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Chapter 1

Introduction

1.1 Introduction

The present thesis was written with the ultimate aim of finding genes and bi-
ological pathways implicated in addiction behaviors such as tobacco smoking
(henceforth, smoking) and cannabis use. Notwithstanding the relatively high
heritability of substance use phenotypes - ranging from about 40% for initiation
of cannabis use (Vink, Wolters et al. [348]) to about 75% for smoking dependence
(Vink, Willemsen et al. [347]) - the progress in mapping the associated genes
has been slow. By 2012, when the current project started, few genetic loci were
detected for tobacco smoking initiation, dependence and cessation. Several incon-
sistently replicated results were reported by candidate gene studies for cannabis
dependence, while no genetic locus had been reported for initiation of cannabis
use. In this chapter I first briefly review the current state of affairs with respect
to the genetics of stages of tobacco smoking behavior and early stages of cannabis
use. I then identify problems and promising solutions for improving statistical
power which are to be explored in the thesis, especially as they apply to genetic
association studies.

1.2 Overview: Stages of Smoking Behavior

Despite smoking prevalence decreasing in the past 30 years, there has been a
steady increase in the absolute number of smokers, i.e., from 721 million in 1980
to 967 million in 2012 due to accelerated population growth (Ng, Freeman et
al. [257]). Tobacco smoking kills nearly 6 million people yearly (World Health
Organization, 2015) and it is well recognized as the world’s leading cause of pre-
ventable disease and death. Regular tobacco use is a known risk factor for vari-
ous disease traits such as lung cancer (Prevention 2008, Lee, Forey et al. [196]),
leukemia (e.g., see Fircanis, Merriam et al. [125]), heart disease (e.g., see Huxley
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2 Chapter 1. Introduction

and Woodward [171]), chronic bronchitis and emphysema (see e.g., Forey, Thorn-
ton et al. [128]). Importantly, genetic factors account for about 32% - 55% of the
variance in smoking initiation (in males and females, respectively; see e.g., Li,
Cheng et al. [347], Vink, Willemsen et al. 2005), while the remaining variance is
explained by shared (by the family members) and unique environmental factors.
Note that whilst the shared environmental factors play an important role in early
stages of smoking, their contribution to dependence is nil. That is, the individual
differences in smoking dependence are largely explained by genetic factors, which
account for about 56% to 75% of the variance (see e.g., Lessov, Martin et al. [198],
Vink, Willemsen et al. [347], Broms, Silventoinen et al. [47]). The significant con-
tribution of genetic factors to variability in smoking behaviors has been recently
confirmed by a chip-based heritability study (Lubke, Hottenga et al. [220]), based
on GCTA (Yang, Lee et al. [375]). According to Lubke et al. the currently typed
(and tagged) common single nucleotide polymorphisms (SNPs) explain about
19% and about 24% of the variance in smoking initiation and current smoking,
respectively. These estimates taken together with those derived from twin studies
suggest that both common and rare variants contribute to individual differences
in smoking behavior (given that GCTA focuses on common variants, while twin
studies capture the effects of all genetic variants, common and rare). Genome-
wide association studies and large meta-analyses conducted by consortia such as
Tobacco and Genetics Consortium (TAG; 2010 [322]), the ENGAGE Consortium
(Thorgeirsson, Gudbjartsson et al. [321]) and the Oxford-GlaxoSmithKline con-
sortium (Liu, Tozzi et al. [214]) have located several common single nucleotide
polymorphisms (SNPs) implicated in stages of smoking behavior. For instance,
the TAG consortium (Tobacco and Genetics Consortium 2010 [322]) conducted
collaborative analyses which combined three meta-analytic samples, namely the
TAG, ENGAGE and the Oxford-GlaxoSmithKline samples (N=140,000 individ-
uals) to follow-up 1,025 SNPs that passed the 107* threshold in the TAG sample.
This consortium located 14 SNPs associated with different stages of smoking
behaviors. Of these 14, 5 SNPs tagging the CHRNA3-CHRNA5-CHRNB/ clus-
ter of genes on chromosome 15q25, the non-coding RNA LOC123688 region on
10923, and the FGLN2 gene on chromosome 19 were associated with quantity
smoked, 8 SNPs tagging the BDNF' gene on chromosome 11 were significantly
associated with smoking initiation (i.e., ever/never smoking regularly), and one
SNP tagging the DBH gene was significantly associated with smoking cessation
(for details on the 14 SNPs that reached significance in the combined TAG anal-
ysis, see Table 2 on page 443, in Tobacco and Genetics Consortium 2010 [322]).
The multiple genetic associations with quantity smoked at the 15q25 locus (i.e.,
including the CHRNAS3-CHRNA5-CHRNB cluster of genes; Saccone, Hinrichs et
al. [288], Saccone, Wang et al. [287], Tobacco and Genetics Consortium 2010 [322])
were thoroughly interrogated and confirmed by fine-mapping by the Oxford-
GlaxoSmithKline consortium (Liu, Tozzi et al. [214]). The ENGAGE Consortium
meta-analysis (Thorgeirsson, Gudbjartsson et al. [321]) implicated in quantity
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smoked SNPs tagging the CYP2A6 and C'YP2B6 genes, and SNPs tagging the
nicotinic acetylcholine receptor subunits CHRNBS and CHRNAG.

1.3 Overview: Early Stages of Cannabis Use

Cannabis is among the drugs with the highest frequency of (ab)use. About 22.3%
Europeans aged 16-64 reported to have experimented with cannabis use. In the
United States the prevalence in ages 16-34 was estimated at 51.6% (European
Monitoring Centre for Drugs and Drug Addiction, 2012). Early experimentation
with cannabis (before age 18) has been shown to ’open the gate’ to experimenta-
tion with other drugs (Agrawal, Grant et al. [13], Lynskey, Vink et al. [225]) and
to escalated drug use over time (e.g., see Lynskey et al. [223], Lynskey, Heath
et al. [224]). Importantly, about 9% of those who experiment with cannabis use
develop dependence (Budney, Roffman et al. [49], Volkow, Baler et al. [356]).
Regular cannabis use during adolescence predicts poor educational (Lynskey and
Hall [223], Horwood, Fergusson et al. [163]) and professional attainment (Fergus-
son and Boden [122], Volkow, Baler et al. [356]), health problems (Joshi, Joshi et
al. [178], Hall [153]) and may increase the risk of developing psychotic disorders
(Di Forti, Sallis et al. [98], Di Forti, Marconi et al. [97]). According to results
of twin and family studies genetic factors explain about 40% of the variance in
liability to initiate cannabis use, while the remaining variance is accounted for
by shared and unshared environmental factors (both about 30%; Kendler and
Prescott [182], van den Bree, Johnson et al. [330], Verweij, Zietsch et al. [343],
Vink, Wolters et al. [348], Distel, Vink et al. [101]).

Relative to tobacco smoking behaviors, attempts to identify genetic variants
underlying the heritability of cannabis use behaviors are fewer, and have met
with limited success. Research has been concerned mainly with behavior relevant
to psychiatric diagnosis, such as cannabis dependence (e.g., see Agrawal et al.
and Hopfer et al. Hopfer, Young et al. [162], Agrawal, Wetherill et al. [7]). Psy-
chiatric diagnoses have the benefit of being more precise relative to self-reported
measures of use (Burmeister, Mclnnis et al. [53]). They are therefore expected
to confer advantages in terms of power in genetic association studies. Yet higher
resolution phenotyping is typically too expensive in sufficiently large samples.
Consequently, several insights into the genetic architecture of clinical diagnosis of
cannabis dependence has come from small-sample candidate gene studies. The
candidate-gene study by Hopfer et al. (Hopfer, Young et al. [162]) performed
in a sample of 541 subjects (of whom 327 met one or more Composite Inter-
national Diagnostic Interview criteria of substance abuse) reported association
signals within the central cannabinoid receptor (CNR1) gene (SNP rs806380; P-
value = 0.02). The signal was confirmed by e.g., Agrawal et al. (P-value = 0.009;
Agrawal, Wetherill et al. [7]), although it was not replicated in other studies
(Herman, Kranzler et al. [158], Hartman, Hopfer et al. [154]; see for details also
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Table 2 in Agrawal et al. Agrawal and Lynskey [7]). Association signals within
the fatty acid amide hydrolase (FAAH) gene were also reported in candidate-gene
studies of cannabis dependence symptoms by e.g. Tyndale et al. (P-value < 0.05;
Tyndale, Payne et al. [323] ). However, the association was not consistently repli-
cated (e.g., Haughey, Marshall et al. [156] see review by Agrawal et al. Agrawal
and Lynskey [7]).

Despite the moderate heritability of about 40% based on twin and family
studies (Verweij, Zietsch et al. [343], Vink, Wolters et al. [348]), no genetic locus
has been implicated in the liability to initiate cannabis use. Among the attempts
to locate the genes underlying the heritability of liability to initiate cannabis
use, a linkage study by Agrawal and colleagues (Agrawal, Morley et al. [14])
failed to locate statistically significant associated genomic regions. Similarly, a
meta-analysis (Verweij, Vinkhuyzen et al. [342]) combining the results of two
genome-wide association studies failed to detect common SNPs associated with
individual differences in the liability to initiation.

1.4 Statistical Power: An Important Consider-
ation in GWAS

Statistical power is a key consideration in seeking genetic variants (GVs) associ-
ated with psychiatric traits such as substance use. The past ten years of GWAS
have taught us that the psychiatric traits are highly polygenic, subjected to the
influence of many GVs of small effect, each typically accounting for less than .1%
of the phenotypic variance. It is well recognized that relatively large samples are
needed to locate these individual GVs of small effect (Psychiatric GWAS Consor-
tium Coordinating Committee [72], Visscher, Brown et al. [352]). The need for
large samples is also due to the large number of tests (e.g., as many as 6 million
genetic variants may be tested in a genome-wide scan), which requires an adapted
a level. As proposed by Pe’er et al. (Pe’er, Yelensky et al. [264]) typically an «
of 5 x 1078 (corrected for multiple testing by taking into account that the tests
are correlated) is used, to ensure the family-wise error rate does not exceed 0.05
(see Sham and Purcell [295] for more details on the burden of multiple testing in
GWAS).

Statistical power in this context is defined as the probability of detecting the
association of a GV with a given phenotype, given that the GV is truly associated,
i.e., gives rise to individual differences in the studied trait. This involves testing
the statistical association between the observed genetic variant and the phenotype
in an appropriate regression model. For instance, if the phenotype y is continuous,
we can use a linear regression model:

Yj:b0+b1 X g;+€; (1.1)

where j (j = 1...n) stands for individual, y; is the phenotype score of individual
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J, bo is the intercept, by is the beta or the regression coefficient, g; is the genotypic
values at the tested locus (coded additively-codominant as 0, 1 or 2 to represent
the number of effect alleles) and €; is the random residual. The parameter of
interest is the genetic effect, as one wants to determine whether the effect of the
GV is unequal zero, i.e., reject the null hypothesis Hy: by = 0 in favor of the two-
sided alternative hypothesis Hi: by # 0. By formulating a two-sided alternative
hypothesis no prediction is made with respect to whether an additional copy of
the tested allele has an increasing or a decreasing effect on the phenotypic mean.

To determine whether to reject the null hypothesis one computes a test statis-
tic (T') with known distributions under the null and under the alternative hy-
potheses. The T calculated based on the sample at hand is then compared to
the critical value of the test statistic on the null distribution corresponding to
the chosen significance level, i.e., a. The chosen « level represents the probabil-
ity that one accepts of committing a type I error, i.e., incorrectly rejecting the
null hypothesis (i.e., prob(T" > T,iicar | Ho is true) = «). Typically « is set at
0.05. In the context of GWAS the type I error probability is the probability of
incorrectly concluding that the genetic variant is associated with the trait when
in fact it is not (i.e., a false positive result). Related to this is the type II error
probability — denoted by 8 — that refers to the probability of incorrectly accept-
ing the null hypothesis of no genetic association when in fact the genetic variant
has a genuine effect on the trait (i.e., prob(T < Teriicar | Hi is true) = ), a
false negative result. The probability of correctly rejecting the null hypothesis is
1 — 5. This probability, i.e., prob(T" > Tiriricar | Hi is true), is called the power
of the test. These probabilities and the relationships among them are illustrated
in Figure 1.1 (for more details on statistical power in genetics see Dolan and van
den Berg [103], Sham and Purcell [295]).
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Figure 1.1: The sampling distributions of a test statistic under the null (Hy) and
under the alternative hypothesis (Hy false). For this illustration, we assumed the
sampling distribution of the test statistic under Hj is standard normal, and we
set the critical value at T,..;;cq; corresponding to a type I error of « (grey). 5 (red)
represents the probability of type II error, 1 — 3 represents the statistical power,
and 1 — a represents the probability of correctly rejecting the null hypothesis
when the tested variant has no effect on the trait.

T (under Hg) T (under H; false)

Tcritical



1.4. Family-Based GWAS: Methods & Applications to Addiction Behaviors 7

1.5 Family-Based Genetic Association Analyses:
Methods and Applications to Addiction Be-
haviors

The call for large samples to increase the statistical power to detect genetic associ-
ation has led to the foundation of international consortia (e.g., see Sullivan [310]).
Yet, increasing the sample size is but one means of increasing statistical power.
As T will discuss in this thesis, refinement of statistical methodologies is another
(complementary) means. The thesis has a strong focus on statistical model-
ing, aiming first at assessing and selecting from the pool of available modeling
approaches the most powerful and computationally efficient ones in the GWAS
context. Next, I use powerful analytic strategies to perform genome-wide searches
for genes and biological pathways implicated in early stages of cannabis use and in
smoking behaviors. Finally, I tie together the recommendations stemming from
both the power studies and the empirical analyses into an overall strategy for
improving statistical power in GWAS.

The answers I advance to the question "How can statistical power be improved
in GWAS while retaining the computational speed?’ have been inspired by the
data collected at twin registries (see Hur and Craig [170]) such as the Danish
(Harvald, Hauge et al. [155]), the Swedish (Magnusson, Almqvist et al. [228]),
the Brisbane (Gillespie, Henders et al. [142]), or the Netherlands Twin Register
(see also http://www.twinstudies.org/information/twinregisters/). Twin
registries contain a wealth of multivariate phenotypic data, relating to many dif-
ferent traits and often observed at multiple occasions. Advancement in genotyp-
ing and imputation techniques have resulted in the addition of measured genetic
information to these databases. I had the opportunity to work with data collected
at the Netherlands Twin Register (NTR) which includes more than 175,000 par-
ticipants with phenotypic data; biological data are available in more than 12,000
participants. Detailed phenotyping has been performed at multiple time points
via questionnaires and in laboratory studies since 1986 (see Boomsma, Vink et
al. [38], Boomsma, De Geus et al. [40], Willemsen, De Geus et al. [361], Willem-
sen, Vink et al. [362] for details) and has included cognitive abilities, health
and lifestyle, personality, and psychiatric traits such as major depressive disor-
der, anxiety and addiction. Many of the measured traits are multivariate, i.e.,
the phenotype vector contains several distinct but interrelated components. Re-
peated measurement naturally gives rise to multivariate data. Several approaches
are possible given multivariate data: (a) univariate analyses of each component
of the phenotype vector, (b) univariate analyses of a sum score or a factor score,
or (c¢) multivariate analyses. Multivariate techniques take account of the cor-
relations among the multiple dependent variables and this may increase power.
However, these techniques give rise to tests with many degrees of freedom and
this in turn may reduce power. Another strategy is to conduct univariate analyses
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in which each trait is tested individually. But obviously, this does not exploit the
multivariate nature of the data. Alternatively, one may collapse the data into a
univariate score (e.g., an average). This allows one to take a univariate approach
which is a computationally easy alternative. However, dimension reduction tech-
niques may discard information about individual differences and this may lower
the power. These observations raise the question: In which circumstances a mul-
tivariate approach is more powerful than a univariate one? The complication
arises that while the phenotypic covariance structure of the phenotypes might be
known, this does not imply knowledge of the polygenic covariance structure or
the exact role of the measured genetic variant therein. The answers to the above
question pertain to phenotype definition in GWAS and hence, are among the key
components of a strategy for improving the power to detect genetic association.

A further important issue relates to the genotyping resources. In addition
to the phenotypic data, the Netherlands Twin Register includes genotypic data
observed in part of the sample (see Willemsen, De Geus et al. [361]). Although
the cost of genotyping has greatly decreased in the recent years, the genotyping
of large numbers of samples still remains expensive. For genome-wide associa-
tion studies not all family members are necessarily genotyped. Often genotypic
data are limited to 1 family member. Limiting the analysis to the genotyped
individuals, given the presence of phenotypic data in close relatives, may not
be optimal. Previous research has shown that family-based imputed genotypes
can boost statistical power. This alternative, however, comes at a computational
cost and requires modeling choices. Hence, pertinent questions are: (a) does the
power gain hinge upon factors such as the phenotypic correlations among the
family members or minor allele frequency?; (b) which individuals, if genotyped,
would be maximally informative about the missing genotypes in their relatives?;
(c¢) which modeling approach should one prefer in such a circumstance?, and
(d) what are the effects on power of misspecification of the familial covariance
matrix?

The availability of data collected in families raises further questions regarding
modeling the familial covariance matrix. Which analytic strategy is the most opti-
mal to run family-based whole genome scans, given that in this context optimality
is defined both in terms of power and computational tractability? Researchers
in the field often use unweighted least squares (ULS) estimator as it admits a
closed form solution, and so it has the advantage of being fast. However, de-
spite the speedy computation, ULS ignores the familial clustering and requires a
sandwich correction to arrive at correct standard errors. With this approach, the
model for the familial covariance matrix is severely misspecified, yet the effect on
power of such misspecification has not been characterized. Although computa-
tionally more demanding, maximum likelihood (ML) is an important alternative.
However, ML (as currently implemented in dedicated GWAS software), employs
a misspecified model for traits with a shared environmental component. These
observations raise the practical question: in conducting a family-based analysis,
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should one use ULS, which is fast, robust, and requires no model to be specified
for the background covariance matrix, or should one use ML, which is efficient
and fast, provided one commits to a background model limited to additive genetic
and unshared environmental effects?

Another issue that needs to be addressed relates to the power gains conferred
by the inclusion into genome-wide analyses of data on monozygotic (MZ) twin
pairs. Twin registries include phenotypic and genotypic data of large numbers
of monozygotic (MZ) twins, yet often one MZ twin pair member is typically
dropped from the analysis (e.g., Lowe, Maller et al. [219], Parsons, Lester et
al. [263], Loukola, Wedenoja et al. [218], Psychosis Endophenotypes International
Consortium, Wellcome Trust Case-Control Consortium et al. 2014). MZ twins are
genetically identical individuals, hence including both MZ twins in an analysis is
presumably seen as redundant. Clearly, reducing MZ pairs to singletons decreases
the sample size, but does this affect the effective sample size and so the power?
And if that is so, what modeling alternatives are suitable for family-based samples
including MZ twin pairs?

Recently, with the increasing availability of exome/genome sequencing data,
researchers have shifted their focus from common to rare variants (RV). The
plethora of applications (e.g., Cohen, Boerwinkle et al. [70], Huyghe, Jackson
et al. [172], Zhan, Larson et al. [378], Cruchaga, Karch et al. [81], Peloso, Auer
et al. [265]) and methodological papers on rare variant tests (see e.g., Li and
Leal [199], Madsen and Browning [227], Price, Kryukov et al. [276], Wu, Lee
et al. [367], Lee, Wu et al. [196], Chen, Meigs et al. [64], Ionita-Laza, Lee et
al. [176], Listgarten, Lippert et al. [211], Lippert, Xiang et al. [210], Svishcheva,
Belonogova et al. [312]; see also Frani¢, Dolan et al. [129] for an overview) as
well as on analytic strategies for rare variant association meta-analyses (see e.g.,
Liu, Peloso et al. [213]) demonstrate that the interest in interrogating the rare
variants’ contribution to psychiatric traits has intensified particularly over the
past five years. This shift in focus has been motivated by the hypothesis that
genetic variants conferring risk for psychiatric traits may be novel and rare, in
so far as they are subject to strong purifying selection. Set-based tests (focusing
on the effect of a set of GVs, rather than on the effects of single GVs) such
as the sequence kernel association test (SKAT) are widely used in rare variant
association analysis. SKAT is based on a random effects model, in which the
betas of the RVs are assumed to be drawn from a zero mean distribution and
common variance. The common variance follows from a transformation of the
betas, by multiplying them with specific weights. These weights are typically
assigned based on meta-information about the RVs, such as allele frequency and
functional predictions (Kryukov, Pennacchio et al. [191], Madsen and Browning
[227], Price, Kryukov et al. [276], Wu, Lee et al. [367]), with rarer and functional
variants expected to have larger effects. Allele frequency, in particular, is an
important weighting factor, as the rarer the variant is, the stronger the average
purifying selection coefficient (Pritchard [277], Schork, Murray et al. [292]). If
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this assumption is true, the betas for rare variants will tend to be larger than
for more common variants. Correct weighting is expected to boost statistical
power, and yet the correct weights are generally unknown. Hence the critical
questions arise: What the effect is of weight misspecification in SKAT? The two
tests employed for hypothesis testing in SKAT — the likelihood ratio test and
score test — are asymptotically equivalent, but do they behave similarly within
the misspecification space? How robust is their performance in the presence of
weighted neutral variation?

The application studies employ the most efficient analytic strategies to lo-
cate genes and pathways of genes implicated in early stages of cannabis use and
smoking behaviors. The searches for the relevant genes and pathways are con-
ducted genome-wide and are based on the Netherlands Twin Register sample
(with data on lifetime cannabis use and age at initiation), and three large meta-
analytic samples: the first two comprising respectively N = 32,330 individuals
and N = 24,222 individuals (with data on lifetime cannabis use and age at onset,
data from the International Cannabis Consortium) and the third one comprising
N = 74,053 individuals (with data on smoking behaviors, data made publicly
available from the Tobacco and Genetics Consortium). As tests focused on indi-
viduals SNPs are still underpowered with the current samples, complementary to
the single variant analysis I will use the set as the unit of analysis (i.e., where the
set is the gene, the pathway or the whole genome). The applications are aimed
to contribute to the field by: (a) providing a heritability estimate for initiation of
cannabis use by considering jointly the currently measured SNPs; (b) identifying
genes associated with lifetime cannabis use and age at onset; (c¢) locating genes
and biological pathways implicated in quantity smoked, ever smoking, smoking
cessation and age at initiation.

1.6 Outline

In short, the aim of the present thesis is two-fold: first, to study and select from
the pool of available statistical methods the most powerful ones (while retaining
computational speed) for conducting common and rare variant association stud-
ies; second, using powerful approaches to identify genes and biological pathways
associated with cannabis use initiation and smoking behaviors. Corresponding
to these aims, the thesis has two parts. Part I comprises five chapters which
address methodological issues related to the power of genome-wide association
studies of common and rare variants. Part II comprises four chapters dedicated
to applications of powerful analytic strategies to find genes and pathways of genes
implicated in early-stages of cannabis use and smoking behaviors. Chapter II
inquires the real-world factors affecting the power to detect genetic association
when multivariate/longitudinal data are used in GWAS. Chapter III consid-
ers the circumstances in which family-based imputation of unobserved genotypes
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and the subsequent use of these data in GWASs increases the power to detect
genetic association. Chapter IV focuses on the clustered nature of the pheno-
typic data collected at the twin registries and inquires which estimator ensures
the most efficient use of family data in GWASs. Chapter V evaluates the power
advantages conferred by the inclusion of MZ twin pairs in association analyses.
Chapter VI evaluates the behavior of the likelihood ratio test and the score test
under weight misspecification in rare variant association analysis and proposes a
weighting method to increase the power to detect association with sets of SNPs.
Chapter VII is based on an application aimed at evaluating the individual and
collective contribution of genetic variants to early stages of cannabis use in data
from NTR. Chapters VIII and IX extend the searches for common genetic
variants and genes implicated in initiation of cannabis use and age at onset in
the International Cannabis Consortium meta-analytic samples. Chapter X aims
at finding genes and biological pathways implicated in smoking behaviors in the
Tobacco and Genetics meta-analytic sample. Chapter XI contains a summary
of the thesis. Chapter XII discusses the implications of the empirical findings
and ties together the recommendations stemming from the results of the power
studies into an overall strategy for improving statistical power in GWAS.
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Chapter 2

Genetic Association in Multivariate
Phenotypic Data: Power in Five Models

Abstract

This chapter concerns the power of various data analytic strategies to detect
the effect of a single genetic variant (GV) in multivariate data. We simulated
exactly fitting monozygotic and dizygotic phenotypic data according to single
and two common factor models, and simplex models. We calculated the power
to detect the GV in twin 1 data in an ANOVA of phenotypic sum scores, in
a MANOVA, and in exploratory factor analysis (EFA), in which the common
factors are regressed on the genetic variant. We also report power in the full
twin model, and power of the single phenotype ANOVA. The results indicate
that: (1) If the GV affects all phenotypes, the sum score ANOVA and the EFA
are most powerful, while the MANOVA is less powerful. Increasing phenotypic
correlations further decreases the power of the MANOVA. (2) If the GV affects
only a subset of the phenotypes, the EFA or the MANOVA are most powerful,
while sum score ANOVA is less powerful. In this case, an increase in phenotypic
correlations may enhance the power of MANOVA and EFA. If the effect of the
GV is modeled directly on the phenotypes in the EFA, the power of the EFA is
approximately equal to the power of the MANOVA.

15
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2.1 Introduction

Well-established twin registries, such as the Scandinavian twin registers, (Pelto-
nen [266]), Netherlands Twin Register (Boomsma et al. [40]), the UK Adult Twin
Register (Spector and Williams [301]), and the Brisbane Adolescent twin study
(Wright and Martin [365]), contain a wealth of multivariate phenotypic data, re-
lating to many different phenotypes, and often observed at multiple occasions.
Developments in genotyping technology, have resulted in the addition of mea-
sured genetic information to these databases (Willemsen et al. [361], Boomsma,
Busjahn and Peltonen [38]). The availability of genetic data has allowed re-
searchers to shift their focus from family-based genetic covariance structure mod-
eling [234,253] to the detection of individual gene effects in linkage/association
studies (e.g., [26,131,159,184,260,268,345,374]). Given the presence of multivari-
ate phenotypic data, the question arises under which conditions a multivariate
analysis is preferable to univariate analyses in studying the role of a given genetic
variant (GV).

In linkage analyses, multivariate modeling was considered both for substan-
tive reasons and for statistical power advantages that multivariate data conferred
(e.g., [17,18,37,39,41,113,164,235]). To date, population-based association studies
have focused mainly on the relationship between a measured GV and a univariate
phenotype. In the case of psychological phenotypes, this phenotype is often a sum
score (i.e., the sum calculated across all items of a phenotypic instrument), or a
case-control affection status dichotomy. In genetic association studies, however,
the power advantages of multivariate data are also of interest, especially as the
contributions of individual genetic variants to the phenotypic variance are com-
monly assumed to be small (Evans [114], Gordon and Finch [143]). To date, three
studies have addressed the question of the power to detect GVs using multivariate
data. In this paper, we briefly discuss these studies, and we contribute to this area
by examining the power to detect a GV in genetic covariance structures based on
the single and two common factor models and models for repeated measures.

Ferreira and Purcell [123] considered the power of a multivariate test (MANOVA)
based on Wilk’s Lambda given varying number of phenotypes (5, 10, and 20), of
which a varying number were affected by the GV. They also varied the positive
intercorrelations between the phenotypes. They found that the multivariate test
was more powerful than univariate tests, with (1) increasing correlations among
the phenotypes and (2) increasing number of phenotypes affected (i.e., by the
GV) increasing the power. However, they noted a sharp loss of power of the mul-
tivariate test when all phenotypes were affected by the GV. This loss in power
is exacerbated by increasing phenotypic correlations. Their results are consistent
with previous results obtained in linkage analysis [17,113,124] , and with the
statistical literature on MANOVA (Cole, Maxwell, Arvey, and Salas [71]).

Medland and Neale [242] considered the single factor models with 3 or 5 indi-
cators, in unrelated cases and in sib pairs [131]. They varied the effect of the GV
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in the factor model such that it was (1) part of the common factor, thus conveying
its effect via the factor loadings on all variables; or (2) common to all phenotypes,
but not conveyed via the factor; or (3) present only in a single phenotype, or in
some (but not all) phenotypes; or (4) it was present in some phenotypes, but with
opposite effects. Medland and Neale [242] studied the power to detect the GV
in the factor model, in which the GV affected all phenotypes via the factor (one
degree of freedom (DF) test), or directly affected all phenotypes (a DF = 3 or
DF = 5 test). They also considered the power conferred by the univariate tests
based on simple sum scores and factor scores (Lawley and Maxwell, 1971) [194].
They varied other important aspects such as the magnitude of the factor loadings
and the degree of missingness. Based on their figures la and 1b ( Medland and
Neale, [242], p. 237), the main conclusion is that their combined multivariate ap-
proach (where the GV effect is conveyed via the common factor, or the GV affects
the phenotypes directly) was almost universally as powerful as, or, depending on
specific circumstances, more powerful than, the univariate tests using sum scores
or factor scores.

Van der Sluis et al [338] discussed the power to detect the effects of GVs in
uni- and multidimensional common factor models. They contrasted the power in
these model to the sum score model, in the situation that the sum score is not
a sufficient statistic (i.e., the univariate sum score entails a loss of information
relative to the multivariate data). They showed that the use of the sum score
generally entails a loss of power, except in specific circumstances. In addition,
they discussed how violations of measurement invariance across multiple samples,
or with respect to the GV itself, affect the power to detect GVs. Violations of
measurement invariance with respect to the GV itself (i.e., direct effects of the GV
on one or more phenotypes in the model, instead of GV effects that are common
to all phenotypes and mediated by (genetic) common factors) resulted in notable
loss of power in the sum score model and incorrectly specified factor models.

The present aim is to contribute to this work on the power to detect genetic
association in multivariate data. We discuss five models that one may encounter
in family-based genetic covariance structure modeling of MZ and DZ twin data
(Neale and Cardon, [253]): genetic factor models with single or multiple genetic
factors underlying the covariance among a set of phenotypes, and two varia-
tions on the simplex models, which have been used to analyze repeated measures
(Eaves, Long, and Heath, [109]; Boomsma and Molenaar, [42]). In each model,
the effect of the GV is specified as part of an additive genetic factor, so that its
effect on the phenotypes is mediated by the additive genetic factor. We consider
situations in which the GV affects all phenotypes, and situations in which the
effect is limited to a subset of the phenotypes. The single common factor model
has been considered previously in the studies by Medland and Neale (2010) [242]
and van der Sluis et al (in press) [338]. The power to detect a GV in the other
four models has not been considered so far.

We simulated data according to a full multivariate twin model in the five
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scenarios. We established the power to detect the GV in this true model, and we
studied the power in four statistical models using only the data of the first twin
members, i.e., in genetically uninformative samples. In the following sections,
we describe the five study designs and the simulation procedures in more detail.
Next, we present the results, and we end the paper with a discussion.

2.2 Procedure

To calculate the power to detect the GV effect, we generated conditionally mul-
tivariate normal (i.e., conditional on the GV) MZ and DZ twin data according
to the five models of interest. Next, we computed the power to detect the GV
effect in the full MZ and DZ twin data, and in three statistical models in which
we used only the twin 1 data (i.e., the phenotypic data and the measured GV):
a univariate ANOVA in which the sum of the phenotypic measures was regressed
on the GV, MANOVA in which all phenotypes were regressed on the GV, and
exploratory factor analysis (EFA), in which the common factors are regressed on
the GV. We simulated multivariate data according to a multivariate ACE twin
model, in which A, C, and E represent the additive genetic structure, shared, and
specific environmental influences, respectively. The additive genetic structure in-
cluded one or more additive genetic factors. To one of these, we added a single
diallelic codominant GV (minor allele frequency of .2), and defined its effect of
.25% of the variance of a given phenotype, which loaded directly on the genetic
factor. Depending on the chosen additive genetic factor structure, the GV did
(directly or indirectly), or did not exert an influence on any other phenotype.
The first model that we considered included a single additive genetic factor.
The single factor model was considered implicitly by Ferreira and Purcell [123]',
and explicitly by Medland and Neale [242] and van der Sluis et al. [338]. In the
present study, the GV was specified as a source of variation in the genetic factor,
and so this factor mediated the relationship between the GV and the phenotypes
(see Figure 2.1 below). We include it because the single factor model — as spec-
ified below — is an ideal, and because the comparison of the MANOVA and the
EFA has yet to be made. The second and third models included two correlated
additive genetic factors. In the second model, the GV was part of the first ge-
netic factor, but exerted no influence on the second factor or on its indicators.
These indicators are thus uninformative with respect to the effect of the GV.
In the third model, the second factor was regressed on the first genetic factor.
This implied that the GV of the first factor did exert an influence on the second
factor, and thus on its indicators. This model may represent a latent phenotype-
endophenotype relationship, in which the effect of the GV on the phenotype is
mediated by the endophenotype (de Geus and Boomsma [92]; De Geus, Wright,

!Ferreira and Purcell chose the intercorrelations among the phenotypes to be equal, which
is consistent with a single factor model.
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Martin, and Boomsma [92]). Finally, we considered two hybrid simplex-factor
models for repeated measures. These models have been applied mainly in genetic
covariance structure modeling of twin data (Neale and Cardon, [253]; for a link-
age application, see Eaves et al, [109] and Birley, et al., [34]). We considered an
ACE model with the additive genetic and environmental autoregressions, and a
common shared environmental factor, and a stationary AE simplex model. In
the latter, the common shared environmental factor is omitted, and background
influences of A and E are stable over time. In the former, shared environmental
effects decline, and the genetic effects increase. We considered 4 repeated mea-
sures, and calculated the power to detect the GV effect given that it entered the
model at occasions 1, 2, 3, or 4. We consider this to be of interest, as genetic
innovation variance is often attributed to the action of new genetic effects (Eaves,
Long, and Heath, [109]; Gillespie, Evans, Wright, and Martin, [141]), which may
include the effects of measured GVs. The simplex-factor model is similar to twin
models established in analysis of IQQ data in children, with a decreasing role of
shared environment and increasing genetic influences (e.g., Hoekstra, Bartels, and
Boomsma, [160]). The stationary AE simplex model is consistent with results one
would expect in twin studies of 1Q) conducted in young adults. Further details on
the simulation settings are given in the tables and path diagrams below.

Given these models, we varied (1) the number of phenotypic measures, and (2)
the parameter values that accounted for genetic and environmental contributions
to phenotypic variance. The parameter values are supposed to be typical of
results one may obtain in genetic covariance structure modeling. We provide
these details below. Throughout we used exact data simulation (van de Sluis et
al, [336])?. We simulated the data using MVRNORM in R (R-core development
team, [316]), under the assumptions that mating is random, and the GV is in
Hardy-Weinberg equilibrium. Given the diallelic GV, the total MZ and DZ sample
sizes were distributed over 3 MZ groups (three pairs of identical genotypes) and 9
DZ groups (3 genotypes x 3 genotypes). The distribution of the total sample size
over these groups depends on the minor allele frequency, which we set to equal .2
in all studies.

We first computed the power to detect the GV effect in (A) the full multivari-
ate twin model. We calculated the power both in the model specified correctly
with respect to the role of the GV (i.e., a 1 DF test), and in the model in which
all present common genetic factors were regressed on the GV, i.e., an omnibus
test, with DF equaling the number of genetic factors in the model. We added
the power of the omnibus test because in practice one will not know the exact

2In exact data simulation, the simulated data fit the true model exactly, and lent themselves
to power calculations as the likelihood ratio of the models with and without the GV effect
equals the noncentrality parameter of the noncentral y? distribution required to calculate the
power.

3This is part of the MASS library. MVRNORM includes the facility for exact data simula-
tion.



2.2, Procedure 21

locus of the GV, and therefore will resort to the omnibus test. As mentioned, we
did not consider the possibility that the GV affects a single phenotype (Medland
and Neale, [242] did consider this possibility), we therefore limited our omnibus
test to the common genetic factors. In the twin 1 phenotypic and GV data,
we calculated the power in: (B) a univariate ANOVA, in which each univariate
phenotype was regressed on the GV; (C) a univariate ANOVA in which the sum
of the phenotypic measures was regressed on the GV; (D) MANOVA in which
all phenotypes were regressed on the GV; and (E) an exploratory factor analy-
sis (EFA), in which the phenotypic common factors were regressed on the GV.
We fitted standard MANOVAs, subject to homogeneity of the conditional (i.e.,
on the GV) covariance matrices. We did not constrain these in the light of our
information concerning the covariance structure. In specifying the EFAs, we did
exploit this information to the extent that the specified dimensionality of the
exploratory factor solution is consistent with the true model. We did not fit the
exploratory factor model to the repeated measures data, as the autoregressive
covariance structures are not compatible with an exploratory factor model (e.g.,
Mandys, Dolan, and Molenaar, [232]). As we considered only additive genetic ef-
fects, we included the GV as a covariate (rather than as a between-subject factor)
in the analyses. Analyses A and E were done in MX (Neale et al., [254]), analyses
B to D were done in R. We report the power of the tests of models B to E for
N = 3000, and the power of the full twin model for NMZ = 1500 and NDZ = 1500,
all given an « level of .01. In the case of the single phenotype ANOVA, we also
report the power for the Bonferroni corrected alpha (i.e., .01 divided by the num-
ber of phenotypes). This correction is conservative, but the differences in power
between the single phenotype test and the other tests are such that the choice of
correction is unlikely to have any bearing on the conclusions. We note that a re-
sample procedure such as permutation testing is unsuited as the data simulation
is exact. The alpha of .01 is unrealistic given multiple testing. However, here we
were interested solely in the differences between the tests in power, not in the
absolute values. However, we report the non-centrality parameters (NCPs), so
that the power of the tests of association can be computed for other total sample
sizes and other « levels, if the reader so desires. R scripts that can be used to this
end are provided in the Appendix. We report the power in the full twin model,
as our simulation and testing procedure produces this result. However our main
interest is in the sum score ANOVAs, MANOVAs, and EFAs. The comparison of
the power in the full twin model with the power of the other tests is complicated
by (1) the difference in number of individuals (a twin comprises two individuals),
and (2) the differences in the expense of ascertainment (ascertaining twin pairs
is usually more expensive than ascertainment of unrelated individuals). In the
subsequent sections, we present the five studies in detail.
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Table 2.1: Variance components in the 4 scenarios that were used to generate the
data. The total variance of each phenotype, conditional on the GV, equaled one.
We provide only 4 parameter values in each scenario, as we did not vary these
parameter values over the phenotypes. For instance in scenario S3, conditional
on the GV, 4 (or 8) tests loaded on the common A factor with loadings equal to
V.5, the genetic residual is .1. The loadings on the common shared environmental
factor equaled V/.2. The unshared environmental residuals equaled .2. Therefore

in scenario S3, the decomposition of phenotypic variance conditional on GV is
h? = .6, c®> = .2, and e? = .2.

Phenotypic Nr. of Scenario Common Specific Common Specific
correlations phenotypes A a; C é;
5 4/8 S1 5 1 0 4
2 4/8 52 2 1 0 7
7 4/8 S3 5 1 2 2
4 4/8 S4 2 1 2 .5

2.3 Study 1: Single common genetic factor

The objective of the first simulation study is to examine the power to detect a
GV that affects all phenotypes via a common polygenic factor. Specifically, we
examined how the sources of phenotypic correlations and the number of measured
phenotypes affect the power to detect the GV effect. In this study we supposed
that a single common genetic factor or, a common genetic factor and a shared
environmental factor, account for the phenotypic correlations.

We simulated MZ and DZ phenotypic data which generate precisely the means
and variances predicted by the common factor model shown in Figure 2.1. We
specified either 4 (as depicted) or 8 phenotypes loading on the additive polygenic
factor (A) and a shared environmental factor (C). Additional parameters are the
phenotype-specific genetic (a;) and unique environmental (e;) factors. We added
the GV to the common genetic factor (A), which thus affected all phenotypes
(y;). The GV accounted for .25% of the variance in the first phenotype (y1).
The chosen parameter values are given in Table 2.1. As we did not vary the
parameters over the phenotypes, the effect size of .25% also holds with respect to
the other phenotypes.

We simulated twin data, given eight scenarios in which we varied the role of
the common factor A and C, and the specific environmental effect, as shown in
Table 2.1. The heritability of the phenotypes ranged from h* = .3 (S1 and S3)
to h? = .6 (S2 and S4). The influence of the common C was absent in scenarios
S1 and S2, and present in scenarios S3 and S4 (¢? = .2). As shown in Table 2.1,
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Figure 2.1: Path diagram for the common factor model with 4 phenotypes. The
triangles represent fixed regressors (i.e., the GV and the unit vector). The pa-
rameters t1 to t4 are intercepts, the parameter b is the effect of the GV on the
common genetic factor. The GV enters the model via common genetic factor A
and affects the indicators y; to yy.

the implied correlations among the phenotypes were .5, .2, .7, and .4 in scenario
S1, S2, S3 and S4, respectively. Table 2.2 contains the results.

Table 2.2 shows that in the single common factor model, the ANOVA of sum
scores has the same power as the exploratory factor model. Due to the equality
(over the phenotypes) of factor loadings and residual variances, the factor scores
and the sum scores are perfectly correlated. Note that in Table 2.2, the infor-
mation with respect to the single phenotype ANOVA is redundant because the
number of phenotypes simulated is irrelevant in the analysis of a single phenotype.
We included the power of the single phenotype ANOVA to ease comparison, and
because the power associated with the Bonferroni corrected a varies as a function
of the number of tests (4 vs. 8).

The single phenotype ANOVA with Bonferroni corrected alpha consistently
has lowest power. The NCPs of the sum score ANOVA, the MANOVA and the
EFA are comparable, and thus affected similarly by the differences in parameter
configuration. The lower power of the MANOVA compared to the EFA stems
from the differences in DF of the associated tests. Increasing the number of
indicators resulted in a consistent increase in power of the sum score ANOVA
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Table 2.2: The power, non-centrality parameter, and degrees of freedom (in paren-
theses) of univariate and multivariate tests of association given av = .01 in study
1. In the case of the single phenotype ANOVA, power is reported for a = .01
and o = .01/4 (.0025; 4 phenotypes) or o = .01/8 (.00125; 8 phenotypes). The
power for the corrected alpha is displayed in italics.

Nr. of True ANOVA  ANOVA

Scenario henotvpes  model Sum single MANOVA EFA
P P Scores  phenotype

N 2x1500 3000 3000 3000 3000
95 81 56, .39 59 81

4 18.04  12.02 7.51 12.01  12.00
0 (1) (1,2998)  (1,2998)  (4,2995) (1)
97 85 56, .31 51 85

8 19.97 1335 7.51 1332 13.33
(1) (1,2998)  (1,2998)  (8,2991) (1)
99 96 56, .39 85 96

4 2947  18.78 7.51 18.76  18.73
o (1) (1,2998)  (1,2998)  (4,2995) (1)
.99 .99 56, .31 89 .99

8 38.09  25.04 7.51 2498  24.95
(1) (1,2998)  (1,2998)  (8,2991) (1)
91 70 56, .39 46 70

4 15.55 9.69 7.51 9.68 9.68
o (1) (1,2998)  (1,2998)  (4,2995) (1)
93 73 56, .31 35 73

8 1656  10.18 7.51 10.16 1017
(1) (1,2998)  (1,2998)  (8,2991) (1)
98 .86 56, .39 67 .86

4 2211  13.66 7.51 13.64  13.63
o (1) (1,2998)  (1,2998)  (4,2995) (1)
99 91 56, .31 62 91

8 2675  15.81 7.51 15.78  15.78

(1) (1,2998)  (1,2998)  (8,2991) (1)
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and EFA, as is to be expected as the increase in affected phenotypes in the
one-dimensional model increases the GV signal. However, the increase in the
number of phenotypes resulted in a decrease in power of the MANOVA in three
cases, and slight increase in only scenario S2 (power .85 vs. .89). Overall the
power of the MANOVA, sum score ANOVA, and EFA decreases with increasing
phenotypic correlation (e.g., compare S1 and S3). Increasing the correlations
increases the variance of the sum scores, and given the constant effect size, lowers
the power of the test. Cole et.al [71] explained the role of the magnitude of
phenotypic correlation on the power in the MANOVA given consistent effects on
the dependent variables. Specifically they showed in two dimensions that the
overlap between the 95% ellipsoids increases with increasing correlation (see Cole
at al, 1994, Figure 1). This results in a loss of power (see also Ferreira and Purcell,
2009).

In conclusion, in this study, the methods of choice are the EFA or the sum
score ANOVA. The power of these methods is equal because the factor loadings
in the EFA are equal. We refer to Medland and Neale [242] and van der Sluis,
et al. [338] for results obtained in the same setup, but with unequal loadings.
The MANOVA fares relatively poorly because all phenotypes are affected by the
GV and the phenotypic correlations are positive and relatively high (notably in
scenario S3). The power of the EFA is relatively good because the test involves
a single parameter, i.e., the latent mean difference between the genotypes on the
common factor. The effect of the GV on the actual phenotypes is thus mediated
by the common factor. Medland and Neale [242] also considered the EFA in
which the GV has a direct effect on the phenotype. In that case, the NCP would
be the same as shown in Table 2.2 for the EFA, but the DFs would equal 4 or 8
(i.e., the number of phenotypes). The power of this EFA based test would then
equal that of the MANOVA.

The power of the full twin model was consistently high (>.90), but the NCPs
display good variation (ranging from 15.55 to 38.09). For instance, retaining the
sample sizes of 2x1500, but changing the alpha from 1E~2 to 1E~7, reduced the
power to a low of .083 (S3, 4 phenotypes) and to a high of .801 (S2, 8 phenotypes).

2.4 Study 2: Correlated genetic common factors

In the second study, the model included two correlated genetic factors, of which
only the first is affected by the GV. We examined how the sources of phenotypic
correlations, i.e., the genetic correlation and the shared environmental factor,
affect the power to detect the GV effect. In addition, we explored the impact of
the number of phenotypic indicators (3 vs. 5 per factor) on the power. Figure 2.2
depicts the three indicator model. The covariances among the phenotypes are
caused by two genetic correlated factors (Al and A2) and a shared environmental
factor (C). Additional parameters in the model are genetic specifics (a;) and
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unshared environmental effects (e;). The GV enters the model via the latent
genetic factor Al, and so affects the indicators of A1, but affects neither A2, nor
its indicators. The parameter values used to generate data for this study are
given in Table 2.3. The GV explained .25% of the variance of the phenotype ;.
Given the parameter values, the GV explained the same amount of variance in
the other indicators for the first genetic factor, but no variance in the indicators
of the second genetic factor.

Figure 2.2: Path diagram of the oblique two common factor model (three in-
dicator model). The triangle represents the GV as a fixed regressor. The unit
vector, which is used to estimate intercepts is not included to avoid clutter (see
Figure 2.1). The parameter b represents the effect of the GV. Note that the
GV contributes to the variance of the first latent genetic factor Al and affects
its indicators (y;-y3), but does not affect the second common factor A2, or its
indicators (y4-ys). The value of the correlation between Al and A2 was varied.
Parameters are not shown to avoid clutter.

Pataz

As we manipulated the correlations between the genetic factors (3 settings),
the number of phenotypes per genetic factor (2 settings), and the parameter
values (3 settings), we simulated data according to 18 scenarios. As above, we
computed the power to detect the GV in the true multivariate twin model, in
the univariate phenotype ANOVA, in the sum score ANOVA, in the MANOVA,
and in the two factor oblique EFA. In fitting the EFA in MX, we identified the
model by fixing the loading of the first phenotypic variable on the second factor,
and the last phenotypic variable on the first factor to zero. All other loadings
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Table 2.3: Variance components, conditional on GV, used to simulate data in
study 2 (correlated genetic factors) and study 3 (regression of genetic factor 2
on genetic factor 1). The within (between) set phenotypic correlation is among
phenotypes that load on the same (different) genetic factor (factors). For instance,
in the 3 indicator S22 scenario, the phenotypes 41 to ys (y4 to yg) loaded v/.3 on
the common Al (A2) factor, each phenotype loading v/.1 on the common C
factor. The residual variance of each phenotype equaled .6 (.5 due to specific
environment; .1 due to specific genes). So in scenario S22, the decomposition of
phenotypic variance conditional on GV is h? = 4, ¢ = .1, and €% = .5.

* Within set correlation is among phenotypes that load on the same genetic factor
(y1-y2), the between set correlation is among phenotypes that load on the different
genetic factors (y1-ys).

Phenot. cor.

Correlation : 1 Nr. Common Specific Common Specific
coefficient Scenario  within sets, Ind. Al, A2 a; C e;
between sets™*
S11 8, .70 3/5 .3 1 5 1
paina =77 S12 4, .33 3/5 3 1 1 5
S13 .3, .23 3/5 3 1 .0 6
S21 .8, .64 3/5 3 1 ) 1
paiaz = 47 S22 4, .24 3/5 3 1 1 5
S23 3, .14 3/5 3 1 .0 6
S31 .8, .57 3/5 3 1 5 1
PA1A2 = 2D S32 4, .17 3/5 3 1 1 5)
S33 3, .07 3/5 3 1 .0 6
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were estimated. The common factors were standardized and allowed to correlate.
For the path diagram, see Figure 2.3. Other identifying constraints, but these
constraints in the EFA does not affect the power of the omnibus test, in which all
phenotypic common factors are regressed on the GV (McDonald, [240]; Dolan, et
al., [104]). In the EFA, we regressed both common factors on the GV (a 2 DF
test), that is, we did not exploit our knowledge of the locus of the GV in the
model. We varied the number of indicators, the size of the genetic correlations,
and the contribution of the common C factor. Table 2.4 contains results.

Figure 2.3: Exploratory (oblique) two common factor model as used in studies 2
and 3. Two factor loadings are fixed to zero (as depicted) to achieve rotational
determinacy. The common factors are denoted F1 and F2, r1 to r6 represent the
residuals. The triangles represent fixed regressors. The regression on the unit
vector serves to estimate the intercepts, the regression on the GV estimates the
effect of the GV (i.e., the parameters bl and b2). Other parameters are not
shown to avoid clutter.

Al

The power of the sum score ANOVA is low, as expected because the pheno-
types that are unaffected by the GV add only noise to the sum score. The single
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Table 2.4: Power, non-centrality parameter, and degrees of freedom (in parenthe-
ses) of univariate and multivariate tests of association given o = .01 in study 2.
The power in the true model is included for the likelihood ratio test of the cor-
rectly specified GV (1 DF test) and for the omnibus test, in which the 2 genetic
factors are regressed on the GV (2 DF test). In the case of the single phenotype
ANOVA| power is reported for o« = .01 and o = .01/6 (.0016; 6 phenotypes) and
a =.01/10 (.001; 10 phenotypes). The power for the corrected alpha is displayed
in italics.

Nr. of True ANOVA  ANOVA
pa1a2 Scenario indica- o Sum single MANOVA EFA
model
tors Scores  phenotype

N 2 x 1500 3000 3000 3000 3000
>.99,>99 .14 .56, .34 97 >.99
3 47.29 2.35 7.51 30.23 30.15

s11 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99>99 .15 .56, .29 98 >.99
5 57.40 2.38 7.51 37.14 37.02

(1),(2)  (1,2998) (1,2998) (10,2989)  (2)

>.99,>.99 .28 .56, .34 a7 91
3 29.57 4.03 7.51 18.02 18.01

1),(2 1,2998 1,2998 6,2993 2

e (1.2)  (12998)  (12998) (62993 (2
>.99>99 .31 .56, .29 .85 97
5 39.06 4.40 7.51 24.35 24.32

(1),(2)  (1,2998) (1,2998) (10,2989)  (2)

>.99,>99 .35 .56, .34 74 .89
3 28.48 4.90 7.51 17.35 17.34

313 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99>99 .41 .56, .29 .83 97
5 37.83 5.58 7.51 23.60 23.58

(1),(2)  (1,2998)  (1,2998)  (10,2989)  (2)

Continued in Table 2.5.
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Table 2.5: Continued from Table 2.J.
Nr. of T ANOVA  ANOVA
paiaz Scenario indica- e Sum single MANOVA EFA
model
tors Scores phenotype
N 2 x 1500 3000 3000 3000 3000
>.99,>.99 .16 .56, .34 .79 .92
3 29.98 2.50 7.51 18.62 18.61
311 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,>.99 .16 .56, .29 78 .95
5! 34.45 2.52 7.51 21.55 21.54
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
99,.97 32 56, .3/ 64 82
3 23.25 4.50 7.51 14.74 14.74
1),(2 1,2998 1,2998 6,2993 2
o s (1,2) (12998) (12098 (62993 (2
>.99,>.99 .36 .56, .29 .66 91
5 28.07 4.98 7.51 18.07 18.07
(1) (1,2998) (1,2998) (10,2989)  (2)
.99,.97 41 .56, .34 .65 .83
3 23.61 5.62 7.51 15.01 15.01
313 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,>.99 .49 .56, .29 .69 .92
5 28.86 6.54 7.51 18.77 18.77
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
.99,.98 .16 .56, .34 .68 .85
3 25.72 2.60 7.51 15.56 15.55
S11 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,>99 .17 .56, .29 .61 .88
5 28.00 2.64 7.51 16.91 16.92
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
.98,.96 .35 .56, .34 .59 .79
3 21.42 4.83 7.51 13.70 13.70
1),(2 1,2998 1,2998 6,2993 2
v s (,2)  (12998)  (12998)  (6.2995) (2
>.99,.98 .39 .56, .29 .59 .87
5 25.25 5.38 7.51 16.31 16.31
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
.98,.96 46 .56, .34 .62 81
3 22.37 6.15 7.51 14.36 14.36
S13 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,.99 .54 .56, .29 .64 .90
5 26.79 7.26 7.51 17.57 17.58
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
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(affected) phenotype ANOVA is more powerful (i.e., power based on the corrected
alpha) than the sum score ANOVA when the phenotype intercorrelations were
relatively large (e.g., S11). The NCPs of the MANOVA and the EFA are com-
parable, and affected similarly by the variation in parameters. However, as in
study 1, the EFA has greater power due to the difference in DF of the associated
tests. In comparison with study 1, the MANOVA fares relatively well, because
the GV does not affect all the phenotypes (as in study 1; see also Ferreira and
Purcell, [123]). Note that in this case (in contrast to study 1), the increase in the
phenotypic correlation resulted in an increase in power (compare S11 and S13, or
S11 and S31). The presence of phenotypes not affected by the GV has a beneficial
effect in MANOVA, especially when the correlations among the phenotypes are
relatively high (see also Ferreira and Purcell, [123]). Cole et al. [71] explained
the role of the magnitude of phenotypic correlation on the power in the context
of MANOVA, when some, but not all, dependent variables are affected (see Cole
at al, [71], Figure 3). In general, power of all tests improved by increasing the
number of phenotypic indicators (from 3 to 5). In conclusion, in this study, the
methods of choice are the EFA or the MANOVA. The power of the EFA is rel-
atively good because the test involves just two parameters, i.e., two latent mean
differences. As in study 1, the effect of the GV on the phenotypes is mediated by
the 2 common factors. Estimating the effect of the GV directly on the phenotypes
in the EFA (a 6 or 10 DF test) would render the power of the EFA equal that of
the MANOVA.

NMZ = 1500 and NDZ = 1500 afforded high power in the full twin model.
But again the NCPs are quite variable. Changing the alpha from 1E=2 to 1E~7
reduced the power of the 1 DF test to a low of .24 (scenario S32, 2x 3 phenotypes)
and to a high of >.99 (scenario S11, 2x5 phenotypes).

2.5 Study 3: Latent regression model

In the third study, we specified a latent regression model with an independent
(A1) and dependent common genetic factor (A2). The GV is introduced into A1,
and exerts its influence both on the indicators of Al (i.e., via A1), and on A2 and
on its indicators. We included a common environmental factor, and varied the
details of both the shared and unshared genetic and environmental effects. As in
study 2, we considered both 3 and 5 indicators models. We simulated phenotypic
data according to the model, as shown in Figure 2.4 (i.e., the three indicator
model).

We chose parameter values such that the resulting correlations between the
factors A1 and A2 equal the correlations of study 2. The other parameters in
the model are additive genetic specifics (a;) and unique environmental effects (e;),
which contribute to phenotypic variance. The GV effect is defined with respect to
the first phenotype %1, but the GV explained the same amount of variance (.25%)
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Figure 2.4: Path diagram for the latent genetic regression model (3 indicator
model). The triangle represents the GV as fixed regressor. The unit vector
used to estimate intercepts is not included to avoid clutter (see Figure 2.1). The
parameter b represents the effect of the GV. Note that the GV contributes to
the variance of the first latent genetic factor A1 and affects its indicators (y1-ys).
The GV contributes to A2 via the regression coefficient b 4541, and so also affects
the indicators y4-ys. The value of the parameter bas4; was varied. Parameters
are not shown to avoid clutter.

bAQ,M
A A2

in the other indicators of the first common genetic factor. Given pay40 = .77,
the GV accounted for about .15% of the variance in the indicators of A2, the
dependent genetic factor. The parameter values used in study 3 equaled those of
study 2, and are shown in Table 2.3. As we manipulated the regressions between
the genetic factors (3 settings), the number of phenotypes per genetic factor (2
settings), and the parameter values (3 settings), we simulated data according to
18 scenarios. Table 2.6 contains the results.

The present study resembles study 1 in that the effect of the GV is general.
However, here the GV effect varied (e.g., .25% vs. .15% in S11), as did the
intercorrelations among the phenotypes (see Table 2.3). Compared to study 2,
the sum score fares well, especially when the phenotypic intercorrelations are
relatively low, and the regression relationship of A2 and A1l is relatively strong:
in scenarios S11, S12, and S13, the sum score ANOVA has the greatest power.
However, given a weaker regression relationship the power of the EFA is greater
than the power of the sum score ANOVA. The power of the MANOVA depends
on (1) the differences in the GV effect on the phenotypes (general large effects in
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Table 2.6: Power, non-centrality parameter, and degrees of freedom (in parenthe-
ses) of univariate and multivariate tests of association given a = .01 in study 3.
The power in the true model is included for the likelihood ratio test of the cor-
rectly specified GV (1 DF test) and for the omnibus test, in which the 2 genetic
factors are regressed on the GV (2 DF test). In the case of the single phenotype
ANOVA, power is reported for o = .01 and o = .01/6 (.0016; 6 phenotypes) and
a =.01/10 (.001; 10 phenotypes). The power for the corrected alpha is displayed
in italics.

Nr. of True ANOVA ANOVA
Bar1a2  Scenario indica- Sum single MANOVA EFA
model
tors Scores  phenotype

N 2 % 1500 3000 3000 3000 3000
95,.91 55 56,.32:.42,.21 .33 54

3 18.29 7.39 7.51,4.50 8.80 8.81

s11 (1),(2)  (1,2998) (1,2998) (6,2993) (2)

.96,.93 .56 .56,.82,.36,.17 .27 57

5 19.47 7.51 7.51,4.50 9.27 9.29

(1),(2)  (1.2998) (1,2998) (10,2989)  (2)

.97,.95 .83 .56,.32;.42,.21 .58 78
3 20.97 12.68 7.51,4.50 13.37 13.37

1),(2 1,2998 1,2998 6,2993 2

s (.2) (12998)  (12998)  (6.2998) (2
.98,.97 .87 .56,.32;.36,.17 .53 .83
5 23.46 13.87 7.51,4.50 14.85 14.86

(1),(2)  (1,2998) (1,2998) (10,2989)  (2)

.99,.98 91 .56,.32;.42,.21 .70 .86
3 24.49 15.44 7.51,4.50 16.05 16.05

313 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,.99 94 .56,.32;.36,.17 .67 91
5 27.86 17.58 7.51,4.50 18.46 18.46

(1),(2)  (1,2998)  (1,2998)  (10,2989)  (2)

Continued in Table 2.7.
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Table 2.7: Continued from Table 2.6.
Nr. of T ANOVA ANOVA
Bataz  Scenario indica- ue Sum single MANOVA EFA
model
tors Scores phenotype
N 2 x 1500 3000 3000 3000 3000
96,.93 38 .56,.09;.42,.0/ .41 62
3 19.55 5.24 7.51,1.50 10.16 10.17
s11 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
.98,.95 .39 .56,.09,.36,.03 .34 .66
5 21.09 5.33 7.51,1.50 10.88 10.90
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
96,.93 68 .56,.09..42,.0/ .54 74
3 19.73 9.43 7.51 & 1.50 12.55 12.55
1),(2 1,2998 1,2998 6,2993 2
s (2)  (12998)  (12998)  (62999)  (2)
.98,.96 74 .56,.09,.36,.03 .51 81
) 22.70 10.43 7.51,1.50 14.40 14.41
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
98,.96 80 .56,.09..42,.04 .64 82
3 22.57 11.78 7.51,1.50 14.63 14.63
313 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,.98 .86 .56,.09; .36,.03 .63 .89
5 26.41 13.69 7.51,1.50 17.40 17.41
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
.97,.95 29 56,.03;.42,.013 AT 68
3 20.66 4.11 7.51,.49 11.23 11.24
S11 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
.98,.96 .29 .56,.03;.36,.008 .39 .72
5 22.29 4.19 7.51,.49 12.02 12.03
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
.96,.93 57 .56,.03;.42,.013 .53 .74
3 19.64 7.63 7.51,.49 12.52 12.52
1),(2 1,2998 1,2998 6,2993 2
v s (1.2)  (12998)  (12998)  (62%93)  (2)
.98,.97 .63 .56,.03;.36,.008 .51 .82
5 22.76 8.51 7.51,.49 14.52 14.52
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
.99,.96 .70 .56,.03;.42,.018 .62 81
3 22.05 9.71 7.51,.49 14.24 14.24
S13 (1),(2)  (1,2998) (1,2998) (6,2993) (2)
>.99,.98 .79 .56,.03;.36,.008 .62 .89
5 26.04 11.46 7.51,.49 17.15 17.15
(1),(2)  (1,2998) (1,2998) (10,2989)  (2)
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S11, S12, and S13 in contrast to S31, S32, and S33), and (2) the intercorrelations
among the tests (generally low in S13, S23, and S33; generally high in S11,
S21, and S31) (see, Cole et al., 1994). The greatest power is observed in S13 (6
phenotypes), i.e., a general effect, but low phenotypic intercorrelations (.70). The
lowest power is in S11 (10 phenotypes), i.e., general effects and high phenotypic
correlations (.27). In this scenario, the single phenotype ANOVA happens to be
more powerful (.36). The NCP of the MANOVA equals that of the EFA; so it is
again the difference in DF that determine the difference in power. Conducting
the EFA with GV effect directly on the phenotypes (rather than being mediated
by the common factors) would render the power of the EFA equal to that of the
MANOVA.

The power of the 1 DF test in the full twin model is high (>.96). Changing
the alpha from 1E~2 to 1E77, reduced the power to a low of .15 (S11, 3 indicators)
and to a high of .65 (S13, 5 indicators).

2.6 Study 4: Hybrid simplex (A,E)-factor (C) model

In the fourth study, we considered a hybrid factor-simplex model for four occa-
sions. We varied the occasion (t) at which the GV entered the model as part of
the genetic factor (A(t)). In this model, which is shown in Figure 2.5, the pheno-
type y(t) was regressed on a latent genetic factor A(t), environmental influences
common to all phenotypes C(t), and specific environmental influences E(t): y(t)
= A(t) + C(t) + E(t). The stability of the phenotypic individual differences
depended on the common shared environmental factor, and on the autoregressive
coefficients in the genetic and unshared environmental simplexes, i.e., 84 and Sg.
The parameters 4 and Sg equal 1 and .7, respectively. The other parameters in
the model are the residual variances, o7, (07, =.1) and 0Z_ (07, =.204), repre-
senting the amount of variance in the genetic factors A(t) that is not explained
by the independent factors A(t-1).

The GV was added to the genetic factor (A) at occasion t, and its effect is
defined as .25% of the variance in the phenotype y(t) that depends directly on
A(t). Because of the genetic autoregression, the GV effect entering at occasion
t is transmitted to the phenotypes measured at the subsequent occasions. For
example in Figure 2.5, the GV also affects 1, y3 and y4. The parameter values in
the model are given in Table 2.8, along with the expected phenotypic covariances.
As shown in Table 2.8, the variance due to the common shared environmental fac-
tor decreased over time (c¢? decreases from .3 to 0), while the variance due to the
genetic factor increased through time (h? increases from .3 to .6). We calculated
the power in the full multivariate twin model, in the univariate ANOVA of the
sum scores, i.e., the sum of the phenotypes observed at the different occasions;
in the univariate ANOVA of each individual phenotype, and in the MANOVA.
As mentioned above, we did not fit the exploratory factor model on these longi-
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Figure 2.5: Path diagram for the hybrid simplex-factor model. The triangle
represents the GV as fixed regressor. The unit vector used to estimate intercepts
is not included to avoid clutter (see Figure 2.1). In this model the GV enters at
occasion 1. We also considered the cases in which the GV enters at occasions 2,
3, or 4.

Yl Y2 Y3 w4

tudinal data as the autoregressive covariance structure is not compatible with an
exploratory factor model. Table 2.9 contains the results.

The results are consistent with the results of the preceding studies. First,
when the GV affected all phenotypes (enters at occasion 1), the ANOVA of sum
scores was the most powerful test of association (.71). Its power decreased from
.71 to .03, as the GV entered the model at a progressively later occasion. This
is expected as the GV signal in the sum score is weakened by the presence of
unaffected phenotypes. The power of MANOVA followed a reverse pattern: it
was the lowest when all phenotypes were associated with the GV (.51). Given the
relatively large phenotypic correlations, this is consistent with Cole at al. ( [71];
Figure 1; see also Ferreira and Purcell, [123]), and with the results of study 1 and
study 3. The power is high when the GV entered at a later occasion, ranging from
.95 (occasion 2) to .88 (occasion 4). The power of the single (affected) phenotype
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Table 2.8: Variance components in study 4 at the 4 occasions, and the implied
phenotypic covariance matrix, conditional on GV. The model comprises a simplex
for A and E, and a common C factor. The factor loadings on the common C factor
are v.3,v/.2,/.1, and 0. The C factor loading decreases, the additive genetic
variance increases, and the unshared environmental variance remains constant.
Consequently the total phenotypic variance, conditional on the GV, remains 1
at each occasion. The autoregressive parameters 4 and g equal 1 and .7,
respectively. The residual variances equal U?A =.1 and agE = .204.

occasion h%? (2 e?
t1 3 3 A4
t2 4 2 4
t3 5 1 4
t4 .6 .0 4
phenotypic covariance matrix
1
.825 1

.669 821 1
437 596 780 1
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Table 2.9: Power, non-centrality parameters, and degrees of freedom (in paren-
theses) of univariate and multivariate tests of association given ov = .01 in study
4. The power in the true model is included for the likelihood ratio test of the
correctly specified GV (1 DF test) and for the omnibus test, in which all 4 genetic
factors are regressed on the GV (4 DF test). In the case of the single phenotype
ANOVA power is reported for « = .01 and o = .01/4 (.0025; 4 phenotypes). The
power for the corrected alpha is displayed in italics.

ANOVA

ANOVA Single phenotypes

Model True model . MANOVA
Sum Scores at 4 occasions
2% 1500 3000 3000 3000
56 & .56 & .56 & .56
avat 90 71 38 6 .98 & .98 & .38 51
£1 16.48 9.80 751 & 751 & 751 & 7.51 10.45
(1),(4) (1,2998) (1.2008) (4,2995)
01 & .56 & .56 & .56
Qv at 09> Al 0025 & 38 & .38 6 .38 95
£2 40.65 5.1 0& 7.51 & 7.51 & 7.51 24.36
(1),(4) (1,2998) (1.2065) (4,2995)
01 & .01 & .56 & .56
avat 99>99 15 0025 & 0025 € .38 & .58 93
' 39.10 2.45 0] e 23.33
(1),(4) (1,2998) (1.2908) (4,2995)
01 & .01 & .01 & .56
Qvat < 99>99 03 0025 & 0025 € .0025 & .38 88
9 39.82 61 A 19.82
(1),(4) (1,2998) ' (4,2995)

(1,2998)
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ANOVA had a constant value of .38.

The first column in Table 2.9 contains the power of the full true multivariate
twin model. As in the MANOVA, the power of this model was lowest when the
GV entered at occasion 1 (.93). It increased to >.99 when the GV entered at

later occasions. The differences in power of the 1 DF test are more pronounced
given an alpha of 1IE™": .10 (t1), .85 (t2), .82 (t3), .66 (t4).

2.7 Study 5: Stationary double simplex (A,E) model

In the fifth simulation study, we considered a stationary double-simplex model (A,
E) with a single phenotype measured at four occasions. Common environmental
effects were absent. As in study 4, the GV was added to the genetic factor (A) at
occasion t, and its effect is defined as .25% of the variance in the phenotype y(t)
that depends directly on A(t). Due to autoregression, the GV that enters the
model at occasion t affects the phenotype at the subsequent occasions. The path
diagram of this model is the same as that in Figure 2.5, except for the absence
of C. The genetic autoregression coefficient (54) equals .9 and the environmental
autoregressive coefficient (Sg) equals .7. The residual genetic and environmental
(innovation) variances equal of, = .114 and of = .204, respectively. These
parameters resulted in a stationary model, in which the h? and e? at each occasion
equal .6 and .4, respectively. The phenotypic correlations equal .82 (t1-t2, t2-t3,
t3-t4), .68 (t1-t3, t2-t4), and .57 (t1-t4). Table 2.10 contains the results.

The results resemble those of study 4. We find that the sum score ANOVA is
most powerful when all phenotypes were affected (GV entered at the first occa-
sion), and that the power of this ANOVA declines progressively as the GV entered
at later occasion. The power of the MANOVA was lowest when all phenotypes
were affected, and increased sharply when the GV entered at a later occasion (see
Cole, et al. [71]; Ferreira and Purcell, [123]).

The power of the full multivariate twin model resembled that of the MANOVA:
the power was relatively low when the GV entered at t1 (.82), but increased
sharply when the GV enter at t2 or later (>.99). Given an alpha of 1E~", the
power of the 1 DF test ranges from .03 (GV enters at occasion 1) to .83 (GV
enters at occasion 2).

2.8 Discussion

In this paper, we considered the power of tests of genetic association using mul-
tivariate phenotypic data. Our main interest was in power of tests based on sum
score ANOVAs, MANOVAs and EFAs in phenotypic data of unrelated subjects.
We also reported the power of single phenotype ANOVAs, and the power of the
likelihood ratio test in the full MZ & DZ twin model. Based on the results of
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Table 2.10: Power, non-centrality parameters, and degrees of freedom (in paren-
theses) of univariate and multivariate tests of association given ov = .01 in study
5. The power in the true model is included for the likelihood ratio test of the
correctly specified GV (1 DF test) and for the omnibus test, in which all 4 genetic
factors are regressed on the GV (4 DF test). In the case of the single phenotype
ANOVA power is reported for « = .01 and o = .01/4 (.0025; 4 phenotypes). The
power for the corrected alpha is displayed in italics.

ANOVA

ANOVA Single phenotypes

Model True model . MANOVA
Sum Scores at 4 occasions
2% 1500 3000 3000 3000
56 & .45 & .36 & .28
GV at 8112 1‘20 65924 396 296 216 15 7'3850
£1 : : 751 & 6.08 & 4.93 & 3.99 ‘
(1),(4) (1,2998) (1.2908) (4,2995)
01 & .56 & .45 & .36
Gvat 0> 30 0025 & 39 & 29 & 21 93
£2 38.91 4.31 0 & 7.51 & 6.08 & 4.93 23.32
(1),(4) (1,2998) (1.2008) (4,2995)
0L & .01 & .56 & .45
avat 99 >99 13 0025 € .0025 € .39 & .29 93
o 38.73 2.12 U e 93.18
(1),(4) (1,2998) (1.2908) (4,2995)
01 & .01 & 01 & 56
avat 9999 03 0025 6 .0025 & 0025 & .39 93
9 38.43 58 e 92.94
(1),(4) (1,2998) ’ ' ‘ ' (4,2995)

(1,2998)
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factor model-based studies (1, 2, and 3), we conclude that overall the EFA is
the most powerful model to detect association. The factor model was also found
to be powerful to detect linkage by using IBD mapping in sibs (Boomsma, [39];
Boomsma and Dolan, [41]). Medland and Neale [242] and van der Sluis et al. [338]
also found this approach to be powerful to detect factor level association in sin-
gle factor models. However, note that in the present paper the success of the
EFA in studies 1, 2, and 3 hinges on the fact that the GV effect on the pheno-
types is mediated (or conveyed) by common factors, i.e., that the factor model is
measurement invariant with respect to the GV (van der Sluis et al. [338]). This
reduces the number of parameters that are estimated to accommodate the mean
differences, and so increases the power. Van der Sluis et al. [338] demonstrated
that violation of this invariance (i.e., direct effects of the GV on one or more phe-
notypes in the model) may greatly reduce the power. We noted that in studies
1, 2, and 3, the NCP of the MANOVA and the EFA were approximately equal,
and the differences in power are solely a function of the number of estimated
parameters. Modeling direct effects of the GV on the phenotypes in the EFA (as
studied by Medland and Neale, [242]) renders the power of the likelihood ratio
test asymptotically equal to the power in the MANOVA.

The power of the MANOVA (and so of the EFA) depends on whether the
GV affects all phenotypes, or only a subset, and on the intercorrelations among
the phenotypes (as noted by Ferreira and Purcell, [123]). If all phenotypes are
affected, the power is relatively low, especially if the phenotypes are relatively
highly correlated. If the GV affects a subset of phenotypes, increasing pheno-
typic correlations can be beneficial. We refer to Cole et al. [71] for a graphical
explanation of these mixed effects.

In the special case of study 1, the phenotypic sum score is a sufficient statis-
tic, in the psychometric IRT sense: the sum scores contain the same amount of
the information as the constituent phenotypic test scores. Under these specific
circumstances the tests based on the sum score ANOVA and EFA (subject to
measurement invariance) are equally powerful. However, even if the sum score is
not sufficient, the sum score ANOVA may still fare well, i.e., if the GV effect is
present in all phenotypes, as shown in Study 3, 4, and 5. However, the power
decreases with increasing phenotypic correlations, as higher phenotypic correla-
tions result in larger phenotypic (sum score) variance. Also the power in the sum
score ANOVA decreases as the variation in the GV effect over the phenotypes
increases (study 3, S31 to S33; see also Medland and Neale, [242]).

The results of the repeated measures studies 4 and 5 are consistent with the
results of studies 1 to 3. Specifically, if the GV entered at the first occasion and
so affected all phenotypes, the power of the MANOVA was relatively low, while
the power of the sum score ANOVA was relatively large. The power of the sum
scores ANOVA decreased and the power of the MANOVA increased as the GV
entered at a later occasion. For instance, as shown in Table 2.9, when the GV
enters occasion 4, the power of the sum score ANOVA and the MANOVA are
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.03 and .88, respectively. We note that the striking differences in the covariance
structures of the repeated measure models (increasing h? in study 4, constant
h* in study 5) had little bearing on the power. We did not consider the EFA,
as this model is not consistent with repeated measures (Mandys, Dolan, and
Molenaar, [232]). This is not to say that the factor analytic approach to repeated
data is necessarily suboptimal, but the identification of the exact conditions in
which an EFA of repeated measures conferred relatively good power to detect a
GV is beyond the present scope.

We note the following limitations of the present power study. First, we have
chosen configurations of parameter values that we deemed plausible. Many other
configurations are possible. For instance, low broad sense heritability (say, .10)
does not rule out the presence of quantitative trait loci of relatively large effect.
Second, we have limited our analyses to 3 factor models and 2 univariate simplex
models. Other models such as multivariate simplex models, or growth curves
model may be of interest, depending on the available data. Third, although we
reported the power of the true full multivariate twin model, we have made no
effort to compare and discuss the power of this model with the power of the other
tests ((M)ANOVAs and EFAs), as the study of twins and the study of unrelated
subjects differ in sampling requirements (given that about one person in 50 is
a twin). In terms of sample sizes, we retain an equal number of cases (3000),
but a case in a twin sample naturally consists of two individuals. To arrive
at an equal number of individuals, the power in the full twin model could be
recalculated for NMZ = 750 and NDZ = 750 using the R code in the Appendix
(these results are available on request). However, if twin data are available,
genetic association analysis performed in the context of a genetically informative
design is very powerful. In addition, the DZ sibpairs provides a within-family test
of association that guards against stratification (see Medland and Neale, [242];
Fulker, et al., [131]). Fourth, we have limited our study to multivariate normally
distributed data. Multivariate modeling of discrete data is an important issue
that remains to be addressed. Fifth, we have limited the phenotypic covariance
structure modeling to the exploratory factor model. Confirmatory modeling is
often a viable option, is more parsimonious, and may possibly confer greater
power. Sixth, in the factor models, the effect of the GV on the phenotypes was
conveyed via the common genetic factors. This is in keeping with the notion
that a polygenic genetic factor represents the aggregated effects of many loci.
However, one cannot discard the possibility that a measured genetic locus may
have a direct effect on a given phenotype (see Medland and Neale, [242], and van
der Sluis et al, [338]). As studied by Medland and Neale [242] the GV effect may
vary in sign from phenotype to phenotype.

In conclusion, the power studies to date have produced useful information con-
cerning the power to detect the effects of GVs using multivariate data. We note
that in the scenarios considered here (see also Medland and Neale, [242]), a mul-
tivariate approach is almost always more powerful than a univariate (i.e., single
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phenotype) approach. However, multivariate data require modeling choices. The
reasons for collecting multivariate data depend on the nature of the phenotype(s)
of interest (Hottenga and Boomsma, [164]). For instance, if the phenotypes are
psychometric indicators, a well fitting common pathway model (e.g., McArdle and
Goldsmith, [238]; Neale and Cardon, [253]), or a model involving a single common
genetic factor plus relatively small genetic residuals would justify the use of EFA
(and in special cases the use of sum scores). However, a set of phenotypes may
be viewed as a system of related variables, rather than as a set of psychomet-
ric indicators. Huberty and Morris [167] describe such a system as a ”collection
of conceptually interrelated variables that, at least potentially, determine one or
more meaningful underlying variates” (p. 304). Clearly this is sufficiently vague
to justify the specific advice that one should carry out power analyses tailored to
the theoretical and empirical knowledge of the (genetic) covariance structure at
hand?, rather than rely on general advice.

4The R and MX scripts used in this study are available on request. These can be tailored
to one’s own requirements.
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2.9 Appendix: R code for calculating power.

w N

# start power chi2 test
rm(list=1s(all=TRUE)) # wise

powchi=function (alpha,df,NCP) {
cv=qchisq(alpha,df,lower.tail=F)
pchisq(cv,df=df ,ncp=NCP, lower.tail=F)

g| #

%]

a &

NN NN NN NN

~

00

[SEN

}

alphal=.01 # Input Type I error probability
df=1 # Input Degrees of freedom
N1=7000 # Input The sample size N
NCP1=132.6 # Input NCP

powerl=powchi (alphal ,df ,NCP1)
;| print (c (alphal ,NCP1,powerl))

N2=3000 # Input new N
NCP2=N2* (NCP1/N1)

power2=powchi (alphal ,df ,NCP2)

s print (c (alphal ,NCP2,power2))

alpha2=1E-7 # Input new alpha
power3= powchi (alpha2,df,NCP2)

print (c(alpha2 ,NCP2,power3))

Listing 2.1: R code for computing the power of likelihood ratio test statistic. The
input are the non-centrality parameter (NCP), the sample size (N), the degrees
of freedom (DF), and the alpha (alpha). N and alpha can be varied. The actual
input in this code is arbitrary.
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# start power one way ANOVA (1df test)
rm(list=1s (all=TRUE)) # wise

powanova=function (alpha,df1,df2,NCP) {
cv=qf (alpha,dfl,df2,lower=F)
pf(cv,df1,df2,ncp=NCP,lower=F)

}

#

alphal=.01 # Input type I error probability
N1=3000 # Input sample size

NCP1=6.94 # Input non-centrality parameter
dfi1=1 # Hypothesis degrees of freedom
df2=N1-2 # Error degrees of freedom

| powerl=powanova(alphal ,dfl,df2,NCP1)

print (c(alphal ,NCP1,df1,df2,powerl))
N2=1000 # input new N
df2=N2-2

NCP2=(NCP1/N1)*N2

power2=powanova(alphal ,df1,df2,NCP2)

| print (c (alphal ,NCP2,df1,df2,power2))

alpha2=.01/4 # input new alpha
power3=powanova(alpha2,df1,df2,NCP2)

print (c(alpha2 ,NCP2,df1,df2,power3))

Listing 2.2: R code for computing the power of ANOVA. The input are the non-
centrality parameter (NCP), the alpha (alpha), the sample size (N). N and alpha
can be varied.
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5| df2=N1-nv-1

#start power MANOVA
rm(list=1s(all=TRUE)) # wise

powmanova=function (alpha,dfl,df2,NCP) {
fcrit = qf (alpha, dfil, df2, lower=F)
pf (fcrit, dfi1, df2, ncp=NCP, lower=F)
}

#
alphal=.01
nv=4
N1=3000
NCP1=10.45
dfli=nv

Input alpha

H oH H B H

powerl=powmanova(alphal ,dfl,df2,NCP1)
print (c(alphal ,NCP1,df1,df2,powerl))
N2=6000 # input new N
NCP2=(NCP1/N1)*N2

df2=N2-nv-1

power2=powmanova(alphal ,dfl,df2,NCP2)

7l print (c (alphal ,NCP2,df1,df2,power2))

alpha2=1E-5 # input new alpha

power3=powmanova (alpha2,df1,df2,NCP2)

print (c(alpha2 ,NCP2,df1,df2,power3))

Input number of tests

Input sample size
Non-centrality parameter
Hypothesis degrees of freedom
Error degrees of freedom

Listing 2.3: R code for computing the power of MANOVA. The input are the alpha
(alpha), the non-centrality parameter (NCP), the sample size (N), the number of

tests (nv), the hypothesis degrees of freedom (dfl), the error degrees of freedom
(df2). N and alpha can be varied.



Chapter 3

The Use of Imputed Sibling Genotypes in
Sibship-Based Association Analysis: on
Modeling Alternatives, Power and Model
Misspecification

Abstract

When phenotypic, but no genotypic data are available for relatives of partici-
pants in genetic association studies, previous research has shown that family-
based imputed genotypes can boost the statistical power when included in such
studies. Here, using simulations, we compared the performance of two statisti-
cal approaches suitable to model imputed genotype data: the mixture approach,
which involves the full distribution of the imputed genotypes and the dosage ap-
proach, where the mean of the conditional distribution features as the imputed
genotype. Simulations were run by varying sibship size, size of the phenotypic
correlations among siblings, imputation accuracy and minor allele frequency of
the causal SNP. Furthermore, as imputing sibling data and extending the model
to include sibships of size two or greater requires modeling the familial covari-
ance matrix, we inquired whether model misspecification affects power. Finally,
the results obtained via simulations were empirically verified in two datasets with
continuous phenotype data (height) and with a dichotomous phenotype (smoking
initiation). Across the settings considered, the mixture and the dosage approach
are equally powerful and both produce unbiased parameter estimates. In addi-
tion, the likelihood-ratio test in the linear mixed model appears to be robust to
the considered misspecification in the background covariance structure, given low
to moderate phenotypic correlations among siblings. Empirical results show that
the inclusion in association analysis of imputed sibling genotypes does not always
result in larger test statistic. The actual test statistic may drop in value due to
small effect sizes. That is, if the power benefit is small, that the change in distri-
bution of the test statistic under the alternative is relatively small, the probability
is greater of obtaining a smaller test statistic. As the genetic effects are typically
hypothesized to be small, in practice, the decision on whether family-based im-
putation could be used as a means to increase power should be informed by prior
power calculations and by the consideration of the background correlation.

47
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3.1 Introduction

Increasingly twin and family registries include both phenotypic data and geno-
typic data measured in family members (Boomsma et al. [40]; Willemsen et
al. [361]). However, due to specific design or resources, the genotypic data may
be limited to a subset of the family members, such as a single sibling. It is well
recognized that limiting association analysis to 'the complete data participants’,
i.e., discarding relatives whose data are limited to phenotypic measures, is waste-
ful. As demonstrated by Visscher and Duffy [349] and by Chen and Abecasis [66]
the genetic relations among the relatives can be used to impute genotypes of rela-
tives lacking observed genotypic data. Subsequently including the relatives in the
association study will increase the power to detect association, although actual
increase depends on the phenotypic correlations among the relatives (Visscher and
Duffy [349]) and on the accuracy of the imputations (Chen and Abecasis [66]).

The goal of this article is to further investigate the factors affecting power
following family-based imputation. We consider imputation of up to 3 sibling
genotypes given a single genotyped sibling or a single genotyped sibling and one
parent. Within these imputation setups we carry out an extensive comparison
of the performance of the two statistical approaches, namely, the mixture model,
which involves the full distribution of the imputed genotypes and the dosage ap-
proach, in which the mean of the conditional distribution features as the imputed
genotype. The comparison is performed for two minor allele frequencies (MAF)
and a range of background correlations. Sibling data only are included into the
association analysis, where the sibships vary from 1 (the genotyped sib) to 4 (1
observed, 3 imputed genotypes). To check the validity of our simulation pro-
gram and the power calculations, we also report the power in the full information
model, as an indication of the maximum power, attainable when all siblings in a
sibship have observed genotypes.

Secondly, we examined the effect on power of misspecification of the back-
ground covariance structure in family-based association analysis. Imputing geno-
types and extending the model to include sibships of size two and greater does
require modeling the background covariance matrix. Such modeling may be of
interest substantively, or as a means to reduce the parameter space. As the cal-
culation of power to detect a measured (imputed) genetic effect will require some
choice of background covariance structure, one may ask whether misspecification
will affect the statistical power. To address this question, we simulate sibling
phenotypes according to an additive genes/unique environment (AE) model and
next, we fit two alternative models to these data: a correctly specified AE model,
consistent with the model used for simulation, and a misspecified common envi-
ronment /unique environment (CE) model. We compare the observed powers of
the two models, with and without the misspecification. As model misspecification
is of interest regardless of whether genotypes are imputed or not, we study its
effect on power both in the ’all genotypes observed’ setting (i.e., the full informa-
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tion setting) and in the setting in which some genotypes were imputed (i.e., the
dosage setting).

Finally, we illustrate empirically the results obtained using simulations. In
one empirical dataset we sought to quantify the power gains conferred by family-
based imputation when the trait of interest is assessed on a continuous scale. This
analysis aims to replicate 112 of the 180 height single nucleotide polymorphisms
(SNPs) reported by Lango Allen et al. [16] in a Netherlands Twin Register (NTR)
dataset consisting of 5910 siblings with observed and imputed genotypes. We
explore the mixed results by means of the analysis of simulated data. The second
illustration considers tests of association between observed and kinship-based
imputed SNPs and a discrete trait — smoking initiation. Specifically, in a dataset
comprising of 5981 observed and imputed sibling genotypes we reran the analysis
of Vink et al. [346] for 20! of the 41 SNPs associated with smoking initiation in
their discovery sample. Both analyses used solely sibling data and were carried
out first in the ’complete data’ samples and then by extending the samples to
include the imputed sibling genotypes.

3.2 Methods

3.2.1 Models for sibship-based association

We simulated genotypic and phenotypic data for nuclear families with four sib-
lings. In the full information setting, we computed the power to detect genetic
association using the complete information, i.e., 1 to 4 sibling genotypes and phe-
notypes. Next, we limited the genotypic information to 1 sibling, or to 1 sibling
and 1 parent, and, conditional on this information we calculated the missing geno-
type distribution in the remaining siblings. In this limited information setting we
considered the power of the mixture model and of the dosage approach. Below
we provide the details of the three modeling approaches and of our simulations.

3.2.2 The full information model

We considered a diallelic locus with alleles A and a, and frequencies p(A) and
g = 1 —p(a), observed in nuclear families with four siblings. Let g; denote the
vector of genotypes of m (1 to 4) sibs in family i, where possible elements of
g; are AA, Aa, and aa (Falconer and Mackay [116]). Throughout, the locus has
an additive effect on the phenotype, so we can assign the values d,0 and —d
to the three possible genotypes, where the value of d is dictated by the minor
allele frequency and our effect size. Letting the allele A be increaser allele, we
code 1 for the genotype AA, 0 for the genotype Aa, and —1 for the genotype
aa. Let x; denote the vector of genotype indicators (—1,0 or 1). We regressed

LOf the 41 SNPs 20 were available in the current sample
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the phenotypes x; observed in m sibs in family ¢ (i.e., y! = [yi1 ... Yim], Where t
denotes transposition) on the indicators:

Y :bo+b1 X X; + € (31)

where bg is an m vector containing the intercept (e.g., for m = 4, the elements of
bg are b, = [ by by by bo ]), b1 is the scalar parameter of main interest, and e; is
the m vector of residuals. Conditional on genotype, the means are py = by + by,
o = bo, or uz = by — by, and the residuals are distributed e | x ~ N(0,Sy), where
Sy is the m x m positive definite covariance matrix. In the OpenMx specification,
the background covariance matrix was estimated using the decomposition Sy =
DD’, where D is an unconstrained lower triangular matrix.

We refer to this model as the full information model, as this model is based
on the complete genotype information measured in all siblings in the sibship, i.e.,
all elements of x; are observed. In this setting, the power analyses were based
on both exact data simulations (Van der Sluis et al. [336]) and on the standard
Monte Carlo procedure. In the latter, power was computed as the proportion of
analyses in which minus twice the difference in the log likelihoods the two models
—with and without the genotypic effect — is greater than a critical value associated
with the chosen alpha (i.e., ¢, = 6.64 given o = .01). The Monte Carlo procedure
was employed for consistency: in the mixture approach, we do not have sufficient
statistics and therefore cannot conduct exact power calculations.

3.2.3 The mixture approach

We considered the situation in which phenotypic data have been collected in
sibships of sizes 2, 3, and 4, while genotypic data are limited to 1 sibling, or to 1
sibling and 1 parent.

Conditional on sib 1 genotype (g;1), we calculated the probability of the sibling

J (j =2...m) genotype (g;;) as:

pmb(gzj & gil)
prob(gi1)

(Chen and Abecasis [66]). The probabilities prob(g;; & ¢;1) and prob(g:;1) can be
derived from Mather and Jinks ( [237], ch. 7). Given m sibs, we calculate 3™~
conditional probabilities given the sib 1 genotype. This procedure is followed for
size 3 and 4 sibships, where conditionally on the genotypic information within a
family, the siblings 2 to 4 genotypes are independent events.

Equation 2 can be extended to include parental genotype (g,) if this is available
additionally to the sib 1 genotype. Thus, more accurate conditional probabilities
of the sib j (j = 2...m) genotype are obtained as:

prob(gi; | i) = (3.2)

Pmb(gij &gn & gp)
r0b 07 i & =
p (gj ’ gi1 gp) p’f’Ob(gﬂ & gp)

(3.3)
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Table 3.1: Posterior probabilities of the sibling 2 (s2) genotype AA, Aa, or aa,
conditional on the observed genotype in a single sib (s1) or in a single sib and a sin-
gle parent (pl), and given MAF = .2. The Hardy Weinberg (H-W) probabilities
are the unconditional probabilities. The GPI is Kinghorn’s genetic probability
index, a distance measure (ranging from 0 to 100) of the imputed probabilities
from the H-W probabilities.

Observed Posterior probabilities =~ GPI
of the s2 genotype

AA Aa aa

None (H-W) 04 32 .64 0
sl AA .36 A48 16 49.33
sl Aa .06 .58 .36 38.67
sl aa .01 A8 .81 47.29

sl AA and pl AA .60 40 .00 68.92
sl Aa and pl AA 10 90 .00 86.67
sl AA and pl Aa .30 .50 .20 45.33
sl Aa and pl Aa 10 .50 .40 28.65
sl aa and pl Aa .05 .50 45 26.69
sl Aa and pl aa .00 .60 .40 41.38
sl aa and pl aa .00 10 .90 72.27

Again the relevant probabilities can be derived from Mather and Jinks [237].
To provide an indication of the values of the posterior probabilities, these are
shown in Table 3.1 for MAF of .2. Table 3.1 includes the unconditional Hardy-
Weinberg (H-W) probabilities and the genetic probability index (GPI; Kinghorn
[187]), which is a measure of the distance of the imputed probabilities to the H-W
probabilities. The measure ranges from 0 (H-W probabilities) to 100 (genotype
observed). We return to this measure in the discussion. For instance, given aa
observed in sib 1, the genotype probabilities of AA, Aa, and aa are .01, .18, and
.81, respectively. Given aa observed in sib 1 and in the parent, these probabilities
are .0, .10, and .90.

To test for association, we fitted a mixture model that incorporates the regres-
sion model defined in Equation (1). That is, we regressed the observed phenotypes
on the possible elements of z;; (i.e., 1, 0, -1), and we weighted the associated den-
sities by the conditional probabilities calculated conditional on sib 1, or on sib 1
and parent 1.

The mixture fitted to the data is a 3™~! component mixture, where the pro-
portion of sibpair genotypes within each component of the mixture is determined
by the conditional probabilities (i.e., the finite mixture proportions). For exam-
ple, consider a sibship of size 2, where we have at our disposal the phenotypes
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observed in both siblings y;; and y;o, the genotype observed in sib 1 (g;1) and 3
probabilities based on g¢;; (and on parental genotype (g,), if available). Condi-
tional on the sib 1 observed genotype (and possibly g¢,) the distribution of the
vector y; of the observed phenotypes is assumed to follow a three component bi-
variate normal mixture. This mixture distribution can be expressed as the sum of
3 component distributions weighted by the fixed mixing proportions py (i.e., the
probabilities, conditional on the observed genotype, of impute genotype AA, Aa,
or aa) of sib-pairs in each component:

3

f(yip,S, 1) = > pelVe(yii So, ) (3.4)

k=1

in which S equals [ Sg Sg Sp |, the matrix p contains the means vectors of each
component [ oy, o, 5 | (possible elements of u, are by + by, by, and by — by),
p = [ p1, p2, p3 | where p; represents the fixed mixing proportions of sib-pairs
within the k-component distribution, and N (y;; So, pt;,) represents the k-variate
normal density function within each component. The number of components
conditional on the sib 1 genotype is 3™, hence in the case of 3 (4) siblings, we
have 9 (27) components. As in the full information setting, in the specification in
OpenMx, we modeled the background covariance matrix using the decomposition
Sy = DD'. We imposed no additional constraints on D.

3.2.4 The dosage approach

In this approach, we calculated the expected value of the genotype indicator based
on the conditional probabilities estimated as defined by the equations (2) or (3).
That is, conditional on the sib 1 genotype (g;1), and given our coding of 1 (AA),
0 (Aa), and -1 (aa), the average indicator is calculated as:

xy; = prob(gi; = AA | gin) — prob(gi; = aa | gin) (3.5)

where 27, represents the vector of expected number of increaser alleles in sib j,
and x! = [ a3, x%...27,] in family i. We specify the regression model for the

observed phenotype y in family i as follows:
yi =bo+x7 X b1 + e (3.6)

where, as above, by is an m vector containing the intercept, b, is a scalar param-
eter, and e; is the m vector of residuals. The residuals are distributed approxi-
mately as e | x ~ N(0,S;). The subscript serves to indicate that the conditional
covariance matrices — Sy and S; — are not expected to be exactly equal, as the
variance of e;; | x; is slightly lower than the variance of e;; | 4 (Visscher and
Duffy [349]; Chen and Abecasis [66]). As in the previous approaches, the expected
background covariance matrix is modeled using the Cholesky decomposition. We
computed the power to detect genetic association in this model by the means of
the Monte Carlo procedure.
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3.3 Model fitting

We implemented the three models in OpenMx (R package version 1.0.5; Boker et
al. [36]). The full information model and the dosage model were also implemented
in the R-nlme package (using the Ime function; Pinheiro et al. [270]). This imple-
mentation is identical to the OpenMx implementation, except that the conditional
covariance matrix was constrained as S; = Jo3J" + %I, where J is the m x 1
unit vector, and I is the m x m identity matrix. This specification is consistent
with the simulation in the full information model, but slightly misspecified in the
dosage model: as mentioned above, the variance of e;; | z3; (j = 2...m) is lower
than the variance of e;; | z;;. We expect this misspecification to be trivial, as the
effect size of the QTL is small (1%; see below). In all cases the models were fitted
by means of maximum likelihood estimation.

3.4 Simulation details

1000 genotypic and phenotypic datasets comprising 500 nuclear families with 4
siblings were simulated in R (R development core team [317]). We first simu-
lated parental genotypes at a single diallelic locus in Hardy-Weinberg equilib-
rium and, given random mating, we used these to generate the sibling genotypes.
We assumed the diallelic genotype explained 1% of the phenotypic variance. As
mentioned above, we varied the minor allele frequencies (.2 and .5) and the back-
ground phenotypic correlations among siblings (.2 to .8, by 2). Note that the
effect size was 1% regardless of MAF. We calculate and report the increase in
power relative to an association analysis which includes only the subjects with
observed genotypes, given the o of .01. All simulations were carried out using the
R software package (http://www.r-project.org/) and were run on the Genetic
Cluster Computer (http://www.geneticcluster.org).

3.5 Misspecification of the background
covariance structure

Next, we studied the effect of misspecification of the background covariance ma-
trix (i.e., more serious than the difference between Sy and S) in family-based as-
sociation analysis. Sibling phenotypes were simulated according to an AE model,
which included: a) a SNP with equally frequent alleles, accounting for 1% of the
phenotypic variance, b) background heritability of .8, .45 and .15, and ¢) unshared
environmental effects. We considered nuclear families with sibship size 2 (pairs
of monozygotic (MZ) and dizygotic (DZ) twins) and 4 (pairs of twins and 2 sib-
lings), where genotypes as well as phenotypes were observed in all siblings in the
sibship (the full information setting). Furthermore, we simulated the limited in-
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formation setting, where some genotypes were missing (the dosage setting). That
is, in this latter setting, 50% genotypes were missing among parent 1 and parent
2 and 50% genotypes were missing among each sibling in the sibship. To model
association, two alternative models were fitted to the AE simulated data: a) the
correctly specified AE model, and b) a CE model, where the background correla-
tions among siblings in the sibship were (incorrectly) constrained to be equal. To
obtain empirical estimates of the power, we carried out 10,000 replications and
we computed the proportion of datasets in which the genetic effect was detected,
given four levels of significance (o = 1072, 1073, 10~* and 1077). In addition, we
verified the type I error rates, in both settings, when fitting the model with and
without the misspecification. For this, sibling data were simulated under the null
model of no association given the conditions described above; we then evaluated
the effect of background misspecification on the type I error rates at alpha levels
of 1072, 1073 and 10~* by examining 10,000 replicates (100,000 replicates for the
a=10"* cell).

3.6 Empirical illustrations

3.6.1 Height data

We illustrated empirically the results obtained using simulations. The first analy-
sis examines the power advantages conferred by family-based imputation when
the trait tested for association is continuous. First we performed family-based
imputation of 112 of the 180 SNPs previously associated with height (Lango Allen
et al. [16]) and next, we carried out a sibship-based association analysis. We ran
the analysis with and without the imputed sibling genotypes, and we assessed the
association signals in the two samples.

The data set used for this illustration consisted of 2164 Dutch nuclear fam-
ilies from the NTR, where observed or self-reported height data were available
for 5910 siblings born between 1914 and 1991 (N = 3667 females with a mean
height of 169.89 cm and SD = 6.43 cm, and N = 2243 males with a mean height
of 183.16 cm and SD = 7.07 ¢cm). Families were included if at least one member
had observed genotypes. Height was measured in adults at 18 years or older, and
data of individuals with multiple measurements available underwent consistency
checks (i.e., 236 siblings, representing 1.3% of the 17,195 siblings who formed the
initial phenotypic sample were discarded due to differences larger than 5 cm be-
tween multiple measures). As imputation exploits biological relationships within
nuclear families, we also excluded self-reported half-siblings and non-biological
parents (N = 108 individuals, .5% of the phenotypic sample). Genotypic data
were limited to 2410 siblings and 1437 parents. Conditional on the observed
genotypes we imputed 3500 siblings who had height but no genotype data. To
impute missing sibling genotypes we used our own R script (CSIBPROB, see
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http://www.psy.vu.nl/nl/over-de-faculteit/medewerkers-alfabetisch/
medewerkers-m-p/minica-c-c/index.asp).

In the next step, we carried out a linear mixed association analysis (Visscher,
Benyamin and White [351]), first by limiting the sample to the observed genotypes
and second, by extending the sample to incorporate imputed siblings genotype
data by using genotype dosages. Height was regressed on the genotype indicator
variable and on the observed covariates (sex and birth cohort) modeled as fixed
effects. As the sample included monozygotic twins (i.e., N = 656 MZ twin pairs)
and full siblings, we modeled the background covariance structure by an AE
model. Like in the simulations, the association analysis was limited to the sibling
data.

3.6.2 The analysis of smoking initiation

The second empirical example illustrates the power gains obtained by the inclu-
sion into an association analysis of imputed sibling genotypes when the phenotype
of interest is dichotomous. Specifically, we reran the association analysis con-
ducted by Vink et al. [346]) for 201 SNPs of the 41 SNPs associated with smoking
initiation (at p-values < 107*) in their discovery sample. The original analysis
was ran in unrelated individuals (N = 3497), while the present one is sibship-
based, performed by implementing the above described two-step approach (i.e.,
imputation of missing sibling genotypes, which are subsequently incorporated in
an association analysis).

Measured phenotypes were available for 17,641 siblings in 10,200 Dutch nu-
clear families from the NTR. Based on self-report, half-siblings (N = 78) and
non-biological parents (N = 192) were excluded (representing .9% of the initial
phenotypic sample). As in the previous empirical example, solely families with
at least one parental or sibling observed genotype were retained for the analysis.
There were 2210 families that met this criterion. In these families 2458 siblings
and 1420 parents had observed genotypic data which were exploited to impute
siblings with measured phenotypes but lacking genotypic data. The final pheno-
typic sample comprised of 3125 controls (never smoked tobacco) and 2856 cases
(ever smoked tobacco); the siblings were born between 1914 and 1993 (mean age
= 42.62 years, SD = 11.61) and 61% of the sample were females. There were 86
siblings with observed genotypes but no smoking initiation data.

To model association we used an AE generalized mixed effects model, fitted
firstly to the sample limited to the 'complete data’ siblings, and then to the
sample incorporating siblings with imputed genotypes by using dosages. Sex and
age were included as covariates. Model fitting was performed by using the MASS
package (the function glmmPQL, Venables and Ripley [340]) and the nlme package
for R (Pinheiro et al. [270]).
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3.7 Results

3.7.1 The full information setting

We first evaluated the power to detect association in the full information setting to
obtain an indication of the maximum power given maximum information (i.e., all
siblings in the sibship have measured genotypes and phenotypes). This verifies
the validity of our simulation program and our subsequent power calculations.
The results are displayed in Figure 3.1 and the exact calculations and numerical
values are shown in Table 3.2. As mentioned, the effect size was chosen to equal
1% regardless of MAF, so that these results apply equally to MAF = .2 and MAF
= .5.

Figure 3.1: The expected power in the full information setting for various back-
ground correlations, given o« = .01, MAF = .2 and an effect size of 1%. Left: 500
families with 1, 2, 3 and 4 siblings. Right: 500 genotyped siblings regardless of
sibship size (i.e., 500 singletons, 250 size 2 sibships, 166 size 3 sibships, and 125
size 4 sibships).
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Figure 3.1 (left) demonstrates the effect of the background correlation on
power, in 500 families comprising size 1, 2, 3, or 4 sibship. The differences in power
between the sibships sizes are expected given the differences in sample sizes (500
singletons confer less power than do 500 size 4 sibships). This is of little concern
as we are interested in the change in power associated with the use of imputed
genotypes within each sibship size. However, merely for comparison, we also
calculated the power for a constant number of individual cases, specifically, 125
size 4 sibships, 166 size 3 sibships, 250 size 2 sibships, and 500 singletons. These
results are shown in Figure 3.1 (right). As Visscher, Andrew and Nyholt [350]
noted, power suffers when related individuals are included into analysis for small
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Table 3.2: Power in the full information model given an effect size of 1%, o = .01
and N = 500 families. Power is shown as a function of the sibship size (nsib)
and background correlation (py,). In the case of a singleton (nsib = 1), the
background correlation is not relevant.

background correlation
nsib  ppg =2 ppg=4 ppg =6 ppg=.8

4 93 .95 98 99
3 .85 .86 93 99
2 .68 .69 76 93
1 37 37 37 37

to moderate phenotypic correlations. However, for larger phenotypic correlations,
the power of a family based design exceeds the power of an association analysis
conducted in unrelated individuals, given constant genotyping resources.

3.7.2 The mixture and dosage approaches

Next, we considered the genotypic sample consisting of both observed and im-
puted sibling genotypes, and within this setting we examined the power and the
estimation precision of the mixture model and of the dosage approach. Figure 3.2
depicts the results of the power analyses.

We plotted the power relative to the expected power afforded by a sample
size of 500 singletons, given the « of .01. The actual power in this case is .37
(Table 3.2), but this is scaled to equal 1, and the observed power is divided by
this .37. Across all settings considered here, there was no difference in the ob-
served powers of the mixture model and the dosage approach. We found the
power of the two approaches was similarly affected by three factors: the pheno-
typic correlation (see also Visscher and Duffy [349]), the sibship size (2 to 4), and
the accuracy of the imputation (based on 1 sibling or on 1 sibling and 1 parent).

When the imputation was based on 1 genotyped sibling, appreciable increase
in power is observed only given relatively strong or weak background phenotypic
correlations among the sibs. That is, when the background correlations were
either small (i.e., less than .4) or high (i.e., greater than .6) imputing siblings
increased power by about a factor of 1.2 to 2 relative to 'no imputation analysis’.
Phenotypic correlations had a similar, albeit weaker effect, on the power given
imputation based on 1 sibling and 1 parent genotypes. Within this setting, the
association analysis including imputed sibling genotypes had greater power given
low and high phenotypic correlations and it had reduced power for moderate phe-
notypic correlations. However, even for phenotypic correlations in this range this
analysis was about a factor of 1.2 to 1.3 more powerful than the 'no imputation’
analysis.
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Figure 3.2: The empirical power of the Dosage model (top) and the Mixture
model (bottom), relative to the expected power afforded by 500 singletons (the
black bolded line), given e = .01. The grey lines: the empirical power afforded
by sibships sizes 2, 3 and 4 when imputation is based on 1 genotyped sibling.
The black lines: the empirical power afforded by sibships sizes 2, 3 and 4 when
imputation is based on 1 sibling and 1 parental genotypes. Power calculations are
based on 1000 datasets comprising 500 families, each dataset with a simulated
genetic variant explaining 1% of the phenotypic variance, regardless of MAF.
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The power also increased with increasing sibship size. Apart from the moder-
ate correlations condition, power was always larger in larger sibships, where, for
instance, a size 4 sibship was about 10% more powerful than a size 2 sibship.

Furthermore, as is to be expected, the design in which imputation was based
on 1 parent and 1 sibling genotypes was found consistently more powerful than
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Table 3.3: Average estimates of the genetic effect b; and the associated standard
deviations (in parenthesis) for the Mixture models, for MAF = .2. The true pa-
rameter value is by = .1767 (1000 replicates)

Models Slb'shlp Background correlations
size 2 4 .6 8
Observed genotypes 1 176 (.079) .176 (.077) .175 (.078) .180 (.
Conditional probabi- 2 176 (.075) 176 (.077) .175 (.078) .180 (.
lities given 1 sibling 3 176 (.073) .176 (.076) .175 (.078) .180 (.
genotype (gin) 4 177 (.073) .176 (.076) .176 (.077) .180 (.
Conditional probabili- 2 176 (.070) .176 (.073) .175 (.071) .1T8 (.
ties given 1 sibling & 1 pa- 3 176 (.067) .176 (.070) .176 (.067) .177 (.
rent genotypes (gi1 & gp) 4 176 (.064) 175 (.068) .176 (.066) .177 (.

the design in which the imputation was based on 1 sibling genotype only, with av-
erage power gains of 10-15%, across all conditions. In this setting, the additional
information about parental genotype allowed an increase in the accuracy of the
imputed genotypes, an increase that resulted in greater precision of estimating
the genetic effect, and therefore was associated with greater power.

Tables 3.3 and 3.4 display the mean and the standard deviation of the esti-
mate of by for MAF = .2 obtained in the mixture model and in the dosage model,
as fitted in OpenMx (MAF = .5 produced comparable results). The averages of
the estimate of the genetic effect b; are close to their true value both when the
analysis is limited to the observed genotypes and when it additionally includes
imputed siblings. The variation in the standard deviation of the parameter es-
timate reflects the variation in power. Including siblings with missing genotypes
yields unbiased estimates of the genetic effect and, as it leads to an increase in
the sample size, it allows for higher estimation accuracy.

The results obtained using the dosage model implemented in OpenMx and
nlme are quite similar (results not shown), notwithstanding that the background
covariance matrix is highly constrained in nlme, but unconstrained in OpenMx2.
This is expected as in the nlme specification the model for the background covari-
ance matrix is almost completely consistent with the data generating model (the
minor difference stemming from the differences between Sy and Sy, as mentioned
above).
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Table 3.4: Average estimates of the genetic effect b; and the associated standard
deviations (in parenthesis) for the Dosage models, for MAF = .2. The true
parameter value is by = .1767 (1000 replicates)

Models Slbshlp Background correlations
size 2 4 .6 8

Observed genotypes 1 176 (.079) 176 (.077) 175 (.078) .180 (.076
Dosage 2 176 (075) .176 (.077) .175 (.078) .180 (.070
conditional on 1 sibling 3 176 (.074) 176 (.077) 175 (.078) .180 (.067
genotype (g:1) 4 177 (.073) 177 (.076) 176 (.077) .181 (.066
Dosage conditional 2 176 (.070) 176 (.073) .176 (.071) .179 (.063
on 1 sibling & 1 pa- 3 176 (067) .176 (.071) .176 (.067) .178 (.059
rent genotypes (gi1 & gp) 4 176 (.065) 176 (.069) 177 (.067) .178 (.056

The effects on power of misspecification of the background covariance
structure

Figure 3.3 (left) indicates that in the full information setting the observed power of
the misspecified CE model was in good agreement with the power of the correctly
specified AE model for weak to moderate background correlations. With an
increase in the background correlations we noted a slight discrepancy among the
powers of the two models (Figure 3.3, right). The discrepancy is higher (up to
about 9%) for the size 2 sibship than for the size 4 sibships. Results for the dosage
model were similar (data not shown).

We also assessed the empirical type I error rates. Results for both the full
information setting and the dosage model are given in Table 3.5. As can be seen
in Table 3.5 results were akin in the two settings: they indicate that for low
and moderate background correlations, the misspecification of the background
covariance structure yields empirical type I error rates that are consistent with the
specified alpha levels. With these settings, the likelihood-ratio test in the linear
mixed model appears to be robust to the degree of misspecification of the family
structure considered here. However, one can note that when the background
correlations are high (MZ correlation = .80), in the incorrect model the rate
of type I errors is higher than expected. This effect is stronger in the size 2
sibship than in the size 4 sibship where the misspecification pertains to a single
element of a 4 x 4 covariance matrix. Finally, we note that given the scenarios
considered, the full information model and the dosage approach yielded similar
results, confirming that imputation per se does not affect the type I error rates
(see also Chen and Abecasis [66]).

2Fitting the constrained model in Mx produced identical results
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Table 3.5: Type I error rates in the Full information and in the Dosage settings,
in the correctly specified model (AE background) and in the misspecified model
(CE background, results displayed in italics). We simulated sibling phenotypes
for 500 monozygotic and 500 dizygotic families and a SNP having a MAF = .5
and explaining 1% of the phenotypic variance. We varied the sibship size and the
magnitude of the MZ background correlations (10,000 simulations/cell for the
cells @ = 1072 and o = 1073; 100,000 replicates for the o = 107 cell).

Sibship Background Level of No missing ge- Observed and impu-
size correlations significance notypes AE/CE ted genotypes AE/CE

a =102 .010/.010 .009/.009
15 a =103 .001,/.001 .001/.0009
o =107 .0001/.0001 .00007/.00008
) a=10"2 .010/.012 .010/.012
45 a =103 .001,/.001 .0008/.001
a=10"*  .00007/.0001 .00009/.0001
o =102 009/.01 01/ .01
80 a =103 .001/.002 001,/ .002
a =107 .0001,.0004 0001/ .0002
a =102 .010/.010 .009/.009
15 a =103 .0009/.001 .001/.0009
o =104 .0001/.0001 .0001,/.0001
) o =102 .008/.011 .008/.010
45 a =103 .001,/.001 .0009/.001
a=10"*  .00009/.0001 .00007/.0001
a =102 01/.01 009/ .01
80 a=10"3 .001/.002 .001/ .001

a=10"1 .0001/.0002 .0001/ .0002
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Figure 3.3: The empirical power to detect a genetic variant with a MAF = .5, that
explains 1% of the trait variance in the correctly specified AE linear mixed model
(the grey line) and in the misspecified CE linear mixed model (the black dashed
line). In the correct model the background covariances among identical twins
were specified as twice larger than in fraternal twins. In the incorrect model the
background covariance matrix was estimated subject to equal covariances. The
empirical power was computed for 10,000 datasets (100,000 datasets for the 10~7
cell) consisting of 500 MZ and 500 DZ families with sibships of size 2 and 4.
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Application: Height data

The results of the sibship-based association analysis aimed at replicating 112
height SNPs in the NTR sample are illustrated in Figure 3.4. Imputation en-
hanced the association signal at some loci, notwithstanding that the sibling cor-
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Figure 3.4: Chi-square values obtained in the analysis that incorporates 3500
imputed sibling genotypes along with the 2410 observed genotypes relative to the
chi-square values obtained in the "no imputation analysis”. In the latter analysis
the sample is limited to the 2410 observed sibling genotypes. 112 SNPs were
tested for association with height. Shown in black are the 9 hits at & = .01 based
on the observed data. Points below the diagonal are due to drop in test statistic
following imputation.

3

o
a ]
>\(\l
2

o

c

(0]

(@]

©

9

> o _|
Q_Y—
E

o3

e]

(0]

>

S

[0 o _]
(7 B
o]

o

c

o

e]

(0]

@

o © 7
(0]

p -

©

>

O

T

5 © 7

I I I I I
0 5 10 15 20

Chi—square based on observed genotypes

relations are in the region where the power gains are lowest (i.e., siblings are
correlated about .45 for height, e.g., Visscher et al. [353]). To provide an illus-
tration, we show in Table 3.6 the markers - associations with p-values < 1072
based on the observed data - for which we obtained the largest increase in y? by
including into analysis imputed sibling genotypes.

One SNP only — rs1351394 — reached a significant association with height (p-
value < .01/112), and clearly the association signal was stronger in the sample
that included imputed siblings genotypes, i.e., x> = 20, 599 versus y? = 19,711 in
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Table 3.6: Increase in x? obtained in a family-based association analysis that
includes 2410 observed and 3500 imputed sibling genotypes, relative to an asso-
ciation analysis limited to the observed genotypes. The first 4 SNPs are hits at
a = .01, the SNP rs1351394 is a Bonferroni significant result.

2 2 2
SNP X o X X
(no imputation analysis) (imputed siblings included) increase
rs1351164 7,467 10,972 1.47
1s724016 9,174 12,967 1.41
154282339 7,289 9,063 1.24
rs7759938 7,918 14,640 1.85
rs1351394 19,711 20,599 1.05

the no imputation analysis, respectively. In addition, we report the associations
with a p-value < .01, as the present sample comprising 5910 observed and im-
puted sibling genotypes was underpowered to yield more significant Bonferroni?
corrected results. These results indicate that imputation increased the power to
detect association, which is consistent with our simulation results. That is, for
some SNPs the x? as obtained when all sibling data are used is up to a factor
of 1.85 larger than the x? as obtained when the analysis is limited to siblings
with observed genotypes. The y? averaged over the 112 SNPs was y? = 2.499 in
the imputed sample, a value larger than the average x? obtained based on the
‘observed sample’ (x? = 2.285). Importantly, the results also indicate that the
value of test statistic may drop following imputation® (i.e., the points below the
diagonal in Figure 3.4). We conjectured that this drop in value is due to the
small effect sizes given that the 180 SNPs identified explain only about 10% of
the height variance (Lango Allen et al. [16]). While power is increased by the
imputation, the actual test statistic may still drop in value, as it remains a single
realization of the distribution of the test statistic. This is more likely to occur
if the gain in power is relatively small. To test this, we carried out additional
simulations.

3For convenience we have chosen the Bonferroni method to correct for multiple testing,
although this procedure can be conservative (Laird and Lange [192]). However, in Figure 3.4
we plot the values of the noncentrality parameter of the likelihood ratio test, as these values do
not depend on the chosen alpha, or the correction for multiple testing. They are illustrative of
the variation in power - before and following imputation — given various effect sizes.

4As an additional check, the analysis of height data was repeated in Merlin (Abecasis et
al. [4]), and this analysis produced similar results (results not shown).
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3.7.3 Additional simulations: Explaining height results

Genotypes and phenotypes of a trait with heritability of 80% (provided that the
heritability of height has been estimated at about 80%, Silventoinen et al. 2003)
were simulated for 100 samples consisting of 500 MZ and 500 DZ families with
size 4 sibships. The effect sizes of the genetic variants were varied such that they
explained .1%, .5% and 1% variance in the phenotype. To mimic the height data
we also varied the percent of missingness among the observed parental and sibling
genotypes: 50% genotypes were missing among parent 1 and parent 2 and 25%,
60%, 90% and 95% genotypes were missing among sibling 1, sibling 2, sibling 3
and sibling 4, respectively.

In the first step, we imputed the missing sibling genotypes conditional on
the observed genotypic data. We then ran the association analyses in each of
the three samples: the full information sample, where all siblings (N = 4000)
had complete phenotype and genotype data, the imputed sample, consisting of
siblings with observed ( N = ~1600) and imputed genotypes (N = ~2400), and the
limited sample, where missing genotypes were not imputed (N = ~1600 genotypes
observed). Figure 3.5 displays the results.

The x? trend as obtained in the three samples was expected to decrease as
the genotypic information decreases, with the imputed sample yielding a x? value
that is intermediate between those obtained in the full information setting and in
the limited sample. We found that, for the .1% effect size case, we observed this
trend in only 39% of the analyses, these results are shown in black in Figure 3.5a.
However, an increase in the size of the effect was accompanied by an increase in the
proportion of results consistent with the expected rank ordering of the x? values;
that is, in the .5% (1%) effect size case the trend was monotonically decreasing in
67% (80%) of the analyses (Figures 3.5b and 3.5¢). It follows from these results
that the most likely explanation for the drop in test statistic following imputation
is the small effect sizes of the 112 SNPs accompanied by large standard errors of
the relevant parameter. That the effect sizes are small, in fact too small to be
detected in the present sample is evident in the fact that there were only 9 hits
based on the observed data - displayed as black points in Figure 3.4 - at the very
liberal alpha of .01.

3.7.4 The analysis of smoking initiation

Results for the association analysis of smoking initiation are given in Table 3.7.
The results are comparable to those obtained in the previous analysis of height:
some SNPs, but not all, showed an increase in the test statistic with the inclusion
into analysis of imputed sibling genotypes. Notable is the increase in power
obtained at SNP rs3949478, whose association signal approached the significance
threshold of 4E-04 based on the observed data and reached a p-value of 7.27E-06
by including the imputed genotypes. This SNP, located in the ENTPDI gene,
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Table 3.7: Results of 20 tests of genetic association with smoking initiation,
ran in the ’complete data’ sample (N = 2458) and in the sample that includes
additionally imputed siblings genotypes (N = 5981). Sibling data only were
included into analysis. The background covariance matrix was modeled by an
AE model. The model was fitted by means of quasi-likelihood and provided
Wald-type tests of effects, which, for consistency, were converted to chi-square
values.

No imputation analysis Imputed siblings added

CHR SNP

x? (t-value)  p-value  x? (t-value) p-value
2 rs4608580  0.86 (0.93) 0.35 0.008 (0.09) 0.92
2 rs10865016  7.18 (2.68) 0.007 7.61 (2.76) 0.0057
2 rs787151 9.42 (3.07) 0.002 11.49 (3.39) 0.0007
3 rs1599903  0.82 (0.91) 0.36 1.06 (1.03) 0.29
3 0824246 0.008 (0.09) 092 121 (L10)  0.27
3 rs16860281 7.02 (-2.65)  0.008  6.20 (-249)  0.01
7 rs6960379  2.49 (-1.58) 0.11 1.16 (-1.08) 0.27
7 rs2237781 5.61 (2.37) 0.01 4.79 (2.19) 0.02
7 rsd725563  0.82 (-0.91) 0.36 0.64 (-0.80) 0.41
8 1s4509385  0.03 (:0.18) 085 016 (0.41)  0.67
10 rs10999845 1.08 (1.04) 029  0.79 (0.89)  0.37
10 rs3949478  12.74 (-3.57)  0.0004  20.16 (-4.49) 7.27E-06
10 rs1856801  0.88 (0.94) 0.34 0.64 (0.80) 0.42
10 rs7082195  0.36 (0.60) 0.54 0.13 (0.37) 0.70
11 rsl7477949  4.45 (2.11) 0.03 4.66 (2.16) 0.03
11 rs12797615  4.92 (2.22) 0.02 5.95 (2.44) 0.01
12 rs7313149  2.01 (-1.42) 0.15 1.82 (-1.35) 0.17
14 18009082  0.46 (-0.68) 049  0.94 (-0.97)  0.32
14 rs8019291  1.04 (-1.02) 0.30 0.92 (-0.96) 0.33
15 rsd774925 2.19 (1.48) 0.13 1.10 (1.05) 0.29
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Figure 3.5: Chi-square as obtained in three samples: sample 1, consisting of sib-
lings with complete phenotype and genotype data (N = 4000), sample 2, consist-
ing of siblings with observed (N = ~1600) and imputed genotypes (N = ~2400),
and sample 3, where missing genotypes were not imputed (N = ~1600 observed
genotypes). Results are shown for three effect sizes (100 simulated samples). The
grey dotted lines show analyses where the chi-square as obtained in the three
samples is monotonically decreasing, as expected. The black lines show results

inconsistent with this expectation.
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significantly predicts the probability of switching from never-smoking to smoking
initiation, conditional on sex and age, after the Bonferroni correction has been

applied (o = .01/20).
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3.8 Discussion

Results of the present study suggest the following conclusions and recommen-
dations concerning the use of family-based genotype imputation in genomewide
association studies (GWAS). First, we found the mixture model and the dosage
approach accommodate equally well the uncertainty of the imputed genotypes.
That is, adding imputed sibling genotypes — either by making full use of the
distribution of the imputed genotypes or by using genotype dosages - produced
unbiased estimates of the parameter of interest. Furthermore, the power of the
two approaches was equal across the conditions which were considered. Our find-
ings confirm the results of Visscher and Duffy [349], who carried out a small scale
study of the mixture approach limited to 10 replications. They are also in ac-
cordance with the findings of Zheng et al. [380], who considered the mixture and
the dosage approaches in the context of genotype imputation of single nucleotide
polymorphism markers (Scheet and Stephens [291]), and found the difference to
be small, except given large effects and poor imputation precision. The compar-
ison was performed under an additive genetic model; though, we expect the two
approaches would perform equally well also under a non-additive genetic model,
as shown by Zheng et al. [380]. All things being equal, the dosage approach is
arguably the model of choice in analyzing family data with missing genotypes, as
it is computationally more convenient. However, the more demanding mixture
approach might prove advantageous in certain circumstances. For instance, this
approach could be used to carry out within-family tests of association, allowing
one to tackle with stratification (Fulker et al. [131]; Abecasis et al. [5]).

Results of simulations confirmed that the inclusion in an association analysis
of imputed sibling genotypes may increase the statistical power. Therefore, for
phenotypes for which the siblings resemble each other either weakly (phenotypic
correlation < .4) or strongly (phenotypic correlation > .6) one should consider the
inclusion into analysis of imputed genotypes as this approach may increase the
power up to a factor of 1.3 relative to the "no imputation analysis”. These gains
will be greater if the imputation is informed by observed genotypes in more family
members and at more loci - in which case the identical-by-descent information
can be exploited to impute siblings with higher accuracy, as demonstrated by
Chen and Abecasis [66] and by Burdick et al. [52].

Li et al. [205] noted the advantage of imputation: ”(...) imputing genotypes
for known relatives of the individuals included in a GWAS of mostly unrelated
individuals will always increase power (...) and should be considered whenever
phenotyped relatives for the individuals to be genotyped in a scan are available”
(page 391, emphasis in original). However, the computational effort is not always
rewarded by significant gains in power. Specifically, as discussed by Visscher
and Duffy (2006), we found the yield of this procedure to low if the phenotypic
correlations among the siblings are between about .4 and .6.

As the gains in power also depend on the precision of imputation, the question
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arises which individuals, if genotyped, would provide maximum information about
the missing genotypes in their relatives? The question can possibly be answered
by considering the distance from the unconditional H-W genotype probabilities to
the probabilities based on the observed genotypes in the relatives. Kinghorn’s ge-
netic probability index (GPI) can be used to express this distance (Kinghorn [187];
see also Percy and Kinghorn [267]), as it equals zero if the imputed probabilities
equal the H-W probabilities, and 100 if any genotype probability equals 1. To
illustrate this, we used the R library GeneticsPed (Gorjan et al. [144]) to calculate
the GPI of the probabilities in Table 3.1. For instance, in the small example of
Table 3.1, we find that the precision of the imputation is greatest given observed
sib AA genotype and observed parent AA genotype (GPI = 86.67), and small-
est given sib genotype aa and parent genotype Aa (GPI = 26.69). In contrast,
a single observed AA sib confers more information that an Aa sib and an aa
parent (GPI 49.33 vs. 41.38). Given that the GPI is approximately related to
power, in principle this index provides a means to allocate genotyping resources
(Kinghorn [188]). See also Chen and Abecassis [66] for discussion and illustra-
tion of efficient allocation of genotyping resources in multi-locus family based
imputation.

Second, we investigated how statistical modeling of the background covariance
matrix affected the power to detect a measured (imputed) genetic effect. For low
to moderate background correlations, the likelihood ratio test in the linear mixed
model appeared to perform correctly when the residual structure was misspecified.
Yet, the validity of this conclusion should be considered as confined to the settings
of the simulation studies: the analysis was restricted to sibling data, a small
effect size of 1% explained phenotypic variance, heritabilities of .15 and .45. How
robust the test is in circumstances different from those considered here (i.e., in
larger pedigrees or given larger effect sizes) is subject to further study. Careful
specification of the residual structure, however, is required when the trait of
interest is highly heritable, as in this circumstance, the misspecification will give
more false positives than expected.

Finally, concerning the empirical results we note the following. The imputa-
tion will change the distribution of the test statistics under the alternative hy-
pothesis (effect is present), such that the power increases. How much the power
increases depends on the background phenotypic correlation among siblings, the
number of additional imputed cases, and on the quality of the imputation in terms
of the GPI. We note that the actual observed test statistic following imputation
need not necessarily be larger than the value of the test statistic observed prior
to imputation. As a single realization of the distribution of the test statistic it
is likely to be larger if the imputation greatly increases the power. Conversely,
if the power benefit is small, that the change in distribution of the test statistic
under the alternative is relatively small, the probability is greater of obtaining a
smaller value. As the genetic effects are typically hypothesized to be small, in
practice, the decision on whether or not family-based imputation should be used
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as a means to increase power should be informed by prior power calculations and
by the consideration of the background correlation.






Chapter 4

Sandwich Corrected Standard Errors

in Family-Based Genomewide Association
Studies

Abstract

Given the availability of genotype and phenotype data collected in family mem-
bers, the question arises which estimator ensures the most optimal use of such
data in genomewide scans. Using simulations we compared the Unweighted Least
Squares (ULS) and Maximum Likelihood (ML) procedures. The former is imple-
mented in Plink and uses a sandwich correction to correct the standard errors
for model misspecification of ignoring the clustering. The latter is implemented
by fast linear mixed procedures and models explicitly the familial resemblance.
However, as it commits to a background model limited to additive genetic and
unshared environmental effects, it employs a misspecified model for traits with
a shared environmental component. We considered the performance of the two
procedures in terms of type I and type II error rates, with correct and incorrect
model specification in ML.

For traits characterized by moderate to large familial resemblance, using an
ML procedure with a correctly specified model for the conditional familial co-
variance matrix should be the strategy of choice. The potential loss in power
encountered by the sandwich corrected ULS procedure does not outweigh its com-
putational convenience. Furthermore, the ML procedure was quite robust under
model misspecification in the simulated settings and appreciably more powerful
than the sandwich corrected ULS procedure. However, to correct for the effects of
model misspecification in ML in circumstances other than those considered here
we propose to use a sandwich correction. We show that the sandwich correction
can be formulated in terms of the fast ML method.
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4.1 Introduction

Given the availability of large datasets of genotyped and phenotyped family mem-
bers, it is of interest to determine which statistical test is most efficient in genome-
wide association studies (GWAS), where computational efficiency and statistical
power are important. One option is to use Plink (Purcell, Neale et al. [279]), which
employs the standard Unweighted Least Squares (ULS) estimator in combination
with the ULS sandwich (Rogers [285], Williams [364]) to correct the standard
errors for the model misspecification of ignoring the clustering. This approach is
non-iterative, and produces unbiased estimates and correct standard errors, with-
out the need to specify a background covariance model. However, given clustered
data, ULS is not necessarily the most powerful estimator (Greene [147]). Maxi-
mum Likelihood (ML) is an important alternative, but is computationally more
demanding. Fast algorithms have been developed, but these employ a model for
the background covariance, which is limited to additive genetic and unshared en-
vironmental effects (Lippert, Listgarten et al. [209], Pirinen, Donnelly et al. [272]).
We note that shared environmental effects are often found in lifestyle and psy-
chiatric phenotypes, like substance use (van den Bree, Johnson et al. [330], Vink,
Willemsen et al. [347], Kendler, Schmitt et al. [183], Thorgeirsson, Gudbjarts-
son et al. [321]). This raises a practical question: in conducting a family-based
analysis, should one use the sandwich corrected ULS, which is fast, robust, and
requires no model to be specified for the background covariance matrix, or should
one use ML, which is efficient and fast, provided one commits to a background
model limited to additive genetic and unshared environmental effects? In the
latter case, one may ask whether discarding shared environmental effects, affects
the results of the ML procedure (Litiere, Alonso et al. [212]).

The present aim is to compare the ULS procedure with the ML procedure
using simulated data. We consider the performance in terms of type I and type II
error rates, with correct and incorrect background specification in ML. To correct
for the effects of this misspecification, we propose to use a sandwich correction
(as in Plink Purcell, Neale et al. [279]). We show that the sandwich correction
can be formulated in terms of the fast ML method of Lippert et al. [209].

4.2 Methods

4.2.1 Family based model for genetic association

Let y;; be the vector of observed phenotypes, where subscript j stands for indi-
vidual (j = 1...n;) and subscript ¢ stands for family (i = 1...N). Let g;; be the
vector of observed genetic markers coded as an additive genetic model, as 0 (aa),
1 (Aa) or 2 (AA) (Falconer and Mackay [116]). We test the statistical associa-

tion between each observed genetic marker and the phenotype in an appropriate
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regression model:
Yij = bo + b1 X g5 + €5 (4.1)

where by represents the intercept, by is the regression coefficient and ¢;; is the
residual term. Let k& equal Efv n;, b’ equal the vector [ by by |, and X equal the
k x 2 matrix with the first column the unit vector, and the second, the k vector g
containing the genetic information. Other covariates may be included, if desired
(e.g., age, sex). The k vector of residuals € = y — Xb is normally distributed with
k x k background covariance matrix V (positive definite), i.e..e | g ~ N(0,V).
We assume that V is block diagonal (but see Visscher, Benyamin et al. [351],
Lippert, Listgarten et al. [209], Pirinen, Donnelly et al. [272]), with diagonal
blocks, V;, representing the residual positive definite covariance matrix of each
family. An advantage of retaining the full matrix V (and not reformulating
the likelihood given the sparseness) is that the block diagonal structure can be
relaxed to accommodate distant genetic relatedness (Lippert, Listgarten et al.
[209], Pirinen, Donnelly et al. [272], Zaitlen, Kraft et al. [376]). This makes
the linear mixed approach very flexible. We assume that the elements in the
diagonal blocks in V parameter vector @ contains the estimated elements of the
conditional covariance matrix. Given MZ and DZ families, the covariance matrix
V,; may be calculated conditional on zygosity, but otherwise unstructured and
homoskedastic. We denote this the unstructured estimate of V(). Alternatively,
V may be parameterized, i.e., V(0), where the parameter vector  may contain
shared (C) and unshared (E) environmental variance components (0%, 0%), and
additive (A) and dominance (D) variance components (0%, o) (Eaves [108],
Martin and Eaves [234]). In this case, MZ and DZ relatedness is expressed in
terms of these genetic variance components.

4.2.2 Estimation

We compare tests of b; based on maximum likelihood estimation and unweighted
least squares estimation, with regular and sandwich corrected standard errors.
The log-likelihood function is:

LogL(8,b) = log [ (2m) | V(6)| % exp{—L(y — Xb)'V(8) 'y — Xb)}| (4.2)

where b represents the fixed effects, and 6, the random effects (Pinheiro and
Bates [271]). Maximization of the log-likelihood function subject to the correct
specification of the background structure, yields the ML estimate of b, BML, which
can be tested by means of the Wald test (e.g., Dobson [102], Greene [147]). The
parameterization of V(8) in the linear mixed model, given family data, is well
known (van den Oord [331], Guang GuoJianmin [149], Visscher, Benyamin et
al. [351], McArdle and Prescott [239], Beem and Boomsma [28], Rabe-Hesketh,
Skrondal et al. [281]).
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The ML estimator of b is based on solving b in the first order derivative of
the ML function with respect to b:

1

b, = (va@)—lx) X'V (0) 'y (4.3)

~

If @ is unknown, this requires iteration. Note that the covariance matrix V() can
also be estimated once and then used as fixed in the Generalized Least Squares
estimator (see, for example, Li, Basu et al. [204], Pirinen, Donnelly et al. [272]).
The Wald test of by, is based on var(gML) = (XtV(a)_lX)_l. Unweighted
Least Squares (ULS) is a special case with 8 = [62], i.e., V() = 2L The ULS
estimator can be expressed as (Draper and Smith [105], Dobson [102], Greene
[147]):

-1
BULS = (XtX) Xty (44)

with
1

var(BULs) =05(X'X)" (4.5)

The ULS procedure involves misspecification in the case of family data, as
V(6) = 521 is almost certainly incorrect. To correct the standard errors, we

employ the sandwich correction of var(BULS) (Purcell, Neale et al. [279]),
var(bp_uLs) = (X'X) ' X' (y — Xb)(y — Xb)'X(X'X) ™" (4.6)

We note that the sandwich correction is equally applicable to ML, given misspeci-

~

fied V(0,,). For instance (e.g., Dobson [102]):

var(br i) = (X'V(8,,)"'X) "' X'V (8,,)"} (y—Xb)(y—Xb)'V(8,,) ' X (X'V(8,,)'X) "
(4.7)

where we employ the subscript m to denote misspecification.

Below we consider various tests of by in family data of two full sibs and MZ
and DZ twins with and without parents (see below). Firstly, we compare the
ULS and ML procedures given correct specification of the background in ML,
i.e., 0 = [0%,0%]. Specifically, we consider the standard ULS and ML procedures
(i.e., based on the so-called naive variance, which incorporates the assumption
that the background model is correctly specified). We also consider the sandwich
corrected ULS procedure (as in Plink Purcell, Neale et al. [279]), and the sand-
wich corrected ML procedure with the background V(8) conditioned on zygosity,
but otherwise unconstrained. That is, the family covariance matrix is freely esti-
mated within the MZ and DZ families, which is consistent with the true model.
We include the sandwich corrected ML procedure to investigate whether robus-
tification does result in an overcorrection when the underlying model is in fact
correct. Secondly, to assess the effects of misspecification, we consider standard



78 Chapter 4. Sandwich Corrected Standard Errors in Family-Based GWAS

ML estimation, with the (true) background 6 = [ 6%, 02, 0% | misspecified as (a)
0., = [ 2, 0% ], or as (b) 0., = | 02%,0% |. In addition, we use the misspecified
V(8,,) with 6,, = [6%,5% | (and the misspecified V(0,,) with 8,, = [ 52,52 ]) -
estimated with standard ML using the incorrect background model - in the sand-
wich corrected ML procedure. We also include the standard and the sandwich
corrected ULS procedures. Finally we test b; using the standard ML procedure,
with the background correctly parameterized (i.e., estimating the variance com-
ponents of the true model). We consider both the type I and type II error rates.

4.2.3 Simulation details

We generated family data for MZ and DZ families consisting of 2 sibs and MZ and
DZ twins, with and without parents. Each simulated sample had a size of 4000
individuals. We simulated a diallelic genetic variant (GV) in HWE, with a minor
allele frequency (MAF) of .5, and explaining one percent (1%) of the phenotypic
variance. We simulated the background covariance structure according to two
models: (1) a model with additive (A) and unshared (E) environmental effects,
i.e., an AE model, 8 = [ 0%,0% | , with h? = 0% /(0% + 0%) equal to .3, .5, or
.7); (2) a model with additive genetic, shared (C) and unshared environmental
effects, i.e., an ACE model, @ = [0%, 02, 0F], with h* = 0% /02, = 2, 02 /02, = .6,
and o /02, = .2. We also considered an ACE model, with h? = 0% /07, = .6,
ot/on, = 2, and 0} /02, = .2 (see Tables 2S and 3S, Supplementary material).
These models were chosen to represent a range of complex phenotypes. For exam-
ple, data generated based on the parameter values in the first cell of Table 4.1 are
illustrative for family-based association studies of highly heritable traits such as
height in adults (Silventoinen, Sammalisto et al. [298]), whereas the data gener-
ated based on the parameter values in Table 4.3 may inform genomewide analyses
of ACE traits, such as initiation of substance use (e.g. Thorgeirsson, Gudbjarts-
son et al. [321]). We used the R package MASS (Venables and Ripley [340]) for
data generation. We implemented the sandwich corrected ULS and the sandwich
corrected ML procedures in R. We obtained the standard ML results using lin-
ear mixed modeling as implemented in the R-package nlme (Pinheiro, Bates et
al. [270]). Observed power equals the proportion of datasets out of 10,000 repli-
cations, in which the p-value associated with the Wald test was smaller than our
chosen alpha = 10~7. Type I error rate was assessed at alpha = .05,.01,.001 and
.0001, using 1,000,000 datasets, simulated under the null hypothesis of b; = 0.
Otherwise, given b; # 0, we used 10,000 replications. Simulations were run on
the Lisa Computer Cluster (www.surfsara.nl). The R script used to obtain the
results is available at http://cameliaminica.nl/scripts.php.
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Table 4.1: Power (alpha = 1077) and parameter estimates for the ML linear
mixed (standard and sandwich corrected) and the ULS (standard and sandwich
corrected) procedures. We simulated a genetic marker having an effect of 1%
explained phenotypic variance and a MAF = .5. The sample consisted of N =
4000 individuals. The trait was simulated according to an AE background model
(the true model) given various heritabilities (h?) (10,000 simulated samples for
each cell). The background model in the ML procedure is correctly specified (true
or saturated, i.e., unstructured).

(a) h? = T0%
Family ML standard Sandwich cor- Sandwich corrected ULS
structure true model rected ULS ML (unstructured) standard
mean (b,) -0.141 -0.141 -0.141 -0.141
2 parents mean (st.err.) 0.025 0.031 0.025 0.022
& 4 sibs  mean (t-value) -5.60 -4.62 -5.67 -6.35
power 60.3 24.4 62.6 76.8
mean (b,) 0.141 0.141 -0.141 -0.141
4 sibs mean (st.err.) 0.025 0.029 0.025 0.022
mean (t-value) -5.70 -4.95 -5.73 -6.35
power 63.5 35.1 64.9 78.9
(b) h2 = 50%
Family ML standard Sandwich correc- Sandwich corrected ULS
structure true model ted ULS ML (unstructured) standard
mean (b,) 0.141 0.141 0.141 0.141
2 parents mean (st.err.) 0.025 0.028 0.025 0.022
& 4 sibs  mean (t-value) -5.56 -4.96 -5.62 -6.34
power 59.1 36.4 61.5 78.4
mean (b) -0.141 -0.141 10.141 -0.141
4 sibs mean (st.err.) 0.025 0.027 0.025 0.022
mean (t-value) -5.68 -5.25 -5.71 -6.34
power 63.1 46.6 65.0 80.0
(¢) h? = 30%
Family ML standard Sandwich correc- Sandwich corrected ULS
structure true model ted ULS ML (unstructured) standard
mean (b,) 0.141 0.141 0.141 0.141
2 parents mean (st.err.) 0.025 0.026 0.025 0.022
& 4 sibs  mean (t-value) -5.68 -5.40 -5.74 -6.34
power 64.0 53.2 66.0 80.8
mean (by) -0.142 -0.142 -0.142 -0.142
4 sibs mean (st.err.) 0.024 0.025 0.024 0.022
mean (t-value) -5.81 -5.63 -5.84 -6.36
power 67.8 61.3 69.2 81.4

Abbreviations: ML maximum likelihood, ULS unweighted least squares.
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4.3 Results

4.3.1 Correctly specified background model: type I and
type 1I rates

First we checked the distribution of the 4 Wald tests given b; = 0, and the correct
specification of the AE background, i.e., 8 = [0%, 0%] (except standard ULS which
assumes independence). As expected, the null distributions of the ML-based Wald
tests (standard and sandwich corrected) and of the sandwich corrected ULS-based
Wald test were correct (see Table 1S, Supplementary material). In contrast, the
standard ULS procedure (without a sandwich correction) produced an excess of
false positives. For instance, in the 4 sibs condition and with a 70% heritable
trait, the observed type I error rate was .0024 given an alpha of .0001. Given
by = —.141 (b given the chosen effect size of 1%) and the correct specification of
the AE background covariance matrix in ML (with h? = 0% /(0% + 0%)) equal to
.3, .5, or .7) we obtained the results in Table 4.1 concerning the power to detect
the GV effect.

Table 4.2: Type I error rates for the ML linear mixed (standard and sandwich-
corrected) and the ULS (standard and sandwich corrected) procedures. The
background model is (a) correctly specified (true) or (b) misspecified. Background
covariance matrix was generated according to an ACE model (h? = .2, ¢* = .6).
The samples comprised of 4000 individuals (1,000,000 simulated data sets/cell).

ML ML ML Sandwich  Sandwich ULS Sandwich
standard standard standard corrected corrected standard corrected
Family  alpha ACE AE CE ML (false: ML (false: E ULS
structure model model model AE struc- CE struc- model E model
(true) (false) (false) tured) tured) (false) (false)
0.05 0.049 0.049 0.06 0.05 0.049 0.2 0.051
2 parents  0.01 0.010 0.010 0.015 0.010 0.010 0.11 0.010
& 4 sibs  0.001 0.0010 0.00097 0.0019 0.00097 0.0010 0.045 0.0011
0.0001  0.0001 0.00009 0.0002 0.0001 0.00011 0.018 0.00012
0.05 0.05 0.05 0.057 0.05 0.05 0.18 0.05
4 sibs 0.01 0.01 0.01 0.0127 0.01 0.01 0.08 0.01
0.001 0.001 0.001 0.0014 0.001 0.001 0.025 0.001
0.0001  0.0001 0.00012  0.00018 0.00012 0.00012 0.008 0.0001

Abbreviations: ML maximum likelihood, ULS unweighted least squares.

The mean parameter estimates as produced by ML and ULS are equal, across
all conditions. This is expected as the estimators are all asymptotically un-
biased and consistent (Greene [147]). The standard errors as produced by the
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ML standard and by the sandwich corrected ML are identical. This is expected
as both procedures are based on the correct background covariance structure, be it
correctly structured (i.e., @ = [ 0%, 0% |) or unstructured (the sandwich corrected
ML). Therefore, the use of the sandwich does not result in any overcorrection.
The ULS procedures are consistent, but differ in terms of power. The power of
the standard ULS procedure appears to be greatest, but this is due to the fact
that the standard errors are underestimated, as mentioned above. The sandwich
corrected ULS procedure comes at a relative cost in terms of power (compared to
ML). The loss in power increases with the family clustering due to the heritability
of the trait. For example, in the 4 sibs condition, with a 70% heritable trait, the
power of the sandwich corrected ULS procedure is 35.1%, whereas the power of
the ML procedures is about 64%. Besides the heritability of the trait, the size of
the family cluster has a bearing on the power of ULS. For instance, given a 70%
heritable trait the difference in power between the ML and ULS with a sandwich
correction is ~30% and ~35% when the sample consists of size 4 sibships and
when it consists of 2 parents and 4 sibs, respectively (see Table 4.1). Note also
the difference in power between the two robust methods as well (the sandwich
corrected ULS and ML), with the power of the sandwich corrected ML procedure
being higher.

4.3.2 Misspecified background model

We evaluated consequences on type I and II error rates of misspecifying the
background model, V(0). We employed a background model with additive genetic
(02), and shared and unshared variance components (¢ and 0%), and discard the
effects of 4 (ML with an incorrect CE structured background) or o2 (ML with
an incorrect AE structured background), or discard both ¢4 and o (ULS with an
incorrect E structured background). ML with a correctly specified background is
also included. First we considered the type I error rates, given b; = 0. Table 4.2
contains the results.

Based on these results we conclude that the type I error rates of the ML
procedure are not greatly affected by the misspecification. The misspecification
0,, = [ 0%, 0% ] is associated with a slight inflation (e.g., .0002 given alpha = .0001
in the 2 parents and 4 sibs cell), but the ML with the CE structured sandwich
corrects this (.00011). The misspecification 8,, = [ 04, 0% | hardly affects type
I error rates. As expected, the standard ULS procedure (0, = [0%]) produced
incorrect type I error rates (e.g., .008, given alpha =.0001 in the 4 sibs cell).
However, as above, the ULS sandwich correction yields correct type I rates. The
ML with an ACE background is correctly specified and produces correct type I
error rates.

Table 4.3 contains the results relating to the power given b; # 0 and misspeci-
fied background. As expected, all modeling approaches yielded similar mean
estimates of by, regardless of the specification of the background structure. Given
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Table 4.3: Power (given alpha = 10~7) and parameter estimates for the ML (stan-
dard and sandwich corrected) and the ULS (standard and sandwich corrected)
procedures. The background model is (a) correctly specified (true) or (b) mis-
specified. Background covariance matrix was generated according to an ACE
model (h? = .2, ¢ = .6). The genetic marker explained 1% phenotypic variance
and had a MAF = 5. The samples consisted of N = 4000 individuals (10,000
simulated data sets per cell).

ML ML ML Sandwich ~ Sandwich ULS Sandwich

Family standard standard standard corrected corrected standard corrected
struc- ACE AE CE ML (false: ML (false: E ULS

ture model model model  AE struc- CE struc-  model E model
(true) (false) (false) tured) tured) (false) (false)
2 pa- mean(b) -0.141 -0.141 -0.141 -0.141 -0.141 -0.141 -0.141
rents  mean(st.err.) 0.019 0.021 0.018 0.021 0.019 0.022 0.037
and  mean(t-value) -7.54 -6.59 -7.89 -6.6 -7.44 -6.33 -3.86

4 sibs power 98.6 89.4 99.2 89.4 98.1 73.0 7.5

mean (b;) -0.141 -0.141 -0.142 -0.141 -0.142 -0.141 -0.141
4 sibs  mean(st.err.) 0.019 0.022 0.019 0.022 0.020 0.022 0.033
mean(t-value) -7.27 -6.49 -7.49 -6.50 -7.25 -6.36 -4.33
power 97.4 88.1 98.2 88.0 97.1 75.9 16.4

Abbreviations: ML maximum likelihood, ULS unweighted least squares.

correct background specification (6 = [0%, 02, 0%]) and sibships size 4, the power

is about 97.4% (standard ML). The power of the standard ML procedure appears
to increase to about 98.2%, when o% is discarded (0,, = [02,0%]), but this is
spurious as it is due to the effect of the misspecification on the type one error
(see Table 4.2). This effect is likely to be more noticeable at more stringent
alpha levels (see also Minica, Dolan et al. [244]). The ML with a CE structured
sandwich, however, preserves the power equal to the power of the (true) ML ACE
model, without inflating the type I error rate. Ignoring shared environmental
effects, i.e., dropping ¢ in a 0 = [0%, 0%, 0%] model results in a loss in power.
For instance, in the 4 sibs condition, the power of the standard ML procedure
drops to about 88.1%, when o2 is discarded (0,, = [0%,0%]) (similar results
were obtained when dropping 0% in a @ = [0%,0%,0%] model, where D stands
for dominance; see Table 4S Supplementary material). With an AE structured
background, the standard errors as produced by the standard and the sandwich
corrected ML are very similar, and so is the power. Given that the latter correctly
reflects the parameter variance in presence of a misspecified model, this result
indicates that in the conditions considered here this type of misspecification does
not affect estimation (i.e., type I error rate is well controlled). However, this is
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not a general finding. Consider the extreme misspecification of the background
employed by the ULS method. This has a clear effect, which is reflected in the
notable discrepancy observed between the standard and the robust (correct) ULS
standard errors (i.e., 0.022 vs. 0.033). Finally, although both are correct, we note
that the sandwich corrected ML procedure is appreciably more powerful than
the sandwich corrected ULS procedure (e.g., power of 88.1% for the sandwich
corrected ML with a misspecified AE structured background vs. power of 16.4%
for the sandwich corrected ULS procedure). Results follow similar trends in the
samples consisting of 2 parents and 4 sibs.

Given these results pertain to averages over replications, we also looked at
how often the ML t-values actually exceed the sandwich corrected ULS t-values,
considering also the smaller effect sizes to be expected in GWAS. This might
be of interest as it will provide an indication on how the two estimators are
expected to perform in individual studies involving family data. Dots above the
diagonal in Figure 4.1 show how often the ML-based Wald test is larger than
the sandwich corrected ULS-based Wald test, given decline in the size of the
genetic effect. Figure 4.1 left shows that the ML (true AE model) almost always
produces a larger test statistic, when the effect size is relatively large (effect size of
1% explained phenotypic variance) and the sample is large enough to capture it.
In the example, in just about 7.5% of the samples the sandwich corrected ULS test
statistic was larger. However, as the effect size decreases, one can observe more
and more sandwich corrected ULS-based Wald tests larger than those estimated
by the ML procedure (as illustrated in Figure 4.1 center). It can be seen that
under the null model (Figure 4.1, right) no differences occur between the two
estimation methods, which is as expected provided both are correct.

4.3.3 FaST-LMM formulation of the ML sandwich correc-
tion

The sandwich correction is computationally relatively simple and quick in the
standard formulation of the linear mixed model. We note that the fast full infor-
mation maximum linear mixed procedures (Lippert, Listgarten et al. 2011 [209],
Pirinen, Donnelly et al. [272]) are equally amenable to a sandwich correction.
The ML sandwich can be presented as:

var(br_yi) = (X'V(0)™'X) ' X'V (6) " (y—Xb)(y—Xb)'V(6) ' X (X'V(9)'X) '
(4.8)

Given random effects 6 = [ 02,02 ], the background covariance matrix is re-

formulated as V(0) = (62 x K+ 02 xI) = [ 02(K + § x I) ] where K is the

genetic relationship matrix (positive semi-definite), I is the identity matrix, and

§ = 02 /o?. Lippert et al. ( [209]; see also Pirinen, Donnelly et al. [272]) formulate

the covariance matrix as follows:

V() = [02 x (USU' + 6 x UTUY) | = [ o2 x U(S + 4§ x I)U' | (4.9)
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Figure 4.1: Wald tests produced by the sandwich corrected ULS procedure com-
pared to the test statistic obtained based on full information maximum likelihood
(standard ML) estimation method. We simulated 1000 data sets consisting of 500
MZ and 500 DZ 4-sib families, we varied the size of the genetic effect (1%, .25%
and the null model). The heritability of the trait was h? = 70%. The dots above
the diagonal show the number of times the standard ML procedure produced a
larger test statistic.
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where K = USU" is the eigen value decomposition of K, with U, the eigenvectors,
orthonormal, and S diagonal (eigenvalues). The matrix § x I, being diagonal and
constant, can be written § x UIU’. The inverse is:

V(@) =[o2x U(S+6x D)UY | (4.10)
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Note that the addition of off-diagonal terms in o2 x I, i.e., terms accommodating
shared environmental effects, would render the method invalid as then the eigen-
vectors of the environmental covariance matrix cannot be chosen to equal U. In
terms of this treatment of the matrix V(0), the sandwich can be written

var(bp ) = 02 x [ X'U(S +6 x D) 7'UX | 1052 x XIU(S +6 x I)7'x
(U'y — U'Xb)(U'y — U'Xb)'x
[02x XU+ xD)7Y] x o2 x [ XUBS+6xI)7UX]”

Y41

In implementing this, the fact that (S + ¢ x I)~! is diagonal may be exploited to
increase computational efficiency.

4.4 Discussion

We compared the standard and sandwich corrected ULS and ML procedures, in
the context of family-based association analysis of a normally distributed pheno-
type. Conditional on the correct specification of the background, the standard
ML procedure is appreciably more powerful than the sandwich corrected ULS pro-
cedure. The actual difference in power depends on the magnitude of the residual
correlations, but increases with greater family resemblance.

We also considered the sensitivity of ML to model misspecification. Model
misspecification involves the mismatch between the true background covariance
model (say, an ACE or ADE trait) and the background model used in the analyses
(a CE or AE model).

This may occur in using fast ML procedures, which employ the background
covariance matrix necessarily limited to additive genetic (A) and unshared en-
vironmental (E) effects, (e.g., Abecasis, Cherny et al. [4], Lippert, Listgarten et
al. [209]). The standard ML procedure was quite robust under model misspecifica-
tion in the simulated settings, and appreciably more powerful than the sandwich
corrected ULS procedure. However, for circumstances other than those consid-
ered here, a sandwich correction is equally applicable to ML to correctly capture
the parameter variance in presence of model misspecification. The sandwich cor-
rected standard errors may also be employed as a means to get an indication of the
effects of background misspecification on the type I error rate (i.e., the larger the
discrepancy between the naive and sandwich corrected standard errors, the more
likely the type I error rate of the procedure without a sandwich to be affected
Chavance and Escolano [61]).

In the present paper, we considered a normally distributed phenotype. Our
conclusions apply equally to generalized linear modeling of binary traits, such as
disease status. To demonstrate this we included in the supplementary material
(Tables 5S and 6S) results based on continuous and dichotomized (median - split)
phenotypes. With respect to binary phenotypes, we note that a general (rather
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than generalized) linear model is often used in analyzing such variables (e.g.,
Zhou and Stephens [381]). Cogent arguments have been presented that the linear
model may suffice in the analysis of binary phenotypes (Lippert, Listgarten et
al. [209], Pirinen, Donnelly et al. [272]).

Although relatively simple to implement and more efficient than the sandwich
corrected ULS in correcting for model misspecification, to our knowledge the ML
sandwich correction has not been yet implemented by any of the current software
for GWAS that can handle family data. With respect to implementation, we
note that generalized estimating equations (GEE) procedure, as implemented
in R (Carey [58]) has four useful aspects. First, it has a choice of background
models, which includes the independence model and exchangeable model (the
latter is equivalent to the CE model in linear mixed modeling). Second, it includes
sandwich corrected standard errors of the parameters b. Third, GEE covers
generalized linear model. Fourth, as GEE is a library it can be accessed from Plink
(Purcell, Neale et al. [279]) and so provides a computationally feasible strategy
for running genomewide scans in family data. An annotated R script to do this
is available at http://cameliaminica.nl/scripts.php.

In conclusion, for traits characterized by moderate to large familial resem-
blance, using ML with a correctly specified model for the familial covariance
matrix should be the strategy of choice. For such traits, the potential loss in
power encountered by the sandwich corrected ULS procedure does not outweigh
its computational convenience. Using a fast ML algorithm that commits to a
background model limited to additive and unshared environmental effects is ac-
ceptable even if shared environment has an influence on the phenotype of interest.
That is, in the settings considered here, type I error rate of the standard ML was
hardly affected by model misspecification. However, a sandwich correction is still
of interest when employing ML in genomewide scans because: (a) it produces cor-
rect standard errors regardless of whether the model is correctly parameterized or
misspecified; hence it should be useful for situations other than those considered
here, (b) it does not result in any overcorrection when the background model is
in fact correctly specified, (¢) as shown above, it is computationally cheap and
can easily be incorporated in the fast ML procedures, and (d) it is a useful di-
agnostic tool for assessing model misspecification (Chavance and Escolano [61]).
Currently Plink often is the preferred software when consortia share GWA results
for meta-analyses. When including data from cohorts that include relatives, one
should realize that the corrected standard errors while in many circumstances
larger than the ML standard errors, are accurate, and so therefore are its type
[ error rates. For ordinary GWAS (i.e., not family based), Plink is as good as
FaST-LMM (as then ULS and ML are identical).

Supplementary information is available at the European Journal of Human
Genetics’s website.



Chapter 5

MZ Twin Pairs or MZ Singletons in

Population Family-Based GWAS?
More Power in Pairs.

Abstract

Occasionally in family-based GWAS, including monozygotic (MZ) twins, the data
from one MZ twin are dropped, thus reducing the MZ pairs to singletons. Using
simulations we show that the presence of MZ twin pairs does not affect the type
I error rate, and reducing MZ pairs to singletons results in a loss of power. If
the main interest is in the association, and not in the details of the conditional
covariance matrix, adequate modeling of this matrix can be handled efficiently
using GEE | with sandwich corrected standard errors.
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5.1 MZ Twin Pairs or MZ Singletons?

Family-based genome-wide association studies (GWAS) involve testing the genetic
association of (many) genetic variants with the phenotype of interest, while tak-
ing into account the relatedness among family members. Occasionally in family-
based GWAS, including monozygotic (MZ) twins, the data from one MZ twin are
dropped, thus reducing the MZ pairs to singletons (e.g., Lowe, Maller et al. [219],
Parsons, Lester et al. [263], Loukola, Wedenoja et al. [218], Psychosis Endophe-
notypes International Consortium, Wellcome Trust Case-Control Consortium et
al. [76]). From a statistical power perspective, this practice is not optimal. To
evaluate the issue of power, we consider the effective sample size (Ng), i.e., the
number of independent cases that provides the same power as N MZ twin pairs.
Given the MZ intraclass correlation of p, the effective sample size is calculated
as Ng = (2 x N)/(1 + p), where Ng ranges from N(p = 1) to 2 x N(p = 0).
For instance, given N = 1000 pairs discarding data from one MZ twin reduces
the sample size to 1000 singletons, i.e., the Ng assuming p = 1. However, given
p = .2 (4,.7), the Ng is 1667 (1429, 1176), so that 1000 twin pairs (2000 in-
dividuals) are equivalent — in terms of power — to 1667 (1429, 1176) unrelated
individuals. To illustrate the loss in power, we consider a candidate gene explain-
ing 1% of the variance, the power to detect the association in linear regression
with N = 1000 MZ twin pairs (o = 0.001). MZ singletons, i.e., 1000 unrelated
subjects provide power of .450. Retaining data from both MZ twins (1000 pairs),
the power varies with p as follows: .884 (p = 0), .789 (p = .2), .643 (p = .5), and
519 (p = .8). We refer to Figure 5.1 for more details.

Importantly, the gains associated with retaining MZ pairs involve no addi-
tional genotyping costs. That is, given the almost perfect concordance rate ob-
served in MZ twins (>99%), genotyping one twin suffices in twins of confirmed
monozygosity.

An important related question is whether retaining both MZ twins affects the
type I error rate, i.e., does the empirical type I error rate equal the chosen «?
We checked the type I error rate by means of simulations. Our results indicate
that the empirical type I error rate is correct, i.e., invariably equals the chosen «
(for details we refer to Table 5.1 and to Figure 5.2). Minica et al. [245] evaluated
the type I error in samples involving MZ twins, full sibs and parents, and also
found that the empirical « closely resembled the nominal . We conclude that
the presence of MZ twins alone, or MZ twins in combination with other family
members, does not affect the type I error rate.

We note that many meta-analyses of GWASs rely heavily on twin registries.
For example, the educational attainment GWAS (Rietveld, Medland et al. [283])
included more than 35% data from twin registries. Twin registries also con-
tributed 13% cases and 9% controls to migraine meta-analysis (Anttila, Winsvold
et al. [20]), 34% of the sample to telomere length meta-analysis (Codd, Nelson
et al. [69]) and 31% cases and 19% controls to the meta-analysis of GWASs for
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Figure 5.1: The power to detect a genetic effect (1%) in 1000 MZ twin pairs as a
function of the MZ twin correlation (o = .001). The effective sample size, shown
above the x-axis, varies from 2000 (MZ correlation = .0) to 1111 (MZ correlation
= .8). The top horizontal line indicates the power afforded by 2000 MZ individuals
when MZ correlation equals 0. The bottom horizontal line indicates the power
afforded by 1000 singletons.
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major depressive disorder (Ripke, Wray et al. [284]). These registries are rich
resources of phenotypic and genotypic twin data. Whereas the MZ data may
be exploited fully in primary and in meta-analyses (e.g., the contribution of the
Queensland Institute of Medical Research (QIMR) to Rietveld et al. [283]), con-
sortia protocols often stipulate dropping MZ twins. Consider, for instance, the
recent meta-analysis of GWASs for major depressive disorder (Ripke, Wray et
al. [284]). Although genotypic data were available in ~1890, ~786, and ~300
MZ twin pairs at the Netherlands Twin Register, the QIMR and the TwinGene
cohort, respectively, only 1 twin of a pair was selected for the analyses. Given
an MZ correlation for depression of p = .35 these 2976 MZ twin pairs (5952 in-
dividuals) are equivalent in terms of power to Np = 4409 unrelated subjects. By
dropping 1 MZ twin, the equivalent of 4409 - 2976 = 1433 unrelated individuals
was discarded from the meta-analysis. The corresponding loss in power is notable
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(i.e., from .823 power MZ twins would afford, to .395 power afforded by MZ sin-
gletons, given a@ = 1078 and a genetic variant explaining 1% of the phenotypic
variance).

Full modeling of data on families including MZs can be performed by using a
mixed-effects variance components approach (e.g., using MERLIN and MERLIN-off-
line, see http://genepi.qimr.edu.au/staff/sarahMe/merlin-offline.html).
If the families are highly variable in the number and composition of participating
family members, retaining all data may pose a challenge as modeling the condi-
tional (i.e., conditional on the genetic variant) covariance structure can be com-
plicated and subject to misspecification. One tractable solution is to use general-
ized estimating equations (GEE) with a conditional covariance matrix containing
equal covariances (i.e., ’exchangeable working correlation matrix” in GEE terms),
in combination with a sandwich correction for the standard errors. The use of a
sandwich correction is advisable as it produces correct type I error rates, regard-
less of misspecification. This method fares well in terms of power, in comparison
to full (correct) modeling, while the computational burden is acceptable given typ-
ical GWAS requirements (Minica, Dolan et al. [245]). We note that GEE with the
exchangeable option (as implemented in R (Carey, Lumley et al. [58])) can be con-
ducted from the Plink platform (see http://cameliaminica.nl/scripts.php).

In conclusion, the presence of MZ twin pairs does not affect the type I error
rate, and reducing M7 pairs to singletons results in a loss of power. If the main
interest is in the association, and not in the details of the conditional covariance
matrix, adequate modeling of this matrix can be handled efficiently using GEE,
with sandwich corrected standard errors.
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5.1.1 Supplementary Results: Type I Error Rate

The following results demonstrate that the type I error rate in a genetic associ-
ation test in monozygotic (MZ) twin pairs is correct. We simulated, in 1000 MZ
pairs, a normal phenotype and a single diallelic genetic variant with MAF = .5,
of no effect. We varied the MZ correlation from .1 to .8, and ran one million
replications for each value of the correlation. We tested the genetic variant ef-
fect using linear regression and, having dichotomized the continuous phenotype
(probability of ”affected” .05 and .20), using logit regression. We used generalized
estimating equations (GEE) to accommodate the MZ dependence. The g-q plots
of the observed and expected quantiles in Figure 5.2 and the results included in
Table 5.1 show the type I error rates are correct.

Figure 5.2: The null distribution of the Wald test statistic (1,000,000 replications),
given a continuous trait (Subfigures a and b) and a binary trait, based on the test
in 1000 MZ pairs. The binary trait was obtained by dichotomizing the continuous
trait into a binary 0/1 phenotype (probability of 1 is .20 in Subfigures ¢ and d;
.05 in Subfigures e and f).
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Table 5.1: Empirical type I error rates in a test of genetic association with continu-
ous phenotypes (linear model) and with binary phenotypes (logit model) using
only MZ individuals (N = 1000 MZ twin pairs). Within the square brackets we
report the 99% confidence intervals (CI).

MZ alpha = .05 alpha = .01 alpha = .001 alpha = .0001

Tralt o elation  [99% CT| [99% CT|  [99% C1] 99% CIJ
0.0504 0.0103 0.00104 0.000097

1 0.04984,  [0.01004,  [0.00096, 10.00007,

0.05097]  0.01056] 0.00113) 0.00013)

0.0503 0.0102 0.00105 0.000092

2 0.04974,  [0.00994,  [0.00097, 10.00007,

0.05087]  0.01046] 0.00114] 0.00012]

0.0506 0.0101 0.00097 0.000094

continuous 4 0.05004,  [0.00985,  [0.00089, 10.00007,
0.05117]  0.01036] 0.00105] 0.00012]

0.0501 0.0104 0.00105 0.00011

6 0.04954,  [0.01014,  [0.00097, 10.00009,

0.05067]  0.01067] 0.00114] 0.00014]

0.0504 0.0101 0.00099 0.000099

8 0.04984,  [0.00985,  [0.00091, 10.00008,

0.05097]  0.01036] 0.00107] 0.00013]

0.0504 0.0008 0.00004 0.000089

1 0.04984,  [0.00955,  [0.00086, 10.00007,

binary 0.05097]  0.01006] 0.00102] 0.00012]
(20% cases) 0.050 0.0099 0.00094 0.000092
8 0.04944,  [0.00965,  [0.00086, 10.00007,

0.05056]  0.01016] 0.00102] 0.00012]

0.0492 0.0004 0.00082 0.000077

1 0.04865,  [0.00915,  [0.00075, 10.00006,

binary 0.04976]  0.00963] 0.00090] 0.00010]
(5% cases) 0.0194 0.0096 0.00085 0.000071
8 0.04884,  [0.00935,  [0.00078, 10.00005,

0.04996] 0.00985] 0.00093] 0.00010]







Chapter 6

The Weighting Is The Hardest Part:
On The Behavior of the Likelihood Ratio
Test and Score Test Under Data-Driven
Weighting Scheme in Rare Variant Asso-
ciation Studies

Abstract

Rare variant association studies are at a critical inflexion point with the increas-
ing availability of exome-sequencing data. A popular test of association is the
sequence kernel association test (SKAT). Weights are embedded within SKAT to
reflect the hypothesized contribution of the variants to the trait variance. Because
the true weights are generally unknown, and so are subject to misspecification,
we examined the efficiency of a data-driven weighting scheme.

We propose the use of a set of theoretically defensible weighting schemes, of
which, we assume, the one that gives the largest test statistic is likely to capture
best the allele frequency-functional effect relationship. As both the score test and
the likelihood ratio test (LRT) may be used in this context, and may differ in
power, we characterize the behavior of both tests in our procedure.

We found that the powers of the two tests is equivalent when the weights in the
set included the correct ones. However, when the weights are all misspecified, the
LRT is expected to show superior power (due to its robustness to weight misspec-
ification). With this procedure and the LRT we detected significant enrichment
of rare case mutations (MAF<5%; P-value=7E-04) of a set of constrained genes
in the Swedish schizophrenia case-control cohort with exome-sequencing data.

The score test is currently preferred for its computational efficiency and power.
Indeed, assuming correct specification, in some circumstances the score test is the
most powerful test. However, LRT has the compelling qualities of being generally
more powerful and more robust to misspecification. This is an important result
given that, arguably, misspecified models are likely to be the rule rather than the
exception in weighting-based approaches.
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6.1 Introduction

With the availability of high-coverage exome/genome sequence data in increas-
ingly large samples, rare variant association studies (RVAS) are gaining impor-
tance in human genetic research. One important test of association between a
target set of rare variants (RVs) and a given phenotype is the sequence kernel
association test (SKAT; [64,176,196,210,211,312,367]). SKAT is based on a ran-
dom effects model, in which the effect sizes of the RVs are assumed to be drawn
from a zero mean distribution and a given variance. That the effect sizes are
characterized by a single variance is a strong assumption which is made plausible
by plausible weighting of effect sizes. The required weights are typically assigned
based on meta-information about the RVs, such as allele frequency and func-
tional predictions [191,227,276,367], with rarer and functional variants expected
to have larger effects. Allele frequency, in particular, is an important weighting
factor, as the rarer the variant is, the stronger the average purifying selection
coefficient [277,292]. Accordingly, the effect sizes for rare variants will tend to be
larger than for more common variants.

The relationship between effect size, frequency and selection, however, rests
on assumptions about the extent of direct selection on the phenotype in question
and the demographic history of the population [115,276,383]. More specifically,
there are several postulates that have to hold for the frequency to be genuinely in-
formative on the functional effect that a genetic variant has on the trait, namely:
(a) the population under study has not experienced recent severe bottlenecks;
(b) the selection on the trait of interest is direct, (c) strong (i.e., selection coef-
ficient s > 1072®); and, (d) it acts uniformly across the associated genes. Yet,
for the reasons detailed below, the circumstances in which these postulates are
expected to hold are rather special. First, population genetics theory predicts
that the frequency of deleterious variants will vary with the size of the effect the
associated trait has on fitness. For instance, risk variants implicated in early-
onset diseases (e.g., autism) will be mostly rare, i.e., kept at low frequencies by
selection pressures because of the high impact these diseases have on reproduc-
tive fitness (Manolio, Collins et al. [233]). In contrast, variants associated with
a trait having a negligible effect on fitness (e.g., Alzheimer disease), will likely
escape selection and so may occur at relatively high frequencies in the population
(Zuk, Schaffner et al. [383]). Second, it should be noted that even if the trait of
interest is under strong selection pressures, variants across the whole frequency
spectrum may jointly contribute to disease risk, as simulation studies (Price,
Kryukov et al. [276]) and empirical results (e.g., Cohen, Boerwinkle et al. [70],
Teslovich, Musunuru et al. [318]) have demonstrated. Thirdly, allele frequency
distribution is expected to vary as a function of the demographic history of the
population. Using population genetics simulations, Zuk et al. [383] showed that
given the same selection coefficient s, the frequency of deleterious alleles influenc-
ing a trait will depend on whether the population under study has encountered



98 Chapter 6. The Weighting Is The Hardest Part

recent severe bottlenecks, and on mutation rate. For example, given strong se-
lection pressures (i.e., s > 1072®) acting directly on the phenotype, the median
frequency of the associated alleles may vary from as high as 0.0377 in recently
bottlenecked populations (e.g., Finland), to as low as 9.36E-005 in a large pop-
ulation with simple exponential expansion. Finally, the strength of selection is
expected to vary across genes, and so will do the allele frequency-functional effect
relationship (Price, Kryukov et al. [276], Zuk, Schaffner et al. [383]). Genes under
weak selection will harbor both common and rare variants, both with functional
effects, whereas functional variants within genes under strong selective constraints
will mainly be rare. The examples above indicate that testing genomic regions
by relying on a weighting scheme which up-weighs rarer variants and puts low or
zero weights on the more common ones is optimal only in specific circumstances.

Because the true weights are generally unknown, and so are subject to mis-
specification, we examined the efficiency of a data-driven weighting scheme. We
propose the use of a set of theoretically defensible weighting schemes, of which,
we assume, the one that gives the largest test statistic is likely to capture best
the allele frequency-functional effect relationship. The use of alternative weighting
schemes is intended to accommodate genomic regions where only very rare vari-
ants are likely to be functional, as well as regions under weak selection pressures,
harboring both rare and common variants, both (possibly) related to the risk of
the disease of interest. Family-wise error rate can be protected either by using a
multiple testing correction (e.g., the Bonferroni or Benjamini and Hochberg [29]
methods), or by permutations. We show the power benefits conferred by the use
of such a variable data-driven weighting procedure both in simulated and in em-
pirical data. As both the score test [367] and the likelihood ratio test [211] may be
used in this context, and may differ in power [377], we characterize the behavior
of both tests in our procedure.

Below we first formulate the model and briefly consider the likelihood ratio
test and the score test. We then present and evaluate the use of a data-driven
weighting scheme in simulated and empirical data. Specifically, we evaluate the
efficiency of the two tests under (a) the variable weighting scheme, relative to
their efficiency under (b) incorrect, and (¢) correct weighting. Finally, we discuss
the robustness of the two tests to misspecification, and the power advantages
conferred by our proposed weighting procedure in SKAT.

6.2 Material and Methods

6.2.1 Model formulation

Let y be the n-dimensional vector of continuous phenotypes measured in a sample
consisting of n individuals. Let X be the n x p design matrix containing the
relevant covariates. Let G be the n x m matrix of genotype values, with the g;;
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element denoting the genotype value of the individual 7 (i = 1...n) at locus j
(7 = 1...m). Genotypes are coded as additive-codominant, i.e., g;; = (0,1, 2).
The association between the phenotype and the set of m variants is modeled
within the linear mixed model framework as:

y=XB8+Gb+e (6.1)
with 8 = (81, ... 3,) being the p-dimensional vector of fixed effects of covariates,
b’ = (by,...,b,) being the m x 1 vector of regression coefficients in the regression

of the phenotype on the m genetic variants within the target set, and e being
the n-dimensional vector of random residuals. The random vectors b and e are
assumed to be normally distributed: b ~ N(0,I07) and e ~ N(0,102), with I
being the identity matrix of appropriate dimension.

Let W be the m x m diagonal matrix containing the weights used to weigh
the contribution to the test statistic of the variants in the set. The normally
distributed phenotype y has expected mean E[y| = X3 and variance-covariance
matrix: )

%, = Elly - E)(y — E(y))] = GWG' 2 4157 (6.2)
with GWG? being the weighted kernel or genetic relationship matrix. As imple-
mented in the SKAT [367], the diagonal elements of the matrix W, diag(w; . . ., wy,),
are related to the minor allele frequency of the j-th variant by means of the beta
density distribution function (dbeta), which is characterized by two shape param-
eters. The specification of the two shape parameters is informed by the hypoth-
esized relationship between the j-th variant effect and its minor allele frequency
(MAF; see section on ‘Weighting’ below).

6.2.2 Tests of variance components

To test whether the parameter of interest o7 deviates significantly from zero, one
can employ a likelihood ratio test (LRT) or a score test. The likelihood ratio
test is computed as two times the difference between the log-likelihoods of the
null model (o7 constrained to equal 0) and the alternative model (o7 estimated
freely). Parameter estimation can be performed by restricted /residual maximum

likelihood (REML):

1 1 1 1
LogL(c},0?) = 5 log |%,| — 5 log ’XthX — §rt2;17" — §(n —p)log(2m) (6.3)
where r = y — X(X'3, 1X)_Xt2; 'y with superscript ‘=’ denoting a generalized
inverse [27].
In evaluating the statistical significance of the restricted LRT, we note that
the null distribution of the test statistic is an equally weighted .5:.5 mixture of
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a x2 and a x? distributions (see e.g., [308,349,366]). Alternatively, the null dis-
tribution can be constructed empirically by using a permutation-based approach
(e.g., [211]), or a parametric bootstrap (e.g., [79]).

The score test is computed as:
Qskar = (y — XB)'GWG!(y — XB) (6.4)

with its expected null distribution following a mixture of chi-square distribution
and statistical significance assessed by means of the Davies exact method [88].

6.2.3 Data simulation

Phenotypes and genotypes were generated in samples of n = 10,000 unrelated
individuals. Specifically, we simulated two m-dimensional random vectors of con-
tinuous variables representing alleles at m equidistant loci for each individual ¢
from the sample. The vectors were drawn from a multivariate distribution with
zero mean and X, , correlation matrix. As rare variants are expected to be in
linkage equilibrium (see e.g., [89]), we set ¥, to equal an identity matrix. The
multivariate normally distributed variables were then discretized given chosen
thresholds based on the MAF at each locus. We considered MAFs varying ran-
domly between 0.005 and 0.05, sampled from a uniform distribution. Given the
vectors of alleles, we then created the m vectors of genotypes, g;;. Based on the
genotypes, the n x 1 vector of phenotypes, y, was generated as:

Yi = Zg”b] X 1/0’5 +e; X \/O'g (65)
j=1

b;, the regression weight of the variant at the j-th locus, was computed as a
function of MAF; and of its contribution to the standardized variance of the
polygenic scores [237]. Namely, the regression weights varied with MAF, while
their contribution to the genetic variance was equal. Simulating data in this
fashion is equivalent to simulation according to dbeta(MAF, .5,.5) weights [367],
with weights increasing with decreasing MAF. We also simulated data according
to dbeta (1,1) weights (second simulation scenario), where variants had equal
weights regardless of MAF. This scenario is illustrative for situations where the
tested region harbors both common and rare variants, both having functional
effects on the trait (i.e., where there is no relationship between allele frequency
and effect size). The variance o equaled 0.01 across all scenarios we considered,
and 02 = 1 — 7. The n-dimensional vector of environmental scores e was drawn
from a standard normal distribution N(0,1).
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6.2.4 Data-Driven search for optimal weights: exploring
the misspecification space

Because the application of a single weighting scheme might not be accurate when
testing thousands of genes scattered across the whole exome, we evaluated the
efficiency of a data-driven search for the optimal weights. We carried out simula-
tions to evaluate the efficiency of the two tests under (a) the variable weighting
scheme relative to their efficiency under (b) incorrect, and (c) correct weighting.

The m-dimensional vector w of variant weights was computed using the beta
density function, with the j-th element calculated as w; = dbeta(MAF};ay,as)
given the MAF of the j-th variant and the shape parameters a; and as. As de-
scribed in the previous section, data were simulated according to: a) dbeta(.5,.5)
weights (i.e., the true weights increase with decreasing MAF); and b) dbeta(1,1)
weights (i.e., the variants have equal weights, regardless of MAF). Next, in com-
puting the tests statistic we (mis)specified the weights as: a) dbeta(1,1); b)
dbeta(.5,.5); ¢) dbeta(1,25). The first weighting scheme pertains to the hypothe-
sis that there is no relationship between the regression weight and the frequency
of the variant (hence, the more common variants contribute on average more
to variation in the phenotype). In this scenario the association test is carried
out with raw additive-codominant coding of the genotypes. The use of the sec-
ond weighting scheme is equivalent to standardization of the genotypic values
prior to the analysis. We considered the effect of this weighting scheme as this
treatment of the genotypes is default in GCTA [375] and in FaST-LMM-set [211].
Standardization and assignment of weights dbeta(.5,.5) are equivalent weighting
schemes [367] in which the contribution to the test of rarer variants is up-weighed
relative to that of the more common ones [302], and hence the variants contribute
on average equally to the variance in the phenotype, regardless of frequency. We
also considered the effects of the third weighting scheme (dbeta(1,25)) as weights
computed as such are the default weights in SKAT [367].

We performed association tests by using the set of 3 weighting schemes, i.e.,
a) dbeta(1,25); b) dbeta(1,1), and c) dbeta(.5,.5). The p-value for the gene
equaled the minimum Bonferroni corrected p-value minPygr (minPg.y..) out of
the 3 p-values obtained given the genotypes transformed according to each of
the weighting schemes enumerated earlier. We also report the power of the tests
under misspecified weights, as it is of interest to assess whether our procedure
confers power gains relative to a test which uses a single set of (misspecified)
weights (i.e., 3 tests vs. 1 test). We assessed the behavior of the two tests under
the variable weighting schemes by considering: a) target regions harboring solely
functional variants with opposite effects on the phenotypic mean, and b) regions
harboring a mixture of protective, deleterious and neutral effects.
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6.2.5 Evaluating the type I error rates and power

We evaluated the type I error rates by generating 1,000,000 datasets under the
null hypothesis of no phenotypic variance explained by the variants within the
target set. The type I error rate was computed as the proportion of datasets
in which the tests incorrectly rejected the null hypothesis and it was evaluated
given o = 0.01 and 0.001. Following Visscher ([349] but see also e.g., Self and
Liang [294], Blangero, Diego et al. [35]) we used a .5 : .5 mixture of a x2 and a x?
distribution for computing the p-value. We used this approach as this is default
in most statistical software (e.g., in GCTA, Yang, Lee et al. [375] or in FaST-LMM-
set, Listgarten, Lippert et al. [211]). Because this asymptotic distribution of the
LRT is expected to be conservative (Crainiceanu and Ruppert [79], Blangero,
Diego et al. [35]), we also report the p-value given varying mixing proportions of
X2 and 7 distributions by considering increasing proportions of test statistics of
zero (from .5 to .6, by .1).

Power was assessed based on 1000 simulated datasets, an effect size of 1%
explained phenotypic variance and 7 alpha thresholds. Given the 7 alpha thresh-
olds, power equaled the proportion of datasets in which the effect was detected.
As a validity check of our program, for all the scenarios considered we also report
the power and the type I error rates of the true (i.e., correct) model.

6.2.6 Software

The R-package MASS [340] was used for data generation. Model fitting was
performed in R-nlme [269], and SKAT [195]. We used the anova function in R to
obtain the restricted likelihood ratio test, with the p-value computed by halving
the supplied p-value [271]. To check our model fitting approach, we analyzed
one simulated sample of 10,000 individuals by using 3 independent programs
implementing genetic similarity /kernel-based variance component tests: the nlme
R-package, the software Genome-wide Complex Trait Analysis (GCTA; [375]) and
the software FaST-LMM-set [211]. The values for the restricted LRT and the
estimate for the variance component obtained by the 3 programs were almost
identical (see Table 6.6 Supplementary Material for details), indicating that these
are equivalent approaches. Having established the equivalence, all the simulations
were next conducted using the nlme program. Simulations were carried out on
the Broad Institute Gold Compute cluster.

6.2.7 Empirical analysis: testing the constrained and the
FMRP-Darnell gene sets for rare case mutations en-
richment

We compared the performance of the likelihood ratio test and of the score test
under our proposed data-driven weighting scheme in a real dataset. For this illus-
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tration we used the Swedish schizophrenia case-control cohort of 4940 individuals
with exome-sequencing data from blood DNA. Cases had a clinical diagnosis of
schizophrenia and at least two hospitalizations as determined by expert review
based on the Hospital Discharge Register [82,190]. Controls, without a diagno-
sis of schizophrenia or bipolar disorder, were randomly selected from population
registries. Both cases and controls are of Scandinavian ancestry, aged 18 or older
(see [280,284] for a detailed description of the sample). There were 169 individu-
als with unreliable samples (i.e., duplicates, ethnic outliers or having a genotype
missing rate higher than 10%) whom we removed from the analysis. This left
for the analysis 2461 cases and 2479 controls. 2732 of these were males. Written
informed consent was obtained from all participants (or legal guardian consent
and subject assent). All procedures were approved by the ethical committees in
Sweden and in the United States.

Exome-sequencing was performed in seven waves at the Broad Institute of
MIT and Harvard. For samples in the first wave, hybrid capture was performed
using the Agilent SureSelect Human All Exon Kit method. In this version, the
method targets ~28 million base-pairs partitioned in ~160,000 regions. Sequenc-
ing was done using Illumina GAII instruments. For samples in the waves two to
seven, hybrid capture was done by using the newer version of the Agilent Sure-
Select Human All Exon v.2 Kit method, which targets ~32 million base-pairs
partitioned in ~190,000 regions. Sequencing was performed using the Illumina
HiSeq 2000 and HiSeq 2500 instruments. We used BWA ALN version 0.5.9 [200]
to align the reads to the GRCh37 human genome reference and we applied Pi-
card/GATK to process the sequence data and to call variants [241]. Selected
singletons were validated using Sanger sequencing (see [280] for details). Vari-
ants out of Hardy-Weinberg equilibrium (P-value < 5E-8) and showing excess het-
erozygosity, or variants showing excessive correlation (P-value <5E-8) with the
covariates (that could not be explained by principal components) were excluded
from the analysis. In addition, we excluded variants that did not pass the GATK
default filters [25,96]. There were 892,306 variants with MAF < 5% meeting all
our quality control criteria.

For this empirical illustration we considered the gene-sets rather than the
genes as the unit of analysis. We extended the targeted region because the cur-
rent sample sizes afford insufficient power for gene-based tests (see Purcell et
al., [280]) but are more adequate for gene-set enrichment analyses which consider
jointly a larger number of weak effects. This type of analysis has the added ben-
efit of reducing substantially the burden of multiple testing. By extending the
targeted region, the number of tested variants is large, and hence the effects of
(possible) weight misspecification are expected to be large. In addition, as we
do not focus on a specific class of alleles but rather lump together all observed
variants with frequency below specific thresholds, a large amount of variation
contributing to the test statistic will possibly be neutral. This makes the exam-
ple a near optimal situation for illustrating the difference in robustness to both
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model misspecification and neutral variation of the LRT and the score test.

We tested for enrichment of case mutations two partially overlapping gene-
sets likely relevant to schizophrenia. The first set consisted of 899 genes which
are part of the list identified by Samocha et al. [289] as highly constrained. These
constrained genes were proposed as candidates in autism spectrum disorder (ASD)
given their enrichment for de novo loss of function case mutations. Given evidence
favouring the hypothesis that schizophrenia and ASD share genetic aetiology
(76, 130], this set of genes is likely to be relevant also to schizophrenia. The
second set consisted of 749 genes targeted by the Fragile-X mental retardation
protein (FMRP). This set is part of the list of genes derived by Darnell et al. [86]
from mouse brain as likely implicated in regulating synaptic plasticity. Genes
targeted by FMRP were found to be enriched for de novo nonsynonimous case
mutations in both ASD [177] and schizophrenia [130]. Purcell et al. [280] also
tested the FMRP set for enrichment of rare variants in the current sample, and
their analysis yielded nominally significant results. Note that the strategy we
adopted here is however, different. That is, rather than using gene-based statistic,
our procedure tests for the joint effect (variance explained) of rare variants with
MAF lower than 5% and 1% within the gene-set (note that the MAF thresholds
are, however, arbitrary: variants defined as rare in one sample might feature as
common in another sample).

We performed sequence-based kernel association analyses using the likelihood
ratio and score tests with variable weights. For this empirical analysis we used the
FaST-LMM-Set software [211]. To adjust for ancestry we included into analysis
the first two principal components. Principal components were computed from
genotypes at variants shared with the 1000 Genomes Project phase 1 dataset.
To accommodate the scenario in which only very rare variants are likely to be
functional, as well as the scenario in which the targeted region is under weak se-
lection pressures, harboring both rare and more common variants, both (possibly)
related to the risk of disease (regardless of frequency), we used three alternative
weighting schemes: dbeta(1,25), dbeta(.5,.5) and dbeta(1,1).

For each tested pathway, we chose the Bonferroni corrected p-value corre-
sponding to the weighting scheme that yields the largest test statistic. An al-
pha of 0.05 was used, corrected for multiple hypothesis testing of 2 gene-sets,
2 frequency thresholds and 3 weighting schemes (note that the Benjamini and
Hochberg method (Benjamini and Hochberg [29] is a less conservative alternative
method to correct for multiple comparisons, and so it can be alternatively em-
ployed). For computational ease we used a linear model [211]. The linear LRT
(and the linear score test) shows good control of the type I error rate and has
performed as well as a generalized linear model in case-control samples (see [210]).



6.3. Results 105

6.3 Results

6.3.1 Typel error

Tables 6.1 and 6.3 contain the results pertaining to the type I error rates of the
two tests, given correct and incorrect model specification. Across all conditions
evaluated here, the score test shows good control of the type I error rate.

The .5 : .5 mixture of a 3 and a x37 asymptotic distribution of the likelihood-
ratio test is slightly conservative, regardless of whether the weights are correctly
specified or misspecified; that is, the .5 weight on the component underestimates
to proportion of test statistics of zero, yielding a conservative test. A similar
result was reported by (Crainiceanu and Ruppert [79]) and by Listgarten et al.
(Listgarten, Lippert et al. [211]). We used this approach in the simulations as
this is default in most statistical software (e.g., in GCTA, Yang, Lee et al. [375]
and also in FaST-LMM-set, Listgarten, Lippert et al. [211]). Alternatively, similar
to (Blangero, Diego et al. [35]) we note that when using a .57 : .43 mixture of a
X2 and a x?, the type I error rate follows the expectation.

Accurate estimation of the weights for the mixing proportions is desirable,
although such approaches rely on permutations, bootstrap or simulations, and
hence, are more intensive computationally (see e.g., Greven, Crainiceanu et al.
[148], Blangero, Diego et al. [35], Listgarten, Lippert et al. [211]). Listgarten et
al. [211] proposed a permutation based approach to construct the null distribution
of the test statistic, approach that maintains the type I error rate of the restricted
LRT closer to the expectation. This is the approach we used in the empirical
analysis.

6.3.2 Power

Figure 6.1 and Figure 6.2 display the results relating to power. Five important
conclusions follow from our simulation results. First, the restricted LRT and the
score test have equal power under correct weight specification. This is expected, as
the two tests are asymptotically equivalent when the model is true, i.e., correctly
specified (e.g., [147]). The powers of the two tests — displayed in grey in the power
figures — are indistinguishable when the assigned weights correspond to the true
weights.

Second, misspecification of weights always reduces power. This is shown in
Figure 6.1 and in Figure 6.2, as the departure of the power under model misspec-
ification (the colored lines) from the power of the true models (the grey lines).
The exact loss in power depends on the degree of weight misspecification and
on the statistical test employed. We note that the power loss is relatively small
given mild misspecification of weights. This result is illustrated in Figure 6.1A
(LTR) and 1B (score), where the assigned weights dbeta(1,25) resemble the true
weights dbeta(.5,.5). In this circumstance, it is mainly the presence of neutral
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Table 6.1: Type I error for the restricted likelihood ratio test (LRT) and the
score test, given genotypic data simulated under the null model of no association
between the target region and the phenotype. The sample consisted of 10,000
individuals with genotypes at 50 variants having minor allele frequencies (MAFs)
sampled from the uniform distribution and ranging from .5% to 5%. The re-
stricted LRT and the score tests were computed for three sets of weights beta
in each of the 1,000,000 simulated samples. Type I error equals the proportion
of datasets in which the null hypothesis has been incorrectly rejected given the
three significance thresholds. For the LRT we report the results given varying
mixing proportions of x2 and x? distributions.

weights dbeta alpha=0.01 alpha=0.001
Score (.5,.5) 0.0099 0.0009
(1,1) 0.0099 0.0009
(1,25) 0.0098 0.0009
LRT x2 and x? mixing proportions
.6:.4 (.5,.5) 0.010660 0.001032
(1,1) 0.010347 0.001007
(1,25) 0.010575 0.001007
.59:.41 (.5,.5) 0.010408 0.001012
(1,1) 0.010106 0.000989
(1,25) 0.010313 0.000978
.58:.42 (.5,.5) 0.010167 0.000989
(1,1) 0.009884 0.000963
(1,25) 0.010084 0.000958
.b7:.43 (.5,.5) 0.009934 0.000973
(1,1) 0.009668 0.000934
(1,25) 0.009858 0.000937
.H6:.44 (.5,.5) 0.009695 0.000945
(1,1) 0.009458 0.000916
(1,25) 0.009620 0.000913
.5d:.45 (.5,.5) 0.009467 0.000918
(1,1) 0.009278 0.000889
(1,25) 0.009412 0.000900

Continued in Table 6.2
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Table 6.2: Continued from Table 6.1

weights dbeta alpha=0.01 alpha=0.001

54:.46 (.5,.5) 0.009229  0.000893
(1,1) 0.009061  0.000874

(1,25) 0.009215  0.000884

53:.47 (.5,.5) 0.009020  0.000876
(1,1) 0.008871  0.000853

(1,25) 0.009002  0.000865

52:.48 (.5,.5) 0.008847  0.000857
(1,1) 0.008700  0.000842

(1,25) 0.008825  0.000851

51:.49 (.5,.5) 0.008676  0.000840
(1,1) 0.008527  0.000824

(1,25) 0.008652  0.000835

505 (.5,.5) 0.008492  0.000828
(1,1) 0.008342  0.000803

(1,25) 0.008472  0.000821

variants in the target that dilutes the power (see Figure 6.1C and Figure 6.1D).
However, the power may suffer dramatically with increasing misspecification. For
instance, when data were simulated according to the dbeta(.5,.5) weights, using
a dbeta (1,1) weighting scheme (equal weights assigned to all variants) results
in a loss in power of up to ~5% and ~30% for the restricted LRT and for the
score test, respectively (see Figures 6.1). This result is informative for RVASs
in which the raw genotypes (unweighted) are used in the test of association. A
more dramatic power loss is illustrated in Figure 6.2 where we consider the re-
verse situation: weights dbeta (.5,.5) are assigned to variants simulated under
flat weights. That is, in this scenario, the allele frequency is incorrectly used to
inform on the weights assignment. With this misspecification the drop in power
relative to the true model is ~17% and ~80% for the restricted LRT and for the
score test, respectively.

Third, the inclusion of neutral variants dilutes the power of both tests. In our
examples, with 40% neutral variants the power drops are in the range of ~10%-
~17% relative to the power of the true model, regardless of the degree of weight
misspecification. Clearly, discarding neutral variation present within the target
is beneficial to improve power to detect significant association.

Forth, relative to the score test, we note that the restricted LRT is consistently
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Table 6.3: Type I error for the restricted likelihood ratio test (LRT) and the
score test, given genotypic data simulated under the null model of no association
between the target region and the phenotype. The sample consisted of 10,000
individuals with genotypes at 50 variants having equal beta weights and minor
allele frequencies (MAFs) sampled from the uniform distribution and ranging
from .5% to 5%. The LRT and the score tests were computed for three sets of
weights beta in each of the 1,000,000 simulated samples. The type I error equals
the percentage of datasets for which the null hypothesis has been incorrectly
rejected, given the three significance thresholds. For the LRT we report the
results given varying mixing proportions of xZ and x? distributions.

weights dbeta alpha=0.01 alpha=0.001
Score (.5,.5) 0.0098 0.0009
(1,1) 0.0098 0.0009
(1,25) 0.0099 0.0009
LRT X(% and X% mixing proportions
.6:.4 (.5,.5) 0.010590 0.001024
(1,1) 0.010587 0.001023
(1,25) 0.010220 0.000942
.59:.41 (.5,.5) 0.010315 0.000999
(1,1) 0.010319 0.001001
(1,25) 0.009964 0.000911
.58:.42 (.5,.5) 0.010039 0.000979
(1,1) 0.010072 0.000976
(1,25) 0.009733 0.000892
.D7:.43 (.5,.5) 0.009809 0.000954
(1,1) 0.009789 0.000961
(1,25) 0.009523 0.000869
.56:.44 (.5,.5) 0.009565 0.000935
(1,1) 0.009557 0.000938
(1,25) 0.009304 0.000845
.55:.45 (.5,.5) 0.009356 0.000902
(1,1) 0.009331 0.000911
(1,25) 0.009112 0.000825

Continued in Table 6.4
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Table 6.4: Continued from Table 6.3

weights dbeta alpha=0.01 alpha=0.001

54:.46 (.5,.5) 0.009161  0.000882
(1,1) 0.009143  0.000885

(1,25) 0.008918  0.000807

53:.47 (.5,.5) 0.008955  0.000858
(1,1) 0.008949  0.000860

(1,25) 0.008734  0.000794

52:.48 (.5,.5) 0.008778  0.000843
(1,1) 0.008767  0.000844

(1,25) 0.008548  0.000778

51:.49 (.5,.5) 0.008610  0.000828
(1,1) 0.008594  0.000821

(1,25) 0.008347  0.000758

5:.5 (.5,.5) 0.008445  0.000804
(1,1) 0.008442  0.000801

(1,25) 0.008172  0.000741

more robust, both to weight misspecification and to the presence of neutral vari-
ation in the target region. These results are consistent with those reported by
Zeng et al. [377] and by Lippert et al. [210], who found their proposed LRT to
be generally more powerful than the score test across their simulated settings.
Although Lippert et al. did not consider the behavior of the two tests under mis-
specified weights, they reported the same pattern of results in real data analysis,
where the LRT yielded consistently more associations than the score test. As the
real weights are in all likelihood not known, the superior power of the restricted
LRT in real data might be explained as well by its robustness to weight misspec-
ification and to the inclusion of weighed neutral variation in the computation of
the test statistic.

We note that both tests appear to benefit from the use of variable weights.
The data-driven search for optimal weights confers power advantages over a model
that uses misspecified weights, and maintains the power close to that afforded by
a correctly specified model. It should be noted, however, that there is a price to
pay in terms of power by using this data-driven weighting scheme in contrast to
correct weighting. The price is largest for regions containing mixtures of func-
tional and neutral variants (e.g., the power of both tests decreases from ~94%
given correct weights, to about ~80% with the data-driven weighting approach;
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Figure 6.1: The power of the likelihood ratio test (LRT; A and C) and the score
test (B and D) to detect a gene harboring 50 low-frequency variants: all functional
(A and B) or a mixture of 30 functional and 20 neutral variants (C and D). We
randomly sampled MAFs ranging from .5% to 5% from the uniform distribution.
The gene explains 1% of the phenotypic variance. Genotypic data were simulated
according to weights dbeta(.5,.5). Power was evaluated in 1000 datasets con-
sisting of 10,000 individuals. Note that while the variants-set explain the same
amount of phenotypic variance (i.e., 1%) across all scenarios considered, the true
individual variant weights increase as the proportion of functional variants in the
set decreases.
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see scenarios displayed in Figures 6.1C and 6.1D), and relatively small for the
(less realistic) scenarios in which the target set contains only functional variants
(i.e., with both the LRT and the score and the data-driven weighting scheme, the
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Figure 6.2: The power of the likelihood ratio test (LRT; E and G) and the score
test (F and H) to detect a gene harboring 50 low-frequency variants: all func-
tional (E and F) or a mixture of 30 functional and neutral variants (G and H).
We randomly sampled MAFs ranging from .5% to 5% from the uniform distri-
bution. The gene explains 1% of the phenotypic variance. Genotypic data were
simulated according to weights dbeta(1,1). Power was evaluated in 1000 datasets
consisting of 10,000 individuals. Note that while the variants-set explain the same
amount of phenotypic variance (i.e., 1%) across all scenarios considered, the true
individual variant weights increase as the proportion of functional variants in the
set decreases.
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power drops about 4%). The two tests have equal powers with the Bonferroni
corrected data-driven weighting procedure; it should be noted, however, that this
is due to the fact that the correct weights were included in the procedure. Had the
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procedure included only misspecified weights, the power of the score test would
have decreased dramatically relative to that of the LRT (which appears to be
robust to misspecification). As typically the true weights are unknown, conjec-
turing the correct ones by employing alternative weights and using the likelihood
ratio test appears to be the strategy likely to maintain the power close to that of
the true model. This strategy appears to be advantageous also when the target
region contains neutral variants.

6.3.3 Empirical analysis: testing the constrained and the
FMRP-Darnell gene sets for rare case mutations en-
richment

We also looked at the behavior of the score test and of the likelihood ratio
test [211] under variable weights in the empirical dataset. Table 6.5 displays
results pertaining to the enrichment tests in the gene-set-based analyses.

From Table 6.5 we note that the likelihood ratio test appears more powerful
than the score test across all conditions evaluated here. It is likely the combination
of weight misspecification coupled with the presence of neutral variation in the
target set that yielded the difference in power between the two tests. With the
current sample and the likelihood ratio test with weights dbeta(1,1), the set
of constrained genes showed significant enrichment for disruptive case mutations
with MAF below 5% (i.e., Bonferroni corrected P-value = 0.0084; see Table 6.5A).
The score test under flat weights (i.e., dbeta(1,1)) with its associated p-value also
passed the significance threshold, providing support for enrichment for disruptive
rare case mutations of the constrained gene-set, although the evidence was weaker
(Bonferroni corrected P-value = 0.037).

Note the difference in the strength of association of the two tests under variant
weighting schemes. For instance, in the 5% MAF threshold analyses, the enrich-
ment signal in the constrained gene-set was rendered non-significant when the
dbeta(1,25) weights were used with the score test (Bonferroni corrected P-value
= 0.397), and yet it reached statistical significance when the likelihood ratio test
was employed instead (Bonferroni corrected P-value = 0.044). Had one relied
on the score test and a default weighting scheme, the association signals in this
pathway would have been missed.

The FMRP-Darnell gene-set showed no significant enrichment for rare case
mutations, regardless of the test, MAF threshold and weighting schemes used.
This result does not rule out the possibility that rarer variants (e.g., singletons)
within the pathway play a role in the liability to schizophrenia phenotype. To
implicate such variants, however, testing approaches other than those exploiting
genetic similarity among the individuals are required.

The 1% MAF threshold yielded similar differences among the two tests (see
Table 6.5B). Note that the signal in the constrained gene-set no longer reached
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Table 6.5: Results of the gene-set enrichment analysis run in the Swedish sample
(N = 4940; prevalence in the sample = 0.49). The 2 gene-sets included variants
with MAF below 5% (A) or below 1% (B). Bonferroni corrected P-values are
given in italics.

Gene-set weights
(autosome variants in set) dbeta LRT  Score
constrained (1,1) 7e-04  0.0031
(63,492) (0.0084) (0.037)
(5,.5)  0.1240  0.3444
)
A (1,25)  0.0037  0.0331
‘ (0.044) (0.397)
FMRP-Darnell (1,1) 0.0339  0.0577
(72,161) (0.406)  (0.692)
(5.5)  0.1062  0.3384
M)
(1,25)  0.0434  0.1319
(0.520) (1)
Gene-set weights
(autosome variants in set) dbeta LRT  Score
constrained (1,1) 0.0373 0.1139
(61,269) (0447) (1)
(5.5) 02341 0.3988
(1) (1)
b (1,25)  0.0357 0.1293
' (0.428) (1)
FMRP-Darnell (1,1) 0.0723  0.1679
(69,668) (0.867) (1)
(.5,.,5)  0.1467 0.3621
m ()
(1,25)  0.0556 0.1668
(0.667) (1)

statistical significance. This result suggests that imposing this threshold probably
removed from the target causal variants and so, weakened the association signal.

Summarizing, the empirical analysis showed that the choice of the test and
of the weighting scheme is no trivial matter. The LRT always yielded smaller
p-values than the score test, probably due to the greater sensitivity the latter
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has to weighed neutral variation and to model misspecification (as we found in
the simulated data). We also found that either thresholding or relying on default
weights would trick one into missing association signals. We elaborate on these
results in the Discussion.

6.4 Discussion

We considered the issue of optimizing weighting in association studies based on
the rare variant sequence kernel test. Consistent with empirical [210] and simula-
tion [377] results we found that the likelihood ratio test is generally more robust
to weight misspecification, and more powerful than the score test in such a cir-
cumstance. The principal finding of this study is that using a weighting scheme
that includes alternative weights is likely to boost the statistical power. Our re-
sults are of interest because weight assignment is embedded within any set-based
test and the true weights of the variants within the target are generally unknown.

In the literature, weighting is mostly informed by allele frequency; frequency
is taken as indicative of the strength of the purifying selection coefficient [191].
Accordingly, rarer variants are typically being assigned larger weights/contri-
bution to the test statistic (e.g., [367]). This relationship between effect size,
frequency and selection is not always straightforward, however, because it relies
on assumptions about the extent of direct selection on the phenotype in ques-
tion and the demographic history of the population [115,276,383]. Genes under
weak selection may harbor rare as well as more common variants with disruptive
effects [383]. Such variants with deleterious effects, escaping selection and oc-
curring at relatively high frequencies in the population, are plausible also under
strong purifying selection, as simulation studies have demonstrated [276]. Achiev-
ing maximal power when testing such regions requires adapting the weighting
scheme to match the hypothesized selection. To this end, we proposed the use of
a data-driven weighting approach. Our simulation results showed that such an
approach maintains the power close to that of the true (i.e., correctly specified)
model. When applied to real data, this approach allowed us to capture signif-
icant enrichment signal coming from variants with MAF below 5% within the
constrained pathway [289]; Bonferroni corrected P-value = 0.0084), lending sup-
port to the conclusion that such a variable weighting approach is likely to boost
statistical power. Such adaptive approaches were also recommended by Zuk et
al. (2014) and by Price et al. (2010) as being optimal for gene-based tests (see
also [206] and [197] for details on adaptive weighting schemes for burden tests).
Deriving weights based on allele frequency is but one of the possible ways of pri-
oritizing the contribution to the test statistic of the variants within the target
set [367]. Alternative weighting schemes that incorporate probabilities of a vari-
ant being damaging (as estimated by annotation tools such as e.g., Polyphen-2 [6]
or SIFT [258] may also be considered.
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It should be emphasized that our data-driven weighting approach renders
thresholding unnecessary. Thresholding (either based on counts or on allele fre-
quency) has been initially used in burden tests (e.g., [199,227,276]; see also [129]
for an overview on burden tests), but it has been employed also in sequence-based
variance component tests (e.g., [217,370] ) for the purpose of removing neutral
variation (see e.g., [191]). Yet, in our empirical analysis this practice was coun-
terproductive: imposing the (arbitrarily chosen) 1% MAF threshold reduced the
association signal in the constrained gene-set below the significance threshold.
Considering common variants along with the rare ones in sequence-based ker-
nel association tests appears to be justified for three main reasons. First, the
use of variable weighting schemes is equivalent to applying variable frequency
thresholds: the weights are removing from the test or favoring the contribution
to the test statistic of the variants within the target set based on their frequency.
Second, only the joint signal - coming from rare and more common variants -
enabled us to detect significant enrichment. And third, importantly, with the
current samples, our tests are mostly powered to locate regions under relatively
weak selection pressures, and such regions are expected to harbour rare as well
as common variants both with functional effects. To locate genes under stronger
selection pressures, larger samples (see [383]) and the inclusion of more extreme
weights (i.e., weights that overlook common variants and favour the rarer ones)
will probably be required.

The data-driven weighting approach rendered equal the powers of the two
tests. Note, however, that this equivalence hinged upon the inclusion of the cor-
rect weights among the alternatives. The powers of the two tests will likely diverge
when the weights in the set are all misspecified; in such a circumstance, the LRT
is expected to show superior power (due to its robustness to weight misspecifica-
tion). This is likely illustrated in the empirical analysis where the LRT has always
yielded lower p-values. Both in the simulations and in the empirical analysis we
chose to correct out alpha by using the Bonferroni method. Alternatively, the
less conservative Benjamini and Hochberg (BH; [29]) method may be employed
(we refer to the Supplemental Figures 6.3 and 6.4, which are based on the BH-
corrected results). P-value correction for larger number of tests can be easily
obtained using the p.adjust function implemented in the stats R-package [315].
Permutation may also be used to compute the p-value. However, the data-driven
weighting approach based on permutations is prohibitively slow when the number
of tested variants within the target set (or the number of genes) and the sample
is large. The Bonferroni correction though easier computationally, comes at a
price in terms of power: the more weighting schemes one tries, the more stringent
the significance threshold correction. An optimization algorithm for an optimal
search for the true weights (e.g., [253] or limiting the choice of weights based on
knowledge on theorized selection on each gene [383] would decrease the burden
of multiple testing, and further increase power.

The score test is currently widely used in sequence-based association studies
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(e.g., [81,172, 265, 378] for both its computational efficiency and power [367].
Indeed, assuming correct specification, in some circumstances the score test is
the most powerful test [210,367]. However, the results provided herein showed
that the likelihood ratio test has the compelling qualities of being generally more
robust and more powerful under weight misspecification. This is an important
result, given that, arguably, misspecified models are likely to be the rule rather
than the exception in the weighting-based approaches.

6.5 Supplemental Table and Figures

Table 6.6: Results of a test of association between a gene harboring 10 active vari-
ants (with a minor allele frequency ranging between 5% and .05% and explaining
1% of the phenotypic variance) and a continuous phenotype, in a simulated sample
of 10,000 individuals. Data were simulated in R using the MASS package. Analy-
ses were performed in 3 independent programs: the R-nlme package, the software
Genome-wide Complex Trait Analysis (GCTA), and the software FaST-LMM-set.
We report the log restricted likelihood under the null model (LLy), the log re-
stricted likelihood under the alternative model (LL;), the chi-square test with 1
degree of freedom ( x?(1)), the variance attributable to the 10 genetic variants

(V(G)).

Software LL, LL, xX2(1) | V(G) | V(G)/V pnenotype
GCTA -4905.36 | -4868.93 | 72.86 | 0.00929 0.0094
R-nIme -14090.14 | -14053.70 | 72.86 | 0.00929 0.0094

FaST-LMM-set | -14089.22 | -14052.79 | 72.86 - 0.0094
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Figure 6.3: The power of the likelihood ratio test (LRT; A and C) and the score
test (B and D) to detect a gene harboring 50 low-frequency variants: all functional
(A and B) or a mixture of 30 functional and 20 neutral variants (C and D). We
randomly sampled MAFs ranging from .5% to 5% from the uniform distribution.
The gene explains 1% of the phenotypic variance. Genotypic data were simulated
according to weights dbeta(.5,.5). Power was evaluated in 1000 datasets con-
sisting of 10,000 individuals. Note that while the variants-set explain the same
amount of phenotypic variance (i.e., 1%) across all scenarios considered, the true
individual variant weights increase as the proportion of functional variants in the
set decreases. Abbreviation: BH — Benjamini and Hochberg correction.
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Figure 6.4: The power of the likelihood ratio test (LRT; E and G) and the score
test (F and H) to detect a gene harboring 50 low-frequency variants: all func-
tional (E and F) or a mixture of 30 functional and neutral variants (G and H).
We randomly sampled MAFs ranging from .5% to 5% from the uniform distri-
bution. The gene explains 1% of the phenotypic variance. Genotypic data were
simulated according to weights dbeta(1,1). Power was evaluated in 1000 datasets
consisting of 10,000 individuals. Note that while the variants-set explain the same
amount of phenotypic variance (i.e., 1%) across all scenarios considered, the true
individual variant weights increase as the proportion of functional variants in the

Chapter 6. The Weighting Is The Hardest Part

set decreases. Abbreviation: BH — Benjamini and Hochberg correction.
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Chapter 7

Heritability, SNP- and Gene-Based
Analyses of Cannabis Use Initiation and
Age at Onset

Abstract

Prior searches for genetic variants implicated in initiation of cannabis use have
been limited to common single nucleotide polymorphisms (SNP) typed in HapMap
samples. Denser SNPs are now available with the completion of the 1000 Genomes
and the Genome of the Netherlands projects. More densely distributed SNPs are
expected to track the causal variants better. Therefore we extend the search
for variants implicated in early stages of cannabis use to previously untagged
common and low-frequency variants. We run heritability, SNP and gene-based
analyses of initiation and age at onset. This is the first genome-wide study of age
at onset to date.

Using GCTA and a sample of distantly related individuals from the Nether-
lands Twin Register, we estimated that the currently measured (and tagged)
SNPs collectively explain 25% of the variance in initiation (SE = 0.088; P =
0.0016). Chromosomes 4 and 18, previously linked with cannabis use and other
addiction phenotypes, account for the largest amount of variance in initiation
(6.8%, SE = 0.025, P = 0.002 and 3.6%, SE = 0.01, P = 0.012, respectively).
No individual SNP or gene-based test reached genomewide significance in the
initiation or age at onset analyses.

Our study detected association signal in the currently measured SNPs. A
comparison with prior SNP-heritability estimates suggests that at least part of
the signal is likely coming from previously untyped common and low frequency
variants. Our results do not rule out the contribution of rare variants of larger
effect — a plausible source of the difference between the twin-based heritability
estimate and that from GCTA. The causal variants are likely of very small effect
(i.e., < 1% explained variance) and are uniformly distributed over the genome in
proportion to chromosomes’ length. Similar to other complex traits and diseases,
detecting such small effects is to be expected in sufficiently large samples.

121
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7.1 Introduction

Cannabis is among the drugs with the highest frequency of (ab)use. About 1 in
5 Europeans aged 15-64 reported to have experimented with cannabis. In the
United States (US) the prevalence in ages 16-34 was estimated at 51.6% (Euro-
pean Monitoring Centre for Drugs and Drug Addiction, 2012). Regular cannabis
use has been associated with health problems, including mood and anxiety disor-
ders (e.g., Cheung et al. [67]) and chronic bronchitis (Hall [153]; Joshi et al. [178]).
Early onset and regular use during adolescence has possible effects on cognitive
functioning (e.g., Crean et al. [80]) and predicts diminished educational (Horwood
et al. [163]; Lynskey and Hall [223]), and professional attainment (Fergusson and
Boden [122]; Volkow et al. [356]). Furthermore, recent evidence suggests that
high-potency cannabis use elevates the risk of developing psychotic disorders (Di
Forti et al. [98]; Di Forti et al. [97]). Namely, the odds of showing psychotic
symptoms in individuals who declared to have ever used high-potency cannabis
are about three times larger than in individuals who declared to have never used
cannabis during their lifetime. The risk of showing psychotic symptoms is further
elevated if high-potency cannabis is used daily (i.e., OR = 5.4; P = 0.002; Di
Forti et al. [97]). About 9% of those who initiate cannabis use progress to regular
use and abuse (e.g. Volkow et al. [356]; Budney et al. [49]). Given the possi-
ble adverse effects on health and lifetime outcomes and given its possible role in
triggering first-episode of psychosis, it is important to understand the causes of
individual differences in the liability to initiate cannabis use.

Twin and family studies have shown that both genetic and environmental
factors (both shared by, and specific to, family members) have an important role
in the initiation of cannabis use (Kendler and Prescott [182]; van den Bree et al.
[330]). A meta-analysis of twin studies (Verweij et al. [343]) showed that additive
genetic factors explain nearly half the variance in liability to initiate cannabis use
(i.e., 48% and 40% of the variance, in females and males, respectively), while the
remaining variance is accounted for - almost equally - by shared and unshared
environmental factors (both about 30%).

Among the several attempts to identify genes that explain the heritability
of initiation, a linkage study (Agrawal et al. [14]) failed to identify statistically
significant associated genomic regions, although it did identify several suggestive
regions on chromosomes 18 and 1. Likewise, a meta-analysis by Verweij et al.
(Verweij et al. [342]) combining the results of two genomewide association stud-
ies (GWAS) comprising about 10,000 individuals failed to detect common single
nucleotide polymorphisms (SNPs) associated with initiation. It should be noted,
however, that the association analysis by Verweij and colleagues was limited to
common (i.e., minor allele frequency (MAF) > 5%) HapMap SNPs [75]. With
the recent completion of large sequencing projects such as the 1000 Genomes
(1000G) [77] and the Genome of the Netherlands (Boomsma et al. [44]; The
Genome of the Netherlands [319]), more detailed genotypic information has be-
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come available in large GWAS samples. Given the availability of denser SNPs,
which are expected to be in high linkage disequilibrium (LD) with the causal
variants, we aim to extend the search for genetic variants (GVs) implicated in
initiation to previously untagged common GVs, and to other (than common)
GVs, such as low-frequency variants (1% < MAF < 5%). Such low frequency
variants have not typically passed the quality control checks. However, the qual-
ity of imputation has been improved by recent advances in imputation techniques
(Howie et al. [165]). This opens the door to including such genetic variants into
a genome-wide association study (GWAS).

Furthermore, to date, the approach for finding genes underlying the heritabil-
ity of cannabis initiation was to focus on the ’ever/never used’ dichotomy at the
expense of the age at which one initiates (i.e., age at onset). Yet, age at onset is
a complex trait (Visscher et al. [355]), subject to the influences of both environ-
mental and genetic factors (Lynskey et al. [224]), and may serve as an important
proxy for heavy use. Initiation of cannabis use before age 18 is predictive of
both experimentation with other drugs (Agrawal et al. [13]; Lynskey et al. [225]),
and of escalated drug use (e.g., Lynskey et al. [224]). Among those initiating
in adolescence the risk of progression to symptoms of abuse and dependence is
higher relative to the general population (i.e., 17% vs. 9%, respectively; Volkow
et al. [356]). Given its relevance as a predictor for escalated use, our second aim
is to perform a genomewide search for GVs that give rise to individual differ-
ences in age at onset. To model age at onset as a function of genotype we will
apply statistical methods based on survival analysis. This approach utilizes all
available information on the age at onset among initiateds and takes into account
the censored nature of the observations collected in those who did not initiate
at the time they were last seen (i.e., they might initiate at a later time point).
The approach is expected to show superior power relative to an analysis of the
"ever-never” dichotomy or an analysis restricted to those who initiated (see e.g.
Kiefer et al. [185]). To our knowledge, a genomewide survival analysis of age at
onset of cannabis use has not yet been reported.

The outline of the paper is as follows. First, we estimate the amount of vari-
ance in initiation of cannabis use explained collectively by the currently measured
SNPs. The purpose of such analysis is to obtain an indication of the total signal
in the measured (and tagged) SNPs without identifying individual SNPs. Sec-
ond, we conduct SNP-based association analyses of initiation and age at onset.
Our primary focus is on identifying genes tagged by the SNPs, relevant to our
traits. Therefore, next, we incorporate these SNP-based results in two gene-based
analyses. These analyses are exploratory, i.e., conducted genomewide.

All analyses are performed in a sample of Dutch families from the Netherlands
Twin Register (NTR). To maximize statistical power, imputation of genotypes
in the NTR sample was based on two alternative reference panels: the 1000G
Phase 1 project reference panel [77] and the reference panel generated by the
Genome of the Netherlands (GoNL) project (Boomsma et al. [44]; The Genome
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of the Netherlands [319]). The GoNL reference panel was derived by sequencing
the whole genome of 250 trio-Dutch families and matches therefore the ancestral
background of our sample. The GoNL panel is expected to facilitate imputation
of variants which are specific to the Dutch population (Boomsma et al. [44]).
Furthermore, the use of the GoNL panel is expected to result in higher impu-
tation accuracy relative to the 1000G panel, especially for low frequency GVs
(MAF < 5%) (The Genome of the Netherlands [319]). Such increased accuracy
is expected to increase the statistical power to capture the signal in the measured

GVs.

7.2 Materials And Methods

7.2.1 Phenotypes

The phenotypic data were obtained in the longitudinal surveys on lifestyle, health,
and personality of the NTR (e.g., Boomsma et al. [43]; Boomsma et al. [40]). The
study protocols were approved by the Central Ethics Committee on Research In-
volving Human Subjects of the VU Medical Center, Amsterdam. All participants
provided informed consent. The study in young twins was approved also by the
Central Committee on Research Involving Human Subjects. More details regard-
ing the phenotyping in the NTR study can be found elsewhere (van Beijsterveldt
et al. [329]; Willemsen et al. [362]).

7.2.2 Initiation of cannabis use (’ever/never’)

Initiation was assessed by a multiple choice question (i.e., ” At which age did you
experiment with cannabis for the first time?”) in the NTR surveys 1993, 1995,
2000, and by an open-ended question (”Have you ever tried hashish or cannabis?
If yes, at which age?”) in survey 2009. These surveys were sent to all adult twin
families and were returned by 23,597 individuals. In addition, data collection
in adolescent twins and sibs which took place since 1987 in age-specific surveys
(around age 14 and age 16), included a multiple choice question (”Have you ever
used soft drugs such as hashish or cannabis?”) assessing frequency of use (on an
eight-category scale ranging from 'never’ to 'more than 40 times’) in the whole
life, in the last 12 months and in the last 4 weeks. This question was completed by
16,556 participants. The phenotypic data obtained from subjects who reported at
more than one time point were checked for consistency, and unreliable measures
were discarded. Due to inconsistencies, 284 self-reported measures were dropped.
Next, the measurements were collapsed into a dichotomous phenotype (i.e., ev-
er/never used cannabis). Furthermore, we included in the analysis only family
members for whom both phenotypes and genotypes were available, i.e., N = 6744
participants. Of these, 5387 individuals reported never to have used cannabis,
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whereas the remaining 1357 individuals had initiated cannabis use. The age at
the time of the last survey ranged from 10.5 to 94 years (mean age = 39.09, SD
= 17.45). The participants were clustered within 3479 families varying in size
from 1 to 9 family members (i.e., parents, siblings, spouses). More than half of
the sample (60.9%) consisted of females.

7.2.3 Age at onset

A subset of the genotyped NTR sample (N = 5148) had declared never to have
used cannabis, or declared an age at onset older than 10 years of age in survey
2009 (which included an open ended question on age at onset, see above). Among
them, 852 (16.6%) had initiated cannabis use, whereas 4296 observations had not
initiated at the time of data collection (i.e., censored observations). The partic-
ipants were clustered within 2992 families of sizes varying from 1 to 8 members.
Females represented 62.3% of the sample and the age ranged between 16 and 99
years (mean age = 46.93, SD = 17.54).

7.2.4 Genotypes

Genotyping was performed based on buccal or blood DNA samples collected in
different research projects (see e.g., Willemsen et al. [361]). Imputation was per-
formed based on the 1000G GIANT phase 1 panel as a first reference set, and
on the GoNL version 4 as a second reference set (see Supplementary Methods
for details). As best guess genotypes (computed using Beagle, Browning and
Yu [48]) were used in the analyses, we applied stringent post imputation qual-
ity thresholds on the imputation quality measure (i.e., we retained only SNPs
with an imputation quality score above 0.8) and for the Hardy-Weinberg equi-
librium test (o = 107%). Both the imputation quality and Hardy-Weinberg equi-
librium (i.e., based on the summed genotype probability counts) were assessed
in the phenotyped sample using SNPTEST (Marchini, 2007). The GoNL- and
the 1000G-based imputed datasets contained ~6 million well-imputed SNPs (i.e.,
with a mean imputation quality score above 0.96 in both datasets). The associ-
ation and survival analyses were carried-out by varying the reference panel used
for imputation, while including the same phenotyped sample (i.e., 6744 and 5148
participants, respectively). The analyses included no monozygotic twin pairs,
because genotypic data were available for only 1 twin of a pair in the GoNL
dataset.
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7.3 Statistical analyses

7.3.1 Estimating the heritability of initiation

We used the Genome-wide Complex Trait Analysis (GCTA) software (Yang et
al. [374]) to estimate the amount of variance in initiation explained collectively
by the SNPs. The aim of this analysis is to obtain an indication of the total signal
in the SNPs, without identifying individual SNPs. Genetic similarity among the
phenotyped individuals was computed based on best guess genotypes at 5,928,887
loci observed or imputed using the GoNL reference panel. The analyzed SNPs had
a MAF larger than 1%, imputation quality greater than 0.8 and showed no sig-
nificant deviation from Hardy-Weinberg equilibrium given o = 10~%. The sample
with observed initiation status (N = 6744 related individuals of Dutch ancestry)
and the relevant covariates included in the genomewide SNP-based analysis (see
below) were also used in the GCTA analysis. Furthermore, one of a pair of closely
genetically related individuals (i.e., with an estimated genetic relatedness larger
than 0.025) was dropped, which left for the analysis 3616 distantly related indi-
viduals. We specified the prevalence as equal to 22%, value chosen in line with
the prevalence of cannabis use estimated in Europeans (European Monitoring
Centre for Drugs and Drug Addiction, 2012). Heritability of age at onset was not
estimated as GCTA cannot handle survival data. We also investigated the rela-
tionship between chromosome length and the amount of variance explained in the
trait. Consistent with the model of a polygenic trait, we expect — on average — the
longer chromosomes to explain a larger amount of the variance. We tested this in
a linear regression (one-tailed test) where we regressed the estimated proportion
of variance explained by each chromosome on the chromosome length.

7.3.2 Power analysis

We performed a Monte Carlo power analysis to obtain an indication on the size
of the genetic effects detectable in our sample. To this end, we simulated 10,000
samples consisting of 3690 families of various configurations reflecting the unbal-
anced structure of families included in the analyses, i.e., families consisting of
singletons, two parents or families comprising sibships sizes 1 to 6 with 0, 1 or
2 parents. Genotypes in Hardy-Weinberg equilibrium were generated at a locus
with a MAF of 0.5 and explaining 1.5% and 1% variance in the phenotype. The
normally distributed phenotype was simulated conditional on the locus and then
dichotomized using a cut-off point corresponding to a z-score of 0.85 to mimic the
20% prevalence of initiation observed in the NTR sample. The correlations be-
tween spouses, full siblings and parent-offspring estimated in our sample equaled
0.39, 0.35 and 0.15, respectively. An o = 107 was used to assess the power to
detect association. To model association we used a Generalized Equations Esti-
mation (GEE) procedure with an exchangeable working correlation matrix and
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a sandwich correction to correct the standard errors for misspecification of the
background model (Minica et al. [245]). Empirical power analysis showed that
our sample affords 45.3% and 87.4% power to detect GVs explaining 1% and
1.5% phenotypic variance, respectively (genomewide o = 1078). These power
computations are informative also for the age at onset phenotype given the large
overlap among the samples included in the two analyses.

7.3.3 SNP-based association analysis of initiation

To test association, initiation was regressed on the best guess genotype and co-
variates. The covariates were sex, age at the last survey, the birth cohort (i.e.,
two birth cohorts containing individuals born between 1951-1970 and 1971-1999,
respectively, and the 1915-1950 birth cohort as the reference category), 3 principal
components to correct for Dutch population substructure (Abdellaoui et al. [1]),
and sample specific covariates to account for batch and for chip effects. A GEE
(Carey et al. [58]) logistic model was employed. To model the familial related-
ness, we used an exchangeable working correlation matrix. This accounts for the
familial correlations by means of a single correlation among the family members.
The effect of possible misspecification of the familial covariances on the standard
errors was corrected by means of a sandwich correction (Minica et al. [245]; Dob-
son [102]). The sandwich-corrected GEE approach was implemented by using the
R-package gee (Carey et al. [58]), accessed from Plink (Purcell et al. [279]) which
communicates with R [317] via the Rserve package (Urbanek [328]).

7.3.4 SNP-based survival analysis of age at onset

A Cox proportional hazards regression model was employed to model age at onset
as a function of genotype and — as above — of other relevant covariates (i.e., birth
cohort, sex, 3 PCs and study specific covariates). We included this approach as
it utilizes all available information on the age of initiation among those who have
initiated. It is expected to show superior power relative to an analysis of the ”ever-
never” dichotomy or an analysis restricted to those who initiated (see e.g. Kiefer
et al. [185]). The Cox proportional hazard regression analysis was performed
genomewide by accessing the survival R-package (Therneau [320]) from Plink. In
fitting the model, we used the cluster option to get sandwich corrected standard
errors that are robust to misspecification of the familial covariance matrix.

7.3.5 Gene-based analyses of initiation and age at onset

Gene-based tests of association with initiation and age at onset were carried out by
using the gene-based association test that employs the extended Simes procedure
(GATES) implemented in the Knowledge Based Mining System for Genome-wide
Genetic Studies software (Li et al., 2011). Specifically, the Simes test extension
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was employed to combine the P-values of SNPs belonging to the same gene.
SNPs were assigned to genes (or to genes’ vicinity, i.e., within a region extended
5 kb at both the 5 and at the 3’ ends) according to the Human Genome ver-
sion 19 references. The linkage disequilibrium structure was derived based on
the GoNL haplotypes and incorporated into the gene-based test as to account
for the correlatedness among SNPs within a gene. Lacking prior significant ge-
netic association information related to the cannabis use phenotypes, SNPs were
assigned equal weights in the estimation process and the gene-based tests were
conducted genomewide for both phenotypes. There were 22,764 genes tested for
association with our phenotypes, hence for the gene-based tests the chosen alpha
level equaled 0.01/22,746 (i.e., ~4.3-1077).

7.4 Results

7.4.1 Estimating heritability based on genetic relatedness

Results indicate that 25% (standard error (SE) = 0.088) of the variance on the
observed scale in initiation is explained by the SNPs. This amount of variance ex-
plained collectively by the SNPs is significantly greater than zero (i.e., likelihood
ratio test (LRT) (degrees of freedom = 1) = 8.60, P = 0.0016). The chromosome-
by-chromosome heritability analysis indicated that the largest amount of variance
in the trait is explained by chromosome 4 (i.e., the estimate on the observed scale
equaled 6.8%, SE = 0.025, LRT(1) = 7.93, P = 0.002). Chromosome 18 ac-
counted for about 3.6% (SE = 0.01, LRT(1) = 4.99, P = 0.012) of the variance
on the observed scale in initiation. We also investigated the relationship between
chromosome length and the amount of variance explained (see Supplemental Ta-
ble 6.6 for details). We found that chromosome length is significantly associated
with proportion of variance explained (one-tailed t-test(20) = 1.731, P < 0.05).
On average longer chromosomes explain a larger percent of variance (Figure 8.1).

As shown in Figure 8.1, the linear trend is present, notwithstanding the low
power to detect variance components attributable to individual chromosomes.
The figure demonstrates a trend that is likely to be stronger with increasing
sample size. Some parameter estimates hit the lower bound of zero, but this is
due to sampling fluctuation (as we illustrate in a small simulation study described
in the Supplementary notes). Similar results were reported for other complex
traits like intelligence (see e.g., Davies et al. [87]).

7.4.2 SNP- and gene-based analyses of initiation

SNP-based P-values were obtained in two association analyses of initiation con-
ducted in a sample comprising of 6744 participants. Two alternative reference
panels — the 1000G and the GoNL, respectively — were used to impute geno-
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Figure 7.1: Percent of variance in initiation of cannabis use explained per chro-
mosome relative to chromosome length. The chromosome number is shown in
circles.
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types in our sample. Owing to a better imputation quality (The Genome of the
Netherlands [319]), the association signals in the GoNL imputed genotype data
were slightly stronger than those obtained based on the 1000G imputed SNPs.
Consequently we took forward these results for the gene-based tests. The P-values
for the 5,896,100 GoNL SNPs showed no inflation i.e., the lambda inflation factor
equaled 1.019, where a value of 1 indicates no deviation from the expectation of
the observed test statistic due to effects of population stratification. The quantile-
quantile plot is given in Supplemental Figure S2. The most strongly associated
SNP was the low frequency GoNL SNP rs35917943 (MAF < 5%; P = 1.6 -1077).
The region harboring this SNP is displayed in Supplemental Figure S3 (Pruim
et al. [278]). Supplemental Table S2 contains the top SNPs associated with ini-
tiation at P < 107°. Table 7.1 contains the five genes showing the strongest
association signal with initiation along with their functions (according to Gene
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Ontology (GO) annotations, Ashburner et al. [23]).

Table 7.1: Top five genes showing the strongest association with initiation of
cannabis use.

Gene Chr Start # SNPs  Key SNPs Gene Key SNPs  Gene  Molecular Function
Name Position Assigned Position (I‘S Feature P-Value P-Value according to Gene
(Gene Id) to Gene number) Ontology Annotation
Zinc Finger 35221228 nucleic acid bin-
Protein 181 19 35225479 2 (35487050)  upstream 1.6-1077  3.7-107¢ ding; metal ion
(ZNF18]) binding;
microRNA 52787471
643 19 52785049 10 (2434422) intronic 3.7-1076 3-107° -
(MIRG3)
52788044
(321908) intronic 8.5-1076 -
Zinc Finger 02787471 nucleic acid bin-
Protein 766 19 52772823 41 (2434422) intronic 3.7.107%  1.1.107* ding; metal ion
(ZNF766) binding;
52788044
(321908) intronic 8.5-1076 -
52770905
(57523152) upstream 3310_5 -
52790542
(139570481) intronic 2.3-1074 -
52792311
(147711278)  intronic 3.4-1074 -
52775301

(2089275) intronic 1-1072 -

Continued in Table 7.2.

None of these genes had an association P-value below our chosen genomewide
level of significance of a«=4.3-10"7. The three genes with the lowest P-values
are Zinc Finger Protein 181 (ZNF181, P = 3.7-1079), the non-coding RNA -
microRNA 643 (MIR643, P = 3-107°) and the Zinc Finger Protein 766 gene
(ZNF766, 1.1-107%), all located on chromosome 19.
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Table 7.2: Continued from Table 7.1
Gene Chr Start # SNPs  Key SNPs Gene Key SNPs  Gene  Molecular Function
Name Position  Assigned  Position (rs Feature  P-Value  P-Value  according to Gene
(Gene Id) to Gene number) Ontology Annotation
Phosphati-
dylinositol- phosphoric
specific Phos- 111416310 diester
pholipase C, 3 111393522 60 (1355767)  intronic  1.1.107%  1.1.10~* hydrolase
X Domain activity;
containing 2
(PLCXD2)
111399209
(7651713) intronic 1.2.107 -
111460129
(7651713) intronic 1.3-1072 -
111430969
(16858448)  intronic 1.5-1072 -
111438443
(12637233) intronic 1.5-1072 -
111479048
(7643067) intronic 1.6-1072 -
111470751
(74571144)  intronic 1.6-1072 -
111463864
(75923425) intronic 1.6-1072 -
111453629
(4682300) intronic 1.8-1072 -
111530499
(138770435) intronic 2.7-1072 -
111482694
(139568104)  intronic 3-1072 -
111443003
(9854875) intronic 3.2.1072 -
111449944
(7624162) intronic 3.2:1072 -
111514564
(11715999) intronic 4.1072 -

Continued in Table 7.3.
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Table 7.3: Continued from Table 7.2
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Gene Chr  Start # SNPs  Key SNPs Gene Key SNPs  Gene  Molecular Function
Name Position Assigned Position (rs  Feature P-Value  P-Value  according to Gene
(Gene Id) to Gene number) Ontology Annotation
Prefoldin-like unfolded
chaperone 30511638 protein
(URII) 19 30433145 15 (57192507) downstream  2.2:107°  1.8-107* binding;

30465196
(7249169) intronic 2.7-107° -
30509036
(73924148)  downstream  2.7-107° -
30442432
(77858500) intronic 3.1.107° -
30432202
(58563661) intronic 1.1-1074 -
30418009
(61340893) intronic 2.9.1072 -

7.4.3 SNP- and gene-based analyses of age at onset

We conducted two genomewide survival analyses of age at onset in a sample
comprising 5148 participants. Similar to the previous analysis, the association
signals attained with the genotypes imputed based on the GoNL reference panel
were used as input for the gene-based analysis, as these signals were stronger
relative to those observed in the 1000G imputed sample (see for a comparison
the Manhattan plots, Supplemental Figure S4). As we observed a slight inflation,
we corrected the SNP-based P-values (genomic control Age = 1.1171) to prevent
potential false positives. Supplemental Figure S5 contains the lambda corrected
quantile-quantile plots. The SNP with the strongest association signal was the
low-frequency 15142324060 (Aeorrected P = 7.6:107%;, MAF < 5%). The region
around the top SNP associated with initiation — rs142324060 on chromosome 5
is displayed in Supplemental Figure S6. The Supplemental Table S3 contains the
top SNPs associated with age at onset (P < 107°). Table 7.4 includes the top
five genes with the lowest P-values obtained in the gene-based analysis along with
their functions (according to GO annotations).

In our exploratory gene-based analysis none of the genes reached the genomewide

significance threshold of o = 4.3-10~7. The genes showing the strongest asso-
ciation with our phenotype were Gem (nuclear organelle) associated protein 5

(GEMINS) on chromosome 5 (P = 4.7-107*) and the uncharacterized LOC101927911
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Table 7.4: Top five genes showing the strongest association with age at onset of

cannabis use.

Gene Chr Start # SNPs Key SNPs Gene Key SNPs Gene Molecular Func-
Name Position ~ Assigned  Position (rs Feature P-Value P-Value tion according
(Gene Id) to Gene number) (lambda to Gene Ontolo-
adjusted) gy Annotation
Gem (nuclear protein
organelle) asso- 154289310 binding;
ciated protein 5 5 154266975 3 (148816132)  intronic ~ 1.4-1075  4.7-1074 snRNA
(GEMINSY) binding.
154272889
(816735) intronic 0.038 -
Uncharacterized 2871545 -
(LOC101927911) 17 2865540 9 (4790396) intronic ~ 1.6-107%  4.7-1074
Metallo- 56598707 copper ion
thionein 4 16 56598960 13 (141262031)  upstream 1.9-107® 5.2.107* binding; zinc
(MTY) ion binding.
56605477
(4784686) downstream 0.001 -
56596812
(71387120)  upstream 0.003 -
nucleotide
Kinesin fami- 154401490 binding;
ly member 4B 5 154393259 1 (115299630)  downstream  3.9-107°  5.3:10™*  DNA binding;
microtubule

(KIF}B)

motor activity;
ATP binding;
microtubule
binding;

Continued in Table 7.5.

on chromosome 17 (P = 4.7-107%), followed by the Metallothionein 4 (MT4) on
chromosome 16 (P = 5.2:107%). The SNP with the strongest association signal -
the 15142324060 (Acorrectea P = 7.6:1078) was not assigned to a gene in the GATES

analysis.
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Table 7.5: Continued from Table 7./

Gene Chr Start # SNPs Key SNPs Gene Key SNPs Gene Molecular Func-
Name Position =~ Assigned  Position (rs Feature P-Value P-Value tion according
(Gene 1d) to Gene number) (lambda to Gene Ontolo-
adjusted) gy Annotation
peptidylprolyl
Peptidylprolyl cis-trans
isomerase G 170439011 isomerase
(cyclophilin G) 2 170440849 53 (118138006)  upstream  3.5-107° 5.8-10~* activity;
(P Pl G) isomerase
activity.
170444201
(78740435) intronic ~ 5.7-107° -
170437115
(12618592)  upstream 1104 -
170497179
(3731675) downstream  1.4-107% -
170480402
(12612841) intronic 6.5-1074 -
170471270
(115697204)  intronic ~ 6.5-1074 -
170466028
(75173877) intronic ~ 6.7-107% -
170461257
(7421113) intronic 0.001 -
170477394

(75968631) intronic 0.001

7.5 Discussion

The aim of the study was to explore the contribution of GVs to initiation of
cannabis use and age at onset. Using GCTA and a sample of distantly related
individuals from the NTR, we estimated that the genomewide SNPs collectively
explain 25% (SE = 0.088; P = 0.0016) of the variance in initiation. Although lower
than the twin-based heritability estimate, our estimate provides an indication of
the total signal in the currently measured (and tagged) SNPs, confirming that
initiation of cannabis use is a heritable trait. The remaining variance (up to about
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40% as estimated by twin studies) may, in part, be attributable to rare SNPs,
weakly correlated with the measured SNPs (Visscher et al. [354]). Our estimate
is larger than that reported by Verweij and colleagues, namely 6% (95% CI [0%,
26%)], P-value = ns). A possible reason for this difference is that we use more
densely distributed SNPs. In addition to the common SNPs overlapping with
the HapMap SNPs used by Verweij and colleagues (about 2.4 million common
SNPs with MAF > 5%), we included into analysis previously untagged common
GVs, and other (than common) GVs, such as low-frequency variants (about 6
million SNPs having MAF > 1%). More densely distributed SNPs are expected
to be in higher LD with the causal variants, and so, to provide a more accurate
heritability estimate (Visscher et al. [354]).

The chromosome-by-chromosome analyses showed that, on average, longer
chromosomes account for a larger amount of variance in initiation. This result
lends support to the conclusion that initiation is highly polygenic. The largest
amount of variance is explained by chromosome 4 (6.8%; P = 0.002), followed by
chromosome 18 (3.6%; P = 0.012). Regions on both chromosome 4 and 18 have
been reported to play a role in cannabis use and other addiction phenotypes. For
instance, regions on chromosome 4 harboring the GABRA cluster of genes were
identified in a linkage study by Agrawal et al. (Agrawal et al. [14]) as plausibly
associated with a cannabis abuse and dependence phenotype. Another linkage
study (Prescott et al. [274]) provided strong evidence for a large region on chro-
mosome 4 to be involved in alcohol dependence (P = 2.1-1079), the same region
being also reported by Uhl et al. to be associated with illicit drug abuse (Uhl et
al. [327]). Regions on chromosome 18 were suggested to harbor GVs potentially
associated with initiation of cannabis use (Agrawal et al. [14]), methamphetamine
abuse (Lee et al. [195]) and alcohol dependence (Prescott et al. [274]). However,
when tested individually, none of the GVs achieved an association P-value less
than the adapted (i.e., for multiple testing) alpha of 1075,

We further explored how our results compare with previously published ones.
Using the SNP effect concordance method (Nyholt [259]) and the NTR as a repli-
cation sample, we checked whether there is an excess of SNPs showing concordant
effects in the meta-analysis by Verweij et al. (2012) and in our analysis. Of the
2,110,385 HapMap SNPs tested in both samples, we selected for the comparison
25,204 independent HapMap SNPs (r2 > 0.1) that showed the most significant
association P-values in the meta-analysis sample. Although we compare summary
results for the same phenotype (cannabis initiation) such an analysis is similar
in scope to a search for significant pleiotropic effects (genetic overlap): we aimed
to single out sets of SNPs showing concordant effects in the two samples beyond
what is expected by chance. Concordance of effects was assessed by exact bino-
mial tests. We observed no significant excess of SNPs with concordant effects in
the two datasets. It is possible that the effects of the causal variants are too small
to be accurately captured by the two samples. It is also likely that the causal
GVs were imperfectly tagged by the selected SNPs (e.g., because they have a
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lower MAF than the selected SNPs), and this further decreased the estimation
precision in both samples.

None of the tested genes achieved genomewide significance (P < ~4.3-1077).
However, our results have pinpointed several possible candidate genomic regions,
likely to have a bearing on the early stage of cannabis use. To name a few,
the ZNF181 and the ZNF766 genes, both located on chromosome 19, yielded
the strongest association signal in the gene-based analysis of initiation (i.e., P
= 3.7-107% 1.1-107%, respectively). According to the GO annotations, ZNF181
and ZNF766 are functional genes belonging to the zinc finger family of genes,
being involved in nucleic acid binding and metal ion binding. The most strongly
associated genes with age at onset were the protein coding genes GEMINS (P =
4.7-10™*) on chromosome 5 and MT/ on chromosome 16 (P=5.2-10"%). GEMIN5
plays a role in protein binding and snRNA binding, whereas MT}/ is involved
in copper ion and zinc ion binding. The role these genes play in initiation and
age at onset has yet to be clarified, as none have been previously reported to be
associated with cannabis use or other addiction phenotypes.

To our knowledge this is the first genomewide survival analysis of age at onset
of cannabis use to date. The survival modeling approach appears to be appro-
priate and computationally tractable given the detailed genotypic data currently
available (an example dataset and annotated scripts for conducting such an analy-
sis can be found at http://cameliaminica.nl/research.php). Clearly, further
research on the genetic basis of age at onset would be of interest as the trait may
serve as a proxy for both heavy use and experimentation with other drugs. Our
study detected association signal in the measured SNPs. A comparison with prior
SNP-heritability estimates suggests that at least part of the signal is likely coming
from previously untyped common and from low frequency variants. The lack of
genomewide significant results for the single variant and gene-based association
tests suggests that initiation is a polygenic trait characterized by variants of very
small effect (i.e., < 1% explained phenotypic variance). The causal variants are
likely distributed over much of the genome, in proportion to the chromosomes’
length. Our results do not rule out the contribution of rare variants of larger effect
imperfectly tracked by the measured SNPs — a plausible source of the difference
between the twin-based heritability estimate and that from GCTA. Powerful ana-
lytic strategies and very large samples combined with considering the contribution
of rare variants (MAF < 1%) will allow one to further understand the causes of
individual differences in the liability to initiate cannabis use.






Chapter 8

Genome-Wide Association Study of Ca-
nnabis Initiation Based on a Large Meta
-Analytic Sample of 32,330 Subjects from
The International Cannabis Consortium

Abstract

Initiation of cannabis use is a heritable trait, yet previous studies had limited
success in identifying genetic risk variants. The International Cannabis Consor-
tium was created with the aim of identifying genetic risk variants of cannabis use
by conducting meta-analyses of genome-wide association data.

Here we report on the meta-analysis of cannabis use initiation in 13 cohorts
(N = 32,330) and two independent replication samples (N = 2,998). The meta-
analysis results were followed-up with gene-based tests of association, an estimate
of SNP-based heritability, as well as an estimate of the genetic correlation between
initiation of cannabis use and nicotine use. We showed that the SNPs on the
chip explain 20% of the variance in initiation of cannabis use. While none of
the individual SNPs reached genome-wide significance, by using a gene-based
test (GATES) we identified four genes significantly associated with initiation of
cannabis use: NCAM1, CADM2, SCOC, and KCNT2. Finally, we observed a very
strong genetic correlation (rg = 0.83) between cannabis initiation and smoking
initiation.

In conclusion, we performed the largest meta-analysis of GWAS investigating
cannabis use phenotypes to date. Future studies should investigate the impact
of the identified genes on the biological mechanisms that lead to cannabis use
initiation.

139
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8.1 Introduction

Cannabis is the most widely produced and consumed drug worldwide (United
Nations Office on Drugs and Crime 2015 ) and its use is illicit in most countries.
Occasional cannabis use can progress to frequent use, abuse and dependence.
About 1 in 10 occasional users becomes dependent and cannabis abuse and de-
pendency is associated with physical, psychological and social consequences (Hall
and Solowij [152], Hall and Babor [151]). Despite the increasing use of cannabis
for medicinal purposes (Aggarwal, Carter et al. [7], Lucas [221]), association with
adverse health effects are reported (Hall [153], Volkow, Compton et al. [356],
Wilkinson and D’Souza [360]). Cannabis use has been reported to be associated
with increased risk for psychiatric disorders; several studies reported an associ-
ation between cannabis use and psychosis, schizotypal personality disorder, and
mania (Ferdinand, Sondeijker et al. [118], Gibbs, Winsper et al. [138], Radhakrish-
nan, Wilkinson et al. [282]). In a recently published genetic risk prediction study,
Power et al. [273] showed that genes predisposing to schizophrenia predict use of
cannabis. The strength of the association between cannabis exposure and those
outcomes, the direction of causation, as well as the importance of cannabis as a
key modifiable risk factor however remains uncertain (Gage, Zammit et al. [133]).

The probability of cannabis use initiation varies among individuals. Previ-
ous studies have shown that individual differences in cannabis use can be partly
explained by genetic differences between individuals; a meta-analysis of twin stud-
ies reported significant heritability estimates of cannabis use initiation of 48% for
males and 40% for females (Verweij, Zietsch et al. [343]). Shared environmental
factors, such as cannabis availability and parental monitoring (Gillespie, Neale et
al. [140], Gillespie, Lubke et al. [139]), also play a role, accounting for 25% and
39% of the risk for males and females, respectively (Verweij, Zietsch et al. [343]).
Moreover, there is substantial overlap in the genetic risks underlying initiation of
cannabis use versus cannabis use disorder (Agrawal, Neale et al. [9]).

Numerous studies have aimed to identify the specific genetic risk factors asso-
ciated with cannabis use phenotypes. Genome-wide linkage studies have revealed
suggestive evidence for linkage across many chromosomes (Hopfer, Lessem et
al. [161], Agrawal, Hinrichs et al. [14], Agrawal, Morley et al. [15], Agrawal, Per-
gadia et al. [11], Ehlers, Gilder et al. [111], Ehlers, Gizer et al. [112]). Nearly
all findings failed to meet genome-wide significance, with very little consistency
across studies. Only one study has examined initiation of cannabis use (Agrawal,
Morley et al. [15]) reporting a non-significant linkage locus on chromosome 18.

Candidate gene studies have been more successful in identifying variants asso-
ciated with cannabis use. Candidate genes of interest include for example CNR1,
GABRA2, FAAH, and ABCBI (see Agrawal and Lynskey [7] for a review). Again,
replication has been inconsistent (Haughey, Marshall et al. [156], Lind, Macgregor
et al. [207], Verweij, Zietsch et al. [341]). Based on a sample of 7,452 Caucasian
individuals, Verweij et al [341] did not find significant association between lifetime



142 Chapter 8. Cannabis Initiation based on a 32,330 Meta-Analytic Sample

frequency of cannabis use and the ten candidate genes proposed by Agrawal and
Lynskey [7]. Overall, the results of candidate gene studies are inconclusive. Some
associations have been replicated a few times, but failed to replicate in other
studies. These findings may be further distorted due to publication bias favour-

ing positive results (as shown for candidate gene studies in other traits (Farrell,
Werge et al. [117]).

As an alternative to the candidate-gene approach, a genome-wide association
study (GWAS) is a hypothesis-free method that aims to detect novel genetic
variants involved in complex traits. To date, only three genome-wide association
studies of cannabis use phenotypes have been published. In the first one, Agrawal
et al. [8] performed a GWAS of cannabis dependence based on 708 cannabis-
dependent individuals and 2,346 controls. Cannabis initiation was examined in
a meta-analysis of two studies with a combined sample size of 10,091 individuals
(40.7% cases) (Verweij, Vinkhuyzen et al. [342]) and, recently, in a GWAS sample
of 6,744 individuals (Minica, Dolan et al. [246]). Neither study identified any
genome-wide significant association.

The lack of genome-wide significant associations may be attributable to the
small effect sizes typical of common variants underpinning highly polygenic traits
(Manolio, Collins et al. [233], Vrieze, McGue et al. [357]), hence indicating that
larger samples are required to ensure sufficient power of detection. In this con-
text, the success of larger GWAS and international consortia examining a variety
of complex traits is encouraging (see Sullivan, Daly et al. [309]). For example,
multiple large meta-analyses of smoking behaviors have independently identified
associations on chromosome 15q25 spanning the a5, a3, and (4 nicotinic re-
ceptor subunit gene clusters (CHRNAS, CHRNAS3, CHRNB/) for the number
of cigarettes smoked per day (Furberg, Kim et al. [132], Liu, Tozzi et al. [215],
Thorgeirsson, Gudbjartsson et al. [321]).

The International Cannabis Consortium (ICC) was initiated to combine re-
sults of multiple GWASs in order to increase the power to detect genetic vari-
ants underlying individual differences in cannabis use phenotypes. Currently, the
combined sample size of cannabis initiation data within the consortium is 32,330
individuals from 15 cohorts from Europe, the US, and Australia. This sample size
is considerably larger than the sample sizes of the previous GWASs investigating
the initiation of cannabis use, thereby providing greater power to identify genetic
variants of small effect size. The aim of the current study is to meta-analyze
the GWAS results from all contributing ICC samples in order to identify genetic
variants associated with initiation of cannabis use. The meta-analysis results
were first used to get an estimate of SNP-based heritability. Next, we performed
an LD-score regression analysis to assess the genetic overlap between initiation
of cannabis use and initiation of cigarette smoking, and finally, we carried-out
gene-based tests of association.
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8.2 Materials and methods

8.2.1 Cohorts

We performed a meta-analysis of GWAS summary results from 13 discovery sam-
ples from Europe, USA and Australia including a total of 32,330 individuals of
European ancestry. The size of the samples ranged from 721 to 6,778 individu-
als. The age of the participants varied across the samples from 16 to 87 years.
Females represented 53% of the sample (weighted average). The percentage of
lifetime users (i.e., never/ever used cannabis) varied from 1% to 92% (weighted
average of 44.5%).

Table 8.1: Discovery and replication sample characteristics. Abbreviations: sam-
ple size (N), percentage of users that ever used cannabis (% users), percentage of
females (% female), and number of SNPs used for the meta-analysis (N SNPs).

Discovery
Sample Country N % Users % Female Mean age (range) N SNPs
ALSPAC UK 2,976 42 56 18 (17-19) 5,182,231
BLTS Australia 721 60 57 26 (18-33) 4,558,509
CADD US 853 79 30 25 (18-36) 4,972,726
EGCUT1 Estonia 2,765 1.3 95 34 (18-66) 6,048,479
EGCUT2 Estonia 970 4.8 o1 31 (18-50) 5,171,164
FinnTwin Finland 1,029 27 52 23 (20-29) 4,364,135
HUVH Spain 981 20 30 36 (17-87) 4,971,170
MCTFR US 6241 59 54 37 (18-71) 6,304,767
NTR Netherlands 4,653 27 66 37 (18-60) 4,644,238
QIMR Australia 6,778 51 54 45 (18-85) 5,901,727
TRAILS Netherlands 1,226 51 47 19 (18-21) 5,336,901
Utrecht Netherlands 1,173 54 54 21 (18-37) 4,831,885
Yale Penn EA US 1,964 92 40 38 (16-76) 5,856,902
Replication
Sample Country N % Users % Female Mean age (range) N SNPs
Radar Dutch 338 59 44 20 (17-22) 10
Yale Penn AA US 2,660 82 46 42 (16-76) 10

Two additional independent samples with a total of 2,998 subjects were used

for replication. One sample (N = 2,660) consisted of African-American subjects,
whereas the second sample (N = 338) included subjects of European ancestry. We
refer to Table 8.1 for characteristics of the individual samples. The procedures
for data collection per sample are described in the Supplemental Information S1.
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8.3 Phenotype and covariates

Subjects were asked whether they have ever used cannabis (yes (1)/ no (0)).
Covariates included age, sex, and birth cohort which spanned 20 year-periods in-
dicated by dummy variables, with the lowest birth cohort (i.e., oldest age group)
used as the reference group. Details on phenotyping and individual sample char-
acteristics for both the discovery samples and the replication samples are included
in the Supplemental Information S1 and the Supplemental Table S1.

8.3.1 Genotype imputation

Genotype imputation was based on the 1000 Genomes phase 1 reference panel
(Abecasis, Auton et al. [2]). To take account of genotype uncertainties, we used
the allelic dosage in the association analysis. We refer to the Supplemental Ta-
ble S2 for details on the genotyping platform, imputation program, and quality
control thresholds used by each group.

8.4 Statistical analyses

8.4.1 GWAS in each discovery cohort

The GWASs were performed by each group according to a standardized protocol.
Association between the binary phenotype and the genotypes was tested genome-
wide with a logistic regression model. Age at the time of phenotypic assessment,
sex, birth cohort and the first four principal components were included as covari-
ates. For family-based samples, familial relatedness was taken into account by
using a sandwich correction as implemented in PLINK (Purcell, Neale et al. [279]).
Supplemental Table S2 includes information on the program used by each group
to perform the analysis.

8.4.2 Meta-analysis of GWAS results

Before performing the meta-analysis, we applied a set of filters to each GWAS re-
sults set independently. First, we removed insertions and deletions, ensuring that
all base pair positions were unique and referred to the same genetic variant (i.e.
SNP). Second, we removed genotyped SNPs that were not in Hardy-Weinberg
equilibrium (p< 107%). Third, we removed SNPs with MAF< /5/N, which cor-
responds to less than 5 estimated individuals in the least frequent genotype group,
under the assumption of Hardy-Weinberg equilibrium (HWE). In the EGCUT1
sample, due to very low prevalence of cannabis initiation (1.3%), we excluded
SNPs with MAF < 0.2. Fourth, we excluded SNPs with an imputation quality
score below 0.6. This filter was applied regardless of the quality score type used
(INFO, Proper info, or R*hat). Finally, SNPs present in only one sample, and
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SNPs with invalid alleles, or allele frequencies inconsistent with the 1000 Genomes
phase I European reference panel (absolute MAF difference>0.15) were removed.

We performed a fixed effects meta-analysis based on the cohorts effect sizes
and standard errors using METAL (Willer, Li et al. [363]). Our meta-analysis
combined association summary statistics for 6,444,471 SNPs that passed all filters.
We applied the conventional threshold of 5x 1078 as an indication of genome-wide
significance (see (Sham and Purcell [295])).

8.4.3 Estimation of SNP-based heritability and genetic
overlap with nicotine use

The proportion of phenotypic variance explained by the SNPs was estimated
using the density estimation (DE) method developed by So et al. [299]. The
DE method estimates the genome-wide distribution of effect sizes based on the
difference between the observed distribution of test statistics in the meta-analysis
and the corresponding null distribution. Prior to estimation, SNPs present in at
least 25% of the meta-analysis samples were pruned for LD. We used the r? =
0.15 pruning level as the primary result for consistency with other applications
of this method. More details are reported in the Supplemental information S2.
LD Score regression (Bulik-Sullivan, Finucane et al. [50], Bulik-Sullivan, Loh et
al. [51]) was used as an alternative method to estimate the SNP based heritability
as well as to estimate the degree of genetic overlap between initiation of cannabis
use and smoking (Furberg, Kim et al. [132]) (see Supplemental information S2).

8.4.4 Gene-based tests

The GWAS meta-analysis results were then used to perform a gene-based test of
association using the Knowledge-based mining system for Genome-wide Genetic
studies (KGG) software Version 3.5 (Li, Gui et al. [201], Li, Kwan et al. [202]).
This approach employs an extended Simes procedure that obtains an overall as-
sociation p-value by taking account of the linkage disequilibrium structure among
the SNPs within a gene. 24,576 genes were tested for association with initiation.
We set the genomewide significance threshold equal to 0.05, and we used the
Benjamini and Hochberg (BH) method (Benjamini and Hochberg [29]) to correct
the gene-based p-values for multiple testing.
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8.5 Results

8.5.1 SNP-based heritability and genetic overlap with smok-
ing initiation

Genome-wide SNPs explained 20% of the variance in the liability to initiate
cannabis use (p <0.001). The estimate of variance explained is robust across
pruned sets with similar 72 thresholds (see Supplemental Table S6). Stricter LD
pruning (i.e. 72 = 0.05), or restricting to SNPs present in all studies, substantially
decreased the estimate of variance explained. This is likely due to the reduced
number of SNPs included, which may tag imperfectly the causal variants. An
alternative estimation based on the LD Score regression method yielded similar
results (h? = 0.13, SE = 0.02, z = 5.56, p = 1.4 x 1077). The genetic correlation
between initiation of cannabis use and initiation of nicotine use was estimated at
0.83 (SE = 0.15, z = 5.64, p = 1.85E-08).

8.5.2 Meta-analysis

The strongest association signal was yielded by the rs4984460 SNP located on
chromosome 15 (p-value of 4.6 x 10~7; see Figure S5 for the forest plot). The SNP
is located in an intergenic region between LOC400456/L0OC145820 and NR2F2
and MIR1469 genes. However, the association signal at this SNP has not passed
the genomewide significance threshold (see Manhattan plot, Figure Sla).

We identified suggestive signals at 153 SNPs on 11 chromosomes with SNP p-
values< 107" (see supplemental Table S4), as illustrated in the QQ plot (Figure
S1b). The Manhattan and the QQ plots for each sample are included in the
Supplemental Figures S2a-m and S3a-m. Table 8.2 contains information on the
ten independent SNPs (r? <0.1) which yielded the lowest p-values in the SNP-
based association analysis.

None of these 10 SNPs were replicated in either of the two independent repli-
cation samples (Supplemental Table S3). Also, in a meta-analysis of the ten top
SNPs perfomed in a sample combining the discovery and the replication sam-
ples, none of the SNPs reached statistical significance. Local plots of the most
strongly associated regions, including neighboring genes, are provided in Supple-
mental Figures S4a-j.
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Table 8.2: Top 10 SNPs with meta-analysis results of discovery samples, and
results of combined discovery and replication samples. SNPs are displayed when
not in linkage disequilibrium (R? < 0.1; and for SNPs with k% > 0.1 only the most
significant SNP is shown in the top 10). * Direction per sample: allele A1 increases
(4) or decreases (-) liability for cannabis use, or sample did not contribute to
this SNP (7). Order of samples: ALSPAC, BLTS, CADD, EGCUT1, EGCUT?2,
FinnTwin, HUVH, MCTFR, NTR, QIMR, TRAILS, Utrecht, Yale Penn EA.
Sample information can be found in Table 8.1. Abbreviations: Chromosome
(Chr), location in base pairs in human genome version 19 (BP (hgl9)), allele 1
(A1), allele 2 (A2), Frequency of allele 1 (Freq Al), standard error (s.e.). $ The
combined sample contains the discovery, the Radar replication sample and the
African Americans replication sample.

SNP Chr BP (hgl9) Al A2 Freq Al beta (s.e.) p-value Discovery*
Discovery
rs4984460 15 96424399 T G 0.75 -11 (.023) 46 x 1077 Ao - - - - - - +
rs2099149 12 30479358 T G 0.81 -16 (.032) 9.8 x 1077 YA CYCIE
17675351 4 141218757 A C 0.86 -15 (.031) 1.4 x10°° T e
rs4471463 11 112983595 T C 0.55 - 09 (.020) 1.5x10°° T e
rs7107977 11 915764 A G 0.60 27 (.058) 1.9x 10°°¢ (e N ST
rsd8691539 2 52753909 T G 0.91 - 29 (.062) 2.1 x 107 ST
152033867 2 175188281 A G 0.06 24 (.051) 2.6 x 107° +7TNNNH 7T+
rs35053471 3 47124761 A T 0.38 - 10 (. 022) 27x107% - T-- - - -
rs12518098 5 60864467 C G 0.68 10 (.022) 3.0x107% H4++-++++++++
rs73067624 1 196333461 T C 0.90 - 18 (.039) 3.1x10°° e e
Combined®
rs4984460 15 96424399 T G 0.75 -.09 (.022) 55 x 1076
rs2099149 12 30479358 T G 0.81 - 13(.03) 53 x10°°
rs7675351 4 141218757 A C 0.86 -14 (.029) 34 x 1077
rs4471463 11 112983595 T C 0.55 - 09 (.019) 2.1 x 1076
rs7107977 11 915764 A G 0.60 21(.045) 2.5x10°°
rsdo8691539 2 52753909 T G 0.91 - 23 (.050) 3.7x10°°
152033867 2 175188281 A G 0.06 23 (.049) 24 x107°
rs350563471 3 47124761 A T 0.38 - 08 (.021) 4.06 x 107°
rs12518098 5 60864467 C G 0.68 10 (.021) 4.2 x 1076
rs73067624 1 196333461 T C 0.90 - 16 (.036) T7.3x10°°
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8.5.3 Gene-based tests

We tested for association with initiation 24,576 genes. Figure 8.1 shows the
Manhattan and the QQ plots of the gene-based association tests. Results for the
top 100 genes can be found in Supplemental Table S5.

Four genes and one intergenic non-coding RNA region were significantly as-
sociated with lifetime cannabis use (BH corrected p < 0.05): Neural Cell Ad-
hesion Molecule 1 (NCAM1 on 11g23), Cell Adhesion Molecule 2 (CADM?2, on

Figure 8.1: The Manhattan (A) and the QQ plot (B) based on results of the gene-
based analysis performed in the discovery sample using HYST (Hybrid Set-based
Test).
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Figure 8.2: Forest plot for the top-SNP rs4471463 in the NCAM1 gene on chro-

mosome 11.
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3p12), Short Coiled-Coil Protein (SCOC) and SCOC antisense RNA1 (SCOC-
AS1) (both located on 4q31), and Potasium Channel, Subfamily T, Member 2
(KCNT2, on 1q31), see Table 8.3. Regional plots (Viechtbauer [344]) of these top

genes can be found in Supplemental Figure S6.

The smallest gene-based p-value was found for the NCAM1I gene. The effect of
the key SNP in the individual samples is shown in the forest plot (see Figure 8.2).
Most study samples show an effect in the same direction. The forest plot for two
key SNPs with lowest p-values in the other significant gene regions can be found
in Supplemental Figure S5.
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Table 8.3: Top 5 genes from the gene-based tests of association with corrected p-
values (Benjamini & Hochberg) based on the meta-analytic discovery and replica-
tion samples. Abbreviations: Human genome version 19 (hgl9), base pair length
(BP length), and number of SNPs used for the meta-analysis (N SNPs).

Nominal Nominal
Start BP No Nominal  Corrected  p-values p-values
Gene Chr  Position length  SNPS  p-values p-values  Replication Replication
(hgl9) Discovery  Discovery Radar African-
sample Americans
NCAM1 1 112831968 303952 400 6.26 x 1077 0.015 0.329 0.302
CADM?2 3 85008132 1115448 978 213 x 107° 0.026 0.009 0.112
SCOC-AS1 4 141204879 89668 81 5.76 x 1076 0.046 0.864 0.044
ScocC 4 141264614 39097 111 7.85x107¢ 0.046 0.433 0.027
KCNT?2 1 196194909 382653 237 9.38 x 107 0.046 0.815 0.201

We replicated the association with CADM2 in the Radar sample (p = 0.009),
but not in the African American replication sample (p = 0.11; see Table 8.3).

Furthermore, in the African American replication sample we found suggestive
association with SCOC-AS1 (p = 0.044) and SCOC (p = 0.027).

8.6 Discussion

We meta-analyzed GWAS results of a large discovery sample including 32,330
individuals from 13 cohorts, and two replication samples including 2,998 subjects.
The heritability analyses revealed that about 20% of the variation in initiation
of cannabis use is explained by common SNPs (p < 0.001). Our estimate is in
between previous SNP-based heritability estimates. Verweij et al. [342] estimated
that 6% of the variance in initiation is explained by the aggregated common
SNPs (MAF > 0.05), while Minica et al. [246] found an estimate of 25% (p =
0.0016). Our estimate is smaller than the twin-based heritability estimate of
40-50% (Verweij, Zietsch et al. [343]). Several sources of variation may explain
this difference. For example, age-related genetic differences, non-additive genetic
variance, interactions between genetic variants and environmental risk factors,
epistasis, rare mutations or shared environmental influences may play a role.
Commensurate with twin study findings, we observed a high genetic correla-
tion between our measure of cannabis use and lifetime cigarette use when based
on the full SNP panel. Agrawal et al. reported biometrical genetic correla-
tions between lifetime cannabis use and nicotine use ranging between 0.59-0.74
(Agrawal, Silberg et al. [12]). Kendler et al. [183] also reported significant bio-
metrical correlations between levels of cannabis, nicotine, and alcohol use, which
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were increasingly influenced by common genetic risks beginning early adulthood.

The difficulty of identifying individual SNPs implicated in cannabis initiation
may be attributable to several reasons (Manolio, Collins et al. [233]). First,
complex traits are known to be influenced by many variants, each with very
small effect sizes. Although power calculations revealed suitable power (96%) to
detect odds ratios of 1.15 based on common SNPs (MAF = 0.2), the power to
detect smaller effect sizes is lower. For example, there is only 28% power to detect
effect sizes with odds ratio of 1.1 and MAF = 0.2. Therefore, our data suggest
that the effect sizes of single variants contributing to cannabis initiation are likely
to be smaller than 1.15. While the statistical power to detect individual variants
may still be inadequate, combining variants within larger units (i.e., genes) did
reveal four significant genes associated with cannabis initiation implying that
these genes are appropriate targets for future functional studies of cannabis use.

The gene-based tests of association identified four protein-coding genes and
one intergenic region significantly associated with initiation including NCAM]1.
The role of NCAMI is to regulate pituitary growth hormone secretion as a
membrane-bound glycoprotein that mediates cell-cell contact by hemophilic in-
teractions (Rubinek, Yu et al. [286]). NCAMI is part of the NCAMI-TTC12-
ANKKI1-DRD2 (NTAD) gene cluster, which is related to neurogenesis and dopamin-
ergic neurotransmission. Importantly, the NTAD cluster has been reported to be
associated with smoking behavior and nicotine dependence (Munafo, Clark et
al. [250], Gelernter, Yu et al. [137], Gelernter, Panhuysen et al. [135], Saccone,
Hinrichs et al. [288], Laucht, Becker et al. [193], Bergen, Conti et al. [31], Ducci,
Kaakinen et al. [107], Bidwell, McGeary et al. [32]), alcohol dependence (Yang,
Kranzler et al. [372], Yang, Kranzler et al. [373]), heroin dependence (Nelson,
Lynskey et al. [255]), as well as other substance use disorders (Yang, Kranzler et
al. [373]). While it is plausible that NCAM1 is capturing pleiotropic risks under-
pinning the liability to illicit substance use in general, we note that the gene was
not identified to associate with smoking behavior phenotypes in the GWAS and
very large GWAS meta-analyses for smoking behavior (Furberg, Kim et al. [132],
Liu, Tozzi et al. [214], Thorgeirsson, Gudbjartsson et al. [321]).

Our second significant gene, CADM2, is a synaptic cell adhesion molecule
(SynCAM family) belonging to the immunoglobulin (Ig) superfamily. Variants in
the CADM?2 gene have been previously associated with body mass index (Spe-
liotes, Willer et al. [303]), processing speed (Ibrahim-Verbaas, Bressler et al. [174])
and autism disorders (Casey, Magalhaes et al. [59]). Interestingly, these pheno-
types were also associated with cannabis use in previous studies (Kelleher, Stough
et al. [180], Hayatbakhsh, O’Callaghan et al. [157], De Alwis, Agrawal et al. [90]).

Our third significant gene, SCOC, encodes a short coiled-coiled domain-contain-
ing protein that localizes to the Golgi apparatus. Many coiled coil-type proteins
are involved in important biological functions such as the regulation of gene
expression through the regulation of transcription factor binding (Mason and
Arndt [236]). The function of SCOC is largely unknown, and no previous associ-
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ation studies have linked SCOC to cannabis or to other substance use phenotypes.
The SCOC antisense RNA1 gene is located in the same chromosomal region.

Finally, KCNT2 encodes a potassium voltage-gated channel (subfamily S,
member 2). The sodium-activated potassium channels Slack and Slick are en-
coded by KCNT1 (Potassium Channel, Subfamily T, Member 1) and KCNT2,
respectively, which are found in neurons throughout the brain. Suggestive associ-
ation for SNPs near KCNT?2 have previously been found for cocaine dependence
and for early-onset, highly comorbid, heavy opioid use (Gelernter, Kranzler et
al. [134], Gelernter, Sherva et al. [136]). This suggests that potassium signalling
may play a role in addiction.

We replicated the association with CADMZ2 in the Radar sample (p = 0.009),
and we found suggestive association with SCOC-AS1 and SCOC in the African
American sample (both p-values < 0.05). Finally, we showed that the genetic
liability of cannabis initiation overlaps to a great extent (r = 0.83) with the genetic
liability of smoking initiation. Our results are consistent with the hypothesis that
cannabis initiation is a highly polygenic trait, comprising many SNPs, each with
small effects contributing to risk, while part of the genetic risk overlaps with other
substance use phenotypes, particularly with initiation of nicotine smoking.

Our findings must be interpreted in the context of four limitations. First,
our study was underpowered to detect very small effect sizes of individual vari-
ants. The sample size should be increased with approximately two-fold to detect
SNPs with effect sizes with an odds ratio of 1.1. Second, lifetime cannabis use
is a dichotomous measure combining single lifetime, regular and chronic users,
meaning that our sample comprises heterogenous patterns of use. Phenotypic
heterogeneity among users has the potential to reduce the power to detect associ-
ation (see e.g., [231]). Third, prevalences of lifetime cannabis use varied between
1% (EGCUT1) and 92% (Yale Penn EA), partly due to differences in sample
characteristics, recruitment strategies, and policy differences across countries.
However, despite these differences, the forest plots of key SNPs (see Figure 2;
see also the Supplemental Figure S5) reveal that the 95% confidence intervals
surrounding the effect estimate typically include the estimated meta-analytic ef-
fect, and the CI tend to overlap among studies. This indicates that the input
samples are representative of the same population of users. Finally, the average
age of the participants varied between 18 (ALSPAC) amd 45 (QIMR) years. The
average age of each sample did not correlate significantly with sample prevalences
(r = —0.04, p = 0.91). Moreover, the fact that younger participants may be pre-
maturely classified as 'never users’ is expected to decrease power, but does not
invalidate our results.

Based on our observations, the following recommendations for future studies
can be made. We have identified four genes significantly associated with cannabis
use. These genes should be followed-up in future functional studies. Especially,
the role of our top gene NCAM1I should be carefully examined to understand its
functional role, possibly in combination with the other genes in the same gene
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cluster (NCAM1-TTC12-ANKK1-DRDZ2). Obviously, we should aim to increase
the statistical power by increasing the sample size and by focussing on continu-
ous phenotypes and phenotypes indicative of more severe forms of cannabis use.
The next goal of the International Cannabis Consortium is to perform a meta-
analysis on GWASs of age at first cannabis use. Our rationale is based on the
observation that early initiation of cannabis use is also associated with rapid pro-
gression towards cannabis abuse and dependence, poly-substance use, and other
substance use disorders (Agrawal, Grant et al. [13], Lynskey, Vink et al. [225],
Agrawal, Lynskey et al. [14], Grant, Lynskey et al. [145]). Methods such as rare
variant association analyses may also be used to reveal the biological pathways of
cannabis use. Environmental risk factors may be incorporated to investigate gene
by environment interactions. Hopefully, the combination of advanced technolo-
gies and novel statistical approaches with larger samples will further contribute
to our understanding of the genetic architecture of cannabis use.

8.7 Conclusion

We have performed the largest meta-analysis to date of GWAS investigating
cannabis use phenotypes. With a sample of over 32,000 individuals, our results
suggest the involvement of four genes: NCAMI1, CADM2, SCOC, and KCNT2.
The association with CADM2 was confirmed within one independent replication
sample. Future studies should investigate the impact of the identified genes on
the biological mechanisms that lead to initiation. Our results further confirm that
initiation is under the influence of many common genetic variants. The measured
SNPs together explain about 20% of the phenotypic variation and show a high
degree of genetic overlap (r = 0.83) with smoking initiation.






Chapter 9

Survival Meta-Analysis of Age at Onset
of Cannabis Use

Abstract

Cannabis is one of the most commonly used substances among adolescents and
young adults. Research shows that the age at first cannabis use is decreasing.
This is probably due to lower risk perception and increased availability due to
medicalization and decriminalisation. In this study, we aim to identify genetic
variants underlying age of onset, a risk factor for multi-substance use and subse-
quent dependence.

We performed the largest molecular genetic study to date of age of onset
of cannabis use in a sample consisting of 24,222 individuals from nine cohorts
from Europe, United States, and Australia. Five SNPs located on chromosome 16
within the Calcium-transporting ATPase gene (ATP2C?2) passed the genome-wide
significance threshold in the SNP-based analysis. The five SNPs are in high LD
(r? > 0.8), and thus may represent a single independent signal. The most signifi-
cant association was with the intronic variant rs1574587 (P = 4.067E-09). Follow-
ing the single variant analysis, we performed a genome-wide gene-based analysis.
The gene-based tests also identified the ATP2C2 gene on 16¢q24.1 (P = 1.54E-06),
along with two additional genes: ECT2L on 6q24.1 (P = 6.59E-08) and RAD51B
on 14¢q24.1 (P = 5.22E-06).

Our findings have the potential to deepen our understanding of the biological
mechanisms underlying addiction. Especially the association at ATP2C?2 provides
further support for the hypothesized link between the calcium signalling genes
and addiction behaviors, and is consistent with the reported associations between
early onset of cannabis use and multi-substance use as well as with subsequent
dependence. A thorough investigation of the functional consequences of variation
in these genes is warranted.
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9.1 Introduction

Cannabis is one of the most commonly used substances among adolescents and
young adults (Australian Institute of Health and Welfare 2013, U.S. Department
of Health and Human Services, Substance Abuse and Mental Health Services
Administration and Quality 2013). In the US, the average age at first cannabis
use (among individuals who initiated between 2002 and 2013) was 18 years, with
57% of initiateds being under 18 years old (U.S. Department of Health and Hu-
man Services, Substance Abuse and Mental Health Services Administration and
Quality 2013).

In 2013, the mean age at initiation was 16 years among individuals who started
cannabis use prior to the age of 21 (U.S. Department of Health and Human Ser-
vices, Substance Abuse and Mental Health Services Administration and Quality
2013). Globally, younger cohorts are more likely to use all types of drugs including
cannabis. In addition, the male-female gap, which is commonly observed in older
cohorts, has been found to be closing in more recent cohorts (Degenhardt, Chiu
et al. [94], Butterworth, Slade et al. [54]). Furthermore, research shows there
is a trend towards decreasing age at first use (Degenhardt, Lynskey et al. [95]),
probably due to lower risk perception, especially among young people (UNODC,
2014), and increased availability due to medicalization and decriminalisation.

Following initiation, chronic cannabis use has been associated with various
adverse physical, psychological, and social consequences. Previous studies have
shown that people who initiate cannabis use at a younger age are at increased
risk of detrimental outcomes. Early age of onset has been linked to educational
under-achievement (Grant, Scherrer et al. [146], Verweij, Huizink et al. [342],
Stiby, Hickman et al. [307]), greater family adversity and negative life events
(Hyman and Sinha [173]), psychosis and psychopathology (Fergusson, Lynskey
et al. [120], Fergusson, Lynskey et al. [121], Fergusson and Horwood [119], Arse-
neault, Cannon et al. [21]), progression to abuse-dependence and multi-substance
use (Agrawal, Neale et al. [10], Lynskey, Vink et al. [225], King and Chassin [186],
Agrawal, Lynskey et al. [14], Chen, Storr et al. [62], Grant, Lynskey et al. [145],
Lynskey, Agrawal et al. [222], Bracken, Rodolico et al. [46]), and cognitive decline
(Tamm, Epstein et al. [314]).

Given the widespread use and its associations with adverse life outcomes, it
is important to identify and investigate the determinants of cannabis use initia-
tion; identifying and quantifying the genetic risks associated with age of onset of
cannabis use is therefore a public health concern. Based on dichotomized (early
vs. late) or ordinal measures of age of onset, twin studies have revealed signifi-
cant heritability accounting for individual differences in age of onset. Specifically,
using a sample of ever users and a dichotomized measure of age of onset (‘early’,
i.e., before the age of 16 years, versus ’late’), Lynskey et al. [222] estimated the
heritability of age of onset to be about 80%.
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In another study, in which age of initiation was categorized as never’, ’late’
(17 years or older) or ’early’ (16 years or younger), Sartor et al. [290] estimated
the heritability to be about 52%. Interestingly, measured shared environmental
influences, including parenting styles, parental monitoring, neighbourhood the
twins grew up in, and drug availability, had little bearing on the age of onset
(Sartor et al. [290]).

Minica et al. [246] conducted a genome-wide survival analysis to identify the
genetic variants that underlie individual differences in age of onset of cannabis use.
They performed a genome-wide survival analysis in a sample of 5148 individuals
from 2992 independent families from the Netherlands Twin Register (including
852 individuals who had initiated cannabis use). No individual SNPs or genes
significantly associated with age of onset of cannabis use were detected, which
may be due to a lack of statistical power.

However, the survival-based approach suggested by Minica et al. [246] is suit-
able for the analysis of this type of trait in the genome-wide context, and it is
expected to be superior in terms of power to an analysis limited to initiated in-
dividuals, and to a logistic regression model (van der Net, Janssens et al. [333],
Kiefer, Tung et al. [185]). Hence, this approach will be implemented also in the
current study to detect genetic variants that significantly predict age of onset.

The International Cannabis Consortium (ICC) was established to identify
genetic variants underlying cannabis use by combining data from various co-
horts. The first meta-analysis focused on cannabis use initiation in 13 cohorts
(N = 32,330; Stringer et al, under review) and identified four genes significantly
associated with initiation of cannabis use: NCAM1, CADM2, SCOC, and KCNT2,
two of which (NCAM1 and KCNT2) were previously reported to be associated
with other substance use (heroine and nicotine, and cocaine dependence, respec-
tively).

In this second study, we extend our search to identify genetic variants under-
lying age of onset, an important risk factor for escalated use. We conducted a
fixed-effects meta-analysis of genome-wide survival analyses in a sample consist-
ing of nine cohorts with available data on age at initiation. Following Minica
et al. [246], the phenotype was modelled in each participating cohort as a func-
tion of SNP and relevant covariates (i.e., sex, birth-cohort, principal components
and study specific covariates) using a Cox proportional hazards regression model
(Dobson [102]).

The SNP-based meta-analysis results were subsequently used in a gene-based
analysis. Taking the gene as the unit of analysis is expected to increase the
statistical power relative to the single SNP analysis. Specifically, a gene-based
approach allows one to interrogate jointly all the SNPs within a gene and thus
reduces the multiple testing burden (Neale and Sham [252], Li, Gui et al. [201],
Li, Kwan et al. [202]).
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9.2 Materials And Methods

9.2.1 Sample

The meta-analysis combined genome-wide survival analysis summary statistics
obtained from cohorts from the Europe, United States, and Australia. The sum-
mary statistics were based on a total of 24,222 individuals with the mean age
ranging from 17.31 to 46.93 years. Females represented 53.41% of the sample,
and 43.1% of the observations were uncensored (i.e., 43.1% of the individuals de-
clared to have initiated cannabis use). Table 9.1 contains descriptive information
about the participating cohorts (see also the Supplemental Table S1 for more
details).

Table 9.1: Descriptive information on the nine participating cohorts

Cohort Size % Females %Uncensored Mean age (SD) Number
(or range/SNP) Observations of SNPs

ALSPAC 6147 51.9 38.4 17.3(1.7) 6,284,747
BLTS 721 o7.1 59.5 26(3.3) 4,093,835
HUVH 580 29.8 20.2 35.6 4,318,727
FinnTwin 978-1029 01.7 274 22.8(1.3) 4,362,100
NTR 0148 62.3 16.6 46.9(17.5) 4,773,834
QIMR 6758 593.8 51.3 45.3(10.9) 5,953,917
TRAILS 229-478 53.8 61.7 20.0(1.6) 4,109,101
Utrecht 1173 53.5 54.1 20.6(2.3) 4,260,457
Yale-Penn 2188 41.0 92.6 38.0(10.5) 5,732,659

9.2.2 Phenotyping

Age of onset was assessed by means of clinical interview or via questionnaire (see
the Supplementary file S1 for information on the exact phrasing of the question
used and for more information about the sample collection). Depending on the
initiation status, subjects were coded as uncensored (i.e., if they initiated) or
censored (i.e., if they did not initiate at the time of the last survey). To maxi-
mize the sample size we included all available data, i.e., censored and uncensored
observations, without imposing any age restriction.

9.2.3 Genotyping

Genotyping was performed by each participating cohort (see Supplementary Ta-
ble S2 for details on genotyping performed by each cohort). Following genotyping,
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each participating group employed quality checks. These resulted in removing sin-
gle nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) below
1%, call rate lower than 95%, p-values in the test of Hardy Weinberg equilibrium
(HWE) below 1E-04. At the subject level, quality checks involved removal of
individuals showing low overall call rates ( < 95%), gender conflicts, or excess
autosomal heterozygosity (indicative of genotyping errors). Furthermore, dupli-
cate samples and unintended 1st or 2nd degree relatives (in case of a sample of
unrelated individuals) were also removed.

9.2.4 Imputation

The analysis protocol required all participating cohorts to perform genotype im-
putation using the 1000 Genomes release March 2012 as a reference sample. We
refer to the Supplementary Table S2 for details on imputation performed by each
participating cohort. The set of quality checks which were performed after impu-
tation involved filtering out SNPs with poor imputation quality (R?hat, Proper
Info or Info less than 0.4) and SNPs whose allele frequencies mismatched those
reported in the 1000 Genomes data by more than |0.2|. We used best-guess geno-
types (given requirements of the software used for the genome-wide analysis) and
we restricted the analysis to SNPs on autosomal chromosomes.

9.2.5 Quality checks prior to the meta-analysis

Prior to the meta-analysis, each input file underwent a set of quality checks per-
taining to imputation quality, minor allele frequency and Hardy-Weinberg equi-
librium. As we used best guess genotypes, we selected for the meta-analysis only
SNPs with high imputation quality (R*hat/Proper Info/Info above 0.8). With
this threshold, the average imputation quality across the SNPs ranged from 0.95
to 0.99 across the nine cohorts. Second, we retained only those SNPs with minor
allele frequency larger than (v/5/N). The frequency-based filter was applied by
taking into account the sample size, and ensured there were at least 5 estimated
individuals in the least frequent genotype group. Third, genotyped SNPs were re-
tained if Hardy-Weinberg equilibrium was not violated (p-value > 1E-04). Lastly,
SNPs were retained if their allele frequencies matched those reported in the 1000
Genomes data (i.e., the allele frequency difference has not exceeded [0.2|). The
meta-analysis included 6,158,982 unique biallelic SNPs which passed quality con-
trol checks (see Table 9.1 for number of SNPs in each input file meeting all our
quality control criteria).

9.2.6 Statistical analysis

Per-sample analysis was carried-out based on a standardized analysis protocol
(see Supplementary file S2 for details). Each cohort performed a Cox proportional
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hazards regression analysis in which age of onset (or age at the last survey, for
censored observations) was regressed on the SNP (coded additively co-dominant
as 0, 1, 2) and on the following covariates: sex, birth-cohort (to correct for
generation effects), the first four principal components (to correct for possible
population stratification), and study specific covariates (to correct for chip and/or
batch effects). To account for family relatedness we used the ’cluster’ option
(which assumes an independence working correlation matrix) as implemented in
the R-package survival [320]. This is the only option implemented in the survival
package that ensures the standard errors are robust to misspecification of the
familial covariance matrix (while full, correct modelling of the background is
prohibitively slow in the genome-wide context). The survival package was accessed
either directly in R [317] or called from Plink (Purcell, Neale et al. [279]) via the
Rserve package [328].

9.2.7 Meta-analysis

The meta-analysis was carried out in Metal (Willer, Li et al. [363]) using a fixed-
effects model and the SCHEME STDERR option which weighs the beta coeffi-
cients by the inverse of their associated standard errors. To ensure that the bulk
of the test statistic distribution follows the expectation under a theoretical null
model, we applied genomic control to each input file prior to the meta-analysis.
This ensured that none of the input samples contribute disproportionately to the
meta-analysis results (De Bakker, Neale et al. [91]). Similar to e.g. Furberg et
al. [75] and Allen, Estrada et al. [16], we computed the standard error (and the
corresponding p-value) by multiplying the variance of the beta by the lambdaGC
(genomic control) estimated for each sample (see Supplemental Table S2). The
Supplemental Figures include the per-sample lambda corrected Manhattan and
quantile-quantile plots. The meta-analysis was based on 6,158,983 SNPs present
in at least two samples. As proposed by Pe’er et al., [264], Sham and Pur-
cell [295], an alpha of 1E-08 was used as the genome-wide significance thresh-
old. Statistical analyses were performed on the lisa Genetic Cluster Computer
(http://www.geneticcluster.org).

9.2.8 Gene-based tests

Results from the genome-wide meta-analysis were then used in tests of gene-
based association using the Gene-based Association Test Using the Extended
Simes procedure (GATES) implemented in the Knowledge-based mining system
for Genome-wide Genetic studies (KGG) software Version 3.5 (Li, Gui et al. [201],
Li, Kwan et al. [202]). GATES combines the p-values of the SNPs within a gene
by taking account of the linkage disequilibrium among the SNPs. The SNPs
were mapped onto 24,404 genes (or within 5 kilobase pairs of each gene) based
on NCBI gene coordinates. Linkage disequilibrium structure was inferred based
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on the 1000 genomes haplotypes ALL (version March, 2012). For this analysis,
False Discovery Rate (FDR) of 0.05 Benjamini and Hochberg [29] was used as
the genome-wide significance threshold. We opted for FDR to adjust the p-values
for multiple significance testing rather than for the Bonferroni correction as the
latter reduces the statistical power when the tests are correlated (see [29]).

9.3 Results

9.3.1 Meta-analysis

We conducted a fixed effects genome-wide meta-analysis for age of onset in a
sample of 24,222 individuals of European ancestry. The quantile-quantile plot in
Figure 9.1a indicates that the bulk of the test statistic distribution follows the
expectation under a null hypothesis of no association (Age = 1). It is important
to note that the test statistic behaved similarly when genomic control (GC) was
not applied (Figure 9.1b; Agc = 0.98). Taken together these results indicate that
the meta-analysis results are robust to the slight deviations from the theoretical
null model observed in some of the participating cohorts.

The Manhattan plot in Figure 9.1b displays the genome-wide association
results, with a region on chromosome 16 passing the significance threshold of
P < 5E-08, and other suggestive signals on chromosomes 6 and 10 (with rs2249437
and 1rs4935127, respectively, as the top signals, both mapped to intergenic re-
gions). Table 9.2 includes the association results and details on the SNPs that
showed (suggestive) associations with p-vales below 5E-05 (displayed above the
blue line in the Manhattan plot).

The genome-wide significant signals come from a set of five strongly corre-
lated SNPs (r? > 0.8; see the regional plot around the top SNP rs1574587 in
Figure 9.4a) located within the Calcium-transporting ATPase (ATP2C?2) gene on
chromosome 16. The most significant predictor of age of onset is the rs1574587
SNP (P = 4.067E-09), a SNP with a MAF ranging between 0.105 and 0.185 across
the input samples (N = 23,611) and imputation quality above 0.89 (see Table 9.4
for more details on this SNP).

We note that GC had a bearing on the significance. Without GC the SNP
still reaches genome-wide significance (P = 1.082E-08). The I? statistic for the
top SNP equalled 32.6 (x*(7) = 10.391, P = 0.17) indicating that there is no
evidence of between samples heterogeneity. Given the size of the input samples,
the I? statistic is sufficiently powerful to detect heterogeneity due to systematic
differences among the studies. Furthermore, the top SNP showed the same direc-
tion of the effect in all but one of the participating cohorts. The 95% confidence
intervals for the effect all include the meta-analytic estimate (and exclude zero in
five samples), as illustrated in Figure 9.2.



9.53. Results 163

Figure 9.1: The quantile-quantile plot based on lambdaGC corrected (a) and
on lambdaGC uncorrected input files (b) and the Manhattan (c) plot of the
meta-analysis results. In the Manhattan plot, the y-axis shows the strength of
association (-logl0(P)) and the x-axis indicates the chromosomal position. The
blue line indicates suggestive significance level (P < 1E-05) while the red line
indicates genome-wide significance level (P < 5E-08).

8
. lambdags = 0.98
8 . 5,158,982 SNPs o
lambdags =1 et &
5,158,982 SNPs b K
5
-

65
3 Z 3
5 B
g o
| | 4
o o
g4 £
] ]
2 2
s} o

2 2

0+ o -

T T T T T T T T T T T T T T T T
0 1 2 3 4 5 3 7 0 1 2 3 4 5 3 7

Expected —logyalp) Expected —logqalp)

(a) (b)

~logulp)

Chromessme

(c)



164

Chapter 9.  Survival Meta-Analysis of Age at Onset of Cannabis Use

Table 9.2: SNPs showing associations above the suggestive line in the Manhattan
plot (p-values < 1E-05 in the meta-analysis). Abbreviations: RSID - rs number; Chr -
chromosome; BP - base pair position; A1 - allele 1; A2 - allele 2; Freql - frequency of allele 1;

MinFreq - minimum allele frequency; MazFreq - maximum allele frequency; SE-standard error.

RSID Chr BP Al A2 Freql  Min Max  BETA SE P
Freq Freq
1574587 16 84453056 T C 0.1415 0.1054 0.1853 0.0980 0.0167 4.067E-09
12922606 16 84453352 A G 0.8585 0.8132 0.8948 -0.0952 0.0166 9.345E-09
11644628 16 84452597 T C 0.1431 0.1145 0.1898 0.0940 0.0170 3.054E-08
11644673 16 84452771 A G 0.8626 0.8196 0.8919 -0.0956 0.0174 4.347E-08
11644663 16 84452541 A G 0.1465 0.1385 0.1903 0.0938 0.0172 4.667E-08
12922477 16 84453332 A C 0.8598 0.8140 0.8948 -0.0935 0.0172 5.652E-08
79927873 16 84452497 A C 0.1392 0.1308 0.1818 0.0943 0.0176 7.748E-08
1008994 16 84450857 C G 0.1454 0.1020 0.1843 0.0845 0.0167 4.327E-07
4935127 10 56654986 C G 0.7741 0.7081 0.8168 -0.0684 0.0136 4.637E-07
1733786 10 56681617 A G 0.7742 0.6892 0.8241 -0.0685 0.0136 4.818E-07
2249437 6 1595216 T C 0.4595 0.3977 0.4759 0.0707 0.0141 5.055E-07
62156986 2 120072326 T G 0.9349 0.9322 0.9361 0.1925 0.0393 1.001E-06
1349893 10 56701951 T C 0.7658 0.6856 0.8155 -0.0656 0.0135 1.177E-06
11643072 16 84451155 A G 0.1475 0.1014 0.1812 0.0808 0.0167 1.228E-06
3943846 16 84455781 A G 0.8146 0.7844 0.8793 -0.0762 0.0158 1.446E-06
62159383 2 120045513 T C 0.9347 0.9342 0.9349 0.1889 0.0393 1.53E-06
2163036 16 84455766 T C 0.1730 0.1159 0.2108 0.0785 0.0163 1.562E-06
9266245 6 31325702 A G 0.2655 0.1537 0.2962 -0.0728 0.0152 1.568E-06
9266262 6 31325932 A G 0.7251 0.6912 0.7835 0.0735 0.0154 1.735E-06
115259011 3 161789904 T G 0.9563 0.9346 0.9632 -0.1446 0.0303 1.822E-06
9266244 6 31325692 A G 0.7345 0.7038 0.8455 0.0723 0.0152 1.864E-06
141294240 6 31325822 A G 0.7296 0.7015 0.8466 0.0709 0.0151 2.562E-06
1733762 10 56697898 A G 0.2167 0.1664 0.3051 0.0666 0.0142 2.612E-06
28622199 8 5392103 T C 0.8012 0.7836 0.8162 0.0712 0.0152 2.744E-06
1670812 10 56689178 T C 0.2164 0.1664 0.3052 0.0664 0.0142  2.8E-06
2523578 6 31328542 A G 0.7333 0.7068 0.7868 0.0718 0.0154 2.901E-06
8045313 16 84455540 T G 0.8158 0.7819 0.8796 -0.0740 0.0159 3.091E-06
215069 16 16091237 T C 0.0685 0.0639 0.0850 -0.1192 0.0258 3.841E-06
1733763 10 56697536 A C 0.7839 0.6950 0.8336 -0.0653 0.0142 4.202E-06

Continued in Table 9.3
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Table 9.3: Continued from Table 9.2
RSID Chr BP Al A2 Freql  Min Max  BETA SE P
Freq Freq

55966520 16 84454043 A G 0.1636 0.1168 0.1940 0.0766 0.0167 4.226E-06
2523582 6 31328092 A G 0.2632 0.1581 0.2934 -0.0694 0.0151 4.253E-06
59006942 16 84454029 A G 0.1632 0.1327 0.1979 0.0768 0.0167 4.368E-06
71386833 16 84454170 A G 0.1636 0.1168 0.1937 0.0757 0.0167 5.471E-06
4924506 15 41129467 A C 0.7318 0.7082 0.7827 0.0608 0.0134 5.513E-06
34659052 5 148816223 T C 0.7351 0.7312 0.7446 0.0974 0.0214 5.592E-06
689589 15 41139250 T G 0.2580 0.2137 0.2793 -0.0608 0.0134 5.734E-06
647930 15 41141459 A G 0.7218 0.6899 0.7754 0.0601 0.0133 6.526E-06
2412569 15 41140159 A G 0.2540 0.2135 0.2709 -0.0603 0.0135 7.537E-06
114529675 2 120136433 T C 0.0614 0.0595 0.0658 -0.1771 0.0396 7.659E-06
2395475 6 31326920 A G 0.6563 0.6112 0.7328 0.0643 0.0144 8.217E-06
2917953 15 41131916 T C 0.2558 0.2136 0.2740 -0.0599 0.0134 8.278E-06
690660 15 41139165 T C 0.2540 0.2134 0.2708 -0.0599 0.0134 8.306E-06
773177 6 139143088 A G 0.7383 0.6823 0.7564 -0.0613 0.0138 8.492E-06
2326270 16 84461051 A C 0.0994 0.0907 0.1184 0.0896 0.0201 8.52E-06
11639292 15 41129528 A G 0.2601 0.2140 0.2817 -0.0595 0.0134 8.781E-06
668750 15 41135827 A T 0.7415 0.7196 0.7864 0.0595 0.0134 8.91E-06
11589605 1 230084670 A T 0.9599 0.9513 0.9663 -0.2056 0.0463 9.133E-06
689618 15 41133008 T C 0.2558 0.2136 0.2740 -0.0596 0.0134 9.14E-06
12193938 6 139142855 C G 0.7383 0.6823 0.7564 -0.0611 0.0138 9.279E-06
2412570 15 41140168 T C 0.2555 0.2136 0.2737 -0.0595 0.0134 9.304E-06
16850641 1 230097368 A G 09596 0.9506 0.9663 -0.2047 0.0462 9.498E-06
7528099 1230097883 C G 0.9596 0.9506 0.9663 -0.2047 0.0462 9.523E-06
60064513 1 230098302 T G 0.0404 0.0337 0.0494 0.2047 0.0463 9.624E-06
12413522 10 56642064 T C 0.7838 0.7157 0.8267 -0.0609 0.0138 9.71E-06
73113155 1 230087856 A G 0.0401 0.0337 0.0487 0.2049 0.0463 9.729E-06
452277 16 16079948 T C 0.9385 0.9183 0.9465 0.1266 0.0286 9.768E-06
435683 16 16079952 T C 0.9385 0.9183 0.9465 0.1266 0.0286 9.807E-06
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Table 9.4: Association results and descriptive information for the top SNP
rs1574587 in the participating cohorts. Abbreviations: Chr - chromosome; BP - base

pair position; Ay - allele 1; As

lambda corrected P-value;

- allele 2; SE - standard error; N - sample size; EAF -effect
allele frequency; Info - imputation quality; A\gcSE - lambda corrected standard error; Agc P-

Sample Chr BP A, A, BETA SE P N EAF TInfo MeSE  AaoP
ALSPAC 16 84453056 T C  0.0858 0.0323 0.0079 6147 0.139 0.988 0.0317 0.0067
FinnTwin 16 84453056 T C  0.0535 0.0994 0.5898 1022 0.105 0.993 0.1076 0.6187
HUVH 16 84453056 T C  0.167 0.1057 0.114 580 0.139 0.967 0.1116 0.1348
NTR 16 84453056 T C  0.0697 0.0311 0.0248 5148 0.145 0.977 0.0324 0.0314
QIMR 16 84453056 T C  0.1084 0.0404 0.0072 6758 0.134 0.987 0.0362 0.0027
TRAILS 16 84453056 T C  0.2630 0.0917 0.0041 421 0.185 0.897 0.0856 0.0021
Utrecht 16 84453056 T C  -0.1270 0.1129 0.2605 1173 0.156 0.976 0.1127 0.2597
Yale-Penn 16 84453056 T C  0.1454 0.0435 0.0008 2362 0.139 0.975 0.0441 0.0009

Figure 9.2: Forest plot of the top SNP
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9.3.2 Gene-based tests

The results of the SNP-based meta-analysis were subsequently used in a genome-
wide gene-based analysis. We tested 24,404 genes for association with age of
onset of cannabis use. Figure 9.3 gives an overview of the genome-wide results.
The quantile-quantile plot (Figure 9.3a) shows that the bulk of the test statis-
tic distribution follows the expectation under the null model, and that several
genomic regions are enriched for small p-values. Note also that merely genic re-
gions (rather than noncoding regions) are enriched for SNPs that yielded strong
association signals in the single variant analysis (see Figure 9.3a).

As shown in the Manhattan plot (Figure 9.3b), three genes reached the False
Discovery Rate threshold of 0.05, namely the Epithelial cell-transforming se-
quence 2 oncogene-like (ECT2L) on chromosome 6, the Calcium-transporting
ATPase (ATP2C2) gene on chromosome 16 and the DNA repair protein RAD51
homolog 2 (RAD51B) gene on chromosome 14 (see Supplemental Table S4 for
the SNPs assigned to each of these 3 significant genes along with information on
other genes showing suggestive associations, i.e., P < 1E-04). Figure 9.4 zooms
into the three significant regions.

ECT2L gene had the strongest association (P = 6.59E-08); ECT2L is a protein
coding gene located on chromosome 6q24.1 (Figure 9.4a). The SNP with lowest
p-value in the ECT2L gene is rs7773177 (P = 8.492E-06). The ATP2C2 gene
on 16q24.1 had the second strongest association (P = 1.54E-06; Figure 4b). The
association signal yielded by the ATP2C?2 gene was also tagged in the SNP-based
analysis, as the top SNP rs1574587 is located within this gene. The RAD51B
gene (protein coding gene on 14q24.1) yielded the third strongest association
signal passing the genome-wide FDR threshold (P = 5.22E-06).

As displayed in Figure 9.4c, RAD51B is a large gene (comprising 910,440
bases) that harbours several SNPs in low LD (r? < 0.2). The top SNP within the
gene is 1s17193049 (P = 3.97E-05). Table 9.5 includes descriptive information
on the top associated genes along with their functions according to the Gene
Ontology (GO) annotations (Ashburner, Ball et al. [23], [74]).
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Table 9.5: Genes significantly associated with age at onset of cannabis use. Re-
ported below are the nominal p-values and the corrected p-values based on the

Benjamini and Hochberg method [29].

Gene Symbol ~ Nominal Corrected Chr Start Grou Gene function according to
(name) p p Position P GO annotations
ECT2L positive regulation of GTPase

(Epithelial protein- activity, regulation of Rho
cell-transforming ~ 6.59E-08 1.61E-03 6 139117247  coding protein signal transduction, Rho
sequence 2 gene guanyl-nucleotide exchange

oncogene-like) factor activity
calcium-transporting ATPase
ATP2C2 ) activity, metabolic process,
(Calcium- protein- calcium ion transmembrane
) 1.54E-06 1.88E-02 16 84440193 coding .
transporting transport, integral component of
n
ATPase) gene membrane, ATP binding, metal
ion binding
RAD51B double-strand brea.k re.pair via
. . homologous recombination, ATP
(DNA repair protein- bindine. DNA bindine. Rad51B
protein RAD51  5.22E-06 4.24E-02 14 68286495  coding HICHS, HIAIS, HAcoih
Rad51C-Rad51D-XRCC2
homolog 2 or gene

RAD51-like 1)

complex, DNA-dependent
ATPase activity
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Figure 9.4: Regional plots around the significantly associated genes (a) the

ECT2L gene (b) the ATP2C?2 gene (c) the RAD51B gene
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9.4 Discussion

We performed the largest molecular genetic study of age of onset to date in

a sample consisting of 24,222 individuals from nine cohorts. The analysis re-
vealed genome-wide significant association with five SNPs located on chromosome
16 within the Calcium-transporting ATPase gene (ATP2C2). The five SNPs
are in high LD (72 > 0.8), and thus are likely to represent a single indepen-
dent signal. The strongest association was with an intronic variant rs1574587
(P = 4.067E-09). The gene-based tests also implicated the ATP2C2 gene and
identified two additional genes: the Epithelial cell-transforming sequence 2 oncogene-
like gene (ECT2L) and the DNA repair protein RAD51 homolog 2 gene (RAD51B)
located on chromosomes 6 and 14, respectively.

The ATP2C2 gene (16q24.1) is expressed in the brain (Xiang, Mohamalawari
et al. [369]) and is involved in calcium homeostasis (Newbury, Winchester et
al. [256]), which in turn regulates processes including synaptic plasticity, memory
and learning (Zheng and Poo [379]). Importantly, in a recent study by Gel-
ernter, Sherva et al. [134] the ATP2C2 gene together with the ATPase, Ca2+
-transporting, plasma membrane gene (ATP2B2) yielded strong association sig-
nals that implicated the calcium transport pathway in cocaine dependence (P
= 0.002). Taken together these analyses suggest that the effects of ATP2C2
are likely general rather than substance specific (noteworthy is that the calcium
signalling pathway was also implicated in opioid dependence by Gelernter, Kran-
zler et al. [134]). Furthermore, our findings are consistent with the observed
associations between early onset of cannabis use and experimentation with other
drugs (Lynskey, Vink et al. [225]) and progression to escalated use/dependence
(Lynskey, Agrawal et al. [222]). In other words, it is plausible that some of the
same genetic factors increase both the probability to initiate early substance use,
and to progress to abuse and dependence.

The ECT2L gene (6¢q24.1) displayed the strongest association signal in the
gene-based analysis. This gene is involved in positive regulation of GTPase ac-
tivity, i.e., the activity of heterotrimeric guanine nucleotide binding proteins (G
proteins), i.e., proteins which are crucial in signal transduction across the cell
membrane. Rat and in vitro addiction models hinted at the role disruptions in
G proteins signaling play in the etiology of cocaine, alcohol and heroin depen-
dence (Cami and Farre [57], Bowers [45]). Our results provide genetic support for
this hypothesis (assuming the same genetic factors influence both age of onset of
cannabis use and the probability to experiment and to develop dependence/abuse
other drugs). The gene-based test also identified the RADS51B gene on 14q24.1.
RAD51B gene (also known as RAD51L1) belongs to the RAD51 paralogue fam-
ily, and is involved in double-strand break repair via homologous recombination,
DNA and ATP binding. This gene has been previously advanced as a plausible
candidate gene for nicotine dependence (Drgon, Montoya et al. [106]).

Several factors have contributed to the success of this second analysis of the
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International Cannabis Consortium. First, with nine participating cohorts we
gathered a sample of more than 24,000 individuals, the largest sample to date
used in a genome-wide study of age of onset of cannabis use. Second, the success
of both the SNP- and the gene-based analyses is likely attributable to the survival-
based method that we used.

To our knowledge this is the first large meta-analysis to date that employed
survival-based methods to establish genetic association with addiction pheno-
types. This approach allowed us to exploit all the available information in the
participating samples, and to correctly take account of the censored nature of the
observations. The approach has been shown to be superior in terms of power to
a logistic regression model (van der Net, Janssens et al. [333]) and to analyses
limited to initiated individuals (Kiefer, Tung et al. [185]). Third, the single SNP
analysis was complemented by a gene-based analysis. Taking the gene as the unit
of analysis is expected to increase the statistical power relative to the single SNP
analysis as this approach allows one to interrogate jointly all the SNPs within
a gene, and reduces the multiple testing burden (Neale and Sham [252], Huang,
Chanda et al. [166], Li, Gui et al. [202], Li, Kwan et al. [202]).

In conclusion, we have performed the largest meta-analysis to date of genome-
wide studies investigating age of onset of cannabis use. With a sample of over
24,222 individuals, our results suggest the involvement of multiple correlated
genome-wide significant SNPs in ATP2C2. The gene-based tests also identified
ATP2C2 as a significant predictor of age of onset, and in addition, implicated
the ECT2L and the RAD51B genes. A thorough investigation of the functional
consequences of mutations in these genes is warranted.



Chapter 10

Pathways to Smoking: Biological
Insights from the Tobacco and (zenetics
Consortium Meta-Analysis

Abstract

By running gene and pathway analyses in the Tobacco and Genetics Consortium
(TAG) sample of 74,053 individuals, we implicated twenty-one genes and forty
biological pathways in several smoking behaviors. Thirteen genes are novel and
were missed with the SNP-based approach in the original TAG analysis. For
quantity smoked, fourteen genes passed the corrected for multiple testing false
discovery rate of 0.05, and the strongest association signal was with the IREB2
gene (P = 1.57E-37). Three genomic loci were significantly associated with ever
smoking. The lowest p-value was yielded by the noncoding antisense RNA tran-
script BDNF-AS (P = 6.25E-07) on 11p14.1. The SLC25A21 gene (P = 2.09-08)
yielded the top association signal with smoking cessation, and the signal at the
19q13.42 noncoding RNA locus exceeded genome-wide significance in the age at
initiation analysis (P = 1.33E-06). The pathway analyses revealed that muta-
tions in the Neuronal system pathways were the strongest predictors of quantity
smoked. Especially enriched was the Highly calcium permeable postsynaptic nico-
tinic acetylcholine receptors pathway (P = 4.90E-42). Additionally, pathways be-
longing to ’a subway map of cancer pathways’ which control appropriate mitotic
DNA replication, axon growth and synaptic plasticity were enriched for muta-
tions in smokers, and also predicted quantity smoked. The strongest association
with ever smoking was yielded by the Conversion from APCC4?0 to APCC! in
late anaphase pathway (P = 1.61E-07), while in the quantity smoked analysis,
strong enrichment signal came from the Autodegradation of Cdh1 by Cdh1:APC/C
pathway (P = 4.28E-17). Our results shed light on the world’s leading cause of
preventable death and open a path to potential therapeutic targets for smoking
cessation. These results are informative in decoding the biological bases of other
disease traits such as cancers with which smoking shares genetic vulnerabilities.
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10.1 Introduction

Tobacco smoking kills almost 6 million people each year (World Health Organiza-
tion, [261]). Despite smoking prevalence decreasing in the past 30 years, there has
been a steady increase in the absolute number of smokers, i.e., from 721 million in
1980 to 967 million in 2012 due to accelerated population growth (Ng, Freeman
et al. [257]). Tt is an intriguing question why almost one billion of the world’s
population take up smoking while the remaining ones do not.

Genetic factors are implicated in all stages of smoking (Amos, Spitz et al.
[19]), from experimentation (Vink, Willemsen et al. [347]) to dependence (Vink,
Willemsen et al. [347], Lubke, Hottenga et al. [220]) and cessation (Xian, Scher-
rer et al. [368]). Although genome-wide association studies (GWASs; see (Wang
and Li [358], Loukola, Wedenoja et al. [218], Bhler, Gin et al. [55]) for a recent
overview) and especially meta-analyses conducted by large consortia (Liu, Tozzi
et al. [215], Thorgeirsson, Gudbjartsson et al. [321], Tobacco and Genetics Con-
sortium [75]) have provided several informative insights into the biological bases
of smoking, the progress has been slow due to the small effects of the single nu-
cleotide polymorphisms (SNPs), and to the multiple testing burden. Identifying
such small effects largely depends on the sample size but also on the approach
to analyze the genotype-phenotype relation (Li, Gui et al. [201], Sham and Pur-
cell [295]).

Most consortia start by focusing on individual SNPs showing the strongest
evidence for association. The TAG consortium with the largest sample yet of
74,053 individuals located 130 SNPs (tagging the 15q25 locus) that passed the
genome-wide threshold of 5 x107® in the quantity smoked analysis and next,
focused on 1025 SNPs that passed the significance threshold of 107 to be in-
cluded in the follow-up SNP-based analyses in the combined TAG, ENGAGE
(Thorgeirsson, Gudbjartsson et al. [321]) and the Oxford-GlaxoSmithKline (Liu,
Tozzi et al. [214]) sample. We note that the remaining data (summary statistics
for up to 2.5 million SNPs in each of their four analyses) have remained largely
unexploited.

Set-based tests (with a gene or a biological pathway as the unit of analysis) are
an important alternative power-wise (Li, Gui et al. [201], Li, Kwan et al. [202]) as
they consider jointly the weak effects of multiple SNPs within a gene or biological
pathway. Furthermore, by targeting genomic regions rather than individual SNPs
the number of tests drops from millions to thousands, thus alleviating the multiple
testing burden.

Here we take the next step and further mine the publicly available TAG meta-
analysis results by conducting pathway analyses and gene-based tests. Our aim
is to identify biological pathways implicated in smoking behaviors (rather than
to explain variance). Our analysis is not limited to the most significant loci
pinpointed by the TAG meta-analysis, and serves to provide additional insights
into the biological bases of smoking behaviors.
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10.2 Materials and Methods

10.2.1 Sample description

The TAG Consortium investigated four phenotypes relating to different stages of
smoking behaviour, i.e., ever/never smoked regularly, age at initiation, quantity
smoked, and smoking cessation. The published TAG meta-analysis results (down-
loaded from the Psychiatric Genomics Consortium website https://www.med.unc
.edu/pgc/downloads) combined the SNP-based summary statistics of 16 partic-
ipating cohorts (of which, seven population-based cohort studies, and nine case-
control studies). Across the participating studies, the mean age ranged from 39.6
to 72.3 years. More than half of the meta-analytic sample (64.37%) were females.
Data on smoking status (ever/never smoked regularly) were available in all par-
ticipating studies. The percentage of ever smokers varied from 37.7% to 75.2%
(weighted average 56.58%), where ever smokers declared to have smoked > 100
cigarettes. Data on age at initiation (i.e., age at first cigarette or age when started
to smoke regularly) was available in thirteen cohorts, with averages falling within
the 17 — 32.3 years range. Thirteen cohorts also had observed data on quan-
tity smoked (i.e., the average, or the maximum number of cigarettes smoked per
day); across these cohorts, the mean quantity smoked varied between 13.1 and
23.4 cigarettes per day. For more details on the characteristics of the participating
samples, we refer to Table 1 (see http://www.ncbi.nlm.nih.gov/pmc/articles
/PMC2914600/table/T1 in [322]).

10.2.2 Statistical analyses

We lifted the SNP positions from HapMap 2 NCBI build 36, Human Genome
references 18 to the Human Genome references 19 positions based on dbSNP build
138. Following conversion, there were meta-analysis results available for 2,342,540
SNPs; 2,339,474 SNPs; 2,340,171 SNPs and 2,341,140 SNPs obtained in the fixed-
effect meta-analysis of quantity smoked, ever smoking , smoking cessation , and
age at initiation, respectively. The SNPs passed the TAG consortium’s quality
criteria (see Supplementary Table 3 in (Tobacco and Genetics Consortium [322])).

Analyses were carried out using the HYbrid Set-based Test (HYST) as imple-
mented in the Knowledge-based mining system for Genome-wide Genetic studies
software (Li, Gui et al. [201], Li, Kwan et al. [202]). In the HYST approach, the
SNPs within the tested genes/pathways are firstly grouped in blocks (sets) based
on linkage disequilibrium (LD) information, such that the resulting blocks are
weakly correlated. Next, for each of these blocks a p-value is obtained with the
Gene-based Association Test that uses the Extended Simes procedure (Li, Gui et
al. [201]) by taking account of the correlatednes among SNPs. Lastly, HYST em-
ploys the scaled chi-square test to combine these LD-block-based p-values in order
to obtain an overall p-value for the gene/pathway. The LD blocks were inferred
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based on the 1000 Genomes Haplotypes Phase 3 reference panel ALL (downloaded
from ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/); in-
cluding this information to construct the gene-based tests is expected to show
good control of the type I error rate (Li, Gui et al. [201]). We opted for the 1000
Genomes as this is the highest resolution genetic map to date. Both the uni-
variate gene-based tests and the pathway analyses were conducted genome-wide
and utilized the unweighted form of HYST. Variants missing LD information were
discarded.

10.3 Results

10.3.1 Gene-based tests

The gene-based analyses revealed twenty-one genes significantly associated with
smoking behaviours, including nine genes in the 15q25 region. Fifteen genes of
these were not reported previously as significantly associated with any smoking or
addiction behavior in the GWAS catalogue (as of 2015-10-23, see www . genome . gov
/gwastudies [359]), and were missed with the SNP-based approach in the original
TAG analysis. Results are displayed in Tables 10.1 to 10.4 .

Table 10.1: Genes implicated in quantity smoked . Highlighted are genes that
were not previously associated with smoking behaviours according to the GWAS
catalogue (as of 2015-10-23; see www.genome.gov/gwastudies [359])

Symbol NominalP  CorrectedP Chromosome Start_Position Group
1.57E-37  3.79E-33 15 78730517  protein-coding gene
CHRNAS 6.45E-34 7.78E-30 15 78887646 protein-coding gene
CHRNAS 3.17E-32 2.55E-28 15 78857861 protein-coding gene
HYKK 2.14E-30 1.29E-26 15 78799905 protein-coding gene
CHRNB/ 3.87E-28 1.87E-24 15 78916635 protein-coding gene

PSMA} 6.47E-23 2.60E-19 15 78832746 protein-coding gene

’ ADAMTS'?" 4.486-17 1.55E-13 15 79051544 protein-coding gene

MORFL1 1.18e-06 3.55E-03 15 79165330 protein-coding gene

1.52E-06 4.07e-03 1 201857804 protein-coding gene

5.45E-06 1.32E-02 1 201798287 protein-coding gene

HLA-DPBI1 ‘ 7.65E-06 1.68E-02 6 33043702 protein-coding gene

HLA-DPAI‘ 9.52E-06 1.92E-02 6 33032345 protein-coding gene

1.41E-05  2.61E-02 14 37147125  protein-coding gene
|LOC646938| 1.668-05  2.868-02 15 79044378 Unknown
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Table 10.2: Genes implicated in ever smoking . Highlighted are genes that were
not previously associated with smoking behaviours according to the GWAS cat-
alogue (as of 2015-10-23 [359])

Symbol ~ NominalP CorrectedP Chromosome Start_Position Group
BDNF-AS  6.25E-07 1.51E-02 11 27528398 non-coding RNA
APBB2| 2.43g-06 2.44E-02 4 40812043 protein-coding gene
CDC27  3.04E-06 2.44E-02 17 45195062 protein-coding gene

Table 10.3: Genes implicated in smoking cessation. Highlighted are genes that
were not previously associated with smoking behaviours according to the GWAS
catalogue (as of 2015-10-23 [359])

Symbol NominalP CorrectedP Chromosome Start_Position Group
SLC25A21| 2.09e-08 5.04E-04 14 37147125 protein-coding gene
SEMAG6D 1.64E-06 1.99e-02 15 48010685 protein-coding gene

Fourteen genes passed the corrected for multiple testing False Discovery Rate
(FDR) of 0.05 [29] in the gene-based analysis of quantity smoked (see Table 10.1),
with the IREB2 gene on 15¢25.1 yielding the lowest p-value (P = 1.57E-37).
Three genomic loci exceeded genome-wide significance in the ever smoking anal-
ysis (Table 10.2). The strongest signal was yielded by the noncoding antisense
RNA transcript BDNF-AS (P = 6.25E-07) on 11p14.1. Note also that the CDC27
gene, harbouring the rs16941640 SNP with the lowest p-value in the initial TAG
analysis (P = 2.2E-07), achieved significance in our gene-based analysis (P =
3.04E-06). Two genes were significantly associated with smoking cessation (see
Table 10.3), with the SLC25A21 gene on 14q13.3 yielding the strongest signal
(P = 2.09-08). The gene-based tests revealed the non-coding RNA MIR13253-
MIR512-1-MIR512-2 locus on 19q13.42 as significantly associated with age at
initiation (P = 1.33e-06; Table 10.4). Note that no individual SNP reached
significance in the original TAG analysis of age at initiation. We refer to the
Supplementary Table S1 for details on gene functions and to the Tables S2-S5 for
details on SNPs assigned to genes.

10.3.2 Pathway-based tests

Results for the statistically significant pathways are summarized in Tables 10.5
to 10.12. Details on genes assigned to the pathways are given in Supplementary
Tables S5 and S6. Note that some of the genes are assigned to more than one
pathway, indicating that they play roles in multiple biological processes under-
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Table 10.4: Genes implicated in age at initiation . Highlighted are genes that
were not previously associated with smoking behaviours according to the GWAS
catalogue (as of 2015-10-23 [359])

Symbol NominalP  CorrectedP Chromosome Start_Position Group
MIR1323 1.33E-06 1.21E-02 19 04175221 non-coding RNA
MIR512-1 1.50E-06 1.21E-02 19 54172416 non-coding RNA
MIR512-2| 1.50E-06 1.21E-02 19 54172410 non-coding RNA

Table 10.5: Biological pathways implicated in quantity smoked. The Neuronal
system chain.

P Total

Pathway (HYST)  genes

Highly calcium permeable postsynaptic nicotinic

acetylcholine receptors 4.908-42 1
Acetylcholine binding and downstream events 3.11E-41 14
Presynaptic nicotinic acetylcholine receptors 8.42E-32 12

Neuroactive ligand receptor interaction 2.66E-22 249
Transmission across chemical synapses 2.13E-20 174
Neuronal system 1.43E-19 263

lying the smoking behaviours. The reported p-values passed the corrected for
multiple testing FDR of 0.05.

As indicated in Tables 10.5 to 10.12, note that the pathways reaching statis-
tical significance form chains of pathways, rather than being isolated hits spread
across the whole genome. We identified thirty-five biological pathways signifi-
cantly associated with quantity smoked (see Table 10.5). Highly enriched are the
Neuronal system pathways harbouring the nicotinic acetylcholine receptor genes
expressing the a (CHRNA 1-9), 5 (CHRNB 1-4), 7, § and € subunits; the strongest
association was with the Highly calcium permeable postsynaptic nicotinic acetyl-
choline receptors pathway (P = 4.90E-42). Furthermore, quantity smoked was
statistically associated with pathways regulating the immune system (with the
Cross presentation of soluble exogenous antigens endosomes pathway showing the
strongest association; P = 4.38E-17), metabolism (where the Regulation of or-
nithine decarborylase ODC pathway yielded the strongest signal; P = 6.71E-16),
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Table 10.6: Biological pathways implicated in quantity smoked. The cell-cycle
chain.

P Total

Pathway (HYST)  genes
P53-dependent G1 DNA damage response 7.24E-20 52
SCF-Skp2 mediated degradation of p27/p21 7.59E-19 52

Cyclin E associated events during G1/S transition 2.35E-18 61
Autodegradation of the E3 ubiquitin ligase COP1 3.37E-18 46
Autodegradation of Cdh1 by Cdh1:APC/C 4.28E-17 53
CDK-mediated phosphorylation and removal of Cdc6  5.70E-17 45
APC/CYM mediated degradation of Cdc20 and other

APC/CYM targeted proteins in late mitosis/early G1 1.99E-16 01
P53-independent G1/S DNA damage checkpoint 2.02E-16 47
CDT1 association with the Cdc6:ORC:origin complex  2.03E-16 53
SCF (beta-TrCP) mediated degradation of EMI1 6.24E-16 48
APC/C Cdc20 mediated degradation of mitotic proteins 4.53E-14 62
Assembly of the pre-replicative complex 6.46E-17 61
Proteasome 5.95E-18 44

ORC1 removal from chromatin 3.31E-16 63

Regulation of apoptosis 1.84E-09 54
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Table 10.7: Biological pathways implicated in quantity smoked. The immune
system chain.

Pathway (H\fST) gTeOIE:i

Cross presentation of soluble exogenous antigens 438617 m
endosomes

Activation of NF-kB in B cells 6.72E-14 60
Translocation of ZAP-70 to immunological synapse 3.90E-04 13
Phosphorylation of CD3 and TCR zeta chains 1.64E-03 15
Allograft rejection 7.50E-04 34
ER phagosome pathway 7.12E-14 o7
Interferon signalling 1.70E-03 148

Table 10.8: Biological pathways implicated in quantity smoked. Metabolism.

P Total
Pathway (HYST)  genes

Regulation of ornithine decarboxylase ODC 6.71E-16 47
Metabolism of amino acids and derivatives 1.80E-05 187

Table 10.9: Biological pathways implicated in quantity smoked. Disease.

P Total
Pathway (HYST)  genes
Vif-mediated degradation of APOBECSG 9.55E-18 48

Table 10.10: Biological pathways implicated in quantity smoked. Signal trans-
duction.

p Total
(HYST)  genes

Signaling by WNT 1.18e-17 61

Pathway
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Table 10.11: Biological pathways implicated in quantity smoked. Gene expres-
sion.

P Total
Pathway (HYST)  genes

Destabilization of mRNA by AUF1 (hnRNP D0) 2.21E-15 49
Asthma 3.10E-04 27

Table 10.12: Biological pathways implicated in ever smoking. Regulation of the
mitotic cell-cycle chain.

p Total
Pathway (HYST)  genes

Conversion from APCC%® to APCCM in late anaphase 1.61E-07 14

Inhibition of the proteolytic activity of APC/C required
for the onset of anaphase by mitotic spindle checkpoint  2.19E-07 16

components
Phosphorylation of the APC/C 4.54E-07 15
APCC¥ N mediated degradation of Cyclin B 1.13E-06 17

APCC4?0 mediated degradation of Nek2A 2.30E-06 19
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signal transduction (with the Signaling by WNT pathway exceeding the signifi-
cance threshold; P = 1.18e-17) and Asthma pathways (P = 3.10E-04).

Additionally, particularly enriched are the cell-cycle checkpoints pathways
governing the transition of the new cell from one stage to another and the
programmed cell-death, with strong association signals coming from the P53-
dependent G1 DNA damage response pathway (P = 7.24E-20) and from the path-
way regulating apoptosis (P = 1.84E-09). Note that the cell-cycle pathways are
implicated also in ever smoking (see Tables 10.5 to 10.12). These pathways relate
to the Anaphase-Promoting Complex/Cyclosome-mediated degradation of Cdc20
and other APC/CY™ targeted proteins. Although none of these pathways is as-
sociated with both smoking phenotypes, they are inter-connected, forming chains
of pathways governing different stages of cell division.

Especially enriched in ever smokers is the Conversion from APCY%20 to APCCM
in late anaphase pathway (P = 1.61E-07), while in quantity smoked, enrichment
signals come from the Autodegradation of Cdh1 by Cdh1:APC/C pathway (P =
4.288-17) and from the APC/CC -mediated degradation of Cdc20 and other
APC/CYM targeted proteins in late mitosis/early G1 pathway (P = 1.99E-16).

10.4 Discussion

We have extended the original TAG analysis and the previous work that has im-
plicated SNPs and genes in smoking behaviours. Our results may guide future
genome-wide analyses as they demonstrate that complementing the SNP-based
tests by gene- and pathway-based analyses can lead to considerable gains in sta-
tistical power and can yield important insights into the biological mechanisms
underlying the trait of interest.

The gene-based analysis revealed twenty-one genes implicated in smoking be-
haviours. Of these, thirteen are novel and were missed with the SNP-based ap-
proach in the original TAG analysis. Aside from the known cluster of genes
(IREB2-CHRNAS-CHRNAS5-CHRNB4-HYKK-PSMA4), we identified a cluster of
three loci on the same chromosome 15 — ADAMTS7 (P = 4.48e-17), MORF/L1
(P = 1.18€-06) and LOC646938 (P = 1.66E-05). The ADAMTS7-MORF/L1
locus has been previously associated with e.g., coronary artery disease [73] for
which smoking is a known risk factor. Based on a joint-analysis, SNPs within
ADAMTS7 and MORF4L1 were recently listed as candidate signals for smoking
behaviour independent of those yielded by the known loci rs16969968 or rsh88765
in CHRNAS (SchwantesAn, Culverhouse et al. [293]). Regarding the two signifi-
cant associations on chromosome 1 (i.e., SHISA/ and IPOY genes, P = 1.52E-06
and 5.45E-06, respectively), we note that neither of these have been associated
with any addiction behaviour. We also located statistically significant signal
coming from the known HLA locus on chromosome 6, result suggesting a link
between smoking and the immune system. Loci in the HLA region have been
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previously implicated in e.g., schizophrenia [76], with which smoking dependence
shares genetic vulnerabilities.

Three genomic loci were significantly associated with ever smoking. The
strongest signal came from the noncoding antisense RNA transcript BDNF-AS lo-
cus (P = 6.25E-07) on chromosome 11. BDNF-AS downregulates the BDNF gene
(Lipovich, Dachet et al. [208]) which in turn has a key role in regulating neuronal
growth and synaptic plasticity (Lipovich, Dachet et al. [208], Modarresi, Faghihi
et al. [247]). The BDNF gene did not reach genome-wide significance in our gene-
based analysis (P = 0.00013), result indicating that the eight significant SNPs
reported in the combined TAG analysis were tagging better the non-coding RNA
BDNF-AS locus.

Association signals at two genes - at the SLC25A21 gene on chromosome 14
and at the SEMA6D gene on chromosome 15 (P = 1.64E-06) exceeded genome-
wide significance with smoking cessation. The role these genes play in smoking
cessation and their potential as therapeutic targets has yet to be elucidated.
SEMAG6D expression levels were recently shown to significantly predict survival
in patients with breast cancer (Chen, Li et al. [63]); also the gene was listed among
potential targets in cancer therapy owing to its role in regulation of the immune
response (Tamagnone [313]). The SLC25A21 gene was previously proposed as a
plausible candidate for smoking cessation (Uhl, Drgon et al. [324]) and current
smoking (Vink, Smit et al. [346]). Notice that the SLC25A21 gene was the only
one significantly associated with two smoking behaviours, namely with quantity
smoked (P = 1.41E-05) and smoking cessation (P = 2.09g-08).

The 19q13.42 MIR1323-MIR512-1-MIR512-2 noncoding RNA locus exceeded
genome-wide significance in the age at initiation analysis (P = 1.33E-06). Impor-
tantly, loci in the 19.q13 region were previously implicated in quantity smoked by
the TAG Consortium in their combined analysis, and also by the ENGAGE (Liu,
Tozzi et al. [214]) analysis ; the region has been proposed as a plausible candidate
for further investigation in relation to smoking quantity given its role in nicotine
metabolism (see e.g., (Tobacco and Genetics Consortium [322])). We now add
age at initiation to the list of smoking phenotypes to be further investigated in
relation to this biologically plausible region.

By extending the tested genomic region from genes to pathways — where a
pathway is a 'meta-gene’ comprising multiple genes having the same biological
function — we identified chains of pathways statistically associated with ever smok-
ing and quantity smoked. The strongest association with quantity smoked was
yielded by the Highly calcium permeable postsynaptic nicotinic acetylcholine recep-
tors pathway (P = 4.90E-42) harboring the nicotinic acetylcholine receptors. The
results are consistent with the hypothesis that mechanisms underlying smoking
dependence involve the mesocorticolimbic dopamine system (Benowitz [30], Wang
and Li [358]). We implicated in quantity smoked and ever smoking pathways re-
lating to the Anaphase-Promoting Complex/Cyclosome mediated degradation of
Cdc20 and other APC/CY targeted proteins. Although none of these pathways
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was associated with both smoking phenotypes, they are inter-connected, forming
chains of pathways governing different stages of cell division. These pathways
control not only the mitotic regulators of DNA replication (i.e., APC“4?) but
also axon growth and synaptic plasticity (i.e., APCY) (Li and Zhang [203]);
hence our results lend support to the idea that neuronal plasticity and learning
play a paramount role in the development of nicotine addiction (Benowitz [30]).
Because the cell-cycle pathways are known to belong to ’a subway map of cancer
pathways’ (Hahn and Weinberg [150]) given their role in cancer development (a
disease of unregulated cell proliferation), our results suggest that (as first conjec-
tured by Fisher (Fisher [126])) some of the same biological mechanisms underlie
both smoking and cancer. Finally, these results suggest that targeting cell-cycle
regulators (as novel cancer therapies do (Diaz-Moralli, Tarrado-Castellarnau et
al. 2013 [99])) might work in smoking cessation therapy.

As detailed in the Supplementary Tables S6 and S7, our results provide clues
on many other genes sharing the relevant pathways, genes that act in concert to
give rise to individual differences in smoking behaviours. The genes and pathways
reported herein worth further investigation in relation to other addiction pheno-
types and disease traits such as schizophrenia or cancers with which smoking
shares genetic factors (de Viron, Morr et al. [93]).

As it is based on gene-level statistic obtained in a meta-analytic sample, our
study overcomes the limitations of previous exploratory pathway studies (Wang
and Li [358], de Viron, Morr et al. [93], Liu, Fan et al. [216]) such as e.g., the
literature selection bias, the heterogeneity problem or the bias arising from the use
of incongruent analysis protocols across the selected studies. More importantly,
we use a hypothesis-free/unbiased genome-wide approach in deriving the list of
genes to be included in the pathway enrichment analyses. In so doing, our study
surmounts the ’circularity’ bias of previous pathway studies (Wang and Li [358],
Liu, Fan et al. [216]) built on lists of input genes mostly derived from published
confirmatory/candidate gene studies.

Furthermore, by being based on HYST (Li, Gui et al. [201]) — which employs
the scaled chi-square test to combine the LD-block-based p-values calculated with
the GATES procedure — the study presented herein overcomes the limitations of
other pathway-based tests such as e.g., overrepresentation tests which fail to
take into account the correlation structure among the genes within pathways and
among the SNPs within genes. Yet, in large samples as the one we used, results
obtained based on alternative approaches are expected to converge. To check
this, we re-run the pathway-based analyses with the PANTHER classification sys-
tem (http://www.pantherdb.org), using an overrepresentation test [243]. We
provided as input lists of genes selected based on a p-value threshold of 1073.
Consistent with the HYST analysis, results revealed that pathways belonging to
the Neuronal system chain were the top ranked pathways in the quantity smoked
analysis, whilst pathways belonging to the cell-cycle chain were significantly en-
riched in the ever smoking analysis (see Supplementary Tables S8 and S9).
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Our results shed light on the world’s leading cause of preventable death and
open a path to potential targets for therapeutics. Using the largest sample
amassed yet in a GWAS of smoking we found that aside from the nicotinic acetyl-
choline receptors — known for the rewarding role they play in nicotine dependence
—the cell-cycle regulators are possible targets in smoking cessation therapy. These
results are informative in decoding the biological bases of other addiction pheno-
types and disease traits such as schizophrenia and cancers with which smoking
shares risk loci and biological pathways.



Chapter 11

Summary

Multivariate data may confer power advantages in GWAS, yet multivariate data
require modeling choices. Chapter IT compared the efficiency (in terms of power)
of several analytic strategies to detect a genetic variant in multivariate phenotypic
data. Twin data were simulated to fit exactly the following five models: 1) single
common genetic factor, 2) a correlated genetic common factors model, 3) a latent
regression model, 4) a hybrid simplex (AE) factor (C) model, and 5) a stationary
double simplex (AE) model. The effect of the genetic variant on all or a subset
of the phenotypes was mediated by the common genetic factor(s). In twin 1 data
the following analytic strategies were considered: a) univariate tests in which
each phenotype was regressed on the genetic variant (single phenotype ANOVA);
b) univariate tests based on sum scores (ANOVA); ¢) exploratory factor analy-
sis (EFA), in which the common factors were regressed on the genetic variant;
¢) multivariate tests based on MANOVA, in which all phenotypes were concur-
rently regressed on the genetic variant. Power calculations were based on the
non-centrality parameter (NCP). Results demonstrated that: a) the sum scores
ANOVA and the exploratory factor analysis were the most powerful strategies
when the genetic effect was general, i.e., propagated in all phenotypic indicators,
while MANOVA was the least powerful in this circumstance; b) MANOVA and
EFA were particularly powerful when the genetic variant was propagated in a
subset of phenotypes, and their power increased with increasing phenotypic cor-
relations; ¢) the NCPs of MANOVA and EFA were equal across all scenarios
indicating that the differences in power between the two strategies arisen from
the differences in degrees of freedom.

Family-based genotype imputation was proposed as a means of increasing
power in GWAS, as it allows for the inclusion into association analysis of individ-
uals with observed phenotypes but missing genotypes. Chapter III considered
factors affecting the power to detect genetic association following family-based
genotype imputation. The study focused on sibships of sizes 2 to 4, where im-
putation was informed by 1 sibling, or by 1 sibling and 1 parent. Monte Carlo
simulations were used to compare the power of the mixture approach (involving
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the full distribution of the imputed genotypes) with the power of the dosage ap-
proach (where the mean of the conditional distribution featured as the imputed
genotype). Furthermore, the effect on power and type I error rates of misspecifi-
cation of the familial covariance matrix was considered given low, moderate and
highly heritable traits. Misspecification pertained to the use of an exchangeable
model which accounts for the sibling correlations by means of a single correlation
(a model of interest also for computational reasons). Finally, the simulation re-
sults were verified in two empirical datasets. Results showed that: a) the power
differences among the dosage and the mixture approaches are quite small and
recommend the use of the dosage approach because it is computationally easier;
b) correct model specification is desirable particularly when the trait is highly
heritable in order to yield correct type I error rates; c) lastly, it was showed that
family-based imputation yields considerable power gains only in specific circum-
stances.

Full, correct modeling of the conditional familial covariance matrix confers
power advantages and yields correct type I error rates. Yet, correct modeling can
be complicated and subject to misspecification when families are variable in size
and composition. Model misspecification - as discussed in chapter III - is also of
interest for computational reasons. Chapter IV focused on the effect on power of
misspecification of the familial covariance matrix and considered several sandwich
corrections of the standard errors to ensure correct type I error rates in family
based GWASs. Specifically, the performance of the unweighted least squares
(ULS) and of the maximum likelihood estimators (ML) was compared given: a)
AE and ACE traits simulated in families comprising 4 siblings (2 MZ/DZ twins
and 2 siblings), with and without parents, and b) various background correla-
tions. Results demonstrated that the extreme misspecification employed by the
sandwich corrected ULS procedure implemented in Plink leads to a dramatic loss
in power given moderate to large background correlations. Furthermore, it was
shown that the fast ML procedure is equally amenable to a sandwich correc-
tion. To analyze A(C)E traits in samples consisting of families varying in size
and composition (when full, correct modeling is complicated and subject to mis-
specification), a misspecified CE/AE linear mixed model in combination with a
sandwich correction is likely to maintain the power close to that of a correctly
specified (yet, computationally more demanding) background model.

Monozygotic twin pairs represent a considerable part of the samples collected
at the twin registries. Chapter V evaluated in terms of power and type I error
rates the practice of dropping one individual of an MZ twin pair from family-
based genome-wide association analyses. Simulation results demonstrated that
including both MZ twins of a pair in GWASs yields calibrated type I error rates
and increases the effective sample size and so, it increases power. It was illustrated
how the power gain varies as a function of the phenotypic correlation. Finally,
several modeling alternatives suitable for family-based samples including MZ twin
pairs were discussed.
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Rare variants are hypothesized to explain an important proportion of the
variance in complex psychiatric traits. Chapter VI focused on tests of associa-
tion with rare variants. Monte Carlo simulations were used to assess the effect of
weight misspecification on the type I and type II error rates of the likelihood ratio
test and of the sequence kernel association test (SKAT). Results showed that the
LRT is generally robust to weight misspecification, while there are specific circum-
stances in which the power of the score test is far from adequate to begin with.
To optimize the power of detection, a weighting procedure was proposed, and
its power benefits were evaluated in simulated and empirical data. The power
studies conducted herein informed the application studies aimed at identifying
genes and biological pathways implicated in cannabis use initiation and smoking
behaviors. Chapter VII aimed to estimate the heritability of cannabis initia-
tion based on recently developed methods. Next, the chapter focused on locating
genes underlying the heritability of cannabis use initiation and age at onset. This
is among the first studies in the literature that used genotypes imputed based on a
population specific reference panel (i.e., the Genome of the Netherlands reference
panel). The study demonstrated that there is significant association signal com-
ing from the currently measured (and imputed) SNPs. Furthermore, the study
showed that cannabis use initiation is a polygenic trait, subject to the influences
of many genetic variants of small effect, uniformly distributed over the genome.

Chapter VIII continued the searches for genes associated with cannabis use
initiation in a meta-analytic sample of 32,330 individuals from 13 cohorts from
Europe, United States and Australia. This GWAS is the first in the literature to
locate genomic loci that significantly predict initiation of cannabis use.

Chapter IX employed survival-based methods to identify genetic variants
that predict age at onset of cannabis use in the International Cannabis Consor-
tium meta-analytic sample of 24,222 individuals from 9 cohorts.

Chapter X was based on the observation that although the SNP-based tests
are still underpowered to detect the small genetic effects in the current samples,
the largest to date meta-analysis of smoking behaviors conducted by the Tobacco
and Genetics Consortium focused exclusively on testing individual SNPs (i.e., on
1052 SNPs). The unexploited TAG results (up to ~2.5 million SNPs for four
smoking behaviors) were further mined by using set-based tests. This power-
ful approach located twenty-one genes and forty biological pathways statistically
associated with quantity smoked, smoking initiation, age at initiation and smok-
ing cessation. Results showed that: a) pathways harbouring genes regulating
neuronal plasticity and learning play an important role in the development of
smoking dependence; b) the cell-cycle regulators, metabolism and the immune
system are also implicated in smoking dependence; ¢) some of the same biologi-
cal mechanisms underlie both smoking and cancer (as first conjectured by Fisher
in 1959). This is the first study based on an unbiased/hypothesis free testing
approach that reports biological pathways statistically associated with smoking
behaviours.






Chapter 12

Discussion

Abstract

The aim of the present thesis was two-fold: first, to study and select from the pool
of available statistical methods the most powerful and computationally efficient
ones for conducting common and rare variant association studies; second, using
powerful methods to identify genes and biological pathways associated with early
stages of cannabis use and smoking behaviors. Below I first discuss the main
empirical findings I have contributed to the field, and next I elaborate on the
implications my power analyses carry over to future rare and common variant
association studies. Each of the two parts ends with a conclusion.
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12.1 Empirical Findings: Genes and Biological
Pathways Implicated in Smoking Behav-
iors and Initiation of Cannabis Use

The empirical analyses revealed several important insights into the biological
mechanisms underlying cannabis use and smoking behaviors. First, based on
a sample of distantly related individuals from the Netherlands Twin Register
and the Genome-wide Complex Trait Analysis method (Yang, Lee et al. [375]), 1
provided evidence that the currently typed single nucleotide polymorphisms col-
lectively explain ~25% of the variance in cannabis use initiation (95%CI[7.7,42.2];
Chapter VII). This finding reaffirmed that initiation of cannabis use is a herita-
ble trait as established by previous twin studies. The result was next confirmed
using the So et al. method (So, Li et al. [299]) which yielded the close heritability
estimate of 20% (P < 0.001) based on the large meta-analytic sample of the In-
ternational Cannabis Consortium with subjects from Europe, United States and
Australia. These results motivated the continued searches for genes and biological
pathways underlying the trait heritability.

The first five genetic loci that significantly predict initiation of cannabis use
were identified based on the large sample of the International Cannabis Con-
sortium (Chapter VIII). The strongest association was with the Neuronal Cell
Adhesion Molecule 1 (NCAM1) gene on 11q23.1, followed by the Cell Adhesion
Molecule 2 (CADM?2) on 3p12.1 (2.13E-06), two loci on chromosome 4 — the Short
Coiled-Coil Protein (SCOC) and the non-coding SCOC Antisense RNA 1 (SCOC-
AS1) on 4g31.1, and lastly, the Potassium Channel, Sodium Activated Subfamily
T, Member 2 (KCNT2) gene on 1q31.3 (P = 7.85E-06, 5.76E-06, and 9.38E-06,
respectively). The top association —the NCAM1 gene —is a cell-adhesion molecule
implicated in regulation of synaptic plasticity and axonal regeneration, as well as
in regulating memory formation (Sheng, Leshchyns’ka et al. [296]). This finding
reinforces the idea that synaptic plasticity, memory and learning are essential
to the development of addiction behaviors (Uhl, Liu et al. [326], Benowitz [30]).
The NCAM]1 gene belongs to the NTAD cluster spanning 521 kb in the 11q22-23
region which includes in addition the TTC12, the ANKKI and the DRD2 genes
(Mota, Araujo-Jur et al. [249]). Comparative analyses indicate that the cluster
has been highly conserved for more than 400 million years likely because of its
essential role in dopaminergic transmission and in the development of the central
nervous system (Mota, Araujo-Jur et al. [249]). As suggested by Mota et al.
(Mota, Araujo-Jnr et al. [249]), extending the research focus to the surrounding
region is probably required in order to grasp a complete characterization of the
role the locus plays in psychiatric traits such as substance use. An interesting
observation is that SNPs in the NCAM1 gene were also implicated in bipolar dis-
order (Atz, Rollins et al. [24]) and schizophrenia (Atz, Rollins et al. [24], Sullivan,
Keefe et al. [311], Uhl and Drgonova [325]), disease traits known to be comorbid
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with cannabis use (see e.g., [85]). In addition, loci at the haplotype harboring
the NCAM1 gene were previously associated with several other addiction pheno-
types such as nicotine (particularly loci tagging the neighboring genes ANKK1
and TTC12 genes, see (Gelernter, Yu et al. [137]), alcohol (Yang, Kranzler et
al. [372]), heroin dependence (Nelson, Lynskey et al. [255]), and comorbid alco-
hol and drug dependence (Yang, Kranzler et al. [373]). Taken together, these
cross-phenotype effects indicate that the NCAM1 gene is likely to display strong
pleiotropic effects, although more research is needed in order to disentangle true
biological pleiotropy from mediated and spurious pleiotropic effects (Solovieff,
Cotsapas et al. [300]).

Thirdly, three association signals reached genomewide signficance in the meta-
analysis of age at onset of initiation of cannabis use, namely the Epithelial cell-
transforming sequence 2 oncogene-like (ECT2L) on chromosome 6, the Calcium-
transporting ATPase (ATP2C2) gene on chromosome 16, and the DNA repair
protein RAD51 homolog 2 (RAD51B) gene on chromosome 14 (Chapter IX).
Both FCT2L and RAD51B are plausible predictors of age at onset, as supported
by previous nicotine dependence association studies [106], and by in vitro and rat
addiction models [57], respectively. Especially interesting is the association with
ATP2C2, given its involvement in calcium homeostasis, which in turn is essential
for regulating processes like synaptic plasticity, learning and formation of new
memories. This result provides further support for the idea that synaptic plastic-
ity, memory and learning contribute to the developement of addiction behaviors
(Uhl, Liu et al. [326], Benowitz [30]). These results also point to interesting candi-
date genes for later stages of substance addiction (i.e., abuse/dependence), given
that previous studies demonstrated that age at initiation may serve as a relevant
proxy for the liability to heavy use.

Finally, the empirical analyses yielded important biological clues to several
smoking behaviors (Chapter X). Using the largest meta-analytic sample to date
in a GWAS of smoking, and powerful set-based tests, I reported twenty-one genes
associated with quantity smoked, smoking initiation, smoking cessation and age at
initiation. Fifteen genes are novel (i.e., have not yet been significantly associated
with smoking behaviors according to the GWAS catalogue release 2015 — 23 — 10)
and were missed in the original SNP-based analysis [78]. For instance, my analysis
hit genomic regions previously associated with coronary artery disease (for which
smoking is a known risk factor [73]), and the HLA locus previously implicated
in e.g., schizophrenia (with which smoking shares genetic vulnerabilities [85]).
Moreover, the analysis implicated two novel loci in smoking cessation, one of
which (the SEMAGD gene) was suggested as plausible candidate for smoking ces-
sation and current smoking by previous (insufficiently powered) studies (see [324]
and [346], respectively). I have also identified the MIR1523-MIR512-1-MIR512-2
locus within the 19q13 region significantly associated with age at initiation. The
19q13 region has been proposed as a plausible candidate for further investigation
in relation to smoking quantity as it harbours the C'YP2A6 gene, a hepatic enzyme
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involved in nicotine metabolism. Variants in the CYP2A6 gene were previously
associated with variation in the rate of nicotine metabolism and predicted quan-
tity smoked (i.e., the quantity smoked per day increases with increasing nicotine
metabolism rate; see Mwenifumbo and Tyndale [251], Benowitz [30], Tobacco and
Genetics Consortium [75]). With this result I added age at smoking initiation to
the list of smoking phenotypes to be further investigated in relation to this bio-
logically plausible region. Interestingly, loci in the same 19q13 region were also
reported as associated with chronic obstructive pulmonary disease (Cho, Castaldi
et al. [68]) for which smoking is a known risk factor; however, as hypothesized by
Cho et al., (Cho, Castaldi et al. [68]) this association likely represents a mediated
(by smoking dependence) rather than a true biological pleiotropic effect.

The pathway analysis is the first reported in the literature to provide evidence
for significant association between several biological pathways and smoking be-
haviors based on an unbiased/hypothesis free approach (Chapter X). The anal-
ysis of quantity smoked revealed strong enrichment signal coming from the neu-
ronal system pathways, which harbor the nicotinic acetylcholine receptors. This
finding is consistent with the hypothesis that mechanisms underlying smoking
dependence involve the mesocorticolimbic dopamine system (Dani and De Bi-
asi [84], Kelley [181], Dani [83], Benowitz [30]). In short, as Benowitz described
(Benowitz [30]), the biological mechanisms underlying nicotine addiction involve
nicotine binding to the nicotinic acetylcholine receptors which, in turn, release
several neurotransmitters (dopamine, glutamate and y-aminobutyric acid) in re-
gions of the brain known to be involved in the perception of pleasure and reward
(i.e., in the ventral tegmental area and the shell of the nucleus acumbens). Follow-
ing repeated exposure, the a4/2 nicotinic acetylcholine receptors adapt to nico-
tine and become unresponsive. It is hypothesized that the reactivation of these
closed receptors following abstinence/cessation gives rise to symptoms of craving
and withdrawal which, in turn, reinforce continuing smoking/relapse. Quan-
tity smoked was also statistically associated with pathways regulating cell-cycle
checkpoints and apoptosis, pathways regulating the immune system, metabolism,
signal transduction, as well as with asthma pathways.

Furthermore I identified several pathways regulating the mitotic cell-cycle
chain that are significantly enriched for mutations in the ever smoking analy-
sis and in the quantity smoked analysis. While no pathway was shared by the
two smoking behaviours, these pathways form chains of pathways regulating dif-
ferent stages of cell division and sharing biological functions. These pathways
control appropriate DNA replication by degrading regulatory proteins through-
out anaphase, throughout exit from mitosis and during the G1 phase (Castro,
Bernis et al. [60], Manchado, Eguren et al. [230]), as well as axon growth and
synaptic plasticity (Li and Zhang [200]). As alluded to earlier, this finding also
emphasizes and provides further support for the idea that synaptic plasticity and
learning have a strong bearing on the development of addiction behaviors. Be-
cause the cell-cycle pathways are also known to belong to ’a subway map of cancer
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pathways’ (Hahn and Weinberg [150]) (given their role in cancer development),
this result suggest that some of the same biological mechanisms underlie both
smoking and cancer. The results of GWASs of smoking dependence (Spitz, Amos
et al. [304]) and lung cancer (Hung, McKay et al. [169]) are consistent with this
finding. Both GWASSs identified the same CHRNAS5-A8 genomic region on chro-
mosome 15, suggesting that cancer and smoking share genetic vulnerabilities —
as first conjectured by Fisher in 1959 (Fisher [127]): “[...] cigarette smoking
and lung cancer, though not mutually causative, are both influenced by a common
cause, in this case the individual genotype” (Fisher [127]). While the mediation
study by VanderWeele et al. (VanderWeele, Asomaning et al. [339]) demonstrated
that variants at the 15g25.1 locus have a direct effect on both smoking and lung
cancer, it is of interest to determine whether their conclusion generalizes at the
pathway level as suggested by my results.

These findings have important implications for reducing the disease burden
associated with smoking. Smoking is a known risk factor for various disease traits
such as lung cancer (see [275], Lee, Forey et al. [196]), leukemia (e.g., see Firca-
nis, Merriam et al. [125]), heart disease (e.g., see Huxley and Woodward [171]),
chronic bronchitis and emphysema (see e.g., Forey, Thornton et al. [128]), and it
is well recognized as the world’s leading cause of preventable disease and death.
Currently there are several pharmacological treatments, including bupropion and
nortriptyline (designed to treat depression, see Cahill, Stevens et al. [56]), bus-
piron, diazepam or propranolol (designed to treat anxiety, see Hughes, Stead et
al. [168]) and nicotine replacement therapy (Cahill, Stevens et al. [56]). However,
the mechanisms underlying some of these treatments are still yet to be known
(Cahill, Stevens et al. [56]). For instance, it is yet unknown why bupropion might
work in some individuals (Chen, Bloom et al. [65]) while it is associated with
side effects such as increased risk of seizures in others (see e.g., Cahill, Stevens
et al. [56]). The empirical findings reported herein open a path to potential tar-
gets for therapeutics. Aside from the nicotinic acetylcholine receptors, known for
their rewarding role in nicotine dependence, the cell-cycle regulators are possible
targets in smoking cessation therapy as proposed for novel cancer therapies.

12.1.1 Conclusion

The findings reported herein emphasize and lend further support for the idea
that synaptic plasticity and learning have a strong bearing on the development
of addiction behaviours. These results are informative in decoding the biological
bases of other addiction phenotypes and disease traits such as schizophrenia and
cancers with which smoking shares risk loci and biological pathways.
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12.2 Means of Improving Statistical Power in
GWAS

Underpowered genome-wide association studies are more likely to capture chance
characteristics of the data, than true genetic effects. The past ten years of GWAS
taught us that large samples are required to reliably identify individual SNPs
associated with complex psychiatric traits. This is mainly due to the small SNP
effects — each accounting individually for less than 0.1% of the phenotypic variance
— and to the multiple testing burden. Yet, the success of GWAS also hinges
upon the definition of the phenotype, the informativeness of markers (usually
SNPs), and the approach to analyze the genotype-phenotype relation. I have
considered each of these determinants of statistical power in some detail in the
first part of this thesis. Below I tie together the recommendations stemming from
the results of my power studies into an overall strategy for improving statistical
power in GWAS interrogating the contribution to disease of common as well as
rare variants.

12.2.1 On the definition of the phenotype

Complex traits are often multivariate in nature, that is, the phenotype comprises
several correlated, but distinct components. For instance, consider the items
relating to behavioral and physiological symptoms in the substance use disor-
der (DSM-1IV), or the multiple correlated measures relating to forced expiratory
volume, forced vital capacity, total lung capacity, functional residual capacity,
residual volume and inspiratory capacity in the chronic obstructive pulmonary
disease (COPD; see e.g., Dirksen [100]). Yet, to date, most association studies
involved univariate phenotypes obtained by collapsing multivariate measures to
create a sum score or an affection status dichotomy. For example, in the GWAS
by Cho et al. (Cho, Castaldi et al. [68]) multiple COPD measures were collapsed
into a dichotomous affection status, and in the GWAS of alcohol dependence by
Edenberg at al (Edenberg, Koller et al. [110]), DSM-IV symptoms were used to
create a case control dichotomy. However, reducing phenotypic dimensionality —
by collapsing the multivariate measures into a sum score (which may in turn be
dichotomized) — will increase the power only in certain situations. The flowchart
in Figure 12.1 shows when such an approach is to be preferred over a multivariate
one by considering several trait-generating models.
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Figure 12.1: Provisional flowchart for selecting an analytic technique based on the
hypothesized trait generating model. The GV effect on the observed indicators
is assumed to be consistent (i.e., in the same direction). The flowchart covers
many but not all possibilities (as the best test in the case of a network, may de-
pend on the characteristics of the network). Abbreviations: GV — genetic variant;
EFA — exploratory factor analysis; CMV — combined multivariate approach (Med-
land and Neale [242]); TATES — Trait based Association Test that uses Extended
Simes procedure (Van der Sluis, Posthuma et al. [337]). Note that the MultiPhen
procedure (O'Reilly, Hoggart et al. [262]) is closely related to MANOVA.
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As depicted in Figure 12.1, the choice of the analytic technique depends on:
(a) assumptions concerning the data generating model (e.g., conditional indepen-
dence in latent variable models, or mutualism (Van Der Maas, Dolan et al. [332])
in the network model); (b) the dimensionality of the model; (c) the exact locus of
the genetic effect and, related to this, (d) on whether the genetic variant impinges
on all or some indicators, i.e., on how the variables are connected and where the
GV exerts its effects. Figure 12.1 shows that the use of a sum score would be
justified when the trait can be well described by a Rasch model. This draws
heavily on the tenability of strong IRT psychometric assumptions such as unidi-
mensionality, conditional independence and measurement invariance with respect
to the genetic variant (i.e., the genetic effect is on the latent trait, see (Van Der
Sluis, Verhage et al. [338]) for more details). This amounts to a highly idealized
situation, as data on complex traits rarely fit the Rasch model perfectly.

Furthermore, whenever the model is multidimensional and the GV affects
some of the latent factors (but not all; see Chapter II; see also (Van Der Sluis,
Verhage et al. [338], Van der Sluis, Posthuma et al. [337]), or when the effect is
specific to some of the observed indicators (i.e., not general, propagated via the
latent trait in all indicators; see e.g., Medland and Neale [242]), collapsing the
measurements on multiple phenotypes into a sum score typically leads to a loss
in information and this in turn reduces power (see Chapter II; see also Medland
and Neale [242], Van Der Sluis, Verhage et al. [338], Van der Sluis, Posthuma et
al. [334], Van der Sluis, Posthuma et al. [337], Xu, Gaysina et al. [371]). Sim-
ilarly, as discussed in Chapter II, transforming the phenotypes to factor scores
or principal components, and resorting on univariate analyses would be justified
only if the phenotypes are psychometric indicators which can be described well
by a common pathway model or a single common genetic factor with relatively
small genetic residuals. If the trait is multidimensional, this approach is likely
to be powerful only if all indicators are affected by the GV in the same direction
(Medland and Neale [242]) — either directly or via the common factors. In the
latter scenario, the power of detection is expected to vary with the magnitude
of the factor loadings, i.e., to be larger for higher factor loadings (see Medland
and Neale [242]). Note that dichotomization (i.e., collapsing the sum score into
a case-control dichotomy) has been omitted from the flowchart because resorting
on this technique is almost never recommended given the associated reduction
in power (see Van der Sluis, Posthuma et al. [334]). Dichotomization would be
justified only if the variable is a true dichotomy, or if dichotomization increases
measurement precision (see MacCallum, Zhang et al. [226]). In circumstances
other than these, dichotomization (either by mean/median split or based on a
clinical threshold) discards information about individual differences and so, is
likely to result in misclassification of some individuals, which reduces the statis-
tical power (MacCallum, Zhang et al. [226]).

Multivariate techniques such as MANOVA (MultiPhen), TATES or CMV are
particularly powerful whenever the GV affects some but not all observed indica-
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tors (see Chapter 1I; see also Ferreira and Purcell [123], Medland and Neale [242],
Van der Sluis, Posthuma et al. [337], Van der Sluis, Dolan et al. [335]), when the
genetic effects are mixed (i.e., the effect is on the latent trait as well as specific
to some of the observed indicators), when the GV displays contrasting effects
(see Medland and Neale [242]) or when the data generating process can be well
described by a network model (see (Van der Sluis, Posthuma et al. [337], Van der
Sluis, Dolan et al. [335]) for more details). Multivariate analyses have the ability
to capture and exploit the additional information on the correlations between
the variables, or the ability to assess the separation among the genotype groups
along a set of underlying dimensions (i.e., variates) by considering jointly the set
of phenotypes (Stevens [306]). Furthermore, as demonstrated by Van der Sluis et
al. (Van der Sluis, Posthuma et al. [337]) and by Medland and Neale(Medland
and Neale [242]), the multivariate techniques perform well also in the scenarios
in which data are missing completely at random, being particularly robust when
the GV effect is on the latent trait.

Although the multivariate techniques have merit (i.e., for the power advan-
tages they confer; see Chapter II and also see e.g., Ferreira and Purcell [123],
Medland and Neale [242] and for the increase in parameter estimation accuracy
they afford Shriner [297]), many researchers feel that simpler statistical mod-
els are quite adequate in the GWAS context for their computational easiness
(Sham and Purcell [295]) as well as for interpretational reasons (Stephens [305]).
However, there is solid evidence from the recent literature that the interest in
addressing the computational (e.g., Zhou and Stephens [382]) as well as the inter-
pretational issues (Stephens [305]) has intensified over the last years. Applying
multivariate techniques genome-wide is now greatly facilitated by recently de-
veloped GWAS dedicated software (Van der Sluis, Posthuma et al. [337], Zhou
and Stephens [382]). In addition to these, R—packages like gee (Carey, Lumley et
al. [58]) and mmm (Asar and Ilk [22]); see also Table 1 in Shriner [297] implement
multivariate models suitable for the analysis of traits that follow distributions
other than Gaussian (i.e., binomial, Poisson, Gamma). Applying these methods
genome-wide is feasible given the genotype data are typically chunked in man-
ageable slices and hence the chunk-based analyses can be parallelized provided
access to a cluster. This procedure can be accessed from Plink (Purcell, Neale
et al. [279]) which comes with the advantage of being efficient in handling large
datasets, thus speeding-up the analysis considerably. Following-up univariate
gee-Plink analyses on each phenotype with the TATES procedure (Van der Sluis,
Posthuma et al. [337]) is an option worth to consider especially for the analysis
of family-based samples. Importantly, the advantages conferred by multivariate
techniques began to be appreciated and extended from analyses focused on indi-
vidual SNPs (see (Shriner [297]) for a recent review) to analyses focused on sets
of SNPs, common (e.g., Van der Sluis, Dolan et al. [335]) or rare (Maity, Sullivan
et al. [229]).
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A point to bear in mind before embarking in multivariate analyses is that the
multivariate techniques are particularly powerful if only a subset of the pheno-
types (not all phenotypes) are affected by the genetic variant. As demonstrated
by the power analyses carried-out in Chapter II and by others (e.g., Ferreira
and Purcell [123], Stephens [305]) in this circumstance an increase in phenotypic
correlations enhances the power. Hence, as suggested by Morrison ( [248]) and
Cole et al. (Cole, Maxwell et al. [71]) whenever one avails oneself of multivariate
techniques it might be prudent to include variables correlated with the trait of
interest yet not affected by the genetic variant to improve the power sharply:
“Thus, the counterintuitive possibility arises that greater power might result from
the inclusion of weak variables (for which the effect size is zero) in the dependent
variable system (as long as they are highly correlated with the outcome variables)”
(Cole, Maxwell et al. [T1], page 466).

12.2.2 In time of test, family is best

As highlighted in Chapters III-V, over the past ten years of GWAS, family-based
samples collected at the twin and family registries have contributed substantially
to the discovery of genetic variants implicated in complex traits and diseases.
Regarding the occasional practice of limiting the analyses to unrelated individ-
uals, the power studies conducted in Chapters III-V demonstrate clearly and
unambiguously that this practice is counterproductive, that is, discarding fam-
ily members generally reduces the effective sample size and, correspondingly, it
reduces the power. To get an indication of the power loss incurred in such a
case, take the results displayed in Figure 3.1a (Chapter I1I): with a sample of 500
families comprising sibships size 4 and given a genetic variant with a MAF = 0.2
and explaining 1% of the variance, the power 'bounces around’ 90% across the
whole range of the phenotypic correlations, whilst limiting the sample to single-
tons reduces the power to as low as 37%. Arguments pertaining to computational
tractability or to the effects of model misspecification that could justify this power
loss ought to be reconsidered in the light of recent software developments. The
fast algorithms developed recently (e.g., see Kang, Sul et al. [179] and Lippert,
Listgarten et al. [209]) reduced dramatically the computational load associated
to the family-based analysis. Actually, over the past five years there has been a
plethora of papers concerned with developing efficient and fast algorithms tailored
to handle clustered data — be this due to familial or to population stratification —
and generally these were implemented in software programs that are made freely
available. Several examples are listed in Table 12.1.
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Table 12.1: Software freely available for family-based genome-wide association

analysis
Specification of
Software Regression Model for the background thfarCi;%slteer URL
model correlation matrix .
(sandwich
correction?)
. Binomial
Plink [279] Gaussian V() = 63,1 (Independence) L o
+ 2 ~2 ~2 gee Plink
ce [58) Gamma Inverse  V(0) = [ o, 0 | (Exchangeable) documen.
g pack- Gaussian V(6) = a-i, 6%, 5—% ] id (yes) tetion?
age Poisson Quasi (Fixed, e.g., ACE background)
Quasibinomial V(0;) (Unstructured)
Quasipoisson
: Gaussian ~ e .
Plink Binomial V(0) = 621 (Independence) family’ (yes) Plink?
Plink
+ Cox ~ , , survival*
survi- : V(0) = o3I (Independence) cluster’ (yes)
| [320] proportional V(@) = [ 2. 521 (Exch - frailty” (no) documen-
val | hazards (8) =[8, 0z | (Exchangeable) Y tation®
R pack-
age
_ V(6) = 1 (Independence)
V(0) =[0o.,0% | (Exchangeable) .
+ 3 2 ~2 A2 ) ; nlme
V() =|c%,0,,0%] random’ (yes,
nlme [269, : . AT T E documen-
271 Linear mixed (ACE background) see documenta- tation®
R pack— V(ef) = [ 6-,247 8%7 &QE ] tiOH6)
age (Fixed, e.g., ACE background)
V(0) (Unstructured)
Observed
- - PN PCI t GCTA®
GCTA [375] Linear mixed V(0) = [6%,6%] (AE model) Reiilil(fnls(ljlip
Matrix (no)
Bl
: : . AN A2 A2 .
Merlin [3]  Linear mixed V(0)=[0,,0% ] (AE model) Relationship docgmelrll
. tation
Matrix (no)
Observed
Genetic
FaST- : : ~ 2 ~ . : FaST-
LMM [200] Linear mixed V(0) =[6%,5% ] (AE model) Relationship LMM12

Matrix(no, but
see [245])
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Although the list in Table 12.1 is not exhaustive, it shows that there are mul-
tiple modeling strategies readily available which can handle a variety of traits
(e.g., continuous, binary, counts, time to event). Conveniently, practically any
statistical model implemented in an R package can be accessed from Plink via
Rserve (Urbanek [328]) and applied genome-wide. As mentioned above, the R-
Rserve-Plink procedure is feasible given the genotype data are typically chunked
in manageable slices and hence the chunk-based analyses can be parallelized pro-
vided access to a cluster.

It is important to realize that the power of the analytic strategy depends
heavily on the choice of the model for the correlation matrix (conditional on the
fixed regressors), i.e. the matrix which accommodates the dependency in the data
due to family clustering. This choice should be directed by the theoretical and
empirical knowledge of the covariance structure at hand (i.e., derived either based
on genetically informative samples or based on the literature). For instance, given
ACE traits (i.e., subject to Additive (A) genetic, common (C), and unshared (E)
environmental effects) characterized by moderate to large familial resemblance
arising both from shared genetic factors and common environment, maximum
likelihood estimator with a correctly specified background model, i.e., a model
that includes information regarding genetic relatedness and relatedness due to
common environment, should be the strategy of choice (e.g., use Plink + nlme).

A complication arises when the samples consist of families highly variable in
number and composition, as full detailed modeling of the background might be
complex and subject to misspecification. How to arrive at correct standard errors
given the background is (possibly) misspecified? In this situation, a sandwich
correction can be applied to capture correctly the variance of the parameters of
interest. It is important to note that there are many ’flavors’ of sandwiches,
i.e., a sandwich correction by itself can include any background model. Hence,
once again, the choice of the model for the working correlation matrix becomes
an important consideration. Simpler models might be preferable for computa-
tional reasons, but they are likely to exact price in terms of power which depends
merely on the degree of misspecification. Returning to our ACE trait exam-
ple: a quick and simple alternative would be to (incorrectly) assume an E model
for the background and use the ULS sandwich (i.e., using Plink), but with this
modeling choice the price in power increases sharply with increasing background
correlations. However, using a maximum likelihood sandwich procedure with the
background misspecified as a CE model (e.g., employing Plink + robust GEE with
an exchangeable correlation matrix — or using nlme (see Table 12.1) instead® to
fit a random intercept model — and getting the robust standard errors) will likely
maintain the power close to that of the true model (see Table 3, Chapter IV).

Fitting a misspecified AE model for the background is an alternative (i.e., us-
ing a linear mixed model as implemented in e.g., FaST-LMM or GCTA), which has

~

2Note, these two methods are equivalent, conditional on the treatment of V(8)
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the added benefit that the block diagonal structure of the background correlation
matrix can be relaxed to accommodate distant relatedness. However, although
a sandwich is quick and simple to incorporate in the fast maximum likelihood
procedure (see Chapter IV) currently none of these programs implement a sand-
wich to correct the standard errors for misspecifying of the background (i.e., by
ignoring the shared environmental effects).

It should be highlighted that although the focus was on selecting from the pool
of available methods, the most efficient ones to conduct family-based genome-
wide association studies, the analytic strategies discussed in Chapters V-VI are
regression based approaches, hence relevant to any analysis involving family data.
That is, the predictor can be a genetic variant, a polygenic score or any other
covariate one may be interested in.

12.2.3 Set-based analyses: expedient in a genome-wide
scan

Improving the power of SNP-based tests by fully exploiting the phenotypic infor-
mation and the sample at hand improves the power of downstream analyses — such
as meta-analyses and set-based tests — that rely on the SNP-based p-values. Sim-
ulations and empirical data analyses (Liu, Mcrae et al. [215], Li, Gui et al. [201],
Li, Kwan et al. [202], Listgarten, Lippert et al. [211]) including the applications
reported in Chapters VII-IX demonstrate that following-up the SNP-based anal-
yses with set-based tests generally boosts the power of detection and leads to
additional insights into the biology of complex traits and diseases. The increase
in power has two main sources: first, set-based tests consider jointly the weak
effects of SNPs within the target region — be it the gene, the biological pathway
(Liu, Mcrae et al. [215], Li, Gui et al. [201], Li, Kwan et al. [202], Listgarten,
Lippert et al. [211]) (i.e., the set of genes having the same biological function) or
the whole genome (Yang, Benyamin et al. [374], Yang, Lee et al. [375]); second,
by targeting sets rather than SNPs the number of tests drops from millions to
thousands and this mitigates considerably the multiple testing problem.

This boost in power afforded by set-based tests is nicely illustrated by the
results reported in Chapter X. Whilst the collaborative analyses conducted by
the TAG consortium (which combined three meta-analytic samples: the TAG, the
ENGAGE and the Oxford-GlaxoKline samples, comprising 140,000 individuals)
followed up loci that passed the 10~* threshold located 14 SNPs significantly
associated with smoking behaviors, the set-based tests (Li, Gui et al. [201], Li,
Kwan et al. [202]) in the initial TAG sample (N = 74,053 individuals) afforded
sufficient power to implicate 15 new genes and 40 biological pathways. This
is just one example (but see also Chapters VII and VIII, and the applications
on Chron’s disease in (Li, Gui et al. [201], Li, Kwan et al. [202]) and Type 2
Diabetes in (Li, Gui et al. [201]) for additional examples) that illustrates the



12.2.  Means of Improving Statistical Power in GWAS 205

power advantages conferred by a set-based approach: all these hints concerning
the biological mechanisms underlying smoking behaviors were missed in the SNP-
based approach of GWAS.

Interestingly, although the tests focused on individual SNPs are still often
underpowered with the current sample sizes, this standard SNP-based approach
was proposed also for rare variant detection in sequencing studies (e.g., see Kin-
namon, Hershberger et al. [189]). This observation is cause for concern, given
that single variant tests are not only underpowered (Li and Leal [199], Madsen
and Browning [227], Sham and Purcell [295]) but they are likely biased in their
asymptotics (Bigdeli, Neale et al. [33]) with a small number of counts (whatever
the sample size). Clearly, for the reasons emphasized above (and discussed ex-
tensively in the literature Li and Leal [199], Madsen and Browning [227], Price,
Kryukov et al. [276], Wu, Lee et al. [367], Lee, Wu et al. [196], Chen, Meigs et
al. [64], Tonita-Laza, Lee et al. [176], Listgarten, Lippert et al. [211], Lippert,
Xiang et al. [210], Svishcheva, Belonogova et al. [312]), set-based tests are to be
the preferred tool also for rare variant discovery. As there are several rare variant
tests, their robustness to model misspecification could be the criterion of prefer-
ring one over the others. In this regard, in Chapter VI I have considered two
of the most widely used test statistics in rare variant association studies — the
score and the likelihood ratio tests — and argued in favor of the later, because of
its greater robustness both to weight misspecification and to the inclusion in the
target set of weighted neutral variation.

The availability of sequence data in increasingly large samples opens up the
possibility to interrogate the contribution to disease of both common and rare
variants. It is important to note that rare variant tests such as the sequence
kernel association test (SKAT) allows for testing the combined effects of rare and
common variants, whose contribution to the test statistic may be easily prioritized
by assignment of weights. Although running separate tests for rare and common
variants is the prevailing approach in the literature, results of my empirical analy-
ses in Chapter VI question this practice. Considering common variants along with
the rare ones in sequence-based kernel association tests appears to be justified for
three main reasons. First, the use of variable weighting schemes is equivalent to
applying variable frequency thresholds: the weights are removing from the test
or favoring the contribution to the test statistic of the variants within the target
set based on their frequency. Second, only the joint signal — coming from rare
and more common variants — increased power to detect significant enrichment.
And third, importantly, with the current samples, our tests are mostly powered
to locate regions under relatively weak selection pressures, and such regions are
expected to harbour rare as well as common variants both with functional effects.
To locate pathways and genes under stronger selection pressures, larger samples
(see Zuk, Schaffner et al. [383]) and the inclusion of more extreme weights (i.e.,
weights that overlook common variants and favour the rarer ones) will probably
be required.
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12.2.4 Conclusion

The past ten years of GWAS have taught us that we need large samples to
reliably identify individual SNPs associated with complex psychiatric traits. This
is mainly due to the small SNP effects — each accounting individually for less than
0.1% of the phenotypic variance — and to the multiple testing burden. Yet, as I
demonstrate in this thesis, the success of GWAS hinges also upon the phenotype
definition and the approach to analyze the genotype-phenotype relation. Opting
for multivariate analyses rather than relying on dimension reduction techniques,
exploiting at the fullest the rich resources collected at the twin registries, and
complementing SNP-based analyses with set-based tests are key components of
the strategy for improving statistical power in GWAS. This strategy is to be
highly relevant to future genetic association studies facilitated by full exome and
genome sequencing technologies.

Notes
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Chapter 14

Samenvatting

Multivariate fenotypische data kan in Genoom-wijde associatie analyse (GWAS)
het onderscheidend vermogen (oftewel power) om een genetisch variant (GV) te
detecteren verhogen. Echter, multivariate data kunnen op verschillende manieren
geanalyseerd worden. Hoofdstuk II betreft een vergelijking van verschillende
strategien om multivariate fenotypische data te modelleren als men een GV wil
detecteren. Wij simuleerden multivariate fenotypische data volgens de vijf mod-
ellen: (1) een n-factor model; (2) een model met meerdere correleerde genetische
factoren; (3) een latente regressie model; (4) een hybride model bestaande uit een
n-factor model voor de gedeelde omgevingsinvloeden (C), en autoregressieve mod-
ellen voor de additief genetische en niet-gedeelde omgevingsinvloeden (A and E),
en 5) een stationair AE autoregressief model. In deze modellen introduceerden
we het effect van de GV, als onderdeel van de additief genetisch invloeden, op ver-
schillende manieren. Zodoende was het effect soms aanwezig in alle fenotypes, en
soms beperkt tot een of een subset van de fenotypes. We vergeleken vervolgens de
power van de volgende analyses om de GV te detecteren: (a) univariate regressie
analyse, waarbij ieder fenotype apart op de GV werd geregresseerd (ANOVA); (b)
univariate regressie analyse, waarbij de som van de fenotypes scores werd gere-
gresseerd op de GV (ANOVA); (c) een exploratieve factor analyses (EFA), waarbij
de factoren werden geregresseerd op de GV; en (d) multivariate regressie analyse
waarbij de fenotypes tegelijkertijd werden geregresseerd op de GV (MANOVA).
Power werd berekend aan de hand van de non-centraliteitsparameters (NCP) van
de likelihood ratio test. Uit de resultaten bleek dat het gebruik van een som-
scores en de factor scores relatief hoge power hadden als de GV een effect had op
alle fenotypes; MANOVA had in deze situatie relatief lage power. Voorts bleek
dat MANOVA en EFA relatief hoge power hadden als de GV een effect had om
sommige maar niet alle fenotypes, waarbij de power toenam met toenemende
correlatie tussen de fenotypes. Ook bleken de NCPs van de MANOVA en EFA
gelijk, hetgeen betekent dat verschillen in power volledig toe te schrijven zijn aan
het verschil in vrijheidsgraden van de tests.
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Imputatie van genotypes in families kan de power in GWAS verhogen omdat
het de mogelijkheid creert om extra familieleden op te nemen in de analyses voor
wie wel fenotypische, maar geen genetische, data beschikbaar zijn. De genotypes
van subjecten kunnen gemputeerd worden op grond van de gemeten genotypes
in haar of zijn familieleden. In hoofdstuk III is de invloed van verschillende
factoren op de power om een GV te detecteren onderzocht in de context van dit
type imputatie. Hierbij is gekeken naar families met 2 of 4 kinderen, waarbij de
imputatie van de genotype data van een kind gebaseerd was op 1 broer (of zus),
of 1 broer (of zus) en 1 ouder. Monte Carlo data simulaties zijn gebruikt om
twee schattingsprocedures te vergelijken die verschillen in de behandeling van de
inherente onzekerheid van gemputeerde data. De mixture aanpak houdt rekening
met het gegeven dat de mogelijke gemputeerde waarden gekenmerkt worden door
een waarschijnlijkheid (idealiter liggen deze dicht bij 1, zodat de correcte impu-
tatie een hoge waarschijnlijkheid heeft). De dosage aanpak gebruikt een gewogen
genotype-waarde die gebaseerd is op deze waarschijnlijkheden. In dit onderzoek
is, geven fenotypes met verschillende erfelijkheidscofficinten (laag, middel, hoog),
gekeken naar de power en kans op een type I fout (oftewel de conclusie dat een GV
zonder effect toch effect heeft), en de rol van misspecificatie van de covariantie
structuur tussen de families leden worden gemodelleerd,. Tenslotte zijn ter illus-
tratie twee echte dataset geanalyseerd. Uit de resultaten bleek dat het verschil
in power tussen de twee schattingsprocedures klein was. Op grond van de betere
computationele efficintie verdient de dosage aanpak echter de voorkeur. De cor-
recte specificatie van de covariantie structuur bleek wel belangrijk: met name bij
hoog erfelijke fenotypen leidt misspecificatie tot een verlaagde kans op een type
I fout. Tenslotte, bleek dat dit type imputatie onder specifieke omstandigheden
kan resulteren in aanzienlijke toename in power.

Als de regressie van een fenotype op een voorspeller (bijv. een GV) wordt
uitgevoerd in familie data dient rekening gehouden te worden met de covariantie
structuur van de fenotypische scores van de familieleden. Het correct modelleren
van deze structuur is belangrijk voor de power om de regressie relatie aan te to-
nen. Echter, dit is vaak gecompliceerd met name als de families binnen een studie
verschillen in grootte en samenstelling. Model misspecificatie is dan moeilijk te
vermijden. In hoofdstuk IV is gekeken naar het effect van model misspecifi-
catie op de power om een regressie relatie (zoals een associatie met een GV) te
detecteren. Hierbij is, in de context van een GWAS, gekeken naar de rol van
misspecificatie in de ULS (unweighted least squares) en de ML (maximum likeli-
hood) schattingsprocedures en de efficintie van zogenaamde sandwich correcties,
die de toets van de regressierelatie corrigeren voor de misspecificatie. De rol van
misspecificatie is onderzocht in families van twee of vier kinderen (monozygote
(MZ) of dizygote (DZ) tweelingen, met of zonder 2 broers of zussen), met en
zonder de ouders. De covariantie structuur was gebaseerd op additive genetische
(A) en ongedeelde (E) omgevingsinvloeden (een AE model), of op een model met
ook gedeelde (C) omgevingsinvloeden (een ACE model). Uit de resultaten bleek
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dat de sandwich correctie van de ULS en de ML resultaten leidde tot een correcte
kans op een type I fout (d.w.z. de kans op vals positieve bevindingen was correct
en gelijk voor beide methodes). Echter, de power van de gecorrigeerde ML toets
bleek hoger dan die van de gecorrigeerde ULS toets. Het verschil in power bleek
af te hangen van de correlatie tussen de familieleden: hoe hoger de correlatie
gecreerd door gedeelde genen en/of gedeelde omgevingsinvloeden, hoe groter de
winst in power die geboekt kan worden met ML. De power van de gecorrigeerde
ML test lag niet veel lager dan de power in een correct gespecificeerd model.
Voor regressie analyse uitgevoerd in familieleden raadden wij daarom de ML
schattingsprocedure met sandwich correctie aan, als de hoofdvraag de regressie
relatie betreft en niet de covariantie structuur van de familieleden.

Monozygote tweelingen maken een belangrijk deel uit van de populatie van
participanten in tweeling registers bij wie data wordt verzameld. In GWAS, waar-
bij fenotypische scores worden geregresseerd op een GV, wordt vaak van de MZ
tweelingenparen de data van n MZ tweeling weggelaten. Uit hoofdstuk V blijkt
dat het simultaan analyseren van de data van beide tweelingen in een paar geen
invloed heeft op de kans op een type I fout: de kans op vals positieve bevindingen
blijft onveranderd. Voorts blijkt dat het behouden van beide tweelingen leidt tot
hogere power, waarbij de winst in power athangt van de fenotypische correlaties
tussen de tweelingen (hoe lager de correlatie, hoe groter de winst in power als
data van beide tweelingen geanalyseerd wordt). Het effectief modeleren van fami-
lie data (inclusie van alle MZ data) wordt besproken in het licht van de resultaten
van hoofdstuk IV. De conclusie is dat de hogere power een goede reden is data
van beide MZ tweelingen te behouden in GWAS.

Van zeldzame GVs (allele frequentie < .01) wordt aangenomen dat zij aanzien-
lijk kunnen bijdragen tot de genetische variantie van complexe fenotypes. Toetsen
van zeldzame GVs zijn veelal gebaseerd om het gezamenlijk effect van meerdere
zeldzame GVs. In zogenaamde Sequence Kernel Association Tests (SKAT) wordt
het gewogen effect van ieder GV geacht een realisaties te zijn van een normaal
verdeling met een gemiddelde van nul en een gegeven (te schatten) variantie. De
gewichten zijn een functie van de (minor) allel frequenties van de individuele GVs,
waarbij een GV met een lagere allel frequentie verondersteld wordt een groter ef-
fect te hebben op een fenotype. Echter, de ware waardes van de gewichten zijn
onbekend. In hoofdstuk VI is gekeken naar de rol van misspecificatie van deze
gewichten op de power en op de kans op een type I fout. Hierbij is gekeken naar
zowel de score test en de likelihood ratio test van de associatie test. De likelihood
ratio test blijkt robuuster dan de score test voor misspecificatie van de gewichten.
Voorts is onderzocht of het gebruik van meerdere gewichten leidt tot een efficinte
toets die minder athankelijk is van de keuze van de gewichten.

In hoofdstuk VII is de erfelijkheid van initiatie van cannabis gebruik en rook
gedragingen onderzocht aan de hand van recente methoden. Voorts zijn genome-
wijde analyses uitgevoerd om genen te identificeren die bijdragen tot individuele
verschillen in cannabis initiatie en leeftijd van initiatie. Hierbij zijn SNPs gem-
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puteerd op grond van het Genome of the Netherlands referentie paneel. Uit de
resultaten bleek dat de gemeten en gemputeerde SNPs gezamenlijk een signifi-
cant deel (25%; P = 0.0016) van de fenotypische variantie verklaarden. Cannabis
gebruik blijkt een polygenetisch fenotype, waarvan de genetische variantie toe te
schrijven is aan een groot aantal GVs, die verspreid liggen over het genoom.

In hoofdstukken VIII en XI worden de resultaten van genoom-wijde analy-
ses van cannabis initiatie en leeftijd van initiatie gepresenteerd. Deze analyses zijn
gebaseerd op de resultaten van meerdere GWAS analyses uitgevoerd in Europa,
de US, en Australia onder leiding van het Internationale Cannabis Consortium.
De studies in deze hoofstukken zijn de eerste die de associatie aantonen tussen
GVs en zowel cannabis gebruik als leeftijd (NCAM1, CADM2, SCOC, SCOC,
SCOC-AS1, and KCNT2) van initiatie van cannabis gebruik (ATP2C2, ECT2L,
and RAD51B).

Het Tobacco and Genetics (TAG) Consortium heeft de relatie onderzocht
tussen 2.5 miljoen SNPs en roken. Hierbij zijn 1052 SNPs gevonden die ge-
associeerd zijn met roken (bij een alfa van 10E-4). In hoofdstuk X zijn deze
resultaten 2.5m tests gebruikt om set-based associatie toetsen uit te voeren. Hi-
erbij worden de effecten van individuele SNP die een gen vormen samengevoegd in
gene-based tests, en worden de effecten van individuele genen samengevoegd tot
pathway-based tests (oftewel een test per groep van genen in plaats van per gen).
Het aantal uit te voeren tests is dan aanzienlijk kleiner, waardoor de correctie van
de alfa voor het aantal uitgevoerde tests ook minder extreem is. De power om
effecten te detecteren is derhalve groter dan in de SNP-based ( 2.5m) tests. Op
grond van deze analyses zijn 21 gene-based associaties en 40 pathway-based associ-
aties gedentificeerd die samenhangen met initiatie van roken, hoeveelheid (roken),
leeftijd van initiatie, en het stoppen met roken. De paden, die geassocieerd zijn
met afhankelijkheid, bevatten genen die betrekking hebben op neuronale plas-
ticiteit, leren, cel-cyclus regulatie, metabolisme, en het immuun systeem. Voorts
hebben sommige pathways betrekking op zowel roken als kanker (in overeenstem-
ming met Fisher’s vermoeden uit 1959). Dit is de eerste studie die op grond van
exploratieve gen-based en pathway-based tests, de associatie tussen biologische
pathways en aan roken gerelateerd gedrag heeft aangetoond.
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