of the parental indirect genetic effect. 

Population phenomena may inflate indirect genetic effect estimates 
Although triangulating designs suggested that prenatal indirect genetic effects, population 
stratification, and assortative mating may contribute to the higher estimated parental indirect 
genetic effects from non-transmitted alleles/sibling designs relative to the adoption design, 
this approach cannot disentangle the relative importance of these individual biases. To this 
end, we conducted additional sensitivity analyses to assess the magnitudes of these biases 
(not pre-registered). 

First, we analysed the GWAS summary data on which the polygenic scores were based, 



Indirect genetic effects of cognitive and noncognitive skills 

57

using LD score regression to detect population stratification. The LD score regression ratio 
statistics of uncorrected educational attainment and cognitive performance GWASs were 
0.11 (SE = 0.01) and 0.06 (SE = 0.01), respectively (Supplementary Data 1). These non-null 
estimates indicated that a small but significant portion of the GWAS signal was potentially 
attributable to residual population stratification. As CP seems less prone to population 
stratification than EA, it is possible our estimates of direct and indirect genetic effects of 
NonCog were more biased by population stratification than Cog. 

Second, we detected slight evidence of assortative mating, which appeared stronger in the 
UK than Dutch cohorts. In NTR, parental PGS correlations are non-significant (NonCog r = 
0.03, Cog r = 0.02). Sibling PGS intraclass correlations ranged between 0.49-0.52 in NTR, 
and between 0.53-0.56 in TEDS and UK Biobank. This supports the presence of assortative 
mating on NonCog and Cog PGS potentially biasing our estimates of indirect genetic effects 
in UK cohorts, but less in our Dutch cohort. See Supplementary Data 6 for full correlations. 

Third, our sensitivity analyses did not support the presence of indirect effects of siblings’ 
NonCog and Cog PGS on individuals’ educational outcomes. Our first approach leveraged 
sibling polygenic scores, the rationale being that in the presence of a sibling effect, a 
sibling’s PGS will influence a child’s outcome beyond child and parent PGS. In NTR, siblings’ 
NonCog or Cog PGS had non-significant effects (Supplementary Data 7). In a second 
approach, the difference in PGS effects on EA between monozygotic (MZ) and dizygotic 
(DZ) individuals was tested. Since MZ twins are more genetically similar than DZ twins, 
their PGS should capture more of the indirect genetic effect of their twin. In NTR and TEDS, 
PGS effects were not significantly different between MZs and DZs (Supplementary Data 8 
& Supplementary Figure 6). Finally, in UKB, we tested PGS effects on EA given the number 
of siblings individuals reported having. If more siblings lead to a stronger sibling effect, 
this will be captured as an increased effect of an individual’s own PGS on the outcome in 
the presence of more genetically related siblings. As a negative control, we conducted the 
same analysis in adoptees. Since adoptees are unrelated to their siblings, their PGS do 
not capture sibling effects at any family size. NonCog PGS effects weakly increased with 
number of siblings, but this pattern was also present in adoptees, suggesting confounding 
by unobserved characteristics of families with numerous children (Supplementary Data 9 & 
Supplementary Figure 7). 

DISCUSSION 
We used genetic methods to study environmental effects of parents’ skills on child education. 
We found evidence that characteristics tagged by NonCog and Cog polygenic scores (PGS) 
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are both involved in how parents provide environments conducive to offspring education. 
Indeed, indirect genetic mechanisms explained 36% of the population effect of the NonCog 
PGS, and 40% of the population effect of the Cog PGS (population βNonCog = 0.22, SE = 0.01; 
population βCog = 0.25, SE = 0.01). This result was consistent across countries, generations, 
outcomes, and analytic designs, with two notable exceptions. First, estimated parental 
indirect genetic effects were null for childhood achievement in our Dutch cohort (NTR), but not 
for comparable outcomes in our UK cohort (TEDS). Second, parental indirect genetic effects 
estimated with the adoption design were lower than for the sibling and non-transmitted allele 
designs, particularly for the NonCog PGS. Given our evidence from data simulations that the 
adoption-based estimates of indirect genetic effects do not account for prenatal effects and 
may be more robust to population stratification and assortative mating, these factors may 
contribute substantially to estimates from the other two designs, especially for the NonCog 
PGS. This was supported by results from sensitivity analyses.

This study demonstrates utility of genetic methods for assessing elusive phenomena: 
noncognitive skills, and genuine environmental influences from parents, unconfounded by 
offspring-led effects of inherited genes. Compared to analysing a set of measured parental 
noncognitive skills, our GWAS-by-subtraction approach captures a wider array of traits linked 
genetically to attainment, and therefore broadly quantifies the overall salience of parents’ 
noncognitive skills. Our evidence that parents’ noncognitive and cognitive skills are both 
important for children’s education complements the growing literature that has considered 
effects of specific measured skills within both of these domains146,147. These studies found 
that effects of parents’ noncognitive skills on offspring education were less than half the size 
of the effects of parents’ cognitive skills. In contrast, we found that indirect genetic effects of 
NonCog PGS were almost as large as for Cog skills. This discrepancy might stem in part from 
our comprehensive definition of noncognitive skills, as we do not rely on possibly unreliable 
and incomplete phenotypic measures. Importantly, the parental indirect genetic effects we 
have identified may capture proximal forms of ‘nurture’ (e.g. a parent directly training their 
child’s cognitive skills, or cultivating their child’s learning habits through participation and 
support) and/or more distal environmental effects (e.g. a parent’s openness to experience 
leading them to move to an area with good schools). The environmental effects of parents’ 
noncognitive and cognitive skills are likely to be larger than we estimate, because our 
approach only captures effects of parent skills tagged by current GWAS. Polygenic scores 
index a subset of the common genetic component of parent skills, which is in turn a fraction 
of the total genetic component (missing heritability173,174), and cannot account for the non-
heritable component of parent skills.
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The lower importance of parental indirect genetic effects for child achievement in the 
Netherlands compared to the UK indicates that our UK achievement outcomes more strongly 
capture variation in family background. This difference could result from the design of these 
achievement measures: Dutch test results are standardized based on a representative 
population, but UK teacher reports might still be affected by student social background. 
Societal differences between the two countries might offer another explanation, as indirect 
genetic effects might be seen as indicator of social inequality (similarly to shared-environment 
variance in twin studies175). For adult attainment, results were more similar across UK and 
Dutch cohorts, corresponding with recent evidence for consistent shared-environment 
influence on educational attainment across social models176. This consistency also suggests 
that the difference in childhood is not due to a cohort or population difference. The higher 
indirect genetic effects in adult attainment in the Netherlands might reflect an increase in 
environmental variance following tracking taking place in secondary schools157. Indeed, 
socioeconomic disparities in achievement seem to increase more between ages 10 and 15 
in the Netherlands than in the UK177 and children whose parents have a higher education are 
more likely to enrol in a higher educational track independently of their achievement at age 
12178, suggestive of greater parental effects on secondary and later education, which should 
be tested in further studies. 

We found that the design used to estimate indirect genetic effects matters, with the adoption 
design giving systematically lower estimates. Direct comparison of results across designs 
suggested that 33% (for Cog) and 83% (for NonCog) of the indirect genetic effects on 
adult educational attainment, estimated using the sibling design, are at least in part due 
to population stratification, assortative mating, and prenatal indirect genetic effects. The 
importance of population stratification for genetic associations with educational attainment 
was suggested by recent UK Biobank studies179,180. Our sensitivity analyses also indicated 
residual population stratification, which was more severe for the NonCog GWAS. There 
was some evidence of assortative mating, with sibling PGS correlations above expectation 
(>0.5) particularly in the UK cohorts. This country difference in assortment is supported by 
the lower estimated spouse PGS correlations in NTR (0.02 for Cog, 0.03 for NonCog) than 
for the EA PGS in the UK Biobank (0.06)181. There was no statistically significant difference 
in assortative mating between Cog and NonCog, suggesting that population stratification 
explains the particularly large design-based discrepancy between estimates of indirect 
genetic effects for NonCog (but possibly also differential bias in the Cog versus NonCog 
GWASs; see Limitations). Population stratification should be carefully considered in studies 
using NonCog PGS. Structural equation models, leveraging within-family polygenic scores 
and phenotypes, are being developed to parse the contributions of indirect and direct genetic 
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effects to complex traits from assortative mating (both disequilibrium and equilibrium forms) 
and population stratification182,183. Another consideration for future research is that indirect 
genetic effects on education might span across more than a single generation, for example 
the influence of grandparents. Since cumulative indirect genetic effects are all removed when 
a child is adopted, their presence would contribute to the observed difference in indirect 
effect between the adoption and other designs. 

Regarding siblings, we did not find evidence that indirect effects of siblings’ NonCog 
and Cog PGS affect individual differences in educational outcomes, using three different 
approaches. This corresponds with null findings regarding indirect effects of siblings’ 
educational attainment genetics in the UK Biobank179,180. However, other UK Biobank studies 
have detected indirect effects of older siblings’ EA PGS on younger siblings’ educational 
attainment184, and parental compensation for sibling EA PGS differences185, suggesting 
that more subtle analyses are required to understand sibling effects. There is also some 
evidence for sibling effects on educational attainment in other populations, based on the EA 
PGS156 and on extended twin family data186. It is possible that our PGS analyses were not 
sufficiently powered to detect indirect genetic effects of siblings, since they were based on 
lower sample size than our main analyses. However, our results suggest that indirect genetic 
effects of siblings on education are small. Therefore, our methods provide good proxies for 
parental indirect genetic effects, with minimal inflation from sibling effects. 

Our data suggest that the adoption design may provide a useful lower-bound estimate of 
indirect genetic effects of parents. Given that there was no evidence for sibling effects of 
the Cog or NonCog PGS, our adoption-based estimates, which appear to be less biased by 
population stratification and assortative mating, should give a closer measure of (postnatal) 
parental indirect genetic effects in the absence of other issues. However, adoptees and 
non-adopted individuals differ in unobserved and observed ways, including birthweight (d 
= 0.3). These differences likely make adoption-based estimates of indirect genetic effects, 
which rely on a comparison of the two groups, less reliable. Moreover, three additional 
factors may make the adoption-based estimates of indirect genetic effects too conservative. 
First, adoption based indirect effect estimates exclude prenatal indirect genetic effects (and 
indirect genetic effects taking place between the birth and moment of adoption), which might 
influence educational outcomes187,188. While we are unable to test for prenatal indirect effects, 
these could be investigated in cohorts with pregnancy information, adjusting for postnatal 
indirect genetic effects. Second, adoptees may have been exposed to a narrower range of 
environments (e.g. family socioeconomic status) compared to non-adopted individuals189. 
This form of selection bias is likely to increase the genetic variance at the expense of the 
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indirect genetic effect. Third, selective placement of children in adoptive families matching 
characteristics of their biological families, or adoption of children by close relatives190, 
could result in correlation between child and (adoptive) parent genotypes, leading to an 
underestimation of the indirect genetic effect. There is modest evidence for selective 
placement of adoptees based on education in the US191. We cannot control for selection and 
relatedness (e.g. by excluding individuals who were adopted by relatives and/or adopted 
relatively late in development), since there is no information on the adoptive parents in the 
UK Biobank resource. 

We acknowledge several limitations. First, while we suggest that an attribute of our study 
is the broad and phenotype-agnostic characterisation of noncognitive skills, our GWAS-by-
subtraction approach is unable to identify specific parental characteristics and is also still 
limited by measures of cognitive performance and educational attainment in the original 
GWASs. Some cognitive skills might not be reflected in the available Cognitive Performance 
GWAS, so the NonCog factor could capture genetic influences affecting cognition. However, 
previous analyses have shown that a NonCog PGS based on GWAS-by-subtraction predicts 
substantially less variation in cognition than the Cog PGS152. Additionally, our NonCog 
latent variable reflects the residual variance of adult educational attainment, and therefore 
is a measure of noncognitive aspects of adult EA. Noncognitive aspects of childhood 
achievement might differ somewhat, which might lead to an underestimation of indirect 
genetic effects of the NonCog PGS on these outcomes. 

Second, the generalisability of our results is limited. Highly educated individuals are over-
represented in all cohorts. Participation bias also affects GWAS results192. Selection effects 
may be especially strong in the adoption design as adoptions may depend on (partially 
heritable) phenotypes of the biological parents, and many adoptive parents are also selected 
based on their (partially heritable) behavioural phenotypes. Additionally, only participants of 
European descent were included in the analysis. 

Third, replication efforts are needed. Special effort should be targeted to include diverse 
ancestry participants. While our overall estimates are well powered due to the aggregation of 
cohorts, some analyses rely on a single sample. As such, results from these analyses might 
reflect specifics of these samples and not design-specific biases and should be replicated. 

Fourth, although our within-family methods allowed us to evaluate biases in polygenic score 
effects within the target samples, the same biases are likely to influence the effect size 
estimates from the original population-based GWASs used to construct polygenic scores. 
This problem has been explored in relation to the sibling design in a recent preprint193, but 
remains to be investigated for non-transmitted PGS and adoption designs. Population 
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GWAS effects could be differentially affected (i.e. stronger correlation between direct and 
indirect genetic effects) for NonCog versus Cog, which would make their respective PGS 
effects less comparable. Increasingly large within-family GWASs165,194 of Cog and EA will 
allow this to be resolved. 

Finally, while we conceptualize our NonCog PGS as a noncognitive measure, it could also be 
considered a ‘not-cognitive PGS’, since it is a residual construct that results from removing 
heritable variance associated with cognitive skills from the heritable variance in educational 
attainment. In the future, it may be useful to develop a more precise noncognitive skills GWAS, 
by creating the latent Cog and NonCog factors using additional measured phenotypes. To 
this end, large GWA meta-analyses should be completed not only for personality85 but not 
for other traditional noncognitive skills such as motivation and self-control. 

Several additional future research directions emerge. First, given that we have quantified the 
overall environmental effects of parents on offspring education tagged by NonCog and Cog 
PGS, the next step is to identify specific mediating parent characteristics, whether proximal 
or distal. It will be informative to test not only typical noncognitive skills measures such as 
parental locus of control (as suggested by146), but also ‘not-cognitive’ characteristics that 
do not appear in noncognitive skill batteries yet are genetically correlated with the NonCog 
PGS and phenotypically correlated with offspring achievement. For instance, parental 
depression is a feasible partial mediator, given that Major Depressive Disorder is significantly 
genetically correlated with NonCog (rg = -0.19, p = 2.62E-14)152, and maternal depression 
is associated with offspring mathematics performance, possibly via offspring executive 
function195. Researchers could also examine mediating child characteristics on the pathway 
between their parents’ characteristics and their own educational outcomes. Children’s skills 
themselves might not be involved in these pathways. Indeed, educated parents do not 
appear to affect offspring education by fostering noncognitive skill development145, and twin 
research shows no influence of shared environmental factors on individual differences in 
children’s measured noncognitive skills such as grit and self-control27,52,196.

A second future direction is to incorporate gender and socioeconomic status into research 
on indirect genetic effects on education. Twin data show that shared environmental 
contributions to educational attainment are larger for women than for men176. It is unknown 
whether this finding holds for indirect genetic effects and for childhood achievement. Another 
gender aspect to consider is differential maternal and paternal indirect genetic effects163. 
There is some evidence (although not genetically-informed) that mother and father skills 
show unique associations with offspring education147. Indirect effects of parents’ genetic 
endowment for noncognitive skills on child education might be mediated or moderated by 
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parents’ income and cultural capital (including school-related skills and habits). While some 
evidence suggests that home learning environments may be more cognitively stimulating in 
families of higher socioeconomic197,198, there is also evidence suggesting that mothers who 
have lower reported incomes also report more frequent activities that facilitate cognitive 
stimulation199.

In sum, this study provides evidence for environmental effects of parents’ noncognitive and 
cognitive skills on offspring educational outcomes, indexed by indirect genetic effects of 
polygenic scores. Combining three cohorts and three designs for estimating indirect genetic 
effects allowed us to obtain robust findings. These results have significance for human 
health, as the role parents play in successful cognitive development and (mental) health 
development go hand in hand.

METHODS
Our research complies with all relevant ethical regulations. Project approval for the Twins Early 
Development Study (TEDS) was granted by King’s College London’s ethics committee for 
the Institute of Psychiatry, Psychology and Neuroscience PNM/09/10–104. Ethical approval 
for the Netherlands Twin Register (NTR) was provided by the Central Ethics Committee 
on Research Involving Human Subjects of the VU University Medical Center, Amsterdam, 
and Institutional Review Board certified by the U.S. Office of Human Research Protections 
(IRB number IRB-2991 under Federal-wide Assurance-3703; IRB/institute codes 94/105, 
96/205, 99/068, 2003/182, 2010/359) and participants provided informed consent. The UK 
Biobank has received ethical approval from the National Health Service North West Centre 
for Research Ethics Committee (reference: 11/NW/0382). Informed consent was obtained 
from all human participants. 

The study methods were pre-registered on the Open Science Framework (https://osf.io/
mk938/) on the 24/02/2020. Additional non-preregistered analyses are indicated as such 
below and should be considered exploratory. Additional deviations from the pre-registration 
are detailed in Supplementary Note 1. 

Samples

UK Biobank

The UK Biobank is an epidemiological resource including British individuals aged 40 to 70 
at recruitment200. Genome-wide genetic data came from the full release of the UK Biobank 
data, and were collected and processed according to the quality control pipeline201. 
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We defined three subsamples of the UK Biobank to be used for polygenic score analyses: 
adopted participants, a control group of non-adopted participants, and siblings. Starting 
with UK Biobank participants with QC genotype data and educational attainment data (N = 
451,229), we first identified 6,407 unrelated adopted individuals who said yes to the question 
“Were you adopted as a child?” (Data-Field 1767). We restricted the sample to unrelated 
participants (kinship coefficient <1/(2^9/2))202. Second, our comparison sample (N = 6,500) 
was drawn at random from non-adopted participants who were unrelated to each other 
and to the adopted participants. Third, we identified 39,500 full siblings, excluding adopted 
individuals. We defined full-siblings as participants with a kinship coefficient between 1/
(2^(3/2)) and 1/(2^(5/2)) and a probability of zero IBS sharing >0.0012, as suggested by201 

and 202. 

After excluding the three sub-samples for polygenic score analyses and individuals related 
to these participants, we were left with 388,196 UK Biobank individuals with educational 
attainment (EA) data, and 202,815 individuals with cognitive performance (CP) data. We 
used these remaining individuals for the GWASs of EA and CP, and later meta-analysis with 
external GWASs58 (see ‘Statistical Analyses’ and Supplementary Note 2). 

Twins Early Development Study (TEDS)
The Twins Early Development Study (TEDS) is a multivariate, longitudinal study of >10,000 
twin pairs representative of England and Wales, recruited 1994–1996203. The demographic 
characteristics of TEDS participants and their families closely match those of families in the 
UK. Analyses were conducted on a sub-sample of dizygotic (DZ) twin pairs with genome-
wide genotyping and phenotypic data on school achievement at age 12 (1,431 DZ pairs) and 
age 16 (2,398 pairs). 

Netherlands Twins Register (NTR)
The Netherlands Twin Register (NTR)61 is established by the Department of Biological 
Psychology at the Vrije Universiteit Amsterdam and recruits children and adults twins for 
longitudinal research. Data on health, personality, lifestyle and others, as well as genotyping 
data have been collected on participants and their families. 

We included in our analyses genotyped European-ancestry participants. We created a 
subsample of full-siblings. NTR contains information on numerous monozygotic multiples 
(twins or triplets). Because MZ multiples share the same genes, we randomly excluded all 
individuals but one per MZ multiple. Only siblings with complete genetic and outcome data 
were subsequently included in the analyses: 1,631 siblings with CITO (achievement test 
taken during the last year of primary school) data (from 757 families) and 3,163 siblings with 
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EA data available (from 1,309 families). 

We created a subsample with complete offspring, maternal and paternal genotypic data (i.e. 
trios). Among individuals with available parental genotypes, respectively 1,526 (from 765 
families) and 2,534 (from 1,337 families) had reported CITO and EA information. 

The sibling and trio subsets are not independent: for CITO, 823 participants are present in 
both subsets, 1,374 for EA. 

Phenotypic Measures

UK Biobank

Educational attainment and cognitive performance phenotypes were defined following Lee 
et al.58. From data-field 6,238, educational attainment was defined according to ISCED 
categories and coded as the number of Years of Education. The response categories 
are: none of the above (no qualifications) = 7 years of education; Certificate of Secondary 
Education (CSEs) or equivalent = 10 years; O levels/GCSEs or equivalent = 10 years; A 
levels/AS levels or equivalent = 13 years; other professional qualification = 15 years; National 
Vocational Qualification (NVQ) or Higher National Diploma (HNC) or equivalent = 19 years; 
college or university degree = 20 years of education. For cognitive performance, we used the 
(standardized) mean of the standardized scores of the fluid intelligence measure (data-field 
20016 for in-person and 20191 for an online assessment). 

TEDS
Educational achievement at age 12 was assessed by teacher reports, aggregated across the 
three core subjects (Mathematics, English, and Science). 

Educational achievement at age 16 was assessed by self-reported results for standardized 
tests taken at the end of compulsory education in England, Wales and Northern Ireland: 
General Certificate of Secondary Education; GCSE). GCSE grades were coded from 4 (G; 
the minimum pass grade) to 11 (A*; the highest possible grade). As with the age 12 measure, 
we analysed a variable representing mean score for the compulsory core subjects. 

NTR

Educational attainment was measured by self-report of the highest obtained degree204. This 
measure was re-coded as the number of years in education, following Okbay et al.205. 

Academic achievement is assessed in the Netherlands by a nation-wide standardized 
educational performance test (CITO) around the age of 12 during the last year of primary 
education. CITO is used to determine tracking placement in secondary school in the 
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Netherlands, in combination with teacher advice. The total score ranges from 500 to 550, 
reflecting the child’s position relative to the other children taking the test this particular year. 

Genotype quality control

UK Biobank

SNPs from HapMap3 CEU (1,345,801 SNPs) were filtered out of the imputed UK Biobank 
dataset. We then did a pre-PCA QC on unrelated individuals, and filtered out SNPs with 
MAF < .01 and missingness > .05, leaving 1,252,123 SNPs. After removing individuals with 
non-European ancestry, we repeated the SNP QC on unrelated Europeans (N = 312,927), 
excluding SNPs with MAF < .01, missingness >.05 and HWE p < 10-10, leaving 1,246,531 SNPs. 
The HWE p-value threshold of 10-10 was based on: http://www.nealelab.is/blog/2019/9/17/
genotyped-snps-in-uk-biobank-failing-hardy-weinberg-equilibrium-test. We then created a 
dataset of 1,246,531 QC-ed SNPs for 456,064 UKB subjects of European ancestry. Principal 
components were derived from a subset of 131,426 genotyped SNPs, pruned for LD (r2 > 0.2) 
and long-range LD regions removed206. PCA was conducted on unrelated individuals using 
flashPCA v2207. 

TEDS
Two different genotyping platforms were used because genotyping was undertaken in 
two separate waves. AffymetrixGeneChip 6.0 SNP arrays were used to genotype 3,665 
individuals. Additionally, 8,122 individuals (including 3,607 DZ co-twin samples) were 
genotyped on Illumina HumanOmniExpressExome-8v1.2 arrays. After quality control, 
635,269 SNPs remained for AffymetrixGeneChip 6.0 genotypes, and 559,772 SNPs for 
HumanOmniExpressExome genotypes. 

Genotypes from the two platforms were separately phased and imputed into the Haplotype 
Reference Consortium (release 1.1) through the Sanger Imputation Service before merging. 
Genotypes from a total of 10,346 samples (including 3,320 DZ twin pairs and 7,026 unrelated 
individuals) passed quality control, including 3,057 individuals genotyped on Affymetrix and 
7,289 individuals genotyped on Illumina. The identity-by-descent (IBD) between individuals 
was < 0.05 for 99.5% in the merged sample excluding the DZ co-twins (range = 0.00 – 0.12) 
and ranged between 0.36 and 0.62 for the DZ twin pairs (mean = 0.49). There were 7,363,646 
genotyped or well-imputed SNPs (for full genotype processing and quality control details, 
see208). 

To ease high computational demands for the current study, we excluded SNPs with MAF <1% 
and info < 1. Following this, 619216 SNPs were included in polygenic score construction.
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Principal components were derived from a subset of 39,353 common (MAF > 5%), perfectly 
imputed (info = 1) autosomal SNPs, after stringent pruning to remove markers in linkage 
disequilibrium (r2 > 0.1) and excluding high linkage disequilibrium genomic regions to ensure 
that only genome-wide effects were detected.

NTR

Genotyping was done on multiple platforms, following manufacturers protocols: Perlegen-
Affymetrix, Affymetrix 6.0, Affymetrix Axiom, Illumina Human Quad Bead 660, Illumina Omni 
1M and Illumina GSA. For each genotype platform, samples were removed if DNA sex did 
not match the expected phenotype, if the PLINK heterozygosity F statistic was < -0.10 or 
> 0.10, or if the genotyping call rate was < 0.90. SNPs were excluded if the MAF < 1×10-6, 
if the Hardy-Weinberg equilibrium p-value was < 1×10-6, and/or if the call rate was < 0.95. 
The genotype data was then aligned with the 1000 Genomes reference panel using the 
HRC and 1000 Genomes checking tool, testing and filtering for SNPs with allele frequency 
differences larger than 0.20 as compared to the CEU population, palindromic SNPs and 
DNA strand issues. The data of the different platforms was then merged into a single 
dataset, and one platform was chosen for each individual. Based on the ~10.8k SNPs that all 
platforms have in common, DNA identity-by-descent state was estimated for all individual 
pairs using the Plink 1.9 and King 2.1.6 programs. Samples were excluded if these estimates 
did not correspond to expected familial relationships. CEU population outliers, based 
on per platform 1000 Genomes PC projection with the Smartpca software v2.r904, were 
removed from the data. Then, per platform, the data was phased using Eagle v2.4.1 and then 
imputed to 1000 Genomes and Topmed using Minimac3-omp v2.10 following the Michigan 
imputation server protocols. Post-imputation, the resulting separate platform VCF files were 
merged with Bcftools 1.9 into a single file per chromosome for each reference, for SNPs 
present on all platforms. For the polygenic scoring and parental re-phasing, the imputed 
data were converted to best guess data and were filtered to include only ACGT SNPs, SNPs 
with MAF > 0.01, HWE p > 10 -5 and a genotype call rate > 0.98, and to exclude SNPs with 
more than 2 alleles. All mendelian errors were set to missing. The remaining SNPs represent 
the transmitted alleles dataset. 20 PCs were calculated with Smartpca using LD-pruned 
1000 Genomes–imputed SNPs genotyped on at least one platform, having MAF > 0.05 and 
not present in the long-range LD regions. Using the --tucc option of the Plink 1.07 software 
pseudo-controls for each offspring were created, given the genotype data of their parents. 
This resulted in the non-transmitted alleles dataset, as these pseudo-controls correspond 
to the child’s non-transmitted alleles. To determine the parental origin of each allele, the 
transmitted and non-transmitted datasets were phased using the duoHMM option of the 
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ShapeIT software. The phased datasets were then split based on parental origin, resulting 
in a paternal and maternal haploid dataset for the transmitted and non-transmitted alleles.

Statistical analyses
All statistical tests are two-sided, unless otherwise stated.

NonCog GWAS-by-subtraction

To generate NonCog summary statistics, we implemented a GWAS-by-subtraction using 
Genomic-SEM following Demange et al. 2020 using summary statistics of EA and cognitive 
performance obtained in samples independent from our polygenic score samples. 

We ran a GWAS of Educational Attainment and Cognitive Performance in UK Biobank 
(polygenic score sample left-out). We meta-analysed them with the EA GWAS by Lee et al. 
excluding 23andMe, UK Biobank and NTR cohorts, and with the CP GWAS by Trampush 
et al. respectively (EA total N = 707,112 and CP N = 238,113) using Metal software release 
2011-03-05. More information on these methods and intermediate GWASs are found in 
Supplementary Note 2 and Supplementary Data 1. 

Following Demange et al. 2020, we used EA and CP meta-analysed summary statistics 
with Genomic-SEM to create two independent latent variables: Cog, representing the 
genetic variance shared between EA and CP, and NonCog representing the residual genetic 
variance of EA when regressing out CP (Supplementary Figure 1). These two latent factors 
were regressed on each SNP: we obtained association for 1,071,804 SNPs (HapMap3 SNPs, 
as recommended when comparing PGS analyses across cohorts). We calculate the effective 
sample size of these GWASs to be 458,211 for NonCog and 223,819 for Cog. 

Polygenic Score construction in UK Biobank, TEDS and NTR
Polygenic scores of NonCog and Cog were computed with Plink software (version 1.9 for 
NTR, 2 for UKB and TEDS)209,210 based on weighted betas obtained using the LDpred v1.0.0 
software using infinitesimal prior, a LD pruning window of 250kb and 1000Genomes phase 
3 CEU population as LD reference. Weighted betas were computed in a shared pipeline. In 
NTR, scores for non-transmitted and transmitted genotypes were obtained for fathers and 
mothers separately so we average them to obtain the mid-parent score.

Polygenic score model fitting 
Each model included cognitive and noncognitive polygenic scores simultaneously and 
controlled for: 10 ancestry principal components (PCs), sex and age, interaction between 
sex and age, and cohort-specific platform covariate (NTR: genotyping platform, UKB: 
array, TEDS: batch). Age was estimated by year of birth, age at recruitment or age at testing 
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depending on the cohorts, see Supplementary Data 2. Correlations between NonCog and 
Cog PGS, as well as between and within-family PGS are reported Supplementary Data 10. 

Outcomes were standardized for each analysis group. Polygenic scores were standardised 
as follows prior to analysis. For the non-transmitted allele design, we summed the parental 
PGS and then scaled the non-transmitted and transmitted PGS separately, following Kong 
et al156. Note that the variances of the non-transmitted and transmitted PGS were not 
significantly different prior to scaling (Cog PGS: F = 1.0088, p = 0.71; NonCog PGS: F = 
0.9920, p = 0.73). For the adoption design, we scaled the PGS in adopted and non-adopted 
groups separately. There were no significant differences in variances of adopted and non-
adopted PGS prior to scaling (see Supplementary Data 11). For the sibling design, we scaled 
the PGS to have mean 0 SD 1 using the sibling group, and subsequently created the within-
sibling PGS.

All regressions were linear models with lm() in R rather than mixed models as in previous 
analyses157,158 and our pre-registered methods. See Supplementary Note 1 for the justification 
based on simulated data. We obtained bootstrapped standard errors and bias-corrected 
confidence intervals (normal approximation) for the population, indirect and direct effects, 
as well as the ratios of indirect/direct and indirect/population effect. We ran ordinary non-
parametric bootstraps using 10,000 replications with boot() in R. For the sibling design, 
where two independent regressions are used, we use the same bootstrap samples for 
both (both regressions were run within the same boot object). For the adoption design, the 
bootstrapped samples are drawn from the adopted and non-adopted samples separately. 
The bootstrap estimates were used to test for the difference between the direct and indirect 
effect in both Cog and NonCog and the difference between the ratio indirect/population for 
Cog and NonCog, using Z-tests.

Additional analyses (not pre-registered)

Meta-analyses 

To estimate the overall indirect and direct effects of NonCog and Cog polygenic scores, we 
meta-analysed estimates across cohorts, designs and phenotypic outcomes. 

To compare results obtained across the three different designs, we meta-analysed effect 
sizes obtained from each design across cohorts, but holding the outcome constant 
(educational attainment). The adoption design was only applied to EA in UKB, hence no 
meta-analysis was necessary. 

Meta-analyses were conducted using the command rma.mv() in the R package metafor. 
Design was specified as a random intercept factor, except when results were meta-analysed 
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within-design.

Investigation of biases

Population stratification
Population stratification refers to the presence of systematic difference in allele frequencies 
across subpopulations, arising from ancestry difference due to non-random mating and 
genetic drift. This leads to confounding in genetic association studies. In a PGS analysis, 
bias due to population stratification can arise from both the GWAS used to create the scores 
and the target sample. We corrected for population stratification in the target sample by 
adjusting analyses for PCs (although this may not remove fine-scale stratification). For 
the GWAS summary statistics, the ratio statistics LDSC output is a standard measure of 
population stratification211. As a rule of thumb, an LDSC intercept higher than 1 (inflated) 
indicates presence of population stratification. Because we corrected the standard errors of 
the EA GWAS for inflation and Genomic-SEM corrects for inflation as well, the ratio statistics 
of the Cog and NonCog GWASs are not a valid indication of population stratification (ratio 
<0 following GC correction). We therefore use the ratio statistics of uncorrected EA and CP 
GWASs as proxies. Ratio and LDscore intercept was assessed with the ldsc software211. 

Assortative mating
Assortative mating refers to the non-random mate choice, with a preference for spouses with 
similar phenotypes. If these preferred phenotypes have a genetic component, assortative 
mating leads to an increased genetic correlation between spouses, as well as between 
relatives181. Assortative mating can therefore be inferred from elevated correlations between 
polygenic scores in siblings (correlations would be 0.5 without assortative mating) and 
between parents (correlations would be 0 without assortative mating). We estimated sibling 
intraclass correlations of Cog and NonCog PGS in UKB, TEDS and NTR, and Pearson’s 
correlations of paternal and maternal Cog and NonCog PGS in NTR. Notably, these observed 
correlations cannot distinguish assortative mating from population stratification. 

Sibling effects
We performed three additional analyses to investigate indirect genetic effects of siblings on 
educational outcomes. 

First, we ran a linear mixed model extending our main non-transmitted alleles design to 
include polygenic scores of siblings (Eq. (4)). To this end, we used data from NTR on DZ 
pairs and both of their parents. Sample sizes of genotyped ‘quads’ with offspring CITO or 
EA phenotypes were 657 and 788, respectively. 
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Second, we can also assess the presence of sibling genetic effects using monozygotic 
and dizygotic twins. Because monozygotic twins have the same genotypes, the genetically 
mediated environment provided by the cotwin is more correlated to the twin genotype in MZ 
twins than in DZ twins. The sibling genetic effect is more strongly reflected in the polygenic 
score prediction of the educational outcome for MZ twins than for DZ twins. If the sibling 
genetic effect is negative, the polygenic score effect (betas) on the outcome in people that 
have an MZ twin will be lower than in people that have a DZ twin, it will be higher in those 
with an MZ twin then those with an DZ twin if the sibling genetic effect is positive. We 
therefore compare Betas from Eq. (2) in a subset of MZ twins and in a subset of DZ twins 
(one individual per pair) in both NTR (NMZ = 818 & NDZ = 865 for CITO and NMZ = 1,600 & NDZ 
= 1,369 for EA) and TEDS (NMZ = 546 & NDZ = 2,709) 

Third, the presence of sibling genetic effects can be assessed using data on the number 
of siblings participants have. If an individual has more siblings, we expect their polygenic 
scores to be more correlated to sibling effects. As the number of siblings increases (if we 
assume linear increase) so does the degree to which a PGS captures sibling effects. If the 
sibling genetic effect is positive, the effect of the Cog and NonCog PGS on the educational 
outcome should increase with the number of siblings. However, family characteristics and 
environment might differ across families depending on the number of children. Therefore, 
changes in the effect of the PGS on our outcome with the number of siblings could be due 
to factors other than sibling genetic effects (for example, there is a known negative genetic 
association between number of children and EA84 which could result in confounding). By 
also looking at changes in the effect of the Cog and NonCog PGS on the educational 
outcome in adopted (unrelated) sibships, we break the correlation between PGS and any 
sibling effects. If there is a change in PGS effect on the educational outcome in adopted 
children dependent on the number of (non-biological) siblings, we can assume this effect to 
be caused by mechanisms other than a sibling effect. We finally contrast the change in PGS 
depending on family size in biological and adopted siblings to get an idea of the sibling effect 
minus any other confounding effects of family size. We use the total number of reported 
siblings (full siblings for non-adopted and adopted siblings for adopted individuals, data-
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fields: 1873, 1883, 3972 & 3982). 

CODE AND DATA AVAILABILITY 
All scripts used to run the analyses (empirical and simulated) are available at our GitHub https://
github.com/PerlineDemange/GeneticNurtureNonCog/, which can be cited as Demange P., 
et al. Estimating effects of parents’ cognitive and noncognitive skills on offspring education 
using polygenic scores, GitHub, DOI: 10.5281/zenodo.6581326, 2022.

All additional software used to perform the analyses are available online. 

The pre-registration of the study is available on OSF: https://osf.io/mk938/

For the original summary statistics of Cog and NonCog, including NTR and UK Biobank 
siblings data, see152. The summary statistics for Cog and NonCog generated for this study 
are available at: https://doi.org/10.34894/MMXYPL. 

For UK Biobank dataset access, see: https://www.ukbiobank.ac.uk/using-the-resource/. 

Netherlands Twin Register data may be accessed, upon approval of the data access 
committee, email: ntr.datamanagement.fgb@vu.nl 

Researchers can apply for access to TEDS data: https://www.teds.ac.uk/researchers/teds‐
data‐access‐policy

SELECTED SUPPLEMENTARY INFORMATION 
Full Supplementary Information and Supplementary Tables can be downloaded at: https://
www.nature.com/articles/s41467-022-32003-x#Sec32 

Supplementary Note 4: Methods for simulating genetic and phenotypic 
data in the presence of different biases and components
We simulate data introducing various potential components and biases, and then fit all 
models used throughout the paper to identify how the estimated parental indirect effect 
changes in the presence of these factors. 

We simulate genotype data for 20,000 families. Each family includes a mother, a father, 
a focal offspring, a child sibling, and an adopted child sibling. The adoptee genotypes 
are drawn from another simulated dataset of biological parents, independent of the focal 
families. Therefore, the total sample size including the main families plus biological parents 
of adoptees is (20,000 x 5) + 20,000 = 120,000 individuals. Genotypes are simulated as 
100 bi-allelic SNP calls, using the ‘coin flipping’ function in R rbinom(). For individuals in 
the parent generation, probability values for SNPs are defined by minor allele frequencies 
(simulated as deviates of the uniform distribution between .1 and .5). For offspring of these 
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individuals, probability values for SNPs are defined as each parental genotype divided by 2.

We then simulate ‘true’ SNP effects, drawn from a normal distribution. We use these true 
SNP effects to simulate ‘true’ genetic scores for the mothers, fathers, and biological and 
adopted offspring. The true SNP effects are the same for all individuals and for all sub-
populations. True genetic scores are used to simulate phenotypes.

In addition to ‘true’ polygenic scores, we create more realistic ‘GWAS-based’ polygenic 
scores for all individuals by weighting their genotypes by GWAS SNP effects. We define 
GWAS SNP effects as true SNP effects with added error, and calculate them as sqrt(.2)*true 
effects + sqrt(.8)*error, the error following a normal distribution (this differs when simulating 
population stratification, see below). GWAS effects are the same for all individuals and sub-
populations. GWAS-based polygenic scores are used to estimate direct and indirect effects. 
We also tested how sensitive the estimates from the three designs are to the amount of noise 
introduced in the GWAS effects, and found that this only matters for assortative mating (see 
assortative mating results below).

We simulate nine offspring phenotypes influenced by different factors: 

i. direct genetic effects only, 

ii. direct and indirect parental genetic effects (maternal and paternal), 

iii. indirect parental genetic effects plus a prenatal indirect maternal genetic effect, 

iv. indirect sibling genetic effect, 

v. indirect parental genetic effects and an indirect sibling genetic effect,

vi. assortative mating, 

vii. assortative mating and indirect parental genetic effects, 

viii. population stratification, 

ix. population stratification and indirect parental genetic effects.

Having simulated the nine phenotypes as detailed further below, we use three designs 
(sibling, adoption, non-transmitted allele, explained in the main article) to estimate indirect 
parental genetic effects on each phenotype. This allows us to evaluate how designs are 
affected by the components (prenatal and postnatal parental indirect genetic effects) and 
biases (sibling indirect genetic effects, assortative mating, population stratification). We 
repeated the simulation 100 times. 

Note that these simulations are to illustrate how designs are affected by the components 
and biases. Effect sizes for each bias/component are not intended to represent true effects 
and as such are somewhat arbitrary. Additionally, by necessity we make certain untested 
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assumptions. For example, indirect genetic effects are assumed to be equal between all 
siblings (i.e. no birth order effects or different effects for adoptive siblings), and population 
stratification and assortative mating are assumed to operate equally among biological and 
adoptive parents. 

For the simulation results, see the below text under the heading ‘Comparison of sibling, 
adoption, and non-transmitted allele designs in presence of simulated components and 
biases’, and Supplementary Figure 9. The complete simulation code is available on GitHub169. 

Simulation details for the nine phenotypes
i. Direct genetic effects

We simulate child phenotypes influenced by direct genetic effects only, such that 

Where y is the child phenotype, x is the true genetic score of the child, var(g) is the variance 
explained by the true genetic score and e is the residual error (explaining the rest of the 
variance).

Parental phenotypes used below are also simulated this way (i.e. influenced by own genotype 
plus environment/error). 

ii. Indirect parental genetic effects

We simulate child phenotypes influenced by direct genetic effects and indirect parental 
genetic effects such that 

Where y is the child phenotype, x is the true genetic score of the child, var(g) is the variance 
explained by the true genetic effect, ymother and yfather are the parental phenotypes, var(mother) 
and var(father) are the variance explained by parental phenotypes, and e is the residual error 
(explaining the rest of the variance).

iii. Prenatal and postnatal indirect parental effects

We simulate child phenotypes influenced by direct genetic effects and prenatal and postnatal 
indirect parental genetic effects such that 



Indirect genetic effects of cognitive and noncognitive skills 

75

iv. Indirect sibling genetic effects &

v. Indirect sibling and parental indirect genetic effects

After simulating all sibling phenotypes with only direct effects or with direct and indirect 
parental genetic effects, we simulate indirect genetic effects operating among three siblings 
in each family: individual 1, a biological sibling, and an unrelated adopted sibling. First, we 
create a matrix of sibling effects in which every effect is of the same magnitude (all siblings 
have an equal effect on each other regardless of adoption status, an implicit assumption), 
with zeros on the diagonal. To account for feedback effects (e.g. sibling 1 influences sibling 
2, who influences sibling 1; this changes the coefficients of a variable on its own errors), 
we subtract the sibling effect matrix from an identity matrix and take its inverse. We then 
take the matrix product of the matrix with sibling effects and the simulated sibling data to 
introduce the simulated mutual sibling effects into the data. 

vi. Assortative mating

vii. Assortative mating and parental indirect genetic effects

Genetic assortative mating occurs when individuals with similar phenotypes mate more 
frequently than would be expected under a random mating scenario, and these phenotypes 
are heritable. To simulate assortment, we re-create offspring genotypes and polygenic 
scores after matching parents together systematically (instead of randomly as above). We 
first create phenotypes for the parents (based on true genetic score plus noise), rank the 
mothers and fathers by phenotype, and match couples according to rank (i.e. mothers with 
higher phenotypic values match with fathers with higher phenotypic values). Since mating 
does not perfectly track with phenotypic rank, we add noise to the ranking of mothers and 
fathers prior to matching, following a chosen phenotypic correlation. Offspring genotypes 
are then simulated as random draws from the matched couples’ genotypes. Assortment is 
simulated to be the same strength for adoptees’ and nonadoptees’ parents, and we simulate 
random placement by un-ranking adoptees before matching them to adoptive families.

viii. Population stratification

ix. Population stratification and parental indirect genetic effects

Population stratification can be conceptualized as systematic differences in allele 
frequencies between sub-populations. These frequency differences cause confounding 
in genetic studies when phenotypes also differ between sub-populations. We simulate 
such sub-populations in both the GWAS discovery and target PGS analyses samples. We 
first create new genotypes in two groups, drawing upon two different sets of simulated 
minor allele frequency distributions. We also define a phenotypic difference between these 
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two groups, by including an ‘environmental confounding’ parameter which is noise with a 
different mean phenotype for the two sub-populations. We then run a single GWAS in these 
two populations. We create phenotypes and polygenic scores (based on the GWAS results) 
in a target sample of families, comprising the same two sub-populations present in the 
GWAS. Our simulation allows for adoptees to be matched with adoptive parents both within- 
and between- sub-populations. We report results from a simulation with adoptees matched 
with adoptive parents within the same sub-population.

Supplementary Note 5: Comparison of two implementations of the si-
bling design using simulation
In the sibling design presented by Selzam et al.158, indirect genetic effects are estimated by 
subtracting the within-sibling estimate from the between-sibling estimate (indexed using the 
average polygenic score for each sibling pair). However, the between-sibling effect is not 
necessarily the appropriate quantity to use212. An alternative is to subtract the within-sibling 
estimate from an estimate of the population effect obtained in a separate regression analysis 
using population data and ignoring family clustering. This approach was used in a recent 
within-sibling GWA study194.

To ensure that we contrast our direct genetic effects with the appropriate quantity for 
accurate estimation of indirect genetic effects, we use simulated data to assess the use 
of the between-sibling effect and the population effect. Results are presented below in 
Supplementary Figure 8. From these simulations, it appears that contrasting the direct 
effects with the between-sibling effects leads to an overestimation of indirect parental genetic 
effects. Contrasting direct effects with population effects results in accurate estimation 
of indirect genetic effects. Consequently, we use this approach in our main analyses and 
simulations. Therefore, our model differs slightly from the Selzam et al. analyses. 

Also notable is that, whilst the Selzam et al. article (and159) uses a different term – passive 
gene-environment correlation – the effect being estimated is a parental indirect genetic 
effect. Passive gene-environment correlation refers to how the genes that parents pass on 
to their children may also influence how they provide the rearing environment213.

Supplementary Note 6: Comparison of sibling, adoption, and non-trans-
mitted allele designs in presence of simulated components and biases
Using the simulated data, we compare the behaviour of the three designs used in our 
study to estimate direct and indirect genetic effects. For simplicity’s sake our simulations 
consider one PGS (instead of both Cog and NonCog PGS). Additionally, we compare to a 
fourth design which we call “trios” in Supplementary Figure 9, in which the phenotype is 
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simply regressed on child and parental PGS. As the simulation results prove, this simple 
approach gives identical estimates to the non-transmitted allele design, which also uses 
trios but requires prior identification of segments that are shared and non-shared between 
the generations. 

Supplementary Figure 9 (an extended version of Figure 3 in the main text) displays the 
simulation results. The following text discusses the results, focusing on the main estimates 
of interest – indirect genetic effects of parents. 

Prenatal parental indirect genetic effects
We see prenatal effects as a component of interest, rather than as a bias, in estimates of 
indirect genetic effects. Nonetheless, for consistency with the rest of the simulations which 
do not consider prenatal indirect genetic effects, the red dashed line in Supplementary 
Figure 9 indicates the true postnatal effect only. Simulation results show that the sibling- and 
trio-based designs capture indirect genetic effects occurring in both prenatal and postnatal 
periods. In contrast, the adoption design only captures postnatal indirect genetic effects. 
This is because, for both adoptees and non-adopted individuals, the prenatal environment 
is provided by the biological mother, so estimated polygenic score-phenotype associations 
for both adoptees and non-adopted individuals contain prenatal maternal indirect genetic 
effects. Consequently, computing the indirect genetic effect as the population effect of 
the polygenic score (β in non-adopted individuals) minus the direct genetic effect (β for 
adoptees) means that prenatal effects are cancelled out. This result suggests that prenatal 
indirect genetic effects could partially explain lower estimates of indirect genetic effects 
from the adoption design compared to the other designs.

Sibling indirect genetic effects
We find that positive sibling effects result in upwardly biased estimates of indirect parental 
genetic effects. This bias is considerably larger for the sibling design than the adoption and 
trio designs. Bias in the sibling design is likely to be because positive sibling effects increase 
the similarity of siblings, reducing the effect of within-sibling polygenic differences214,215. Bias 
in the non-transmitted allele design likely arises because non-transmitted alleles are not 
only shared with parents, but also partially with (full) siblings, such that βNT might capture 
sibling as well as parental indirect genetic effects. It is interesting that sibling effects inflate 
adoption-based estimates despite the fact that adoptees are not genetically related to 
their siblings. These simulation results lead to the notion that higher estimates of parental 
indirect genetic effects in the sibling than adoption and non-transmitted allele designs is 
evidence of sibling indirect genetic effects. In our empirical data, we do not find differences 
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between sibling- and trio-based estimates of indirect parental genetic effects. Along with 
our sensitivity analyses, this suggests an absence of sibling genetic effects on educational 
outcomes in our datasets.

Assortative mating
In our main scenario, which includes substantial error in the GWAS SNP effects used to 
calculate polygenic scores, so the correlation of GWAS SNP effects and true SNP effects is 
on average 0.45), we found that the bias from assortative mating in the indirect genetic effect 
estimate was lower in the adoption design than in the non-transmitted allele and sibling 
designs. We also tested other scenarios with lower error in the SNP effects used to make the 
polygenic score. In the scenario with assortative mating but not indirect effects, lower error 
in the polygenic scores led to decreased bias in estimates from the NT and sibling designs. In 
the scenario with both assortative mating and indirect effects, with decreasing error in SNP 
effects, the sibling estimate is consistently biased, but the adoption estimate is more biased 
and the NT estimate is less biased. Results of other simulations did not change according 
to the error. We present in the main manuscript the initial results with substantial error as 
the most conservative example. In real data, we expect this bias due to the combination of 
error in effect sizes and non-random mating to decrease as GWAS sample sizes increases.

Bias in the sibling design likely arises as the population effect contains assortative mating 
while the within-sibling effect does not. Bias in the non-transmitted allele design due to 
assortative mating, which happens due to correlations between parental alleles, is described 
in Kong et al. 2018156. Interestingly, the bias in the adoption design from assortative mating 
is zero in the absence of a parental indirect genetic effect, but slightly above zero when a 
parental indirect genetic effect was also specified. In other words, the presence of parental 
indirect genetic effects is required for assortative mating to bias estimates from the adoption 
design. We simulated the same strength of assortative mating for the parents of both adopted 
and non-adopted individuals, so the result cannot be due to elevated assortment in the 
latter group (leading to residual assortment in the indirect effect estimate when calculating 
βnon-adopted - βadopted). Such differences could exist in the real data, but there is scarce 
and inconsistent evidence regarding assortment in biological parents of adoptees versus 
other parents191,213. Overall, the results suggest that assortative mating could explain lower 
estimates of indirect genetic effects from the adoption design compared to the other designs, 
but may depend on the level of noise in the GWAS effects. 

Population stratification
Simulation results show that estimates of parental indirect genetic effects based on the 
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adoption design capture less bias from population stratification than sibling- and trio-
based designs. In the sibling design, the parental indirect genetic effect is estimated as the 
population effect minus the direct within-family effect of the polygenic score. This means 
that the indirect genetic effect is likely to be inflated by population stratification, as this is 
captured in the population effect but not the within-family effect. Also, the effects of the non-
transmitted allele PGS are influenced by population stratification, so the indirect genetic 
effect estimate is inflated. In contrast, population stratification only biases indirect genetic 
effect estimates from the adoption design to a small extent. Assuming that population 
stratification is similar in adoptees and non-adopted individuals, its effect will cancel out 
when estimating the indirect genetic effect as βnon-adopted - βadopted. The assumption 
of equal population stratification and assortative mating bias in adopted and non-adopted 
groups cannot be tested due to the lack of parental data in UKB, but is bolstered by the 
simulation results, and by the fact that both adoptees and non-adopted individuals are from 
British ancestry. Our simulation results suggest that population stratification partly explains 
the lower estimates of indirect genetic effects from the adoption design compared to the 
other designs in our empirical study.
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ABSTRACT 
We investigate the causal relationship between educational attainment (EA) and mental 
health using two research designs. First, we compare the relationship between EA and 
seventeen psychiatric diagnoses within sibship in Dutch national registry data (N = 1.7 
million), controlling for unmeasured familial factors. Second, we use two-sample Mendelian 
Randomization, which uses genetic variants related to EA or psychiatric diagnosis as 
instrumental variables, to test whether there is a causal relation in either direction. Our 
results suggest that lower levels of EA causally increase the risk of MDD, ADHD, alcohol 
dependence, GAD and PTSD diagnoses. We also find evidence of a causal effect in the 
opposite direction for ADHD. Additionally, we find inconsistent results for schizophrenia, 
anorexia nervosa, OCD, and bipolar disorder, highlighting the importance of using multiple 
research designs to understand the complex relationship between EA and mental health. 
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INTRODUCTION 
Over 17% of the population of the European Union is diagnosed with a mental disorder (2016 
estimates, OECD, 2018). Mental diagnoses account for 25% of years lived with disability 
worldwide217. The risk of being diagnosed with a mental disorder is higher among those with 
lower educational attainment (EA)36,218,219. If the relationship between education and mental 
diagnoses is indeed causal, educational policies primarily aimed at improving educational 
outcomes could also lead to improved mental health. 

Most prior studies of the relationship between education and mental health are correlational. 
This correlation could therefore reflect confounding factors influencing both education and 
mental health. While known and perfectly measured confounders can be controlled, unknown 
and unmeasured confounders cannot. Additionally, the correlation between EA and mental 
health might also be explained by reverse causation, as early onset of mental disorders may 
hamper subsequent school attendance and performance220. Randomized experiments in 
which education is altered would avoid bias due to confounding or reverse causation, but 
experiments at the required scale are not feasible for practical and ethical reasons. 

As an alternative, we rely on two natural experiments that account for confounding and/
or reverse causation in different manners: within-sibship regression and mendelian 
randomization (MR). 

In the Dutch population registry (N = 1.7 million siblings born between 1965 and 1985), 
we test whether differences in EA between siblings relate to differences in their risk of 
psychiatric diagnoses between 2011 and 2016. A core assumption of the within-sibship 
design is that siblings constitute a well-matched case-control group212,221. Siblings are 
comparable for many factors that might play a role in both EA and mental health, for example 
the family, school, and neighbourhood environment, and 50% of their segregating genome. 
By comparing siblings, we obtain estimates of the association of education with psychiatric 
diagnoses and care expenditures, controlled for unmeasured confounders shared by the 
siblings. While within-sibship estimates can increase or decrease our confidence in the 
presence of a causal relation, they are insufficient. Confounders not shared between siblings 
such as differential experiences, 50% of the segregating genome, but also measurement 
error might bias the estimate222. Within-sibship association does not offer evidence of a 
causal direction, and while timing of events may suggest direction, unmeasured prodromal 
signs and experiences anterior to graduation might affect the association. 

To mitigate the uncertainties introduced by limitations of the within-sibship design, we also 
apply mendelian randomization (MR). In MR, genetic variants that are robustly associated 
with the exposure are used as instrumental variables. MR’s core assumptions are: (1) some 
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variants are associated with the exposure (EA), (2) these variants are related to mental health 
only via their effect on educational success, and (3) these variants do not correlate with any 
confounders of the relationship between education and mental health223. When assumptions 
are met, MR estimates the causal effect of education on mental health, even in presence of 
confounding and measurement error224. Reverse causation can be empirically evaluated by 
running two sets of MR analyses: one with variants related to EA as exposure and variants 
related to psychiatric diagnoses as outcome, and the reverse analysis. We apply two-
sample MR225, which uses genetic effect estimates from existing well-powered genome-
wide association studies (GWASs) of EA21 and of mental disorders in European-ancestry 
samples. To minimize the influence of pleiotropy (i.e. one genetic variant affects many traits), 
we used additional weak-instrument- and pleiotropy-robust MR methods226–228. To partly 
mitigate the influence of assortative mating, population stratification, and gene-environment 
correlation we performed MR based on genetic associations with EA obtained in a within-
sibship GWAS229. Mendelian randomization applied to discrete or (ordered) categorical 
traits, such as EA and mental disorders, has an additional notable caveat: interpretation230. 
If we assume that genetic variants influence categorical variables via their effects on the 
underlying liability, MR estimates the effect of the liability for higher EA and the liability 
for being diagnosed, while the within-sibship design estimates the effect of the observed 
exposure on the risk of the observed outcome. 

Only a few prior quasi-causal experiments investigate EA and mental disorders, and found 
mixed evidence. Studies that compared monozygotic twin pairs with discordant educational 
outcomes found evidence consistent with a causal association between EA and depressive 
symptoms231, while others did not232,233. Similarly, MR studies showed mixed evidence for a 
negative effect of EA on the risk for depression diagnoses234–236 but no reverse effect237. MR 
studies suggested a negative effect of EA on ADHD, no effect on PTSD and schizophrenia, 
but also a positive effect on schizophrenia, bipolar disorder, anorexia, autism and anxiety238–

240. Within-sibship studies of mental disorders and EA are rare, and even rarer in population 
registries241,242. 

The reliance on quasi-causal methods, though preferred over observational association, 
is still imperfect, and calls for epistemic humility when interpreting or generalizing putative 
causal association. We reduce uncertainty on the nature of the relation between education 
and mental health by triangulating across two preregistered quasi-causal methods relying 
on different underlying assumptions, whose violation would give rise to different biases243. 
Consistent findings strengthen our confidence. Inconsistent findings raise scepticism yet 
are also valuable: we interpret these differences in the light of the different assumptions of 
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each method to help us hypothesize on the mechanisms in the relation between education 
and mental diagnoses. 

RESULTS 
In the following, we focus on diagnoses for which GWASs are available. Results for all 
diagnoses described in Table 1 are available in Supplementary Note and Tables. 

Descriptive Analysis
In the Dutch population register, we selected siblings (sharing the same legal mother and 
father) born between 1965 and 1985, such that they are expected to have obtained their 
highest diploma before the first year of diagnostic data is available in 2011. We obtained a 
final sample of 1,743,032 siblings nested within 766,514 families (Supplementary Note and 
Supplementary Figure 1).

Inferring the number of years of education from the final degree obtained, Dutch siblings 
attend education for an average of 15.35 years (SD = 2.80, median = 17). The sibling 
sample appears slightly more educated than all individuals born between 1965-1985, see 
Supplementary Note and Supplementary Table 2. 

We accessed psychiatric diagnoses based on the Diagnostic and Statistical Manual of 
Mental Disorders 4th Education (DSM-IV) for all patients getting specialized mental care 
in the Netherlands between 2011 and 2016. Between these years, the yearly incidence of 
psychiatric diagnoses decreased (Supplementary Tables 3-4). This may reflect changes in 
access to specialized mental health care, e.g. a 2014-reform led to an increase in the care of 
chronic mental health disorders by general practitioners. 

Individuals can be diagnosed with more than one disorder within a year, with one primary 
diagnosis and one or more secondary diagnoses (Supplementary Table 7), or across the 6 
years we studied. Psychiatric diagnoses co-occur frequently (Supplementary Table 6 and 
Supplementary Figure 2) and are highly correlated (polychoric correlation up to 0.55 for MDD 
and PTSD). Schizophrenia is one exception as it is only weakly correlated with most other 
diagnoses (Figure 1, Supplementary Table 6 & Supplementary Figure 2). Genetic correlations 

across the GWASs selected for the MR analyses are also positive and generally substantial, 
but they do not always match phenotypic correlations in the Dutch population.
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Subsamples of individuals in CBS born 
between 1965 and 1985

All (1) All with 
EA  (2) 

Siblings 
(3)

Siblings 
with EA 

(4)

Total sample size 6,539,767 3,305,733 3,234,923 1,743,032

EA average (SD) – 14.7 (3.4) – 15.4 (2.8)
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Individuals without any disorder 93.00 89.06 91.24 89.43

Individuals with at least one 
disorder 7.00 10.94 8.76 10.57 GWAS

Attention deficit hyperactivity 
disorder (ADHD) 0.93 1.53 1.31 1.62 Demontis

Autism spectrum disorder (ASD) – – – – Grove

Alcohol dependence 0.92 1.41 1.12 1.30 Walters

Schizophrenia/schizophreniform/ 
schizoaffective disorders 0.39 0.52 0.48 0.51 –

Schizophrenia 0.31 0.42 0.38 0.41 Trubetskoy

Major depressive disorder (MDD) 2.81 4.42 3.34 4.08 Howard

Bipolar disorder 0.22 0.33 0.29 0.34 Mullins

Bipolar I 0.15 0.22 0.19 0.23 Mullins

Bipolar II 0.08 0.13 0.11 0.14 Mullins

Anxiety disorders 2.50 3.94 3.01 3.70 –

Generalized anxiety (GAD) 0.42 0.67 0.56 0.70 Purves

Panic 0.64 1.00 0.81 0.97 –

Phobia 0.69 1.10 0.91 1.12 –

Obsessive-compulsive (OCD) 0.28 0.42 0.38 0.45 Arnold

Post-traumatic stress (PTSD) 1.16 1.84 1.21 1.51 Nievergelt

Anorexia nervosa 0.03 0.05 0.05 0.06 Watson

Bulimia nervosa 0.05 0.08 0.06 0.08 –

Personality disorders 3.00 4.77 3.91 4.81 –

Cluster A 0.09 0.14 0.11 0.14 –

Cluster B 0.95 1.55 1.19 1.47 –

Cluster C 2.04 3.26 2.75 3.38 –
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Table 1 | Prevalence of diagnoses in the Dutch population registry (CBS) between 2011 and 2016 
and source of GWASs for matching diagnoses. The frequency of DSM-IV Diagnoses in the Dutch 
population registry registered in second-line/specialized mental health care, both as primary or secondary 
diagnoses. The definition of the disorder in the equivalent GWAS does not always perfectly align with the 
diagnosis in CBS, see Supplementary Table 18 for details of GWASs used. Subsamples are relevant 
subsets of the Dutch population registry that met criteria for inclusion in the study. Inclusion is further 
described in the method section and the chart Supplementary Figure 1. EA: educational attainment. SD: 
Standard deviation.

Figure 1 | Phenotypic and genetic correlations between diagnoses. Upper diagonal: polychoric 
correlations between diagnoses in the subset of 1.7 million siblings for whom education data was 
available in the Dutch population registry. NA: missing value due to low cell size. In this corner, anorexia 
nervosa was combined with bulimia nervosa into an eating disorder group due to the small number 
of individuals for either anorexia or bulimia diagnosis. Lower diagonal: genetic correlations between 
diagnoses estimated from summary statistics of the GWASs used in the MR analyses. Only disorders 
with data available in the Dutch population register and in GWASs are represented (see Supplementary 
Tables 6 & 25 and Supplementary Figure 2).

Figure 2 plots the prevalence (expressed in percentage) of each diagnosis given EA, split by 
sex (see also, Supplementary Table 5 & Supplementary Figure 2). Most diagnoses have a clear 
sex difference in prevalence, with higher prevalence for women, except for ADHD, Alcohol-
related disorders, Schizophrenia. Most diagnoses show a decrease in prevalence with an 
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increase in education, from 11 years to 22 years of education. The group with 11 years of 
education stands out in two ways. First, they started in a pre-university track (selective track) 
in secondary school but dropped out without obtaining a diploma or re-orienting. Second, 
this group has the highest prevalence for having any diagnosis, including a particularly high 
prevalence of bipolar disorder and schizophrenia diagnoses. 0.75% of individuals with 11 
years of education are diagnosed with bipolar disorder (below 0.4% in all other EA groups), 
and ~4% of men with 11 years of education are diagnosed with schizophrenia (below 2% in 
further EA groups). Speculatively, dropping-out without resuming formal education could be 
related to prodromal symptoms for these disorders.

Within-sibship analyses 
As expected, simple logistic regressions of EA on diagnoses revealed a negative association 
between EA and being diagnosed, for all disorders except GAD (OR = 0.99, SE = 0.004) 
(Figure 3, Supplementary Tables 8-9). We then ran the within-sibship regressions: we 
regress diagnosis status on the average EA for all siblings in a family and the deviation of 
the sibling’s EA from the family average. With these more robust within-sibship regressions, 
most associations were weaker (OR closer to 1), but still significant. On the other hand, for 
GAD, schizophrenia, bipolar disorder and anorexia, the within-sibship association were 
stronger (OR further from 1), the relationship between EA and diagnosis is stronger within 
than between families. Overall, odd ratios ranged from 0.95 to 0.81 per year of education, 
indicating a modest relation between EA and risk of diagnoses (Figure 3, Supplementary 
Figure 5, Supplementary Tables 10-11). 

We run several post-hoc robustness analyses of the within-sibship regression. As for most 
diagnoses the prevalence differs by sex, we replicate our analysis in subsets of sibships 
with same-sex siblings only. For almost all diagnoses, the direction and magnitude of 
effects are the same. Bulimia is a notable exception: within-male sibship analysis suggests 
a positive relation with EA (OR = 1.25, SE = 0.12), but this relation is not significant (P = 
0.02) (Supplementary Figure 4 and Supplementary Tables 12-13). We ran analyses 
excluding siblings with 11 years of education and with 2 years of education (which is an 
implausible outcome in the Dutch system). The results are qualitatively similar, but there 
are subtle changes in effect sizes when excluding siblings with only 2 years of education 
(Supplementary Figure 5, Supplementary Tables 12 & 14). Estimates of the relation between 
EA and schizophrenia diagnosis are the most sensitive to these exclusions.

We replicate this analysis using an alternative measure of mental care in the Dutch system: 
mental care expenditures, expressed in log(euro). Care expenditures include costs incurred 
within the specialized care, but also within the basic care (e.g. GP reporting mental health 
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care as the reason for visit). Mental care expenditures are also negatively associated with 
EA (ß = -0.11, SE = 0.00). This association is reduced within-sibship (ß = -0.08, SE = 0.00). 
Comparing same-sex siblings only, the within-sibship estimate is stronger in men (-0.1) than 
in women (-0.06). These effects correspond to 10% and 6% decrease in expenditure per 
year of education within-sibship (Supplementary Tables 16-17). 

Figure 2 | Prevalence of diagnoses given someone’s educational attainment and sex. Prevalence 
(expressed in percentage) of diagnoses in the sample of siblings for whom education data was available 
stratified by disorder (panels), education (x-axis) and sex (colour). Bars represent 95% confidence 
intervals. Note the scales of the y-axis are adapted depending on the diagnosis. In this figure, anorexia 
nervosa was combined with bulimia nervosa into an eating disorder group due to the low sample size of 
diagnosed individuals for some EA/sex strata. Only disorders with data available in the Dutch population 
register and in GWASs are represented (see Supplementary Table 5 and Supplementary Figure 3).
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Figure 3 | Relation between EA and diagnoses as estimated with logistic regression, within-sibship 
regression or MR. Odds ratios per year of education as estimated with logistic regression (black) and 
within-sibship models (purple) in the Dutch population register and the two-sample MR analyses of 
EA on diagnoses (green/blue). Bars: 95% CIs. Only disorders for which both results are available are 
represented (see Supplementary Tables and Supplementary Figures 4 & 7).

Two-Sample Mendelian Randomization 

MR estimates of EA on psychiatric diagnoses

With EA as exposure and relatively strong instruments (mean F-statistics > 50), MR IVW 
estimates are not always consistent with within-sibship estimates (Figure 3, Supplementary 
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Tables 20-21, Supplementary Figure 3). They suggest a comparable causal effect of EA on 
diagnosis for MDD, PTSD, and Alcohol dependence (IVW OR = 0.94, 0.92, and 0.93, p < 
0.004). For ADHD and GAD, the risk-decreasing effect of EA estimated in MR is stronger than 
estimated in the within-sibship design (IVW OR = 0.69 and 0.87, p < 0.004). Importantly, MR 
estimates were yet not supportive of a protective effect of EA on four diagnoses. MR shows 
no effect of EA on schizophrenia (IVW OR = 1.02, p = 0.33), and a risk-increasing effect 
of EA on diagnosis for bipolar disorder, anorexia, and OCD (respectively IVW OR = 1.10, 
1.17, and 1.25, p < 0.004), such that the liability to higher EA is causing a higher liability for 
these diagnoses. MR-Egger, weighted-mode and weighted-median estimates were mostly 
consistent in direction and effect sizes. Strick interpretation of evidence from pleiotropy-
robust methods confirms a causal effect of EA on MDD and ADHD but not PTSD, GAD, 
or alcohol dependence. I2 were larger than 0.9 suggesting MR-Egger’s estimates could 
be interpreted. There was evidence of heterogeneity for each EA-disorder pair indicating 
pleiotropy (Cochran’s Q between 821 and 2101, ps < 0.004) but non-significant MR-Egger 
intercepts suggest the estimates are not biased by horizontal pleiotropy. 

Exploratory sensitivity analyses based on SNP-effects on EA from a within-sibship GWAS 
yield lower estimates in the same direction for MDD, Alcohol dependence, ADHD and GAD 
(estimates became non-significant for PTSD and OCD) (Supplementary Table 21). The 
reduction in effect size is particularly large for ADHD (IVW OR = 0.69; within-sibship EA IVW 
OR = 0.81). However, the instrument was weak (mean F-statistics ~10.5), which can bias MR 
results towards the null. 

MR estimates of psychiatric diagnoses on EA 

When considering the reverse effect of mental disorder liabilities on EA, we relaxed the 
p-value threshold for instrument inclusion to 1e-5 for GWASs with low number of genome-
wide significant hits (GAD, OCD, PTSD, alcohol dependence). The mean F-statistics for the 
instruments were modest (34.8 to 44), and modest-to-weak (21.5 to 22.8) when the p-value 
threshold was relaxed. 

IVW estimates suggest a negative causal effect of the liability to disorder on education 
attainment (hence a bidirectional negative effect) for ADHD (IVW ß = -0.38, p < 0.004), and 
at p < 0.05 (a liberal threshold given the number of MR tests) for MDD (IVW ß = -0.32, p 
= 0.010), PTSD (IVW ß = -0.06, p = 0.026), and GAD (IVW ß = -0.09, p = 0.016) (Figure 4, 
Supplementary Table 22-23). We find no evidence of an effect of schizophrenia (IVW ß = 
0.00, p = 0.94), while higher liabilities for bipolar disorder and anorexia have a positive effect 
on EA (IVW ß = 0.17 and 0.26, p < 0.004). The estimated effects of alcohol dependence (IVW 
ß = -0.05, p = 0.18) and OCD liabilities (IVW ß = -0.00, p = 0.63) on EA were not significant. 
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Again, MR-Egger, weighted-mode and weighted-median estimates were mostly consistent 
in direction and effect sizes. However, MR-Egger’s estimates had low confidence and the 
weighted-mode estimate was <0 (non-significant) for bipolar disorder. There was evidence 
of heterogeneity of effects for every disorder-EA pair (Cochran’s Q between 26.3 to 2602.1, 
ps < 0.004), but for OCD-EA (Cochran’s Q = 29.6, p = 0.04). While the MR-Egger intercepts 
were never significant, the intercept for anorexia-EA was the highest (0.06, SE = 0.01), which 
might indicate the presence of horizontal pleiotropy. All I2 were larger than 0.9, however the 
small number of instruments for most diagnoses (e.g. anorexia N SNPS = 4) results in poor 
resolution to resolve directional pleiotropy. Exploratory analyses with SNP-effects based 
on within-sibship EA GWAS were consistent in direction and effect size with the previously 
described IVW estimates.

Figure 4 | MR analyses diagnosis as exposure and educational attainment as the outcome. Effect 
estimates of the two-sample MR analyses of EA on diagnoses. Bars: 95% CIs. Only disorders with data 
available in the Dutch population register and in GWASs are represented (see Supplementary Tables 22 
& 23 and Supplementary Figure 4).

Education of healthy siblings in the Dutch population registry
Motivated by the discordance between the within-sibship and MR analyses for bipolar 
disorder, anorexia, and OCD, the first implying a protective effect of education and the 
second a risk, we investigate the hypothesis that the (genetic) liability for being diagnosed 
with some disorders is in fact associated with higher education, while the disorder itself (or 
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its prodromal manifestation) interferes with schooling. Under this model, bipolar, anorexic 
and OCD patients are expected to have a higher familial and genetic liability for EA than the 
general population. Therefore we expect the healthy siblings of these patients, but not of 
other patients, to be more highly educated than individuals in unaffected families. In the Dutch 
register, we do find that siblings of patients have less education than siblings in unaffected 
families for all disorders but bipolar disorder and anorexia (Figure 5, Supplementary Table 
24). Unaffected siblings of patients with bipolar and anorexia have the same average years 
of education as unaffected families (average EA of unaffected families = 15.54; bipolar = 
15.58, anorexia = 15.75, t-test p = 0.22 for bipolar, 0.006 for anorexia). Siblings of Bipolar 
II patients had slightly higher EA than individuals in unaffected families (15.68, p < 0.004) 
(Supplementary Figure 6). 

Figure 5 | Average number of years of education of patients, of healthy siblings of patients and 
unaffected sibships. The green line is the average number of years of education of unaffected sibships 
(15.54 years of education), in families in which none of the siblings was diagnosed with a mental disorder 
between 2011 and 2016. Red dots are the mean education of affected siblings per diagnosis. Orange dots 
are the mean education of siblings of an affected sibling that are themselves were never diagnosed in the 
2011-2016 timeframe. Bars: 95% CIs. Only disorders with data available in the Dutch population register 
and in GWASs are represented (see Supplementary Table 24 and Supplementary Figure 8).

DISCUSSION
Triangulating across two designs, we find consistent protective effects where higher EA 
reduces the risk of MDD, alcohol dependence, GAD, ADHD, and PTSD diagnoses, though 
for some traits, there is also evidence for reverse causation. Critically, for MDD, alcohol 
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dependence and PTSD, the implied causal effects in MR and within-sibship designs are 
substantially lower than the observational association. For other diagnoses, notably bipolar 
disorder, anorexia and OCD, the two designs yield inconsistent results. These are noteworthy 
and gave rise to additional analyses. Our study reveals that statistically convincing findings 
based on either design would have provided an incomplete or misleading understanding of 
the relationship between education and mental health. 

First, we discuss the findings for some common diagnoses, highlighting representative 
results. Similar interpretation and integration of the broader literature could be done for the 
other diagnoses, but we defer to scientists with specific expertise on these disorders. We 
close with limitations and conclusions 

Depression
Both the within-sibship and the MR approach suggest around 6% lower odds of depression 
diagnosis per additional year of education, while there is also suggestive evidence for 
reverse causation (depression diagnosis or liability hampers EA). The implied causal effect 
of education on the risk of depression diagnosis is lower that the observational relationship. 
Our results are consistent with work that relies on other quasi-experimental methods, for 
example exploiting compulsory school-law reforms lengthening minimum EA244. One study 
found a ±7% reduction in the probability of meeting diagnostic criteria for depression (N = 
3,704)245. Another study (N = 21,085) found no significant effect of EA on depression, though 
their negative sign is consistent with our findings246,247. Multiple previous (MR) studies based 
on UK Biobank data, which is an older (age 40-70) and more highly educated cohort, find 
no effect246,248. The inconsistency with the previous literature might be due to their samples 
of healthy volunteers, while our within-sibship sample is population-based. An additional 
year of education might especially benefit the mental health of those at the lower end of 
the education distribution (a group under-represented in volunteer samples)244. Also, the 
protective effect of EA on mental health might wane with age231.

We focussed on individual’s final obtained degree. However, EA isn’t the only aspect of 
education that relates to mental health. For example, a German reform reduced the academic 
high-school track by one year while keeping the curriculum constant. This intensified 
schooling increased depressive symptoms249. Others have also shown that kids being 
relatively young for their school grade are more likely to be diagnosed with depression250, or 
that later separation of students into different tracks might increase depression in women251. 
While we find that higher EA plausibly reduces the risk of many diagnoses in adulthood, any 
reform aimed at increasing EA should keep in mind that other aspects of education might 
have opposite effects. 
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ADHD
For ADHD reciprocal processes are plausible. The formal diagnosis of ADHD alludes to 
problems that interfere with school work. This creates an obvious dependence between 
ADHD and poor performance in school (socially or academically). Other two-sample MR 
studies also reported the bidirectional effect of EA and ADHD. Additionally, they suggest 
this effect is independent of IQ239,252. Interestingly, our MR estimate of the effect of EA on 
ADHD is lower when using SNP-effects based on within-sibship EA GWAS, suggesting that 
assortative mating, population stratification, and/or gene-environment correlation might 
bias MR estimates. These biases could explain the difference in estimates between MR and 
the within-sibship analysis. On the other hand, the difference between the observational and 
within-sibship association registry is small, suggesting familial factors do not explain the 
association between EA and ADHD diagnosis.

ADHD is part of the “disorders usually first diagnosed in infancy” in the DSM-IV, hence 
usually diagnosed at school age, which seem inconsistent with a causal effect of EA on 
ADHD diagnoses. Our data concerns ADHD diagnoses in adulthood. As we do not have 
data on age at first diagnosis, we cannot distinguish between a recurring diagnosis and 
first diagnosis. However, there are plausible mechanisms through which EA might continue 
to affect the likelihood of diagnosis after one’s educational trajectory. For example, higher-
educated individuals might better cope with their symptoms and might have more power to 
select suitable environments (e.g. selection of jobs with more flexibility253).

Schizophrenia 
The within-sibship design estimates 18% lower odd of schizophrenia per additional year of 
education, while MR suggests no causal relationship. The within-sibship association might 
reflect the interfering effect of prodromal or early symptoms of schizophrenia on education. 
This would be consistent with our observation that 4% of Dutch men who drop out of 
the pre-university high school track, and do not re-enter education, are diagnosed with 
schizophrenia. However, we do not observe a causal effect of schizophrenia on EA in our 
MR analysis. Note that the interpretation of MR is difficult when the exposure is binary and 
rare. The MR estimates should be viewed as reflecting the effect of the liability for being 
diagnosed, not an effect of the diagnosis itself. It is easy to imagine how core symptoms 
of schizophrenia, like delusions, hallucinations, and disorganized thoughts, interfere with 
education, but these symptoms are not gradually experienced over the entire liability 
spectrum. If we do accept the MR findings, the discrepancy between the within-sibship 
and the MR results could be alternatively explained by factors not shared between siblings 
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that reduce EA and increase the risk of schizophrenia diagnosis (e.g. risk exposures such 
as trauma). Contrasting our findings, previous MR estimates using earlier schizophrenia 
GWASs hint at an increased risk for schizophrenia per additional year of education238,240, as 
we found for anorexia, OCD, and bipolar disorder. 

Bipolar disorder
Bipolar disorder, anorexia nervosa, and OCD have the most striking pattern of results. 
While the within-sibship design suggests that each additional year of education reduces 
the likelihood of being diagnosed by 6 to 12%, the MR estimates suggest that EA increases 
the likelihood. We hypothesised that these diagnoses follow a model where the (genetic) 
liability for being diagnosed is associated with higher education, while the disorder itself (or 
its prodromal manifestation) interferes with schooling. Supporting this, we found (1) a high 
prevalence of bipolar disorder among pupils dropping out of the pre-university high-school 
track and (2) healthy siblings of bipolar and anorexic patients have similar or even higher EA 
than the average unaffected sibships. Other Dutch studies comparing siblings of patients 
confirm this observation for bipolar disorder compared to schizophrenia or MDD254,255. 
However, this was not replicated in Denmark256. Bipolar disorder is associated with traits that 
are valuable in school settings like more creativity257,258 and higher childhood IQ259. A Swedish 
population-cohort study reports that individuals with excellent high-school performance 
have a fourfold increased risk of bipolar disorder over those with average grades260. A true 
positive relation between factors that increase both success in education and risk of bipolar 
diagnosis seems supported, although the mechanism remains unclear. They could share 
biological mechanisms or psychological traits like creativity. Likewise, higher-educated 
individuals, or individuals coming from higher-educated families, could be more likely to be 
diagnosed with these disorders, due to more proactive help seeking, better access to care 
that facilitates these diagnoses, or preferential diagnosis by practitioners. Finally, biased 
selection into GWASs could result in the selection of bipolar disorder or anorexia cases 
with higher-than-average education. Further studies are essential to understanding the 
mechanisms of the apparently contradictory association between these disorders and EA. 

Limitations 
Our conclusions rely on within-sibship and MR estimates, and on whether we can interpret 
contradictory findings. We assume these contradictions are mainly due to true differences 
in underlying phenomena. However, other statistical, measurement-, and sampling-related 
factors could play a role. 

The two methods rely on data obtained in different samples drawn from different 
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populations. Our within-sibship analysis was based on registry data, containing most of the 
Dutch population born between 1985-1965, so highly representative for the Netherlands. 
In contrast, the MR is based on GWASs of international samples who are volunteers of 
European-ancestry. Both higher risk for mental illness and lower EA are known to increase 
non-participation and participant attrition261–264, a selection bias that could induce a collider 
bias265. In the within-sibship analysis, we rely on diagnoses by professionals in specialized 
care, therefore dependent on the current referral policies of the Dutch healthcare system. All 
our GWASs rely on diagnoses, but they differ on the report (self-report, medical files, etc.) 
and on the timeframe (most look at lifetime diagnoses, but the age range of participants 
vary widely). In both types of data, who seeks help and who is diagnosed may depend on 
class, ethnicity and context. Our conclusions are phrased in terms of diagnoses; potential 
mechanisms discussed are speculative. Any conclusions beyond diagnoses run into the 
imperfect relation between people’s symptoms and people’s DSM-IV diagnosis. 

Regarding two-sample MR, we use MR analyses robust to weak-instrument and pleiotropy, 
but the additional statistical power required make the estimates more uncertain. To control for 
potential biases due to demographic and dynastic effects, we used summary statistics from 
a within-sibship GWAS. However, EA is the only trait with a within-sibship GWAS suitable for 
MR, leading to an unbalanced control of these biases in our MR. Notably, dynastic effects 
could lead to false positive bidirectional effects266. Similar well-understood caveats apply to 
sibling designs but most additional criticisms of this design221,222 pertain to lack of insight on 
the direction of effect and the possible underestimation of effect sizes. 

Finally, our findings pertain to the effects of education on mental health within the current 
confines of social life and social policy. Our findings do not identify an immutable or 
permanent cause of differences in mental health. Policy changes outside education (e.g. 
minimum wage, affordable living, quality housing) may improve people’s mental health and 
could as effectively close the health gap between educational groups.

Conclusion
The aforementioned caveats limit the certainty we should ascribe to specific causal claims. 
Nevertheless, we established consistent potential causal effects of EA on the risk of being 
diagnosed with MDD, ADHD, PTSD, alcohol dependence, and GAD. These potentially 
causal effects are smaller than the observational associations (but for GAD). For diagnoses 
like bipolar disorder and anorexia, our results suggest a positive relationship between EA 
and the diagnosis liability, yet a negative relationship between EA and the diagnosis itself. 
These patterns deserve further study and would have been missed when applying a causal-
inference technique in isolation. 
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METHODS 

This study was pre-registered at: https://osf.io/vmpfg/?view_
only=b17c64b5600c4d32902e55ea26d63f37. Deviations to the preregistration are detailed 
in Supplementary Note. All code associated with the analyses is available on GitHub at 
https://github.com/PerlineDemange/CBS-MR. We follow the STROBE267 and STROBE-MR268 
reporting guidelines (Supplementary Tables 26 & 27). This research was reviewed and 
approved by the Scientific and Ethical Review Board (VCWE) of the Faculty of Behaviour & 
Movement Sciences, VU University Amsterdam; application number VCWE-2020-054. 

Within-sibship design 

Data source 
We analyse restricted access microdata from Statistics Netherlands (CBS). Under strict 
conditions, these microdata are accessible for statistical and scientific research. For further 
information on remote access procedures: microdata@cbs.nl. 

Study population 

We included individuals born between 1965 and 1985 (N = 6,539,767), such that they are 
between 26 and 46 years old when the first year of diagnostic data is available. From these 
we select siblings (sharing the same legal mother and father), where more than one sibling 
has educational data available. We retain a final sample of N = 1,743,032 individuals nested 
within 766,514 families. For a comprehensive overview of the selection procedure, see 
Supplementary Note and Supplementary Figure 1. 

Educational attainment 

Educational attainment data is based on various registers and surveys and has a high 
coverage (more than 11 million people). Based on the final degree obtained we inferred the 
number of years of full-time education of the individual. The transformation of the 17 diploma 
categories to years of education is available in Supplementary Table 1. For a comprehensive 
overview of the variable definition, see Supplementary Note. 

Mental health outcomes

The Dutch mental health care system distinguishes two systems of care. Here we rely 
on diagnostic data for specialized/second-line care. Specialized mental care is intended 
for patients with severe or complex diagnoses which require the attention of a psychiatrist 
or clinical psychologist. Psychiatric diagnoses are obtained from the care trajectory of 
patients getting specialized mental care. Diagnoses are classified based on the Diagnostic 
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and Statistical Manual of Mental Disorders 4th edition (DSM IV). We consider an individual as 
affected if they were diagnosed with any of the disorders listed in Table 1, in at least one year 
during the 2011 to 2016 period. 

Mental health care expenditures269 are assessed in two ways: expenditures from the first 
line/basic care and expenditures from the 2nd line/specialized care. We summed basic and 
specialized care for each year. Due to the steeply skewed distribution of incurred mental 
health expenditures (Supplementary Table 16, Supplementary Figure 6), we averaged the 
expenditures across 2009-2018 for each individual and log-transformed the personal average.

Statistical analyses 

All diagnoses analyses were done in the sibling sample (4), for each mental health 
diagnosis separately. We estimate polychoric correlations between all diagnoses. We ran 
an observational analysis: a logistic regression with EA as a predictor and the psychiatric 
diagnosis as outcome, ignoring family structure. We then ran within-sibship logistic 
regression analysis. We regress diagnosis status on the average EA for all siblings in a 
family and the individual deviation of the sibling’s EA from their family average. The effect 
of the average EA (between-sibship effect) represents the expected change in the outcome 
being diagnosed given a one-unit (the unit being scaled as a year of education) change in the 
sibling average, while the effect of the deviation of the sibling to their family average (within-
sibship effect) represents the effect of EA when keeping the factors common to the family 
constant. We do not correct for family clustering in these analyses. Part of the reason is the 
computational limitation of logistic regressions with random family effects in large sample 
sizes and low prevalence. If the dependence between errors for relatives is very strong we 
approach an upper bound where the number of families, rather than individuals, equals the 
number of independent observations. As most families in our data consist of 2 siblings, we 
can estimate the upper bound for the SEs to be sqrt(2)*uncorrected SEs. As our uncorrected 
SEs are very small, this correction would not change our results. Additionally, we focus 
on interpreting the effect sizes, p-value being of little interest at this sample size. For the 
analysis of mental health care expenditures, we fit a linear model instead of a logistic model 
as the outcome is continuous, and also report results from linear models with random family 
effects. In all analyses, we included sex, birth year and birth order as covariates.

As sensitivity analyses, we separately considered men and women (from same-sex 
sibships) and we omitted specific education groups that are rare or implausible given the 
Dutch educational system (11 and 2 years of education). We investigated mean differences 
in EA between patients, siblings of patients, and families that are entirely unaffected. We 
performed t-test to compare the mean EA of these groups for each disorder. 
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Two-sample Mendelian Randomization 
We follow recommendations by Burgess et al270. 

Summary Statistics 

We relied on summarized statistics from a large well powered 2018 GWAS of EA21 (EA3). 
We reproduced this GWAS by meta-analysing published summary statistics with summary 
statistics obtained from 23anMe, Inc, as done in 152. For additional sensitivity analyses, 
we relied on summary data from the within-sibship GWAS of EA229. The within-sibship 
GWAS is significantly smaller, but because the SNP-effects are estimated within-family 
they are unbiased by potential effects of assortative mating, population stratification or 
intergenerational genetic effects271,272.

For each psychiatric disorder, we selected GWAS summary statistics preferentially selecting 
the most recent or largest GWAS available. A full list of GWASs and a description of the 
summary statistics are available in Supplementary Table 18. We assessed potential sample 
overlap between EA and psychiatric disorders GWASs using LD-score cross-trait intercept 
as proxy273 (Supplementary Table 19 & Supplementary Note).

Choice of the genetic variants 

For data cleaning and analyses we used TwoSampleMR274 in R.4.1.0275. When analysing EA 
as the exposure, we first excluded genetic variants not present in the outcome summary 
data. For EA3 summary statistics, we selected genetic variants associated with EA at p < 
5e-8. For within-sibship EA summary statistics, we selected significant independent loci 
identified by the EA3 GWAS, which were also associated at p-value < 0.05 in the within-
sibship EA GWAS. We then clumped to select statistically independent variants (kb = 1000, 
r2 = 0.001). When analysing psychiatric disorders as the exposure, if clumping genetic 
variants associated at p < 5e-8 led to the selection of less than 5 genetics variants, we 
further selected genetic variants associated with the exposure at p < 1e-5 (this occurred for 
autism, GAD, bipolar-II disorder, OCD, PTSD, and alcohol dependence). Variants were then 
harmonized between exposure and outcome summary statistics, ensuring the SNP effect 
relates to the same reference allele. Ambiguous and palindromic variants with MAF > 0.42 
were excluded.

We scaled the effect sizes from the two EA GWASs so that the SNP-effects reflect change in 
term of years of education. For this, we estimated the weighted average standard deviation 
of the education phenotype in the cohorts included in the EA3 study (SD = 3.9 years) 
and multiplicated both SNP-effects and their SEs by this number239,276. Estimates for the 
psychiatric disorders SNPs were converted to log(OR) if reported in OR. MR estimates were 
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transformed back to the OR scale where needed. 

Analyses 

We ran two sets of MR analyses: EA as exposure and mental disorder as an outcome, and 
mental disorder as exposure and EA as an outcome. We ran an inverse-variant weighted 
(IVW) mendelian randomization225. We judged the significance of the p-value following a 
Bonferroni correction: significance threshold 0.05/12 traits = 0.004. To test for the robustness 
of the IVW findings against potential violation of the MR assumptions, we ran MR-Egger226, 
weighted-mode228, and weighted-median227 analysis. We reported the Cochran Q’s-statistic 
SNP effect heterogeneity and the F-statistics assessing potential weak instruments bias277,278. 
Additionally, we reported the I2 statistic279, which gives an indication of the violation of the 
NO Measurement Error (NOME) assumption, on which MR-Egger relies. We also report LD-
score based genetic correlations between all GWASs, computed with Genomic-SEM. 

CODE AND DATA AVAILABILITY 
All code associated with the analyses is available on GitHub at https://github.com/
PerlineDemange/CBS-MR.

We analyse restricted access microdata from Statistics Netherlands (CBS). Under strict 
conditions, these microdata are accessible for statistical and scientific research. For further 
information on remote access procedures: microdata@cbs.nl. For GWAS summary statistics 
availability, see original publications. For 23andMe, Inc. dataset access, see https://
research.23andme.com/dataset-access.

SELECTED SUPPLEMENTARY INFORMATION
Full Supplementary Information and Supplementary Tables can be downloaded at:

https://www.medrxiv.org/content/10.1101/2023.01.26.23285029v1.supplementary-material 
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Supplementary Figure 1 | Flowchart of study sample
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ABSTRACT 
Children of parents with psychopathology generally do less well in school than their peers. 
Parental symptoms might however not be responsible for their lower achievement, as other 
familial factors might be at play. To examine the role of parental symptoms, we analyse data 
from up to 9,000 families of the Norwegian Mother, Father, and Child Study (MoBa). Parents 
filled out surveys on their symptoms of anxiety, depression, eating disorders, ADHD, and 
alcohol use disorder. Children in 5th Grade (aged 10) participated in nationally-standardised 
tests of mathematics, reading comprehension, and English (as an additional language). 
Comparing families whose parents are siblings controls for unmeasured factors shared 
among adult siblings (e.g. genetics and socioeconomic status) that confound the relationship 
between parental mental health and children’s academic achievement. Simple regressions, 
not controlling for familial confounding, showed that children tend to score slightly lower 
on maths and reading if their parents had more symptoms of anxiety, depression, or eating 
disorder (-.060 ≤ βs ≤ -.014). However, these associations were attenuated and no longer 
significant within families. While parental psychopathology symptoms correlate weakly with 
children’s academic achievement, our findings suggest that these correlations are due to 
familial confounding. That is, our findings suggest no causal effect, or at least no substantial 
effect, of parental mental health on children’s achievement. Our study highlights the value 
of within-family designs to understand the causes and consequences of psychopathology. 
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INTRODUCTION
A significant proportion of children live with parents suffering from mental disorders: recent 
assessments in western countries suggest 10 to 25% of children have an affected parent280–

283. Children of parents with mental disorders are a particularly vulnerable population. 
Parental psychopathology is associated with childhood adversity283 and poorer child health, 
behavioural and academic outcomes284–286. 

Overall, previous studies suggest that poor parental mental health is associated with poor 
educational outcomes in children. However, evidence for a negative association is highly 
inconsistent across studies and might depend on the specific parental disorder, its severity, 
time at measurement, children’s outcomes, parent gender, study population, etc. Internalizing 
disorders are among the most frequently studied parental risk factors in this regard, and 
studies report varying degrees of null287–289 to negative287,289–294 associations with children’s 
academic achievement. Having a parent with schizophrenia also appears to negatively affect 
children’s academic performance, while having a bipolar parent does not292,295. The effect 
of parental eating disorders has yielded divergent results296. The association with alcohol 
and substance use is also unclear and might depend on timing of problematic usage and 
quantity297,298. 

All these studies report observational parent-child associations, adjusted for a limited 
number of measured covariates. While identifying specific negative associations between 
parental mental health and academic achievement allows to identify at-risk groups, 
identifying causal effects is the only thing that could inform on mechanisms at play in the 
parent-child transmission, and on potential effects of interventions on parental mental health. 
Observational parent-child associations are likely to be confounded by familial factors, 
such as social-economic position and genetic influences294,299. Such familial factors can be 
controlled for in within-family designs: designs that employ family structure in pedigree data 
to reduce the impact of genetic and environmental confounding factors that are shared 
within a family. These design have the additional advantage to not require the identification 
of these factors, and therefore do not rely on the imperfect measurement of these when 
adjusting estimates. To our knowledge, only two studies use such designs to study the 
effect of parental mental health on children’s education, looking at maternal smoking300 and 
parental schizophrenia301. Both find no evidence for a causal effect on children’s school 
performance. 

Here, in a design which we refer to as children-of-siblings design (Figure 1), we use family 
structure to investigate effects within-family: we test whether the sibling with worse mental 
health is also more likely to have a child who has lower academic achievement. This design 
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allows us to control for unmeasured factors shared between siblings that might relate to 
their mental health and their children’s education, such as a common environmental/social 
influence, social economic position or shared genetic influences. It therefore allows us to get 
an estimate controlled for various unmeasured sources of confounding which would persist 
in an observational association. While it is by itself not sufficient to conclude causality 
(confounders not shared between siblings might still confound association estimates), 
comparing (children-of-)siblings informs us on the presence or absence of causality more 
precisely than observational studies. Additionally a reduction in the within-sibling estimate 
compared to the observational estimate indicates that factors shared to the family have a 
role in the association between parental mental health and child achievement. 

Is the sibling with worse mental health 
more likely to have a child 
who has lower academic achievement?

 Figure 1 | Visualization of the children-of-siblings design.

METHODS
The study was preregistered, the registration is available on the Open Science Framework 
website: https://osf.io/sqz3n/?view_only=2b34df0ee22c484d85682ad23fa4db52. Deviations 
from the pre-registration are stated in Supplementary Note.

Sample
We use data from the Norwegian Mother Father and Child Study (MoBa), release 12. MoBa’s 
mothers were recruited all over Norway from 1999-2008 during their pregnancy. 41% of the 
contacted pregnant women consented to join the study and partners were asked to join. The 
cohort follows 112,645 pregnancies, 95,135 mothers and 75,111 fathers, including extended 
families.

We estimate associations in the full sample of the Norwegian Mother Father and Child Study 
(MoBa) with available measures, and within-family associations in a subset thereof (referred 
to as the children-of-siblings sample). We used linkage to the Norwegian central population 
register for basic demographic data and kinship links.
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Within the Norwegian central population register, we identified all children sharing the 
same legal mother and father, excluding children with same-sex parents. We then identified 
children whose mothers are sisters (i.e. these children are maternal cousins, they share 
maternal grandparents), whose fathers are brothers, and whose parents are siblings of the 
opposite sex. Linking this information on cousins and parental siblings, we selected in MoBa 
parents for whom at least one full-sibling (including twin) also participated in MoBa. These 
parental siblings and their children were included in the analysis if both siblings reported 
mental health and at least one of their children has data available for the national academic 
test in 5th grade. We only included one child per parent. Some children were part of multiple 
extended families: once via their mother, once via their father. We excluded one of these 
familial links at random to avoid duplicated children. Our main analyses use the full sample 
of cousins in the child generation based on maternal, paternal and cross-sex parent siblings 
to maximize the sample size. Sample sizes are presented in Table 1. Pre-registered analyses 
were focusing on same-sex parent siblings, and full results are available in Supplementary 
Tables 7-9. 

Measures

Academic achievement

The child academic outcome variables are individual scores on national standardized tests 
in 5th grade. Pupils take national standardized tests in 5th, 8th and 9th grade in mathematics, 
reading comprehension (in their native language: Norwegian) and English as an additional 
language. We focus on 5th grade (~10 years-old) as it is before the typical age of onset of 
many psychopathologies and is the academic achievement with the largest available sample 
size linked to MoBa. The test scores are obtained from linkage with the National Educational 
database (NuDB). We excluded pupils who took the tests in Sami language and who took the 
tests several times in the same year. For pupils who took the tests two years in a row, we only 
considered the results obtained the first year. We then standardized the scores within each 
test and year combination, in the overall NuBD population, so that our outcome measures 
how the child places themselves in their own cohort on the specific test171.

Parental Mental Health

Extraction of the mental health results in MoBa was performed with the R package 
Phenotools302 version 0.2.4. Parental symptoms scores were created following standard 
practice as implemented in MoBa and documentation of the questionnaires. 

For all scores based on validated scales, we set a completion threshold of 0.75: 75% of 
the items had to be reported for the total score of the participant to be considered. Lower 
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completion was considered a missing score. 

As a rule of thumb, we selected available parental measures assessed at 15 weeks of 
pregnancy (first MoBa survey and only survey sent simultaneously to both parents) and the 
closest in time to the child passing the national test (age 10). In mothers, anxious, depressive 
and eating disorders symptoms were assessed during pregnancy and at age 8, alcohol 
problematic use symptoms were assessed at age 8 and ADHD symptoms were assessed 
at 36 months. Fathers were surveyed only during pregnancy and in 2015. Anxious and 
depressive symptoms were assessed during pregnancy and in 2015, ADHD symptoms were 
assessed during pregnancy and alcohol problematic use symptoms in 2015. 

Note that the 2015 questionnaire was sent regardless of the children’s age, so this measure 
might be taken after the child’s national test. For analyses with these measures, we only 
included the subset of fathers whose children were younger than 10 in 2015. 

Anxiety and depression symptoms were measured using subsets of the Hopkins Symptoms 
Checklist (SCL)303, we use SCL-5304 at 15 weeks of pregnancy and SCL-8 at age 8 and 
2015. ADHD symptoms were assessed with the Adult ADHD Self-Report Scale (ASRS 
Screener)305,306. Problematic alcohol use symptoms were measured with 7 items of the 
Alcohol Use Disorders Identification Test (AUDIT)307,308 which relate to problematic use 
(AUDIT-P). Eating disorder symptoms according to the DSM-IV309 diagnostic criteria for 
anorexia, bulimia, and eating disorder not otherwise specified (i.e. purging disorder and 
binge eating disorder) were only assessed in mothers310. With low prevalence of eating 
disorders and high level of comorbidity, we computed a continuous eating disorder risk 
score using item response theory on the DSM-IV eating disorder symptoms. In Stata 17, we 
computed a nominal response model for each time point, we report parameters estimates in 
Supplementary Tables 10 & 11 and test characteristics curve and test information functions 
in Supplementary Figure 1. 

Statistical analyses
For each measure of mental health in parents, we run a series of models to test the association 
with childhood educational test scores. Each model aims to further control for measured 
and unmeasured confounding, through sibling comparison in the parental generation. We 
standardized the mental health scores with a variance of 1 and mean of zero before each 
model. For each model, we adjust our p-values for multiple testing, using a false discovery 
rate correction. 

We first ran a mixed-effects regression to estimate the minimally adjusted association 
between the parental mental health traits and the child’s academic achievement. We ran this 
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model (1) in the full MoBa parent-child couples with available measures and in the children-
of-siblings subset. 

EAij is the standardized test score of the child i. MHij is the mental health score of the parent of the child 
i. Zij are covariates: sex and year of birth of the child, years of birth of the mother and of the father, sex of 
the parent. uj is the random effect for the family j (family including the parental siblings and their children).

In the children-of-siblings sample, we estimated the intra-class correlation of mental health 
in parental siblings, as an indication of the proportion of variation in mental health between 
sibling pairs. 

To estimate the association between the parental mental health score and the child’s school 
performance adjusted for unmeasured shared familial factors, we then ran the children-of-
sibling design: a regression including within and between-family effects of parental mental 
health on child’s academic achievement, effectively using the siblings of parents as de facto 
matched controls.

With MHj being the average mental health score of the parent and their siblings (average score for the 
family j).

The within-sibling effect represents the expected change in educational performance given 
one unit change in the difference between the parent’s mental health and the average mental 
health of the parents’ sibling pair. It represents the effect of parental mental health on the 
child’s test score while keeping factors common to the extended family constant. 

We also investigated the attenuation of the within-sibling effect when taking into account 
parental education, see Supplementary Note. 

RESULTS 

Descriptive statistics 
Descriptive statistics for parental symptoms and child academic achievement are presented 
in Table 1 and Supplementary Table 1. To maximize sample size, we always use the full 
sample which differs depending on the missingness of these measures. Analytic sample 
sizes vary from 35,210 to 134,174 in the overall MoBa and from 2223 to 17,291 for the 
children-of-siblings subsamples. The average standardized test scores of MoBa children 
are above zero (0.11 to 0.34), indicating that children participating in MoBa have on average 
higher academic achievement than the Norwegian population (Supplementary Table 1). 
This is in particular for Maths and Reading scores, with average scores of 0.26 and 0.27 
respectively, and even more pronounced in the children-of-sibling samples with average 
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scores of 0.33 and 0.34. Parents in the children-of-siblings samples had fewer symptoms 
and less variance in symptoms than the overall MoBa sample (Table 1). The intraclass 
correlation ranges between 0.09 and 0.16, indicating variation in symptoms load between 
siblings. For symptoms with measures at two time points, the intra-class correlation is lower 
when the child is 8 years old than during pregnancy (0.13 vs 0.10 for anxious and depressive 
symptoms and 0.16 vs 0.10 for eating disorders symptoms).

Anxiety - 
Depression

in pregnancy

Anxiety - 
Depression

~ age 8

ADHD
~ < 3yo

Alcohol 
Problematic 

Use
~ age 8

Eating
disorder

in pregnancy

Eating
disorder
~ age 8

Subsample MoBa CoS MoBa CoS MoBa CoS MoBa CoS MoBa CoS MoBa CoS

Scale SCL-5 SCL-8 ASRS AUDIT-P IRT IRT

Sample N 134,174 17,291 61,852 4248 73,616 6835 61,473 4214 47,805 7850 35,210 2223

Mean 1.02 0.92 2.14 1.98 7.23 7.16 0.48 0.39 0.05 0.02 0.00 -0.03

SD 1.79 1.66 3.00 2.79 3.43 3.37 1.31 1.13 0.84 0.84 0.60 0.54

Skew 2.81 2.98 2.44 2.47 0.24 0.21 4.58 4.91 0.81 0.84 0.17 1.64

% girls 49 49 50 49 49 49 50 49 49 49 50 49

% mothers 55 57 56 67 61 65 57 67 100 100 100 100

Number of 
families – 8427 – 2093 – 3361 – 2078 – 3855 – 1097

Intra-class 
correlation – 0.13 – 0.09 – 0.10 – 0.12 – 0.16 – 0.10

Table 1 | Descriptive statistics of parental mental health at different time points in children’s life. 
Average over the analytic samples (used in Figure 2). Statistics per sample are in Supplementary Tables 
1 & 4. Subsample “MoBa” refers to all parent-child pair with non-missingness in MoBa, and “CoS” refers 
to the children-of-siblings subsample of MoBa. Statistics regarding the mental health scores are before 
standardization within the analytic sample. Intra-class correlation is between parental siblings. 

Observational associations 
We ran a linear regression to estimate observational associations between parental 
symptoms and children academic achievement. In the total MoBa sample, most parental 
mental health scores are negatively associated with their children’s academic achievement 
(Figure 2 – black and Supplementary Tables 5 & 6). All mental health scores were negatively 
associated with scores in mathematics and reading tests, with standardized ßs from -0.025 
for ADHD (SE = 0.00) to -0.058 for eating disorders at age 8 (SE = 0.00), expect postnatal 
alcohol problematic use (ß = 0.00, SE = 0.00 & ß = 0.01, SE = 0.00). Associations of anxious 
and depressive, ADHD and eating disorders symptoms are significant but relatively weak: 
an increase of one standard deviation in the parental symptoms score is associated with 
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a decrease of maximum 0.06 SD of the child’s standardized test score. For comparison, 
being a boy was associated with an increase of 0.17 SD in maths and 0.11 in English, and 
a decrease of 0.12 SD in reading. Surprisingly, higher English tests scores were associated 
with higher parental anxious and depressive symptoms in pregnancy (ß = 0.009, SE = 0.003) 
and at child’s age 8 (ß = 0.009, SE = 0.004), and with postnatal alcohol problematic use (ß 
= 0.02, SE = 0.004). Parental ADHD symptoms are not associated with English tests scores 
(ß = -0.006, SE = 0.004), and eating disorders symptoms were negatively associated (ß = 
-0.026, SE = 0.004 for symptoms during pregnancy, and ß = -0.012, SE = 0.005 for child’s 
age 8 symptoms), as expected and found for maths and reading scores.

We ran the same regressions in the children-of-siblings subsamples, to investigate 
the specificity of this subset of the MoBa participants, and enable a comparison with a 
within-sibling model in the exact same subset. As expected given the smaller sample size, 
the estimates are less precise in the children-of-siblings subsamples (Figure 2 – blue & 
Supplementary Tables 2 & 3). Overall, the associations are similar, but some point estimates 
are lower and many are no longer significantly different from zero. Reading tests scores are 
only significantly associated with parental eating disorders symptoms in this subsample, 
and English tests scores with anxious and depressive symptoms in pregnancy. Anxious and 
depressive and eating disorders symptoms are still significantly associated with lower maths 
scores in this subsample. 

Within-sibling associations
After controlling for shared familial factors with a children-of-siblings design, no association 
between parental symptoms and children’s test scores was statistically significant after 
multiple testing correction (Figure 2 – green and Supplementary Tables 2 & 3). Few within-
sibling associations were suggestively significant (by suggestively significant we mean 
significant only without correcting for multiple testing, i.e. p-value < 0.05 without false-rate 
discovery correction). Children’s maths tests scores were suggestively associated with 
parental anxious and depressive symptoms during pregnancy (ß = -0.025, SE = 0.010) and 
at age 8 (ß = -0.044, SE = 0.020), and with eating disorders symptoms at age 8 (ß = -0.060, 
SE = 0.028). Children’s reading and English tests scores were suggestively associated with 
eating disorder symptoms at age 8 (ß = -0.058, SE = 0.028 and ß = -0.058, SE = 0.029 
respectively). For eating disorders symptoms, controlling for shared familial factors by 
comparing children-of-siblings led to a reduction in the point estimates of the associations 
for symptoms during pregnancy. However, the point estimates with symptoms at age 8 was 
not reduced (the estimates are imprecise nevertheless.
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Figure 2 | Association of parental mental health scores with children’s academic achievement. 
Coefficients as estimated with a linear regression in the total MoBa samples (black), in the children-
of-siblings subsamples (blue), and with the children-of-sibling model (green). Red asterisks indicate 
estimates that reach statistical significance (p < 0.05) after false-rate discovery correction for multiple 
testing. Bars are 95% CIs. Child ages at which the parent reported their mental health are approximate 
ages (see Methods).

We also ran all children-of-siblings analyses in same-sex sibships, estimates are similar to 
those presented here: none of the associations reach suggestive significance (Supplementary 
Tables 7-9 and Supplementary Figure 2). Additionally there is no visual evidence for non-
linear relationship when plotting individual data and quartiles trends.

DISCUSSION
Ten-year-old children (5th grade) tended to score lower on standardized tests of mathematics 
and reading if their parents had more symptoms of anxiety, depression, ADHD, or eating 
disorders. After controlling for shared familial factors by comparing up to 17,000 children 
of siblings, all significant associations disappeared, which suggests that parental mental 
health does not impact children’s academic achievement. Some associations might remain 
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statistically significant in a larger children-of-siblings sample, but our study suggests an 
increase of one SD in parental mental health scores would decrease their children’s test 
score by 0.06 SD at most.

Our study looks at the effect of parental self-reported symptoms, in a population sample of 
Norwegian parents. Exposures to more severe parental psychopathology might have larger 
effect on children’s test scores. Indeed, besides exposure to their parents’ symptoms, severe 
psychopathologies might result in additional adversity for the children, such as parental 
divorce and absence of parents due to hospitalization311–313. However, our conclusions based 
on self-reported symptoms are supported by a recent study in the full (Norwegian) population 
using diagnosed internalising disorders (Nordmo et al., in prep). Nordmo et al. also use 
a genetically-informed design, comparing test scores of 16-year-old siblings differentially 
exposed to their parents’ internalizing disorders. They find that only exposure to parental 
psychopathology close to academic testing appears to have an effect, of small size. 

Parental symptoms experienced close in time to the child’s academic test may matter more 
than parental symptoms during pregnancy. Children born to mothers with an eating disorder 
during pregnancy had on average lower test scores across domains (β from -0.06 to -0.02), 
but these effects completely disappeared (β ~ 0) after controlling for shared familial factors, 
which suggests that shared factors cause the association. In contrast, we do not observe this 
reduction for maternal eating disorder symptoms when children were 8: After controlling for 
shared familial factors, parental symptoms stay suggestively associated with lower maths’ 
achievement scores two years later (βs ~ 0.06). A similar pattern, though less pronounced, 
is visible for anxious and depressive symptoms. This timing effect awaits confirmation using 
other disorders, cohorts, and designs. 

We find that the association of children’s test scores with parental mental health depends on 
the type of symptoms. However, as we do not find evidence for a causal effect, these different 
associations are most likely due to different symptoms relating differently to shared familial 
factors, such as socioeconomic status or shared genetics. For example, parents who score 
higher than average on ADHD symptoms tend to have children who also score higher on 
ADHD symptoms. Previous research has shown that this is mostly due to the transmission 
of genetic liability, rather than the effect of being exposed to parental ADHD157,314,315. As 
childhood ADHD generally decreases academic performance316, children of parents with 
ADHD are likely at risk for poor educational outcomes not because of parental exposure, but 
because of their own genetically-transmitted ADHD symptoms. Similarly, anxiety is thought 
to be transmitted to their children mostly by socialisation317,318, children of anxious parents 
are more likely to have lower scores due to environmental factors shared with their parents, 
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than to shared genetics. Alternatively, we can not rule out that how we measure different 
aspects of parental mental health (some disorders could be better captured than others) 
might affect our comparison of parental disorders. 

A surprising result is that the associations differ for maths and reading versus English as an 
additional language. While maths and reading skills are consistently negatively associated 
with parental mental health (apart from alcohol problematic use), English is surprisingly 
positively associated with parental anxiety, depression, and especially problematic 
alcohol use. We can speculate that this positive association is created as both alcohol 
use disorders and children’ screen usage (facilitating home exposure to English) are more 
prevalent among lower-educated families319,320. Conversely, it could also be created as both 
alcohol consumption and active exposure to English are more common in higher-educated 
families321–323. Or again, this positive association could be an artifact as we use self-report 
problematic alcohol use, and people with alcohol use disorders might participate less in 
Moba324. In any case, the association disappeared in the within-family analysis, suggesting 
that the observed link is not causal. 

There are limitations to our study and its interpretation. First, despite a big sample size, our 
sample is not fully representative of the Norwegian population. This is evident from the mean 
standardized test scores in MoBa, which are 0.11–0.27 SD above the population mean, and 
that in the children-of-siblings subsample, which are 0.11–0.34 SD above the population 
mean. Moreover, we see in Figure 2 that the full MoBa and children-of-sibling subsample 
sometimes give different point estimates of the observational associations; see for example 
parental ADHD symptoms (but note the confidence intervals overlap). Ascertainment bias 
might be a concern, as parents with mental disorder or with lower SES are less likely to 
participate in surveys325. We recommend replication in an even bigger, more representative 
sample. Second, our children-of-sibling design is also subject to the same limitations as 
typical sibling comparison designs. Random measurement errors of the parental symptoms 
might accentuate the attenuation of the within-sibling effect326. How within-sibling designs 
are affected by ascertainment bias depends on the factors leading to selection. If those 
are stable and shared across siblings, they will be adjusted for by design327, but if those 
are not shared within siblings, a within-sibling design might amplify the bias due to these 
factors328. Third, we stress that our study’s conclusions are applicable to the Norwegian 
context. Norway is a country with a Scandinavian social-democratic welfare state system329. 
Our context is thus one where effects of parents’ psychopathologies can be expected 
to be relatively weak in comparison with other contexts such as the U.S. or the U.K. Our 
finding of no impact of parents’ psychopathologies on children’s educational achievement in 
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Norway may not extend societies with less extensive welfare states. Finally, we recommend 
investigating whether exposure to parental psychopathology impacts offspring’s educational 
outcomes later on, up to their highest obtained degree. Our observed parental effects at age 
10 that seem negligible may accumulate, or parental effects may be larger in secondary and 
tertiary education157,272. 

Conclusion
While our study has limitations that prevent us from firmly establishing a causal relationship, 
our findings suggest that parents’ mental health symptoms are unlikely to have a significant 
impact on their children’s academic performance. We estimate that such effects, if they exist, 
are likely to be small, explaining little of the variation among children in their standardized 
test scores. While our results do not diminish the importance of addressing mental health 
concerns in parents, they do suggest that improving parental mental health may not in itself 
lead to improvements in children’s educational outcomes. 

CODE AND DATA AVAILABILITY 
All code associated with the analyses is available on GitHub at https://github.com/
PerlineDemange/ParentMH_childEA_Moba. MoBa data are available to individuals who 
obtain the necessary permissions from the data access committee (see https://www.fhi.no/
en/studies/moba/for-forskere-artikler/research-and-data-access/).
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Education and mental health shape individuals’ wellbeing and their opportunities in life. 
Understanding the relationship between these two domains and their intergenerational 
transmission is valuable for researchers, policy makers, and society as a whole. With 
this doctoral dissertation, I tried to further our understanding of the causes of individual 
differences in educational outcomes, their relationship with mental health, and their co-
intergenerational transmission. In my research I worked with observational data in large 
samples, triangulating across several genetically-informed designs to study genetic and 
environmental transmissions. In this chapter, I summarize the main findings of my four 
empirical chapters.

CHAPTER 2: WHAT ARE NONCOGNITIVE SKILLS AND DO THEY 
MATTER? 

Takeaway: Noncognitive aspects of educational attainment matter: they are estimated 
to account for 57% of the genetic variance in educational attainment and are 
genetically associated with other life outcomes to the same extent as cognitive skills. 
Noncognitive skills are a multifaceted construct: our noncognitive factor of educational 
attainment correlates genetically strongly, but not uniquely, with several personality 
and behavioural traits. The biology of the noncognitive factor appears very similar to 
those of the cognitive factor of educational attainment. 

In Chapter 2, I leveraged genomic structural equation modelling to disentangle the cognitive 
and noncognitive components of education attainment. While noncognitive skills are a 
widely used concept, what constitutes the set of noncognitive skills is not widely agreed 
upon, and there is a lack of consistent measurements in large cohorts30. To overcome these 
challenges, our study was designed to mirror the original conceptualization of noncognitive 
skills as all traits positively contributing to educational success that are not cognitive skills31. I 
applied a new statistical approach which we named GWAS-by-subtraction: I identify genetic 
associations with a latent noncognitive trait (NonCog) by ‘subtracting’ genetic influence on 
cognitive performance (Cog) from the association of each genetic variant with educational 
attainment (EA). I then conducted phenotypic and biological annotation analyses to explore 
this genetic noncognitive construct, using LDSC genetic correlations, polygenic score (PGS) 
predictions, and enrichment analyses. 

I successfully identified a genetic component of educational attainment that is independent 
of cognitive skills. In five cohorts, NonCog PGS predicted academic skills and its relationship 
to IQ scores was attenuated relative to Cog PGS. However, the correlations were not 
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attenuated to zero. We suggest this is due to the cognitive performance GWAS not capturing 
all forms of cognitive skills, and therefore its subtraction from EA leaves a residual cognitive 
signal. Despite a simplified and incomplete statistical separation of NonCog from Cog, we 
argue our NonCog GWAS is a useful tool to explore EA and noncognitive traits.

NonCog matters for education and life outcomes: the noncognitive component accounts 
for 57% of the genetic variance in educational attainment. The noncognitive component 
was associated with SES-related traits (income, neighbourhood deprivation) to a similar 
degree as the cognitive component. These results contribute new evidence that heritable 
individual differences in traits other than intelligence influence educational attainment and 
downstream life outcomes.

Phenotypic annotation analyses helped to gain a deeper understanding of the substance 
of heritable noncognitive aspects of education attainment and highlight their diversity. The 
genetics of NonCog are correlated with a combination of personality traits that resemble those 
that emerge during maturation into adulthood330: higher levels of openness to experience, 
conscientiousness, agreeableness, extraversion, and lower levels of neuroticism. In addition, 
NonCog genetic factors are correlated with “mature” decision-making preferences331,332 
such as lower risk-taking and lower present-oriented time preference. Consistently, NonCog 
genetic factors were associated with lower health-risk behaviours and later fertility. These 
associations highlight that the noncognitive component of educational attainment is unlikely 
to be a singular construct. No single “noncognitive” construct is solely responsible for the 
variance in educational attainment beyond cognitive skills. While NonCog seems associated 
mostly with socially desirable traits, it is also correlated with a higher risk for several mental 
disorders. These findings caution against an assumption that genetic variants associated with 
achieving higher levels of formal education are always associated with positive outcomes. 
This underscores the importance of understanding the complexity of the genetic variants 
that influence educational attainment and the potential implications for mental health.

Although this study focuses on the differences between noncognitive and cognitive 
skills in terms of their phenotypic annotation, the biological annotation reveals that these 
components may not be as different as we initially thought, despite being designed not to 
be genetically correlated. Our findings indicate that NonCog genetics are enriched in the 
same brain tissues and cell types as Cog. Although the genetic correlations between brain 
volumes and NonCog were different from those with Cog (Cog seemingly more associated 
with grey matter and NonCog with white matter), these correlations need to be replicated in 
future studies, as the neuroimaging GWASs we had access to were relatively low powered. 
On the other hand, the low differentiation at the cellular level suggests that both types of 
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skills likely involve similar biological processes. 

In conclusion, by conducting a GWAS of a phenotype that was not directly measured, I offer 
a view of the genetic architecture of the noncognitive aspects of educational attainment. 
My results demonstrate that noncognitive skills are central to the heritability of educational 
attainment and establish connections between the genetics of these skills and of other 
social and behavioural traits.

CHAPTER 3: DO PARENTS’ NONCOGNITIVE SKILLS AFFECT 
THEIR OFFSPRING’S EDUCATIONAL OUTCOMES? 

Takeaway: By combining data from three cohorts and three designs for estimating 
indirect genetic effects, I provide evidence for the environmental effects of parents’ 
characteristics associated with cognitive and noncognitive skills genetics on offspring 
educational outcomes. I also performed extensive simulations which highlight subtle 
differences between the designs.

In Chapter 3, multiple genetic approaches were used to study the environmental effects of 
parents’ skills on offspring education. I computed polygenic scores based on the GWASs of 
cognitive and noncognitive aspects of educational attainment (Chapter 2) in three different 
cohorts. I estimated their associations with educational achievement and attainment. Via 
three different family-based designs, i.e. comparing siblings from the same family, adoptees, 
and parent-offspring trios, I could disentangle the genetic effect of the offspring’s genotype 
on the offspring’s education (direct genetic effect), and an environmentally mediated effect 
of the parental genotype on the offspring’s education (parental indirect genetic effect). These 
designs estimate the environmental effects of polygenic scores (PGS) by estimating the 
effects of parental genetic variants not transmitted to the offspring (and therefore acting via 
the offspring’s environment), by contrasting PGS estimates for adopted and non-adopted 
children, and by contrasting PGS effects obtained with and without comparing siblings.

I found evidence that parental characteristics tagged by both NonCog and Cog polygenic 
scores are associated with offspring education. Indirect genetic mechanisms explained 
36% of the effect of the NonCog PGS and 40% of the effect of the Cog PGS. This 
demonstrates the presence of genuine environmental influences (associated with parents’ 
genes), unconfounded by offspring-led effects of inherited genes. Further studies should 
investigate the mediating parental characteristics. These heritable environmental influences 
might be proximal (e.g. parenting) or more distal (e.g. the neighbourhood parents live in, a 
set of cultural practices).
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The environmental effects of parents on offspring education tagged by NonCog and Cog PGS 
were consistent across countries, generations, outcomes, and analytic designs, with two 
exceptions. Estimated parental indirect genetic effects were null for childhood achievement 
in a Dutch cohort (NTR) but not for comparable outcomes in a UK cohort (TEDS). Parental 
indirect genetic effects estimated with the adoption design were lower than for the sibling 
and non-transmitted PGS designs.

Simulations provided further understanding of differences between the three statistical 
designs and their sensitivity to different components and biases. The adoption-based 
estimates of indirect genetic effects do not account for prenatal effects and appear more 
robust to population stratification and assortative mating. The sibling design seems 
particularly affected by sibling indirect genetic effects. Sensitivity analyses in the cohorts 
suggest the potential presence of population stratification, especially in the case of NonCog 
genetics, and of some assortative mating, but I find no evidence of sibling indirect genetic 
effects. This suggests the adoption design provides a lower-bound estimate of indirect 
genetic effects. 

In conclusion, combining three cohorts and three designs for estimating indirect genetic 
effects, I provide evidence for environmental effects of parents’ characteristics associated 
with cognitive and noncognitive skills genetics on offspring educational outcomes.

CHAPTER 4: IS THE RELATIONSHIP BETWEEN EDUCATIONAL 
ATTAINMENT AND MENTAL HEALTH CAUSAL? 

Takeaway: In a within-sibling design in the Dutch national registry (CBS) and using 
two-sample mendelian randomization, I found potential causal effects of educational 
attainment on the risk of being diagnosed with major depressive disorder (MDD), 
attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), 
alcohol dependence, and generalized anxiety disorder (GAD), as well as a causal 
effect in the opposite direction for ADHD. Results were inconsistent for schizophrenia, 
obsessive-compulsive disorder (OCD), bipolar disorder, and anorexia nervosa, 
suggesting different relationships between EA and the diagnosis liability, and EA and 
the diagnosis itself.

In Chapter 4, I evaluate the causal relationship between educational attainment and mental 
health using two quasi-experimental research designs. Firstly, I analyse Dutch national 
registry data to evaluate the causal association of education attainment with the risk of being 
diagnosed with one of 17 psychiatric disorders. To do so, I compare siblings’ education 
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and diagnoses, hence fully controlling for unmeasured familial confounders such as shared 
genetic risk and family SES. Secondly, I apply two-sample mendelian randomization to 
study the relationship between education and 9 psychiatric diagnoses, based on summary 
statistics from numerous large GWAS studies.

Triangulating across these two methods, our results suggest that higher education attainment 
reduces the risk of MDD, PTSD, alcohol dependence, ADHD, and GAD diagnoses. I also 
find evidence for reverse causation where ADHD, and suggestively MDD, PTSD and GAD, 
influence educational attainment. Some of our results highlight the need for triangulation as 
inconsistent results were observed for schizophrenia, OCD, bipolar disorder, and anorexia. 
Within-family analyses suggest higher education reduces the risk of being diagnosed, while 
mendelian randomization suggests more education does not affect this risk for schizophrenia, 
and actually increases this risk for OCD, bipolar disorder, and anorexia nervosa. 

Based on these inconsistent results, we hypothesise that these last diagnoses follow a model 
where the (genetic) liability for being diagnosed is associated with higher education, while the 
disorders themselves interfere with schooling. Supporting this, in the Dutch register data I 
found a high prevalence of bipolar disorder among pre-university high-school dropouts, and 
healthy siblings of bipolar and anorexic patients have a similar or higher average educational 
attainment than siblings from unaffected sibships. Further research is needed to disentangle 
the effects of genetic liability and disorder symptoms. Potential sources of bias need to be 
explored, such as inequalities in healthcare access, preferential diagnosis, or selection bias 
in the GWAS on which we based our mendelian randomization analyses (henceforth not 
capturing the true genetic liability of these disorders). 

In conclusion, using within-family analyses and two-sample mendelian randomization, 
these results support that higher education attainment reduces the risk of certain psychiatric 
disorders, while some disorders can also influence educational attainment. However, some 
findings were inconsistent, highlighting the importance of triangulation. Further research is 
needed to disentangle the effects of genetic liability and disorder symptoms.

CHAPTER 5: DO PARENTS’ MENTAL HEALTH AFFECT THEIR 
CHILDREN’S EDUCATIONAL OUTCOMES? 

Takeaway: I find weak associations between parental psychopathology symptoms 
and child educational achievement at age 10 in Norway. When controlling for shared 
factors among siblings in the parent generation in a within-sibling design, the effects 
were further attenuated and no longer significant.
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In Chapter 5, I compare up to 9,000 families of the Norwegian Mother, Father, and Child 
Study (MoBa). I selected families in which two of the parents are siblings (i.e. their offspring 
are cousins). This design allows for estimating the association between parental mental 
health and children’s academic achievement, while controlling for unmeasured factors 
shared among adult siblings (e.g. genetics and socioeconomic status) that might confound 
the relationship. 

The results suggest that parents’ mental health symptoms are unlikely to have a significant 
impact on their children’s academic performance. I found that children tended to score 
lower on 5th-grade standardized tests of mathematics and reading if their parents had more 
symptoms of anxiety, depression, ADHD, or eating disorders. However, after controlling for 
shared familial factors by comparing children who were cousins, all significant associations 
disappeared. 

In conclusion, our findings suggest that any potential effects, if they exist, are likely to be 
minimal. Although addressing mental health concerns in parents is important, our results 
suggest that improving parental mental health alone may not result in better educational 
outcomes for their children.

CONCLUSION
My research has contributed to our understanding of education, mental health and their 
relationships. First, it showed that noncognitive aspects of educational attainment account 
for 57% of the genetic variance in educational attainment and reflect several personality 
and behavioural traits. Second, my research demonstrated that parental characteristics 
genetically associated with both cognitive and noncognitive aspects of educational 
attainment affect their offspring’s education, above genetic transmission. Third, the research 
revealed causal effects of educational attainment on several psychiatric diagnoses, and 
suggest further mechanisms explaining surprising education-diagnoses associations. 
Finally, parents’ mental health symptoms are unlikely to significantly impact their children’s 
academic achievement in Norway. In the next chapter, I provide a reflection on my work. 
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General discussion and future directions
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In this discussion, I consider the broader implications of my research, its value for the field 
and, briefly, how others have built upon it. I cover the benefits and challenges that arise from 
re-using observational data. I reflect on the value of triangulation for my work. I highlight the 
usefulness of my operationalization of noncognitive skills and suggest further examination 
of noncognitive skills as a missing link between education and mental health. I consider the 
nature of indirect genetic effects, which have become a cornerstone of intergenerational 
research based on polygenic scores. Finally, I discuss the challenges of unmodelled sibling 
effects and limited external validity for the future of the field. 

OPTIMAL (RE)USE OF OBSERVATIONAL DATA 
In this doctoral dissertation, I leverage a diverse range of existing observational data sources. 
I use population registry data from Statistics Netherlands (Chapter 4) and Statistics Norway 
(Chapter 5). I analyse data from diverse studies, which include among others longitudinal, 
survey, cohort, and biomedical data, and have diverse collection procedures. I also work 
with summary statistics of genome-wide association studies (Chapters 2, 3, & 4) and other 
publicly available gene expression and gene-set data (Chapter 2). 

The existence and availability of these data resources enable extensive and valuable 
secondary analyses to be conducted without the need to collect new data. Secondary data 
analysis is resource-efficient but comes with challenges, whose possible solutions I illustrate 
in this doctoral dissertation. 

One challenge is the need to accommodate existing measures rather than rely on the “perfect” 
measure. This requires accommodating proxy measures and alternative operationalizations. 
Our conceptualization of noncognitive skills in Chapter 2 is one such example: instead of 
collecting measures of noncognitive skills in large samples, I leveraged available summary 
statistics of two GWASs. This was enabled by the new method Genomic-SEM, which 
allowed to combine data from multiple existing GWASs jointly to model noncognitive skills 
as a latent variable.

Another challenge is the impossibility to design retrospective randomized experiments 
to infer causal relationships. However, insofar as natural experiments occur in the data 
these can offer a suitable and powerful alternative. Here I leverage numerous natural 
experiments and quasi-experimental methods such as family-based designs (including 
within-sibship design and adoption design) and mendelian randomization. The difference 
we observe between observational associations (obtained from simple linear regressions 
controlling selected covariates) and within-sibship associations (controlled for all factors 
shared between siblings) in Chapter 4 and Chapter 5 is a clear illustration of the value of 
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such quasi-experimental designs. For example, while educational attainment has an equal 
association with ADHD and MDD diagnoses (OR = 0.9), controlling for all environmental and 
genetic influences shared between siblings suggests an additional year of education lowers 
the odds of an ADHD diagnosis by 9% but only by 3% for MDD. Mendelian randomisation 
confirms a similarly attenuated effect of education on MDD.

I relied on a range of invaluable resources throughout my research. One such resource 
was the Dutch population registry (CBS), which provided access to a substantial portion of 
the population and allowed for the identification of siblings with data on mental health and 
educational outcomes. I further relied on a large (N ~500.000) biomedical research cohort 
and several large (N ~2.000-20.000) longitudinal, twin, family, and developmental cohorts, 
with genotyped participants. These large datasets mostly provided ample statistical power, 
such that a more prominent issue was the potential for biases. I focused on countering 
bias by triangulating across various types of natural experiments that I can leverage in the 
different resources.

Finally, beyond the immediate use of cohorts or population registries in isolation, the linkage 
of national registry data with survey data and genotyped cohorts allows for very promising 
studies. In Chapter 5, standardized scores of MoBa children were obtained from the National 
Educational database, allowing to standardize the scores on the entire Norwegian population 
and access to educational outcomes directly without missingness. The Norwegian registry 
data further provided me with pedigree information of MoBa participants, allowing me 
to identify families in which two of the parents are siblings in MoBa while analysing the 
psychiatric symptoms they reported in MoBa surveys. Future studies could expand on these 
integrated data and further identify extended pedigree (their cousins, their sibling-in-law, a 
new partner, etc.) and combine it with available genetic data.

THE VALUE OF TRIANGULATION
Triangulating refers to the use of multiple methods -and samples- with their own set of 
assumptions and limitations to study a single phenomenon (here the intergenerational 
transmission of education and mental health). It is a means to avoid potential biases arising 
from the use of a single methodology/sample. The convergence of findings strengthens our 
confidence, while inconsistent or contradictory findings raise scepticism but can also suggest 
new interpretations of the phenomenon13,15. In order to properly leverage the advantages of 
genetically-informed designs while mitigating their limitations, I aspire to triangulate across 
different methods and different samples. 

In my doctoral dissertation, triangulation allowed me to gain insights that would have been 
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otherwise unattainable. An instance of this is highlighted in Chapter 2, where both genetic 
correlations using out-of-sample GWAS summary and meta-analysed polygenic scores (PGS) 
predictions across six cohorts from three different countries revealed that the noncognitive 
factor is as (or more) strongly associated with educational attainment as the cognitive 
factor, but significantly less associated with cognitive test performances. This convergence 
strengthens our confidence in this finding. In Chapter 5, I observe no association of self-
reported parental symptoms with their children’s academic achievement, in a non-clinical 
sample. However, Nordmo et al.333 (in a paper I co-author) find consistent null-to-small effect 
using diagnoses of internalizing disorders in the Norwegian national registry data. Both 
studies’ findings are strengthened by these similar findings using alternative samples and 
measurements of mental health, with different limitations334. 

Inconsistent findings also highlight that employing only one design might have led to incorrect, 
or at best incomplete, conclusions. For example, in Chapter 3, the use of different genetic 
designs revealed lower indirect genetic effect estimates for educational attainment when 
using an adoption design compared to a within-sibship or non-transmitted PGS design. 
Simulations and understanding of the biases inherent in each design led us to hypothesise 
there might be prenatal indirect genetic effects, population stratification, and/or assortative 
mating. Having identified plausible causes of the differences, these could then be tested, 
and we conclude there likely is population stratification and potentially prenatal effects. 
Similarly, in Chapter 4, findings for bipolar disorder, anorexia, and OCD differed in sign 
between the mendelian randomization and within-sibship design. As both methods differ in 
the underlying construct they capture (genetic liability vs diagnosis), this suggested potential 
differences in causal effects of the genetic liability and the diagnosis of the same disorder. 
These observations helped to formulate new hypotheses that can be further tested.

A crucial point to consider is that triangulation across different designs and samples cannot 
remedy a flawed study. It is necessary to properly interpret the results taking into account 
the assumptions, potential limitations, and biases of the study. By adopting a triangulation 
approach, researchers are compelled to explicitly state the underlying assumptions of their 
model. Combined with pre-registration, this encourages a more thorough evaluation of the 
study’s added value in addressing the research question. Additional to triangulation, it is 
essential to conduct research using state-of-the-art approaches to maximizing reproducibility 
and reliability, while also maintaining epistemic humility when drawing conclusions335. 
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A SIMPLE BUT USEFUL MODEL FOR NONCOGNITIVE ASPECTS 
OF EDUCATIONAL ATTAINMENT 
Leveraging genome-wide associations studies and Genomic-SEM in Chapter 2, I could 
measure the association of genetic variants with noncognitive skills, while operationalizing 
noncognitive skills as a residual of the subtraction of cognitive skills from educational 
attainment (EA). This operationalization was necessary to counteract the lack of consistent 
measures of noncognitive skills and make this study possible.

Separating noncognitive from cognitive aspects of EA is an approach that, while reductive, 
proved a highly effective first-order approximation of what is fundamentally a nuanced 
and complex developmental relation. The suggested dichotomy between cognitive and 
noncognitive skills is a well-known subject of criticism336, as cognitive and noncognitive 
skills likely develop together, or in interaction with each other123,124. Similarly, we expect 
cognitive performance to not only affect educational attainment but also be affected by it24.

In anticipation of these potential limitations, I performed various sensitivity analyses 
in Chapter 2 and re-ran core analyses while introducing a positive correlation between 
cognitive (Cog) and noncognitive latent factors (NonCog), or while allowing for educational 
attainment to causally affect cognitive skills. Neither of these alterations significantly 
impacted the noncognitive factor suggesting the operationalization is robust to these 
alternate assumptions.

Ultimately a reductive conceptual model was necessary to render a GWAS of noncognitive 
skills possible. A form of reduction also remains necessary to facilitate the interpretation of 
a latent NonCog GWAS. Although our model of NonCog may be imperfect, its adoption by 
other researchers as a starting point for investigating noncognitive aspects of educational 
attainment underscores the value of our NonCog GWAS as a research tool. 

Can we further separate noncognitive skills from cognitive skills? 
Our GWAS-by-subtraction model aimed to isolate genetic variance in education that was 
independent of cognitive performance. Our GWAS of noncognitive aspects of educational 
attainment was designed as genetically independent of the GWAS of cognitive performance, 
with a genetic correlation of zero. However, in independent samples, NonCog had a steeply 
and significantly attenuated, albeit not zero, association with cognitive measures (IQ tests). 
The pattern of associations was replicated by independent researchers in the Brisbane 
Longitudinal Twin study337, and in the context of new GWASs of language-related skills (word 
reading, nonword reading and nonword repetition)338. We suggest this imperfect statistical 
separation of NonCog from cognitive performance is due to the limitations of the cognitive 
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performance GWAS we had to rely on, which did not encompass a broad enough set of 
measures of cognitive skills. Consequently, its subtraction leaves a residual cognitive signal.

New research has extended our GWAS-by-subtraction to try to estimate a more specific 
GWAS of noncognitive aspects of educational attainment. Researchers extended our 
GWAS-by-subtraction replacing the GWAS of cognitive performance with a recent GWAS 
of intelligence based on more diverse cognitive measures339,340. Malanchini, Allegrini and 
colleagues (in a paper I co-author) included a range of cognitive traits (processing speed, 
executive functions, reaction time) and several socioeconomic indicators (neighbourhood 
deprivation, household income) in the model in order to capture noncognitive aspects 
of SES (not only EA) and to increase the differentiation between the NonCog and Cog 
factors341. These updates to the GWAS-by-subtraction result in a latent noncognitive factor 
with a genetic correlation larger than 0.95 with ours. The patterns of correlations with other 
traits were also largely consistent. This suggests the obtained NonCog genetics are virtually 
identical to ours, and these extensions do not meaningfully improve the statistical separation 
of NonCog from cognitive measures. This somewhat surprising result raises the question of 
whether a stricter statistical separation of NonCog from cognitive measures is even possible. 

What are heritable noncognitive aspects of educational attainment? 
Phenotypic annotation analyses in Chapter 2 show consistent genetic associations of 
NonCog with mature personality traits and mature decision-making preferences, with 
lower health-risk behaviours, and with later fertility. These associations highlight that the 
noncognitive component of educational attainment is a multifaceted construct, of generally 
socially desirable characteristics (aside from specific positive associations with psychiatric 
disorders). 

Other uses of our available Cog and NonCog summary statistics help us complete the 
picture. Notably, Abdellaoui342 and colleagues ran genetic correlations of Cog and NonCog 
with numerous traits, cardiovascular and physical health traits among others. Additional to 
the differences we report, the most salient differences between Cog and NonCog genetic 
correlations reported by Abdellaoui et al. confirm that NonCog is particularly positively 
associated with behaviours improving health and related health outcomes: NonCog is less 
associated with exceeding motorway speed than Cog, positively associated with moderate 
and intense physical activity and sleep duration (while Cog is negatively associated), and 
negatively associated with diabetes (which has no association with Cog). 

My conceptualization of NonCog as “everything which affects educational attainment but 
cognitive performance” has the benefit to give access to the overall heritable noncognitive 
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aspects of education attainment. This allows for confirmation of an overall effect before 
investigating specifics. In Chapter 3, I therefore can quantify the overall environmental 
effects of parents on offspring education tagged by NonCog polygenic scores. As these 
indirect genetic effects are non-null, follow-up studies to investigate mediators might be 
of interest. Parental characteristics to prioritize in this follow-up investigation are traits 
highly associated with NonCog genetics. For example, we suggested future research could 
investigate parental depression. Chapter 5’s insignificant effects of parental mental health 
symptoms on their children’s academic achievement yet suggest that indirect genetic effects 
are unlikely to be mediated by parental mental health in Norway. 

When contrasting our findings, with the literature on noncognitive skills30,343–345, it is 
noteworthy that noncognitive skills were sometimes measured (and/or conceptualized) as the 
results of behaviour screening tools developed by psychologists and psychiatrists to identify 
children’s externalizing and internalizing problems346,347. Among these are the Strengths and 
Difficulties Questionnaires (SDQ)348 and the Child Behaviour Checklist (CBCL)349. However, 
a NonCog PGS based on our GWAS was reported to not be associated with measures of 
internalizing behaviour in ALSPAC350,351, measured with SDQ. In adulthood, NonCog PGS 
was not associated with neuroticism in NTR, Texas Twins and WLS cohorts (Chapter 2) 
and the genetic correlation of NonCog with neuroticism, anxiety and worry is potentially 
null339,340. Overall, these results imply that these behaviour screening tools might not be the 
most appropriate measure of heritable noncognitive aspects of educational attainment. 
This is a good example where our GWAS of a latent construct can guide the selection of 
measures of observed noncognitive skills. 

GWAS-BY-SUBTRACTION OF NONCOGNITIVE SKILLS: A FUR-
THER TOOL TO UNDERSTAND MENTAL HEALTH? 
In Chapter 2, I estimated the genetic correlations of cognitive and noncognitive aspects 
of educational attainment with several psychiatric disorders. This analysis revealed that 
NonCog genetic factors are associated with a higher risk for multiple psychiatric disorders: 
anorexia nervosa, OCD, bipolar disorder and schizophrenia. These findings have three key 
implications. First, the positive association of educational attainment with some psychiatric 
disorders seems paradoxical and is mostly driven by its noncognitive component. Second, 
these results support the hypothesis that psychiatric disorders may reflect extreme 
expressions of psychological traits that are also present within the normal range of adaptive 
functioning. Third, investigating the comparison with Cog and NonCog might be crucial in 
understanding the link with education, and in differentiating psychiatric disorders.
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Noncognitive aspects of educational attainment help to understand the 
link between education and mental health
Investigating the role of cognitive and noncognitive skills in mental health is therefore a 
promising future research direction. Fortunately, other researchers already started to tackle 
it by leveraging the tools I developed in Chapter 2. Several studies have looked at additional 
correlations between Cog and NonCog and psychiatric traits337,339,340,352. In Figure 1, I 
combined all available published genetic correlations to date. Most psychopathologies are 
more associated with NonCog than Cog (positively or negatively), with the notable exception 
of anxiety (depending on the GWAS used), autism spectrum disorder, and Alzheimer’s 
disease for which NonCog shows no association.

Psychiatric disorders for which I found a risk-increasing effect of educational attainment 
with Chapter 4’s mendelian randomization (OCD, bipolar disorder, anorexia, autism) are all 
disorders to which NonCog is positively genetically correlated (Figure 1). For example, I found 
no effect of EA on schizophrenia from mendelian randomization approaches in Chapter 4 
and an opposite direction genetic association of Cog and NonCog with schizophrenia in 
Chapter 2. It would be valuable to extend our MR analyses to investigate if this null effect 
of EA on schizophrenia does translate to opposite directional effects of Cog and NonCog. 
Such analysis was done by Thorp et al.339 in the case of Alzheimer’s disease (AD). Using Cog 
and NonCog-associated genetic variants in a multivariate MR design, they show that the 
protective effect of education attainment on AD is exclusively due to the cognitive aspects 
of educational attainment. This finding has important implications for interventions aimed at 
preventing the development of AD through education, suggesting that interventions will not 
have a beneficial impact if they act through noncognitive rather than cognitive skills.
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Figure 3 | Genetic correlations of Cog (blue) and NonCog (orange) with psychiatric disorders and 
related traits. These correlations were performed within 5 published manuscripts152,337,339,340,352 (shape), 
estimates were obtained from available supplementary data (no standard errors are available for Lam et 
al.). Genetic correlations were estimated with LDSC, for specific methodology please refer to the original 
manuscripts. Psychiatric disorders are ranked by alphabetical order and followed by the name of the first 
author of the GWAS used in case of heterogenous results (MVP = Million Veterans program).
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Noncognitive aspects of educational attainment and understanding the 
biology of psychiatric disorders
In Chapter 2, the biological annotation of Cog and NonCog surprisingly reveals that the 
same cell types mediate genetic influences on NonCog and Cog, which suggested that 
biological differentiation of Cog and NonCog would require finer-grained molecular data. 
Lam et al.340 make an interesting step in this direction by using functional annotation of 
meta-loci (LD-independent regions showing similar local genetic correlation profiles across 
psychopathological traits). They found that genes associated both with Cog and psychiatric 
disorders featured genes predominantly involved with neurodevelopmental processes and 
were expressed prenatally, while NonCog meta-loci genes were expressed predominantly in 
early adulthood and adulthood. This is especially interesting in light of our own findings that 
noncognitive skills have a genetic association with personality traits reflecting adaptive adult 
behaviours which typically develop in early adulthood.

Some of these meta-loci uniquely correlate with specific psychiatric disorders and the 
annotation reveals interesting common pathways. For example, one of the meta-loci from 
Cog uniquely negatively associated with anorexia appears characterized by genes implicated 
in metabolism, suggesting metabolism as a common link between low cognition and 
anorexia. These fascinating results show the value of cognitive and noncognitive aspects in 
better understanding the biology of psychiatric disorders, as well as the possible underlying 
biological pathways linking them to educational attainment. 

Using GWAS-by-subtraction to better understand psychopathologies? 
The GWAS-by-subtraction approach we implemented in Genomic-SEM is applied by others 
as a tool to separate the genetic variance of two GWASs. It has been particularly used in 
genetic psychiatry to investigate the specificity of certain psychopathologies. For example, 
Ahangari and colleagues353 separated the genetic factors unique to bipolar disorder and 
depression from the genetic factors shared with schizophrenia via GWAS-by-subtraction. 
Other applications include the investigation of the independent effects of neuroticism 
and depression on cardiovascular diseases354, of wellbeing independent of depression 
disorder355, and the conceptualization of cognitive resilience356. 

INDIRECT GENETIC EFFECTS: WHAT ARE WE REALLY LOOKING 
AT? 
Indirect genetic effects are a powerful way to isolate environmental effects from genetic 
transmission. The work presented in Chapter 3 was the first evaluation of indirect genetic 
effects of noncognitive skills. We were the first to compare three new methods using 
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polygenic scores to study these (in)direct genetic effects, which were gaining popularity 
quickly170,285. 

Importantly how we should interpret indirect genetic effects is still unclear. I tried to 
avoid referring to indirect genetic effects as proof of parental nurture in Chapter 3 and 
I acknowledge that “the parental indirect genetic effects we have identified may capture 
proximal forms of ‘nurture’ […] and/or more distal environmental effects”. However, I do 
conclude on “environmental effects of parents’ noncognitive and cognitive skills on offspring 
educational outcomes”, implying that parental skills are responsible for these indirect genetic 
effects. Nivard et al.357 and Abdellaoui et al.342 pointed out that indirect genetic effects have 
been mostly described as being genetic nurture “nature of nurture”156, which implies a notion 
of nurturing process taking place within the nuclear family, such as parenting. On the other 
hand, others have rather interpreted indirect genetic effects as “dynastic effects”, invoking 
a notion of intergenerational transmission of wealth, more distal, and eventually implicating 
process in the extended family166,168. 

Leveraging the large genotype and family data in the Norwegian MoBa cohort, Nivard and 
collaborators looked at siblings in the parental generation to try to disentangle genetic 
nurture from dynastic effects357. They regressed the child PGS with the average PGS of the 
sibling in the parental generation (between-sibling indirect effect) and the deviation of the 
parental PGS from the parental-siblings average (within-sibling indirect effect). This within-
sibling indirect effect represents the indirect effect that operates through the nuclear family 
environment “genetic nurture”, while the between-sibling indirect effect captures the broader 
“dynastic effects”, capturing aspects of the environment shared in the extended family as 
well as previous generations’ indirect genetic effects. They find that the between-family 
indirect genetic effect is significant while the within-family is not. This strongly suggests 
that the indirect genetic effects we observe should not be interpreted as genetic nurture, 
but as broader dynastic effects. Heritable parental skills might therefore not matter above 
the broader environment inherited from generations. This suggests characteristics tagged 
by NonCog and Cog PGS which environmentally affect their offspring’s education are not 
proximal parental individual characteristics. This further partition of indirect genetic effects 
into “nurture” and “dynastic” aspects is interesting and invites caution in the interpretation 
of indirect genetic effects. 

How the measure of indirect genetic effects might be differently captured by different designs 
is still ongoing research. In Chapter 3, our simulations show how population stratification, 
assortative mating, sibling indirect genetics and prenatal effects are differently accounted 
for by different PGS designs. These simulations could be extended to investigate how the 
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two “nurture” and “dynastic” aspects of indirect genetic effects are captured by the different 
family-based PGS designs, as well as how biases and components affect them. There 
are other methods to estimate indirect genetics effects other than PGS designs, how the 
estimates compare with each other still needs to be further clarified163,182,183.  

A potentially underestimated bias of PGS designs to estimate indirect genetic effects is that 
the construction of these polygenic scores is based on weights calculated from existing 
GWASs, which themselves could be biased by gene-environment correlation, population 
stratification, and assortative mating. This issue was highlighted for the sibling design358, 
but is not yet investigated for other designs. One potential solution for this unknown bias is 
to rely on weights from a GWAS performed within-families. There are currently few available 
within-family GWASs194 that are sufficiently statistically powered, but this is likely to change 
in the next years. Interestingly, Nivard et al. estimate the indirect genetic effects when using 
a PGS based on a within-sibling GWAS of education attainment. They observed that while 
the direct genetic effect does decrease, the indirect genetic effects are basically unchanged. 
This result should be replicated and explained. 

FAMILY-BASED DESIGNS: BIAS DUE TO SIBLING EFFECTS MI-
GHT BE OVERLOOKED
Siblings can affect each other in ways that are complex and might be difficult to observe 
directly. Sibling effects can differ in their direction (positive or negative, cooperative or 
competitive) or on their symmetry (siblings affecting each other concurrently or only one 
sibling influencing another)359,360, which can depend on additional sibling characteristics such 
as birth order or gender361,362. Moreover, the sibling effects do not have to originate from the 
siblings themselves, but can also result from parental behaviour, for example compensating 
or amplifying differences between siblings363,364. In part due to their complexity, sibling 
interactions are often ignored despite their potential confounding effects in all types of 
family-based designs.

Sibling effects might result in a violation of the Stable Unit Treatment Value Assumption 
(SUTVA), which assumes the exposure of one sibling to a risk factor does not influence the 
unexposed sibling365–367. In the context of Chapter 4 for example, if the mental health of one 
sibling affects their education, which in turn affects the other sibling, this assumption does 
not hold. Sibling effects (including sibling indirect genetic effects) might therefore lead to 
important bias in family-based (PGS) designs, when considering causal effects. In Chapter 
3, our simulations showed that the presence of sibling effects will bias estimates of parental 
indirect genetic effects with all three designs, and more strongly so in the case of within-
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sibling PGS design. I therefore investigated the presence of sibling indirect genetics effects 
with three different methods in NTR and UK Biobank. We conclude that there are no sibling 
indirect effects of Cog and NonCog PGS on education in our samples. However, using 
different designs and a PGS of educational attainment in UK Biobank, Howe et al. found 
small sibling effects184, contradicting our conclusion. 

Veller and Coop emphasize that sibling interactions are a concern for the reliability of 
another key research design: within-sibling GWASs368. Within-sibling GWAS have been 
widely described as the most promising avenue to improve GWAS signals369,370. To mitigate 
potential bias arising from sibling effects, genome-wide associations should also be 
triangulated across several designs which would be affected differently, relying on adoptees 
or parent-offspring trios for example as we highlight in Chapter 3. 

INTERNAL VALIDITY IS NOT ENOUGH: A WORD OF CAUTION ON 
EXTERNAL VALIDITY 
Here I want to discuss the challenges of generalization of genetically-informed studies 
(external validity). These challenges are not unique to my research but deserve to be 
mentioned as resolving them is one of the goals for the next decade of (genetically-informed) 
epidemiological research.

When working with genomic data (Chapter 2, Chapter 3, and MR in Chapter 4), one key 
limitation of my work is the restriction to individuals with European ancestry. This choice 
was made for two reasons: most of the available genomic data are from individuals of 
European ancestry (representing 88% of all discoveries GWASs371), and genomic studies are 
not portable across populations due to population stratification369. As a result, it is difficult 
to conclude anything on the genetic architecture of noncognitive aspects of educational 
attainment and the causal effect of EA and MH as estimated with MR for individuals of 
non-European ancestry. Additionally, this restriction of my GWAS of NonCog (due to the 
European ancestry of the EA and cognitive performance GWASs it is based on) is allowing 
polygenic scores of NonCog to be estimated accurately with current tools only for European 
ancestries individuals, which perpetuate the exclusion of non-European ancestry individuals 
from these further studies. There is an urgent need for more diversity in genetic studies, 
solutions have been suggested elsewhere372–374. 

Asides from the lack of diversity in ancestry, all cohorts included in my four chapters are 
from Western, Educated, Industrialized, Rich, and Democratic (WEIRD) societies375 and self-
selection of participants into these cohorts may further reduce the representativity of the 
cohorts. Selection bias might particularly be a concern for the traits studied, as individuals 
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with lower education and worse mental health are less likely to participate in studies325,376. 
Selection bias might moreover lead to collider bias and induce spurious associations265. 
Correction for the non-representativity of these cohorts can be partially done, for example 
weights for correcting the important volunteer bias of UK Biobank have recently been made 
available recently263,264,377. Similar efforts should be undertaken for all large cohorts on which 
most of the current genetically-informed studies are taking place. Crucially, methods based 
on family or using genetic data might induce a stronger selection, as multiple family members 
are required to volunteer, such is the case in Chapter 5. Using national registry data as I have 
done in Chapter 4 solves many issues of data representativity, but it is still important to be 
aware of decisions around data collection and further study sample selection334,378. In my case 
for example, only selecting siblings might exclude some families, e.g. childless individuals 
and individuals who immigrated to the Netherlands whose siblings did not. Additionally, 
interpretation of findings in national registries still needs to be done in accordance with the 
measurement used: if a subset of the population is unlikely to be diagnosed (e.g. preferential 
diagnosis, inequalities in healthcare access, in health conceptualization379), my results will 
not pertain to this part of the Dutch population. 

In sum, while the use of large cohorts in well-designed genetically-informed studies can lead 
to significant advancements, addressing the generalizability of the studies is a challenge 
and will be crucial to uncover actual mechanisms behind the aetiology and transmission of 
education and mental health. Together these examples show the value of triangulating not 
only across statistical designs but also across samples and measures.

AN EXCITING RESEARCH AVENUE
Family-based designs, genomic data, and their integration give us resources and tools 
to disentangle genetic and environmental transmissions and enhance causal inference. 
New methods are implemented to parse out genetic effects, environmental effects, 
gene-environment correlations and identify interactions. This fast-paced methodological 
development is opening opportunities to extend and refine designs used to investigate 
intergenerational transmission.

These methodological advancements go hand in hand with the increased availability of 
large longitudinal (familial) datasets with diverse sociological, economic, psychological, 
and biological measures, that are essential for such research designs. The opening of 
state biobanks, population registries, diverse cohorts, etc., offers exciting opportunities. 
Furthermore, the secure linkage of different sources of data and the success of large-scale 
collaborations are facilitated by (inter)national initiatives such as ODISSEI380 or Tryggve381.
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The interdisciplinary research resulting from these developments offers new avenues for 
scientific progress. I have been privileged to be part of these thriving developments with this 
doctoral work. To paraphrase McAdams et al.10: It is an exciting time for research and I look 
forward to new developments yet to come. 
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Education and mental health shape individuals’ 
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the relationship between these two domains and 
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informed designs to 
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transmissions.


