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CHAPTER  1 
INTRODUCTION
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Imputation in genetics studies: concept and application
During the past decade genetic studies, in particular Genome Wide Association Studies 
(GWAS)[1], grew from small studies to large international collaborations, aiming to 
detect new genetic loci associated with phenotype of interest. Such collaborations 
require pulling data together in case of mega-analysis or puling summary statistics of 
independently performed analysis together in case of meta-analysis. Data usually comes 
from different cohorts and are often genotyped on different platforms, which may have 
overlapping Single Nucleotide Polymorphisms (SNPs) between each other to a different 
extent. In genetics, imputation is a predictive technique which allows to assign (impute) 
unobserved or missing genotypes based on an individuals’ haplotype and on a reference 
set, representative of the population a person comes from. Imputation is often used 
to overcome the issue of missing genotypic data [2-4]. Imputation increases power to 
detect new genetic loci, and allows for cohorts combination in GWAS [5]. To achieve high 
quality imputation results, however, several steps should be performed, including quality 
control (QC) before imputation, ancestry-differences inference, appropriate reference 
set selection and stringent post-imputation QC. Several imputation software packages 
exist such as IMPUTE [6] and MACH [7]. Each package provides an imputation quality 
metric, which aims to quantify the performance of imputation for particular SNP. Poorly 
performed imputation may result in a larger number of SNPs, which will fail the post 
imputation QC and reduce the SNP coverage in GWAS. Imputed genotypes are usually 
expressed as probabilities of observing one of the three genotypes or as dosages, which 
reflects the expected allele counts and therefore introduce uncertainty. Imputation is 
largely dependent on various parameters, which may affect imputation accuracy, and 
have to be taken into consideration prior to imputation or even prior to genotyping of 
the samples [5, 8, 9].

Choosing a reference set for imputation. Genome of the Netherlands Project (GoNL)
The quality of imputation procedures largely relies on the reference set that is 
representative of a population, from which a person is drawn [10]. This is due to the 
biological mechanism upon which imputation algorithms are based. All SNPs are not 
independent from each other and often correlated, which means they are in Linkage 
Disequilibrium (LD) and are inherited together. The inference of missing genotypes is 
possible if a block of correlated SNPs (haplotype), from which the SNPs are missing, is 
known. Initially, imputation was performed in samples consisting of related individuals, 
where grandparents and parents were genotyped with higher resolution then children 
[11]. Based on identity by descent (IBD) information shared between relatives missing 
genotype data in children were inferred from their closest ancestors. In this way the 
grandparents and parents formed a reference set for children. The idea was that relatives 
shared long stretches of their genome with each other, which are inherited together 
(haplotypes). When imputation is carried out for unrelated individuals, genotypes 
from their relatives are not available and therefore the reference set with data of other 
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individuals, that are the closest to the sample with respect to their ethnic background, is 
required. Thus, the European population is usually imputed against HapMap [12, 13] or 
1000G [14, 15] CEU reference panels. HapMap is the first project aimed to characterize 
the variation in the human genome. The 1,184 individuals from 11 populations were 
genotyped for 1.6 million SNPs. 1000G is the next project, where the genome of 1,092 
individuals from 14 populations were sequenced and 38 millions SNPs were provided. 
Using a reference set from a population closest to the dataset, with respect to their 
genetic background, ensures that haplotypes are representative of the individuals in the 
study and occur at the same frequency. 
	 In the Genome of the Netherlands project (GoNL) a group of 250 trio’s of two 
parents and their offspring were whole genome sequenced with an average 12x depth 
to study genetic variations within the Dutch population [16]. The trios were selected 
to represent the genetic variation across all provinces in the Netherlands and several 
large biobanks from the Netherlands, including the Netherlands Twin Register, which 
collaborates in Biobanking and BioMolecular resources Research Infrastructure (BBMRI) 
contributed DNA samples for this purpose. The GoNL project allows constructing a Dutch 
population reference set, which can be used to impute Dutch GWAS samples as well 
as explore imputation quality, particularly for Dutch specific variants. If a reference set 
is closer to the dataset with respect to the most common recent ancestor, unrelated 
individuals will share larger parts of the genome between each other and longer reference 
haplotypes will be available if individuals belong to the same ethnic group. Moreover, 
some alleles may be population specific and represented at different frequencies in 
different populations. The European population is diverse and represented by changes in 
alleles frequencies from North to South and from East to West [17]. If data are imputed 
based on European haplotypes and some SNPs appear at low frequency in a CEU panel, 
they will be poorly imputed due to weak LD with neighbouring SNPs and subsequently 
filtered out in GWAS. In contrast, imputation based on a population-specific dataset may 
result in better quality of imputation of such SNPs [18]. 

Imputation: beyond GWAS
In genetic studies, imputation of genotypes allows for the pooling results of different 
studies together for meta-analysis, ensuring that all studies are imputed to the same 
SNPs. In GWAS each SNP is examined individually, for example by regression analyses, 
and the variation in all significant SNPs together usually explains a small to medium 
proportion of variation in the phenotype. To quantify the contribution of all SNPs, that 
do not pass the stringent threshold for significance in GWAS studies, to the phenotype 
of interest, another approach was developed. Genomic-relatedness-matrix restricted 
maximum likelihood (GREML) [19] methods, implemented in software such as GCTA 
[20, 21], allows estimation of the SNP-heritability, that is the variation in the phenotype 
accounted for by all SNPs, genotyped and imputed. GREML uses a Genomic Relatedness 
Matrix (GRM), where the relationships between individuals are inferred based on SNPs 
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rather than on known pedigree structures. The raw genotype data are required to 
calculate the GRM between individuals. The raw data from multiple cohorts may be 
required in order to gain power to estimate the SNP-heritability. If data were genotyped 
on different platforms, what SNP overlap is required to ensure that relationships between 
individuals are estimated correctly? Will the combination of data result in a bias of SNP-
heritability estimates? These questions are explored in this thesis.

Population structure and imputation
A population is not homogeneous across continents or even across a single country. 
Population subgroups exist within a population and differences in their allele frequencies 
correlates with the change in geographical coordinates (population stratification) due to 
ancestry differences [22, 23]. Importantly, such population stratification can confound 
results of both GWA and GREML studies. Principal Component Analysis (PCA) is typically 
used to calculate Principal Components (PCs) and correct for the systematic difference in 
allele frequencies due to ancestry [24]. Usually PCA is performed before the imputation 
and PCs are further used in analysis of imputed data as covariates. 

Heritability: concept and methods
Heritability is the ratio of genetic variation over the total phenotypic variation and reflects 
the degree of genetic determination [25]. Broad-sense heritability is the proportion of 
all additive and non-additive (dominance, interaction, epistasis) genetic variation in the 
phenotypic variation. Narrow-sense heritability is the proportion of additive genetic 
factors variation only. In this thesis, the heritability, estimated using twin and SNPs 
data, was considered. Before the human genome was decoded and information about 
allele frequency variation became available, twin studies were the most commonly 
used method to estimate the heritability [26]. Monozygotic twins (MZs) are genetically 
(almost) identical and dizygotic twins (DZs) share on average half of their segregating 
genes. Therefore, the correlations between pairs of MZs and DZs can be compared and 
variation of the phenotype can be decomposed into the variation in 1) additive genetic 
and 2) common environmental or dominant genetic and 3) unique environmental factors 
(which also includes error). Proportion of genetic factors will comprise twin-heritability 
[27]. If genotype data are available then SNP-heritability can be estimated directly from 
SNPs, available on a current genotyping platform or imputed, using the GREML method 
introduced above. If genotype data are not available, but the meta-analysis summary 
statistics are, the LD score regression approach is the alternative method to estimate 
the SNP-heritability [28]. Here, the square test statistic, obtained for a SNP in a GWAS, 
is regressed on the LD score, which is the sum of all LD between a particular SNP and 
its neighbouring SNPs. Under a polygenic model many SNPs contribute to variation 
in a trait. Therefore a SNP in strong LD with its neighbours has a higher likelihood of 
tagging a causal SNP than a SNP in weak LD. A SNP with a higher LD score is expected 
to have on average a higher test statistic, while population stratification is expected, on 



11

average, to inflate the test statistic for all SNPs equally. Therefore, intercept in the LD 
score regression will reflect the genome wide increase in test statistics due to population 
stratification, whereas the slope will reflect the increase in test statistics due to true 
polygenic effects on the trait. Both GREML and LD score regression assume the additive 
model and are often compared to the twin-heritability estimates.

Shared and unique aetiology of human complex traits
All methods discussed above allow for estimation of heritability and also, for bivariate 
phenotypes, allow estimation of genetic correlations between phenotypes, i.e. the 
shared genetic background. This can be useful, if two phenotypes are co-morbid and 
it is important to know to which extent their co-morbidity is accounted for by genetic 
factors. The shared genetic factors may unravel new biological pathways that are 
relevant for both phenotypes. Genetic correlation within domains of psychological or 
disease phenotypes are expected, however, the co-morbidity between disease and 
psychological phenotypes are of particular interest. For example, epidemiological 
studies established the association between Type 2 Diabetes (T2D), insulin resistance 
and Major Depressive Disorder (MDD) [29-31], but their genetic architecture has not 
been studied within the context of shared biological basis. Another example is Subjective 
Wellbeing, which has been consistently reported to correlate with personality traits [32, 
33] and requires further exploration using genome wide data. It is also possible that 
the same phenotype can be represented by shared and unique parts, when assessed 
by multiple raters. For example, in childhood psychopathology phenotypes are often 
assessed by different raters, such as parents, teachers or peers. These ratings usually 
correlate to a certain extent (genetically and phenotypically), but not perfectly, implying 
the presence of a shared part of the phenotype assessed by multiple raters, but also 
unique one, observed by different raters exclusively, or rater bias [34-36]. Therefore, 
the genetic factors may contribute to the variation in the shared and unique parts of 
each phenotype. The consequence is that in molecular studies different ratings, such 
as maternal and paternal, might be represented by the same or different loci in the 
genome. In this thesis we explored the genetic correlation between various phenotypes 
aiming to quantify their shared and unique aetiology. 

This thesis
Chapter 2 explores the GoNL reference set as the basis to resolve platform stratification 
between cohorts, allowing a combination of the two Dutch cohorts genotyped on 
different platforms with little SNP overlap. In Chapter 2, data from two Dutch cohorts, 
the Netherlands Twin Register (NTR) and Generation R (GENR), were combined using 
imputation with the GoNL reference set and three approaches to build a Genetic 
Relatedness Matrix (GRM) were compared. We evaluated the performance of each 
approach, estimating the SNP-heritability of childhood height. In Chapter 3 SNP-
heritabilities of the child behavior problems were estimated based on the combined 



12

cross-platform imputed data, which were described in Chapter 2. We looked at 
various phenotypes in the childhood psychopathology domains, namely Attention 
Deficit and Hyperactivity problems, Internalizing and Externalizing behavior, Pervasive 
Developmental Problems and non-verbal Cognition. Most of the phenotypes were rated 
by mothers, and Attention Problems and Externalizing were also rated by teachers. 
Data combination allowed for an increased sample size and thus power to estimate 
SNP-heritabilities. In Chapter 4, bivariate analysis of twin data and exploration of rater 
effects on heritability estimates were performed as a follow-up of SNP-heritability 
results, described in Chapter 3. Based on this information, future molecular studies 
may analyze different ratings separately or in combination. A comprehensive set of 
behavioral and emotional problems was analyzed in 7-year old twins whose fathers and 
mothers rated them on all CBCL 6-18 empirical scales, including Internalizing (Anxious/
Depressed, Withdrawn/Depressed, Somatic Complaints), Externalizing (Rule-Breaking 
and Aggressive Behaviors), as well as Social, Thought, Attention Problems, Dysregulation 
Profile and Total Problems scales. Chapter 5 analyzed a dataset from adults, which was 
cross-platform imputed, as described in Chapter 2. NTR has collected genotype data 
across different time points and various genotyping platforms and have been cross-
platform imputed against GoNL reference to allow the combination of the data. With 
increased sample and using recent method to estimate SNP-heritability, including 
family members [37], we explored the genetic correlations between Subjective Well-
being (SWB) and personality traits, such as Neuroticism (NEU) and Extraversion (EXT). In 
Chapter 6, we analyzed MAGIC consortia summary statistics and computed homeostatic 
model assessment of β-cell function (HOMA-B) and Insulin resistance (HOMA-IR) from 
Fasting Insulin (FI) and Fasting Glucose (FG) meta-analyses results. Here, we employed 
the newly developed Genome Wide Inferred Statistics (GWIS) method [38], which allows 
to analytically infer the statistics of complex non-linear functions (i.e. HOMA) from its 
compounds (i.e. FI and FG). We compared effects of HOMA-IR and HOMA-B significant 
SNPs with their effect on FI and FG. Finally, we predicted the MDD status in Chapter 7 by 
computing the Polygenic Risk Score based on Fasting Glucose, Fasting Insulin, HOMA-B 
and HOMA-IR meta-analysis summary statistics. 
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CHAPTER  2 
ESTIMATION OF GENETIC RELATIONSHIPS BETWEEN INDIVIDUALS 

ACROSS COHORTS AND PLATFORMS: APPLICATION TO 
CHILDHOOD HEIGHT

 

This chapter is based on: 
Iryna O. Fedko, Jouke-Jan Hottenga, Carolina Medina-Gomez, Irene Pappa, Catharina E.M. 
van Beijsterveldt, Erik. A. Ehli, Gareth E. Davies, Fernando Rivadeneira, Henning Tiemeier, 
Morris A. Swertz, Christel M. Middeldorp, Meike Bartels, and Dorret I. Boomsma. (2015). 
Estimation of Genetic Relationships Between Individuals Across Cohorts and Platforms: 
Application to Childhood Height. Behavior Genetics, 45(5), 514-528.
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Abstract 
Combining genotype data across cohorts increases power to estimate the heritability 
due to common SNPs, based on analyzing a Genetic Relationship Matrix. However, the 
combination of SNP data across multiple cohorts may lead to stratification, when for 
example, different genotyping platforms are used. In the current study, we address issues 
of combining SNP data from different cohorts, the Netherlands Twin Register (NTR) and 
the Generation R (GENR) study. Both cohorts include children of Northern European 
Dutch background (n=3,102 + 2,826 respectively) who were genotyped on different 
platforms. We explore imputation and phasing as a tool and compare three GRM-
building strategies, when data from two cohorts are: 1) just combined, 2) pre-combined 
and cross-platform imputed and 3) cross-platform imputed and post-combined. We 
tested these three strategies with data on childhood height for unrelated individuals 
(n = 3,124, average age 6.7 years) to explore their effect on SNP-heritability estimates 
and compare results to those obtained from the independent studies. All combination 
strategies resulted in SNP-heritability estimates with a standard error smaller than those 
of the independent studies. We did not observe significant differences in estimates of 
SNP-heritability based on various cross-platform imputed GRMs. SNP-heritability of 
childhood height was on average estimated as 0.50 (SE=0.10). Introducing a cohort as a 
covariate resulted in ≈2% drop. PCs adjustment resulted in SNP-heritability estimates of 
about 0.39 (SE = 0.11). Strikingly, we did not find significant difference between cross-
platform imputed and combined GRMs. All estimates were significant regardless of the 
use of PCs adjustment. Based on these analyses, we conclude that imputation with a 
reference set helps to increase power to estimate SNP-heritability by combining cohorts 
of the same ethnicity genotyped on different platforms. However, important factors 
should be taken into account such as remaining cohort stratification after imputation 
and /or phenotypic heterogeneity between and within cohorts. Whether one should use 
imputation or just combine the genotype data depends on the number of overlapping 
SNPs in relation to the total number of genotyped SNPs for both cohorts, and their ability 
to tag all the genetic variance related to the specific trait of interest.
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Introduction
Before embarking on Genome Wide Association (GWA) projects, the heritability of 
complex traits is often assessed in twin and family studies, or, more recently, assessed 
based on common single nucleotide polymorphisms (SNPs). Such SNP-based heritability 
can be estimated when genetic similarities between distantly related individuals 
are summarized in a genetic relatedness matrix (GRM), which then is used to predict 
their phenotype similarity [39-42]. This technique, known as genomic-relatedness-
matrix restricted maximum likelihood [19] (GREML), is implemented, for example, in 
the software package GCTA [20] (Genome-wide Complex Trait Analysis). Estimating 
the heritability based on measured SNPs requires the availability of raw genotype 
and phenotype data. Therefore, these analyses are usually performed in one, or a few 
separate cohorts that contribute to a meta-analysis GWAS. However, in single studies, 
these SNP-based heritability estimates tend to have large standard errors due to small 
cohorts sample sizes. The large standard errors also result in variation in estimates 
between different studies for the same trait. 
	 Here we investigated the possibility of combining individual-level genotype 
data across cohorts in order to obtain a larger and better GRM. A cross-cohort GRM 
will allow inclusion of all possible combinations of pairs of individuals, both within and 
between cohorts, and estimation of the genetic variance explained by common variants 
(SNP heritability) will likely improve. However, this requires sharing and pooling of raw 
phenotype and genotype data from multiple cohorts. For genotype data this likely means 
that data of multiple genotyping platforms need to be combined, which might lead to 
biased results due to “platform stratification”, when relationships between individuals of 
different cohorts are estimated based on overlapping SNPs only. In case of GWA meta-
analyses, each individual cohort performs its own imputation using a reference set (e.g. 
HapMap or 1000 Genome) and statistical analysis prior to the combination of results. 
This way, the confounding effects of genotyping platforms are avoided. SNPs showing 
platform stratification effects will be detected with heterogeneity testing and meta-
analysis QC. With GREML analyses, the genotyped data of cohorts need to be combined 
at the SNP level. If different genotype platforms have been used for genotyping, a cross-
platform imputation is required in order to combine genotypes from several cohorts and 
ensure that all individuals have the same SNP information to estimate the relationship 
between them.
	 In this paper, we compared approaches that combine autosomal genotype data 
from different cohorts and genotype platforms into a single GRM. We aim to address 
and resolve problems of stratification when cohorts differ in genotyping strategies 
and phenotype characteristics. Therefore, this study has two aims: 1) to allow the 
combination of genetic data from two cohorts, where participants are genotyped on 
different platforms with little overlap and 2) to explore the effect of three different 
strategies of combining such data on SNP-heritability estimates, when two cohorts are 
either cross-platform imputed (post- or pre-combined) or just combined (Figure 1). 
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Figure 1: Strategies of combing two cohorts genotyped on different platforms, when two 
cohorts are either: 1) combined or 2) cross-platform imputed.
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We based our analysis on genotype data from two Dutch cohorts, the Netherlands Twin 
Register [43, 44] (NTR) and the Generation R study (GENR) [45, 46]. NTR recruits twin 
families across the Netherlands, whereas GENR targets a birth cohort from Rotterdam. 
The cohorts have genotyped their participants on different Affymetrix and Illumina 
platforms, respectively. We illustrate the imputation approaches and tested their 
performance using Principal Components Analysis (PCA) to check for stratification due 
to genotyping platform. Subsequently, we demonstrated the differences of using cross-
platform imputation versus just combining datasets for childhood height. 
	 The methods, considered to pre-combine and cross-platform impute the NTR 
and GENR genotype data, include combining both genotype data sets at the SNP level 
and then phasing (i.e. estimating haplotypes) the combined data as a single dataset. 
We phase combined data without - and with a reference imputation set using MaCH 
[7] and MaCH-Admix [47] and inherently impute. When a reference set was used, the 
data were imputed with reference to data from the Genome of the Netherlands (GoNL) 
project [16]. The GoNL imputation reference set is a resource of sequenced data from 
the Netherlands, where a group of 250 trio’s from all Dutch provinces was sequenced 
at a depth of ~12-13X. We chose this reference panel, because this set is the closest 
to both cohorts with respect to their genetic background [48]. Our results show that 
phasing without a reference set is not able to eliminate differences between platforms. 
However, phasing together with a reference set helps to bring the two cohorts together 
with minimum platform stratification left. Strict imputation quality control (pre- and 
post- QC) as well as GCTA specific quality control is required to eliminate remaining 
platform stratification in a cross-platform imputed dataset.
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Materials and Methods 
Sample
Two population based cohorts, comprised of Dutch children, supplied genotype 
information and data on height [43, 46, 49, 50]. Genotype data were available for 3,102 
children from the NTR and 2,826 children from GENR (Table 1). 

Table 1 Cohort description
Sample N Sex N families N

independent 
observations

Males Females

GENR 2826 1450 1376 171 2508a
NTR 3102 1381 1721 1709 1644a

aBased on the list of distantly related individuals, which were selected using GCTA cut-off 0.025 independently 
in each cohort.

All children were of Northwestern European Dutch background as was checked 
by principal components analysis (PCA). Among them, 2,226 subjects had height 
measurements in GENR and 2,072 in NTR (Table 2, Figure 2). 

Figure 2: Distributions of height across cohorts after correction for age and sex. Figure 
2a shows the distribution of height for all individuals. Figure 2b shows the distribution of 
height for distantly related individuals.

a  b

 
Table 2 Height measurements of all individuals 
Sample N Sex Age

(mean, SD)
Height, sm
(mean, SD)Males Females

GENR 2226 1124 
(50.5%)

1102 
(49.5%)

6 (0.4) 119.6 (5.6)

NTR 2072 948 (45.8%) 1124 
(54.2%)

7.7 (1.4) 129.6 (9.8)
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After applying a cut-off of 0.025 for genetic relatedness recommended in GREML 
analyses [21], there were 1,134 and 1,990 individuals left in NTR and GENR, respectively, 
with height measurements. The NTR cohort comprised of 528 males and 606 females 
at ages 4.6 - 11 years old. The GENR cohort comprised of 998 males and 992 females 
at ages 4.8 - 9 years old (Table 3, Figure 2). All parents gave informed consent. Study 
protocols were approved by Medical Ethics Committee of the VU University Medical 
Center, Amsterdam for NTR and by Medical Ethical Committee of the Erasmus Medical 
Centre, Rotterdam for GENR.

Table 3 Height measurements of distantly related individuals
Sample N Sex Age

(mean, SD)
Height, sm
(mean, SD)Males Females

GENR 1990 998 (50.2%) 992 (49.8%) 6.1 (0.4) 119.6 (5.6)
NTR 1134 528 (46.6%) 606 (53.4%) 7.7 (1.4) 129.7 (9.8)
GENR + NTR 3124 1526 (48.8%) 1598 (51.2%) 6.7 (1.2) 123.2 (8.8)

Within sample pre-imputation SNP QC 
The 3,107 subjects in the NTR cohort were genotyped for 692,694 SNPs on Affymetrix 
6.0 chip [51]. The 2,830 subjects in the GENR cohort were genotyped for 489,878 SNPs 
on two Illumina chips (660W, 610K) [52]. Outliers were excluded from the GENR sample 
(4 individuals) and from the NTR sample (5 individuals) based on visual inspection of PC1 
vs. PC2 plots prior to analysis. As a result, individuals cluster within -0.06 > PC1 < 0.05 and 
-0.05 > PC2 < 0.07 intervals in GENR and -0.06 > PC1 < 0.06 and -0.05 > PC2 < 0.04 intervals 
in NTR. For GENR, the overlapping SNPs between the two platforms were used as input 
for imputation as reported before [53]. Standard quality control steps were applied to 
the separate data sets using Plink 1.07 [54]. A sample call rate > 0.975, and a SNP call 
rate > 0.950 were applied for both cohorts. SNPs with minor allele frequency (MAF) < 
0.001 and SNPs with Hardy-Weinberg equilibrium (HWE) p-value < 10⁻⁵ were excluded. 
Individuals were checked for excess heterozygosity and subjects with an inbreeding 
coefficient, as estimated in Plink, F <= -0.05 or F > 0.05, were excluded. Identical by state 
(IBS), identical by Descent (IBD) and gender mismatch were checked and samples not 
fitting the expected relations and/or gender were removed. 
	 The next quality control step was a cross-check of alleles and SNP positions between 
the two cohorts as well as the GoNL reference set v.4 (build 37). SNPs that did not match by 
strand were flipped to the reference set strand. SNPs with discordant alleles or those that 
were not present in the reference set were excluded. Genotyped data from the NTR and 
GENR cohorts have 120,568 overlapping autosomal SNPs, of which 255 (0.2%) SNPs were 
significantly different in frequency across cohorts (p-value < 10⁻⁵, one-sided test). Pairwise 
comparison between the SNPs overlapping in NTR and GoNL, in GENR and GoNL and 
in NTR and GENR combined identified 4,001 SNPs, which were significantly different in 
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allele frequency (p-value < 10⁻⁵, 1,969 between NTR and reference set, 2,012 between 
GENR and reference set and 255 between NTR and GENR combined). All SNPs differing 
in allele frequency were removed. The resulting set of SNPs was either present on both 
platforms and in the reference set, or in a single platform and in the reference set. In 
order to minimize the amount of imputation stratification between samples, we selected 
the SNPs from the GoNL reference set that were present either on one or both genotype 
platforms (Illumina or Affymetrix, N=989,757) using VCFtools [55]. 
	 After QC was performed there were 3,102 NTR (1,381 males, 1,721 females) 
and 2,826 GENR (1,450 males, 1,376 females) individuals left. These individuals were 
genotyped for 641,554 and 468,259 SNPs in NTR and GENR, respectively. The two data 
sets were merged in Plink for pre-combined imputation.

Imputation strategies
First explorations of pre-combined cross-platform imputation approaches were done for 
chromosome 22. Genotype data comprising 13,712 SNPs were extracted, phased and 
imputed using the three methods described below, with the aim to determine the one 
to apply to the autosomal genome. The first approach uses MaCH phasing (selected 
because GCTA can read MaCH dosage files) and inherently also imputation of the missing 
genotypes. No reference set was involved. The second approach uses MaCH phasing, 
but with the GoNL reference set. Here, the haplotypes are predicted and genotypes 
imputed based on the GoNL reference set, which contains the full SNP haplotypes 
representing the Dutch population regardless of the platform. The third approach uses 
MaCH-Admix. This approach uses a new piecewise reference selection method [47] with 
GoNL as a reference set. This method, which is implemented in MaCH-Admix, breaks a 
genomic region into small fragments and searches for haplotypes in the reference set for 
matches. In all three approaches, we imputed missing genotypes as dosage scores. We 
have not considered only using the SNPs that were present on both platforms, because 
the final data set would comprise of only ≈120K SNPs after a genome-wide QC.
	 After an imputation approach for the pre-combined dataset was chosen, we 
evaluated the effect of the two possible scenarios of imputation on platform stratification 
and SNP-heritability estimates. In the first case, we pre-combined datasets and then 
imputed using a chosen approach, whereas in the second case we imputed datasets 
independently using the same software and reference set as for the pre-combined 
dataset and post-combined. 

Post-imputation SNP QC
Post imputation QC aimed to examine the stratification between NTR and GENR due to 
genotyping platform after imputation on chromosome 22 first and on the autosomal 
genome afterwards. A comparison between all imputation approaches was done based 
on the imputation quality metric (R²) calculated by the MaCH tools. The R² measures 
imputation quality and ranges between 0 and 1 with higher values indicating better 
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imputation accuracy, hence better genotype prediction. We used R² to inspect whether 
filtering on this measure helps to reduce platform stratification. Subsequently, a case-
control analysis of the imputed sample with cohort as the phenotype was done using 
the Mach2dat software [7] for dosages and Plink for best-guess to check if there were 
differences in allele frequencies after imputation. Note, that in order to pool two 
independently imputed samples we had to: 1) convert dosage files to best-guess and 2) 
merge using Plink. The latter should be taken into account when comparing N of SNPs 
different in frequency between cohorts based on dosages and best-guess. The threshold 
for significance chosen was a genome-wide suggestive p-value of 10⁻⁵. 

Genetic pairwise relationships estimation
Genetic relationship matrices (GRMs) were built from pre-combined cross-platform 
imputed dosages of the three approaches for chromosome 22 using GCTA. Different 
SNP filter criteria can be used to build these GRMs, which might affect the results of 
the outcome. Therefore, we employed the criteria from three filters to estimate the 
matrices resulting in 9 GRMs. These criteria were: 1) without any filtering options on 
SNPs, 2) filtering on the imputation quality of R² > 0.8, leaving only the high quality 
imputed SNPs and 3) filtering with R² > 0.8 and MAF > 0.01, additionally excluding 
alleles with low minor allele frequency. To estimate the effects of stratification by SNP 
platforms after imputation we examined the GRMs using principal components analysis 
(PCA) in GCTA tool. We performed PCA on data from unrelated individuals. As PCs can be 
confounded by inversions of long LD regions of chromosomes, which are observed in the 
Dutch population [17, 56], we pruned GoNL for LD with standard Plink options (--indep 
50 5 2), excluded 24 long LD regions [23] and repeated PCA for each GRM selecting GoNL 
pruned set of SNPs. The method that showed the least stratification due to genotyping 
platform and higher imputation quality was chosen for the pre-combined cross-platform 
imputation of the autosomal genome. To explore the effect of cross-platform imputed 
pre-combined, cross-platform imputed post-combined and combined GRMs on SNP-
heritability estimate of childhood height, we built: 1) a GRM with MAF > 0.01 and R² > 0.8 
filters from the total cross-platform imputed data set; 2) a GRM with MAF > 0.01 and R² > 0.8 
filters from NTR and GENR cohorts imputed independently; 3) a GRM with a MAF > 0.01 from 
QC-ed NTR and GENR genotypes combined, merged in Plink. Additionally, to check the effect 
of QC, we built the GRM with MAF > 0.01 and R² > 0.8 filters from the total cross-platform 
imputed dataset excluding SNPs significantly different in frequency between cohorts after 
imputation. To distinguish between combination approaches throughout the paper 
we will refer to these GRMs as “imputed”, “imputed independently”, “combined” and 
“imputed clean”. Finally, SNP-heritability of height was estimated in NTR and GENR, after 
building two separate GRMs with MAF > 0.01 filter from QC-ed NTR and GENR samples. 
We performed PCA for each of the autosomal GRM based on GoNL pruned set of SNPs 
and included these PCs in the analysis of height.
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Statistical analysis
Estimation of variance due to genetic effect of childhood height
Using GCTA, we estimated SNP-heritability of height using GRMs based on the 
autosomal genome. Imputation, SNP quality control, as well as employing the different 
imputation approaches, all determine the GRM relatedness of individuals. Therefore, 
for fair comparison between different ways of combining the genotype data in a GRM, 
we used the same unrelated individuals for each analysis. These were selected using 
the relatedness cut-off of 0.025 for individuals with height measurements from the 
combined and imputed GRMs (N = 3,124). The difference in relatedness selection 
between the combined and imputed GRM was 22 individuals, which were excluded 
from the analyses. For the independent study analyses, however, we selected unrelated 
individuals, as one would have based on the GRM of the single study alone, using the 
same GRM cut-off of 0.025. Hence, if there are samples with family relations between 
NTR and GENR studies, they were still included in these separate study analyses.
	 In the SNP-heritability analyses, age and sex were included as covariates. To 
test whether there is still a platform effect present after imputation, we included cohort 
as an extra covariate in addition to sex and age and compared results of both analyses. 
To detect and account for possible genetic stratification in relation to height [23], we 
included the first 10 PCs obtained from each GRM for unrelated individuals excluding 
long LD regions. Finally, we ran association analysis of height for imputed, combined, 
NTR and GENR datasets with age and sex as covariates for unrelated individuals. In 
addition, we built QQ-plots to check for possible inflation of test statistics before and 
after pooling cohorts together without using 10 PCs and cohort as covariates. 

Results
Imputation method
Three imputation approaches, aimed to pre-combine and cross-platform impute two 
cohorts, were tested on chromosome 22: the first was MaCH without a reference set 
(i.e. the two datasets were only phased and imputed against each other), the second 
was MaCH with the GoNL reference set and the third was MaCH-Admix with the GoNL 
reference set. The comparison of the post-imputation quality control measures for these 
approaches is shown in Figures 3 and 4.
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Figure 3: Comparison of imputation quality for chromosome 22. Figures 3.1 – 3.3 show 
PC1 vs. PC2 plots of GRM based on MaCH without reference set, MaCH with reference 
set and MaCH-Admix with reference set respectively. Figures 3.a – Fig3.b show PCs 
plots including and excluding long LD regions (a. including, b. excluding). All PC plots 
are based on GRMs filtered with R² > 0.8 and MAF > 0.01, where black color represents 
NTR and grey color represents GENR. 

a b
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2

3
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Figure 4: Comparison of R² distribution of three methods for chromosome 22. 

A NTR vs. GENR case-control analysis after imputation showed that 4535, 203, and 93 
SNPs were significantly different in frequency for the first, second and third method, 
respectively (p < 10⁻⁵, Wald test). The R² measure also demonstrated different imputation 
quality: mean = 0.83 and median = 0.86 for the first, mean = 0.93 and median = 0.98 for 
the second and mean = 0.95 and median = 0.99 for the third method.
	 We plotted the first (PC1) and second (PC2) principal components for each imputed 
GRM matrix in R [57]. In Figure 3 the GRMs based on the R² > 0.8 and MAF > 0.01 filters are 
shown. As expected given the median quality of SNPs, filtering on R² and MAF (4,611 and 
46, 1684 and 106, 1186 and 105 SNPs were excluded in the first, second and third approach 
respectively) did not affect the outcome of the imputation results (Figure 5). 
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Figure 5: Chromosome 22 PC plots based on GRMs, each with three filtering options. 
Figure 5.a shows the performance of MaCH without reference set, Figure 5.b shows 
performance of MaCH with reference set and Figure 5.c demonstrates performance of 
MaCH-Admix with reference set. Plots 5.1-5.3 show application of different filter criteria 
(1.none, 2. R² > 0.8, 3. R²>0.8 and MAF>0.01) for the corresponding imputation method.

a b c
1

2

3

As shown in Figure 3.1a, PC1 clearly captures the cohort differences due to the genotyping 
platform. GENR and NTR are separated into two clusters with the first PC. For the PC2 
component we observe three blocks that disappear after eliminating the long LD regions as 
shown on Figure 3.1b. Figures 3.2a and 3.2b show homogeneity is reached when using MaCH 
phasing with a reference set, with and without excluding long LD regions. Similarly, Figures 
3.3a and 3.3b using MaCH-Admix instead of MaCH also shows no population stratification 
due to the genotyping platform. Finally, as presented in Figure 4, it becomes clear that Mach-
Admix outperforms MaCH with overall imputation quality. 
	 When examining imputation differences for individual SNPs by comparing the allele 
frequencies between cohorts, we identified some significantly different SNPs, as was noted 
above. We computed squared LD correlations between each significant SNP that resulted 
from post-imputation QC analysis of the chromosome 22 imputation with MaCH-Admix and 
all neighboring SNPs within a 1 Mega-basepairs (Mb) region in Plink. The majority of these 
estimates were low (IQR = 0.0009, mean = 0.005, median = 0.0003), indicating regions with 
weak LD around significant SNPs. Therefore, we can hypothesize that these SNP differences 
may arise from imperfect phasing and imputation for these SNPs with low LD. 
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Repeating the same MaCH-Admix imputation procedure of chromosome 22, 1) the 
NTR and GENR pre-combined sample was cross-platform imputed for all autosomal 
chromosomes and subsequently an “imputed” GRM was completed; 2) the NTR and 
GENR samples were imputed independently for all autosomal chromosomes, post-
combined and an “imputed independently” GRM was built. Figures 6 and 7 demonstrate 
QC results after imputation of the whole sample: Figure 6 shows PC1 and PC2 plot with 
and without exclusion of long LD regions and Figure 7 demonstrates the R² distribution 
for imputed (mean = 0.97, median = 0.99), imputed clean (mean = 0.97, median = 
0.99), NTR imputed independently (mean = 0.97, median = 1.0) and GENR imputed 
independently (mean = 0.96, median = 1.0) samples. 

Figure 6: PCA results of combined, imputed, imputed clean and imputed independent 
datasets respectively. PC1 vs. PC2 plots are made from GRM with R² > 0.8 and MAF > 0.01 
filters in case of imputed and with MAF > 0.01 filters in case of combined GRMs. Fig6.a – 
Fig6.b shows PCs plots including and excluding long LD regions (a. including, b. excluding).

a b
1

2
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3

4

Figure 7: Comparison of R² distribution of imputed, imputed clean, independently 
imputed NTR and GENR datasets. Fig7.a represent all SNPs, Fig7.a represents SNPs with 
R² > 0.8

a b

The quality of imputation in NTR seems slightly better than in GENR, which showed 
203 monomorphic SNPs after imputation. These SNPs were excluded from calculation 
of mean and median of R² for GENR. They also did not contribute to further analysis, as 
they have MAF = 0 and were filtered out with MAF > 0.01 option. As shown in Figures 6.1 
– 6.4, PC2 captures three blocks that are inversions of long LD regions of chromosomes 
and we did not observe any cohort differences due to the genotyping platform for 

Figure 6 Continued
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any of GRMs after different combination approaches. After the exclusion of long LD 
regions, PC1 and PC2 captured population structure for each of the approaches. Figure 8 
demonstrates quantile-quantile (QQ) plots of GWAS test-statistics for imputed (λ = 1.04), 
combined (λ = 1.02), NTR (λ = 1.01) and GENR (λ = 1.02) datasets. NTR vs. GENR case-
control analysis showed a total of 4,340 and 18,306 SNPs, respectively, that significantly 
differ in frequency after imputation, when datasets were pre-combined and imputed 
and imputed and post-combined. We excluded 4,430 SNPs from GRM “imputed” to build 
GRM “imputed clean”.

Figure 8: Quantile-quantile plots based on test-statistic from association analysis of 
height of: a) imputed, b) combined, c) NTR and d) GENR datasets

a b

c d



28

Heritability of childhood height 
The pooled data set comprised a total of 3,124 distantly related individuals, where 1,526 
were males and 1,598 were females. Childhood mean height in the pooled dataset was 
123.2 cm (SE = 8.8) at mean age of 6.7 years (SE = 1.2) (Table 3). GREML analysis of height 
yields a SNP-heritability estimate of 0.43 (SE = 0.10) when combining (not imputing) the 
data from both cohorts (Table 4). 

Table 4 Results of analyses of height based on imputed, imputed clean, imputed 
independently and combined GRMs including results of specific analysis of NTR and 
GENR selected individuals.
Data set V(G)/Vp SE N Pval
Imputeda 0.51 0.10 3124 1×10⁻⁷
Imputed cleanb 0.49 0.10 3124 2.9×10⁻⁷
Imputed 
independentlyc

0.52 0.10 3124 8.8×10⁻⁸

Combinedd 0.43 0.10 3124 2×10⁻⁶
NTR imputeda 0.42 0.29 1134 0.07
NTR imputed cleanb 0.39 0.29 1134 0.09
NTR imputed 
independentlyc

0.45 0.29 1134 0.07

NTR combinedd 0.50 0.28 1134 0.04
NTR independent e 0.47 0.27 1173 0.04
GENR imputeda 0.52 0.16 1990 3.7×10⁻⁴
GENR imputed 
cleanb

0.52 0.16 1990 3.9×10⁻⁴

GENR imputed 
independentlyc

0.53 0.16 1990 3.4×10⁻⁴

GENR combinedd 0.58 0.17 1990 2×10⁻⁴
GENR independente 0.57 0.17 1994 2.2×10⁻⁴

a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards
d GRM based on the combined SNP data without imputation

e GRM based on each genotyped sample separately

The estimates of the SNP-heritability based on GRMs of the imputed data are 0.51 (SE = 
0.10), and 0.49 (SE = 0.10) after cleaning SNPs that were significantly different between 
the two cohorts. The estimates of the SNP-heritability based on GRM data imputed 
independently are 0.52 (SE = 0.10). When considering only NTR individuals or GENR 
participants in the various GRM matrices, NTR gives estimates of 0.42 (SE = 0.29), 0.39 
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(SE = 0.29), 0.45 (SE = 0.29) and 0.50 (SE = 0.28) for the imputed GRM, imputed clean 
GRM, imputed independently and combined GRMs respectively; GENR gives estimates 
of 0.52 (SE = 0.16), 0.52 (SE = 0.16), 0.53 (SE = 0.16), 0.58 (SE = 0.17) for the imputed 
GRM, imputed clean GRM, imputed independently and combined GRMs, respectively. 
The variances explained by the independent cohorts were 0.47 (SE = 0.27) for NTR and 
0.57 for GENR (SE = 0.17), if one would conduct two separate GCTA studies. These results 
show that for each of the individual cohorts (NTR or GENR) selected, either from the 
imputed GRMs or from combined, the amount of variance explained by the SNPs remains 
the same given the large standard errors. Strikingly, cross-platform imputed GRMs shows 
suggestive, if any, increase of the variance explained by the SNPs in comparison to the 
combined (not imputed) GRM. If cohort is taken into account as a covariate, results show 
a ≈2% reduction of explained variance in the cross-platform imputed GRMs, while the 
combined GRM estimate remains the same (Table 5). 

Table 5 Results of analyses of height with correction for cohort as a covariate based on 
imputed, imputed clean, imputed independently and combined datasets
Data set V(G)/Vp SE n Pval

Imputeda 0.49 0.10 3124 3×10⁻⁷
Imputed cleanb 0.47 0.10 3124 7×10⁻⁷
Imputed 
independentlyc

0.50 0.10 3124 3.6×10⁻⁷

Combinedd 0.43 0.10 3124 3.8×10⁻⁶
a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards

d GRM based on the combined SNP data without imputation

This indicates that there is still little stratification left by platform. Repeating the 
comparison procedure including the first 10 PCs resulted in SNP-heritability estimates 
that were on average ≈11% lower for all pooled GRMs, ≈13% for NTR and ≈7% for GENR 
(Table 6). 
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Table 6 Results of analyses of height based on imputed, imputed clean, imputed 
independently and combined datasets adjusted for age, sex and 10 PCs, but not for cohort 
as covariate. Additionally results of analysis of height in NTR and GENR independent 
cohorts adjusted for age, sex and 10 PCs.
Data set V(G)/Vp SE N Pval

Imputeda 0.41 0.11 3124 4.6×10⁻⁵
Imputed cleanb 0.38 0.11 3124 1.2×10⁻⁴
Imputed 
independentlyc

0.39 0.11 3124 1.2×10⁻⁴

Combinedd 0.33 0.10 3124 7.2×10⁻⁴
NTR independent e 0.34 0.28 1173 0.12
GENR independente 0.50 0.17 1994 1.6×10⁻³

a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards
d GRM based on the combined SNP data without imputation

e GRM based on each genotyped sample separately

When cohort was used as a covariate together with 10 PCs (Table 7) there was no 
effect on SNP-heritability estimates in comparison to the effect of 10 PCs alone. The 
comparison of results shows that all heritability estimates, given the standard errors, are 
not significantly different from each other. However, by combining the two cohorts, the 
standard errors were largely reduced as the sample size increased, thereby allowing the 
SNP heritability to reach significance.

Table 7 Results of analysis of height based on imputed, imputed clean, imputed 
independently and combined datasets adjusted for age, sex and 10 PCs, as well as for 
cohort as covariate.
Data set V(G)/Vp SE N Pval
Imputeda 0.41 0.11 3124 5×10⁻⁵
Imputed cleanb 0.38 0.11 3124 1.4×10⁻⁴
Imputed 
independentlyc

0.39 0.11 3124 1.2×10⁻⁴

Combinedd 0.32 0.10 3124 9×10⁻⁴
a GRM based on data cross-platform imputed SNPs
b GRM based on data cross-platform imputed SNPs, excluding SNPs significantly different in frequency
c GRM based on SNPs imputed separately and combined afterwards

d GRM based on the combined SNP data without imputation
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Discussion 
GREML estimates the narrow-sense heritability from all common SNPs genotyped or 
imputed in a sample. However, often sample sizes are small, for example when closely 
related individuals are excluded. In this paper, we examined imputation-phasing 
approaches to create a GRM that combines genotype data across genotype platforms 
and cohorts and explored the effect of using different GRM build strategies, when 
cohorts are: 1) pre-combined and cross-platform imputed, 2) cross-platform imputed 
and post-combined and 3) just combined (Figure 1). Imputed GRM genetic relationships 
between individuals are estimated within studies as well as between studies based on 
all Illumina and Affymetrix SNPs. Combined GRM genetic relationships are estimated in 
three groups: within cohort pairs of NTR which all have Affymetrix SNPs, within cohort 
pairs of GENR which all have Illumina SNPs, and between cohort pairs that only have the 
overlapping SNPs. Therefore, cross-platform imputation is required to supply individuals 
genotyped on one platform with SNPs genotyped on another platform. Note that we 
did not aim to impute a large number of additional (rare) SNPs from the reference 
set to increase number of SNPs. Instead the total number of SNPs in a cross-platform 
imputed dataset remains approximately the same (Affymetrix SNPs + Illumina SNPs), but 
all individuals from both cohorts pooled together have complete information from the 
same SNPs. This way we tried to minimize the possible differences between platforms, 
while also trying to retain as much information of the genotyping platforms as possible. 
Because the quality of cross-platform imputation depends on LD-phase information, 
which correctly represents the Dutch population from which GENR and NTR cohorts 
were drawn, the Dutch GoNL reference set was used. 
	 Based on the chromosome 22 analyses of pre-combined cross-platform 
imputation approaches, we showed that phasing and imputation of missing genotypes 
with a reference dataset that contains all SNPs and LD information between these SNPs 
does not substantially increase cohort stratification due to genotyping platform within 
the GRM, while phasing without a reference set, lacking this essential LD information, 
does. Using only the SNPs that are overlapping between genotyping platforms as an 
imputation backbone is insufficient, as was evident from the subsequent PC analyses. 
Given that one could consider two cohorts with different platforms as a stratified 
population, the use of MaCH-Admix seems to have helped to improve the imputation 
quality. However, this effect was much weaker in comparison to the use of a reference 
set. Analysis based on PCs also showed that post imputation filtering on MAF and R² 
did not largely seem to influence the cohort stratification, mainly because the quality 
of the imputed SNPs was generally high. Imputation of the autosomal genome followed 
by PC analysis showed that to some extend there is still platform stratification present 
after imputation (Figure 6). Interestingly, the combined GRM did not show platform 
stratification, which may indicate that backbone of ≈120K SNPs is enough to estimate 
the genetic relationships between individuals from different cohorts.
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The analysis of childhood height yielded relatively the same estimates of SNP-heritability 
for cross-platform imputed GRMs, suggesting a slight increase in estimates in comparison 
to combined GRM. Adjusting for 10 PCs with or without study as covariate results in 
≈11% reduction of SNP-heritability for all GRMs, including combined. However, there 
was only ≈2% reduction in SNP heritability when study was used as covariate for imputed 
GRMs and not for the combined. PC adjustment of independent cohorts results in a 
SNP-heritability drop of ≈13% for NTR and ≈7% for GENR. Drop in NTR SNP-heritability 
estimate in contrast to GENR is more pronounced, as individuals in NTR spread across 
the Netherlands resulting in more diverse cohort. Given that λ estimates obtained from 
association analysis are not inflated it is possible that PCs may capture true variation 
of height along with platform stratification and may overcorrect the estimates. On the 
other hand, PCs may help to capture and correct for other sources of stratification within 
cohorts. Interestingly, SNP-heritability estimates resulting from GRM imputed and 
GRM imputed independently are approximately the same for all conditions. Moreover, 
SNP-heritability estimates from combined GRM are just slightly lower in comparison 
to imputed GRMs, which may support the conclusion that relationships between 
individuals across cohorts, estimated from SNPs overlap of ≈ 120K, is sufficient to explain 
the substantial proportion of variation in childhood height.
	 In this study we estimated SNP-heritability of childhood height using different 
GRM building strategies. These GRMs yielded significant estimates of SNP-heritability 
that range from 0.33 to 0.52 depending on various correction options. Height is a highly 
heritable trait with heritability estimates ranging from 0.89 to 0.93 in adults [58]. A SNP-
heritability of 60% has been estimated based on all common SNPs together in the recent 
GWA meta-analysis study of adult height [59]. In children, heritability estimates vary 
during growth. Mook-Kanamori et al. showed that heritability increases from 26% and 
27% at birth to 63% and 72% at 36 months in twins from the NTR study and in singletons 
from GENR study (parent-child trio’s design) [60]. Notably, heritability estimates for 
singletons and twins were very similar, justifying the pooling of data from these cohorts. 
In this study, we used height, as it is a highly heritable GCTA benchmark trait and can 
be easily measured. For other traits, which are less heritable and less easily measured, 
additional increase of sample size may be required in order to increase power to 
accurately estimate SNP-heritability. To calculate the power given a sample size, one can 
use the GCTA-GREML Power Calculator [61].
	 Strategies aiming to detect and correct for platform stratification after cross-
platform imputation were considered in this study for cohorts with the same ethnicity. 
However, when combining cohorts from different ethnicities this approach is unlikely 
going to be appropriate for several reasons [62]. First, SNP-heritability of combined 
multi-ethnic dataset depends on heritability of the trait in each population, which can 
differ. Second, different LD-patterns may imply that causal SNPs in one population will be 
tagged better than in the other population. Third, if cohorts with different ancestry are 
genotyped on different platforms it might be difficult to distinguish the two confounding 
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factors: platform and population stratification. Finally, informative SNPs that are 
common in one population and are rare in another, will be eliminated from analysis 
after QC and the effect of remaining SNPs, reflecting ancestry, will be corrected with PCs. 
Thus, the estimate would reflect part of SNP-heritability, which is based on causal SNPs 
shared across ethnicities. The extent to which causal SNPs are shared between different 
ethnicities depends on the genetic architecture of the trait in each population. For 
example, a recent study has provided evidence that genetic variation in schizophrenia is 
largely shared between two different ethnic cohorts, African and European [62]. There 
are also other statistical methods that can be applied to combine cohort information to 
estimate the SNP heritability of traits, such as the Density Estimation (DE) method [63]. 
The DE method does not require the raw genotype data, as it uses summary statistics 
from GWAS or meta-analysis GWAS. However, it requires LD-pruning to obtain a list of 
relatively independent SNPs to estimate their effect, which may result in variability of 
estimates depending on the pruning threshold and on SNP density in a single GWAS [64]. 
In addition, Van Beek et al. suggested that SNP-heritability can be underestimated due 
to genotypic heterogeneity or phenotypic differences between cohorts in meta-analysis 
GWAS and summary statistics correction, such as for multiple testing and genomic 
control inflation factor. 
	 In conclusion, using the complete information of a reference set for phasing and 
imputation of all SNPs on two different genotyping platforms, allows the combination 
of cohort data genotyped on both of these platforms. When combining genotype data 
across platform or cohort, thorough pre - and post QC is required, which can be tested 
with association and principal component analyses. For our approach, we assumed that 
the cohorts have a similar ethnicity and genetic background. To account for platform 
stratification or phenotypic differences in the dataset, cohort should always be included 
as a covariate. Whether one should use imputation, or just combine the genotype 
data, depends on the number of overlapping SNPs in relation to the total number of 
genotyped SNPs for both cohorts and their ability to tag all the genetic variance related 
to the specific trait of interest.
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CHAPTER  3 
SINGLE NUCLEOTIDE POLYMORPHISM HERITABILITY OF BEHAVIOR 

PROBLEMS IN CHILDHOOD: GENOME-WIDE COMPLEX TRAIT 
ANALYSIS
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Abstract

Objective: Genetic factors contribute to individual differences in behavior problems. 
In children, genome-wide association studies (GWAS) have yielded the first suggestive 
results in identifying genetic variants that explain heritability, but the proportion of 
genetic variance that can be attributed to common single nucleotide polymorphisms 
(SNPs) remains to be determined, as only a few studies have estimated SNP heritability, 
with conflicting results. 
Method: Genomic-relationship-matrix restricted maximum likelihood (GREML), as 
implemented in the software Genome-wide Complex Trait Analysis (GCTA), was used to 
estimate SNP heritability (SNP h²) for multiple phenotypes within four broad domains of 
children’s behavioral problems (attention deficit/ hyperactivity symptoms, internalizing, 
externalizing, and pervasive developmental problems) and cognitive function. We 
combined phenotype and genotype data from two independent, population-based 
Dutch cohorts, yielding a total number of 1,495 to 3,175 of three, seven and nine-year-
old children. 
Results: Significant SNP heritability estimates were found for attention deficit/ 
hyperactivity symptoms (SNP h² =0.37-0.71), externalizing problems (SNP h² = 0.44), and 
total problems (SNP h² = 0.18), rated by mother or teacher. Sensitivity analyses with 
exclusion of extreme cases and quantile normalization of the phenotype data decreased 
SNP h² as expected under genetic inheritance, but they remained statistically significant 
for most phenotypes.
Conclusion: We provide evidence of the influence of common SNPs on child behavior 
problems in an ethnically homogenous sample. These results support the continuation of 
large GWAS collaborative efforts, to unravel the genetic basis of complex child behaviors. 
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Introduction
Complex behaviors are shaped by both genetic and environmental influences [65, 66]. 
Numerous twin, family and adoption studies have estimated significant contributions of 
genetic factors to individual differences in behavioral and psychiatric traits [67-69]. In 
addition, longitudinal population-based studies provide evidence of the genetic stability 
of common behavioral problems (e.g. anxiety and depression symptoms [70], attention 
problems [71]) across the lifespan, with higher heritability estimates in childhood (e.g. 
for attention problems, heritability estimates decreased from 0.70 in childhood to 0.40 
in adulthood [71]). 
	 In adult samples, Genome-Wide Association Studies (GWAS) identified genes 
and pathways related to complex traits [72, 73]. This approach has also yielded positive 
findings in studies of important traits in children (e.g., birth weight [74] and length [75]). 
For childhood psychiatric traits and problem behaviors, successes have been limited 
[76-79], which can be ascribed to the very modest sample sizes in these studies [80]. 
The relatively small or absent genetic associations with complex traits of interest in 
GWAS [76-79] may seem in contrast to the large heritability estimates from twin and 
family studies, but are indeed in line with recent evidence that the small effect sizes 
of individual SNPs may be responsible for the non-replicability of these associations 
[81]. To assess whether GWA studies of child behavior problems can be expected to 
yield important findings regarding biological pathways, we address the question what 
part of the heritability of childhood behavior problems is captured by common (minor 
allele frequency > 1%) single-nucleotide polymorphisms (SNPs) included in standard 
genotyping arrays.
	 The genetic variance explained by genome-wide SNPs [20] can be estimated 
by using the genetic similarity among unrelated individuals as a predictor of their 
phenotypic resemblance. When individual level genotype data are available, these can 
be used to obtain a measure of genetic similarity between all possible pairs of (unrelated) 
individuals in the study. In a second step, this genetic relatedness matrix (GRM) is used 
to predict the phenotype similarity between individuals just as the different similarity 
of monozygotic (MZ) and dizygotic (DZ) twin pairs predicts their different phenotype 
resemblances. This approach has been implemented in the software package Genome-
wide Complex Trait Analysis (GCTA) [20]. The heritability estimates from GCTA (SNP h²) are 
commonly considered an indicator of the upper limit of the variance that can be explained 
by current GWAS efforts. Power estimations have indicated that for quantitative traits, 
a sample size of 3,000 individuals is required to detect a SNP h² of 0.30 with 80% power 
[82]. Thus, large sample sizes are required to reliably estimate the SNP heritability of 
complex behavioral traits, which can imply the need to pool data from multiple studies.
	 To date, few SNP heritability estimates are available for behavioral problems in 
childhood. Some studies indicate substantial additive genetic heritability of normative 
differences in children’s social communication difficulties [83] and in clinical cases of 
Attention Deficit/Hyperactivity Disorder (ADHD) [84, 85] and childhood onset Obsessive-
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Compulsive Disorder (OCD) [86]. However, other studies indicate modest, statistically 
non-significant SNP heritability estimates for children’s internalizing problems [76], 
anxiety [87], and callous-unemotional (CU) traits [77] in population-based samples. 
A study from the Twins Early Development Study (TEDS) indicated no significant SNP 
heritability for parent-, teacher-, and self-reported behavioral problems (i.e. attention 
problems, internalizing and externalizing problems) in contrast to cognitive and 
anthropomorphic traits in a population-based sample (N =2,500) of 12-year-old children 
[88].
	 Here, we focus on four domains of children’s behavioral problems: attention 
deficit problems, externalizing, internalizing, and pervasive developmental problems. 
Genetic influences on non-verbal cognitive abilities were also estimated. To obtain 
sufficient power, we combined genotype and phenotype data from two independent, 
population-based Dutch cohorts: the Generation R Study (GEN-R) and the Netherlands 
Twin Register (NTR). Genotyped SNP data from both studies were used to construct 
a genetic relatedness matrix (GRM) [102]. For both studies, behavior problems of 
a total N = 1,495 to 3,175 of three, seven and nine year old children were rated by 
mothers and / or teachers. We estimated the SNP heritability in each of these traits and 
compared our findings to the SNP heritability estimates previously reported.

Methods
Participants
This study included data from children from two population-based Dutch cohorts, 
the Generation R Study (GEN-R) and the Netherlands Twin Register (NTR). GEN-R is 
a prospective cohort based in Rotterdam. The characteristics of the study have been 
previously described in detail [89]. NTR is a nationwide longitudinal sample of twins and 
their family members followed from birth onwards after voluntary registration [44]. In 
both studies, parents gave informed consent for participation and also to approach the 
teachers of the children. Study protocols were approved by the local ethics committees.  

Measures
All phenotypes analyzed in this study have been described in detail in previous 
publications of GEN-R and NTR, and twin-based heritabilities in the Dutch population 
were reported for these traits (see Supplementary Material, Table S1).

Conners’ Parent Rating Scale (CPRS-R) 
ADHD symptoms and related co-morbid symptoms were assessed using the CPRS-R [90] 
completed by the mothers. Four scales of the CPRS-R were used: (i) ADHD combined, 
(ii) ADHD Inattentive, (iii) ADHD Hyperactive-Impulsive, and (iv) Oppositional Defiant 
Disorder (ODD) scale. 
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Child Behavior Checklist (CBCL; behavior problems)
We assessed child behavior problems using the well-validated Child Behavior Checklist 
(CBCL) [91], completed by the mother. Internalizing, externalizing and total problems 
were assessed using the appropriate CBCL syndrome scales. For the CBCL internalizing, 
externalizing, and total problems scores, the GEN-R study used the CBCL for ages 1½-5 
[92] and NTR used the CBCL for ages 6-18 years [93]. In the CBCL for ages 1½-5 years, 
the Internalizing scale consists of four scales (Emotionally Reactive, Anxious/ Depressed, 
Somatic Complaints, and Withdrawn) and the Externalizing scale consists of two scales 
(Attention Problems and Aggressive Behavior). In the CBCL for ages 6-18 years, the 
Internalizing scale consists of three scales (Anxious/ Depressed, Withdrawn/Depressed 
and Somatic Complaints) and the Externalizing scale consists of two scales (Rule-Breaking 
Behavior and Aggressive Behavior). The Total Problems score was computed by summing 
the ratings of all problem items included in the CBCL. To avoid phenotypic heterogeneity 
in the combined data set due to differences in the items between the two CBCL versions, 
we selected only overlapping items to compute the scores (see Supplementary Material, 
Table S2). 

Child Behavior Checklist (CBCL; pervasive developmental problems)
We assessed pervasive developmental problems using the Pervasive Developmental 
Disorder (PDD) subscale of the CBCL 1½-5 years [92]. The PDD subscale has been shown 
to be a valid screening tool for autism spectrum disorders (ASD) [94]. 

Teacher’s Rating Form (TRF; ADHD-related symptoms and behavior problems)
The TRF for ages 6 to 18 years [93] was used to assess attention problems (Attention 
Problems scale) and behavioral problems (Externalizing scale) rated by the teacher. We 
used the teachers’ ratings of externalizing and not internalizing problems, since it has 
been previously shown that they can better identify children with externalizing than 
internalizing problems [95]. The teacher reports were also selected to assess behavior 
in a different environment, and to avoid informant effects which could bias estimates of 
genetics contribution to common child behavior problems [96, 97].

Non-verbal cognitive abilities
Non-verbal cognitive abilities were assessed with the Snijder-Oomen nonverbal 
intelligence test [98] (SON-R 2.5-7 years) in the GEN-R study and the non-verbal subtest 
of the Revised Amsterdam Children Intelligence Test [99] (RAKIT) in the NTR. Both 
measurements have been well-validated and correlate substantially with the Wechsler 
Preschool and Primary Scale of Intelligence-Revised (WPPSI-R) [100] and the Wechsler 
Intelligence Scale for Children (WISC) [101]. The non-verbal cognition scores in both 
samples were transformed to Mean = 100 and SD = 15.
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Genotyping and Imputation
Caucasian children from the GEN-R study (N = 3,102) and NTR (N = 2,826) were 
genotyped on Illumina (660W, 610K) and Affymetrix 6.0 platforms, respectively. As the 
number of overlapping SNPs between platforms was small (N = 123,953), both cohorts 
were cross-platform imputed using MaCH-Admix imputation software [47] as described 
in Fedko et al [102]. Cross-platform imputation supplies all participants from both 
cohorts with genetic information from all SNPs genotyped on both platforms. To avoid 
population stratification between samples due to a genotyping platform, the Genome 
of the Netherlands reference set [103] was used to phase and subsequently impute 
missing genotypes into both cohorts. The final dataset consisted of 5,928 individuals, 
where each individual had information for N = 989,757 SNPs expressed in dosage scores. 
Post-imputation quality control (QC) was performed on imputed datasets to check and 
control for possible residual imputation stratification due to a genotyping platform or 
true genetic differences between cohorts. The overall imputation quality measure (R2) 
was high (mean = 0.97, median = 0.99). Case-control analysis of the imputed sample, 
where GEN-R children were assigned as cases and NTR children as controls showed n 
= 4,340 SNPs that were significantly different in frequency (p < 10⁻⁵). These SNPs were 
excluded from further analysis. 

Genome-Wide Complex Trait Analysis (GCTA)
We built a genetic relationship matrix (GRM) based on cross-platform imputed data 
using GCTA version 1.20 [20]. Data for the GRM was filtered based on the following 
two criteria: 1) R² > 0.8 to allow SNPs with high imputation quality and 2) MAF > 0.01 
to exclude SNPs with low minor allele frequency. We performed Principal Components 
Analysis (PCA) on the resulting GRM to check for possible residual stratification due to 
the genotyping platform. We used the GREML (Genomic-relatedness-matrix restricted 
maximum likelihood) method to estimate SNP heritability in distantly related individuals 
from all genotyped and imputed SNPs in the dataset. The convention excludes those 
subjects whose genetic relatedness exceeds the 0.025 threshold in GRM, which 
corresponds to relationships of third-fourth degree cousins. We applied such a cut-off 
while performing GREML analysis and one of each pair of closely related individuals was 
excluded from analysis, which resulted in a number range from 1,495 to 3,175 depending 
on phenotype (see Supplementary Material, Table S4). For all phenotypes we included 
age and sex as covariates. We also adjusted for the cohort of origin (GEN-R or NTR) to 
control for residual imputation stratification due to genotyping platform, true genetic 
differences, and possible phenotype differences. 

Statistical Analyses
In both GEN-R and NTR, non-response analysis indicated no differences in the baseline 
characteristics of children whose assessment of child behavior problems was not 
completed at ages 7 and 9 years. 
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To explore the effect of extreme cases, often found in ratings of children’s behavior 
problems, we winsorized phenotypes used in this study when it was required. If the 
corresponding absolute z-score was more than 3.29 for a phenotype, we replaced the 
raw score with the less extreme value, i.e. the next highest score plus one unit [104]. 
Additionally we checked for possible population stratification in a combined dataset, 
adjusting for 10 principal components (PCs) in analysis of each scale. 
	 Sensitivity analyses were also performed to explore the influence of exclusion 
of extreme cases, skewness on SNP-heritability estimates, and the influence of study of 
origin. First, we estimated SNP-heritability by excluding extreme scores below or above 
three standard deviations from the mean. If such cases represent extremes, such as due 
to measurement errors, we expect SNP heritability to increase after exclusion of these 
cases. However, if they represent genuine outliers, we expect them to be also outliers 
for heritable traits and consequently the SNP heritability will decrease after exclusion of 
these cases. Second, we transformed the data to the quantile normalized scale, using the 
Van der Waerden transformation. This transformation reduces the extreme influence 
that outliers could have by ranking them as low or high within a normal distribution 
[105], although it results in some loss of phenotypic information. In addition, we 
performed GCTA separately on the two participating studies (i.e. GEN-R and NTR) to 
explore possible effects of the specific study. All transformations were conducted in SPSS 
21.0 [106]. 

Results
Genotypic and Phenotypic Sample Characteristics
The sample characteristics of the children participating in each study and in the 
combined dataset, before and after exclusion of related individuals, are presented in 
Supplementary Tables S3 and S4. The distribution of age, sex, and behavior problems did 
not significantly differ between the two studies. 

Estimates of SNP heritability
Table 1 summarizes the SNP heritability estimates using the combined GRM, adjusting for 
age, sex and sample of origin. For the mother ratings of child problem behavior, estimates 
were substantial and statistically significant for the ADHD Combined scale (SNP h²=0.40, 
SE=.14, p = .001), the ADHD Inattentive scale (SNP h²=0.37, SE=.14, p=.003) and the 
Hyperactive-Impulsive scale (SNP h²=0.45, SE=.14, p=.0006) measured by the Conners’ 
Parent Rating Scale (CPRS). We also found significant SNP heritability estimates for the 
CBCL Total problems score (SNP h²=0.18, SE=.10, p=.03). For the teacher ratings, we 
obtained significant SNP heritability estimates for both the Attention problems scale 
(SNP h²=0.71, SE=.22, p=.0006) and the Externalizing scale (SNP h²=0.44, SE=.22, p=.03). 
No significant estimates were found for the CPRS ODD scale, CBCL PDD subscale, CBCL 
Internalizing and Externalizing scales and non-verbal cognition. When 10 PCs were used 
as covariates, we found nonsignificant difference in SNP heritability estimates (1-3% 
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drop or 1-2% increase, data not shown) for all scales. The level of significance remained 
the same, except for the CBCL Total problems score (p-value = 0.07 and p-value = 0.03 
with and without PCs adjustment accordingly).

Table 1. SNP heritability estimates in child behavior problems.
Age (SD) SNP h² SE 95% CIa N P-value

Parent ratings
CPRS ADHD 
Combined scale

8.34 (0.7) 0.40 0.14 (0.13, 0.67) 2,262 <0.01**

CPRS ADHD 
Inattentive scale

8.34 (0.7) 0.37 0.14 (0.10, 0.64) 2,262 <0.01**

CPRS Hyperactive-
Impulsive scale

8.34 (0.7) 0.45 0.14 (0.18, 0.72) 2,260 <0.001***

CPRS ODD scale 8.34 (0.7) 0.20 0.14 (0.00, 0.47) 2,262 0.07
CBCL Internalizing 
scale

6.57 (0.83) 0.12 0.10 (0.00, 0.32) 3,175 0.11

CBCL Externalizing 
scale

6.57 (0.83) 0.12 0.10 (0.00, 0.32) 3,174 0.13

CBCL Total problems 
score

6.57 (0.83) 0.18 0.10 (0.00, 0.38) 3,175 <0.05*

CBCL PDD subscale 3.15 (0.23) 0.16 0.11 (0.00, 0.33) 3,015 0.07
Teacher ratings
TRF Attention 
problems scale

6.82 (2.35) 0.71 0.22 (0.28, 1.00) 1,495 <0.001***

TRF Externalizing 
scale

6.82 (2.35) 0.44 0.22 (0.01, 0.87) 1,495 <0.05*

Observational ratings
Non-verbal cognition 6.14 (0.42) 0.11 0.16 (0.00, 0.42) 1,974 0.23

Note: All analyses were performed with the combined GRM and were adjusted for age, sex, and sample of 
origin (GEN-R or NTR) on winsorized scores. CPRS = Conners’ Parent Rating Scale, ADHD= Attention Deficit/ 
Hyperactivity Disorder, ODD= Oppositional Defiant Disorder, CBCL= Child Behavior Checklist, PDD= Pervasive 
Developmental Disorder, TRF=Teacher’s Rating Form, SE= standard error
aNote: SNP heritability estimates are limited to (0.00-1.00)

*p < 0.05; **p<0.01; ***p<0.001
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Sensitivity Analyses
To examine the influence of extreme cases on SNP heritability estimates and to enable 
comparison with the TEDS results [88] that were based on deletion of extreme cases, 
we also performed GCTA analyses excluding individuals above or below three standard 
deviations from the mean. Overall, the exclusion of extreme cases decreased the 
SNP heritability estimates almost by half in most of the complex problem behaviors, 
suggesting that these children are genuine outliers and that their extreme phenotype 
values do not represent measurement errors or other artifacts. Even after removal 
of outliers, SNP heritability estimates for all scales of CPRS (ADHD combined, ADHD 
Inattentive, ADHD Hyperactive-Impulsive and ODD scale) were still substantial. The CBCL 
Total problems score and the teacher-reported Attention problems and Externalizing 
problems also remained significant after exclusion of extreme cases. The results are 
summarized in Table 2. 
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Table 2. Impact of extreme cases on SNP heritability estimates in child behavior problems.
Age (SD) SNP h² SE 95% CIa N P-value

Parent ratings
CPRS ADHD 
Combined scale

8.34 (0.7) 0.22 0.14 (0.00, 0.49) 2,240 0.05*

CPRS ADHD 
Inattentive scale

8.34 (0.7) 0.24 0.14 (0.00, 0.51) 2,229 <0.05*

CPRS Hyperactive-
Impulsive scale

8.34 (0.7) 0.33 0.15 (0.04, 0.62) 2,231 0.01*

CPRS ODD scale 8.34 (0.7) 0.28 0.14 (0.01, 0.55) 2,246 <0.05*
CBCL Internalizing 
scale

6.57 (0.83) 0.04 0.10 (0.00, 0.24) 3,139 0.36

CBCL Externalizing 
scale

6.57 (0.83) 0.06 0.10 (0.00, 0.26) 3,136 0.28

CBCL Total problems 
score

6.57 (0.83) 0.16 0.10 (0.00, 0.36) 3,143 0.05*

CBCL PDD subscale 3.15 (0.23) 0.14 0.11 (0.00, 0.36) 2,999 0.10
Teacher ratings
TRF Attention 
problems scale

6.82 (2.35) 0.49 0.22 (0.06, 0.92) 1,470 0.01*

TRF Externalizing 
scale

6.82 (2.35) 0.46 0.23 (0.01, 0.91) 1,463 <0.05*

Observational ratings
Non-verbal cognition 6.14 (0.42) 0.11 0.16 (0.00, 0.42) 1,968 .23

Note: In all analyses, statistical outliers (mean ±3sd) were excluded. All analyses were performed with the 
combined GRM and were adjusted for age, sex, and sample of origin (GEN-R or NTR). CPRS = Conners’ Parent 
Rating Scale, ADHD= Attention Deficit/ Hyperactivity Disorder, ODD= Oppositional Defiant Disorder, CBCL= 
Child Behavior Checklist, PDD= Pervasive Developmental Disorder, TRF=Teacher’s Rating Form, SE= standard 
error
aNote: SNP heritability estimates are limited to (0.00-1.00)

*p < 0.05
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Furthermore, similar to the TEDS study [88], we performed GCTA analyses on the 
quantile normalized scales using the Van der Waerden transformation to examine the 
potential influence of skewness on SNP heritability estimates. The SNP heritability with 
the transformed scales were similar to those with untransformed scales, with substantial 
genetic effects contributing to the ADHD Combined scale (SNP h²=0.30, SE=.14, p=.01), 
ADHD Inattentive scale (SNP h²=0.30, SE=.14, p=.01), and Hyperactivity-Impulsive scale 
(SNP h²=0.37, SE=.14, p=.004) rated by the mother using the CPRS. Also, the CBCL PDD 
subscale (SNP h²=0.18, SE=.11, p=.05) and the teacher-reported Attention problems scale 
(SNP h²=0.64, SE=.22, p=.002) and Externalizing scale (SNP h²=0.60, SE=.22, p=.004) yielded 
significant SNP heritability estimates. The results are summarized in Supplementary Table 
S5. 
	 Finally, we also provided SNP heritability estimates of the two samples 
independently. As expected, the smaller NTR sample shows estimates with larger SE 
values. Although variable, the SNP heritability estimates of the two samples did not 
differ significantly from each other. These results are summarized in Supplementary 
Table S6.

Discussion
The aim of this study was to provide estimates of SNP heritability of normative differences 
in attention deficit problems (measured at 7 and 9 years), externalizing and internalizing 
problems (measured at 7 years), pervasive developmental problems (measured at 3 
years) and non-verbal cognitive function (measured at 7 years) in population-based 
samples. Our study provides evidence of significant SNP heritability for attention deficit/ 
hyperactivity problems, externalizing and total problems rated by mother or teacher. 
We identified nonsignificant SNP heritability estimates for pervasive developmental 
and internalizing problems. These results are parallel to twin heritabilities previously 
reported on the same phenotypes, i.e. higher twin heritabilities were associated with 
higher SNP heritabilities. Sensitivity analyses showed that SNP heritability estimates 
decreased but remained significant for most phenotypes after exclusion of the extreme 
cases.
	 Previous studies on the heritability captured by common SNPs have yielded 
significant SNP heritability estimates for normative differences in autistic-like traits [83, 
107], in clinical cases of childhood-onset OCD [86] and ADHD [84, 85]. Quantifiable, 
although non-significant SNP heritability has also been reported for internalizing 
problems in population-based samples of preschoolers [76]. Surprisingly, however, 
a recent TEDS study by Trzaskowski et al [88] indicated no additive genetic effects for 
common child behavior problems. This discrepancy may be due to several factors. First, 
there are methodological differences between the two studies. In the present study, 
we removed ethnic outliers instead of correcting for them using principal components 
analysis. Moreover, we estimated heritability with and without extreme cases, showing 
that in some cases, treatment of outliers results in substantially different findings. 
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Extreme cases might be biologically significant extremes or they might constitute 
statistical outliers. Our results indicate that extremes were more likely to be genetic 
extremes rather than statistical outliers and they suggest that in the TEDS study 
[88] the exclusion of extreme cases may have resulted in an underestimation of SNP 
heritability [108]. Winsorizing the extreme cases instead of excluding them may address 
the problem of extremely skewed distributions while still retaining information for all 
subjects. It should be noted, however, that even after exclusion of the extreme cases, we 
found significant additive genetic heritability for ADHD-related symptoms and children’s 
behavior problems. 
	 Secondly, the two studies involved different samples. The TEDS sample [88] 
involved 12-year-old children, whereas in our sample we analyzed data on behavior 
problems at three, seven and nine year olds. Estimations of genetic effects may differ 
developmentally, although the direction depends on the phenotype of interest. For 
example, SNP heritability of autistic-like traits was shown to be low (SNP h²=0.24, 
SE=.07, N = 5,204) but strongest in early childhood [83], whereas it increased from 
ages 7-to 12-years in the case of general cognitive ability [109]. Previous twin studies 
have also indicated an increase in the heritability for general cognitive ability [110], 
as well as for non-verbal IQ [111] from childhood to adulthood. In line with the low 
heritability estimates in 5 to 6-year-old twins for non-verbal IQ, we found no significant 
SNP heritability of non-verbal cognitive ability at 6 years, in a subsample of 1,974 
unrelated individuals. Similarly, our study indicated non-significant SNP heritability of 
pervasive developmental problems in 3-year old children (n = 3,015). Given the low 
overall heritability, larger samples may be needed to estimate modest SNP heritability 
of non-verbal cognition and pervasive developmental problems in early childhood. 
The perception of genetic heritability as time and age-dependent [112] could explain 
discrepancies between samples and between measurements at different time-points 
(e.g. CBCL measures at 7 years and CPRS measures at 9 years) and suggests that SNP 
heritability estimates cannot be easily generalized across age.
	 Thirdly, SNP heritability, as an estimation of the fraction of phenotypic variation 
explained by common SNPs, is dependent of sample characteristics [113]. Thus, as a 
population property, SNP heritability estimates can differ between samples, because 
environmental factors are different. Environmental influences may play a more important 
role in a sample derived from multiple, culturally diverse sites in the United Kingdom 
(UK), while genetic effects would be more prominent in the geographically restricted 
and rather homogeneous Dutch society, in terms of socio-economic conditions. Parental 
reports of child problem behaviors might partly be determined by subjective criteria for 
what parents consider to be problem behavior and these criteria may be dependent on 
cultural norms or socio-economic circumstances, such as crowding [114].
In this study, we found non-significant SNP heritability for parent-reported internalizing 
problems in 7-year-old children. One reason for this finding could be the difficulty in 
assessing internalizing symptoms in early childhood. Internalizing symptoms are often 
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not overtly expressed in young children and thus not easily observed by the parents 
[115]. Another reason could be that since the prevalence of internalizing symptoms 
typically increases in middle-to-late adolescence [116, 117], we are not yet able to 
identify all children who will develop internalizing symptoms later in life. The particularly 
high heterogeneity and the distinctive genetic architecture of internalizing problems 
have also been addressed in previous work [118].
	 A limitation of this study is the sample size. GCTA power calculations indicate 
that even with large sample sizes, the SEs of the SNP heritability estimates are large 
[119]. Thus, even larger samples are needed to estimate modest additive genetic effects. 
However, the sample size of the current study is, for most phenotypes, comparable to the 
study of Trzaskowski et al. [88], indicating that sample size is not exclusively responsible 
for the discrepancies between the two studies. An inherent parameter to most behavior 
problems research is the skewed distribution of the phenotypes. Nevertheless, sensitivity 
analyses with transformed distributions and winsorized extreme cases did not reduce 
the significant SNP heritability estimates to non-significance. This study is based on 
data from two longitudinal studies (GEN-R and NTR). Systematic attrition is a limitation 
inherent to longitudinal studies [120], potentially leading to selective dropout of high-
risk individuals, and thus to underestimation of the heritability of common behavior 
problems in children. However, previous research has shown that psychopathology of the 
participants has a small to moderate effect on attrition rates [121, 122] and estimations 
from longitudinal studies are robust and generalizable [123, 124]. Finally, the results of 
this study are derived from population-based samples of children. Although it has been 
shown that additive effects of hundreds of SNPs are responsible for observed normal 
variation in most quantitative traits [125], it is possible that the genetic architecture 
of children diagnosed with severe behavioral problems differs from that of children in 
population-based samples (e.g. increased role of rare variants, de novo mutations and 
dominance genetic effects). 
	 In summary, this study provides molecular genetic evidence of additive genetic 
influences on specific child behavior problems in an ethnically and socio-economically 
homogeneous sample. SNP-heritability for other common behavior problems in 
children, or for the p factor as proposed by Caspi et al. (2014) [126], remains to be 
estimated. SNP heritability estimates may be influenced by diversity in a socioeconomic 
environment, developmental stage, and study design, arguing for approaches that model 
gene-by-environment interactions, developmental information, and possibly data from 
population-based and clinical samples in GCTA research. Our results provide support 
for and encourage the continuation of GWAS efforts by genetics consortia focusing on 
complex behavioral traits in search of elusive heritability. 
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Supplementary Material

Table S1. Twin-Based Heritability Estimates in Netherlands Twin Register for the 
Phenotypes Analyzed in This Study (Attentional Deficit Problems, Externalizing Problems, 
Internalizing Problems, and Autistic-Like Traits), as Previously Published.
Phenotypes Age (y) n twin pairs Estimations Reference

Parent Ratings
CPRS ADHD Combined scale 7 1,595 0.78 [127]
CPRS ADHD Inattentive scale 9 3,470 0.38-0.78 [128]
CPRS Hyperactive-Impulsive 
scale

9 3,470 0.72-0.80 [128]

CPRS ODD scale 7 1,595 0.55 [129]
CBCL Internalizing scale 7 1,940 0.38 [130]
CBCL Externalizing scale 7 1,940 0.52 [130]
CBCL Total Problems score 3 1,358 0.38 [131]
CBCL PDD subscale NA NA NA NA
Teacher Ratings
TRF Attention Problems scale 7 2,259 0.39 [132]
TRF Externalizing scale 7 215 0.43 [133]
Observational Ratings
Nonverbal cognition 5 237 0.31 [134]

Note: When both mother and father reported estimates were available, the mother ratings were selected. 
ADHD = attention-deficit/hyperactivity disorder; CBCL = Child Behavior Checklist; CPRS = Conners’ Parent 
Rating Scale; NA = not available; ODD = oppositional defiant disorder; PDD = pervasive developmental disorder; 
TRF = Teacher’s Rating Form.
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Table S2. List of Common Child Behavior Checklist (CBCL) 1 ½-5 Years and CBCL 6-18 
Years Items Used to Assess Children’s Behavior Problems in the Two Participating Studies 
(the Generation R Study or the Netherlands Twin Register).
Scale Common Items in CBCL 1 ½- 5 and CBCL 6-18
Internalizing sulks a lot

worries
nervous, tense
self-conscious or easily embarrassed
too fearful or anxious
unhappy, sad, or depressed
aches or pains (without medical cause)
constipated, doesn’t move bowels
headaches (without medical cause)
nausea, feels sick (without medical cause)
stomachaches or cramps (without medical 
cause)
vomiting, throwing up (without medical cause)
withdrawn, doesn’t get involved with others

Externalizing wanders away
destroys things belonging to his/her family or 
other children
disobedient
doesn’t seem to feel guilty after misbehaving
gets in many fights
hits others
physically attacks people
screams a lot
stubborn, sullen, or irritable
sudden changes in mood or feelings
wants a lot of attention
temper tantrums or hot temper

Total Problems aches or pains (without medical cause)
acts too young for age
can’t concentrate, can’t pay attention for long
can’t sit still, restless, or hyperactive
clings to adults or too dependent
constipated, doesn’t move bowels
cries a lot
cruel to animals
destroys his/her own things
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Scale Common Items in CBCL 1 ½- 5 and CBCL 6-18
destroys things belonging to his/her family or 
other children 
disobedient
doesn’t eat well
doesn’t get along with other children
doesn’t seem to feel guilty after misbehaving
easily jealous
fears certain animals, situations, or places
gets hurt a lot, accident prone
gets in many fights
headaches (without medical cause)
hits others
nausea, feel sick (without medical cause)
nervous movements or twitching
nervous or tense
nightmares
overeating
overtired
physically attacks people
picks nose, skin, or other parts of body
plays with own sex parts too much
poorly coordinated or clumsy
problems with eyes (without medical cause)
rashes or other skin problems (without medical 
cause)
screams a lot
self-conscious or easily embarrassed
shows little interest in things around him/her
too shy or timid
sleeps less than most kids during day and/or 
night 
speech problems
stares into space or seems preoccupied
stomachaches or cramps (without medical 
cause)
strange behavior
stubborn, sullen, or irritable
sudden changed in mood or feelings

Table S2 Continued
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Scale Common Items in CBCL 1 ½- 5 and CBCL 6-18
sulks a lot
talks or cries out in sleep
temper tantrums or hot temper
too fearful or anxious
underactive, slow moving, or lacks energy
unhappy, sad, or depressed
unusually loud
vomiting, throwing up (without medical cause)
wakes up often at night
wanders away
wants a lot of attention
whining
withdrawn, doesn’t get involved with others
worries

Table S2 Continued
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Table S3. Descriptive Statistics for the Distribution of Common Children’s Problem 
Behavior, in the Two Genotyped Samples and the Combined Dataset.

GEN-R NTR Combined

CPRS ADHD Combined Scale
n 1,971 854 2,825
Age (SD) 8.15 (0.21) 9.03 (1.24) 8.41 (0.81)
Sex (% girls) 49 54 51
Mean (SD) 7.27 (6.70) 8.16 (8.01) 7,53 (7.13)
Skewness (SE) 1.29 (0.06) 1,27 (0.08) 1,32 (0.05)
Kurtosis (SE) 1.49 (0.11) 1.14 (0.17) 1.52 (0.09)

CPRS ADHD Inattentive Scale
n 1,974 854 2,828
Age (SD) 8.15 (0.21) 9.03 (1.24) 8.41 (0.81)
Sex (% girls) 49 54 51
Mean (SD) 3.09 (3.58) 3.86 (4.30) 3.32 (3.83)

Skewness (SE) 1.54 (0.06) 1.28 (0.08) 1.48 (0.05)
Kurtosis (SE) 2.30 (0.11) 1.03 (0.17) 1.91 (0.09)

CPRS Hyperactive-Impulsive Scale
n 1,973 852 2,825
Age (SD) 8.15 (0.21) 9.03 (1.24) 8.41 (0.81)
Sex (% girls) 49 54 51
Mean (SD) 2.08 (2.71) 3.00 (3.76) 2.36 (3.10)
Skewness (SE) 1.91 (0.06) 1.67 (0.08) 1.94 (0.05)
Kurtosis (SE) 4.10 (0.11) 2.54 (0.17) 4.12 (0.09)
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GEN-R NTR Combined

CPRS ODD Scale
n 1,973 856 2,829
Age (SD) 8.15 (0.21) 9.03 (1.24) 8.41 (0.81)
Sex (% girls) 49 54 51
Mean (SD) 3.47 (2.87) 4.63 (3.80) 3.82 (3.22)
Skewness (SE) 1.15 (0.06) 1.05 (0.08) 1.23 (0.05)
Kurtosis (SE) 1.57 (0.11) 0.81 (0.17) 1.70 (0.09)

CBCL PDD Problems Scale
n 2,030 2,084 4,144
Age (SD) 3.04 (0.09) 3.32 (0.26) 3.18 (0.24)
Sex (% girls) 49 54 51
Mean (SD) 1.71 (1.89) 3.26 (2.86) 2.49 (2.55)
Skewness (SE) 1.70 (0.05) 1.17 (0.05) 1.50 (0.04)
Kurtosis (SE) 4.76 (0.11) 1.53 (0.11) 2.86 (0.08)

CBCL Internalizing Scale
n 2,175 2,126 4,301
Age (SD) 5.99 (0.38) 7.49 (0.44) 6.74 (0.85)
Sex (% girls) 49 54 52
Mean (SD) 1.44 (1.94) 2.17 (2.33) 1.80 (2.17)
Skewness (SE) 2.15 (0.05) 1.77 (0.05) 1,94 (0.04)
Kurtosis (SE) 6.35 (0.11) 4.48 (0.11) 5.29 (0.08)

Table S3 Continued
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GEN-R NTR Combined

CBCL Externalizing Scale
n 2,174 2,126 4,300
Age (SD) 5.99 (0.38) 7.49 (0.44) 6.74 (0.85)
Sex (% girls) 49 54 52
Mean (SD) 2.43 (2.85) 3.49 (3.55) 2.95 (3.26)
Skewness (SE) 2.15 (0.05) 1.48 (0.05) 1.78 (0.04)
Kurtosis (SE) 6.45 (0.11) 2.49 (0.11) 3.93 (0.08)

CBCL Total Problems Score
n 2,175 2,127 4,302
Age (SD) 5.99 (0.38) 7.49 (0.44) 6.74 (0.85)
Sex (% girls) 49 54 52
Mean (SD) 9.15 (8.51) 12.31 (10.06) 10.71 (9.44)
Skewness (SE) 2.04 (0.05) 1.44 (0.053) 1.70 (0.04)
Kurtosis (SE) 6.71 (0.11) 2.70 (0.11) 4.12 (0.08)

TRF Attention Problems Scale
n 1,419 358 1,777
Age (SD) 6.72 (2.42) 7.32 (0.42) 6.83 (2.18)
Sex (% girls) 47 48 47
Mean (SD) 3.03 (4.71) 5.69 (6.32) 3.56 (5.19)
Skewness (SE) 2.17 (0.07) 1.52 (0.13) 2.02 (0.06)
Kurtosis (SE) 4.84 (0.13) 2.44 (0.26) 4.37 (0.12)

Table S3 Continued
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GEN-R NTR Combined

TRF Externalizing Scale
n 1,419 358 1,777
Age (SD) 6.72 (2.42) 7.32 (0.42) 6.83 (2.18)
Sex (% girls) 47 48 47
Mean (SD) 2.39 (5.12) 4.75 (7.38) 2.86 (5.73)
Skewness (SE) 3.55 (0.07) 2.43 (0.13) 3.24 (0.06)
Kurtosis (SE) 15.25 (0.13) 6.59 (0.26) 12.52 (0.12)

Nonverbal Cognition
n 2,059 202 2,261
Age (SD) 6.09 (0.39) 6.73 (0.33) 6.15 (0.43)
Sex (% girls) 50 56 51
Mean (SD) 100 (15) 100 (15) 100 (15)
Skewness (SE) -0.16 -0.15 -0.16
Kurtosis (SE) 0.39 (0.11) 0.26 (0.44) 0.35 (0.10)

Note: ADHD = attention-deficit/hyperactivity disorder; CBCL = Child Behavior Checklist; CPRS = Conners’ Parent 
Rating Scale; GEN-R = the Generation R Study; NA = not available; NTR = Netherlands Twin Register; ODD = 

oppositional defiant disorder; PDD = pervasive developmental disorder; TRF = Teacher’s Rating Form.

Table S3 Continued
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Table S4. Descriptive Statistics for the Distribution of Common Children’s Problem 
Behavior, in the Two Genotyped Samples and the Combined Dataset After Applying 
Cut-Off 0.025 of Relatedness to Combined Sample

GEN-R NTR Combined

CPRS ADHD Combined Scale
n 1,797 465 2,262
Age (SD) 8.15 (0.22) 9.05 (1.24) 8.34 (0.7)
Sex (% girls) 49 57 51
Mean (SD) 7.27 (6.7) 8.23 (8.11) 7.47 (7.02)
Skewness (SE) 1.33 (0.06) 1.3 (0.11) 1.35 (0.05)
Kurtosis (SE) 1.66 (0.12) 1.27 (0.23) 1.72 (0.1)

CPRS ADHD Inattentive Scale
n 1,799 465 2,264
Age (SD) 8.15 (0.22) 9.05 (1.24) 8.34 (0.7)
Sex (% girls) 49 56 51
Mean (SD) 3.08 (3.6) 3.89 (4.38) 3.25 (3.78)
Skewness (SE) 1.59 (0.06) 1.32 (0.11) 1.55 (0.05)
Kurtosis (SE) 2.48 (0.12) 1.12 (0.23) 2.21 (0.1)

CPRS Hyperactive-Impulsive Scale
n 1,798 462 2,260
Age (SD) 8.15 (0.22) 9.05 (1.24) 8.33 (0.7)
Sex (% girls) 49 57 51
Mean (SD) 2.09 (2.74) 2.97 (3.77) 2.27 (3.00)
Skewness (SE) 1.92 (0.06) 1.76 (0.11) 1.99 (0.05)
Kurtosis (SE) 4.13 (0.12) 3.02 (0.23) 4.49 (0.1)
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GEN-R NTR Combined

CPRS ODD Scale
n 1,798 464 2,262
Age (SD) 8.15 (0.22) 9.05 (1.24) 8.34 (0.7)
Sex (% girls) 49 56 51
Mean (SD) 3.46 (2.86) 4.74 (3.91) 3.73 (3.15)
Skewness (SE) 1.13 (0.06) 1.1 (0.11) 1.25 (0.05)
Kurtosis (SE) 1.51 (0.12) 0.92 (0.23) 1.91 (0.1)

CBCL PDD Problems Scale
n 1,823 1,192 3,015
Age (SD) 3.04 (0.1) 3.32 (0.26) 3.15 (0.23)
Sex (% girls) 49 54 51
Mean (SD) 1.73 (1.9) 3.29 (2.87) 2.35 (2.45)
Skewness (SE) 1.67 (0.06) 1.17 (0.07) 1.57 (0.04)
Kurtosis (SE) 4.65 (0.11) 1.54 (0.14) 3.3 (0.09)

CBCL Internalizing Scale
n 1,977 1,198 3,175
Age (SD) 6.01 (0.38) 7.5 (0.44) 6.57 (0.83)
Sex (% girls) 49 54 51
Mean (SD) 1.46 (1.97) 2.23 (2.36) 1.75 (2.16)
Skewness (SE) 2.16 (0.06) 1.78 (0.07) 1.99 (0.04)
Kurtosis (SE) 6.34 (0.11) 4.62 (0.14) 5.57 (0.09)

CBCL Externalizing Scale
n 1,976 1,198 3,174
Age (SD) 6.01 (0.38) 7.5 (0.44) 6.57 (0.83)
Sex (% girls) 49 54 51
Mean (SD) 2.46 (2.88) 3.5 (3.57) 2.86 (3.2)
Skewness (SE) 2.17 (0.06) 1.51 (0.07) 1.88 (0.04)
Kurtosis (SE) 6.56 (0.11) 2.7 (0.14) 4.57 (0.09)

Table S4 Continued
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GEN-R NTR Combined

CBCL Total Problems Score
n 1,977 1,198 3,175
Age (SD) 6.01 (0.38) 7.5(0.44) 6.57 (0.83)
Sex (% girls) 49 54 51
Mean (SD) 9.28 (8.6) 12.39 (10.2) 10.46 (9.36)
Skewness (SE) 2.05 (0.06) 1.52 (0.07) 1.81 (0.04)
Kurtosis (SE) 6.78 (0.11) 3.00 (0.14) 4.81 (0.09)

TRF Attention Problems Scale
n 1,295 200 1,495
Age (SD) 6.74 (2.51) 7.3 (0.43) 6.82 (2.35)
Sex (% girls) 47 52 48
Mean (SD) 3.05 (4.73) 5.9 (6.65) 3.43 (5.12)
Skewness (SE) 2.17 (0.07) 1.54 (0.17) 2.1 (0.06)
Kurtosis (SE) 4.89 (0.14) 2.68 (0.34) 4.86 (0.13)

TRF Externalizing Scale
n 1,295 200 1,495
Age (SD) 6.74 (2.51) 7.3 (0.43) 6.82 (2.35)
Sex (% girls) 47 52 48
Mean (SD) 2.41 (5.13) 5.2 (8.01) 2.78 (5.68)
Skewness (SE) 3.52 (0.07) 2.28 (0.17) 3.31 (0.06)
Kurtosis (SE) 15.1 (0.14) 5.4 (0.34) 12.94 (0.13)

Nonverbal Cognition
n 1,856 118 1,974
Age (SD) 6.1 (0.4) 6.72 (0.35) 6.14 (0.42)
Sex (% girls) 51 54 51
Mean (SD) 99.85 (15.04) 100.26 (14.96) 99.87 (15.03)
Skewness (SE) -0.12 (0.06) -0.14 (0.22) -0.12 (0.06)
Kurtosis (SE) 0.32 (0.11) 0.26 (0.44) 0.31 (0.11)

Note: ADHD = attention-deficit/hyperactivity disorder; CBCL = Child Behavior Checklist; CPRS = Conners’ Parent 
Rating Scale; GEN-R = the Generation R Study; NA = not available; NTR = Netherlands Twin Register; ODD = 

oppositional defiant disorder; PDD = pervasive developmental disorder; TRF = Teacher’s Rating Form.

Table S4 Continued
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Table S5. Impact of Skewness on Single Nucleotide Polymorphisms (SNP) Heritability 
Estimates in Child Behavior Problems

SNP h² SE 95% CIa n p Value

Parent Ratings
CPRS ADHD Combined scale 0.30 0.14 (0.03, 0.57) 2,262 0.01*
CPRS ADHD Inattentive 
scale

0.30 0.14 (0.03, 0.57) 2,264 0.01*

CPRS Hyperactive-Impulsive 
scale

0.37 0.14 (0.10, 0.64) 2,260 <0.01**

CPRS ODD scale 0.19 0.14 (0.00, 0.46) 2,262 0.09
CBCL Internalizing scale 0.07 0.10 (0.00, 0.27) 3,175 0.26
CBCL Externalizing scale 0.12 0.10 (0.00, 0.32) 3,174 0.13
CBCL Total Problems score 0.13 0.10 (0.00, 0.33) 3,175 0.10
CBCL PDD subscale 0.18 0.11 (0.00, 0.40) 3,015 0.05*
Teacher Ratings
TRF Attention Problems 
scale

0.64 0.22 (0.21, 1.00) 1,495 <0.01**

TRF Externalizing scale 0.60 0.22 (0.17, 1.00) 1,495 <0.01**
Observational Ratings
Nonverbal cognition 0.11 0.16 (0.00, 0.42) 1,974 0.23

Note: All scales have been normalized using the Van der Waerden method. All analyses were performed with 
the combined genetic relationship matrix and adjusted for age, sex, and sample of origin (the Generation 
R Study or the Netherlands Twin Register). ADHD = attention-deficit/hyperactivity disorder; CBCL = Child 
Behavior Checklist; CPRS = Conners’ Parent Rating Scale; ODD = oppositional defiant disorder; PDD = pervasive 
developmental disorder; SE = standard error; TRF = Teacher’s Rating Form. 
a SNP heritability estimates are limited to (0.00-1.00).

*p<.05; **p<.01; ***p<.001
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CHAPTER  4 

HERITABILITY OF BEHAVIORAL PROBLEMS IN 7-YEAR OLDS BASED 
ON SHARED AND UNIQUE ASPECTS OF PARENTAL VIEWS 

This chapter is based on: 
Iryna O. Fedko, Laura W. Wesseldijk, Michel G Nivard, Jouke-Jan Hottenga, Catharina 
E.M. van Beijsterveldt, Christel M. Middeldorp, Meike Bartels, and Dorret I. Boomsma. 
Heritability of behavioral problems in 7-year olds based on shared and unique aspects of 
parental views (as accepted by Behavior Genetics).
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Abstract
In studies of child psychopathology, phenotypes of interest are often obtained by 
parental ratings. When behavioral ratings are obtained in the context of a twin study, 
this allows for the decomposition of the phenotypic variance, into a genetic and a non-
genetic part. If a phenotype is assessed by a single rater, heritability is based on the child’s 
behavior as expressed in the presence of that particular rater, whereas heritability based 
on assessments by multiple raters allows for the estimation of the heritability of the 
phenotype based on rater agreement, as well as the heritability of the rater specific view 
of the behavior. The aim of this twin study was to quantify the rater-common and rater 
specific contributions to the variation in children’s behavioral problems. We estimated 
the heritability of maternal and paternal ratings of the Child Behavior Checklist (CBCL) 
6-18 empirical emotional and behavioral problem scales in a large sample of 12,310 7-year 
old Dutch twin pairs. Between 30% and 59% of variation in the part of the phenotype 
parents agree upon was explained by genetic effects. Common environmental effects 
that make children in the same family similar explained less variance, ranging between 
0% and 32%. For unique views of their children’s behavioral problems, heritability 
ranged between 0% and 20% for maternal and between 0% and 22% for paternal views. 
Between 7% and 24% of the variance was accounted for by common environmental 
factors specific to mother’s and father’s views. The proportion of rater shared and rater 
specific heritability can be translated into genetic correlations between parental views 
and inform the design and interpretation of results of molecular genetic studies. Genetic 
correlations were nearly or above 0.7 for all CBCL based psychopathology scales. Such 
large genetic correlations suggest two practical guidelines for Genome-Wide Association 
Studies (GWAS): when studies have collected data from either fathers or mothers, the 
shared genetic aetiology in parental ratings indicates that is possible to analyze paternal 
and maternal assessments in a single GWAS or meta-analysis. Secondly, if a study has 
collected information from both parents, a gain in statistical power may be realized in 
GWAS by the simultaneous analysis of the data. 
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Introduction: 
To assess children’s behavioral and emotional problems, researchers often rely on 
parental ratings. However, parents are not always in agreement on the behavior of their 
child. Maternal and paternal ratings on the Child Behavior Checklist (CBCL) 6-18, for 
example, correlate around 0.75, which is lower than the average test-retest reliability 
of the instrument, which is 0.89 for the empirical subscales [135-137]. Differences in 
parental normative standards or perception of child’s behavior could explain why the 
correlations between parents are below the test retest reliability; an alternative or 
additional explanation involves the existence of specific parental views on the child’s 
behaviors if a child behaves differently in the presence of each parent [34-36]. Maternal 
ratings are the most common single informant assessment found in the literature. 
However, as children interact with both parents, adding paternal observations may 
provide additional information about a child’s behavior. 
	 The Child Behavior Checklist 6-18 (CBCL 6-18) assesses child behavioral and 
emotional problems on a number of scales that indicate problems in the Internalizing 
(INT) domain (Anxious/Depressed, Withdrawn/Depressed, Somatic Complaints) and the 
Externalizing (EXT) domain (Rule-Breaking, and Aggressive Behavior) as well as Social, 
Thought, Attention Problems, Dysregulation, which sums Anxious/Depressed, Aggressive 
Behavior and Attention Problems [138], and Total Problems. The contribution of genetic 
(twin heritability) and environmental effects to the variation in rater agreement and 
disagreement of some of these scales were explored for children of age 7 years and 
showed that the common part of multi-informant assessments was the most heritable, 
ranging from 24% to 51% [34, 139-142], free of possible rater bias and specific parental 
views. Specific parental views usually were less heritable, ranging from 4% to 24% across 
the studies, scales and domains, but still provided information about child behavior. 
Phenotypes such as Somatic Complaints, Rule-Breaking Behavior, Social Problems and 
the Dysregulation Profile received less attention.
	 In molecular genetic studies, heritability as estimated in the twin model is 
often contrasted with SNP-heritability, the phenotypic variance explained by a large 
subset of all common genetic variants (single nucleotyde polymorphisms, SNPs). SNP-
heritability can be obtained from Genomic-Relatedness-matrix restricted Maximum 
Likelihood (GREML) analysis [19, 20] where the effect of individual genetic variants can 
be estimated in Genome Wide Association Studies (GWAS). In general, SNP heritability 
and twin-heritability are correlated across traits, i.e. traits with high twin heritability 
tend to have a high SNP-heritability. The power to detect genetic variants in a GWAS 
in turn is also related to, among other factors, the SNP and twin heritability estimates. 
If child behavioral problems assessed by multiple informants, for example mother, 
father or teacher, are more heritable, due to the focus on the part of the behavior on 
which all raters agree and with reduction of measurement error, rater bias or specific 
rater view, power will be increased in a GWAS by combining information from different 
raters. Alternatively, a substantial rater specific heritability might indicate that ratings 
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from particular informants should be analyzed separately in GWAS, to identify variants 
contributing to that part of the behavior that is only seen by a specific rater in a specific 
context. Results obtained from twin studies with multiple informants may address these 
questions and convey additional information, which can aid in the design of molecular 
genetic studies and results interpretation.
	 The aim of this study was to estimate the relative contribution of genetic factors 
(twin heritability) to the raters agreement and disagreement of the all empirical scales 
of CBCL 6-18 in a large sample (N = 12,310 pairs) of twins around age 7 years and in 
this way inform molecular studies. These twins participate in an ongoing longitudinal 
data collection for the Netherlands Twin Register [43, 44]. We investigated agreement 
and disagreement between parents in the psychometric model [34, 36]. The large 
sample size allowed us to exploit the liability threshold model [143] and consider data 
as categorical, as in population based samples CBCL scales tend to be skewed. It has 
been shown that this approach has an advantage over various data transformations for 
skewed data [144]. The large sample further allowed for the assessment of quantitative 
and qualitative sex differences.

Methods:
Participants and Measures:
The data analyzed in this study are obtained by the Netherlands Twin Register (NTR), 
which is a population-based longitudinal study of the health and life style of twins and 
their families. Participants are voluntarily registered with the NTR and the data collection 
protocol was approved by the Medical Research Ethics Committee of the VU University 
Medical Center. For 12,629 twin pairs, born between 1986 and 2006, maternal and 
paternal ratings were available. Data from 312 pairs were excluded since one or both 
twins had an illness or handicap that interfered with daily functioning. For the same-sex 
twin pairs zygosity was determined by blood group (n pairs = 194), DNA polymorphisms 
(n pairs = 1,558) or by parental zygosity questionnaire (n pairs = 6,661). Twins for whom 
zygosity was unknown (n pairs = 7) were also excluded from the analysis. The final 
sample comprised 12,310 twin pairs: 2,079 monozygotic male (MZM), 2,086 dizygotic 
male (DZM), 2,324 monozygotic female (MZF), 1,924 dizygotic female (DZF) and 3,897 
opposite-sex pairs (DOS). CBCL data were collected when the twin pair was about 7 
years old (mean = 7.45, sd = 0.40, N = 24,620). Maternal questionnaires were available 
for 12,086 pairs, paternal questionnaires for 8,555 pairs. Either the CBCL 4-18 [145] or 
the CBCL 6–18 [137] were used, depending on the year in which the questionnaire was 
sent to participants. The sum scores for each scale were computed based on syndrome 
scale (version Achenbach and Rescorla, 2001) [137]. Means, standard deviations, and 
information on skewness and kurtosis for all scales are provided in Supplementary Table 
1. The scale scores are the sum of all items, where a lower score indicates less or no 
behavior problems and higher scores indicate the presence of behavioral problems. 
Because twin studies represent population samples, the distribution of CBCL data is often 
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skewed (L-shaped). This could lead to biased parameter estimates [144]. Therefore, we 
categorized the data in 3 categories (0,1,2) and carried out the analyses using a liability 
threshold model. The two thresholds approximately divided the dataset with both 
parental ratings into 3 equal parts. The liability threshold model assumes an underlying 
normal distribution, which we scaled with a mean of 0 and unit variance. In this context 
thresholds reflect the prevalences of childhood psychopathology rated by mother and 
father. Descriptive statistics were calculated with SPSS [146]. Relationships between raw 
data and categories can be found in Supplementary Table 2.

Genetic epidemiological analyses:
For each CBCL scale, a 4x4 polychoric correlation matrix was estimated in all zygosity 
by sex groups (MZM, DZM, MZF, DZF and DOS). It contained parental twin1-twin2 
correlations, the parental cross-correlations between twins (e.g. father rating of twin1 
and mother rating of twin2) and the parental agreement correlations (Table 1).

Table 1. 4x4 correlation matrix for 5 zygosity by sex groups 
Mother twin 1 Father twin 1 Mother twin 2 Father twin 2

Mother twin 1 1 Parental 
agreement
correlation

Mother 
correlation 

twin1-twin2

Mother(twin1)-
father(twin2) 

cross-correlation
Father twin 1 Parental 

agreement 
correlation

1 Father(twin1)-
mother(twin2) 

cross-
correlation

Father 
correlation 

twin1-twin2

Mother twin 2 Mother 
correlation twin1-

twin2

Father(twin1)-
mother(twin2) 

cross-
correlation

1 Parental 
agreement
correlation

Father twin 2 Mother(twin1)-
father(twin2) 

cross-correlation

Father 
correlation 

twin1-twin2

Parental 
agreement
correlation

1

We constrained the correlations, such that 1) parental agreement correlations across 
sex and zygosity were equal, and 2) parental twin1-twin2 correlations across sex within 
MZ and DZ pairs were equal. The most parsimonious models, in terms of the constraints 
outlined above, were used in the subsequent genetic analyses. A psychometric genetic 
model, as described by Hewitt et al. (1992) [36]  and Bartels et al. (2007) [34] was fitted 
to the data to estimate heritability and to disentangle shared and specific aspects of 
the parental ratings of the child’s behavior. The model specifies a common component 
to the phenotype, as assessed by both parents and a unique component of the child’s 
phenotype reflected in the assessments of each parent. The total variance of mother’s 
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ratings (Vmother) is decomposed into common (Vshared) and unique (Vunique,mother) 
parts. The total variance of father’s rating (Vfather) is decomposed in the same way. 
Vshared is decomposed into variance components representing additive genetic 
(Va,shared), common environment (Vc,shared) or dominant genetic (Vd,shared), and 
unique environment (Ve,shared) components. The additive genetic variance (Va, shared) 
represents the part of the heritability of the phenotype that is assessed by both parents. 
Likewise (Vunique,mother) is decomposed into (Va,unique,mother), (Vc,unique,mother) 
or (Vd,unique,mother), and (Ve, unique,mother). Vunique, father is decomposed in the 
same way. The additive genetic variance of the unique component of mother or father 
ratings (Va,unique) represents the part of the heritability of the trait that is uniquely 
expressed in the presence of each parent. Whether parents truly rated the specific aspect 
of the child behavior was tested by constraining the genetic variance of the specific view 
(Va,unique) to 0. We also tested if common environmental variance of the shared aspect 
of the phenotype (Vc,shared), which is free of bias and specific parental view, equaled 0. 
The rater bias is reflected in the proportion of common environmental variance of raters 
disagreement (Vc,unique). The genetic correlation between maternal and paternal 
ratings was computed based on the estimates of the additive genetic components of the 
most parsimonious model based on the formula: 

rg = Va,shared/(√(Va,shared+Va,unique,mother)×√(Va,shared+Va,unique,father)). 

The level of significance was 0.05/12 = 0.0042 to account for multiple testing of 12 CBCL 
scales. Analyses were performed in OpenMx 2.2.6 [147].

Results
Descriptive statistics
Means and standard deviations for boys and girls for mother and father ratings are 
Means and standard deviations for boys and girls for mother and father ratings are given 
in Table 2, which also gives the thresholds. For all CBCL scales, the means of the sum 
scores were higher for maternal than for paternal ratings and ratings for boys and girls 
were significantly different. Both mothers and fathers rated girls higher for the Anxious/
Depressed and Somatic Complaints subscales and the Internalizing scale. For all other 
scales boys scored higher than girls, with the exception of the Withdrawn/Depressed 
scale, for which they scored similarly. Differences in prevalences between boys and girls 
are reflected in the significant loss of fit of the model (Supplementary Material, Table 3) 
when constraining the thresholds to be the same across sexes.
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Correlations between twins and raters
Correlations, estimated in 4x4 matrix for each of the five zygosity by sex groups are 
summarized in Table 3. For all scales parental agreement correlations were similar 
between boys and girls as well as between MZ and DZ twins. Parental agreement 
correlations were constrained to be equal across sex and zygosity, this did not lead 
to significant worsening of fit of the model to the data (Supplementary Table 3). We 
detected sex effects for the Aggressive Behavior, Externalizing scale and Dysregulation 
Profile reflected by significant sex differences in parental agreement, but since the 
differences were small, we decided not to model sex specific effects in the variance 
decomposition. Parental twin correlations and cross-twin-cross-rater-correlations were 
higher for MZ twins, than for DZ twins, indicating that rater disagreement partly reflects 
a rater specific or context specific view and not only rater bias. Parental twin correlations 
were similar for boys and girls within MZ and DZ pairs, and therefore were constrained to 
be the equal across sex in subsequent submodels (Supplementary Table 3). 
	 Table 4 summarizes the correlations obtained from the constrained model. For 
all scales, except Attention problems, parental correlations in MZ twin pairs were lower 
than one and twice the DZ correlations, or less, indicating contributions of Additive 
Genetic (VA), Shared Environmental (VC) and Unique Environmental (VE) variation to the 
total phenotypic variation. For Attention problems MZ correlations were, lower than one 
and larger than twice the DZ correlations, indicating Additive Genetic (VA), Dominant 
Genetic (VD) and Unique Environmental (VE) variation. Thus, for all traits a VACE variance 
decomposition model was fitted, except for Attention Problems, for which an VADE model 
was used.
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Table 4. Correlations estimated from the most parsimonious model

Zygosity

Twin 
correlation

Mother – 
Father
cross-

correlations

Parental Agreement

Mo Fa
Phenotypic 
correlation

Genetic 
correlation

Anxious/
Depressed

MZ 0.73 0.75 0.48 0.66 0.87

DZ 0.46 0.47 0.26
Withdrawn/
Depressed

MZ 0.73 0.75 0.46 0.62 0.72
DZ 0.37 0.41 0.18

Somatic 
Complaints

MZ 0.70 0.71 0.45 0.66 0.78
DZ 0.45 0.42 0.24

Rule Breaking 
Behavior

MZ 0.89 0.90 0.56 0.63 0.74
DZ 0.69 0.69 0.41

Aggressive 
Behavior

MZ 0.87 0.89 0.64 0.72 0.86
DZ 0.58 0.61 0.40

Social 
Problems

MZ 0.79 0.83 0.54 0.67 0.77
DZ 0.50 0.54 0.32

Thought 
Problems

MZ 0.79 0.82 0.52 0.64 0.68
DZ 0.48 0.49 0.30

Attention 
Problems

MZ 0.79 0.81 0.59 0.74 0.42 / 1.0/ 0.74*
DZ 0.29 0.32 0.17

INT MZ 0.75 0.77 0.51 0.65 0.89
DZ 0.55 0.53 0.32

EXT MZ 0.89 0.89 0.64 0.72 0.82
DZ 0.62 0.65 0.43

Dysregulation 
Profile

MZ 0.87 0.88 0.64 0.72 0.89
DZ 0.60 0.64 0.42

Total 
Problems

MZ 0.89 0.90 0.66 0.73 0.90
DZ 0.69 0.72 0.49

* For Attention Problems both the additive genetic correlation, the correlation between genetic dominance 
factors and the total genetic correlation (the correlation between the summed additive and dominant genetic 

effects) are given.
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Genetic Psychometric model
For all scales, the common component of the phenotype assessed by both parents was 
substantial, with parental ratings correlations varying between 0.62 and 0.74 (Figure 
1, Table 4), however, a contribution of specific aspects of the child’s phenotype was 
present as well. For all scales, a substantial amount of the total variance ranging from 
34% to 65% (Table 5) was accounted for by additive genetic variation, of which 15% 
to 48% was shared between parents (agreement) and 0% to 22% was unique to each 
parent. For all scales, except Attention Problems, between 7% to 56% of total variation 
was accounted for by common environmental factors. The proportion of such factors 
that contribute to variation in parental agreement, i.e. free of rater bias and specific 
parental view, ranged from 0% to 32%. The proportion that is unique to each parent’s 
perspective ranged from 7% to 24%. The contribution of dominant genetic effects to the 
total variation in the Attention Problems was 44% and was reflected in the part of the 
phenotype that parents agreed upon. Genetic correlations, computed based on additive 
genetic components of the most parsimonious psychometric model, ranged from 0.42 to 
0.90 (Figure 1, Table 4). The additive genetic correlation of 0.42 is an outlier, which was 
observed for Attention Problems. This is the only scale for which dominant effects were 
found and the dominance genetic correlation was one. The total genetic correlation (the 
correlation between the summed additive and dominant genetic effects) was 0.74.
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Figure 1: Genetic and phenotypic correlations between maternal and paternal ratings 
across all CBCL 6-18 scales. For all scales, except Attention Problems, the genetic 
correlations between additive genetic factors are depicted. For Attention Problems 
scale the total genetic correlation (between summed additive and dominant effects) is 
shown.
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Discussion 
In this study we employed a psychometric model to determine to what extend parental 
assessments of a child’s behavioral problems around age 7 reflect common and parent 
specific aspects of the child behavior or if parents disagree due to rater bias. We observe 
interparental phenotypic correlations between 0.62 and 0.74, reflecting substantial but 
incomplete agreement between parents. Incomplete agreement may result in different 
heritability estimates between a single phenotype as assessed by different informants. 
Different informants provide information about child’s behavior and it is important to 
identify, prior to large GWAS efforts, whether the additive genetic effects on a trait 
strictly are found in the phenotypic variation which correlates between raters. Our 
analyses showed these were fairly highly correlated and that genetic correlations ranged 
from moderate to high (Figure 1, Table 4), that is from 0.68 to 0.90 for all problem scales, 
with the exception of Attention problems. The Attention Problem scale, as observed 
in numerous studies, has a different genetic architecture with non-additive genetic 
influences explaining a substantial part of the heritability.

Comparison to previous results
In the NTR exploration of parental rater bias effect were conducted earlier for Anxious/
Depressed [148], Attention Problems [149], Withdrawn behavior [150], Aggression 
[151], Thought Problems [142], Internalizing and Externalizing domains [152-154]. The 
larger collection of NTR data in the current paper allowed for analysis of categorical 
data under a threshold model. Several new scales were analyzed for the first time 
using multiple rater assessments at age 7, such as Somatic Complaints, Rule-Breaking 
Behavior, Social Problems, Dysregulation Profile and Total Problems Score. In addition, 
the earlier papers had focus on separate scales and domains, whereas all CBCL scales 
were explored simultaneously in the current study, allowing for comparison between 
scales. Our results showed that heritability estimates of Internalizing, Externalizing, 
Dysregulation Profile and Total Problems score in comparison to subscales comprising 
them, varies. The estimates of the unique aspect of the child behavior rated by mother 
are more variable across the Internalizing scale subscales, than they are for father. 
This trend is not reflected in the Internalizing scale, where all three phenotypes are 
combined. In addition, the absence of genetic effects estimated for unique aspect of 
maternal rating of the child’s behavior is likely driven by the Anxious/Depressed scale 
and not by others. In contrast, for the Externalizing scale estimates of the contribution 
of genetic and environmental components to the variation of the phenotype shared by 
both parents were more variable across subscales. Only for the Dysregulation Profile 
and Total problems scales a specific paternal contribution was accounted for by rater 
bias reflected by a significant Vc,unique component. A possible explanation is the 
heterogeneity of these measures in comparison to homogeneous single scales. We did 
not observe any sex differences in genetic architecture or in parental agreement for 
behavior rated for girls and boys, except for Aggressive Behavior, Externalizing and the 
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Dysregulation Profile, but observed the well-known differences between boys and girls 
for mean scores. Also, we observed that mothers rated the behavioral and emotional 
problems in their offspring higher than fathers. 
	 Results obtained in our study are in line with earlier studies of CBCL 6-18 scales 
in twins aged 7. Both studies of single or multiple raters reported genetic influence on 
variability in behavioral and emotional problems [155-159]. In Brendgen et al. (2005) 
[156] peers’ and teachers’ assessments were used to study genetic influences on social 
and physical aggression in 6 year olds, and heritability estimates were similar in magnitude 
between raters. The phenotypic correlation between teachers and mother ratings of 
aggressive behavior was moderate (r = 0.20) in the study of Haberstick et al. (2006) [157] 
and heritability estimates differed in magnitude between raters for children at age 7 and 
the authors suggested that parents and teacher provide unique information that can be 
specific to the settings. In Eley et al. (1999) [158] sex-differences in aggressive antisocial 
behavior were reported for boys and girls, which were also detected in our study. To 
our knowledge there is limited research on Somatic Complaints, Rule-Breaking Behavior, 
Social Problems scales and the Dysregulation Profile of CBCL 6-18 at this specific age. 
For the latter, the agreement and disagreement between raters were reported in an 
American non-twin cohort [138]. Report based on an Italian sample of twins (N = 398 
pairs), rated by mothers, in age range from 8 to 17 years showed no additive genetic 
effect, but 54% of common and 46% of unique environment effects for Social Problems 
[159]. Because heritability might change as a function of age [26, 160] previous reports 
on younger and older twins are not directly comparable to the current study. These 
findings have implications for molecular genetic studies. 

Implications of our findings for molecular genetic studies
In molecular genetic studies, the distinction between rater bias and rater specific 
assessment of child’s behavior may have implications for the estimation of the SNP-
heritability of behavioral and emotional problems. GWAS and GREML analyses will 
benefit from the determination to what extend two different sources of disagreement 
contribute to the phenotypic variance and affect the covariance. For example, differences 
in mother and father ratings suggest using rater as a covariate, if raters information is 
combined. In the recent study of Pappa et al. (2015) [161] SNP-heritability of a range of 
children’s behavior problems were estimated. Attention Deficit Hyperactivity Disorder 
(ADHD) related scales and Externalizing behavior were assessed by both mother and 
teacher. Estimates of SNP-heritability of Attention Problems for teacher’s ratings and of 
ADHD Combined scale for Conner’s Parent Rating scale were 0.71 (s.e. = 0.22, n = 1,495, 
p-value < 0.001) and 0.40 (s.e. = 0.14, n = 2,262, p < 0.01) respectively. For Externalizing 
behavior scale estimates of SNP-heritability were 0.44 (s.e. = 0.22, n= 1,495, p < 0.05) 
for teacher’s ratings and 0.12 (s.e. = 0.10, n = 3,174, p = 0.13) for maternal ratings. The 
differences in SNP-heritability estimates are consistent with the findings obtained from 
twin studies, which account for rater specific effects. As was suggested in a study of 
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Attention Problems by Derks et al. (2006) [132] both mother and teacher provide valid, 
but specific information about a child’s behavior in addition to a commonly assessed 
part. Therefore, variation explained by SNPs in teachers and mothers ratings may be 
represented by different, partly overlapping, genetic loci. 
	 Our investigation of rater common and rater specific contributions to 
phenotypic variation serves as an indication of whether or not combined analyses of 
different informant ratings are likely to be fruitful. The substantial genetic correlations 
between different raters as evident from our results, suggest two practical guidelines: 
when studies have collected data from either fathers or mothers, the shared genetic 
aetiology in parental ratings indicates that is possible to analyze paternal and maternal 
assessments in a single GWA study or meta-analysis. Secondly, if a study has collected 
information from both parents, a gain in statistical power should be realized in a GWA 
study by simultaneous analysis of the data.
	 The power of various ways of modeling bivariate phenotype information, 
including analyses based on sum and factor scores, exploratory factor analysis (EFA), 
MANOVA, and combined multivariate analyses (CMV) were explored by Van Der Sluis et 
al. (2010), Medland and Neale (2010) and Minica et al. (2010) [162-164]. Each of these 
approaches was evaluated in terms of power to discover genetic loci. Based on results 
of these studies, if the genetic correlation between different raters is very high, implying 
that genetic loci, that influence parental ratings, overlap almost completely, combining 
the ratings in a single trait, using sum score is, is justifiable [164]. If the correlations 
are moderate to high, one might prefer a technique that has high power when loci are 
expected to influence the shared, as well as unique part of the phenotype as assessed 
by the different raters [163]. Finally, if the genetic correlations between raters is low to 
moderate, one might prefer to perform separate analysis in either rater and combine 
the resulting p-values by using Trait-based Association Test that uses Extended Simes 
procedure (TATES) [165]. 
	 In current study we considered parental ratings and did not make an attempt 
to analyze rater effects based on teachers ratings or on self-assessments of children. 
Inclusion of other raters will convey additional information about possible combined or 
separate analysis of problem behaviors assessed by multiple raters.
	 Based on the results reported in this paper, we conclude that aggregating 
multiple raters’ in genetic studies of childhood psychopathology potentially will improve 
power. At age 7, our study showed that heritability of phenotypes reflecting a shared 
perspective on the child’s problem behavior is substantially higher than that of unique 
view. These results suggest a model in which genome wide analysis of different raters 
are combined into a single trait, accounting for genetic correlation, and differences in 
heritability, could prove optimal. For traits with a (somewhat) lower genetic correlation 
or if including further raters, for which substantial rater specific genetic effects are 
present (e.g. self ratings, teacher ratings, clinician ratings), a multitude of multivariate 
genetic analysis tools exist.
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CHAPTER  5 

A GENETIC LIABILITY TO HIGHER SUBJECTIVE WELL-BEING IS 
MORE INDICATIVE OF LOWER LEVELS OF NEUROTICISM THAN 

HIGHER LEVELS OF EXTRAVERSION

This chapter is based on: 
Iryna O. Fedko, Jouke-Jan Hottenga, Erik A. Ehli, Gareth E. Davies, Dorret I. Boomsma, 
and Meike Bartels. A genetic liability to higher Subjective Well-being is more indicative 
of lower levels of Neuroticism than higher levels of Extraversion (as to be submitted).
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Abstract
There is ample evidence regarding the significant role of genes in explaining individual 
differences in Subjective Well-being (SWB), Neuroticism (NEU) and Extraversion (EXT). 
Twin data suggests that genetic influences on personality traits and SWB are correlated. 
The genetic correlation for SWB and NEU based on Single Nucleotide Polymorphisms 
(SNPs) has been found to be high, but has not been studied for SWB and EXT. In the 
current study, we applied a bivariate genetic model to estimate the SNP-heritability for 
the SWB and personality traits, and compared the genetic correlations between them. 
We used both the information from distantly and closely related individuals, thereby 
estimating total trait heritability, heritability explained by SNPs, the total genetic 
correlation and the part of the genetic correlation that can be attributed to SNPs. We 
found that 7%, 10% and 16% of the variance in SWB, NEU and EXT is accounted for by 
SNPs present on current genotyping platforms. The magnitude of the SNP-based genetic 
correlation between SWB and NEU was in line with previous work (rg = -.80, SE = .25), but 
higher than the SNP-based genetic correlation between SWB and EXT (rg = .18, SE = .26), 
while the phenotypic correlations are largely comparable. This indicates that a higher 
genetic liability to SWB is related to a lower NEU levels and not to higher EXT levels. Also, 
environmental influences explain a larger part of the phenotypic correlation between 
SWB and EXT than between SWB and NEU.
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Introduction
There has been a great deal of evidence that shows the significant role of genes 
explaining individual differences in Subjective Well-being (SWB), Neuroticism (NEU) and 
Extraversion (EXT). Earlier studies reported personality being the important predictor of 
the SWB [32, 33]. Twin-family studies revealed that approximately 32% [166], 27%, and 
24% [167] of the variances in SWB, NEU and EXT are accounted for by additive genetic 
variance, respectively. The recently reported SNP-based heritability, that is the variance 
in the phenotype accounted for by Single Nucleotide Polymorphisms (SNPs), was 4-10% 
for SWB [168, 169], 6-15% for NEU [168, 170-173] and 0-12% for EXT [170, 173, 174].
	 Personality traits, such as Extraversion and Neuroticism, were found to be 
related to SWB. Observed correlations were estimated to be in a range from    -.14 to 
-.25 between SWB and NEU and from .17 to .27 between SWB and EXT [32]. Twin data 
suggested the genetic correlation as .58 between SWB and NEU and .66 between SWB 
and EXT [33]. A study in a German twin and non-twin sample [175] detected larger 
association between SWB and NEU than SWB and EXT. A recent large-scale collaborative 
effort reported SNP-based genetic correlation between SWB and NEU to be -.75 (SE 
= 0.034) [168]. SNP-based genetic correlation between SWB and EXT has not been 
explored yet. 
	 Here we applied a powerfull bivariate model, in which the variance of two 
traits and the covariance between them is modeled using bivariate restricted maximum 
likelihood (REML) method of Genome-wide Complex Trait Analysis (GCTA) tool [20]. 
Besides estimates of SNP heritability of the two traits (e.g. SWB and EXT) this bivariate 
model also provides the genetic correlation, which is an estimate of the additive genetic 
component that is common to both traits. We applied this method to SWB, NEU, and 
EXT within the Netherlands Twin Register, a general Dutch population based sample, to 
investigate the shared genetic aetiology.
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Methods
Participants
For this study we selected ≈ 9,000 participants, which were registered at the Netherlands 
Twin Register (NTR), established by the Department of Biological Psychology at the VU 
University in Amsterdam. Around 60% of the sample was female and the average age 
was 38 years (SD = 16). Seventy five percent of the sample regularly participated in the 
Adult Netherlands Twin Register survey studies (ANTR) [176], while 25% were derived 
from the Young Netherlands Twin Register (YNTR) [177]. 

Measurements
SWB was assessed with the Satisfaction with Life Scale [178]. The scale consists of 5 
items which had to be answered on a 7-point scale ranging from 1 = ‘strongly disagree’ 
to 7 = ‘strongly agree’. An example item is “My life is going more or less as I wished”. 
Internal consistency of the scale was good with a Chronbach’s Alpha of .86. SWB have 
been assessed longitudinally. To maximize the sample size for the current analyses, we 
took the last valid assessment and replaced missing values with assessment scores from 
earlier time points.
	 NEU and EXT were based on the Item response scores from the Genetics of 
Personality Consortium meta-analysis [167]. 

DNA collection, Genotyping and Imputation
Genotyping was done on several genotyping platforms; including the Perlegen-
Affymetrix platform, the Affymetrix 6.0 platform, the Illumina Human Quad-Beadchip 
660K, and the Illumina Omni 1M. Genotyped data were cross-platform imputed against 
GONL reference set to infer the SNPs missing per platform in the combined data [102]. 
Pre-imputation Quality Control (QC) included aligning the alleles to the plus strand, 
excluding alleles with frequencies differences more than 10%, SNPs with MAF < 0.005, 
significant deviation from Hardy-Weinberg Equilibrium (HWE) p < 10⁻¹² and call rate < 0.95. 
Samples with genotype call rate < 0.90, heterozygosity falling outside of the interval 
(F < -0.075; F > 0.075), Affymetrix CQC < 0.40 if applicable, Mendelian error rate > 5 
standard deviations (SDs) from the mean, gender and Identity-by-State (IBS) status 
mismatch between known status and genotypic assessment were excluded. Phasing and 
imputation was performed with MaCH-Admix [47] software and probabilities of inferred 
genotypes were converted to best guess format using Plink 1.90 [179]. After imputation, 
SNPs that were significantly associated with genotyping platform (p < 10⁻⁵) and had allele 
frequencies difference > 10% with GoNL reference set, HWE p < 10⁻⁵, Mendelian error 
rate > 5sd of mean over all markers and imputation quality R² < 0.90, were excluded. Part 
of the NTR sample was sequenced using the GONLseq platform and these persons were 
added to the dataset after imputation. We then performed a Principal Components 
Analysis (PCA) to check for possible ethnic and platform stratification. 
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Statistical analysis
Phenotypes were corrected for sex, age z-score, age z-score squared (for SWB), Dutch 
population structure based on the Principal Components Analysis (PCA) and chip effects using 
linear regression in SPSS v.21. The standardized residuals were analyzed. The variance in each 
trait explained by common SNPs and the genetic correlation between traits were estimated 
using the bivariate restricted maximum likelihood (REML) method of Genome-wide Complex 
Trait Analysis (GCTA) tool [20], by specifying a genetic relationship matrix (GRM) among all 
unrelated individuals in the study and a second matrix among relatives [37]. The advantage 
of using GCTA is that it overcomes the obstacle that SNPs might have too little effect to detect 
them in conventional GWAS analysis on one dataset. Genetic Relationship Matrix (GRM) was 
calculated based on best guess imputed genotypes. Ethnic outliers (n = 710) were excluded. 
SNPs with MAF < 0.01 were excluded as well to calculate the GCTA matrix. Total N of SNPs 
that passed the QC was 1,228,124. 
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Results
Bivariate pedigree-based analysis yielded estimates of total heritability of 32% for SWB, 
37% for NEU and 42% for EXT (Table 1) with 7%, 10% and 16% of the variance in SWB, 
NEU and EXT, respectively, accounted for by SNPs 
	 The phenotypic correlations (Table 2) between SWB and NEU (r = -.46) and 
between NEU and EXT (r = -.44) were negative, whereas a positive correlation was 
observed between SWB and EXT (r = .32). The directions of genetic correlations mirrored 
the observed ones, detecting negative pedigree-based (rg = -.70 and rg = -.53) and SNP-
based (rg = -.80 and rg = -.34) correlations between SWB and NEU and between NEU and 
EXT, respectively, and positive genetic correlation between SWB and EXT in pedigree-
based (rg = .48) and SNP-based analysis (rg = .18).

Table 1
Bivariate pedigree (total h²) and SNP-heritability (SNP h²) estimates and genetic 
correlations (rG); N represents the sample size for each phenotype; N1 + N2 represents 
the number of data points in bivariate analysis (sum of sample sizes for both phenotypes).
Pedigree-based heritability and genetic correlation

N total h2 SE

SWB 9,141 .32 .02
NEU 9,020 .37 .02
EXT 9,018 .42 .02

N₁ + N₂ rG SE (p-value*)
SWB-NEU 18,161 -.70 .03 (< .001)
SWB-EXT 18,159 .48 .03 (< .001)
NEU-EXT 18,038 -.53 .03 (< .001)
Heritability and genetic correlation that can be attributed to SNPs

N SNP h² SE

SWB 9,141 .07 .04
NEU 9,020 .10 .04
EXT 9,018 .16 .04

N₁ + N₂ rG SE (p-value*)
SWB-NEU 18,161 -.80 .25 (.01)
SWB-EXT 18,159 .18 .26 (.26)
NEU-EXT 18,038 -.34 .20 (.09)

*One-tailed test, when rG fixed at 0.000
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Table 2
Phenotypic correlations (r) between SWB, NEU and EXT. N represents the sample size 
for each phenotype, complete pairs of observations were used to compute correlations.
Phenotypic correlation

N r p-value
SWB-NEU 7,935 -.46 < .001
SWB-EXT 7,934 .32 < .001
NEU-EXT 9,018 -.44 < .001

Discussion
Bivariate GCTA analyses revealed that a significant part of the variance in SWB, NEU and 
EXT was accounted for by the additive effect of SNPs. The SNP-based heritability for SWB 
was estimated to be 7%, which is similar to that previously reported [169]. The SNP-based 
heritability for NEU and EXT was estimated at 10% and 16%, respectively. The overlap in 
genetic influences between SWB and NEU was substantial (rg = -.80, SE = .25), while the 
genetic overlap between SWB and EXT was only moderate (rg = .18, SE = .26), which is in 
sharp contrast to the phenotypic correlation (r = -.46 for SWB-NEU and r = .32 for SWB-EXT). 
Thus, the SNPs that influence SWB and NEU overlap substantially, with opposing effects, 
while much less genetic overlap is observed for SWB and EXT, while their phenotypic 
correlation is similar to that of SWB and NEU. This finding is in contrast to previous results, 
in which a larger common genetic variance between SWB and NEU, than between SWB 
and EXT, was found [175], but similar genetic correlations between SWB and NEU/EXT 
were reported [33]. 
	 The results of our powerful bivariate SNP-based design indicate that the similar 
overlap between SWB and NEU and between SWB and EXT has different underlying 
sources. The main source of overlap between SWB and NEU has repeatedly been found 
to be genetic, while our novel results indicate that genetic influences are much less 
important in explaining the observed association between SWB and EXT. This implies 
that EXT would not pass the test of being an informative proxy phenotype for SWB, 
but could be an attractive target for environmental based prevention or intervention 
stratiegies. Our results need to be interpreted in light of the following limitations. 
	 First, the study of Hanh et al (2013) [175] showed that the SWB and NEU/
EXT shared both additive and non-additive genetic factors, which cannot be detected 
using GREML, as it assumes the additive genetic model. Moreover, they share common 
environmental factors. High and significant pedigree-based genetic correlation between 
SWB and NEU (rg = -.70, SE = .03) and SWB and EXT (rg = .48, SE = .03) support this 
hypothesis. Regardless of the magnitudes of shared additive, non-additive genetic and 
common environmental influences, they should be taken into account, while interpreting 
the results of genetic studies of SWB [169]. 
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Second, although we applied a bivariate model in a relative large sample, our sample 
size is still small for restricted maximum likelihood (REML) methods. In current study, we 
detected significant SNP-heritability, by employing a new method that includes family 
members, to increase power. However, it is possible, that a larger sample size is required 
for more reliable estimates of genetic correlations. 
	 To conclude, in this study we showed that genetic overlap between SWB and 
NEU is larger than between SWB and EXT. Based on our results, the detection of loci 
common to both phenotypes is likely between SWB and NEU, rather than SWB and 
EXT. The role of EXT in explaining the inter-individual differences in SWB remains to 
be explored. Genetic association studies of SWB and its relation to other personality 
traits will add important information to reveal new biological pathways, which can then 
serve as a strong foundation for the development of multidisciplinary health, social, and 
economic policies. 
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CHAPTER  6 

HOMEOSTATIC MODEL ASSESSMENT OF β-CELL FUNCTION AND 
INSULIN RESISTANCE: A GENOME WIDE INFERRED STATISTICS 

ASSOCIATION STUDY

This chapter is based on: 
Iryna O. Fedko, Michel G. Nivard, Jouke-Jan Hottenga, Meta-Analyses of Glucose and 
Insulin-related traits Consortium (MAGIC) Investigators, Reedik Mägi, Inga Prokopenko, 
and Dorret I. Boomsma. Homeostatic Model Assessment of β-cell Function and Insulin 
Resistance Genome Wide Inferred Statistics Association Study (as to be submitted). 
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Abstract
We applied a recently developed approach called GWIS (Genome Wide Inferred 
Statistics) to discover genetic variants influencing Homeostatic Model Assessment of 
β-cell function (HOMA-B) and Insulin Resistance (HOMA-IR).
	 We achieved a boost in power by approximating HOMA-B/-IR functions summary 
statistics from Fasting Glucose (FG) and Fasting Insulin (FI) from recent meta-analysis results. 
Earlier GWAS conducted with HOMA as an outcome suffered from the missing values in 
either FI or FG, thus leading to decrease in sample size and power compared to single FI 
or FG meta-analysis. GWIS allows overcoming this issue and approximates the summary 
statistics for the non-linear function of HOMA phenotypes. The GWIS analysis revealed 
eleven loci, including four novel, for HOMA-B and five loci, including three novel, for HOMA-
IR (p < 5×10⁻⁸). Previously, seven HOMA-B and one HOMA-IR locus were also reported for 
an association with T2D risk. Significant genetic correlation was detected between HOMA-
IR and T2D (rg=0.53, SE=0.08, p=2.94×10⁻¹⁰), suggesting that in the future, better powered 
genome-wide association studies will show large locus overlap between these two related 
phenotypes. Shared genetic risk factors between BMI and both HOMA-B (rg = 0.39, SE = 0.05, 
p-value = 6.58 × 10⁻¹⁵) and HOMA-IR (rg = 0.62, SE = 0.05, p-value = 9.26 × 10⁻³⁵) as well 
as between HOMA-IR and T2D (rg = 0.53, SE = 0.08, p-value = 2.94 × 10⁻¹⁰) highlight 
the complex interplay between obesity, insulin resistance and β-cell dysfunction risk to 
T2D. Our results show that FI loci are predictive of insulin resistance loci and FG loci are 
predictive of β-cell function loci, indicating a role of the FG and FI in pathophysiology of 
T2D through measures of HOMA-B and HOMA-IR. 
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Introduction
Genome-wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) in non-
diabetic European individuals have allowed identification of over 72 genetic loci [180]. 
While FG can be considered in the diagnosis of type 2 diabetes (T2D) and FI level is 
indicative for the body insulin sensitivity, they do not provide informative mechanistic 
insights about physiological measures of insulin secretion and action [181]. Homeostatic 
Model Assessment of β-cell function (HOMA-B) and Insulin Resistance (HOMA-IR) are 
commonly used glycaemic indices studied in relation to T2D [182-190] and both are 
calculated from FG and FI values. HOMA-B reflects the function of the β-cell with respect 
to insulin secretion, whereas HOMA-IR is the estimate of insulin sensitivity. 
	 FI and FG have to be assessed in the same individual to derive each of HOMA 
indices. Missing values in original estimates cause a decrease in the sample size at study 
and meta-analysis levels for each of the derived measures. Whilst published HOMA-B/
HOMA-IR GWAS meta-analyses were undertaken at the same time with FG/FI, they 
featured a much smaller sample size compared to the original phenotypes, for instance, 
they were based on up to 36,466/37,037 individuals in contrast to 46,186/38,238 for FG 
and FI, respectively [191], in the discovery stage. The loss in power meant that compared 
to 15 FG/0 FI loci, the HOMA-based GWAS reported only 4 HOMA-B/1 HOMA-IR loci 
reaching genome-wide significance (p < 5×10⁻⁸) in the discovery sample.
	 The recent FG and FI GWAS meta-analyses were based on up to 88,320 and 
64,090 individuals, respectively [192], and offer a unique opportunity to improve our 
knowledge about genetic variants influencing HOMAs, even though the samples used 
in those meta-analyses do not necessarily overlap. The aim of this study was three-fold: 
(i) to infer analytically the GWAS summary statistics for HOMA-B/-IR using FG/FI recent 
GWAS meta-analysis results from the MAGIC [192] using GWIS [38], (ii) to evaluate the 
gain in power through the comparison to previously reported HOMA GWAS results and 
(iii) to define the effects of glycaemic loci on insulin secretion and action through their 
effects on HOMA-B/HOMA-IR. Throughout this paper, we will refer to the previous meta-
analysis of HOMA [191] as ‘published’ and the results of the present study and analysis 
as ‘inferred’ meta-analysis of HOMA.
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Methods
Phenotype definitions
Homeostatic Model Assessment of β-cell function (HOMA-B) and Insulin resistance 
(HOMA-IR) are calculated from the Fasting Glucose and Fasting Insulin measures using 
the following formulas:

HOMA-B = 
20 × FI

, HOMA-IR = 
FG × FI

,
FG-3.5 22.5

where FG is measured in mmol/l and FI is in mU/l units [193].

Method
We applied a recently developed approach by Nieuwboer et al [38] for the approximation 
of a GWAS summary statistics for HOMA, which is a function of FI and FG. GWIS 
allows conducting the in silico GWAS meta-analysis of HOMA-B and HOMA-IR based 
on summary statistics for FI and FG, if the means of the FI and FG, the effect allele 
frequency, the correlation between the two traits and the sample overlap between them 
are known (note, that GWIS can be computed based on overlapping, as well as on non-
overlapping samples; in case of overlapping samples, the GWIS results can be corrected. 
In the absence of accurate knowledge of the phenotypic correlation between traits, this 
correlation can be inferred using LD score regression).
	 We used the summary statistics from the latest GWAS meta-analysis of FG and FI 
performed by the Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC) 
in up to 88,320/64,090 individuals and 40/32 studies, respectively (Supplementary 
Material). In the MAGIC meta-analysis, FI was natural log transformed and measured 
in pmol/l units, whereas FG was measured in mmol/l with a cut-off at 7mmol/l. The 
standard HOMA formulas require untransformed FG/FI measures and use mU/l units 
for FI. We adapted an approximation to compute HOMA-IR and HOMA-B given ln(FI). In 
addition, to account for previous modeling of both HOMAs for the meta-analyses that 
used natural log transformation, we further implemented the approximation to result 
in summary statistics for ln(HOMA-IR) and ln(HOMA-B). Therefore, the relationships 
between the FG and FI phenotypes as used in GWAS and the HOMA-B and HOMA-IR 
phenotypes are:

HOMA-B = ln
20 ×

eFI

, HOMA-IR = ln
FG ×

eFI

,6.945 6.945
FG-3.5 22.5

where division by 6.945 was required to convert FI from pmol/l to mU/l units. The GWIS 
method requires, in addition to genome wide summary statistics for FG and FI, the mean 
FG and FI values, the phenotypic correlation between FG and FI and sample overlap 
across the studies, included in both meta-analyses studies, to correct for dependence 
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between the FG and FI GWAS. 

Study overlap and genetic correlation between published and inferred GWAS results
As sample overlap differs per SNP, e.g. because SNPs can be missing in individual cohorts, 
we computed sample overlap for each SNP by the following: 1) we ran the LD score 
regression and estimated the correlation intercept (gcov_int) between FG and FI; 2) we 
computed r, which is the phenotypic correlation obtained from the LD score cross trait 
intercept and knowledge of Ns1 and Ns2 (see Supplementary Material for the procedure), 
where Ns1 and Ns2 are the minimum sample sizes in the FI and FG individual cohort 
GWAS, and this quantity is equal to the expected correlation between the standard errors 
obtained in the FI and FG GWAS; 3) we obtained the vector of correlation intercepts for 
each SNP from r and information about sample sizes per SNP. The LD score regression 
correlation intercept (gcov_int) from the analysis of genetic correlation between FI and 
FG was 0.2607. The values of computed local correction vector ranged from 0.02847 
to 0.306 with the mean = 0.2635 and median = 0.2607. The mean across studies in the 
meta-analysis was 5.08 mmol/l for FG and 58.56 pmol/l for FI. The approximate sample 
size, for the inferred HOMA meta-analysis results, was computed as the geometric mean 
of the sample sizes for FG (N1) and FI (N2) Napprox=√(N1 × N2). We calculated the effect 
allele frequency as a weighted mean of the FI and FG effect allele frequencies

Quality Control (QC)
We applied the following QC criteria to the FG and FI summary statistics: first, the effect 
alleles for FG and FI effect estimates were aligned; second, the effect allele frequencies 
were set to be less or equal to 10% for the difference between FG and FI (4,299 SNPs were 
excluded) and not larger 20% with CEU HapMap 2 reference set [12] (36 SNPs for FI and 
66 SNPs for FG were removed). We computed the effect estimates and SEs and applied 
the LD score regression to compute the rg between published and inferred HOMA-B/-IR. 
The expectation, when the same trait is analyzed, is that the genetic correlation equals 
1. To evaluate the power gained by using GWIS, we compared meta-analysis results 
of the inferred and published HOMA-B/-IR. A possible inflation of summary statistics 
for variants with a low N is the limitation of the GWIS method. We applied the post-
calculation QC (Supplementary Material Figures 2,7-8) and excluded 278,534/ 278,577 
SNPs with N < 35,000 for HOMA-B/-IR, among which 113/113 were filtered out based 
on with MAF < 0.01 filter. The total number of SNPs after QC was 2,432,775 for both 
HOMA-B and HOMA-IR. In addition, we estimated the LD score intercept (Table 3), which 
was then used to adjust the summary statistics for any residual population stratification 
or misspecification of the sample dependence. We built the Manhattan and QQ plots 
from inferred results for HOMA-B and HOMA-IR. 
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Cross-SNP cross-trait comparison
We assumed signals reaching p-value = 5×10⁻⁸ as GWAS significant for each of FG/FI/
HOMA-B/HOMA-IR traits. Guided by epidemiological correlations between FG and 
HOMA-B, and FI and HOMA-IR [194], we investigated whether we observed effects on 
HOMA-B reaching GWAS significance in our study for FG loci and similarly on HOMA-
IR analyses for FI loci. We additionally compared the effect estimates between the 
published and inferred HOMA GWAS meta-analyses. We also obtained publicly available 
meta-analysis summary statistics for HDL, LDL, TC, TG [195], BMI [196], T2D [197] (see 
URLs) and performed the LD score regression to compute the genetic correlations 
between these phenotypes and inferred HOMA-B/-IR and FI, FG.

Results
Analytically inferred GWAS for HOMA-B/-IR 
We inferred the HOMA-B/HOMA-IR GWAS summary statistics for 2,432,775 variants 
for up to 88,320/64,090, individuals from the MAGIC FG/FI GWAS [192]. We observed 
significant associations in seven previously established loci at G6PC2, ADCY5, DGKB, 
GCK, GLIS3, FADS1/2/3, MTNR1B and identified four loci SLC30AB, TCF7L2, ARAP1, 
FOXA2 reaching the genome-wide significance for HOMA-B (Figure 1 and 3, Table 1, 
Supplementary Figures 13-16). We observed three novel loci at LYPLAL1/SLC30A10, 
PER4, PPP1R3B and confirmed established loci at GCKR and IGF1 were genome-wide 
significant in the inferred HOMA-IR GWAS (Figure 2 and 3, Table 2, Supplementary 
Figures 13-16). In total eight loci (ADCY5, DGKB, GCK, SLC30AB, GLIS3, TCF7L2, ARAP1, 
MTNR1B) out of eleven for HOMA-B and one (GCKR) out of five for HOMA-IR were also 
associated with T2D in previous studies [180].

Figure 1. Manhattan plot for an inferred HOMA-B with FG loci (indicated in green) 
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Figure 2. Manhattan plot for an inferred HOMA-IR with FI SNPs (indicated in green)

Figure 3. QQ plots for inferred a) HOMA-B and b) HOMA-IR
a b
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GWIS power gain
The genetic correlation between the published and inferred HOMA-B and HOMA-
IR were at or above 1 (Tables 3). The LD score intercepts were estimated as 1.05 for 
HOMA-B and 1.03 for HOMA-IR. The comparison of summary statistics distributions 
between published and inferred HOMAs demonstrated that the standard errors (SEs) 
decreased in current analyses compared to the previously determined, supporting the 
gain in power over previous GWAS efforts (see Supplementary Table 1 – 12) [191]. The 
comparison of the variants with low N and MAF between the published and inferred 
GWAS showed a lower concordance between SEs for low N and MAF (Supplementary 
Figures 2, 6-8, 11) thus supporting the QC filters for minimal sample size and MAF. We 
also compared the magnitude and direction of the effects in genome-wide significant 
loci in the published and inferred analysis and confirmed a power gain, particularly for 
HOMA-IR and FI (Supplementary Table 2 and 3).

Table 3. Genetic correlation (rg) between published and inferred HOMA-B/-IR, LD score 
regression intercept, SNP-heritability (h²) and their standard errors (SE).

Published Inferred 
HOMA-B

rg (SE), p-value - 1.14 (0.07), 2.22 × 10⁻⁵⁶
Intercept (SE) 0.99 (0.008) 1.05 (0.008)
h² (SE) 0.08 (0.015) 0.056 (0.01)

HOMA-IR
rg (SE), p-value - 1.18 (0.08), 9.11 × 10⁻⁵³
Intercept (SE) 1.004 (0.007) 1.03 (0.008)
h2 (SE) 0.07 (0.01) 0.059 (0.008)

Effect of glycaemic traits loci on HOMA-B/-IR
As expected from epidemiological data, in our study, the largest shared content was observed 
between genetic effects on FG and HOMA-B, and between FI and HOMA-IR (Table 1 - 2).
	 The genetic correlation between FI and FG was 0.32 (SE = 0.1, p-value = 0.0008). 
The genetic correlation between FI and HOMA-IR was almost complete, i.e. 0.98 (SE = .005, 
p-value < 0.001), consistent with observation that higher levels of FI are associated with 
lower insulin sensitivity. Counter intuitively, HOMA-B and FI showed substantial degree 
of genetic correlation (rg =0.76, SE = 0.05, p-value = 1.76 × 10⁻⁵⁵), which was higher 
than that between FG and HOMA-B (rg = -0.38, SE = 0.12, p-value = 0.002) or HOMA-IR 
(rg = 0.49, SE = 0.07, p-value = 4.2 × 10⁻¹²). A negative genetic correlation between FG 
and HOMA-B suggested that increased FG is related to the reduced β-cell function. We 
detected significant genetic correlation between HOMA-B/-IR and BMI (rg =0.39, SE = 
0.05, p-value = 6.58 × 10⁻¹⁵ and rg = 0.62, SE = 0.05, p-value = 9.26 × 10⁻³⁵). In contrast, 
the genetic correlation with T2D was found only with HOMA-IR (rg = 0.53, SE = 0.08, 
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p-value = 2.94 × 10⁻¹⁰), while there was no correlation genome-wide between T2D and 
HOMA-B [198]. For both HOMA indices, genetic correlations with HDL and TG were 
statistically significant.

Table 4. Genetic correlation (rg) between inferred HOMA-B and HOMA-IR and other 
phenotypes, with their standard errors (SE) and p-values.

HOMA-B HOMA-IR
rg SE P-value rg SE P-value

FI 0.76 0.05 1.76 × 10⁻⁵⁵ 0.98 0.005 < 0.001
FG -0.38 0.12 0.002 0.49 0.07 4.2 × 10⁻¹²
HDL -0.30 0.06 1.6 × 10⁻⁷ -0.46 0.05 9.1 × 10⁻¹⁹
LDL 0.11 0.06 0.05 0.07 0.06 0.22
TC 0.07 0.05 0.18 -0.005 0.05 0.92
TG 0.30 0.06 1.4 × 10⁻⁶ 0.37 0.09 4.6 × 10⁻⁵
BMI 0.39 0.05 6.58 × 10⁻¹⁵ 0.62 0.05 9.26 × 10⁻³⁵
T2D -0.02 0.10 0.85 0.53 0.08 2.94 × 10⁻¹⁰

Discussion
In this study, we presented a new and the largest to date GWAS meta-analysis of HOMA-B 
and HOMA-IR glycaemic indices based on an analytical inference from FI and FG meta-
analysis summary statistics. The gain in power was obtained from the doubled sample 
size of HOMA GWAS compared to the previously published meta-analysis [191]. This 
GWIS-based analysis revealed four novel HOMA-B and three novel HOMA-IR loci and 
allowed to characterize the effect of the established FG and FI loci on HOMA-B/-IR. 
	 We achieved the boost in power using an analytical approach, which potentially 
can save large amounts of analytical time at individual study level. The ability to compute 
the summary statistics in partially overlapping samples demonstrated an advantage 
of the GWIS inference-based method over direct analytical GWAS for composite 
phenotypes. Additionally, this approach does not suffer from the power losses due 
to missing values in original phenotypes. With this study, we pave the way for future 
studies to explore other traits and many other glycaemic indices, defined as a function 
of other phenotypes. Novel mechanistic insights in T2D pathophysiology [199] could 
be brought through comprehensive characterization of a number of indices of insulin 
secretion, action and sensitivity, including Insulin Sensitivity Index, Insulin-Glucose Ratio, 
Insulin Ratio, Insulinogenic Index, Corrected Insulin Response. To calculate these indices, 
pairs of measures of Insulin and Glucose are required at basal level, after 30 min or 2 
hours glucose load intake [200]. Such measures may not be available in the same person 
or in large overlapping samples, thus, studies have been underpowered [191]. GWIS 
allows usage of the summary statistics from just Insulin and Glucose measured at 3 time 
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points and approximating summary statistics for all glycaemic indices irrespective of 
the sample overlap. In case of no overlap between cohorts with different measures, 
computation of GWIS is in fact the only way to approximate summary statistics, as GWAS 
cannot be performed in that case. 
	 High insulin and glucose levels, insulin resistance and β-cell dysfunction 
characterize T2D pathophysiology, however, the exact mechanism of genetic 
interrelationships between these measures remains unclear. ADCY5, DGKB, GCK, 
SLC30AB, GLIS3, TCF7L2, ARAP1, MTNR1B HOMA-B loci and the GCKR HOMA-IR locus 
were previously reported for an association with T2D [180]. It has been shown that 
insulin resistance and β-cell function may have a distinct impact on susceptibility to 
T2D, and mechanistically T2D loci can be related to a specific biological process affecting 
insulin secretion, resistance or processing [201]. 
	 Previous studies established both positive and negative effects of HOMA-B in 
T2D loci [202]. Opposite direction of the effects at these loci is confirmed by the non-
significant genetic correlation between HOMA-B and T2D genome-wide in this study. 
Our results are in line with previously reported genetic correlations between HOMA-B 
and FI/FG/BMI/T2D and HOMA-IR and FI/FG/BMI [198], however, the significant genetic 
correlation between HOMA-IR and T2D we observed has not been reported previously. 
The role of obesity and adiposity [203, 204], in particular, in risk of T2D is reflected in 
a significant genetic correlations between HOMA-B/-IR and BMI observed in our study. 
A substantial genetic correlation between HOMA-B and FG/FI and a perfect correlation 
between HOMA-IR and FI (Table 4) suggests that the fasting glycaemic trait loci for FG 
and FI contribute to HOMA-B/-IR as well (as would be expected based on the formulas). 
	 To conclude, this study implemented a novel GWIS method and conducted 
the largest to date GWAS meta-analysis for HOMA-B/-IR indices. We gained power in 
comparison with previously published GWAS and reported four novel HOMA-B and three 
novel HOMA-IR loci. We enriched our knowledge about the role of the relationships 
between FG and β-cell function, FI and insulin resistance, thus, enabling further 
mechanistic characterization of genetic effects on T2D pathophysiology [201].

URLs: HDL, LDL, TC, TG [195] (Global Lipids Genetic Consortium, http://csg.sph.umich.
edu//abecasis/public/lipids2013/), BMI [196] (GIANT, http://www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files), T2D [197] (DIAGRAM: 
http://diagram-consortium.org/downloads.html)
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Supplementary Material
Study samples
FG: AGES, ALSPAC, AMISH, ARIC, ASCOT, BLSA, BSN, CHS, COLAUS, CROATIA, DECODE, 
DGI, ERF, FAMHS, FENLAND, FHS, FRENCHADULTCONTROL, FRENCHADULTOBESE, 
FRENCHYOUNGCONTROL, FRENCHYOUNGOBESE, FUSION, GENOA, GENOMEUTWINS, 
HABC, HEALTH2000, INCHIANTI, KORA, KORCULA, LIFELINES, NFBC66, ORCADES, PREVEND, 
PROCARDIS, RS, SARDINIA, SORBS, SPLIT, SUVIMAX, TWINSUK, TYROL.
FI: AGES, AMISH, ARIC, BLSA, BSN, CHILD, CHS, COLAUS, CROATIA, DECODE, DGI, ERF, 
FAMHS, FENLAND, FHS, FRENCHADULTCONTROL, FRENCHADULTOBESE, FUSION, GENOA, 
GENOMEUTWINS, HABC, HEALTH2000, INCHIANTI, KORCULA, NFBC66, ORCADES, PREVEND, 
PROCARDIS, RS, SARDINIA, SORBS, TWINSUK.

GWIS
As sample overlap can differ per SNP, we computed the correlation intercept per SNP as described in 
Methods. However, we also computed the version of GWIS using the correlation intercept, estimated 
for FI and FG in the LD score regression directly, i.e. we corrected the results by sample overlap uniformly 
across SNPs. Based on comparison of the two versions, one was selected for further analysis. We called 
them ‘global’ and ‘local’ correction throughout the Supplementary Material. 
	 To compute the ‘local’ correction factor we 1) computed r, which is the phenotypic correlation 
obtained from the LD score cross trait intercept and knowledge of Ns1 and Ns2, using formula 

r=gcov_int ×
√(min(Ns1)  × min(Ns2))

,
min(min(Ns1),min(Ns2))

where Ns1 and Ns2 are the sample sizes in the FI and FG single cohort GWAS. We based r 
calculation on the sample excluding low N (Ns1 < 42,727, Ns2 < 58,876) from FI and FG meta-
analysis, as was done by default in LD score regression for FI and FG; 2) we obtained the 
vector of correlation intercepts using formula

Nmin
× r,

√(N1 × N2)
where Nmin is the minimum of the two sample sizes per SNP, N1 is the FI sample size N2 is the 
FG sample size per SNP. 
 
Post-GWIS QC 
We compared the genetic correlation between published and inferred ‘global’ and ‘local’ HOMA and 
found similar results (Supplementary Table 1). We also compared the distribution of summary statistics 
of two versions of inferred and published HOMAs aiming to select ‘global’ or ‘local’ corrected version. 
The distributions between ‘global’ and ‘local’ correction versions of HOMA results were also very similar 
(Supplementary Figures 1 – 11); therefore, we proceeded with ‘local’ correction as it is assumed to 
be more precise. However, to re-iterate we did not observe the difference between ‘global’ and ‘local’ 
correction approaches in current analysis and given the similarity of summary statistics, they both 
could have been used in further analysis (Supplementary Figure 12). As was mentioned in Methods, 
the difference in SEs between inferred and published meta-analysis results becomes larger when N 
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decreases (Supplementary Figures 7-8, 11). We built the Manhattan and QQ plots for the published 
and inferred HOMA-B/-IR meta-analysis results (Supplementary Figures 15-18) and demonstrated the 
novel signals at genome-wide significant level. 

Supplementary Figure 1. Effect size, –log₁₀P and SE comparison between published and 
inferred meta-analysis results for ‘global’ (dark color) and ‘local’ (light color) correction.

Supplementary Figure 2. Difference in SE, effect size and Z-score plotted against N for 
‘global’ (dark color) and ‘local’ (light color) correction.
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Supplementary Figure 3. Distributions of the difference between inferred and published 
meta-analysis SE, for all SNPs (left) and for SNPs with smaller difference (right)

Supplementary Figure 4. Distributions of the difference between inferred and published 
meta-analysis effect sizes, for all SNPs (left) and for SNPs with smaller difference (right)
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Supplementary Figure 5. Distributions of the difference between inferred and published 
meta-analysis Z scores and difference in effect sizes plotted against difference in SE’s for 
‘global’ (dark color) and ‘local’ (light color) versions.

Supplementary Figure 6. SE differences plotted against MAF in published and inferred 
meta-analysis for ‘global’ (dark color) and ‘local’ (light color) correction
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Supplementary Figure 7. Difference in SE (left) and effect sizes (right) between inferred 
and published GWAS plotted against N. Red line indicated difference in SE > -0.003. 
Datasets are filtered with N > 35,000 and MAF > 0.01

Supplementary Figure 8. Difference in SE between inferred and published GWAS plotted 
against SE published (left) and inferred (right). Red line indicated difference in SE > 
-0.003. Datasets are filtered with N > 35,000 and MAF > 0.01
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Supplementary Figure 9. -log10P of inferred against published meta-analysis results 
plotted for all SNPs (left) and SNPs, which SE difference between inferred and published 
GWAS less than -0.003 (right).

Supplementary Figure 10. Effect size of inferred against published meta-analysis results 
plotted for all SNPs (left) and SNPs, which SE difference between inferred and published 
GWAS less than -0.003 (right).
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Supplementary Figure 11. Distribution of SE’s of the published (upper panel) and 
inferred (lower panel) results stratified by SE difference < -0.003. Low (blue or green 
color) vs. large (gray) SEs difference between inferred and published GWAS.

Supplementary Figure 12. Comparison of SE’s and effect sizes between ‘global’ and 
‘local’ correction versions.
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Supplementary Figure 13. Region plots for each of the leading SNPs in HOMA-B GWIS results
a b

c d

e f
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Supplementary Figure 13 Continued
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Supplementary Figure 14. Region plots for each of the leading SNPs in HOMA-IR GWIS 
results.

a b

c d

e
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Supplementary Table 1. Genetic correlation (rg) between inferred and published 
HOMA-B and HOMA-IR, the LD score regression intercepts, SNP-heritability and their 
standard errors (SE).

Previous Inferred Global 
Correction

Inferred Local 
Correction

HOMA-B
rg (SE), p-value - 1.12 (0.07), 2.17 × 10⁻⁵⁹ 1.14 (0.07), 2.22 × 10⁻⁵⁶
Intercept (SE) 0.99 (0.008) 1.044 (0.008) 1.05 (0.008)
h² (SE) 0.08 (0.015) 0.059 (0.01) 0.056 (0.01)

HOMA-IR
rg (SE), p-value - 1.19 (0.08), 2.21 × 10⁻⁵² 1.18 (0.08), 9.11 × 10⁻⁵³
Intercept (SE) 1.004 (0.007) 1.04 (0.008) 1.03 (0.008)

h² (SE) 0.07 (0.01) 0.058 (0.008) 0.059 (0.008)
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HOMA-B HOMA-IR
Supplementary Figure 15. Manhattan plots of published meta-analysis results

Supplementary Figure 16. Manhattan plots of inferred meta-analysis results
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HOMA-B HOMA-IR
Supplementary Figure 17. QQ plots of published meta-analysis results

Supplementary Figure 18. QQ plots of inferred meta-analysis results
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CHAPTER  7 

DISSECTING THE ROLE OF GLUCOSE HOMEOSTASIS THROUGH 
MEASURES OF β-CELL FUNCTION AND INSULIN RESISTANCE IN 

SUSCEPTIBILITY TO MAJOR DEPRESSIVE DISORDER 

This chapter is based on: 
Iryna O. Fedko, Jouke-Jan Hottenga, Yuri Milaneschi, Reedik Mägi, Meike Bartels, 
Gonneke Willemsen, Meta-Analyses of Glucose and Insulin-related traits Consortium 
(MAGIC) Investigators, B.W.J.H. Penninx, Dorret I. Boomsma and Inga Prokopenko. 
Dissecting the role of glucose homeostasis through measures of beta-cell function and 
insulin resistance in susceptibility to Major Depressive Disorder (as to be submitted).
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Abstract
Co-morbidity between type 2 Diabetes (T2D) and Major Depressive Disorder (MDD) 
is consistently observed, with epidemiological studies suggesting a bi-directional 
relationship between T2D and MDD. Glycaemic traits are the biomarkers of T2D and 
insulin resistance and have been associated with depression. The aim of this study was 
to evaluate the shared genetic effects on glycaemic trait and MDD risk. We employed 
Polygenic Risk Score (PRS) approach to predict MDD status in two Dutch cohorts (N 
cases = 1,687, N controls = 2,847), Netherlands Twin Register (NTR) and Netherlands 
Study of Depression and Anxiety (NESDA), using Fasting Insulin, Fasting Glucose, 
Homeostatic Model Assessment Insulin Resistance (HOMA-IR) and β-cell function 
(HOMA-B) PRS profiles, adjusted and not adjusted for BMI. Finally, we used LD score 
regression to estimate the overall genetic correlation between four fasting glycaemic 
traits, MDD, Depressive Symptoms and Neuroticism as MDD predictive factors. Results 
of PRS analyses indicated that glycaemic traits did not significantly predict MDD status 
(OR ≈ 1). This finding was confirmed by results of LD score regression, as we did not 
find a significant genetic correlation between T2D/FI/FG/HOMA-B/HOMA-IR and MDD, 
Depressive Symptoms and Neuroticism. Our results suggest that fasting glycaemic traits 
and MDD and its symptoms have distinct genetic aetiology. Comorbidity between T2D 
and MDD may be influenced by other than genetic shared external risk factors.
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Introduction
Both, type 2 diabetes (T2D) and major depressive disorder (MDD) are complex diseases 
with high prevalence and an ever increasing burden on the society [31]. T2D and 
MDD are also co-morbid disorders [205]. Patients with T2D have higher prevalence 
of MDD than non-diabetic individuals (17.6% and 9.8% respectively) [206]. Although 
comorbidity between T2D and MDD is consistently reported, the pathophysiological 
relationships between them remain unclear and controversial [207]. Studies suggested 
that the bidirectional relationship between these two disorders involves a range of 
biological processes, such as hypothalamic-pituitary-adrenal axis (HPA) dysregulation, 
inflammatory response system, reduced neuroplasticity and metabolic abnormalities 
[208, 209]. Fasting glucose (FG) and fasting insulin (FI) levels are indicators of body 
glucose homeostasis and can be considered for the definition of Metabolic Syndrome or 
T2D. FG and FI levels are also used for defining homeostasis model assessment of β-cell 
function and insulin resistance traits (HOMA-B and HOMA-IR). Glycaemic trait variability 
in non-diabetic individuals is associated with risk of T2D, but has also been linked to MDD 
as compared to non-affected controls [210]. Previous research detected associations 
between insulin resistance and depression [30]. Genetic studies have identified over 
70 loci associated with glycaemic traits and over 80 with T2D risk, and have also 
demonstrated that the overlap between T2D and glycemic trait loci is incomplete and 
the magnitude of effects in shared loci differ [180]. 
	 The main aim of this study was to investigate whether FG, FI, HOMA-B and 
HOMA-IR traits have a shared genetic background and are associated with MDD. In 
addition, we explored the genetic association of glycaemic traits with MDD subtypes 
identified according to direction of change (decreased vs. increased) in the symptoms 
of appetite and weight, which have previously been shown to have partially distinct, 
neuro-functional patterns [211] and polygenic signatures [212]. To evaluate the 
shared genetic component, we performed Polygenic Risk Score (PRS) profiling [213], 
using summary statistics from the Meta-Analysis of Glucose and Insulin-related traits 
Consortium (MAGIC) and the Psychiatric Genetic Consortium (PGC) to predict MDD 
in two population-based cohorts, the Netherlands Twin Registry (NTR) [43] and the 
Netherlands Study of Depression and Anxiety (NESDA) [214], with and without taking 
BMI into account. In addition, we applied LD score regression [28] to the summary 
statistics mentioned above and those based on the large Neuroticism and Depressive 
Symptoms meta-analysis from the Social Science Genetic Association Consortium (SSGA) 
and the DIAGRAM T2D consortium. 

Methods
Discovery datasets
FI and FG summary statistics were available from the latest HapMap-based genome-wide 
association study (GWAS) meta-analysis of the MAGIC consortium (N ≈ 64K/88K for FI/
FG, respectively) [215]. As required by the PRS approach, the meta-analyses have been 
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performed with NTR and NESDA cohorts excluded, compared to the respective primary 
study. Summary statistics from MDD GWAS mega-analysis (N cases ≈ 8K and N controls 
≈ 8K) [216] were available from the PGC, and have been used previously, excluding NTR 
and NESDA as well [212]. In addition to checking the overall genetic correlation between 
glycaemic traits and MDD, summary statistics for proxy phenotypes, namely Depressive 
Symptoms (N ≈ 161K) and Neuroticism (N ≈ 171K), were downloaded from the Social 
Science Genetic Association Consortium website, which were reported in a recent paper 
by Okbay et al (2016) [168]. We used the GWAS meta-analysis summary statistics for 
T2D (N cases ≈ 12K and N controls ≈ 57K) in Europeans from the DIAGRAM consortium 
[197] web-site to estimate the genetic correlation with MDD, Depressive Symptoms and 
Neuroticism.

Target dataset.
The target dataset comprised of two Dutch population based cohorts, NTR and NESDA. 
NTR is the Netherlands Twin Register, which is an ongoing longitudinal study of health, 
personality and lifestyle of Dutch twins and their families [217]. NESDA is an longitudinal 
cohort study with participants recruited from general population, general practice and 
mental care organizations [214].
	 MDD cases were provided by NESDA (n = 1,687, mean age = 42.3, mean BMI 
= 25.8, women = 68.3%, nT2D = 95). Controls were mostly provided by NTR (n = 2,505, 
mean age = 37,3, mean BMI = 24.2, women = 61.8%) and partly by NESDA (n = 342, 
mean age = 43.3, mean BMI = 25.3, women = 59.1%, nT2D = 15). We excluded individuals 
with T1D and possible T2D (N = 121 and N = 9 in NTR and NESDA, respectively). If there 
were individuals with clearly defined T2D, but not T1D, they were left in the analysis. In 
NESDA DSM-IV lifetime diagnosis of MDD was assessed using the Composite Interview 
Diagnostic Instrument (CIDI) [218]. Assessment took place at baseline and/or one or 
more of the biannual follow-up interviews. MDD cases were stratified based on the 
direction of change of the symptoms of appetite and weight as previously described 
[212]: decreased appetite/weight (n = 645, mean age = 41.5, women = 61.5%) and 
increased appetite/weight (n = 424, mean age = 42.9, women = 68.5%). Fasting Glucose 
was available in both NTR (n = 3,813, mean age = 37.5, mean BMI = 24.4 (nBMI = 3,790), 
women = 65.7%) and NESDA (n = 2,240, mean age = 42.4, mean BMI = 25.7, women = 
65.8%). Fasting Insulin was available in NTR only (n = 3,737, mean age = 37.5, mean BMI 
= 24.4, women = 65.9%). From both datasets we selected individuals genotyped on the 
same platform (Affymetrix 600), which were imputed to 1000 Genome project Phase 1 
v3 Mixed reference set using Michigan Imputation Server (see URLs). 

Statistical Analysis
Polygenic Risk Score
SNPs previously reported in the literature to be associated with T2D and related traits, 
namely FG, FI, T2D, lipids, waist-to-hip ratio or with their overlap [180, 195, 204, 219, 
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220], were collected and collapsed into one SNP set. Because multiple SNPs were 
reported per locus, we applied the following criteria to select one independent SNP per 
locus. First, we selected the SNPs which were confirmed as significant at the threshold 
of p-value < 0.05 in the current MAGIC FI and FG meta-analyses and also have reported 
effect size in MDD mega-analysis. If summary statistics were missing in MDD dataset for 
a selected SNP, we chose a proxy SNP with LD > 0.8 with selected SNP (30 SNPs) using the 
SNP Annotation and Proxy Search (SNAP) [221]. Second, SNPs with the lowest p-value in 
discovery dataset and with imputation r² > 0.8 in target dataset were selected per locus. 
Third, if a glycaemic SNP was reported previously in literature for association with FI, FG 
or T2D, it was preferred over others. Finally, if application of these criteria did not result 
in one SNP per locus, then the selection was performed randomly. SNPs selected using the 
literature review were weighted by MDD effect sizes and formed a MDD SNP set (N = 134).
	 The other SNP sets were computed using FI/FG/HOMA-B/HOMA-IR summary 
statistics by clumping SNPs in the target dataset around index variants with p-values 
0.00001, 0.001, 0.01, and 1 using Plink 1.9 [179] command (--clump-p1 option with default 
r² threshold 0.50 and 250kb window) across all SNPs, independent of prior knowledge of 
association with glycaemic traits, T2D, lipids or waist-to-hip ratio. HOMA-IR and HOMA-B 
summary statistics were calculated using GWIS, a method [222] recently developed by 
Nieuwboer et al. 2016 [38], and reported by Fedko et al. (2016) [223] (in preparation). 
Here, the ‘in silico’ GWAS can be performed and summary statistics of HOMA-B/-IR, 
which are the functions of FI and FG phenotypes [193], can be approximated from FI and 
FG summary statistics.

	 The PRS was calculated for each individual in the target sample (NTR and 
NESDA), by summing up alleles in each of PRS SNP sets, weighted by their effect sizes 
from the summary statistics of the discovery sample (FI, FG, HOMA-B, HOMA-IR, MDD) 
using Plink1.9 [179] software. 

Prediction of FI and FG
We used the generated PRS profiles to perform a Generalized Estimating Equations (GEE) 
linear regression to predict levels of FG and FI in NTR and FG in NESDA. Sex, age, cohort 
(for FG), T2D status and Dutch population PCs [23] were used as covariates. PRS for 
all SNP sets were standardized. We included all available subjects from target samples 
in the analysis and corrected for relatedness using a sandwich correction of standard 
errors, which increases power, while correcting for inflation of statistics [224]. 

Prediction of MDD
We computed phenotypic correlation between FG and MDD, adjusted and not adjusted 
for BMI, in combined NTR/NESDA dataset, selecting unrelated individuals (1 person 
per family) controlling for age, sex, T2D status, cohort and Dutch population structure. 
FI measure was only present for NTR MDD controls and did not allow for comparison 
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between MDD cases and controls. With GEE logistic regression, we tested whether PRS 
constructed from the various SNPs sets of FG, FI, HOMA-IR, HOMA-B and MDD summary 
statistics can predict MDD status in NTR and NESDA cohorts. We standardized PRSs and 
included age, sex, T2D status and Dutch population PCs as covariates. In all analyses we 
included all available subjects from the target dataset and corrected for relatedness, as 
described above. In addition, we alternated between correcting for BMI or not, because 
obesity as assessed by BMI may partly explain the co-morbidity between T2D and MDD. 
Level of significance was set to 0.05/4 = 0.0125 to adjust for multiple testing (4 SNP sets 
per each glycaemic trait).
	 Finally, we performed the evaluation of the whole-genome shared variability 
using the method of LD score regression (LDSR) [28] and compared the LDSR analysis 
outcomes to the PRS estimates for their ability to help inferences about relationships 
between glycaemic and mood trait variability. 

Results
PRS profiles clearly predicted the FI in the NTR and FG in the NTR and NESDA datasets, 
confirming the validity of selected SNP sets (Supplementary Material Table 1). However, 
we did not find a statistically significant phenotypic correlation between FG and MDD 
(r = -0.026, p-value = 0.143, N = 3,142 and r = -0.018, p-value = 0.305, N= 3,154 for 
adjusted/not adjusted for BMI, respectively). None of the glyceamic SNP sets, whether 
selected based on prior knowledge of association with T2D related traits and weighted 
by MDD effect sizes, or based on all SNPs clumped around four association significance 
thresholds using FI/FG/HOMA-B/HOMA-IR summary statistics, predicted the MDD 
status in NTR and NESDA (Figure 1, Table 1). Any adjustment for BMI did not have a large 
effect on the estimates. Results obtained from the analysis of MDD with increased and 
decreased appetite symptoms were non-significant (Figure 2, Table 2). 
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Table 1. Results of Polygenic Risk prediction of MDD from various subsets of SNPs with 
and without adjustment for BMI

No BMI adjustment With BMI adjustment
SNP set OR 95% CI OR 95% CI
Glycaemic SNPs MDD weights 1.02 (0.97, 1.07) 1.02 (0.97, 1.07)

Fasting Glucose SNP sets
FG SNPs p-value < 0.00001 1.00 (0.95, 1.05) 1.00 (0.95, 1.05)

FG SNPs p-value < 0.001 1.01 (0.96, 1.06) 1.00 (0.95, 1.05)
FG SNPs p-value < 0.01 1.01 (0.96, 1.06) 1.00 (0.95, 1.05)
FG SNPs p-value < 1 1.00 (0.95, 1.05) 0.99 (0.94, 1.04)

Fasting Insulin SNP sets
FI SNPs p-value < 0.00001 1.02 (0.97, 1.08) 1.02 (0.97, 1.07)
FI SNPs p-value < 0.001 1.00 (0.95, 1.05) 0.99 (0.94, 1.04)
FI SNPs p-value < 0.01 1.01 (0.96, 1.06) 0.99 (0.95, 1.04)
FI SNPs p-value < 1 1.00 (0.95, 1.05) 0.99 (0.94, 1.04)

HOMA-B SNP sets
HOMA-B SNPs p-value < 0.00001 0.96 (0.92, 1.01) 0.96 (0.91, 1.01)
HOMA-B SNPs p-value < 0.001 0.99 (0.94, 1.04) 0.98 (0.93, 1.03)
HOMA-B SNPs p-value < 0.01 0.98 (0.93, 1.03) 0.97 (0.93, 1.02)
HOMA-B SNPs p-value < 1 0.99 (0.94, 1.04) 0.98 (0.93, 1.03)

HOMA-IR SNP sets
HOMA-IR SNPs p-value < 0.00001 1.01 (0.96, 1.07) 1.01 (0.96, 1.06)
HOMA-IR SNPs p-value < 0.001 1.01 (0.96, 1.06) 0.99 (0.94, 1.04)
HOMA-IR SNPs p-value < 0.01 1.01 (0.96, 1.06) 1.00 (0.95, 1.05)
HOMA-IR SNPs p-value < 1 0.99 (0.94, 1.05) 0.98 (0.93, 1.04)
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Figure 1. Results of Polygenic Risk prediction of MDD from various subsets of SNPs with 
and without adjustment for BMI
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Table 2. Results of Polygenic Risk prediction of MDD with symptoms of increased and 
decreased appetite/weight from various subsets of SNPs

Decreased BMI Increased BMI

SNP set OR 95% CI OR 95% CI
Glycaemic SNPs MDD weights 1.02 (0.93, 1.11) 1.06 (0.95, 1.18)

Fasting Glucose SNP sets

FG SNPs p-value < 0.00001 1.02 (0.94, 1.11) 0.97 (0.87, 1.08)
FG SNPs p-value < 0.001 1.03 (0.94, 1.12) 0.98 (0.87, 1.09)
FG SNPs p-value < 0.01 1.00 (0.92, 1.08) 1.04 (0.93, 1.15)
FG SNPs p-value < 1 0.99 (0.91, 1.08) 1.04 (0.94, 1.15)

Fasting Insulin SNP sets

FI SNPs p-value < 0.00001 1.04 (0.96, 1.13) 1.00 (0.90, 1.11)
FI SNPs p-value < 0.001 0.98 (0.90, 1.07) 1.03 (0.92, 1.15)
FI SNPs p-value < 0.01 0.99 (0.91, 1.08) 1.04 (0.93, 1.15)
FI SNPs p-value < 1 1.02 (0.94, 1.11) 0.99 (0.89, 1.10)

HOMA-B SNP sets

HOMA-B SNPs p-value < 0.00001 0.92 (0.84, 1.00) 0.95 (0.86, 1.06)
HOMA-B SNPs p-value < 0.001 0.93 (0.86, 1.01) 0.97 (0.87, 1.08)
HOMA-B SNPs p-value < 0.01 0.96 (0.88, 1.05) 0.94 (0.84, 1.04)
HOMA-B SNPs p-value < 1 1.03 (0.95, 1.12) 0.93 (0,84, 1.03)

HOMA-IR SNP sets

HOMA-IR SNPs p-value < 0.00001 1.02 (0.93, 1.11) 0.97 (0.87, 1.08)
HOMA-IR SNPs p-value < 0.001 1.00 (0.92, 1.08) 0.95 (0.86, 1.06)
HOMA-IR SNPs p-value < 0.01 1.00 (0.92, 1.08) 1.03 (0.92, 1.14)
HOMA-IR SNPs p-value < 1 1.02 (0.94, 1.11) 0.96 (0.87, 1.06)
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Figure 2. Results of Polygenic Risk prediction of MDD with symptoms of increased and 
decreased appetite/weight from various subsets of SNPs

Results of the LD score regression showed no significant genetic correlations between FI/
FG/HOMA-IR/HOMA-B/T2D and MDD (Table 3). A small, however, non-significant (after 
correction for multiple testing) genetic correlation was detected between FI/HOMA-IR 
and Depressive Symptoms (rg = 0.17/0.16 respectively, p-value = 0.02 for both traits); 
and between FI/HOMA-IR and Neuroticism (rg = 0.11, p-value = 0.08/0.07 respectively).

Table 3. LDScore regression results of genetic correlation (rg) between mood and 
glycaemic traits.

MDD
Depressive 
Symptoms

Neuroticism

SNP-h² = 0.15 (0.03) SNP-h² = 0.05 (0.005) SNP-h2²= 0.09 (0.008)
SNP-h² rg (SE, p-value) rg (SE, p-value) rg (SE, p-value)

FI 0.06 (0.01) -0.07 (0.11, 0.5) 0.17 (0.07, 0.02) 0.11 (0.06, 0.08)
FG 0.09 (0.02) 0.07 (0.09, 0.41) 0.04 (0.05, 0.44) 0.02 (0.04, 0.64)
HOMA-B 0.05 (0.01) -0.11 (0.10, 0.27) 0.12 (0.07, 0.07) 0.09 (0.06, 0.14)
HOMA-IR 0.06 (0.01) -0.05 (0.11, 0.66) 0.16 (0.07, 0.02) 0.11 (0.06, 0.07)
T2D 0.09 (0.01) 0.01 (0.10, 0.89) 0.06 (0.07, 0.35) -0.04 (0.06, 0.45)

Note: SNP-h² denotes the SNP-heritability
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Discussion
Following various independent reports from epidemiological studies on the bidirectional 
relationships between T2D and MDD [208, 209] accompanied by evidence supporting 
the role of insulin resistance [30] in association with both T2D and MDD, we explored 
whether the risk variants of glycaemic traits such as FI, FG, HOMA-IR, HOMA-B share 
genetic risk factors with MDD. In addition, we explored the shared genetic aetiology with 
phenotypes known to be proxies to MDD, such as Depressive Symptoms and Neuroticism. 
None of the PRS SNP sets crossed the threshold of significance for association with MDD 
after correction for multiple testing. 
	 To our knowledge there are only a few studies that explored the shared 
aetiology between glycaemic traits and MDD based on SNPs. Bulik-Sullivan et al. (2015) 
detected non-significant genetic correlations between T2D, FG and MDD [198] as well as 
Lubke et al (2012) between FG and MDD [40] and Samaan et al (2014) between impaired 
fasting glucose/impaired glucose tolerance/T2D/dysglycemia and MDD [207]. For T2D 
and Neuroticism, the recent paper by Gale et al (2016) [225] reported the non-significant 
genetic correlation in the UK biobank sample size of 108,038 individuals after correction 
for multiple testing. The only study that detected genetic correlation between MDD and 
T2D to date, was the recent study in Swedish and Danish twins [226]. Twin-based genetic 
correlations were reported to be significant in Swedish women (rg = 0.23) and Danish 
twins, irrespective of sex (rg = 0.25 in men and rg = 0.18 in women). Authors also reported 
qualitative sex differences in the comorbidity of T2D and MDD, i.e. different genetic risk 
factors can operate in men and women [226].
	 When SNP-heritability (SNP-h2) of Fasting Glucose and BMI was partitioned 
across specific cell type groups [227], the FG SNP-h2 was significantly enriched with 
adrenal or pancreas cell type groups, whereas BMI SNP-h2 was significantly enriched 
with cell type group of Central Nervous System (CNS), suggesting BMI as the potential 
mediator of the relationship between Insulin Resistance and T2D with MDD in 
epidemiological studies. Negligible enrichment of CNS cell type group in Fasting Glucose 
SNP-heritability may explain the non-significant genetic correlation between T2D and 
MDD and their related traits in current and few previous genetic studies. In a study of 
Danish and Swedish twins, genetic correlation has been reported between T2D and 
MDD cases and controls and could be due to elevated BMI in T2D cases. In contrast, in 
our study we corrected for T2D status. Because T2D correlates with BMI as well as FI/FG/
HOMA-B/HOMA-IR [198, 223], we therefore possibly corrected for some variation due 
to BMI.
	 BMI is a biomarker of T2D and also has been associated with MDD [228]. In our 
study BMI did not change the results of MDD prediction for any of the PRS profiles. This is 
probably because most of the sample comprised of a non-diabetic population. Therefore 
most of the sample has a BMI, fasting insulin, fasting glucose levels and metabolism 
processes in the normal range. A recent report suggested that introducing a high-fat 
diet leads to T1D/T2D in mice through apoptosis of β-cells [229]. Unhealthy diets have 
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been reported to be a risk factor for depression [230], whereas a healthy diet in turn 
was associated with reduced risk of depressive symptoms in both T2D and non-diabetic 
individuals [231]. Another possibility could be that, for instance, depression behavioral 
consequences, which include also poor diet, reduced physical activity, increased alcohol 
consumption and smoking may determine an increased risk for the development of 
diabetes-related alterations. 
	 No phenotypic correlation was observed in our study between FG and combined 
MDD sample, although previous work in other samples has indicated a relation between 
T2D and MDD [226]. Previous studies started from a sample of T2D patients, whereas 
we combined a MDD patient cohort (NESDA) and a population based cohort (NTR). 
Previous NESDA studies also did not observe a phenotypic correlation between FG and 
MDD and its subtypes (atypical/melancholic, which roughly corresponds to MDD with 
increased and decreased appetite/weight symptoms) [40, 232]. However, the current 
study was motivated by the evidence for association between Insulin Resistance and 
MDD [30]. FI/FG/HOMA-IR/HOMA-B loci differ in their effect on pathophysiology of T2D 
[199] and so it could be in pathopysiology of MDD. A recent study in the prospective 
cohort in the United States (US) reported somatic-vegetative depressive symptoms as 
a predictor of deteriorating insulin resistance and therefore risk of T2D development 
in adults aged 50-70 through increasing BMI [233]. Thus PRS profiles constructed using 
summary statistics from largest up to date MAGIC meta-analysis could have pinpointed 
the biological pathways not detected previously. 
	 In conclusion, our results suggest that glycaemic traits, namely Fasting Glucose, 
Fasting Insulin, indices of Insulin resistance (HOMA-IR) and β-cell function (HOMA-B) 
have distinct genetic aetiology with MDD and its symptoms. Comorbidity between 
T2D and MDD may be influenced by other shared environmental risk factors, such as 
diet, smoking or other demographic and socio-economic factors, suggesting possible 
intervention and warrants further research [234].

URLs: Michigan Imputation Server: https://imputationserver.sph.umich.edu/index.html
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Supplementary Material.
Supplementary Table 1. Results of Polygenic Risk prediction of Insulin from various 
subsets of SNPs

Fasting Insulin Fasting Glucose
Beta SE P-value Beta SE P-value

Glycaemic SNPs with MDD 
weights

-0.10 0.09 0.31 1.3×10⁻⁰³ 0.01 0.88

Fasting Glucose SNP sets
FG SNPs p-value < 0.00001 0.09 0.09 0.37 0.09 0.01 1.3×10⁻²⁷
FG SNPs p-value < 0.001 0.06 0.10 0.53 0.08 0.01 3.3×10⁻²³
FG SNPs p-value < 0.01 0.02 0.10 0.82 0.07 0.01 1.5×10⁻¹⁸
FG SNPs p-value < 1 0.08 0.10 0.39 0.06 0.01 4.4×10⁻¹²

Fasting Insulin SNP sets
FI SNPs p-value < 0.00001 0.21 0.11 0.05 0.01 0.01 0.24
FI SNPs p-value < 0.001 0.27 0.12 0.02 -5.9×10⁻⁰⁴ 0.01 0.94
FI SNPs p-value < 0.01 0.29 0.12 0.01 2.6×10⁻⁰³ 0.01 0.76
FI SNPs p-value < 1 0.50 0.11 5.5×10⁻⁰⁶ 0.02 0.01 0.04

HOMA-B SNP sets
HOMA-B SNPs p-value < 0.00001 0.11 0.11 0.34 -0.06 0.01 1.8×10⁻¹³
HOMA-B SNPs p-value < 0.001 0.22 0.11 0.04 -0.05 0.01 1.2×10⁻¹⁰
HOMA-B SNPs p-value < 0.01 0.30 0.13 0.02 -0.04 0.01 9.3×10⁻⁰⁷
HOMA-B SNPs p-value < 1 0.50 0.11 4.7×10⁻⁰⁶ -0.02 0.01 0.05

HOMA-IR SNP sets
HOMA-IR SNPs p-value < 0.00001 0.30 0.11 0.01 0.03 0.01 2.2×10⁻⁰⁵
HOMA-IR SNPs p-value < 0.001 0.43 0.13 8.3×10⁻⁰⁴ 0.02 0.01 0.01
HOMA-IR SNPs p-value < 0.01 0.51 0.12 1.5×10⁻⁰⁵ 0.03 0.01 1.1×10⁻⁰³
HOMA-IR SNPs p-value < 1 0.58 0.11 1.2×10⁻⁰⁷ 0.03 0.01 1.7×10⁻⁰³
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CHAPTER  8 

SUMMARY



140

Chapter 8. Summary
In this thesis I applied various computational approaches to SNP and twin data to 
estimate the relative importance of genetic factors in a range of the complex human 
phenotypes and explored the shared genetic risk factors between correlated traits. 

In chapter 2 the GoNL reference set was used to combine data from two Dutch childhood 
cohorts, NTR (N = 3,102) and GENR (N = 2,826), through cross-platform imputation. The 
estimates of SNP-heritability of childhood height were similar across GRMs, built from: 
1) pre-combined and cross-platform imputed (h² = 51%), 2) cross-platform imputed and 
post-combined (h² = 52%) and slightly lower for 3) just combined datasets (h² = 43%). 
Correction for cohort resulted in ≈ 2% drop in the SNP-heritability estimates for each 
combination approach. Correction for the Dutch PCs alone resulted in ≈11% drop for 
imputed and combined data, suggesting that imputation against the GoNL reference 
did not alter similarity between individuals. The SNP-heritability estimates, corrected 
for both cohort and Dutch population structure in addition to age and sex, were within 
the range from 32% to 41%. Our results suggest that even a small number of SNPs 
that overlap between cohorts, allows the estimation of genetic relationships between 
individuals correctly. We also showed that imputation with a reference set reduces the 
amount of platform stratification in comparison to imputation without a reference set. 
Although imputation with a reference set allows for combining the datasets, genotyped 
on different platforms with little overlap, the cohort should be always included as a 
covariate.
	 In chapter 3 the SNP-heritability of a range of childhood behavior problems was 
estimated based on two Dutch cohorts, NTR and GENR. With increased sample size, we 
were able to detect the significant SNP-heritability for attention deficit/hyperactivity 
(h² = 0.37 - 0.71, SE = 0.14 - 0.22), externalizing problems (h² = 0.44, SE = 0.22) and total 
problems (h² = 0.18, SE = 0.10), rated by mother or teacher. Application of sensitivity 
analyses involving the exclusion of extreme cases or phenotype quantile normalization, 
did not affect the statistical significance of the estimates, but resulted in decreased SNP-
heritability estimates. The implication of these results would be further continuation of 
large collaborative GWAS efforts, aiming to detect loci, influencing childhood behavior 
problems.
	 Following the results of chapter 3 and for the sake of comparison between 
heritability estimates, resulting from different raters’ perspectives, we explored the rater 
shared and unique contribution to the variation of the child behavior problems in chapter 
4. We estimated the heritability of maternal and paternal ratings of the child behavioral 
problems, based on CBCL 6-18 empirical scales, in a large Dutch cohort, comprising 12,310 
twin pairs at around age 7. On average, mothers rated their children as scoring higher 
on problem scales compared to fathers. The parental agreement was between 0.62 and 
0.74 across all scales. A large part of the heritability was shared between parents, which 
indicated that to a large extent, parents perceive similar behavioral problems in their 
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children. A smaller part of the heritability was unique, indicating behavior of the child 
expressed in presence of one parent exclusively. Since the heritability for the behavior 
both parents agree upon is large, it suggests pulling paternal ratings together to increase 
the power in GWAS projects, while correcting for mean differences, is a valid approach.
In chapter 5 the genetic correlations between Subjective Well-being (SWB) and 
two personality traits, Neuroticism (NEU) and Extraversion (EXT), were estimated. I 
employed the bivariate analysis, implemented in GCTA software, and used both distantly 
and closely related individuals (N ≈ 9,000) to estimate the total heritability and genetic 
correlation and those explained by SNPs, present on current genotyping platforms. The 
total heritability estimates were 32%, 37% and 42% for SWB, NEU and EXT and genetic 
correlation estimates were -.70 (SE = .03) and .48 (SE = .03) between SWB and NEU 
and SWB and EXT, respectively. The SNP-heritability for SWB was 7%, 10% for NEU and 
16% for EXT. The genetic correlation, based on SNPs was larger between SWB 
and NEU (rg = -.80), than between SWB and EXT (rg = 0.18), which was in a contrast to 
the observed correlation (r = -.43 and r = .32, respectively). A large genetic correlation 
between SWB and NEU suggests that common loci between these phenotypes are 
likely to be detected. In contrast, despite the large observed correlation between SWB 
and EXT, environmental rather than genetic influences could be more pronounced in 
explaining the role of EXT in SWB variation.
	 Chapter 6 describes an application of a recently developed method (GWIS) [222] 
to analytically derive the results of HOMA-B and HOMA-IR meta-analysis. We evaluated 
the performance of the method by comparing the summary statistics of current study 
to the summary statistics of previous meta-analysis of HOMA-B/-IR. Sample size was 
increased in GWIS in comparison to previous analyses and, thus, there was a gain in 
power. We replicated seven loci from previous meta-analyses and detected four new 
loci for HOMA-B. For HOMA-IR, two loci were identified previously and three loci in the 
current analysis were novel. In addition, we explored the genetic correlation between 
HOMA-B/-IR and range of glycaemic and metabolic traits, namely FI, FG, high-density 
lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), triglyceride 
(TG), body mass index (BMI) and type-2 diabetes (T2D). We found significant genetic 
correlations between FI and HOMA-B/-IR (rg = 0.76/0.98, SE = 0.05/0.005); FG and 
HOMA-B/-IR (rg = -0.38/0.49, SE = 0.12/0.07); BMI and HOMA-B/-IR (rg = 0.39/0.62, SE = 
0.05/0.05) and T2D and HOMA-IR (rg = 0.53, SE = 0.08). We did not find significant genetic 
correlations between HOMA-B/-IR and LDL/TC and between T2D and HOMA-B. Results 
from analysis of analytically derived HOMA-B/-IR genome-wide summary statistics, 
demonstrate the advantage of GWIS method over direct HOMA GWAS. GWIS allows for 
analytical derivation of summary statistics in partly overlapping samples and thus gain in 
power to detect new genetic loci when studies do not have both phenotypes measured. 
It also allows for the more powerful LD score regression analysis as derived summary 
statistics are similarly based on the larger sample size as well.
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In chapter 7 the shared genetic aetiology between two comorbid disorders was studied, 
namely between T2D and MDD through the measure of Fasting Insulin (FI), fasting 
Glucose (FG), β-cell function (HOMA-B) and insulin resistance (HOMA-IR). A Polygenic 
Risk Score (PRS) method was used to predict MDD status in a combined sample of NTR 
and NESDA. We extended the study by inclusion of MDD subtypes, characterized by 
increased or decreased appetite. PRS profiles based on FI, FG, HOMA-B and HOMA-IR with 
various cut-offs for significance did not predict MDD or their subtypes. We also selected 
a set of SNPs, previously reported for association with glycaemic traits, lipids, waist-to-
hip ratio, and weighted them by summary statistics from previous MDD mega-analysis. 
In addition, we used LD score regression to estimate the genetic correlation between 
glycaemic traits and MDD and its risk factors (Depressive Symptoms and Neuroticism). 
None of the SNP sets significantly predicted MDD status or its subtypes. In addition, 
BMI as a covariate did not have a large effect on the estimates. LD score regression 
showed a small overlap between HOMA-IR/FI and Depressive Symptoms (rg = 0.16, SE = 
0.07 and rg = 0.17, SE = 0.07 respectively), however, this was not statistically significant. These 
results suggest that FG and FI as well as indices of Insulin resistance (HOMA-IR) and 
β-cell function (HOMA-B) have distinct genetic aetiology with MDD and its symptoms. 
Therefore future studies should focus on possible other influences, such as behavioral, 
demographical and socio-economic factors.
	 In conclusion, computational approaches along with Genome of the 
Netherlands (GoNL) reference set formed the basis of this thesis, in which the previously 
collected data from Netherlands Twin Register (NTR) and data, meta-analyzed by various 
genetic consortia, were explored. Analytical derivation of summary statistics from partly 
overlapping samples generated new data for the future use and research in T2D and 
related glycaemic traits. Insights gained from analysis of co-morbid phenotypes or the 
same phenotype, rated by different informants, suggested different strategies to analyze 
such data by including new risk factors or employing new models, depending on shared 
- or distinct genetic aetiology. In this thesis the genetic analyses, which are usually 
performed in unrelated subjects, were considered with a focus on twin data, employing 
the information from relatives to increase power. From a molecular perspective, the 
high resolution of GoNL reference set, helped to reduce the bias, introduced by different 
genotyping platforms, preserving as much information as possible of the genetic 
variation in Dutch population. Overall, a range of different approaches employed in 
the current thesis, showed that efficient use of existing genotype and phenotype data 
together with new analytical approaches should be extensively exploited to gain new 
biological insights.
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CHAPTER  9 

GENERAL DISCUSSION
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This thesis encompasses studies on three partly overlapping themes. The first theme 
concerns the imputation against the GoNL reference set and its ability to align separate 
cohorts genotyped on different platforms, to one set of SNPs based on LD patterns 
from the same ethnicity. Combining datasets on the genotype level is crucial to increase 
the sample size and estimate the SNP-heritability for behavior phenotypes. Datasets, 
combined based on the GoNL reference set, were used to estimate the SNP-heritability 
for child behavior problems. The second theme concerns the heritability comparisons 
between different raters, as a follow-up of results of SNP-based heritability estimates 
from the first section. When different raters assess behavior, it may affect heritability 
estimates, as raters may partly assess the same and partly different aspects of the 
phenotype. Loci, whose effects contribute to the phenotype variation, shared between 
raters can be potentially detected in molecular studies if ratings are combined. Likewise, 
if two generally distinct phenotypes genetically correlate to a large extend, the loci, with 
effects that are correlated, can be detected in future GWAS studies, if such phenotypes 
are used in combination or as a proxy. Therefore, the genetic correlations between SWB 
and personality traits NEU/EXT were explored, as well as between glycaemic traits and 
MDD. For the latter the HOMA-B and HOMA-IR summary statistics were inferred from 
FI and FG meta-analysis results. This was the focus of theme three: implementation 
and evaluation of the performance of a new developed method (GWIS) and further 
exploration of the effect of HOMA-B/-IR loci on FI and FG, in which variation are 
important risk factors for T2D.

Imputation as a tool to combine the genotype data for estimation of genetic 
relatedness
In GWAS, imputation is the widely used approach to overcome the platform stratification 
to combine the summary statistics from each cohort in further meta-analysis. If combining 
the genotypic data is required, the overlapping SNP will be selected. If the SNP overlap 
is small, I showed that cross-platform imputation with the reference set from the same 
ethnicity reduces the stratification bias in combined data. Note, that we imputed only 
SNPs absent either on one or another platform, aiming to fill in the gaps. Imputation 
to a large reference set, i.e. 1000G can be done in the next stage, when all individuals 
‘genotyping’ rate (> 99%) is appropriate according to quality control procedures. GoNL 
showed the ability to impute the rare variants better [18] and Dutch specific SNPs 
associated with cholesterol levels were detected in a recent study [235]. Improvement 
in overall imputation accuracy was reported for the homogeneous founder Sardinian 
population, when imputation was performed against local reference sets [236]. More 
accurate imputation of the rare variants is possible due to closer relationships to the 
common ancestor, therefore, the LD is stronger between SNPs and rare variants that are 
tagged better. The feature of stronger LD was used in the current study to combine the 
datasets, genotyped on different platforms. We also estimated the SNP-heritability of 
childhood height based on combined and cross-platform imputed data. The estimates 
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were similar and the results suggested that even a small number of SNPs could reflect 
the relationships between individuals, although SNP-heritability for combined sample 
was slightly lower, thus possibly underestimating the SNP-heritability.

Twin- and SNP-heritability across raters and their effect on expected variation to be 
explained by SNPs in molecular studies
For heritable traits, such as height, an underestimation of the relationships in GRM maybe 
not be as critical for behavioral phenotypes, such as childhood behavior problems. A 
study of Trzaskowski et al (2013) in the TEDS cohort in the UK, did not detect genetic 
influences for a range of child behavior problems [237], whereas the NTR-GENR study 
detected the significant SNP-heritability for attention deficit/hyperactivity, externalizing 
problems and total problems, rated by mother or teacher. One of the reasons for this 
discrepancy can be the age of the children. Genetic influences have been described to 
change with age as well as environmental influences. In TEDS children were aged 12 
years in comparison to NTR and GENR children of three, seven and nine years old. As 
heritability is the proportion of the total phenotypic variance, the change in environment 
may modify the heritability estimate. The SNP-heritability estimates differed across raters 
in our study and exploration of rater effect on heritability estimates was performed in 
the next chapter of this thesis.
	 It has been shown that heritability can be rater dependent and we compared 
the maternal and paternal contribution to the variation in the childhood behavior 
problems in chapter 4. In general, the heritability of the phenotype that parents agree 
upon was large for all of the empirical scales in CBCL 6-18, suggesting the possibility 
to combine the paternal and maternal ratings in molecular genetic studies. Our results 
also showed that mothers rated their children higher than fathers and inclusion of the 
appropriate covariate is necessary if the ratings are combined. The difference in the 
rater’s assessment partly explains the difference in SNP-heritability estimates, based on 
maternal and teachers ratings, described in the chapter 3. The loci, which effects are 
shared between both parents’ assessments, are likely to be detected in these settings; 
however, loci that contribute to the variability of the specific maternal and paternal part 
of the phenotype may not be detected. It also has been suggested that rater-specific loci 
may not be possible to detect in a GWAS of a single phenotype, because in GWAS raters 
assess their children in a different context [35]. 

Shared aetiology of comorbid traits may guide future molecular study designs
As shared genetic factors may influence the two assessments of mother and father, 
they can influence two different, but correlated phenotypes. In this case the focus on 
one trait may lead to the discovery in another trait, as was recently shown in a meta-
analysis of Subjective Well-being, Depressive Symptoms and Neuroticism [168]. The loci 
detected to be associated for SWB were taken for the follow up analysis for DS and NEU 
and resulted in new detected loci. The results described in chapter 5 showed substantial 
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genetic correlation between SWB and NEU, but not between SWB and EXT. Therefore, 
the focus on the SWB-NEU pair will likely be more successful, than focus on SWB and 
EXT.
	 SWB and personality are behavioral phenotypes, which generally are more 
likely to share the genetic influences. In contrast, in chapter 7 we aimed to estimate the 
shared risk factor between psychiatric phenotype and disease, MDD and T2D through 
the measures of glycaemic traits, FI, FG, HOMA-B/-IR. MDD status was not predicted 
from polygenic scores. LDscore regression also did not detect a significant genetic 
correlation, using meta-analysis results with the largest sample size to date. Although 
comordibity between T2D and MDD has been reported as well as association with Insulin 
Resistance, the mechanism behind it remains unclear [238]. The absence of overlapping 
genetic risk factors suggests that other influences play a role, including environmental 
exposures or lifestyle. Among these, BMI seems to be a plausible candidate for future 
studies in relation to T2D and MDD. Both increased and decreased BMI is associated 
with MDD [228] and relationships are not linear. Therefore, it is also possible that 
complex mechanisms behind the association of T2D and MDD are difficult to pinpoint 
when applying linear models. Another possible explanation lies in cultural differences. 
This study was conducted in a Dutch population, which in general has a lower BMI, 
than in US or UK (World Health Organization, Global Database on Body Mass Index, 
http://apps.who.int/bmi/). It does not explain, however, a lack of association between 
glycaemic traits and MDD/Depressive symptoms in a LD score regression analysis, where 
data from international collaborations were used. Power would be one of the possible 
explanations, as for glacaemic traits and T2D, there were a number of loci detected, 
whereas MDD is still lacking statistically significant hits. Lack of association should not 
hinder work in that direction, but rather should encourage a reconsideration of the 
approach by increasing sample size, using proxy phenotypes (Depressive Symptoms and 
Neuroticism) and MDD subtypes, including environmental factors and exploring non-
linear relationships between T2D and MDD.

Leveraging existing data to get new insight into pathophysiology of complex diseases
The exploration between MDD and Insulin resistance and β-cell function would not be 
possible without computation of HOMA-B and HOMA-IR meta-analysis summary statistics of 
sufficient sample size to detect new loci. These results were used as weight in PRS and in LD 
score regression. The newly developed method GWIS (Genome Wide Inferred Statistics) was 
used to infer the summary statistics of the complex non-linear functions (HOMA-B/-IR) from 
FI and FG. Insulin resistance and β-cell function are both biomarkers for T2D diabetes. Both 
are difficult to compute as FI and FG should be available in the same person, and also at the 
same time point. GWIS allows to overcome this obstacle, as any function can be computed 
from the statistics of its components for overlapped and also for not overlapped sample. This 
feature may pave the way for the future research, where obtaining measurements from the 
same individuals are required, but not always possible. 
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Implications for the future studies and conclusion
In this thesis a combination of several new methods and approaches were applied 
to optimize the analysis of gene-phenotype data to facilitate research on the genetic 
influences on human complex traits, including psychiatric and somatic diseases. 
	 As data are usually collected cross-sectionally at different time points, they may 
have been genotyped on a series of different genotyping platforms. When genotyped 
data are available from earlier arrays and need to be combined, but re-genotyping 
may not be possible, data need to be cross-platform imputed to a local reference set. 
This local reference set, describing the variation within the boundaries of a relatively 
homogeneous population, will allow characterization of the migration history, detection 
of rare variants and structural variations and investigation of the subtle differences 
in allele frequencies and population substructure with a greater resolution than an 
international reference set [18, 23, 239, 240]. All this information will form the solid 
foundation for the imputation into existing SNP-based genotype data. While whole-
genome sequencing is thought to be the next ‘big thing’ in genetic research, many 
research questions could exploit the existing SNP-based genotype data far more time 
and cost-efficiently. This requires the use of imputation as a tool to infer the missing 
genotypes, increase the coverage, or combine the data.
	 There is a vast amount of GWAS summary statistics available from large 
international collaborations. Over the last few years a range of methods emerged, for 
example LD score regression or Genome Wide Inferred Statistics (GWIS), which aimed 
to gain biological insights from the publicly available summary statistics data without 
the (privacy-sensitive) disclosure of raw genotyped data [28, 222]. Other techniques use 
summary statistics across many studies in combination with the raw genotype data from 
a target study to apply e.g. Polygenic Risk Score [241] or LD pred [242]. These approaches 
often rely on the LD information available from reference sets representative of the 
population. Here too, it can be beneficial to employ LD information from local reference 
set in addition to an international set. 
	 In this thesis, I utilised the broader perspective on complex human traits. For 
complex biological traits, different (endo)phenotypes and for complex behavioral traits, 
different raters as well as different (endo)phenotypes can be used jointly to detect 
the genetic loci common to these different (endo)phenotypes. Exploring such shared 
genetic aetiology may lead to an increase in statistical power, but also can lead to 
important conclusions about non-genetic, i.e. environmental risk factors’ role and serve 
as a starting point for future studies detecting biological and environmental risk factors. 
This will, in the long run, pave the way for preventions and interventions at both levels. 
	 Unique genetic influences, that is, influences pertaining to one trait, but not 
to another, largely remain to be discovered. The effect of the loci, which contribute 
to the specific part of the phenotype, can be explored in the multivariate twin model, 
involving correlated phenotypes. Genetic information can be expressed in various forms, 
such as SNPs, SNPs from a gene or a genomic region, PRS or gene expression profile. An 
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interesting addition, for both shared and specific parts of the phenotype, would be the 
longitudinal modeling as genetic influences changes with age, and the effect of loci may 
also change across time. Models incorporating environmental and gene×environment 
effects could be employed to explain the observed association between T2D and MDD 
as well as between SWB and EXT through genetic and environmental risk factors. It has 
been suggested that part of the detected GWAS loci could reflect the modifiable effect of 
the environmental exposure or certain behavior and could be explored using Mendelian 
randomization approach [234]. 
	 With more and more genetic variants for various phenotypes being discovered, 
the next step would be to investigate the pathophysiology of the diseases by bringing 
the genetic and environmental variables in the same model. Here, the twin data can 
be utilized together with information about genetic variation [243]. Increasing data 
collection in biobanks (metabolic, proteomic, etc.) allows exploration of the genetic 
effect on complex (disease) traits through these intermediate biological phenotypes 
[217]. The ongoing characterization of the genome expands the genomic databases 
not only in size but also in the type of genetic variation available [244]. Other types of 
variation, rather than SNPs exclusively, should be considered in the future, such as copy-
number-variation (CNVs) [245]. 
	 To conclude, the future perspective is one in which genomic, biological, 
behavioral, and environmental data are combined to explore the aetiology of complex 
traits.
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In dit proefschrift heb ik verschillende rekenmethoden toegepast op genetische 
Single Nucleotide Polymorfismen (SNP) en tweeling data, om het relatieve effect van 
genetische factoren te bepalen in een aantal complexe ziekten. Daarnaast heb ik de 
gedeelde genetische factoren van een aantal gecorreleerde eigenschappen onderzocht.

In hoofdstuk 2 is de GoNL genotype referentie set gebruikt om  de data van twee kinder-
cohorten, NTR (N = 3,102) en GENR (N = 2,826), te combineren met cross-platform 
genotype imputatie. De schattingen van de SNP erfelijkheid, de hoeveelheid erfelijke 
variantie verklaard door SNPs, van lichaamslengte bij kinderen waren hetzelfde over 
verschillende Gentische Relatie Matrices (GRM)s berekend uit: 1) Eerst combineren 
van SNP data en dan imputeren (h² = 51%), 2) eerst imputeren en dan combineren 
(h² = 52%) en iets lager voor alleen de data combineren h² = 43%). Correctie voor het 
cohort resulteerde in een verlies van ≈ 2% in de SNP erfelijkheid voor alle combinatie 
methoden. Correctie met Nederlandse principle components berekend uit de SNPs 
resulteerde in een SNP erfelijkheid die ≈11% lager is, in zowel de geïmputeerde - als 
gecombineerde data. Dit geeft aan dat de imputatie zelf niet de genetische gelijkheid 
van de deelnemers aanpast. De SNP erfelijkheid schattingen, gecorrigeerd voor cohort 
en Nederlandse populatie structuur alsook voor leeftijd en geslacht lagen tussen 32% 
en 41%. Onze resultaten geven aan dat slechts een beperkt aantal SNPs die overlappen 
op de platforms tussen cohorten voldoende is om de genetische relatie tussen mensen 
goed te schatten. We hebben ook laten zien dat imputatie met een referentie set 
de genetische platform stratificatie verminderd ten opzichte van imputatie tussen 
platforms zonder een referentie set. Alhoewel de imputatie met een referentie set, het 
dus mogelijk maakt om datasets gegenotypeerd op verschillende platforms met weinig 
overlappende SNPs te combineren, is het dan wel goed om cohort altijd mee te nemen 
als covariaat in de analyse. 

In hoofdstuk 3 is de SNP erfelijkheid van een aantal gedragsproblemen bij kinderen 
geschat in de twee cohorten NTR en GENR. Met een groter aantal deelnemers in de 
gecombineerde studies waren we in staat om een significante SNP erfelijkheid te 
detecteren voor Attentieproblemen en Hyperactiviteit (h² = 0.37 - 0.71, SE = 0.14 - 0.22), 
externaliserende gedragsproblemen (h² = 0.44, SE = 0.22) en alle gedragsproblemen bij 
elkaar (h² = 0.18, SE = 0.10), aangegeven met moeder of de leraar als beoordelaar. Bij 
een sensitiviteitanalyse, waarbij de extreem scorende deelnemers zijn verwijderd, of een 
quantiel-normalisatie werd gedaan, werd de significantie van de resultaten niet anders, 
maar werden de erfelijkheidsschattingen wel lager. De implicatie van deze resultaten 
is dat het nut heeft om samen te werken tussen verschillende studiecohorten om met 
GWAS studies genen voor deze aandoeningen op te sporen. 

In opvolging van de resultaten in hoofdstuk 3, en om de invloed op erfelijkheidsschattingen 
van verschillende beoordelaars van de gedragsproblemen van het kind te onderzoeken, 
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hebben we de gedeelde en unieke genetische variatie van de gedragsproblemen van 
verschillende beoordelaars bepaald in hoofdstuk 4.  In een groot Nederlands cohort 
met 12,310 tweelingparen van rondom de 7 jaar, hebben we de erfelijkheid geschat 
voor de gedragsproblemen van het kind op de empirische Child Behavior CheckList 
(CBCL) 6-18 vragenlijsten met moeder en vader als beoordelaars. Gemiddeld schatten 
de moeders  de gedragsproblemen van hun kinderen iets hoger in als de vaders. De 
ouderlijke overeenkomst was tussen de 0.62 en 0.74 over de verschillende schalen. Een 
groot deel van de erfelijkheid van gedragsproblemen was gedeeld tussen ouders. Dit 
geeft aan dat de ouders in grote mate dezelfde gedragsproblemen zien bij hun kinderen. 
Een ander deel van de erfelijkheid was uniek bepaald voor elke ouder. Dit kan komen 
omdat het kind dit gedrag alleen vertoont bij een ouder. Omdat een groot deel van de 
gedragsprobleemerfelijkheid overlapt is het verstandig om de beoordeling van beide 
ouders mee te nemen in een Genome Wide Assocociation Study (GWA). Dit zal de detectie 
kracht van het vinden van varianten die geassocieerd zijn met gedragsproblemen van 
het kind verhogen, wanneer rekening wordt gehouden met de gemiddelde verschillen 
tussen moeder en vader.  

In hoofdstuk 5 is de genetische correlatie tussen Persoonlijk Welbevinden (SWB) en 
twee persoonlijkheidskenmerken, Neuroticisme (NEU) en Extraversie (EXT), geschat. 
Hierbij is gebruik gemaakt van de bivariate analyse die is geïmplementeerd in de GCTA 
software. Met behulp van de niet direct gerelateerde mensen en de direct gerelateerde 
mensen, is de SNP erfelijkheid van de gemeten genotype platforms, de totale erfelijkheid 
en de genetische correlatie in ons Nederlands Tweelingen Register studie sample 
geschat (N ≈ 9,000). De totale erfelijkheid was 32%, 37% en 42% voor SWB, NEU en 
EXT. De totale genetische correlaties waren -.70 (SE = .03) en .48 (SE = .03) tussen SWB 
en NEU, en tussen SWB en EXT respectievelijk. De SNP erfelijkheid voor SWB was 7%, 
10% voor NEU en 16% voor EXT. De genetische correlatie voor SNPs was groter tussen 
SWB en NEU (rg = -.80), dan tussen SWB en EXT (rg = 0.18). Dit was tegengesteld aan de 
geobserveerde correlaties tussen de fenotypes (r = -.43 en r = .32 respectievelijk). Een 
grote genetische correlatie tussen SWB en NEU geeft aan dat dezelfde genen betrokken 
zijn bij de fenotypes, en dat deze kunnen worden gedetecteerd als we hiervan gebruik 
maken. Dit in tegenstelling tot de correlatie tussen SWB en EXT die vooral door komt  
door factoren uit het milieu.   

Hoofdstuk 6 beschrijft een applicatie van een recent ontwikkelde methode GWIS, 
waarbij met behulp van GWAS meta-analyse resultaten van individuele fenotypes, de 
GWAS resultaten van een gecombineerd fenotype analytisch afgeleid kunnen worden. 
We hebben met de GWIS methode de MAGIC studie GWAS meta-analyse resultaten van 
nuchter glucose en insuline samengevoegd om zo de resultaten voor insuline resistentie 
HOMA-B en HOMA-IR te krijgen. Deze resultaten zijn daarna vergeleken met de originele 
HOMA GWAS resultaten die ook door het MAGIC zijn gedaan. Omdat niet alle studies 
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de HOMA analyses konden doen, was het sample dat met GWIS is geanalyseerd groter 
dan het originele GWAS sample, en daardoor was het mogelijk om meer genetische 
varianten voor HOMA te detecteren. Hierdoor hebben we 7 genetische locaties 
gerepliceerd die ook gevonden waren in de originele meta-analyse, maar we hebben 
ook nog 4 extra locaties gevonden voor HOMA-B. Voor HOMA-IR hebben we 2 locaties 
gevonden die eerder waren gedetecteerd, en daarnaast 3 nieuwe. Verder hebben we 
de genetische correlatie berekend tussen de HOMA’s en een range van glucose - en 
metabole fenotypes namelijk nuchter Glucose, Insuline, High Density Lipoprotein (HDL), 
Low Density Lipoprotein (LDL), totaal cholesterol, Triglyceriden, Body Mass Index (BMI) 
en Type 2 Diabetes (T2D). We vonden significante correlaties tussen Inusline en HOMA-
B/-IR (rg = 0.76/0.98, SE = 0.05/0.005); Glucose en HOMA-B/-IR (rg = -0.38/0.49, SE = 
0.12/0.07); BMI en HOMA-B/-IR (rg = 0.39/0.62, SE = 0.05/0.05) en tussen T2D en HOMA-
IR (rg = 0.53, SE = 0.08). We vonden geen significante genetische correlaties tussen de 
HOMAs  en de lipiden LDL/TC en tussen T2D en HOMA-B. Resultaten van de analytisch 
afgeleide HOMA-B/-IR genoom brede associatie statistieken demonstreren het voordeel 
van de GWIS methode boven het doen van een extra GWAS op dit moeilijke fenotype: 
GWIS laat het toe dat insuline en glucose niet beiden bij iedereen aanwezig hoeven 
zijn voor berekening van de HOMA, dit geeft dus een grotere studiegroep en dus meer 
detectiekracht van genen. Het laat ook een krachtiger LD score regressie toe, omdat 
de afgeleide samenvatting van de associatie statistieken gebaseerd zijn op een groter 
sample.  

In hoofdstuk 7 is de gedeelde genetische etiologie tussen twee comorbide ziekten 
bestudeerd, namelijk tussen Type 2 diabetes (T2D) en Depressie (MDD) met behulp 
van genetische risico scores berekend uit de genen die betrokken zijn bij nuchter 
insuline (FI), glucose (FG), β-cel functie (HOMA-B) en insuline resistentie (HOMA-
IR). Deze scores werden gebruikt om de MDD status in het NTR en de NESDA studie 
te voorspelen. We hebben verder gekeken naar verschillende subtypes van MDD, die 
werden gekarakteriseerd door een verminderde of vergrote eetlust. De genetische risico 
scores, berekend met verschillende significantie grenswaarden, voorspelden echter niet 
MDD of een van de subtypes. Selectie van verschillende SNPs betrokken bij glycemische 
fenotypen, lipiden, middel-tot-heup breedte ratio gewogen met de GWAS Beta’s van de 
MDD PGC mega analyse voorspelden ook geen MDD. LD score regressie werd daarna 
gebruikt om de genetische correlaties te berekenen tussen de glycemische fenotypes en 
MDD en de aanverwante fenotypes depressie symptomen en neuroticisme. Geen van 
de gebruikte SNP sets voorspelden echter MDD, noch de subtypes. Het meenemen van 
BMI als covariaat in deze analyses gaf geen opmerkelijke verschillen.  LD score regressie 
liet wel een kleine genetische overlap zien tussen HOMA-IR en Insuline met Depressieve 
Symptomen (rg = 0.16, SE = 0.07 en rg = 0.17, SE = 0.07), maar dit was niet statistisch 
significant. Wat uit deze resultaten naar voren komt is dat FG en FI, en de indexen 
van insuline resistentie (HOME-IR) en Beta-cel functie (HOMA-B) een andere etiologie 
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hebben als MDD en de symptomen van MDD. Het is daarom nodig om voor de overlap 
tussen MDD en deze factoren meer te kijken naar invloeden zoals gedrag, demografische 
en socio-economische factoren. 

In conclusie, rekenmethoden en het referentie Genoom van Nederland (GoNL) 
hebben de basis gevormd van deze thesis, waarin de eerder verzamelde data van het 
Nederlands Tweelingen Register en data van meta-analyses van verschillende consortia 
zijn onderzocht. Analytische afleiding van de samenvattende statistieken van deels 
overlappende samples genereerde nieuwe data voor toekomstig onderzoek in Diabetes 
Type 2 en gerelateerde glycemische traits. Inzichten van de comorbide fenotypen, of 
dezelfde fenotypen gemeten binnen verschillende informanten, hebben geleid tot 
nieuwe strategieën om deze data te analyseren met behulp van nieuwe risicofactoren of 
modellen, op basis van gedeelde of niet gedeelde genetische achtergrond. In deze thesis 
is bij de genetische analyses gebruik gemaakt van de familieleden van mensen om de 
kracht van de analyses te verhogen. Als we ons richten op de moleculaire kant, dan heeft 
de hoge resolutie GoNL genetische referentie set geholpen om combinatie stratificatie 
effecten van verschillende genetische platforms te reduceren en om de hoeveelheid 
genetische variatie van de Nederlandse populatie te preserveren. Ten slotte, een range 
van verschillende analyse methoden is toegepast in deze thesis, en het heeft gezorgd dat 
zelfs met bestaande genotype en fenotype data, extra biologisch inzicht verkregen kan 
worden door her-exploratie met nieuwe technieken. 
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