Genetic influences on
structural and functional
brain maturation

- .']almér Teeuw -







GENETIC INFLUENCES ON
STRUCTURAL AND FUNCTIONAL
BRAIN MATURATION

Jalmar Teeuw



Genetic influences on structural and functional brain maturation

Research in this thesis was supported by the Netherlands Organization for Scientific
Research Grants NWO 433-09-220 (to HE.H.P.), NWO 51.02.060 (to H.E.H.P.), 668.772 (to
D.IB.); NWOMagW 480-04-004 (to D.LB.); and NWO/SPI 56-464-14192 (to D.IB.); the
European Research Council Grant ERC-230374 (to D.LB.).

Print:  Gildeprint - www.gildeprint.nl

Cover: Photo by Grigory Bruev (iStock Photo)

Design by Jalmar Teeuw

ISBN:  978-90-393-7347-7

Copyright © Jalmar Teeuw, 2020

All rights reserved. No part of this thesis may be reproduced or transmitted in any form or
by any means, without prior written permission from the author. The copyrights of articles

that have been published have been transferred to the respective journal.



Genetic influences on structural and
functional brain maturation

Genetische invloeden op structurele en
functionele ontwikkeling van de hersenen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht
op gezag van de
rector magnificus, prof.dr. HR.B.M. Kummeling,
ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

maandag 30 november 2020 des middags te 2.30 uur

door

Jalmar Teeuw

geboren op 21 december 1987
te SCHIEDAM



Promotoren:
Prof. dr. H.E. Hulshoff Pol
Prof. dr. D.I. Boomsma

Copromotor:
Dr. R.M. Brouwer



TABLE OF CONTENTS

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6

Appendices

General introduction

Longitudinal development of cerebral cortical thickness
Reliability modelling of resting-state functional connectivity
Longitudinal development of cortical resting-state networks
Progressive aging in schizophrenia

Highlights and general discussion

Supplementary information to chapter 2
Supplementary information to chapter 3
Supplementary information to chapter 4
Supplementary information to chapter 5
References

Nederlandse samenvatting

Dankwoord

List of publications

Curriculum vitae

27

55

75

107

123

139

155

173

265

273

319

327

333

339






CHAPTER 1

GGENERAL INTRODUCTION



CHAPTER 1

1.1 GENERAL INTRODUCTION

Adolescent development is marked by significant transitions in behavioral, physical and
physiological characteristics in mammals, including humans (Sawyer et al., 2018; Spear,
2011). Often associated by hormonal and physical changes with the onset of puberty
typically around the age of 11 years in humans (Paula Abreu and Kaiser, 2016; Fredriks et
al., 2000; Koenis et al., 2013), adolescence is characterized by changes in social, affective,
and cognitive skills (Spear, 2000; Steinberg and Morris, 2001; Steinberg, 2005). Adolescence
is associated with advances in critical thinking, the development of self-identity and
morality, and attachment to peers in a transition to become an independent person, but can
be accompanied with behavioral problems such as increased risk-taking, impulsivity,
delinquency, and substance use (Spear, 2000; Steinberg and Morris, 2001; van
Duijvenvoorde et al., 2016). These behavioral and physical changes during adolescence
coincide with vast changes in the brain that continues to mature well into early adulthood
(Durston et al., 2001; Peper et al., 2011; Peper et al., 2009; Brouwer et al., 2015; Lenroot and
Giedd, 2006; Blakemore, 2012). Adolescence is also a period during which psychiatric
disorders, such as schizophrenia, which are characterized by aberrant brain development,
typically find their onset (Zahn-Waxler et al., 2008; Paus et al., 2008; de Wit et al., 2016;
Smieskova et al., 2010; Rapoport et al., 2012). This heterogeneity in the many aspects of
childhood and adolescent development results in considerable interindividual variation in
developmental trajectories and outcome, that it has raised the question “why some children

thrive and others don’t”!.

An understanding of what motivates adolescent behavior or what causes aberrant
development that eventually culminates in the onset of psychiatric disorders remains
elusive. The field of imaging genetics combines methods from neuroimaging, such as
magnetic resonance imaging, and genetics, such as twin studies and genome-wide
association studies, to try to understand the role of the brain in the relation between genes,
environment, and complex traits (Baaré et al., 2001; Hulshoff Pol et al., 2006; Glahn et al.,
2007). Many structural and functional properties of the human brain are heritable (Peper et
al., 2007; Jansen et al., 2015). Genetic influences may vary with age and also drive changes
in the brain (i.e. brain plasticity; Pfefferbaum et al., 2004; Brans et al., 2008; van Soelen et
al., 2012; Lessov-Schlaggar et al., 2012; van Soelen et al., 2013; Brouwer et al., 2014;
Bootsman et al., 2015; Hedman et al., 2016; Brouwer et al., 2017; Brouwer et al., 2020). The
expression of genes is highly regulated, especially during the early developmental stages
(Kang et al., 2011; Jaffe et al., 2015). Environmental influences play a role in regulating gene

expression, for example through epigenetic modifications (Jaenisch and Bird, 2003). This

1 Consortium on Individual Development; https://individualdevelopment.nl/



GENERAL INTRODUCTION

dynamic interplay between genetic and environmental influences on the brain is believed
to explain why monozygotic twins with the same genetic background can be discordant for
highly heritability disorders such as schizophrenia (Smith, 1970; van Os et al., 2008; van
Nierop et al., 2013); and might also explain why some children thrive during adolescence

and others don’t.

In this dissertation, I continue the investigation into the developmental patterns of the brain
in a longitudinal study of adolescent twins and look into the extent to which genes and the
environment influence these patterns. Specifically, I investigate the development of grey
matter thickness of the cerebral cortex and the development of functional connectivity
within and between canonical cortical networks. In addition, I investigate the genetic and
epigenetic contributions to accelerated brain maturation in patients with schizophrenia.
This chapter provides an introduction to the topics of this study and concludes with an

overview of the research questions that will be addressed in the subsequent chapters.

1.2 MAGNETIC RESONANCE IMAGING OF THE BRAIN

Magnetic resonance imaging (MRI) is a non-invasive imaging technology and is one of
several techniques that can be used to study the brain (Kennedy et al., 2002; Ernst and
Mueller, 2008; Dale et al., 2015). The brain can be imaged with MRI using several imaging
contrasts that each capture different structural or functional properties of the brain (Figure 1.1).

1.2.1 Brain structural MRI

The morphology of the brain can be studied with high resolution (<1mm) structural T;-
weighted MRI (Figure 1.1A). Typically, image contrast is optimized to provide the best
possible separation between the three major tissue types in the brain: gray matter, white
matter, and cerebrospinal fluid (Symms et al., 2004; Heidemann et al., 2003). Advanced
software tools are then applied to the images to produce tissue maps with estimates on the
proportion of the tissue types within each voxel (Despotovic et al., 2015; e.g. Brouwer et al.,
2010). After annotating the voxels with their corresponding brain structure, either
manually, through projection to an atlas (Cabezas et al., 2011), or by automated delineation
(e.g. Fischl et al., 2002; Patenaude et al., 2011), gray and white matter density and volumetric
measures of the brain structures can be estimated. The tissue maps can be processed further
to obtain estimates on the thickness, volume, and surface area of the cortex (e.g. Fischl et
al., 2000; Fischl et al., 2004; Kim et al., 2005).

1.2.2 Brain diffusion MRI
The white matter structure of the brain can be studied more in-depth with diffusion-weighted
MRI (Figure 1.1B). Diffusion imaging captures the Brownian motion of the protons in the

brain (Beaulieu, 2002; Johansen-Berg and Behrens, Academic Press 2009). A diffusion tensor
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GENERAL INTRODUCTION

model can be applied to the data to describe the overall diffusion profile (Le Bihan et al., 2001;
Mori and Zhang, 2006). Several local white matter structural integrity measures, such as
fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD), can be
obtained from the diffusion tensor model at each voxel (Basser and Pierpaoli, 1996).
Fractional anisotropy measures the directionality of diffusion and is associated with the
degree of myelination and axon density in the brain (Friedrich et al., 2020; Chang et al.,
2017). Parameters from the diffusion tensor model can also be used to trace the white
matter pathways of the brain using fiber tractography (Basser et al., 2000), and provides a

measure for structural connectivity between brain regions (Bullmore and Sporns, 2009).

1.2.3 Brain functional MRI

The activity of the brain can be measured with functional MRI (fMRI; Figure 1.1C). Active
neurons consume glucose and oxygen that is transported by the vascular system (Watts et
al., 2018). This process can be measured through changes in the blood-oxygenation level of
veins surrounding brain tissue over time, and represents an indirect measure of neuronal
activity both spatially and temporally (Logothetis, 2001; Logothetis and Wandell, 2004). In
general, there are two types of functional MRI paradigms that are commonly used to study
brain activity: task-based and resting-state. Task-based fMRI is recorded when the subjects
are involved in a task; e.g. a motor task or gambling task (Soares et al., 2016; Bandettini,
2020). The correspondence between the measured BOLD response and the expected
response to the task is used as an indication for the involvement of a brain region in the
specific task (Worsley et al., 2002). However, the brain is alway active, even when “at rest”
(Biswal et al., 1995; Tomasi et al., 2013; Kuzawa et al., 2014). In contrast to task-based fMRI,
resting-state fMRI is the recording of the BOLD signal in the absence of any active task
(Biswal et al., 1995; Fox and Riachle, 2007; Bijsterbosch et al., 2017). The absence of any task
makes resting-state fMRI suitable across the entire age range and different patient
populations. Function connectivity (FC) between two regions of the brain can be obtained
by temporal correlation of the activity of those regions measured by the BOLD signal
(Biswal et al., 1995; van den Heuvel and Hulshoff Pol, 2010). Head motion is more
pronounced in children and may lead to biased estimation of results of long-distance
connectivity when not properly controlled for (Power et al., 2012; Satterthwaite et al., 2012;
van Dijk et al., 2012). Head motion can be countered by a simulation training session in a
mock scanner or by (passive) viewing of a naturalistic video (Durston et al, 2009;
Vanderwal et al, 2015). Nevertheless, data-driven methods have revealed functional
networks of regions that are more strongly connected with each other than with regions
of other networks and that show overlap with task-evoked activity (Beckmann et al., 2005;
Damoiseaux et al., 2006; Yeo et al., 2011; Smith et al., 2009; Cole et al., 2014). These brain

networks are already present in the second trimester of pregnancy and appear “adult-like”
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CHAPTER 1

by the age of 2 years (Turk et al., 2019; Gao et al., 2015). Most focus has been on the default-
mode network of the brain (Raichle et al., 2001). This network consists of anterior and
posterior regions of the brain that become more active during “rest”, and has been
associated with self-reflection and has been implicated in several disorders (Andrews-
Hanna et al., 2011; Whitfield-Gabrieli and Ford, 2012). Although there is no clear consensus
on the number of networks in the brain, other established networks include the visual
network, sensorimotor network, language network, frontoparietal networks, dorsal- and
ventral attention networks, limbic network, and cerebellar network that have been
associated with cognition and psychiatric- and neurological disorders (Damoiseaux et al.,
2006; Rosazza and Minati, 2011; van den Heuvel and Hulshoff Pol, 2010; Menon, 2011).

1.2.4 Reliable measurements

To be able to determine the neural correlates of human behavior, brain and behavioral,
variables need to be measured accurately and reliably. The relatively low sample sizes of
most neuroimaging studies have impacted the fields of neuroimaging with poor
reproducibility and possible false positive reports (Poldrack et al., 2017; Schnack, 2019;
Button et al., 2013; Vul et al., 2009). The reliability of a measure is often determined by the
intraclass correlation on repeated assessment of the measures (Chen et al., 2018). Although
structural brain measures are often quite reliable (ICC>0.8; Nugent et al., 2012; Liem et al.,
2015; Madan et al., 2017), their association with behavior can still fail replication due to
sampling bias, variations in methodology, or incorrect statistics (Button et al., 2013; Boekel
et al,, 2015). In contrast, resting-state functional brain measures tend to have poor test-
retest reliability (ICC~0.3; Noble et al., 2019) and generally low sample sizes (Poldrack et
al., 2017), that it is not surprising that larger studies fail to replicate previous findings
(Button et al., 2013; Kruschwitz et al., 2018). Poor test-retest reliability can have many
causes. For resting-state functional MRI in particular, the presence of confounding signals
from non-neural origin, such as head motion, cardiovascular and respiratory system,
account for at least half of the variation in the BOLD signal (Power et al., 2012; Bianciardi
et al., 2009). Although many methods have been proposed to get rid of the unwanted signal,
none of these methods address the problem in its entirety (Murphy et al., 2013; Ciric et al.,
2017). Any residual noise that is left in the BOLD signal can be detrimental to the strength
of the association that we can observe (Spearman, 1904). In Classical Test Theory, the “true”
score of a measure can be obtained by controlling for random measurement error with
repeated measures (Streiner, 2003). For associations, the “true” association can be obtained
through disattenuation or the use of a measurement model (Leigh Wang, 2010; Cooper et
al., 2019). These methods can thus be used to obtain estimates of the association between
brain measures and behavior that are closer to the true value if the measures had been
reliably quantified (van Baal et al., 1998; van Beijsterveldt et al., 2001).

12



GENERAL INTRODUCTION

1.3 TWIN STUDIES AND GENETICS

To understand what motivates behavior or the manifestation of disorders, it helps to
identify whether it is caused by intrinsic (nature; e.g. of biological origin such as genetics)
or extrinsic (nurture; e.g. reaction to environment) factors. This understanding can also
help to guide the design of diagnostics, interventions and therapies for behavioral problems
and psychiatric disorders (Musci and Schlomer, 2018; Majewski et al., 2011). Twin and
family studies are informative to the extent to which genetics and environment contribute
to the variation of a trait in the population (Neale and Cardon, 1992). Twin studies can be
considered as a precursor to gene discovery studies by identifying heritable traits that are
most likely to produce positive results (Zondervan and Cardon, 2007). Genome-wide
association studies (GWAS) can identify causal genetic variants of a trait (Hirschhorn and
Daly, 2005). Based on the summary results of a GWAS, an individual’s genetic susceptibility
for a trait (e.g. polygenic risk score; PRS) can be estimated (Wray et al., 2007). Although
human DNA is stable with few mutations throughout the lifespan of an individual (Kumar
and Subramanian, 2002), its expression is highly regulated across the lifespan, regions of
the brain, and specific to cell-type (Kang et al., 2011; Jaffe et al., 2015; Hawrylycz et al.,
2015; Darmanis et al., 2015). Environmental factors can influence the expression of DNA
through regulatory mechanisms, such as epigenetic modifications (Jaenisch and Bird, 2003).
The interplay of genetics and environmental risk factors are believed to be responsible for
why a psychiatric disorder manifests in one person but not another despite the identical
genetic makeup of monozygotic twins (van Os et al., 2008; Stilo and Murray, 2019). This
section describes the methodological principles behind heritability analysis in twin studies
and the use of (epi)genome-wide association studies to determine individual (epi)genetic

susceptibility scores of traits.

1.3.1 Twin studies and heritability

Genetic modelling of data from twins and siblings can provide information on the extent
to what proportion of variation of a trait in the population is explained by genetic and
environmental factors without knowing the genetic makeup of the subjects (Boomsma et
al., 2002; Posthuma et al., 2000). Based on the fact that monozygotic (MZ) twins share 100%
of their genetic material and that dizygotic (DZ) twins and full-blood siblings share on
average 50% of their segregating genes, the phenotypic variance (V) of a trait is typically
decomposed into three variance components: additive genetic (4), common environmental
(C), and unique environmental (E) components. Influences from genetic factors are
suggested when monozygotic twins are more alike than dizygotic twins. Common
environmental influences represent sources of variance that are shared between members

of the same family and cause the twins to be more alike than children growing up in
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different families. Unique environmental influences are what makes monozygotic- and
dizygotic twins resemble each other less. Note that unique environmental influences are
confounded by random measurement errors. The extended twin design, by including
siblings of the twins, can aid in the detection of common environmental influences
(Boomsma et al., 2002).

Genetic modelling of data from twins can be performed with structural equation modelling
software, such as OpenMx (Neale et al., 2016). Several estimates can be obtained from a
genetic model; e.g. heritability of a trait or genetic correlation between two traits.
Heritability determines the degree to which a trait is determined by genetic factors.
Heritability in its narrow sense (a?) is the standardized additive genetic component, or

2 A A

ac =—=
v A+C+E

. The common and unique environmental components can be standardized

in similar fashion to obtain ¢? and e?. The genetic correlation determines the extent to
which genetic variation is shared between two traits; i.e. have a common causal genetic
influence, either directly or indirectly (Figure 1.2). The genetic correlation between the two

traits x and y can then be estimated as the standardized the standardized genetic
cov(Ayx,Ay)

Jvar(Ay)xvar(4y)

two traits can either be fully shared, partially shared, or completely independent. Sharing

covariation between the traits, or r, (x,y) = . The genetic variation between

can represent pleiotropy, a causal effect where a gene affects more than one trait, and can
be an indication of a common underlying biological process (Neale and Kendler, 1995;
Mackay et al., 2009). This standardization can also be applied to the common and unique

environmental components to obtain estimates for environmental correlations ., and r, .

1.3.2 Temporal dynamics of genetic and environmental influences of the brain

Twin studies can also be informative regarding the temporal dynamics of the genetic and
environmental influences or their interaction; e.g., the contribution of the genetic factor to
general intelligence is known to increase with age, whereas the contribution of the
common environmental factor decreases (Plomin et al., 1997; Bartels et al., 2002).
Heritability of the cerebral cortical thickness of the brain can be compared at different ages
either in a cross-sectional or longitudinal study design (Fjell et al., 2015; Fjell et al., 2020;
Chouinard-Decorte et al., 2014; Lenroot et al., 2009; Panizzon et al., 2012). In a longitudinal
twin study design, the role of genetic and environmental contributions that drive changes
in the volumes of brain structures and the thickness of the cerebral cortex (i.e. brain
plasticity; Pfefferbaum et al., 2004; Brans et al., 2008; van Soelen et al., 2012; Lessov-
Schlaggar et al. 2012; van Soelen et al., 2013; Brouwer et al., 2014; Bootsman et al., 2015;
Hedman et al., 2016; Brouwer et al., 2017). This is different from heritability at a single age

because it is informative to what extent genes determine the rate of change rather than to
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Figure 1.2. Pleiotropy, partially shared and independent gene sets on two different traits or the same trait at
different ages. In the case of amplification and deamplification, the same core set of genes influence the trait at
both ages. However, in amplification, the genetic influences increase with age, whereas in deamplification the
genetic influences decrease with age. In the case of genetic innovation, a novel set of genes influence the trait at
different ages. Either a core set of genes influence both traits with additional contributions from a unique set of

genes at one of the ages, or two fully distinct sets of genes influence the trait at each of the ages.

what extent genes determine the outcome at a specific moment; e.g. brain volume might
be limited by intracranial volume and therefore share a genetic factor between the two
traits, whereas genes that cause changes in brain volume during development or aging can
be independent from the genes that influences intracranial volume (Brouwer et al., 2017).
Although the outcome measure at any given age is the cumulative effect of the change
rates preceding that age, these two measures can still vary in their genetic cause because
the cumulative effect can be the result of different processes at different intervals during
the lifespan. In a longitudinal twin design, the genetic correlation between repeated
measures of the same trait can determine if the genes influencing the traits are independent
of age or that different genes influence the trait at different ages (Figure 1.2). In addition,
the extent to which the age-independent genes influence the trait at different ages can
determine if the genes exert stable influence across the ages, or have waxing or waning
influence on the trait (i.e. genetic amplification or deamplification of a core set of genes;

Figure 1.2; van Soelen et al., 2012).

1.3.3 Genetic and epigenetic studies

Where twin studies can inform if a trait is influenced by genetic factors, a gene discovery
study, such as a genome-wide association study, is required to identify the potential
individual genes (Hirschhorn and Daly, 2005). Microarray chips can detect single
nucleotide polymorphisms (SNPs; i.e. variation in a single base pair) in the genome.
However, most common SNPs have relatively low effect size (Park et al., 2011). Combined
with performing millions of statistical tests across the genome that need to be accounted
for by multiple comparison correction (typically a threshold of p < 5x1078 is used), very
large sample sizes are needed for discovery studies to find significant hits (Spencer et al.,

2009). With the advent of large-scale genotyping, several world-wide collaborative efforts
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have been initiated to elucidate the genetic makeup of the brain and behavior (Thompson
et al., 2020; Sullivan et al., 2018). These collaborative efforts have identified genetic variants
that have been implicated in various traits, including schizophrenia, brain morphology and
brain plasticity (Ripke et al., 2014; Pardifias et al., 2018; Grasby et al., 2020; Satizabal et al.,
2020; Brouwer et al., 2017). Subsequent identification of the causal gene is complicated by
the majority of significant hits occurring in non-coding regions or spread across a wide
range on the genome due to linkage disequilibrium (Edwards et al., 2013; Watanabe et al.,
2017). An individual’s genetic susceptibility (or polygenic risk score; PRS) for a trait can be
obtained from the associations of the SNPs with the trait (Wray et al., 2007). In addition, a
SNP-based heritability estimate for a trait can be computed (Speed et al., 2012). However, this
heritability estimate is usually underestimated compared to twin studies (Manolio et al., 2009).

The expression of the human genome is highly regulated across the lifespan, regions of the
brain, and is specific to each cell-type (Kang et al., 2011; Jaffe et al., 2015; Hawrylycz et al.,
2015; Darmanis et al., 2015). The expression of genes can be influenced by environmental
factors through regulatory mechanisms, such as epigenetic modifications, that facilitate
genotype-by-environment interaction (Jaenisch and Bird, 2003; Ottman et al., 1996; Dick et
al.,, 2011; Molenaar et al., 2016). This dynamic interplay of genetic and environmental
influences may play an important role in differentiating outcomes in monozygotic twins,
and can even vary between the sexes and across the lifespan (Fraga et al., 2005; Christensen
et al, 2009; van Dongen et al., 2016). The methylation profiles in humans are partially
determined by genetics (Shah et al.,, 2014; van Dongen et al., 2016). Similar to the genome,
methylation of the epigenome can be measured with microarray chips that measure the
binding of a methyl group to a cytosine-guanine dinucleotide (CpG) locus (Beck and
Rakyan, 2008). It should be noted that there is an ongoing discussion whether peripheral
tissues that can be easily obtained from a living specimen, such as blood or saliva, are
representative for methylation for regions of the brain (Smith et al., 2015; Hannon et al.,
2015). A “poly-epigenetic risk score” for a trait can be computed based on the associations
of epigenetic loci with the trait from a discovery sample, similar to the polygenic risk score

in genomic studies.

1.4 ADOLESCENT BRAIN DEVELOPMENT

Studying normative development of the brain in healthy children and adolescents is
essential to understand when and how development is stunted in atypically developing
children. Longitudinal studies are essential when studying development because the brain
and behavior is dynamic across the ages (Haller et al., 2018). Cross-sectional studies on
development (i.e. comparing two groups of subjects at different ages) are limited by the

high interindividual variation and may produce false positive results due to sampling bias
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(i.e. the cohort effect; Mills and Tamnes, 2014; Crone and Elzinga, 2014; Telzer et al., 2018).
In addition, the development trajectory from longitudinal studies is often more informative
than individual measurements in aberrant development such as those linked to the
development of psychiatric disorders (Paus et al., 2008; Shaw et al., 2010; Schnack et al.,
2016). Determining the genetic and environmental contributions to brain development and
behavior can help to identify their causal origin and aid in the design of diagnostic tools,
interventions, and therapies (Musci and Schlomer, 2018; Majewski et al., 2011). This section
provides a brief outline of the global developmental patterns observed in the brain during
childhood and adolescence, and twin studies reporting on the heritability estimates of brain

structure and function.

1.4.1 Structural brain development

Although the human brain has reached its adult-size by late childhood (Dekaban and
Sadowsky, 1978; Hedman et al., 2012), the brain has a protracted development with vast
developmental changes from the fetal period through childhood and adolescence and
extending well into early adulthood (Stiles and Jernigan, 2010; Giedd and Rapoport, 2010;
Brown and Jernigan, 2012; Mills et al., 2016). Overall, brain morphology is highly heritable
with several genetic loci identified for typical and atypical development and across the
lifespan (Peper et al., 2007; Blokland et al., 2012; Braber et al., 2013; Douet et al., 2014; Jansen
et al., 2015; Strike et al., 2015; Alzheimer’s Disease Neuroimaging Initiative et al., 2015;
Kochunov et al., 2014; Brouwer et al., 2017; Thompson et al., 2020).

The global pattern of structural brain development is described by an increase of gray
matter and white matter volume during childhood (Giedd et al., 1999; Mills et al., 2016).
Around the end of childhood when puberty begins, total cortical gray matter starts to
decrease while total white matter volume increases as myelination of white matter bundle
continues throughout adolescence (Brouwer et al., 2012; van Soelen et al., 2013; Swagerman
et al., 2014; Brouwer et al., 2015; Brouwer et al., 2017). This reduction in total grey matter
volume and increasing myelination of white matter connections in the brain is
accompanied by an unusual but characteristic decrease in grey matter cortical thickness
during adolescence (van Soelen et al., 2012; Koenis et al., 2018). The decrease in gray matter
cortical thickness is believed to be the result of pruning and white matter encroachment
(Paus, 2010; Petanjek et al., 2011; Miller et al., 2012). Although no clear consensus has been
reached whether cortical gray matter peaks during late childhood or shows a continuous
decline from infancy (Walhovd et al., 2017). Recent studies covering wide age range from
infancy to early adulthood are in favor of a continuous decline (Brown et al., 2012; Fjell et
al., 2015; Wieringa et al., 2014). Similarly, although sex effects have been reported for

cortical thickness (Lenroot and Giedd, 2010), this effect is not always observed (van Soelen
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et al., 2012). Sex effects of volumetric measures are largely attributed to intracranial volume
that is positively associated with stature and where both measures share a common genetic
background (Caspi et al., 2020; van Soelen et al., 2013). Sex effects are also determined by
pubertal hormones that influence brain structure (Koolschijn et al., 2014); a review of the
effect of pubertal hormones on brain structure suggesting that changes in sex hormones
might trigger a reorganization of the structural brain (Peper et al., 2011). Gray matter
volume of the hormone secreting pituitary glands in the brain is positively associated with
levels of pubertal hormones estradiol, testosterone, luteinizing hormone, and follicle
stimulating hormone in girls (Peper et al., 2010). Changes in pubertal hormone levels is
positively associated with changes in gray matter density in both cortical and subcortical
brain structures for follicle stimulating hormone levels in girls, and a negative association
between gray matter density in frontal and parietal cortical region and estradiol levels in
girls; these associations were mostly explained by unique environmental influences
(Brouwer et al.,, 2015). White matter density is positively associated with luteinizing
hormone with both measures sharing a common genetic background (Peper et al., 2008).
Global and regional gray matter volumes are heritable in late childhood (Peper et al., 2009).
Subcortical gray matter volume increases for the thalamus, hippocampus, amygdala and
pallidum, and decreases in the caudate and nucleus accumbens, and are highly heritable at
similar levels as during adulthood (Swagerman et al., 2014; Brouwer et al., 2020). The
change rates of subcortical volume are also heritable with several genetic loci recently
identified (Brouwer et al., 2017; Brouwer et al., 2020). White matter structural integrity and
local and global efficiency measures of structural white matter brain network increase
during early adolescence and are highly heritable (Brouwer et al., 2010; Brouwer et al.,
2012; Koenis et al., 2015; Koenis et al., 2018). The gray matter thickness of the cerebral
cortex shows a strong decline during adolescence (van Soelen et al., 2012). Cortical
thickness and surface area are both highly heritable and influenced by distinct genetic
factors (Hulshoff Pol et al., 2006; van Soelen et al., 2012; Panizzon et al., 2009). The
heritability of cortical thickness is suggested to increase with age during development
(Lenroot and Giedd, 2008; Lenroot et al., 2009; Schmitt et al., 2014). The rate of change in
cortical thickness between the ages 9 and 12 years is also heritable, with a common genetic
factor of decreasing influence over time and a unique genetic factor that is specific for
cortical thickness at age 12 years indicating the influence of novel genes during adolescence

brain development (van Soelen et al., 2012).

Many behavioral traits have been linked to structural properties of the brain, including
cognition, affective, and social behavior (Paus, 2005; Mills et al., 2014). General cognitive
abilities (including intelligence) are highly heritable (van Leeuwen et al., 2007; van

Leeuwen et al.,, 2008; van Soelen et al., 2009; van Soelen, 2011). Intelligence is positively
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associated with global gray matter and white matter volume of the brain in children (van
Leeuwen et al., 2009). With a negative association between intelligence and cortical gray
matter thickness emerging around late childhood and early adolescence (Brouwer et al.,
2014). The association persists during most of adolescence when cortical thickness shows
a steep decline (van Soelen et al.,, 2012; Schnack et al., 2015), during which intelligence is
positively associated with the rate of change in cortical thickness and surface area (Schnack
et al., 2015). However, there is a cross-over effect around the end of adolescence and
beginning of early adulthood where the association between cortical thickness and
intelligence is reversed (Schnack et al., 2015). Heritability of change in cortical thickness
also shares a common genetic background with intelligence (Brans et al. 2010). Local
efficiency of structural white matter is positively associated with intelligence (Koenis et al.,
2015; Koenis et al., 2018). Gestational age is negatively associated with cerebral volume,
independent of intelligence (van Soelen et al., 2010). Aberrant development of the structural
brain has been linked to the onset of psychiatric disorders such as schizophrenia, attention-
deficit hyper-activity (ADHD), and autism (Greenstein et al., 2006; Shaw et al., 2007;
Zielinski et al., 2014; Paus et al.,, 2008). Psychiatric disorders share a common genetic
architecture amongst each other and with the brain (The Brainstorm Consortium, 2018; de
Zwarte et al., 2019; Hulshoff Pol et al, 2012). In addition, heritability of changes in cortical
thickness has also been reported in monozygotic twins discordant for schizophrenia
(Hedman et al., 2016).

1.4.2 Functional brain development

Although the functioning of the brain in children and adolescents has been studied
extensively in cross-sectional studies (Johnson, 2001; Luna and Sweeney, 2006; Johnson et
al.,, 2009; Crone and Dahl, 2012), not many longitudinal studies available or otherwise
limited in sample size (<30 participants) to examine individual development (Crone and
Elzinga, 2014). The longitudinal studies suggest that task activation in the cortical regions
remain relatively stable, but that activation in subcortical nuclei show adaptive response
with age in cognitive control and social-cognitive tasks, and social-affective and reward
stimuli (Crone and Elzinga, 2014). The heritability of functional brain activity is generally
lower than brain structure, with an indication that activity is influenced more strongly by
common familial environment than additive genetics for certain tasks (Blokland et al., 2012;
Douet et al., 2014; Jansen et al., 2015; Thompson et al., 2013). The development of resting-
state functional connectivity is described by a large quantity of cross-sectional studies that
report inconsistent results regarding the direction of change and affected connections
(Ernst et al., 2015; Grayson and Fair, 2017; Stevens, 2016; Cao et al,, 2016), with few
longitudinal studies available to date to examine individual development (see Table 4.1

from Chapter 4 for overview; Teeuw et al., 2019). Based mostly on cross-sectional studies, the
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development of functional connectivity in children and adolescents is generally described by
shifts from a local to a more distributed organization characterized by the segregation of
functionally distinct regions and the integration of functionally related regions (Fair et al.,
2007; Supekar et al., 2009; Kelly et al., 2009; Fair et al., 2009; Dosenbach et al., 2010). The
heritability of resting-state functional connectivity is generally low with strong indication for
common familial environment for certain network connections that is sometimes omitted

from analysis (see Table 4.2 from Chapter 4 for overview; Teeuw et al., 2019).

The functional networks of the brain are already present in the second trimester of
pregnancy and their spatial organization appear “adult-like” by the age of 2 years (Turk et
al., 2019; Gao et al,, 2011; Keunen et al.,, 2017; Thomason et al., 2015). Similarly, the spatial
organization of functional networks is highly consistent throughout childhood and
adolescence (Thomason et al., 2011). The development of these networks, with a protracted
development of the executive control network during childhood, is partially determined by
genetics (Gilmore et al., 2018; Gao et al., 2014). There are reports of longitudinal age-related
increases in functional connectivity (or integration) within one part of the frontoparietal
network, and default mode network, and decrease (or segregation) within the other of the
frontoparietal network and the ventral attention network and between the frontoparietal
and default mode network (Sherman et al., 2014; Wendelken et al., 2016; Long et al., 2017;
Sylvester et al., 2017; Wendelken et al., 2017). Mixed results have been reported for cortical-
subcortical connectivity (Strikwerda-Brown et al., 2015; Jalbrzikowski et al., 2017; Peters et
al., 2017; van Duivenvoorde et al., 2019).

Heritability of functional connectivity range from 10% to 80% in adults, depending on the
population, network connection, and methodology used (Adhikari et al., 2018; Fu et al.,
2015; Ge et al., 2017; Colclough et al., 2017; Glahn et al., 2010; Korgaonkar et al., 2014; Meda
et al., 2014; Sudre et al., 2017; Yang et al., 2016). Both genetic and common environmental
factors influence functional connectivity within and between networks during early
adulthood (Yang et al., 2016). Reports on the heritability of functional connectivity during
childhood and adolescence are sparse. Genes explain up to 40% of individual difference in
global efficiency at the age of 12 years (van den Heuvel et al., 2013). Similar magnitudes
were reported for cortical-subcortical connections in younger children, aged 7 to 9 years,
with heritability ranging from 32% to 67% (Achterberg et al., 2018). Another study found
overall low heritability estimates (<10%), with local peaks ranging between 55% to 83% (Fu
et al, 2015). Age-dependent genetic effects on functional connectivity within cortical
networks have been reported during infancy (Gao et al.,, 2014). However, it is unknown

whether there are age-dependent dynamic influences of genes and environment on
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functional connectivity during childhood and adolescence due to the absence of any

longitudinal twin studies during this developmental period.

Functional connectivity has been associated with a number of cognitive and behavioral
traits in adults (Vaidya and Gordon, 2013; Basten et al., 2015; Shen et al., 2018; Smith et al.,
2015; Toschi et al., 2018), and shyness, social and affective behavior, goal-directed
cognition, motor development and neurocognition in children and adolescents (Sylvester
et al,, 2018; Kelly et al., 2009; Spreng et al., 2010; Marrus et al., 2018; Sripada et al., 2019).
Alterations in functional connectivity been implicated in several neurodevelopmental
psychiatric disorders such as autism, attention-deficit hyperactivity, schizophrenia, and
major depressive disorder (Plitt et al., 2015; Mattfeld et al., 2014; Anticevic et al., 2015;
Cullen et al.,, 2014), and behavioral problems in children and adolescents (Lu et al., 2015;
Cohn et al., 2015; Whitfield-Gabrieli et al., 2020).

1.5 SCHIZOPHRENIA

Schizophrenia is a debilitating psychiatric disorder with a lifetime prevalence of about 1%
that has a tremendous impact on the quality of life of the patients, their families, and society
(Whiteford et al., 2013; Goldner et al., 2002). The disorder is mainly characterized by
psychotic episodes (i.e. delusions and hallucinations), depression, and neurocognitive
decline (Green, 1996; Heinrichs et al., 1998; van Os and Kapur, 2009). It is a highly
hereditary disorder with a polygenic nature (Sullivan et al., 2003; Hilker et al., 2018; Ripke
et al, 2014; Pardifias et al., 2018) and shows genetic overlap with other psychiatric
disorders, such as bipolar and depression, and cognitive functioning (Barkhuizen et al.,
2020; Smeland et al., 2019; de Zwarte et al., 2019). Epigenetic regulation of genes associated
with schizophrenia may explain the discordance in schizophrenia diagnosis for
monozygotic twins despite their common genetic background (Hannon et al., 2016; van Os
et al., 2008; van Nierop et al., 2013).

1.5.1 Schizophrenia as a neuropsychiatric disorder of the brain

Although schizophrenia has been extensively studied in the past, its aethiology remains
largely unknown. The onset of psychiatric disorders such as schizophrenia typically occur
around adolescence when a clinical diagnosis is made (Zahn-Waxler et al., 2008; Paus et al.,
2008). Studies in populations at high risk for developing schizophrenia have reported
aberrant changes of the brain compared to normative controls (de Wit et al, 2016;
Smieskova et al., 2010; Rapoport et al., 2012). However, there are several indications of
aberrant brain development as early as the fetal period (Debnath et al., 2015; Kim et al.,
2015; Faa et al., 2016). Schizophrenia is therefore regarded as a neurodevelopmental

disorder by some (Murray and Lewis, 1987; Weinberger, 1987). At the same time, the
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progressive changes of the brain persist for several years after the onset of psychosis (van
Haren et al., 2008; van Haren et al., 2008; Hulshoff Pol and Kahn, 2008; Chiapponi et al.,
2013). Patients with schizophrenia have an increased mortality risk, with their expected
lifespan decreased on average by 15 to 20 years compared to the general population
(Laursen et al., 2014; Hjorthgj et al., 2017). Combined with the neurocognitive decline that
is reflective of the aging population has resulted in schizophrenia being regarded as a
progressive aging disorder by others instead (Kirkpatrick et al., 2008; Olabi et al., 2011).
Either way, schizophrenia is linked to wide-spread alteration in the brain (Haijma et al,
2013; van Haren et al., 2016; Mandl et al., 2008; Boos et al., 2013; van Erp et al., 2015; van Erp et
al,, 2018; Kelly et al., 2017). These alterations in the brain are heritability and share a common
denominator with genes for schizophrenia (Hulshoff Pol et al., 2004; van Haren et al., 2012;
Bohlken et al., 2016). In addition, environment factors influence the brain in schizophrenia
through epigenetic modifications (Rijsdijk et al., 2005; van Haren et al., 2012; Jia et al,, 2019).

1.5.2 Progressive aging in schizophrenia

The biological age of a subject can be predicted with reasonable accuracy from tissue
samples by machine learning algorithms (Jylhava et al, 2017; Cole et al, 2019). A
classification algorithm can be trained on selected features from the brain, such as grey
matter density, to predict a person’s “biological” brain age (Cole and Franke, 2017; Franke
and Gaser, 2019). Patients with schizophrenia show advanced brain age that is accelerated
around the time of onset (Koutsouleris et al., 2014; Schnack et al., 2016; Nenadi¢ et al., 2017;
Kaufmann et al., 2019). Accelerated brain age predicts all-cause mortality (Cole et al., 2018),
is highly heritable and has a genetic overlap with common brain disorders, including
schizophrenia (Cole et al., 2017; Kaufmann et al., 2019). Similar to a person’s brain age, the
biological age of a person can be predicted from DNA methylation (Horvath, 2013; Hannum
et al., 2013; Levine et al., 2018). Although previous studies have reported no significant
accelerated epigenetic aging for schizophrenia patients (Viana et al., 2017; Voisey et al.,
2017; McKinney et al., 2017; McKinney et al., 2018), a recent large-scale DNA methylation
study has now demonstrated accelerated epigenetic age in schizophrenia (Ori et al., 2019).
A prior study has reported a lack of significant association between brain age and epigenetic
age in the healthy aging population (Cole et al., 2018). However, little is known about the

association between brain age and epigenetic age in schizophrenia patients specifically.

1.6 COHORT DESCRIPTIONS

Three cohorts were studied in this thesis. First, the longitudinal adolescent twin
BrainSCALE cohort that was used for studying the development of the brain during
adolescence and its temporal dynamics of genetics and environmental influencing the brain

(van Soelen et al., 2012). Secondly, a longitudinal cohort of schizophrenia and healthy
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controls that was used to study accelerated aging of the brain in relation to accelerated
epigenetic aging and polygenic risk for schizophrenia (Schnack et al., 2016; Ori et al., 2019).
Finally, the Human Connectome Project Young Adult cohort that was used to evaluate the
effectiveness of reliability modeling of functional connectivity of the brain in relation to

various traits (van Essen et al., 2013).

1.6.1 The BrainSCALE cohort

The BrainSCALE cohort is a longitudinal study of adolescent twins born between 1995-
1996 whose parents registered them with the Netherlands Twin Register (NTR; Ligthart et
al., 2019). Twin pairs who had an older sibling who was also willing to take part in the
study were recruited through the NTR. The cohort was designed to investigate cognitive,
behavioral, physical and physiological transitions during childhood and adolescence in
relation to brain development and genetics. It is a collaborative effort between the
University Medical Center Utrecht (UMCU) and Vrije Universiteit Amsterdam (VU
Amsterdam). The subjects were selected to represent a cross-section of the Dutch
population with an equal proportion of the sexes (52% female; including 20 dizygotic twin
pairs of opposite sex), a mixture of ethnical background and culture, normal cognitive
functioning (intelligence quotient 101.9 + 14.75 at baseline), and no prior history of physical
or mental health problems. They were assessed when the twins were 9, 12, and 17 years of
age; average ages were 9.3 + 0.28, 12.2 + 0.35 and 17.2 + 0.37 years, with their older siblings
on average 2.7 1.1 years older. Extensive phenotypic information was collected about the
children, including cognitive, behavioral, and neuropsychological tests, physical
assessment, hormone levels, and magnetic resonance imaging scans of the brain (van
Soelen et al., 2012; Koenis et al., 2013). The BrainSCALE study was approved by the Central
Committee on Research Involving Human Subjects of The Netherlands (CCMO).

Over the years, the BrainSCALE cohort has been the foundation for previous dissertations
by Marieke van Leeuwen (2008), Jiska Peper (2008), Inge van Soelen (2011), Suzanne
Swagerman (2016), and Marinka Koenis (2017). In this dissertation, the longitudinal
development and the temporal dynamics of genetic influences on cortical thickness was
investigated for the twins at the ages 9, 12 and 17 years. The sex-specific longitudinal
development of functional connectivity within and between cortical functional network
from the resting-state functional MRI scans and the genetic and environmental influences
on the stable and reliable component of functional connectivity from a measurement model

were investigated for the twins at the ages 12 and 17 and their older sibling.

1.6.2 The schizophrenia cohort
The schizophrenia cohort used in this dissertation consists of a combination of two

longitudinal schizophrenia cohorts acquired at UMCU (van Haren et al., 2007; Boos et al.,
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2012). A total of 411 unrelated subjects (193 cases, 218 controls, 36% female) that had
imaging data (N=411) and either epigenetic (N=172) or genetic (N=394) data available. The
subjects were of European descent spanning a wide range of the adult lifespan (mean =
32.7 years, range = [16.7 — 67.5] at baseline). For the majority of subjects (57%) longitudinal
imaging data was available (up to five scans), with a mean scanning interval of 3.4 years
(range [0.9 — 7.0]). All patients met DSM-IV criteria for a nonaffective psychotic disorder
(including schizophrenia, schizophreniform disorder or schizoaffective disorder). Written
informed consent was obtained from all subjects, and both studies were approved by the
Medical Ethics Committee for Research in Humans (METC) of the University Medical
Center Utrecht. Data from this schizophrenia cohort has previously been used to
investigate accelerated brain aging (Schnack et al., 2016), and accelerated epigenetic aging
(Ori et al., 2019). In this dissertation, the association between accelerated aging of the brain,

accelerated epigenetic aging, and polygenic risk for schizophrenia were investigated.

1.6.3 The Human Connectome Project Young Adult cohort

The Human Connectome Project is a large-scale endeavor to elucidate the structural and
functional connections of the human brain that underlie behavior (van Essen et al., 2013).
The Young Adult cohort is a publicly available high-quality multimodal neuroimaging
dataset with rich and deep phenotyping of 1200 healthy adults within the age range of 22—
35 years. Subjects were recruited to reflect the ethnic diversity of America. Numerous
studies have been published on this cohort. In this dissertation, the focus has been on the
carefully prepared data package that provides data for 1003 related individuals (age 28.7 +
3.7 years; 53% female) from 429 families (siblings, including monozygotic- and dizygotic
twins) with four complete runs (~1 hour) of resting-state fMRI scans. The rich phenotyping
of the subjects provided hundreds of measures, of which 110 measures from various
domains, such as cognition, emotion, personality, alertness, language, motor skills, sensory,
and physiology, were included in the analysis. The dataset was used to empirically evaluate
the efficiency of reliability modelling of functional connectivity with a measurement model
through its impact on behavioral utility and to replicate previously reported increased

heritability estimates of the stable and reliable component of functional connectivity.

1.7 OUTLINE OF THIS THESIS

In chapter 2, I investigate the genetic influences on the grey matter thickness of the
cerebral cortex throughout childhood and adolescence. A prior investigation of the
development of the cerebral cortex in the BrainSCALE cohort had revealed genetic
influences on the change rates of cortical thickness and indication of novel genetic

influences between the ages 9 and 12 years (van Soelen et al., 2012). This research was
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extended by including the third assessment of the BrainSCALE cohort at age 17 years that

covers a period of rapid decline in cortical thickness typically observed during adolescence.

In chapter 3 and chapter 4, I investigate resting-state functional connectivity in the brain.
In chapter 3, I investigate the utility of a measurement model to obtain more reliable
estimates of functional connectivity. These reliable estimates are used to reveal the “true”
strength in associations with behavior and heritability of functional connectivity in the
absence of measurement error. An empirical evaluation of the measurement model for
various scan durations and sample sizes is performed on resting-state functional
connectivity from the publicly available Human Connectome Project Young Adult cohort.
In chapter 4, I investigate the development of resting-state functional connectivity within
and between canonical cortical networks during adolescence in the BrainSCALE cohort. In
addition, I applied a measurement model to the functional connectivity estimates, as
described in chapter 3, to investigate the genetic and environmental influences on the

reliable and stable component of functional connectivity.

In chapter 5, I investigate the association between accelerated maturation of the brain and
accelerated epigenetic aging in the blood of schizophrenia patients in relation to polygenic

risk for schizophrenia.

Finally, in chapter 6, I summarize the results from chapter 2 through chapter 5 and discuss
the significance of these results in a broader context of genetic and environmental

influences on brain maturation.
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CHAPTER 2

ABSTRACT

Previous studies have demonstrated that cortical thickness (CT) is under strong genetic
control across the life span. However, little is known about genetic influences that cause
changes in cortical thickness (ACT) during brain development. We obtained 482
longitudinal MRI scans at ages 9, 12, and 17 years from 215 twins and applied structural
equation modelling to estimate genetic influences on (1) cortical thickness between regions
and across time, and (2) changes in cortical thickness between ages. Although cortical
thickness is largely mediated by the same genetic factor throughout late childhood and
adolescence, we found evidence for influences of distinct genetic factors on regions across
space and time. In addition, we found genetic influences for cortical thinning during
adolescence that is mostly due to fluctuating influences from the same genetic factor, with
evidence of local influences from a second emerging genetic factor. This fluctuating core
genetic factor and emerging novel genetic factor might be implicated in the rapid cognitive
and behavioral development during childhood and adolescence, and could potentially be
targets for investigation into the manifestation of psychiatric disorders that have their

origin in childhood and adolescence.

Keywords: cortex; development; twins; heritability; plasticity
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2.1 INTRODUCTION

The human brain changes substantially during development from fetus to newborn to
adult. Non-invasive magnetic resonance imaging (MRI) has enabled the study of brain
structure and function in healthy children and adolescents. Brain imaging studies from the
past two decades have documented the changes that occur to the brain during development
from childhood into early adulthood (Giedd et al. 2010). The size of the brain of a 9-year-
old child is already at approximately 96% of its maximum size (Dekaban and Sadowsky
1978; Hedman et al. 2011), but continues to develop as the child transitions through
adolescence and matures into adulthood. For example, total grey matter volume starts to
decrease around the start of puberty, while total white matter volume continues to increase
well into adulthood (Giedd et al. 1999; Mills et al. 2016). This reduction in total grey matter
volume and increasing myelination of white matter connections in the brain is
accompanied by an apparent decrease in grey matter cortical thickness during adolescence.
Characterizing brain development in healthy children and adolescents is essential to
understand when and how development is stunted in atypically developing children.
Divergence from typical developmental trajectories has been associated with increased
liability for psychiatric disorders (Greenstein et al. 2006; Shaw et al. 2007; Paus et al. 2008;
Rapoport and Gogtay 2008; Zielinski et al. 2014; Giedd et al. 2015). Indeed, developmental
trajectories and their underlying processes may be more informative about vulnerability
for disease and clinical outcomes than absolute measures (Paus et al. 2008; Shaw et al. 2010;
Schnack et al. 2015; 2016), highlighting the importance of longitudinal cohorts in
developmental studies (Mills and Tamnes 2014).

The inclusion of twins in brain imaging studies has provided valuable information about
the influences of genes and environment on brain development (Peper et al. 2007; Blokland
et al. 2012; Braber et al. 2013; Douet et al. 2014; Jansen et al. 2015; Strike et al. 2015). Twin
studies allow us to unravel genetic influences on the architecture of the brain and explain
to what extent variation in brain measures are heritable, i.e. the extent to which individual
differences can be attributed to genetic factors, or to common and unique environmental
factors. The classical twin model allows for the study of genetic influences on the human
brain by measuring similarities between monozygotic and dizygotic twins (Posthuma et al.
2000; Boomsma et al. 2002). Heritability estimates have revealed that most of the brain’s
structure is under genetic control (Peper et al. 2007; Blokland et al. 2012; Douet et al. 2014;
Strike et al. 2015). Cortical thickness is found to have moderate to strong heritability
(Thompson et al. 2001; Hulshoff Pol et al. 2006; van Soelen, Brouwer, van Baal, et al. 2012)
and heritability of cortical thickness is suggested to increase with age (Lenroot and Giedd
2008; Schmitt et al. 2014). To date, there are few longitudinal studies which allow
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estimation of genetic influences on changes in cortical thickness (Brans et al. 2010; van
Soelen, Brouwer, van Baal, et al. 2012; Hedman et al. 2016). We previously found evidence
for heritability of cortical thinning in children between the ages 9 and 12 years (van Soelen,
Brouwer, van Baal, et al. 2012). Of interest, at age 12 years, we found genetic innovation
for cortical thickness in a prefrontal region, indicating that novel genetic factors become
involved in the development of cortical thickness around the start of puberty. However,
little is known about the dynamic landscape of genetic and environmental influences on
cortical development during adolescence, a period with large cognitive and behavioral
changes and a critical period for the manifestation of psychiatric disorders. In the current
study, we report on the development of cortical thickness in the BrainSCALE twin cohort
for which we measured the twins again at age 17 years, bringing the number of repeated

assessments to three.

We investigated the spatiotemporal dynamics of genetic and environmental influences on
cortical thickness. Specifically, we address the question of whether different genetic factors
influence cortical thickness at different stages of childhood and adolescent brain
development. Using twin modelling, we estimated genetic correlations between cortical
regions to assess spatial genetic differentiation between regions within the same age and
temporal genetic differentiation between regions at different ages. In addition, we extend
on our previous findings on heritability of changes in cortical thickness between age 9 and
12 years (van Soelen, Brouwer, van Baal, et al. 2012) with new finding on heritability of
changes in cortical thickness between age 12 and 17 years. We have included new estimates
of our previous finding between age 9 and 12 years given the increase in power to detect

smaller effect sizes with greater accuracy by including the third measurement.

2.2 MATERIALS AND METHODS

2.2.1 Participants

A total of 112 families consisting of twin pairs born in 1995-1996 and their older siblings,
were invited to participate in the longitudinal BrainSCALE study on brain and cognitive
development during childhood and adolescence (van Soelen, Brouwer, Peper, et al. 2012), a
collaborative project between Netherland Twin Register (Boomsma et al. 2006; van
Beijsterveldt et al. 2013) at the Vrije Universiteit (VU) Amsterdam and University Medical
Center Utrecht (UMCU). The BrainSCALE cohort is a representative sample of mostly
Caucasian typically-developing children from the Dutch population. The twins were
around 9 years of age when they were assessed with a battery of cognitive tests and
extensive MRI protocol at baseline measurement (Peper et al. 2009). Two follow-up

measurements were conducted when the twins were around 12 and 17 years of age. Here
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we report results on a subsample of the BrainSCALE cohort that includes all twins. A total
of 482 MRI scans from 215 participants (111 females and 104 males; approximately 16%
non-right-handed) between age 9 and 18 years were available for analysis (see also
Supplementary Table A.1). Structural MRI scans were acquired for most of the subjects
participating in the BrainSCALE study (94%, 78%, and 98% respectively for each
measurement; Supplementary Figure A.1). The decline in scan acquisition percentage at
age 12 years was mostly due to exclusion of participants with dental braces incompatible
with the magnetic field of the MR scanner. Other reasons for not acquiring scans include
reluctance to participate and incomplete scans. In addition, a fraction of the acquired scans
could not be processed due to scanning artefacts primarily related to head motion (9%, 9%,

and 4% respectively for each measurement).

The study was approved by the Central Committee on Research Involving Human Subjects
of The Netherlands (CCMO), and studies were performed in accordance with the
Declaration of Helsinki. Parents signed informed consent forms for the children and for
themselves. Children signed their own informed consent forms at the third measurement.
Parents were financially compensated for travel expenses, and children received a present
or gift voucher at the end of the testing days. In addition, a summary of cognition scores

and a printed image of their T1 brain MRI scan, when available, were provided afterwards.

2.2.2 MRI acquisition

Participants underwent medical resonance imaging (MRI) on a 1.5 Tesla Philips Achieva
scanner (Philips, Best, Netherlands) at the University Medical Center Utrecht (UMCU). For
brain anatomy, a three-dimensional T1-weighted scan (Spoiled Gradient Echo; TE = 4.6 ms;
TR = 30 ms; flip angle = 30°; 160 to 180 contiguous coronal slices of 1.2 mm; in-plane
resolution of 1.0 x 1.0 mm?; acquisition matrix of 256 x 256 voxels; field-of-view of 256 mm
with 70% scan percentage) of the whole head was acquired for each participant. The same
scanners and scan sequence parameters were used at baseline and follow-up measurements

to minimize the effect of differences in scan acquisition between measurements.

2.2.3 Image processing

Images were re-oriented to Talairach space without scaling, and corrected for
inhomogeneities in the magnetic field (Sled et al. 1998). Quantitative assessment of
intracranial volume (ICV) was performed as previously described for baseline (Peper et al.
2008) and follow-ups (van Soelen et al. 2013). Brain tissue was segmented into cerebrospinal
fluid, grey matter and white matter using a partial volume segmentation algorithm that
incorporates a non-uniform partial volume distribution (Brouwer et al. 2010). Cortical
thickness was determined using a customized version of the CLASP algorithm designed at
the McConnell Brain Imaging Centre, Montreal (Kim et al. 2005; Lerch et al. 2008). The grey

31



CHAPTER 2

and white matter segments obtained from our own partial volume segmentation algorithm
were used to initialize the CLASP algorithm. A 3D surface was fitted to the white
matter/grey matter interface to obtain the inner surface of the cortex. The outer cortical
surface was obtained by expanding the inner surface outward until it fitted the grey
matter/cerebrospinal fluid interface (Kim et al. 2005). Cortical thickness was defined at each
vertex (40962 vertices per hemisphere) as the distance between the two surfaces. Changes
in cortical thickness between ages were computed by taking the difference in estimates and
converted to change in millimeter per year by dividing the difference by the scan interval
between the ages in years. Cortical thickness measures were smoothed across the surface
using a 20-mm full-width-at-half-maximum (FWHM) surface-based blurring kernel. This
method of blurring simultaneously improves the chances of detecting population
differences and follows the curvature of the surface to preserve any anatomical boundaries
within the surface. The surfaces of the individuals were registered to an average surface
(ICBM average surface template; Lyttelton et al. 2007) to allow for comparison between
and within subjects across age. Non-smoothed cortical thickness mapped to ICBM average
surface was used to compute mean cortical thickness for the major cortical lobes (frontal,
parietal, temporal, and occipital lobes) and adjacent regions (insula and cingulate) obtained
from the atlas provided by the CIVET software. The version of CIVET used in the analysis
does not incorporate a dedicated longitudinal pipeline for simultaneous registration and
classification of brain tissue. Nevertheless, cortical thickness estimates obtained using
CIVET show high test-rest reliability (Jeon et al. 2017; Lewis et al. 2017), and a direct
comparison of CIVET to FreeSurfer’s longitudinal pipeline revealed no significant
differences in effect sizes (Redolfi et al. 2015).

2.2.4 Linear regression modelling

Longitudinal mixed-effects models with cubic, quadratic, and linear age effects were fitted
to the cortical thickness estimates while allowing for random intercept for individuals
using the nlme package (Pinheiro et al. 2017) in R. The most parsimonious model was

selected based on the log-likelihood ratio test.

2.2.5 Genetic twin modelling

Twin modelling can provide information on the variation of a trait in the population that
can be explained by genetic factors (Posthuma et al. 2000; Boomsma et al. 2002). Based on
the assumption that monozygotic twins share 100% of their genetic material and dizygotic
twins share on average 50% of their segregating genes, the phenotypic variance (V) of a
trait is usually decomposed into three independent variance components: additive genetic
(4), common environmental (C), and unique environmental (E) components of variance.

Additive genetic influences represent effects of multiple alleles at different loci across the

32



LONGITUDINAL DEVELOPMENT OF CEREBRAL CORTICAL THICKNESS

genome that act in conjunction on the phenotypic trait. Common environmental influences
represent sources of variance that are shared between twins of the same family and cause
the twins to be more alike than children growing up in different families. Unique
environmental influences are not shared by family members and may include measurement
error (Falconer and Mackay 1996; Boomsma et al. 2002). If monozygotic twins resemble
each other more than dizygotic twins for a given trait, then this difference is usually
attributed to genetic influences. If both monozygotic and dizygotic twins are more alike in
resemblance than expected based on genetics, common environmental influences are
thought to play a role. Residual variation between twin pairs is attributed to unique

environmental influences.

2.2.5.1 Structural equation modelling

Within structural equation modelling (SEM), the variance in univariate or multivariate
phenotypes can be modelled as the combined effect of additive genetic factors, and common
and unique environmental factors. These factors are modelled as latent variables with unit
variance where path coefficients or factor loadings a, ¢, e and quantify their respective
influence on the phenotypic trait(s). The model is made identifiable by putting constraints
on the correlation p; between the latent variable 4 of twin pairs; p; = 1.0 for monozygotic
twins, and pz = 0.5 for dizygotic twins. The correlation ps between latent variable C of
members of a twin pair is constrained to ps = 1.0 for both monozygotic and dizygotic twins.
The latent variable E is uncorrelated between individuals within and across twin pairs. The
sum of the squared path coefficients a?, c2, and e?, representing the variance components
A, C, and E, is equal to the phenotypic variance (V); ie. V=A+C+E =a?+c* + e
Heritability (h?) of the trait is estimated as the proportion of phenotypic variance (V) that

aZ

. . . . . A
is due to additive genetic variance (4); i.e. h2 == = ——.
V. a?+c?+e?

Nested models can be obtained by constraining parameters of interest in the model. Testing
significance of nested models is performed using the log-likelihood ratio test. Statistical
significance was determined by comparing the likelihood of the model fits from the model
with and without a constraint on the parameter of interest. The difference in —2 times the
log likelihood (—2LL ) follows a y? distribution. For variance components (e.g. heritability
estimates, but not correlations),—2LL asymptotically follows a 50:50 mixture of y?
distributions with zero and one degree of freedom; effectively allowing p-values to be cut
in half (Dominicus et al. 2006).

Structural equation models were defined using OpenMx version 2.2.6 (Boker et al. 2015), a
package for structural equation modelling in R (R Core Team 2015). Model fitting was

performed using full-information maximum likelihood (FIML) to take advantage of all
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available information in case of missing data. E.g., when no data is available for one of the
twins in a pair at any age, thereby creating a singleton “twin” at any or all three ages, FIML
can still use the information from the available twin to improve the estimates of means and

variances, thereby improving the overall fitting of the model parameters.

Based on our previous work (van Soelen, Brouwer, van Baal, et al. 2012) and the fact that
evidence for common environmental influences on cortical thickness is limited in the
literature, we assume that common environment latent variable (€) could be dropped from
our model. Indeed, based on the log-likelihood and Akaike Information Criterion, the
longitudinal AE model fitted the cortical thickness measurements better than ACE, CE, or
E on the global and lobar level (see Supplementary Table A.2). We therefore adopted the
AE model in all analyses.

2.2.5.2 Longitudinal twin model to investigate heritability of changes in cortical thickness

The phenotypic measurements of cortical thickness at the three ages were used to define a
longitudinal twin model at every vertex of the brain surface model (Figure 2.1). From this
longitudinal model, we obtained estimates for heritability of changes in cortical thickness;
i.e. genetic factors influencing the rate of cortical thinning during childhood and
adolescence. Subsequently, we attempt to identify if heritability of changes in cortical
thickness are due to increasing (i.e. amplification) or decreasing (i.e. deamplification)
influences of the same genetic factor influencing cortical thickness at both ages, or if
heritability of changes in cortical thickness is due to the emergence of a novel genetic factor
unique for the second age (i.e. genetic innovation; Figure 2.2). Genetic innovation can also
represent the disappearance of a genetic factor unique for the first age, which
unfortunately is indistinguishable in the current model due to symmetry. Derivation for
the estimation of heritability of changes in cortical thickness are as follows. For
simplification of the mathematical equations, we will refer to the measurement at age 9
years as wave 1, refer to the measurement at age 12 years as wave 2, and refer to the

measurement at age 17 years as wave 3. Phenotypic variance of change V,; in cortical

thickness between wave i and wave j can be derived from the phenotypic variance matrix
V of the cortical thickness measures as the sum of the phenotypic variance at the individual
waves reduced by twice the phenotypic covariance between the two waves. The same rule

applies to genetic 4, and environmental E, ; variance of changes in cortical thickness. For
example, the genetic variance of changes 4, in cortical thickness between wave i = 1 and

wave j = 2 is defined as

AAH =A;1+An -2 A
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Figure 2.1. Path diagram of longitudinal AE model used to determine the heritability of changes in cortical
thickness. The longitudinal cortical thickness measurements for a region of interest at age 9, 12, and 17 years are
used as observed variables (rectangular boxes) for the first (upper half of path diagram) and the second twin (lower
half of the path diagram) of each twin pair. Change rates in cortical thickness (triangles) are computed by the
model as the difference between the observed variables Independent genetic factors A;, A,, and A; (circles) load
onto the longitudinal cortical thickness measurements through path coefficients. The genetic factor A, represents
genetic influences shared across all three ages through path coefficients a,;, a,;, and as,. The genetic factor 4,
represents genetic influences shared only between age 12 and 17 years through path coefficients a,, and a,3. The
genetic factor A, represents genetic influences specific for age 17 years through path coefficient as;. The same
motif applies for the unique environmental factors £y, E, and E;, and path coefficients ey, €,1, €31, €2, €53, and
e33. The model is made identifiable by constraining the correlation between genetic factors of both twins to 1.0

in case of monozygotic twins and 0.5 in case of dizygotic twins.
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Age 12 Age 9 Age 12

%%
;
g%’f’gxg

Amplifcation Deamplification Genetic innovation

Figure 2.2. Schematic depiction of genetic amplification, deamplification, and innovation in an example with two
ages. For genetic (de)amplification, the same genetic factor influences the phenotype during both ages, but to a
greater extent during the second age compared to the first age for genetic amplification, and to a lesser extent
during the second age compared to the first age for genetic deamplification. For genetic innovation, the same
genetic factor may influence the phenotype during both ages, and an additional genetic factor that is distinct from

the first genetic factor and unique to the second age influences the phenotype during the second age.

and the genetic variance of changes A,,; in cortical thickness between wave i = 2 and wave

Jj = 3 is defined as
AAZ3 = Ay, +A33— 2 Ay

where 4;; is the genetic (co)variance in cortical thickness between wave i and wave j.

Heritability of changes (hj,, = y“) in cortical thickness between wave i and wave j is then
412

the proportion of phenotypic variance of changes V,; in cortical thickness between wave i
and wave j due to additive genetic variance of changes 4, in cortical thickness between
wave i and wave j:

Aa Aa
h, = . and h;,. = T
412 423

Using a similar rationale as in (van Soelen, Brouwer, van Baal, et al. 2012), genetic variance
of changes in cortical thickness between wave 1 and 2 (i.e. 4, ,) can be calculated as a$; +
a5, +a3; — 2 - (ay; - a;1) using path tracing rules; simplified, this gives 4, , = a3, + (a;; —
a,1)? (see Figure 2.1 for definition of the path coefficients a;;). The first part of the equation
represents the contribution of genetic factor 4, specific for wave 2, while the second part
represents gradual changes in influences of genetic factor 4; on cortical thickness from
wave 1 to wave 2. When a,, > 0 we speak of genetic innovation at wave 2. When a,; > a,,;
we speak of genetic amplification of factor 4; between wave 1 and wave 2, and when a,; <
a,; we speak of genetic deamplification of factor A; between wave 1 and wave 2. Using the

same path tracing approach, genetic variance of change between wave 2 and 3 (i.e. 4,,,) is
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calculated as a%, + a2, + a%; + a3, + a3, — 2 - (ag; - ayy + a3, - ayy); simplified, this gives
Ap,, = a3z + (az3 — az)* + (az; — az;)? (see Figure 2.1 for definition of the path coefficients
a;;). The first part of the equation represents the contribution of genetic factord, specific
for wave 3, the second part represents gradual changes in influences of genetic factor 4,
on cortical thickness from wave 2 to wave 3, and the third and last part represents gradual
changes in influence of genetic factor 4; on cortical thickness from wave 2 to wave 3. When
as; > 0 we speak of genetic innovation at wave 3. When a3, > a,; we speak of genetic
amplification of factor 4; between wave 2 and wave 3, and when a3; < a,; we speak of
genetic deamplification of factor 4; between wave 2 and wave 3. When a3, > a,, we speak
of genetic amplification of factor 4, between wave 2 and wave 3, and when a3, < a,, we

speak of genetic deamplification of factor 4, between wave 2 and wave 3.

2.2.5.3 Determining the source of heritability of changes in cortical thickness

Heritability of changes in cortical thickness can be the result of innovation of novel genetic
factors or (de)amplification of existing genetic factors. We employed a step-wise nested
model testing approach to determine the most likely origin of the heritability of changes
in cortical thickness. First, we determined all vertices that show significant heritability of
changes in cortical thickness (FDR adjusted p < 0.05; Genovese et al. 2002) between wave
1 and 2 and similarly between wave 2 and 3. For those vertices, we first tested whether the
heritability of changes in cortical thickness originated from innovation of genetic factors.
Testing for innovation of genetic factor 4, at wave 2 was performed by comparing the
model with path coefficient a,, and a;, constrained to zero to the base model without any
constraints. Testing for innovation of genetic factor A; at wave 3 was performed by
comparing the model with path coefficient as; constrained to zero to the base model

without any constraints.

If no evidence for innovation was found, we continued with testing for (de)amplification
of existing genetic factors. All models testing for (de)amplification of existing genetic
factors were compared to a reference model where no innovation of genetic factors was
possible by constraining path coefficients a,,, as;, and as; to zero. Testing for
(de)amplification of genetic factor 4; between wave 1 and 2 was performed by additionally
constraining path coefficient a;; to be equal to a,;in the model and comparing it to the
reference model. Testing for (de)amplification of genetic factor A4; between wave 2 and
wave 3 was performed in the same way by additionally constraining path coefficient a,,

to be equal to as,; instead.
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2.2.5.4 Statistical significance of parameters

Statistical significance of heritability of cortical thickness (and heritability of changes in
cortical thickness) was tested comparing the —2 log-likelihood of the unconstrained model
to the —2 log-likelihood of the nested model with the heritability estimate at a given age
(or interval) constrained to a fixed value of 0. This statistic asymptotically follows a 50:50
mixture of y* distributions with zero and one degree of freedom; allowing p-values to be
cut in half (Dominicus et al. 2006). Likewise, statistical significance of differences in
heritability of cortical thickness between ages was determined by comparing the
unconstrained model and a nested model in which the heritability estimates at the different

ages were set to be equal.

2.2.5.5 Bivariate twin model to investigate overlap in genetic and environmental factors
between brain regions

To investigate the presence of interrelationship in genetic and environmental factors
between two brain regions across space and age, we estimated the genetic and
environmental correlation for all possible pairs of regions of interest across the three
waves. The genetic correlation (r;) between region x at wave i and region y at wave j is

defined as

Axiyj
r,(x;,y)) = ———
g( 12 y]) f—AXi - Axl_

where 4, is the genetic covariance between the two regions, and 4, and Ay, represent
the genetic variances of the individual regions. The same definition applies to

environmental correlation (r,) using environmental (co)variances E,,, E, and E, .

i’
Sequential bivariate analysis of all 630 unique pairwise bivariate models (6 lobar regions
per hemisphere for each wave) was employed to populate a unitriangular matrix with
dimensions 36x36 cells for the phenotypic (r,,), genetic (r;) and environmental (r,)
correlation between regions of interest; a path diagram of the bivariate AE model used in
the analysis is presented in Supplementary Figure A.2. Statistical significance of a
correlation was tested using a y? distribution with one degree of freedom on the difference
in log-likelihood of the unconstrained model and a nested model with the correlation
constrained to a fixed value of —1, 0, or +1. Correlation matrices were visualized using the
corrplot package in R (Wei and Simko 2016). Next, we applied cluster analysis to the
separate phenotypic and genetic correlation matrices to extract groups of regions with high

phenotypic, genetic, or environmental similarity.
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2.2.6 Cluster analysis based on phenotypic, genetic, and environmental correlation matrices
To investigate spatial and temporal patterns of the cortex we applied a hierarchical
clustering algorithm to the phenotypic, genetic, and environmental correlation matrices
obtained from the bivariate twin model using the cluster package in R (Maechler et al. 2016).
Prior to clustering, the phenotypic and genetic correlation matrices were transformed into
dissimilarity matrices using 1 — 1, for the phenotypic correlation matrix, 1 — |r,| for the
genotypic correlation matrix, and 1 — |r,| for the environmental correlation matrix. For the
phenotypic correlation matrix, this transformation ensured that highly correlated regions
would have low dissimilarity whereas anti-correlated regions would have high
dissimilarity. In contrast, for the genotypic and environmental correlation matrices, both
highly correlated and anti-correlated regions (i.e. regions under the influence of the same
genes or environmental factors but with opposing effects on the phenotype) would have
low dissimilarity. The optimal number of clusters k,,, was determined by selecting the
minimum value of k for which the average silhouette width was within one standard error

of the maximum average silhouette width (Rousseeuw 1987).

2.2.7 Post-hoc analyses

To investigate the possible effects of confounds on the results of the analyses, we
performed a qualitative post-hoc analysis using twin models where cortical thickness
measurements were corrected for sex, age at scan (and thereby implicitly individual scan
interval between ages), and handedness. Residuals after linear regression of covariates on
the cortical thickness data were used as input to the structural equation models. We
performed a qualitative evaluation of the effects of confounds by visual inspection of the

cortical maps and correlation matrices with and without regression of covariates.

Since heteroscedasticity between groups can have greater influences on the results in twin
modelling than correcting for mean effects, we performed a quantitative post-hoc analysis
to investigate the effects of sex and handedness on the mean and variance of whole-brain
cortical thickness estimates. We used a univariate saturated twin model with coefficients
on the mean and (co)variance estimates to model effects of sex and handedness. The
statistical significance of the effects was tested using a y? distribution with one degree of
freedom on the difference in log-likelihood of the unconstrained model and a nested model

with the coefficient constrained to a fixed value of 0.

2.3 RESULTS

2.3.1 Development of cortical thickness
The mean global cortical thickness was 3.38, 3.31, and 3.07 mm at age 9, 12, and 17 years
(Figure 2.3A; Supplementary Table A.3). A quadratic age curvature best described the
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trajectory of cortical thickness development (cubic versus quadratic: p = 0.7863); quadratic
versus linear: p < 0.001). The linear approximation of the annual rate of change between
the ages 9 and 12 years was —0.023 mm/year (Clos [-0.028 to —0.018 mm/year]; p < 0.001)
and doubled to -0.049 mm/year (Clos [-0.052 to —0.045 mm/year]; p < 0.001) between the
ages 12 and 17 years (Figure 2.3A; Supplementary Table A.3). No significant effects of sex
(p > 0.302) or handedness (p > 0.243) on mean global cortical thickness or changes in mean
global cortical thickness (sex: p > 0.081; handedness: p > 0.145) were found (Figure 2.3A).
No significant effects of sex (p > 0.469) or handedness (p > 0.107) on variance of mean
global cortical thickness or changes in mean global cortical thickness (sex: p > 0.060;
handedness: p > 0.305) were found.

As previously reported (van Soelen, Brouwer, van Baal, et al. 2012), at age 9 years, regions
with highest cortical thickness are found at the insula, temporal pole, and medial frontal
areas, with local thickness up to 4.58 mm (Figure 2.3B). Regions with lowest cortical
thickness are found in the visual cortex and sensorimotor cortices, with local thickness
down to 2.81 mm (Figure 2.3B). Between the ages 9 and 12 years there is a subtle decrease
in cortical thickness for most parts of the cortex, whereas some parts of the cortex, such as
the bilateral gyrus rectus, parahippocampal gyrus, and superior- and middle temporal
poles, show non-significant changes in cortical thickness (Figure 2.3C). The decrease in
cortical thickness is most prominent at the visual cortex, primary sensory and motor cortices,

and frontal poles, with rate of change between —0.03 to —0.05 mm/year (Figure 2.3C).

When including the third measurement at age 17 years, we found that the rate of changes
in cortical thickness between the ages 12 and 17 years accelerates and expands to most
regions of the cortex, with local maximum rate of change reaching up to —0.16 mm/year in
the superior frontal gyrus (Figure 2.3C). The least decrease in cortical thickness occurs
bilaterally at parahippocampal gyrus, olfactory cortex, and cingulum, with rate of change

between 0.01 to 0.02 mm/year (Figure 2.3C).

2.3.2 Heritability of cortical thickness

Heritability of mean global cortical thickness was 62% (Clos [46% to 74%]; p < 0.001) at age
9, 80% (Clos [65% to 88%]; p < 0.001) at age 12, and 54% (Clos [32% to 70%]; p < 0.001) at age
17 years; see Supplementary Figure A.3 for local heritability estimates of cortical thickness
and Supplementary Table A.3 for regional heritability estimates. Differences in heritability
of mean global cortical thickness was significant between ages 12 and 17 years (p = 0.036),
but not significant between ages 9 and 12 years (p = 0.104 [n.s.]) or between ages 9 and 17
years (p = 0.495 [n.s.]).

40



LONGITUDINAL DEVELOPMENT OF CEREBRAL CORTICAL THICKNESS

Global cortical thickness development Age 9 years Age 12 years Age 17 years

33

31

Cortical thickness (mm)

29
L

r T T
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Age (years)
Global cortical thickness by age and sex c Age 9 — 12 years Age 12 — 17 years
Sex Age 9 years Age 12 years Age 17 years

Females 3.38 (3.36; 3.40) | 3.32 (3.29; 3.34) | 3.07 (3.04; 3.09)

Males 3.37 (3.35; 3.38) | 3.30 (3.27; 3.32) | 3.07 (3.05; 3.09)

Combined 3.38(3.36; 3.39) | 3.31(3.29; 3.33) | 3.07 (3.05; 3.08)

Annual change in global cortical thickness by age and sex

Sex Age 9 — 12 years Age 12 — 17 years
Females -0.021 (-0.027; -0.015) -0.051 (-0.055; -0.046)
Males -0.022 (-0.029; -0.016) -0.047 (-0.053; -0.041)

Combined -0.023 (-0.028; -0.018) -0.049 (-0.052; -0.045)

T ——
<-0.15 change in cortical thickness (mm/year) >0.0

Figure 2.3. Developmental pattern of (A) global and (B,C) local cortical thickness during childhood and
adolescence. (A) Global cortical thickness shows accelerated thinning during adolescence. Data points represent
individual measurements, with lines connecting data points representing longitudinal measurements between age
9 and 12 years, and between age 12 and 17 years. A quadratic model best described overall thinning of mean global
cortical thickness (thick solid line accompanied by 95% confidence interval). No significant sex effects were found
for global cortical thickness at any age nor for annual change rates in global cortical thickness at either scan
intervals. Values reported in tables are mean and 95% confidence intervals. (B) Absolute cortical thickness across
the ages 9 years (left panel), 12 years (middle panel), and 17 years (right panel) reveal regional effects of cortical
thinning during adolescence. Cortical thickness ranges from less than 2.0 mm (blue) in the occipital cortex at age
17 years up to greater than 4.4 mm (red) in the insular cortex at age 9 years. (c) Annual development of cortical
thickness between ages 9 and 12 years (left panel), and between ages 12 and 17 years (right panel) based on linear
approximation emphasize regional differences in rate of cortical thinning, particularly in the medial frontal cortex.
The rate of changes in cortical thickness ranges from non-significant changes in cortical thickness per year (white)
in mostly medial temporal regions between age 9 and 12 years to a decrease in cortical thickness of 0.15 mm/year
or greater (dark blue) in medial frontal cortex between age 12 and 17 years. The rate of cortical thinning doubles
between the ages 12 and 17 years compared to the rate of change between the ages 9 and 12 years. (B,C) Order of
views per age, from left to right, top to bottom: left lateral (Ll), right lateral (Rl), left medial (Lm), right medial

(Rm), superior (S), inferior (I), anterior (A), and posterior (P).

2.3.3 Hierarchical clustering of phenotypic and genetic correlation matrices
A highly correlated genetic factor was involved in mean global cortical thickness at ages 9
and 12 years (r; = 0.92; Clos [0.75 to 1.00]). While there was significant genetic overlap
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between age 9 and age 17 years (r; = 0.68; Clos [0.40 to 0.94]) and age 12 and age 17 years
(r; = 0.64; Clbs [0.41 to 0.87]), the confidence intervals of the genetic correlations suggest

additional genetic factors influencing cortical thickness at age 17 years.

We estimated the phenotypic, genetic, and environmental correlations of cortical thickness
between the major lobes of the cortex across childhood and adolescent development
(Figure 2.4). The phenotypic and environmental correlation matrices show strong
similarities in pattern. There is a moderate to strong association between the major lobes
within hemisphere (Figure 2.4AC), and a strong association between homologous regions
across hemispheres within each age for phenotypic correlations that is absent for
environmental correlations (Figure 2.4A-C). In addition, both phenotypic and
environmental correlations show an association of the same regions over time, although
this association is only weak to moderate for environmental correlations (Figure 2.4A-C).
In contrast, genotypic correlations show strong association between all regions across all
three ages. However, many of the associations with regions at age 17 years are absent due
to non-significant associations (Figure 2.4B). Although many regions share a common
genetic factor, a portion of these regions are influenced by an additional genetic factor
unique for each region (i.e. incomplete pleiotropy), indicated by a white dot (Figure 2.4B).
Of special note, regions within the same age are influenced by distinct genetic factors (i.e.
spatial genetic differentiation of lobes), as well as the same regions across age (i.e. temporal
genetic differentiation): left parietal cortex and right frontal cortex between age 9 and 17

years, and right parietal between age 12 and 17 years.

We performed hierarchical clustering analysis on the correlation matrices (Figure 2.4). The
optimal number of clusters k,,, was determined using the silhouette heuristic (Rousseeuw
1987); kope = 6 for the phenotypic correlation matrix, k,,, = 7 for the genetic correlation

matrix, and k,,, = 6 for the environmental correlation matrix (Supplementary Figure A.4).

The global pattern reveals the insular cortex and cingulate cortex form separate clusters
from the frontal, temporal, and parietal lobes, with occipital lobe forming a third
independent cluster. Clustering of the phenotypic and genetic correlation matrices
separates the frontal, parietal, and temporal lobes at age 17 years from age 9 and 12 years
(Figure 2.4A-B). In addition, clustering of the genetic correlation matrix pairs homotopic
regions across hemisphere, whereas clustering of the phenotypic correlation matrix groups
regions by hemisphere (Figure 2.4A-B). In contract, clustering of the environmental

correlation matrix reveals a strong pattern where regions are first clustered by age followed
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Figure 2.4 (continued on the next page). Hierarchical clustering of the phenotypic, genetic, and environmental
correlation matrix of absolute cortical thickness across childhood and adolescent development. (A) The correlation

matrices for phenotypic (top), genetic (middle), and environmental (bottom) correlation in cortical thickness
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Figure 2.4 (continued). between the major lobes of the cortex. Correlations range from -1 (blue) to +1 (red).
Correlations that did not differ from zero (p < 0.001; uncorrected) are left blank. Genetic correlations marked
with a white dot indicate incomplete pleiotropy (i.e. unique genetic factors for each region in addition to a shared
genetic factor). Regions are ordered from top-left to bottom-right, first by age (9, 12, and 17 years), then by
hemisphere (LH=left hemisphere, and RH=right hemisphere), and finally by lobe (F=frontal, P=parietal,
T=temporal, O=occipital, I=insula, and C=cingulate). (B) Dendrogram for the hierarchical clustering of the
distance-transformed phenotypic (top), genotypic (middle), and environmental (bottom) correlation matrices.
Phenotypic correlations were transformed using one minus the phenotypic correlation, and genetic and
environmental correlations were transformed using one minus the absolute of the genetic or environmental
correlation. The optimal number of clusters was determined by the average silhouette (see Supplementary Figure
A.4); kope = 6 for the phenotypic correlation matrix, k,,, = 7 for the genetic correlation matrix, and k,,; = 6
for the environmental correlation matrix. Optimal clusters are separated by a solid red line, while global optimum
uses a dotted red line. Labels for the regions are encoded as lobe (F=frontal, P=parietal, T=temporal, O=occipital,
I=insula, and C=cingulate), followed by hemisphere (LH=left hemisphere, and RH=right hemisphere), and finally
age (9yo=age 9 years, 12yo=age 12 years, and 17yo=age 17 years).

by hemisphere (Figure 2.4C). The described patterns become more apparent when using

regions from only one or two of the ages (Supplementary Figure A.5).

Post-hoc analysis on the effects of possible confounds revealed little effect from sex, age at
scan, and handedness on the correlation matrices of cortical thickness between cerebral

lobes (Supplementary Figure A.6).

2.3.4 Heritability of changes in cortical thickness

Heritability of changes in mean global cortical thickness is 21% (Clos [0% to 52%]; p = 0.154
[n.s.]) between the ages 9 and 12 years, and 53% (Clos [26% to 72%]; p < 0.001) between the
ages 12 and 17 years; see Supplementary Table A.3 for regional heritability of changes in
cortical thickness. Locally, heritability of changes in cortical thickness is most prominent
at association cortices in the frontal, parietal, and temporal lobes (FDR-adjusted p < 0.05),
where it reaches up to 76% heritability between the ages 9 and 12 years, and up to 82%
heritability between the ages 12 and 17 years (Figure 2.5A).

Post-hoc analysis on the effects of possible confounds reveals little effect from sex, age at scan

and handedness on heritability of changes in cortical thickness (Supplementary Figure A.7).

2.3.5 Decomposition of heritability of changes in cortical thickness

Locally, we find several large clusters of genetic innovation in the right superior medial
frontal gyrus, near the right calcarine sulcus, right superior medial frontal gyrus, left medial
orbital frontal cortex, right parahippocampal gyrus, left fusiform gyrus, right Heschl gyrus,
right middle frontal gyrus, bilateral postcentral gyrus, and right middle occipital gyrus
between age 9 and 12 years (Figure 2.5B and Table 2.1). These clusters show strong
heritability of changes in cortical thickness with estimates between 40% to 71% (FDR-
adjusted p < 0.023) and genetic innovation (p < 0.017). Between age 12 and 17 years, large
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Age 9 — 12 years Age 12 — 17 years Age 9 = 12 years Age 12 = 17 years
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Figure 2.5. Estimated heritability of (A) changes in cortical thickness and (B) its decomposition into different
genetic origins between the ages 9 and 12 years (left panel), and between the ages 12 and 17 years (right panel).
(A) Heritability estimates that did not differ significantly from zero (FDR adjusted p < 0.05) have been left grey.
Approximately 3.1% of the vertices between age 9 and 12 years and 28.4% of the vertices between age 12 and 17
years are significant for heritability of changes in cortical thickness (FDR adjusted p < 0.05). Heritability
estimates range from 0% (light-yellow) up to 75% or greater (dark-red). (B) Heritability of changes in cortical
thickness between the ages 9 and 12 years (left panel) and between the ages 12 and 17 years (right panel) was
decomposed into sources of genetic innovation (green; 20.2% of the vertices significant for heritability of changes
in cortical thickness between the ages 9 and 12 years, and 1.2% between the ages 12 and 17 years), and areas with
amplification (red; 49.2% of the vertices between the ages 9 and 12 years, and 29.3% between the ages 12 and 17
years) or deamplification (blue; 28.5% of the vertices between the ages 9 and 12 years, and 28.4% between the ages
12 and 17 years) of a genetic factor across age. Areas with significant heritability of changes in cortical thickness
for which these sources could not be disentangled are depicted in light grey (remaining 2.1% of the vertices
significant for heritability of changes in cortical thickness between the ages 9 and 12 years, and 41.1% between
the ages 12 and 17 years). Scale bars for significance start at logjo-equivalent of p = 0.05. (A,B) Order of views
per age, from left to right, top to bottom: left lateral (L), right lateral (Rl), left medial (Lm), right medial (Rm),

superior (S), inferior (I), anterior (A), and posterior (P).

clusters of genetic innovation were found at the right superior medial frontal cortex, right
lingual gyrus, left supramarginal gyrus, left calcarine sulcus, and left superior parietal
gyrus (Figure 2.5B and Table 2.1). These clusters show similarly strong heritability of
changes in cortical thickness with estimates between 50% to 70% (FDR-adjusted p < 0.024)
and genetic innovation (p < 0.017). In addition to genetic innovation, we found clusters of
genetic (de)amplification becoming more widespread throughout the cortex during later
adolescence, with most evident amplification in the right supramarginal gyrus, and
deamplification in the medial frontal cortex, cingulum, and occipital cortex between the
ages 12 and 17 years (Figure 2.5B).
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Table 2.1. Overview of largest clusters with genetic innovation between age 9 and 12 years and between age 12
and 17 years; based on the size distribution of the clusters, only the largest clusters with 10 or more vertices in
size are included in this table (approximately top 15% largest clusters), ordered by anatomical position along the

anterior-posterior axis.

#  Region Size  MNI coordinates h2(ACT) p(h?(ACT)) p(Innov)

Age 9 to 12 years

1 Med. Orb. Frontal LH 40 -17 69 -2 53% 0.020 0.004
2 Mid. Orb. Frontal RH 10 26 55 -15 48% 0.033 0.003
3 Sup. Med. Frontal RH 43 4 50 41 47% 0.023 0.010
4 Ant. Cingulum RH 12 3 24 22 71% 0.027 0.017
5 Fusiform Gyrus LH 28 -39 -14 -34 54% 0.010 <0.001
6 Heschl Gyrus RH 26 37 =25 12 41% 0.027 0.001
7 Heschl Gyrus LH 10 35 =29 17 41% 0.036 0.003
8  Parahippocampal RH 38 17 -32 -16  68% 0.013 <0.001
9  Calcarine Sulcus RH 48 15 -65 5 62% 0.013 0.010
10 Cuneus LH 10 -15 =75 37 44% 0.032 0.002

Age 12 to 17 years

1 Sup. Med. Frontal RH 55 11 53 5 70% 0.003 0.013
2 Sup. Med. Frontal RH 53 7 44 41 66% 0.004 0.018
3  Calcarine Sulcus LH 11 -19 -46 -34  52% 0.025 0.004
4 Lingual Gyrus RH 39 14 -60 -2 67% 0.002 0.006
5 Sup. Parietal LH 10 -4 -71 12 57% 0.011 0.015
6  Supramarginal Gyrus LH 22 -18 -102 -16 50% 0.007 0.016

Region are defined by the Automated Anatomic Labelling (AAL) Atlas (Tzourio-Mazoyer et al. 2002); size is
reported as the number of connected vertices in the cluster; MNI coordinates are reported in X Y Z format;
h2(ACT) = heritability of changes in cortical thickness; p(h?(ACT)) = significance of heritability of changes in
cortical thickness (FDR-adjusted p < 0.05); p(Innov) = significance of genetic innovation (uncorrected p <
0.05).

Post-hoc analysis on the effects of possible confounds revealed little effect from sex, age at
scan and handedness on the decomposition of heritability of changes in cortical thickness

(Supplementary Figure A.7).
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2.4 DISCUSSION

We applied twin modelling to a longitudinal cohort with three measurements to investigate
the extent to which genetic influences drive changes in cortical thickness during childhood
and adolescence. We find a single genetic factor that affects the acceleration of overall
cortical thinning across childhood and adolescent development with increasing heritability
of changes in mean global cortical thickness: hj , = 21% (p = 0.154; [n.s.]) between ages 9
and 12 years, and hj , = 53% (p < 0.001) between ages 12 and 17 years. At age 17 years, a
new genetic factor comes into play, separating cortical thickness development in late
adolescence from early adolescence and childhood. Locally, we again find a core genetic
factor influencing cortical thickness and a second genetic factor involved in innovation
explaining changes in local cortical thickness during different stages of childhood and
adolescent development; areas with the highest estimates include the anterior cingulate
cortex (hj , = 71% in cortical thickness change between age 9 and 12 years) and the superior

medial frontal cortex (h},, = 70% in cortical thickness change between age 12 and 17 years).

We report an accelerating decrease in cortical thickness in twins in this longitudinal design
with up to three measurements (Figure 2.3 and Supplementary Table A.3) that is
compatible with cortical development in healthy typically developing singletons (Gogtay
et al. 2004; Sowell et al. 2007; Raznahan, Shaw, et al. 2011; Storsve et al. 2014; Schnack et
al. 2015). The patterns in phenotypic correlation across time (Figure 2.4A), with strong
correlations between homotopic regions and correlation of the same region across
development, are comparable to those found by structural covariance analyses (Raznahan,
Lerch, et al. 2011; Alexander-Bloch et al. 2013). We find moderate to high heritability
estimates of cortical thickness for most of the cortex, corroborating the evidence that the
cortex is under strong genetic control (Lenroot et al. 2009; Blokland et al. 2012; Schmitt et
al. 2014). Estimating the genetic overlap in cortical thickness between lobar regions of the
cortex revealed a strong core genetic factor affecting overall cortical thickness across
childhood and adolescent development (Figure 2.4B). The evidence for a core genetic factor
is in agreement with one of the earlier studies investigating distinct genetic influences on
cortical thickness in a cross-sectional pediatric sample with age range from 5.4 to 18.7 years
that found a single component explaining over 60% of the genetic variance (Schmitt et al.
2008). Another cross-sectional study in older male-only twins found moderate to strong
genetic correlations ranging from 0.3 to 1.0 across most of the cortex, characteristic for an
omnipresent genetic factor, for a seed placed in the middle frontal cortex (Rimol et al. 2010).
We now add to these findings that the same genetic factor is responsible for cortical

thinning during childhood and adolescence.
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In contrast to cross-sectional studies investigating regional genetic influences on cortical
thickness after removing the effect of global cortical thickness (Schmitt et al. 2008; Eyler et
al. 2012; Chen et al. 2013; Docherty et al. 2015; Fjell et al. 2015), we specifically wanted to
investigate the temporal dynamics of the genetic factor affecting overall cortical thickness
development during childhood and adolescence. Using the longitudinal twin model setup,
we show there is a single genetic factor that dominates across childhood and adolescence
which is involved in cortical thickness and cortical thickness change — and thus involved
in cortical thinning. On top of this core genetic factor there is evidence for spatial genetic
differentiation between the major lobes. This corroborates results from a recent publication
in an extended longitudinal twin design that finds similar spatial patterns for genetic
correlations of cortical thickness between the major lobes during childhood and
adolescence (Schmitt et al. 2017). In addition, they show changes in genetic correlation
across development, with some regions demonstrating an increase in genetic overlap
towards the second decade of life. Their results could be related to the fluctuating
influences of genes and genetic innovation found in our study and is characteristic for
genetic differentiation. This genetic differentiation might be the result of continued areal
specialization of the cortex, since it is well known that cortical areas continue to develop

well into early adulthood and beyond, in particular the frontal cortex (Schnack et al. 2015).

During adolescence, areal specialization might be spurred by new genetic factors that could
be related to the rapid cognitive and behavioral changes during adolescence. Indeed,
decomposition of genetic influences on cortical plasticity revealed a second genetic factor,
representing genetic innovation, that is influencing cortical thickness during childhood and
adolescent development. The areas where genetic innovation occurred were most
prominent in the frontal cortex, involving the anterior cingulate cortex (with a heritability
of changes in cortical thickness of 71% between age 9 and 12 years) and superior medial
frontal cortex (heritability of 70% between age 12 and 17 years). In addition, genetic
innovation was found in other areas, such as the medial and middle orbital frontal cortices,
the fusiform, Heschl’s, and parahippocampal gyri and the cuneus between age 9 and 12
years and the calcarine, lingual, superior parietal and supramarginal cortices between age
12 and 17 years. Together, the two genetic factors involved in changes in cortical thickness
explain the strong positive correlations between homotopic regions across the hemispheres
and across age, evident from the diagonal banding in the correlation matrices (Figure 2.4)
and as reported from cross-sectional twin studies at both lobar and local level (Chen et al.
2013; Wen et al. 2016).

Gene expression studies can reveal the spatiotemporal dynamics of individual genes

expressed in the human brain across the lifespan (Naumova et al. 2013; Akbarian et al. 2015;
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Silbereis et al. 2016). It has been suggested that areal specialization of the neocortex is
established during early development, and that later development is the result of more
general maturational processes affecting the entire neocortex (Pletikos et al. 2014). Several
studies report a remarkable homogeneity in gene expression profiles among neocortical
areas despite their functional specialization (Roth et al. 2006; Kang et al. 2011; Hawrylycz
et al. 2015; Jaffe et al. 2015). Results from our analysis show a similar strong overlap in
genetic factors among neocortical areas while providing evidence for spatial differentiation
among the major lobes. These results suggest that cortical thickness during childhood and
adolescence is primarily driven by a core genetic component with secondary regional-
specific genetic influences. This result is in agreement with other twin studies that found
distinct regional genetic influences on cortical thickness after removing global effects
(Schmitt et al. 2008; Chen et al. 2013; Docherty et al. 2015). It suggests a majority of cortical
thinning during childhood and adolescence might be part of a more generic developmental
process affecting global cortical development (Jaffe et al. 2015), whereas secondary

influences might be the result of gene-environment interactions.

Regarding temporal differential gene expression (i.e. increased or reduced expression of
the same genes, or expression of novel genes over time), adolescence is a period during
postnatal human development marked by the highest number of temporal differential
expression of genes in the prefrontal cortex (Jaffe et al. 2015). During postnatal
development, an hourglass model for spatially differential gene expression has been
reported, where adolescence is identified by increased homogeneity in spatial gene
expression among neocortical areas that is concluded by a second wave of changes in gene
expression at the end of adolescence (Somel et al. 2010; Colantuoni et al. 2011; Pletikos et
al. 2014). A similar conclusion can be made from our results where age 12 years shows
increased complete genetic overlap between cortical regions compared to age 9 and 17
years, although this conclusion should be treated with caution as it might be the result of
diminished statistical power to detect genetic differentiation due to reduced sample size at
age 12 years. The more pronounced genetic (de)amplification and genetic innovation found
in our analysis between age 12 and 17 years might be the first sign of the reported second
wave of changes in gene expression at the end of adolescence. Thinning of the cortex
during adolescence and early adulthood has been linked to increased myelination and
associated gene expression (Whitaker et al. 2016). Gene co-expression network analyses
have revealed modules enriched for genes associated with synaptic function, dendrite
development and myelination emerging during late fetal development and reaching a
plateau during early childhood (Kang et al. 2011). Spatiotemporal differentiation in gene
expression profiles have been linked to differences in cellular composition of the neuropil

rather than changes in gene expression of constituent cells (Jaffe et al. 2015). These gene
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expression findings support existing theories on the biological processes underlying the
apparent cortical thinning observed during development (Huttenlocher 1979; Bourgeois
and Rakic 1993; Huttenlocher and Dabholkar 1997; Paus et al. 2008; Paus 2010; Petanjek et
al. 2011; Miller et al. 2012; Deoni et al. 2015). These theories anticipate a decrease in cortical
grey matter content of the neuropil due to pruning of neuronal synapses and dendrites
accompanied by a decrease in supporting glial cells, and a parallel increase of oligo-
dendrocytes responsible for myelination of neuronal axons. The fluctuating influences of
the core genetic factor from our results could represent a shift in balance of maturational
processes. Another possible explanation of the fluctuating influences of the core genetic
factor could be related to maturational timing of neocortical areas. Neocortical areas that
mature during childhood and early adolescence might experience increased influences of a
genetic factor associated with maturational genes around that age, followed by a decreased
influence upon maturation during later adolescence. In contrast, neocortical areas that
mature during late adolescence might initially experience a low or decreased influence of
this genetic factor that suppresses or delays maturation until late adolescence. The genetic
innovation found in our analysis could represent a novel genetic factor that arises upon
maturation of neocortical, such as genes involved in maintaining matured neurons in good
condition. On the other hand, the genetic innovation could also represent the
disappearance of a genetic factor, something we cannot resolve with the current twin
model design. This would mean the genetic “innovation” could be associated with the

termination of maturational processes instead.

The brain is highly plastic and capable of adapting to new environments (Kramer et al.
2004; Zatorre et al. 2012). The environmental correlations estimated from our data could be
due to true environmental influences unique to each individual, but are likely to be
confounded by measurement errors from the MRI scans and image processing procedure.
In particular, the strong correlations within ages will be confounded by measurement
errors. Although there is a surprising laterality between hemispheres with each age, this
may be the result of processing hemispheres independently during image processing. This
can also explain the lack of environmental correlations between homologous regions across
hemispheres. The strong environmental correlations of the same region across time are
more likely to be caused by some unknown environmental influence unique to everyone
(Figure 2.4C). Previous studies have shown that environmental influences from exercising
(Voelcker-Rehage and Niemann 2013; Lopez-Vicente et al. 2017), smoking and substance
use (Jacobus et al. 2015; Karama et al. 2015), and prenatal exposure to aversive environment

(Gautam et al. 2015; Marroun et al. 2016) can influence cortical thickness.
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With a similar number of females and males in the study it was possible to assess
differences between the sexes. We found negligible influences of sex, handedness, and age
at scan on heritability of (changes) in cortical thickness in qualitative post-hoc analyses.
Quantitative evaluation of sex and handedness effects on the means and variance of
(changes in) global cortical thickness confirmed the absence of sex or handedness effects.
Although sex effects for mean and variance of changes in cortical thickness between ages
12 and 17 years were approaching significance, no discernible effects were observed in the
qualitative evaluation. It remains unclear if sex differences in cortical thickness during
development exist (Lenroot and Giedd 2010; Walhovd et al. 2017). Our longitudinal data on
cortical thickness development reveals no sex differences in global cortical thickness across

childhood and adolescent development (Figure 2.3).

This study has several limitations which should be taken into consideration when
interpreting its findings. One, the bivariate twin analysis has a limited level of detail by
using a lobar segmentation of the cortex. Although genetic clustering of the cortex appears
to largely conform to anatomical boundaries defined by sulci and gyri, the genetically
optimal configuration has a more refined subdivision of the cortical lobes (Chen et al. 2012;
2013; Peng et al. 2016; Wen et al. 2016). As a result, the use of a lobar segmentation may
result in a mixture of different gene pools for each lobar region, which may impact our
ability to detect distinct genetic factors between regions. Two, the statistical power of a
twin study determines the effect sizes that can be detected (Posthuma and Boomsma 2000;
Panizzon et al. 2009) and our sample is modest for twin modelling purposes. The
longitudinal design of this study increases the power substantially for heritability estimates
of measures correlated across time such as cortical thickness, while the ability to detect
genetic innovation depends on non-shared genetic factors influencing the individual
measures (i.e. genetic factors influences both measures are not perfectly correlated). Thus,
there is a balance between being able to detect heritability and being able to detect genetic
innovation depending on the amount of genetic overlap between the variables. Assuming
a ground truth based on the phenotypic covariance matrix for mean global cortical
thickness from our own data, a post-hoc simulation study detected significant heritability
of cortical thickness at all three waves and heritability of cortical thickness change with a
power between 90% to 100%. However, it must be noted that we are underpowered to detect
genetic innovation: genetic innovation at age 12 years was detected in 59% of the
simulation runs, and at age 17 years in only in 26% of the simulation runs. Three, with a 5-
year interval between age 12 and 17 years compared to a 3-year interval between age 9 and
12 years, we expected to see increased sensitivity for heritability estimates of changes in
cortical thickness since more time has passed to allow for changes in cortical thickness to

occur and consequently an increased variance between individuals. This increased
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sensitivity is enhanced by the increased rate of changes in cortical thickness during the
second half of adolescence. Indeed, we found larger areas significant for heritability of
changes in cortical thickness between age 12 and 17 years than between age 9 and 12 years
(Figure 2.5). With a five-fold increase in additive genetic variance for changes in cortical
thickness between age 12 and 17 years compared to only two-fold increase in phenotypic
variance and no changes to environmental variance, we believe the increased heritability
of changes in cortical thickness between age 12 and 17 years can be attributed to increased
rate of cortical thinning and not merely to the difference in time interval between scans.
Despite the increase in sensitivity to detect changes between age 12 and 17 years, we found
fewer and smaller clusters with genetic innovation than between age 9 and 12 years (Figure
2.5B and Table 2.1).

Despite its limitations, the longitudinal design of this study with its strict age range at each
measurement is ideally suited for the longitudinal twin analysis investigating heritability
of changes in cortical thickness since it permits exploiting rules of variance to readily
obtain covariance matrices for change measures without having to consider a diverse range
of ages of the participants. Slight variations in individuals’ scan interval, implicitly
modelled by incorporating age at scan as variable of no interest in the post-hoc analysis,

did not have any discernible effect on the results.

In conclusion, cortical thickness development during childhood and adolescence is under
strong genetic control and although it is largely driven by a single genetic factor, the
influence exerted by this core genetic factor varies with age and its influence seems to
decrease towards adulthood. In addition, new genetic factors influence regional cortical
thickness development during different stages of childhood and adolescent development.
These new genetic factors might explain the rapid cognitive and behavioral development
during adolescence and could potentially be associated with the manifestation of

psychiatric disorders during adolescence.
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ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI) has an inherently low
signal-to-noise ratio largely due to thermal and physiological noise that attenuates the
functional connectivity (FC) estimates. Such attenuation limits the reliability of FC and
likely confounds its association with other traits. Low reliability also limits heritability
estimates. Classical test theory can be used to obtain a true correlation estimate free of

random measurement error from parallel tests, such as split-half sessions of a rs-fMRI scan.

We applied a measurement model to split-half FC estimates from the resting-state fMRI
data of 1003 participants from the Human Connectome Project (HCP) to examine the
benefit of reliability modelling of FC in association with traits from various domains. We
evaluated the efficiency of the measurement model on extracting a stable and reliable
component of FC and its association with several traits for various sample sizes and scan
durations. In addition, we aimed to replicate our previous findings of increased heritability

estimates when using a measurement model in a longitudinal adolescent twin cohort.

The split-half measurement model improved test-retest reliability of FC on average with
+0.33 points (from +0.49 to +0.82), improved strength of associations between FC and various
traits on average 1.2-fold (range 1.09 to 1.35), and increased heritability estimates on average
with +20% points (from 39% to 59%) for the full HCP dataset. On average, about half of the
variance in split-session FC estimates was attributed to the stable and reliable component of
FC. Shorter scan durations showed greater benefit of reliability modelling (up to 1.6-fold

improvement), with an additional gain for smaller sample sizes (up to 1.8-fold improvement).

Reliability modelling of FC based on a split-half using a measurement model can benefit
genetic and behavioral studies by extracting a stable and reliable component of FC that is

free from random measurement error and improves genetic and behavioral associations.

Keywords: test-retest reliability; reliability modelling; functional connectivity;

measurement model; measurement error; human connectome project
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3.1 INTRODUCTION

Resting-state functional connectivity has become a popular method to study the functional
organization of the human brain (Biswal et al., 1995; Greicius et al., 2003; van den Heuvel
and Hulshoff Pol, 2010). Functional connectivity has shown promise as a potential
biomarker for its association with neuropsychiatric and neurological disorders (Hager and
Keshavan, 2015; Hohenfeld et al., 2018; Whitfield-Gabrieli and Ford, 2012; Zhang and Raichle,
2010; Fox et al., 2014). In addition, it is associated with various cognitive and behavioral traits
(Vaidya and Gordon, 2013; Basten et al., 2015; Shen et al., 2018; Smith et al., 2015; Toschi et
al., 2018), and functional connectivity is heritable to a certain extent (Ge et al., 2017; Colclough
et al., 2017; Adhikari et al., 2018; Teeuw et al., 2019). However, for resting-state functional
connectivity to become a biomarker, it needs to be a reliable and state-independent

endophenotype (Gottesman and Todd, 2003; Beauchaine and Constantino, 2017).

Resting-state functional magnetic resonance imaging (rs-fMRI) has an inherently low
signal-to-noise ratio (SNR) primarily due to thermal noise of the magnetic resonance (MR)
scanner and physiological noise from the subject, such as head motion, cardiovascular and
respiratory activity (Logothetis and Wandell, 2004; Bianciardi et al., 2009; Murphy et al.,
2013; Liu et al., 2016). These sources of noise are confounding the blood-oxygenation level
dependent (BOLD) signal and lead to biased estimates of resting-state functional
connectivity (Birn et al., 2014; Siegel et al., 2017). Numerous strategies have been proposed
to clean the BOLD signal from these confounders and recover the signals related to neural
activity (Burgess et al., 2016; Caballero-Gaudes and Reynolds, 2017; Power et al., 2015).
However, no perfect solution exists (Bright and Murphy, 2015; Varikuti et al., 2017; Parkes
et al., 2018; Krishnamurthy et al., 2018; Lindquist, 2020). Noise in the BOLD signal has a
negative impact on the reliability of the signal and results in the attenuation of functional
connectivity estimates based on temporal correlation between two BOLD signals
(Spearman, 1904; Leigh Wang, 2010; Birn et al., 2014; Mueller et al., 2015). Even with state-
of-the-art procedures, test-retest reliability of functional connectivity is only poor to
moderate (Noble et al., 2019; Chen et al., 2015; Shah et al.,, 2016), with large variation in
reliability for the different connections measured in a single individual over an extended
period of time (Choe et al.,, 2015). Although reliability of functional connectivity can be
improved by increasing the scan duration up to 1.5 hour (Birn et al., 2013; Laumann et al.,
2015), this approach is not always feasible due to the burden on the subject or the cost and
availability of MRI. The limited reliability of functional connectivity puts an upper bound
on the heritability estimates of functional connectivity and its association with traits (Vul
et al., 2009; Neale and Cardon, 1992; Ge et al., 2017). Thereby making it difficult to reliably
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identify functional connections in the brain that are associated with particular traits
(Geerligs et al., 2017; Kruschwitz et al., 2018).

In Classical Test Theory, the true score of a measure can be obtained from the observed
score if the error term is known: observed score = true score + error term (Streiner, 2003;
Miller, 1995). The error term can be approximated from ‘parallel scores’ (i.e. repeated
measures). When it is not feasible to acquire two full measurements, two parallel half-score
measures might be an option; e.g. an odd-even split in an event-related study design (van
Baal et al,, 1998). Resting-state fMRI data is uniquely suited for ‘split-half® reliability
modelling because of the temporal nature of the BOLD signal to create two parallel half-
score measures by splitting scan session data into two or more parts (Brandmaier et al.,
2018). For associations, such as functional connectivity based on the temporal correlation
of two BOLD signals, the error term is defined by the reliability of the two measures
(Spearman, 1904). The true association can be obtained by scaling the observed association
with a factor inversely proportional to the reliability (Mueller et al., 2015; Golestani and
Goodyear, 2011). However, classical disattenuation requires the correction factor to be
known a priori and has the risk of overcorrecting the association (Leigh Wang, 2010).
Instead, a structural equation measurement model can be applied to the half-score
measures to derive a latent variable representing the trait of interest that is “free” of
measurement error without the need of an a priori correction factor or the risk of
overcorrection (Brandmaier et al., 2018; Cooper et al., 2019). Such measurement models
have previously been applied in twin studies to separate the variance attributed to
measurement error from genetic and environmental variance components to obtain a
robust heritability estimate for the reliable part of the variation (van Baal et al., 1998; van
Beijsterveldt et al., 2001; Ge et al. 2017; Teeuw et al., 2019). The measurement model is
however suited for many types of measures and study designs, as long as some form of
parallel scores can be obtained. This implies that reliability modelling can be useful for the
typical cross-sectional resting-state fMRI dataset of unrelated individuals. However, little
is known about the effectiveness of reliability modelling of resting-state MRI functional
connectivity and its ability to uncover the true associations between functional

connectivity and other traits.

Here, we examine the benefits of reliability modelling of functional connectivity in
association with physiological, cognitive and behavioral traits. For that purpose, a
measurement model was applied to functional connectivity estimates from the resting-state
functional MRI scans of the Human Connectome Project Young Adult (HCP-YA) cohort
(Van Essen et al., 2013). The efficiency of reliability modelling was evaluated for various

sample sizes and scan durations on (i) the ability to extract a stable and reliable component
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of functional connectivity and (ii) the improvement in the associations of functional
connectivity with various traits. We also aimed to replicate our previous findings of
increased heritability estimates for the reliable component of functional connectivity
(Teeuw et al., 2019).

3.2 MATERIALS AND METHODS

3.2.1 Human connectome project

We utilized data from the publicly available extensively processed fMRI data package that is
part of the Human Connectome Project Young Adult cohort (Van Essen et al., 2013). The
package provides data for 1003 related individuals (siblings, including monozygotic- and
dizygotic twins; aged 22 to 37 years) from 429 families with four complete runs of resting-
state fMRI scans (Table 3.1) and consists of precomputed denoised BOLD signal time series
for nodes in the brain based on group-ICA decomposition of the data at various
decomposition levels. The acquisition parameters and processing of this data have been
described elsewhere (Smith et al., 2013; Glasser et al., 2013; see supplementary methods for
summary). All analyses were performed using the group-ICA decomposition with 50 nodes

(Supplementary Figure B.1).

Table 3.1. Demographics table for participants included in the extensively processed fMRI data package of the

Human Connectome Project Young Adult cohort.

Measure Statistic
Participants (N) 1003

Families (N) 429

Age range (min; max) 22 to 37 years
Age (mean + SD) 28.71 £ 3.71 years
Sex ratio (female : male) 534 : 469

Abbreviations: SD = standard deviation of the mean.

3.2.2 Functional connectivity

Functional connectivity estimates were obtained by calculating the temporal correlation
coefficient between the BOLD time series of two nodes using Pearson correlation (Biswal
et al., 1995; van den Heuvel and Hulshoff Pol, 2010). Functional connectivity was estimated
for different temporal blocks of the time series data to provide full-, half-, and quarter-score

estimates of functional connectivity for the purpose of reliability modelling (Figure 3.1A).
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All statistical and mathematical operations on functional connectivity were performed on

Fisher's r-to-Z transformed functional connectivity estimates.

3.2.3 Reliability modelling of functional connectivity

A measurement model is applied to half-score measures of functional connectivity to
extract a reliable component of functional connectivity represented by the latent variable
F; (Figure 3.1). Variance shared between half-score measures that can be attributed to the
latent variable is quantified by the path coefficient (f;), which are constrained to be equal
in proportion of variance for both half score measures. Any residual variance of the half-
score measures, which includes measurement error, is considered noise, and is represented

by the measurement-specific latent variables Es; quantified by the path coefficients es;.

To demonstrate the ability of the measurement model to extract a stable and reliable
component of functional connectivity, test-retest reliability is estimated between two latent
variables F; and F,that each represent a reliable component of functional connectivity
based on two half-score measures of functional connectivity from independent scan
sessions acquired on different days (Figure 3.1B). The test-retest reliability (Rphf) is
estimated as the correlation between the two latent variables. Test-retest reliability from
the measurement model is compared to the standard test-retest reliability of functional
connectivity estimated as the correlation between the two half-score measures of
functional connectivity (Figure 3.1C). Improvement in test-retest reliability is determined

by the pointwise difference compared to the standard test-retest reliability estimate (Rphm).

The measurement model can be adapted to estimate the association between the reliable
component of functional connectivity and a trait (Figure 3.1D). For comparison, the
standard association between the full-score measure of functional connectivity and the trait
is estimated and compared over all connections (Figure 3.1E). The overall improvement in
association strength (i.e. the average improvement factor) is determined by the slope
coefficient of the linear regression of the association strengths from the measurement
model onto the association strengths from the standard association model. All models
included fixed effects of sex, age, head motion and HCP processing pipeline version as
covariates on the means of the functional connectivity estimates, and fixed effects of sex
and age as covariates on the means of the trait. Head motion was approximated by mean
framewise displacement (Power et al., 2012; Supplementary Figure B.2). All models were
specified in the OpenMx structural equation modelling (SEM) software package (Neale et
al., 2016; Boker et al., 2018) for R (R Core Team, 2018). The definition of the measurement

model in OpenMx is provided in the online supplementary dataZ.

2 Supplementary data: https://dx.doi.org/https://doi.org/10.1093/cercor/bhy005
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Partition of the BOLD time series into full-, half-, and

(A) quarter score estimates of functional connectivity
Time series length Session 1-Day 1 ' Session 2 - Day 1 ' Session 3 - Day 2 : Session 4 - Day 2
1x 4800 frames (1x60 min) | | Full-score |

2x 2400 frames (2x30 min) | [N Halscore N | Half-score 2 |
4x 1200 frames (4x15 min) | [ Guarerscore il | Quarter-score2 |i| Quarter-score3 | [ Quarter-score 4 |

(B) Measurement model for (D) Measurement model for
test-retest reliability association with a trait

Rphf

f, ;
FC Q2 .
TP1 P2 Trait
es1 | es2 | €s3 €s4
(C) Standard model for (E) Standard model for
test-retest reliability association with a trait
Rphm Rphm
FC H2 FC Trait

Figure 3.1. Partitioning of the BOLD time series and the measurement models used in the analyses. (A)
Decomposition of the BOLD time series data into temporal blocks for the estimation of full-, half-, and quarter-
score functional connectivity based on the original full-length time series with 4800 frames (approximately 1
hour) of resting-state functional MRI data. (B) A measurement model with two latent variables each representing
areliable component of functional connectivity across a set of half-score measures of functional connectivity. The
model is used to estimate test-retest reliability between the two reliable components of functional connectivity at
different scan sessions (Rphf) quantified by the correlation between the two latent variables. (C) A standard
association model is used to estimate the test-retest reliability between the observed half-score measures of
functional connectivity (Rphm) quantified by the correlation between the two observed variables. (D) A
measurement model with one latent variable representing the reliable component of functional connectivity of
two half-score measures and another latent variable representing the trait. This model is used to estimate the
association between the reliable component of functional connectivity and the trait (Rphf) quantified by the
correlation between the two latent factors. (E) A standard association model is used to estimate the correlation

between the observed full-score measure of functional connectivity and the trait.
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The suitability of applying a measurement model to the data was assessed with the
goodness of fit metrics Comparative Fit Index (CFI) and root-mean-square error of
approximation (RMSEA). Model fits with a CFI > 0.95 and RMSEA < 0.05 were deemed a
good fit, model fits with a CFI > 0.90 and RMSEA < 0.08 were deemed an acceptable fit, and
the remaining models (CFI < 0.90 or RMSEA > 0.08) were deemed an unsuitable fit (Hu and
Bentler, 1999; Browne and Cudeck, 1993). All models with an unsuitable fit were excluded

from statistical analyses.

3.2.4 Physiological, cognitive, and behavioral traits

The Human Connectome Project provides rich phenotypic information on the participants.
Because of the computational complexity of the measurement models, we used the results
from the standard association model (Figure 3.1E) applied to 110 continuous and normally
distributed measures to identify seven representative traits from different domains for
extensive analysis (see Supplementary Materials for details; Supplementary Table B.1):
five traits (BPDiastolic — diastolic blood pressure levels; CogTotalComp AgeAdj — total
composite score on cognition adjusted for age; WM_Task_2bk_Acc — accuracy on all
condition in the two-back working memory task; Emotion_Task_Median_RT — median
response time for each condition in the emotion task; and PicVocab AgeAdj — picture
vocabulary test score adjusted for age) were among the most strongly associated measures
with functional connectivity at any individual connection, and two traits
(Gambling_Task_Reward_Perc_Larger — percentage of trials that received a ‘larger’ prediction
in the gambling task; and Taste_AgeAdj — score on the taste intensity test adjusted for age)
were chosen because they were only weakly associated with functional connectivity. For

these seven traits, we estimated the association with all functional connectivity measures.

For the remaining 107 traits, measurement models were computed only for the top 20
connections most strongly associated with functional connectivity and the 5 connections
with the weakest associated with functional connectivity (i.e. near zero association) based
on the results from the standard association model. This sampling scheme provides a good
approximation of the actual improvement factor in association strength for the seven fully
sampled traits, with mean absolute difference in improvement factor 2% (range from 0% to 5%;

Supplementary Table B.2).

3.2.5 Heritability of functional connectivity

To emphasize that the reliability model can be applied to the typical dataset consisting of
unrelated individuals, up to this point we assumed that the subjects were independent.
However, the Human Connectome Project cohort includes families with monozygotic and
dizygotic twins and their siblings, and families with non-twin siblings (Supplementary

Table B.3). We aimed to replicate our previous findings of increased heritability estimates
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for the reliable and stable component of functional connectivity in a longitudinal
adolescent twin cohort (Teeuw et al., 2019). In brief, genetic modelling of data from twins
and siblings allows for the decomposition of the variance of a trait (V) into genetic and
environmental components. Often, three variance components representing additive
genetic (4), common environmental (€) and unique environmental (E) influences are
considered (Boomsma et al., 2002; Posthuma et al., 2000; Neale and Cardon, 1992).

Heritability is the standardized additive genetic component: h? = a__4_
V  A+CHE

The unique

environmental influences are confounded by measurement error (M) that can be separated from
the “true” unique environmental (E') influences by the measurement model: E = E’ + M. The
variance of the reliable trait (i.e. the reliable component in the measurement model)

becomes V' =V — M, or V' = A+ C + E'. Heritability of the reliable trait is estimated as the

. . . . 4 A
standardized additive genetic component after excluding measurement error: h? = o = arer e

The heritability of the reliable component of functional connectivity was estimated for a
measurement model on the half-score measures of functional connectivity (Supplementary
Figure B.3). Heritability estimates of the reliable component of functional connectivity are
compared to heritability estimates from the full (i.e. uncorrected) measure of functional
connectivity (Supplementary Figure B.3). Full details on the heritability analysis are
provided in the Supplementary Materials.

3.2.6 Evaluation of the reliability model at different samples sizes and scan durations

We performed a parameter sweep to empirically determine the efficiency of the
measurement model on improving the strength of the association between traits and
functional connectivity for various sample sizes and total scan duration (Table 3.2). Each
combination of total scan duration and sample size was sampled 100 times per functional

connection, with a random set of the desired number of participants drawn from the full

Table 3.2. Parameters and their values used in the evaluation of the minimal requirements on the input dataset

for the reliability model.

Parameter Values Unit

Total scan duration 5,7.5, 10, 15, 20, 30, 45, 60 Minutes

400, 600, 800, 1200, 1600, 2400, 3600, 4800 Volumes

Number of participants 25, 50, 75, 100, 150, 200, 250, 300, 400, 500 Count

per sample

Total number of combinations of parameter values per connection: 8 scan durations x 10 sample sizes x 100

samples = 8000 models per connection.
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sample of participants at each iteration. To reduce the computational burden of evaluating
the performance of the measurement model for all connections, the same 25 connections
identified through the sparse sampling scheme previously described were used for each of

the seven exemplar traits.

BOLD time series for the desired scan durations were extracted from the original full-
length BOLD time series data by distributing four time blocks equally across all four scan
sessions, starting at the first volume of each scan session, and concatenating the time series
where necessary to create full-, half-, or quarter-score measures of functional connectivity
(Supplementary Figure B.4). This distributed approach was adopted to prevent half-score
measures from crossing scan boundaries (e.g. for a total time series length of 1600 volumes,
the second half-score measure would be computed across data from both scan #1 [volumes
801:1200] and #2 [volumes 1:400]).

3.2.7 Minimal requirements on the input dataset

The requirements, in terms of sample size and total scan duration, for a dataset suitable for
reliability modelling was evaluated empirically to determine the threshold where the
goodness of fit indices for the measurement model started to deteriorate. Since no universal
absolute threshold exists, the proportion of bad fits over the hundred iterations for each
combination of sample size and total scan duration is provided with a lower and upper
boundary marked at 25% and 50% quantiles. The same goodness of fit indices Comparative
Fit Index (CFI) and root-mean-squared-error of approximation (RMSEA) and their

judgement criteria were used as described before.

3.3 RESULTS

3.3.1 High consistency of group-level mean functional connectivity

Group-level mean functional connectivity was highly consistent across the two half-score
measures of functional connectivity (rho = +0.996; ICC3,1 = 0.995), with functional
connectivity estimates ranging from -0.52 to +0.66 (mean FC = 0.003) (Supplementary
Figure B.5), and absolute differences between the two half-score measure of less than 0.06

for individual connections. However, there is high variation within individuals.

3.3.2 Reliability modelling improves test-retest reliability between scan sessions

At the level of individual connection, test-retest reliability of functional connectivity
between scan sessions acquired on different days improved substantially for 760
connections (62% of all 1225 connections) with an acceptable or good fit of the
measurement model (Figure 3.2; Supplementary Figure B.6). On average, the standard

test-retest reliability estimate of functional connectivity was +0.49 (range = +0.17 to +0.82;

64



RELIABILITY MODELLING OF RESTING-STATE FUNCTIONAL CONNECTIVITY

Figure 3.2A) and the test-retest reliability estimates of the reliable component of functional
connectivity was +0.83 (range = +0.60 to +1.00; Figure 3.2A). The test-retest reliability
estimates improved on average with +0.33 points (range = +0.13 to +0.82; Figure 3.2B).
Connections with lower standard test-retest reliability improved more than connections
with already high test-retest reliability due to the ceiling effect of the upper bound of +1.00
on test-retest reliability estimates (Figure 3.2A). On average, 44% of the variance of the
quarter-score measures of functional connectivity was explained by the reliable

components of functional connectivity (range = 7% to 79%; Figure 3.2C).

3.3.3 Reliability modelling improves the association between functional connectivity
and traits

The improvement in the strength of the associations between functional connectivity and the
seven extensively tested traits ranged from +17.0% to +23.7% (Figure 3.3A; Supplementary
Figure B.7). On average, the improvement in association strength for all 110 traits was +20%
(range = +12 to +30%; Figure 3.3B) using a sparse sampling scheme to approximate the

improvement factor when the full set of connections would have been used (Supplementary
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Figure 3.2. Test-retest reliability of functional connectivity estimates. (A) Improvement in test-retest reliability
between the standard model (x-axis) and the measurement model (y-axis); data points are scaled by the average
proportion of variance explained by the reliable component, thereby emphasizing the more reliable and stable
connections, and color-coded by the Comparative Fit Index. (B) Point-wise improvement in test-retest reliability
between standard model and measurement model. (C) Proportion of variance of the quarter-score measures explained
by the reliable components of functional connectivity. For all panels, standard test-retest reliability was estimated as
the association between half-score measures of functional connectivity. Test-retest reliability from the measurement
model was estimated as the association between the two reliable components of functional connectivity based on the

quarter-score measures of functional connectivity. The red lines indicate the mean of the distributions.
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Figure 3.3. Association between functional connectivity and traits. (A) Improvement in association strength
between functional connectivity and the traits diastolic blood pressure level (BPDiastolic), total composite score
for cognition adjusted for age (CogTotalComp_AgeAdj), and taste intensity test adjusted for age (Taste_AgeAd));
with association strength from the standard association model on the x-axis and the association strength from the
measurement model on the y-axis. The remaining four extensively tested traits show comparable results and are
presented in the Supplement Materials (Supplementary Figure B.7). The red line represents the slope coefficient
of the regression (i.e. the improvement factor). (B) Improvement factor for all 110 continuous and normally
distributed traits. The red line represents the mean of the distribution. For all panels, a standard association model
was used to estimate the association between the full-score measure of functional connectivity and the trait. A
measurement model applied to the half-score measures of functional connectivity was used to estimate the

association between the reliable component of functional connectivity and the trait.

Table B.2). On average, 1035 connections (84% of all connections) passed the goodness of
fit criteria, with highly similar distributions for the seven traits (Supplementary Figure
B.6). On average, 50% of the variance of the half-score measures of functional connectivity

is explained by the reliable component, with a range from 17% to 81%.
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Figure 3.4. Improvement in association strength between functional connectivity and the traits diastolic blood
pressure levels (BPDiastolic), age-adjusted total cognitive component (CogCompTotal AgeAdj), and age-adjusted
taste test score (Taste_AgeAdj) for various sample sizes (x-axis) and total scan duration (color-coding).
Improvement factor (y-axis) is defined by the slope coefficient from the linear regression of reliable association
strength onto standard association strength over all sparsely sampled connections. Color-shaded bands represent
the 95% confidence interval of the means. For all panels, a standard association model was used to estimate the
association between the full-score measure of functional connectivity and the traits. A measurement model
applied to the half-score measures of functional connectivity was used to estimate the association between the
reliable component of functional connectivity and the traits. The remaining four extensively tested measures

showed similar patterns (Supplementary Figure B.9).

3.3.4 Reliability modelling increases heritability estimates of functional connectivity
The heritability estimates of full-score functional connectivity were on average 39% (range
= 0% to 75%; Supplementary Figure B.8). The heritability estimates of the reliable
component of functional connectivity were on average 59% (range = 0% to 93%;
Supplementary Figure B.8). On average, the heritability estimates increased with +20%
points (range = -3% to +54% points; Supplementary Figure B.8).

3.3.5 Efficiency and minimal requirements for using reliability model

All seven traits exhibit the same general pattern of improvement in the association
strength, with greater benefit from reliability modelling for shorter scan durations and a
slight increase for the smaller sample sizes up to 1.8-fold increase averaged over the 100
iterations per combination of total scan duration and sample size (Figure 3.4;
Supplementary Figure B.9). Note that for the combinations of very low sample size (25

subjects) and short scan durations (<1600 volumes), model fits started to degrade.
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Figure 3.5. Percentage of sampled connections for each combination of sample size and total scan duration for
which the goodness of fit for the behavioral association measurement models deteriorated below acceptable levels
(CFI<0.90 or RMSEA>0.08), averaged across all seven measures (see Supplementary Figure B.10 for the profiles
of the individual measures). Total scan duration is reported as the number of volumes at TR=720ms. Dotted lines

mark the boundary where on average more than 25% and 50% of the model fits are considered bad.

The goodness of fit assessment from the parameter sweep was used to evaluate the minimal
requirements on the input dataset in terms of sample size and total scan duration for
reliability modelling. Although no clear boundary can be defined when a measurement
model is no longer suitable or practical to use, the chance that the measurement model
does not describe the data well for a random sample of participants starts to increase with
lower sample size or shorter scan durations (Figure 3.5), with similar profiles for all seven

measures (Supplementary Figure B.10).

3.4 DISCUSSION

We have shown that reliability modelling of functional connectivity using a measurement
model on split-session half-score estimates of functional connectivity is able to extract a
reliable component of functional connectivity with improved test-retest reliability between
scan sessions acquired on separate days. Secondly, we found that the reliable component
of functional connectivity is more strongly associated with traits than the full-score
estimate of functional connectivity. Finally, we have empirically evaluated the minimal
requirements of the dataset for reliability modelling of functional connectivity in terms of
scan duration and sample size. We have previously reported increased heritability
estimates for the stable and reliable component of functional connectivity in a longitudinal
adolescent twin cohort (Teeuw et al., Neurolmage 2019). Here, we have replicated this

finding in the Human Connectome Project.
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3.4.1 Reliability modelling is able to extract a stable and more reliable component of
functional connectivity

The moderate standard test-retest reliability of functional connectivity (average rho=+0.49)
that we found is at the higher spectrum compared to other studies (Noble et al., 2019), but
comparable to other studies using the HCP Young Adult dataset (Shah et al., 2016; Ge et al.,
2017; Noble et al, 2017; Meija et al., 2018; Elliot et al., 2019). There is a substantial
improvement in test-retest reliability using a measurement model (average increase=+0.33),
in some cases resulting in very good scores (average rho=+0.82). Other methods to obtain
a more reliable measure, such as disattenuation (i.e. scaling a measure by its reliability to
obtain a true estimate), shrinkage (i.e. gravitating unreliable measures towards a group-
mean estimate), or combining multiple modalities (e.g. resting-state and task-based
functional connectivity), are able to increase the reliability of functional connectivity from
+25% up to two-fold improvement (Mueller et al., 2015; Shou et al., 2014; Mejia et al., 2018;
Elliot et al., 2019). Our results show that the split-session measurement model is able to
extract a component of functional connectivity separately from independent scan sessions
acquired on separate days that is more reliable than the individual half-score estimate of
functional connectivity. This component represents a stable and reliable component of
functional connectivity for a single link connection that explains on average about half
(44%) of the variance in the split-session measurements. The remaining half is attributed to
random variation between split-session measurements and is considered “measurement
error’. In a 7-Tesla resting-state functional MRI study, a similar proportion (50%) of the
variance could be attributed to spontaneous neural activity, and the other half to non-
thermal physiological noise (Bianciardi et al., 2009). Functional connectivity shows a strong
state-like nature where it is influenced by intrinsic and extrinsic factors such as caffeine
consumption, heart rate variability, circadian rhythm, daily mood, or attention (Wu et al.,
2014; Choe et al., 2015; Hodkinson et al., 2014; Facer-Childs et al., 2019; Ismaylova et al.,
2018; Geerligs et al.,, 2016). These short-term fluctuations in connectivity strength have
been the topic of investigation for dynamic functional connectivity (Chang and Glover,
2010; Handwerker et al., 2012; Hutchison et al., 2013; Abrol et al., 2017). The residual
variance that is specific to the individual half-score estimate of functional connectivity is
considered “measurement error” in the measurement model, but is likely to represent both
different sources of measurement error (Brandmaier et al., 2018) and relevant biological
transients (Ge et al., 2017). Instead, the stable component of functional connectivity would
be of particular interest for researchers in the pursuit of a reliable and state-independent

endophenotype that could serve as a biomarker (Beauchaine and Constantino, 2017).
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3.4.2 Reliability modelling improves association of functional connectivity with various
traits by revealing the true association in absence of measurement error

The stable and reliable core component of functional connectivity obtained by the
measurement model on half-score estimates of functional connectivity is more strongly
associated with all 110 traits compared to the association between full-score functional
connectivity and the traits (average improvement factor 1.2) in the full-sized dataset of the
Human Connectome Project (N=1003 participants; ~1 hour of resting-state fMRI data).
Overall, measures were only weakly associated with full-score measure of functional
connectivity (maximum absolute rho<0.25) when measured by the connection with the
strongest association. These low associations are typical for resting-state functional
connectivity (Vaidya and Gordon, 2013; Kruschwitz et al., 2018; Geerligs et al., 2017; Noble
et al,, 2017; Basten et al., 2015; Toschi et al., 2018; Siegler et al., 2017). Even at connectome
level, functional connectivity is only moderately associated with behavioral measures
(Smith et al.,, 2015; Finn et al.,, 2015; Rosenberg et al., 2015). It was recently shown that
individual variation in the spatial distribution of functional brain network organization are
stable trait-like features that may be associated with behavior (Seitzman et al., 2019; Kong
etal., 2019), and that general cognitive ability is associated with the stability of the dynamic
functional connectome (Hilger et al., 2020). This could indicate that although the purpose
of a measurement model is to provide a more reliable measure from parallel test scores, it
could be the temporally stable component extracted from the split-session half-score
measures of functional connectivity that provide the improved associations with

behavioral measures.

3.4.3 Studies with short scan duration and small samples size will experience greater
benefits from reliability modelling

The parameter sweep reveals that the improvement in association strength is dependent
on scan duration and, to lesser extent, on sample size. Datasets with a shorter total scan
duration (down to five minutes of resting-state fMRI data) show much greater benefit from
reliability modeling (on average up to 1.8-fold increase in association strength, with a
similar profile for all seven extensively tested traits). Previously, scan duration has been
reported to influence reliability and reproducibility of functional connectivity estimates
(Birn et al., 2003; Laumann et al., 2015; Noble et al., 2017; Meija et al., 2018; Elliot et al.,
2019) but estimates on the recommended scan duration for maximal reliability vary from 5
to 90 minutes. With typical scan duration for resting-state fMRI studies anywhere between
the minimum recommended 5 minutes (Birn et al., 2013) to 8 minutes (Waheed et al., 2016),
equivalent to about 400 to 667 volumes in the Human Connectome Project dataset, suggests
that most dataset can expect a decent boost in association strength with reliability

modelling, despite the fact that the corrected associations remain modest. Datasets with
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smaller sample sizes show a slightly greater benefit of reliability modelling. However,
smaller sample sizes are accompanied with increased variation in the improvement factor
likely due to sampling bias that a measurement model cannot account for. For datasets with
small sample sizes (<50 participants), the utility of the measurement model starts to drop,
with 50% to 80% of the sampled connections resulting in a bad fit. Note that there is a
baseline rejection rate of on average 15% of the connections with a bad fit of the
measurement model in the full-sized dataset. This baseline is also present in the parameter
sweep because we did not exclude connections with a bad fit prior to selecting the
connections for sparse sampling. Previous studies have examined the sample size required
for structural equation modelling, with initial estimates suggested that at least 200
participants are needed (Boomsma, 1985), or as a rule of thumb ten times the number of
estimated parameters (Bentler and Chou, 1987; Wolf et al., 2013). Sample sizes as low as 50
participants might be enough to obtain satisfactory fits for task-based fMRI (Sideridis et al.,
2014). Our parameter sweep shows that variation due to sampling bias goes down with a
sample size around 100 to 150 participants, suggesting that, combined with a typical scan
length of around 8 minutes, reliability modelling would be feasible for most contemporary

resting-state fMRI studies.

3.4.4 Stronger genetic signal for the reliable component of functional connectivity

Measurement models have previously been used in the context of twin studies to obtain
heritability estimates for the reliable portion of the variation (van Baal et al., 1998; van
Beijsterveldt et al., 2001; Ge et al., 2015). We have previously applied a measurement model
to functional connectivity in a longitudinal adolescent twin cohort (Teeuw et al., 2019).
Here, we replicated our earlier finding that heritability estimates of functional connectivity
can be increased substantially (from average h? = 39% to h? = 59%) by using a measurement
model on data from split-half scan sessions. Previous studies on the heritability of
functional connectivity using the Human Connectome Project dataset have typically
reported low heritability for single link connections (Ge et al., 2017; Colclough et al., 2017;
Adhikari et al,, 2018). One earlier study applied a custom linear mixed effects model to
repeated measures of functional connectivity from the Human Connectome Project dataset
(i.e. considered scans on Day one and Day two as repeated measures, similar to the two
half-score measures for the full-sized dataset used in this study) and reported similar
improvements for heritability estimates of around +20% points when averaged across

connections for the major functional networks (Ge et al., 2017).

3.4.5 Methodological considerations for the application of a measurement model
There are a few methodological considerations of measurement models in general that

should be mentioned (Muchinsky, 1996). First, it is important to note that the ultimate
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purpose of the measurement model is to obtain estimates that are closer to the true value
in the absence of error in the measurements. The measurement model will provide more
accurate estimates that can guide future studies, but will not change the quality of the data.
Secondly, while we discussed our results in terms of improvement factors, correlations
obtained with the measurement model are associations between the stable components (i.e.
reliable variation) rather than between the full traits (i.e. full variation) and those two are
not directly comparable. In addition, there is no ground-truth available for resting-state
functional connectivity of the human brain that could verify the correctness of the
measurement model outputs. It is therefore good practice to always report the uncorrected
results from standard association in addition to the corrected results from the measurement

model, and important to assess the goodness of fit of the measurement model.

3.4.6 Limitations to the current study

There are some limitations specific to the current study. First, there is quite some variation
in quality between resting-state fMRI datasets (Noble et al., 2019). Other datasets might see
a shift in the performance and requirements curves based on the quality of the dataset.
Secondly, reliability modelling was not applied to the traits and the reported corrected
association might still be limited by the reliability of the trait. If multiple or repeated
measures of the trait are available, a measurement model can be applied to both functional
connectivity and the trait to obtain a more accurate estimate of the association between

the two in the absence of measurement error (Beaty et al., 2015; Cooper et al., 2019).

3.4.7 Conclusion

In conclusion, reliability modelling of functional connectivity using a measurement model
on split-half session resting-state fMRI data is an effective method to compensate for
attenuation of the temporal correlation coefficient due to noise in the BOLD signal. The
measurement model is able to extract a stable and reliable component of functional
connectivity that can reveal the true associations with traits and increased heritability
estimates compared to the analysis with full-score estimate of functional connectivity. The
benefit of reliability modelling is greater for studies with short scan duration or a limited

number of participants.
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ABSTRACT

The human brain is active during rest and hierarchically organized into intrinsic functional
networks. These functional networks are largely established early in development, with
reports of a shift from a local to more distributed organization during childhood and
adolescence. It remains unknown to what extent genetic and environmental influences on
functional connectivity change throughout adolescent development. We measured
functional connectivity within and between eight cortical networks in a longitudinal
resting-state fMRI study of adolescent twins and their older siblings on two occasions
(mean ages 13 and 18 years). We modelled the reliability for these inherently noisy and
head-motion sensitive measurements by analyzing data from split-half sessions. Functional
connectivity between resting-state networks decreased with age whereas functional
connectivity within resting-state networks generally increased with age, independent of
general cognitive functioning. Sex effects were sparse, with stronger functional
connectivity in the default mode network for girls compared to boys, and stronger
functional connectivity in the salience network for boys compared to girls. Heritability
explained up to 53% of the variation in functional connectivity within and between resting-
state networks, and common environment explained up to 33%. Genetic influences on
functional connectivity remained stable during adolescent development. In conclusion,
longitudinal age-related changes in functional connectivity within and between cortical
resting-state networks are subtle but wide-spread throughout adolescence. Genes play a
considerable role in explaining individual variation in functional connectivity with mostly

stable influences throughout adolescence.

Keywords: longitudinal; twins; heritability; age effects; sex effects
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4.1 INTRODUCTION

The human brain is active during rest (Biswal et al., 1995; 1997). Data-driven approaches
have been applied to resting-state functional MRI scans to obtain spatial patterns of
temporally coherent signals that divide the brain into distinct intrinsic functional networks
(DeLuca et al., 2005; Fox et al., 2005; Power et al., 2011; van den Heuvel and Hulshoff Pol,
2010; Yeo et al,, 2011). The hierarchical organization of these functional networks is already
present around birth. Primary functional networks, such as the sensorimotor, visual, and
auditory networks are the first to develop in utero (Gilmore et al., 2018; Keunen et al., 2017;
Thomason et al., 2015). After birth, the default mode network (DMN), dorsal mode network
(DAN), and salience network (SN) mature into “adult-like” networks by the age of two
years (Gao et al,, 2011; Gilmore et al., 2018; Keunen et al., 2017). The executive control
network (ECN) matures later on in life, in line with the protracted development of
executive functions during childhood and adolescence (Gilmore et al., 2018; Zhang et al.,
2017). These functional networks can be reliably identified in children and adolescents aged
9 to 15 years for both short-term (i.e. consecutive scan sessions) and long-term repeated
measures at 2.5 years interval (Thomason et al., 2011). Thus, by adolescence, these spatially
distributed and functionally linked brain regions that share information already closely

resemble their adult state.

Cross-sectional studies have provided indications that functional connectivity of the
human brain is undergoing subtle alterations during childhood and adolescence (for
reviews see Cao et al., 2016; Ernst et al., 2015; Grayson and Fair, 2017; Stevens, 2016). Based
on these cross-sectional studies, it is generally believed that the functional brain shifts from
alocal to a more distributed organization (Cao et al., 2016; Ernst et al., 2015; Fair et al., 2009;
Menon, 2013). This is supported by decreases in functional connectivity separating
functionally distinct regions (i.e. segregation), and increases in functional connectivity
improving communication between functionally related regions (i.e. integration) (Cao et
al.,, 2014; Dosenbach et al., 2010; Fair et al., 2009; 2008; 2007; Gu et al., 2015; Kelly et al.,
2009; Marek et al., 2015; Sato et al., 2014; Supekar et al., 2009; Uddin et al., 2011; Wig, 2017).
The processes of segregation and integration are reflected in graph theoretical metrics by
a decrease in local clustering coefficient, an increase in modularity, and an increase in
global efficiency, and are furthermore accompanied by the emerging of hubs of increasing
importance (i.e. consolidation of the network into rich-club networks) that shift from
primary to higher order cortical regions (Cao et al., 2016; 2014; Grayson et al., 2014; Hwang
et al., 2013; Sato et al., 2014; 2015; Supekar et al., 2009; Wu et al.,, 2013; Zuo et al., 2011).
However, results are inconsistent regarding the direction of change and affected regions

(Stevens, 2016). In part, this may be due to the limited ability of cross-sectional studies to
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control for inter-individual variation (i.e. the “cohort effect”) and are thereby restricted in
their interpretation of “true” development (i.e. within subject developmental trajectories).
In contrast, longitudinal studies acquire repeated measures of the same individuals and can
utilize these measures as control to measure development changes over time within the
individual (Crone and Elzinga, 2015; Mills and Tamnes, 2014; Telzer et al., 2018).
Longitudinal studies on resting-state or task-regressed functional connectivity in typically
developing children and adolescents (aged 9 to 15 years) reveal high levels of consistency
and stability of functional connectivity estimates within and between several cortical
resting-state networks over a 2 to 3 years interval (Thomason et al., 2011). There are reports
of longitudinal age-related increases in functional connectivity (or integration) within
several networks (Bernard et al., 2016; Long et al., 2017; Sherman et al., 2014; Sylvester et
al., 2018; Wendelken et al.,, 2017; 2016). However, age-related decrease in functional
connectivity (or segregation) within (Sylvester et al., 2018; Wendelken et al., 2016) and
between networks have also been reported (Sherman et al., 2014), as well as mixed results
reported for cortical-subcortical connectivity (Jalbrzikowski et al., 2017; Peters et al., 2017;
Strikwerda-Brown et al., 2015). Thus, although functional brain connectivity during
childhood and adolescence is largely stable and adult-like, there are several indications
from longitudinal studies of reorganization of functional cortical networks during
childhood and adolescent development (Table 4.1).

Table 4.1 (continued on the next page). Studies on longitudinal development of cortical resting-state or task-
regressed functional connectivity in typically developing children and adolescents; ordered by midrange age at

baseline of each cohort.

Study Sample Longitudinal Age effects

Long et al., 2017  Nsubject = 44 (17F)  Nwaves = 5 /' Regional Homogeneity;
Age baseline = 2-6  Interval = 1 /" Eigenvector Centrality;
years years /' FC within FPN;

+ Local-to-global shift in FC for STG;
-t Global-to-local shift in FC for SPL

and FG
Xiao et al,, 2016  Nsubject = 53 (26F)  Nwaves = 2 « Degree Centrality within DMN;
Agebaseline = 56 Interval = 1year " Degree Centrality for left STG:
years FC between left STG-left IFS and left
STG-left AG
Sherman et al., Nisubject = 45 (24F)  Nwaves = 2 Integration within DMN: ' FC
2014 Agebaseline = 10 Interval = 3 between mPFC-PCC;
years years /' FC within FPN;
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Study Sample Longitudinal Age effects
Segregation (i.e. \\ FC) between FPN-
DMN
SylVESter et 31., Nsubject =147 Nwaves = 3 « FC within DMN;
2018 (71F) Interval = 1 year < FC within FPN;
Agebaseline =8-13 ~ FC within SN;
years N\ FC within VAN
Wendelken et Nsubject = 132 Nwaves = 2 Integration within FPN: / FC
al., 2016 [1] (56F) Interval = 1.5 between RLPFC-IPL;
Agebaseline = 6-18  years Segregation within FPN: N\, FC within
years frontal regions, and within parietal
regions
Wendelken et Nsubject = 523 Nwaves = 2, 3, Integration within FPN: / FC
al., 2017 [1] (254F) and 2 between RLPFC-IPL
Agebaseline = 6-22  Interval = 1.5,
years 1.3, and 4 years
Strikwerda- Nisubject = 56 (25F)  Nwaves = 2 /' FC between sACC-VMPFC
Brown et al., Agebaseline = 16 Interval = 2
2015 [2] years years
Bernard et al., Nisubject = 23 (13F)  Nwaves = 2 \ FC between lateral posterior
2016 Agebaseline = 12— Interval = 1 year cerebellum and DLPFC;

21 years

« FC for anterior cerebellum

Table 4.1 (continued). Symbols: \. decreasing with age; /' increasing with age; < stable across ages.
Abbreviations (in alphabetical order): AMY = amygdala; DLPFC = dorsolateral prefrontal cortex; DMN = default
mode network; IFS = inferior frontal sulcus; AG = angular gyrus; FC = functional connectivity; FG = fusiform
gyrus; FPN = frontoparietal network; IPL = inferior parietal lobule; MDD = major depressive disorder; mOFC =
medial orbital frontal cortex; mPFC = medial prefrontal cortex; PCC = precuneus; RLPFC = rostrolateral prefrontal
cortex; rs-fMRI = resting-state functional MRI; SACC = subgenual anterior cingulate cortex; SN = salience
network; SPL = superior parietal lobule; STG = superior temporal gyrus; tb-fMRI = task-based functional MRI;
VAN = ventral attention network; VMPFC = ventral medial prefrontal cortex. [1] collaboration between three

cohorts to replicate original findings from Wendelken et al., 2016; [2] Same cohort.

Genes partly control individual differences in brain functioning, at least in adults (Blokland
et al., 2012; Douet et al., 2014; Jansen et al., 2015; Martin, 2010; Richmond et al., 2016;
Thompson et al., 2013). Heritability estimates for functional connectivity within the default
mode network range from 10% to 80%, depending on the population and methodology used,
and typically identify connections involving the posterior cingulate cortex (PCC) and

bilateral parietal cortices (LLP and RLP) as strongest heritable connections (Adhikari et al.,
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2018a; Fu et al., 2015; Ge et al., 2017; Glahn et al., 2010; Korgaonkar et al., 2014; Meda et al.,
2014; Sudre et al,, 2017; Yang et al., 2016; Table 4.2). Findings in children and adolescents
are still sparse. We were among the first to report that genes explain up to 40% of individual
difference in brain activity during resting-state at the age of 12 years (van den Heuvel et
al., 2013). These findings were confirmed and extended for cortical-subcortical connections
in younger children, aged 7 to 9 years, with heritability ranging from 32% to 67%
(Achterberg et al., 2018). And in 16-year-old adolescents reporting peaks of local clusters
with heritability ranging between 55% to 83% — but note that several cortical resting-state
networks revealed overall low heritability estimates <10% (Fu et al,, 2015). In the only
longitudinal twin study on functional connectivity to date, in infants from birth to 2 years,
age-dependent genetic effects on functional connectivity within cortical networks were
found (Gao et al., 2014). It is unknown whether these age-dependent dynamic influences of
genes on functional connectivity extend into childhood and adolescence in the absence of

any longitudinal twin studies during this developmental period.

Table 4.2 (continued on the next page). Twin and family studies on heritability of functional connectivity;

ordered by midrange age of each cohort.

Study Sample Age Phenotype  Heritability estimates
Gao et al,, 2014 N=288 1,12, and Longitudin  Significant regression
24 months  al FC coefficient for genetic effects
throughout the brain
Achterberg et ~ N=220 7-9 years FC VS-mPFC h? = 67%
al., 2018 VS-dACC h? = 46%
VS-AMY K2 = 42%
VS-HPC k2 = 32%
van den N=386 12 years GT Global efficiency h? = 42%
Heuvel et al., (BrainSCALE)
2013
Fuetal, 2015 N=112 16+ 1.5 FC Voxel-wise cluster peaks h? =
years 55-83%, typically h? = 10%
Xuetal, 2016  N=92 15-20 years  Effective Within DMN h? = 54%
FC
Sinclair etal,  N=592 (QTIM) 23 +25 GT Mean clustering h? = 47%-59%;
2015 years Modularity h? = 38%-59%;
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Study Sample Age Phenotype  Heritability estimates
Yang et al., N=272 18-28 years FC Within RSNs h? = 23-65%;
2016 N=105 19-29 years Within SMN ¢ = 35%;
(QTIM) Between (8/21) RSNs h? = 26—
42%;
Between (11/21) RSNs ¢? = 18—
47%
Moodie etal.,  N=42 (MZ 19-34 years FC Familiality in several BrainMap
2014 only) networks
Geetal, 2017 N=582 (HCP) 22-36 years FC Within RSNs A? = 45-80%
N=809 (GSP) 18-35 years
Colclough et N=820 (HCP) 22-35years FC Mean FC h2 = 17-29% [n.s.]
al., 2017
Adhikari et al., N=518 (HCP) 29 +4years FC Within RSN = A2 = 9-36%
2018a N=334 (GOBS) 48 + 13
years
Meda et al., N=1305 35+ 14, 35 FC Within DMN k2 = 14-18%
2014 +12,37 =
13, 44 + 16,
40 = 16
years
Fornito et al., N=58 38+14and GT Global cost-efficiency h? = 60%
2011 43 £ 10
years
Korgaonkar et N=250 (TWIN-  18-65 years FC Within DMN A2 = 9-41%
al,, 2014 E)
Sudre et al., N=305 4-86 years FC Within DMN A2 = 36-61%;
2017 N=132 21+15 Within CCN A2 = 35-58%;
years Within VAN A2 = 36-46%;
Glahn et al,, N=333 (GOBS)  26-86 years FC Within DMN k2 = 42%
2010

Table 4.2 (continued). Abbreviations (in alphabetical order): AMY = amygdala; ¢? = percentage variance explained
by common environmental influences; CCN = cognitive control network; dACC = dorsal anterior cingulate cortex;
DMN = default mode network; FC = functional connectivity; GOBS = Genetics of Brain Structure cohort; GSP =
Brain Genomics Superstruct Project cohort; GT = graph theory; h? = heritability (percentage of phenotypic
variance explained by additive genetic influences); HCP = Human Connectome Project cohort; HPC =
hippocampus; MZ = monozygotic twins; n.s. = not significant; QTIM = Queensland Twin Imaging cohort; rs-fMRI
= resting-state functional MRI; SMN = sensorimotor network; tb-fMRI = task-based functional MRI; TWIN-E =
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Twin study of Wellbeing using Integrative Neuroscience of Emotion cohort; VAN = ventral attention network;

VS = ventral striatum.

Here we report on genetic and environmental influences on functional connectivity within
and between eight canonical cortical resting-state networks in a longitudinal adolescent
cohort of twins and their older siblings measured on two occasions (mean ages of twins 12
and 17 years; mean ages of siblings 15 and 20 years; mean ages combined 13 and 18 years).
We utilize a model that accounts for measurement imprecision by analyzing data from
split-half sessions to obtain a reliable component of functional connectivity. This is the first
longitudinal study on cortical resting-state networks to estimate the importance of genetic
factors for functional connectivity within and between cortical resting-state networks in
adolescence. The longitudinal data allowed us to investigate possible dynamic influences
of genetic factors throughout adolescence (Teeuw et al., 2018; van Soelen et al., 2012b). We
investigated the effects of sex and age on functional connectivity while controlling for
measurement imprecision and residual head motion. Finally, we investigated the relation

between intelligence and functional development of resting-state networks.

4.2 METHODS

4.2.1 Participants

This project is part of the longitudinal BrainSCALE study on development of brain and
cognition in twins and their older sibling (van Soelen et al., 2012a), a collaborative project
between the Netherlands Twin Register (NTR; Boomsma et al., 2006; van Beijsterveldt et
al., 2013) at the Vrije Universiteit (VU) Amsterdam and University Medical Center Utrecht
(UMCU). The BrainSCALE cohort is a representative sample of typically-developing
children from the Dutch population. A total of 112 families with twins and an older sibling
participated in the study. The twins and siblings were assessed with a battery of cognitive
and behavior tests and extensive neuroimaging protocol at baseline assessment when the
twins were 9 years old (Peper et al., 2009). Two follow-up assessments were conducted
when the twins were 12 and 17 years old (Koenis et al., 2017; Teeuw et al., 2018; van Soelen
et al., 2012b; 2013). Here, we report results of the analysis of resting-state functional MRI
scans that were acquired during the second and third assessment of the BrainSCALE study,
when the twins and siblings were on average 13 and 18 years of age, hereafter referred to
as time point 1 (TP1) and time point 2 (TP2). Intelligence was assessed using an abbreviated
version of the Weschler Intelligence Scale for Children — Third edition (WISC-III; Wechsler,
1991) IQ test at age 13 years, and an abbreviated version of Weschler Adult Intelligence
Scale - Third edition (WAIS-III; Wechsler, 1997) IQ test at age 18 years. The use of subtasks
of the WISC-III as proxy for full WISC-IIT IQ test has previously been established as a valid

construct (Koenis et al., 2015).
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The BrainSCALE study was approved by the Central Committee on Research Involving
Human Subjects of The Netherlands (CCMO), and studies were performed in accordance with
the Declaration of Helsinki. Children and their parents signed informed consent forms.
Parents were financially compensated for travel expenses, and children received a present or
gift voucher at the end of the testing days. In addition, a summary of cognition scores and a

printed image of their T1 brain MRI scan, when available, were provided afterwards.

4.2.2 MRI acquisition

Whole-brain magnetic resonance imaging (MRI) scans were acquired on two identical 1.5
Tesla Philips Achieva scanners (Philips, Best, Netherlands) at the University Medical
Center Utrecht (UMCU). Three-dimensional T1-weighted structural scans (Spoiled
Gradient Echo; TE=4.6 ms; TR=30 ms; flip angle=30"; 160 to 180 contiguous coronal slices
of 1.2 mm; in-plane resolution of 1.0 x 1.0 mm?; acquisition matrix of 256 x 256 voxels;
field-of-view of 256 mm with 70% scan percentage (Peper et al., 2009; Teeuw et al., 2018)
and resting-state functional MRI scans (PRESTO-SENSE; TE=31.1 ms; TR=21.1 ms; flip
angle=9"; 4.0 mm isotropic voxels; 900 volumes over 540 seconds; effective TR=600 ms) of
the whole head were acquired (van den Heuvel et al., 2013). The same scanners and scan
sequence parameters were used to acquire MRI scans at both ages to limit possible effects
of differences in scan acquisition. Subjects were instructed to lie still with their eyes closed
and keep their mind free from thoughts while preventing them from falling asleep during
acquisition of the resting-state functional MRI scans. Invited participants were excluded
from the scanning protocol when contraindications for MRI were present at the time of
examination. In particular, the presence of dental braces incompatible with the magnetic
field of the MRI scanner resulted in a decline of participants for the neuroimaging

assessment, specifically at age 13 years.

4.2.3 Processing of resting-state functional MRI scans

Processing of the MRI scans was performed using the CONN toolbox version 18a
(Whitfield-Gabrieli and Nieto-Castanon, 2012; https://web.conn-toolbox.org/) and SPM
toolbox version 12 (http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2015b (The MathWorks
Inc., Massachusetts, United States). The CONN toolbox is an open-source toolbox for
processing and analysis of resting-state functional MRI scans. The toolbox is based on the
aCompCor method for artefact correction that performs linear regression of undesired
confounders, such as head motion and signal from white matter and cerebrospinal fluids,
to recover the neuronal BOLD signal of interest (Behzadi et al., 2007). This artifact
correction method has shown to reduce motion-related artifacts in resting-state fMRI in
children (Muschelli et al., 2014).
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To obtain the signal from white matter and cerebrospinal fluid (CSF), brain tissue from the
structural T1-weighted MRI scans was segmented into CSF, gray matter (GM), and white
matter (WM) tissue maps using a partial volume segmentation algorithm that incorporates
a non-uniform partial volume distribution (Brouwer et al., 2010). The structural T1-
weighted MRI scans were registered to MNI-152 space using non-linear transformation.
The non-linear transformation was then applied to the tissue maps to warp them to MNI-
152 space and resampled to 3.0 mm isotropic voxels. The white matter and CSF tissue maps
were threshold at 50% (i.e. selecting only voxels with >50% of tissue proportion attributed
to white matter or CSF) and binarized to create masks. The white matter tissue masks were
eroded by two voxels to reduce the number of voxels at the white-gray matter tissue
interface. No erosion was performed for the CSF tissue masks due to the occasional small
volume of the lateral ventricles in children at age 13 years (Giedd et al., 1996; Lenroot and
Giedd, 2006; Sowell et al., 2002). Instead, CSF tissue masks were constrained to contain only

voxels inside the lateral ventricles.

The volumes within the resting-state functional MRI scans were first realigned to the mean
image of the volumes using a rigid-body realignment procedure without reslicing the data.
The rigid-body transformation parameters were used to retrospectively estimate head
movement during scan acquisition using framewise displacement (Power et al., 2012).
Mapping between resting-state functional MRI scans and structural MRI scans was
determined by linear registration of the mean of the realigned resting-state functional MRI
scan to the structural T1-weighted MRI scan. By concatenating all transformations
(realignment, functional-to-T1 and T1-to-MNI), the mapping between individual functional
space and MNI-152 space was obtained. The resulting transformation was used to warp
the resting-state functional MRI scans into MNI space and resampled to 3.0 mm isotropic
voxels. Global signal fluctuations time series were extracted from the warped functional
MRI scans using the DVARS method (Power et al., 2012).

Correction of undesired confounders was performed using linear regression of the top ten
principal components from the BOLD signal of white matter and (ventricular)
cerebrospinal fluids (Behzadi et al., 2007; Chai et al., 2012), 24 head motion parameters
(Friston et al., 1996; Yan et al., 2013), and scrubbing of subject-dependent number of high
motion frames (Power et al., 2012). Linear regression was performed on the individual
voxels of the brain after linear and quadratic detrending of the BOLD time series to reduce
effects of scanner drift. The six rigid-body transformation parameters (R) derived during
realignment of resting-state volumes, its first-order temporal derivative (R’), and the
squared product of all terms (R? and R’?) were included as regressors to control for head

motion during scan acquisition (Friston et al., 1996; Yan et al., 2013). In addition, scrubbing
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of frames with high motion (FD > 0.30 mm) or unusually large whole-brain BOLD signal
changes (DVARS Z-score > 3.0) was performed by including a regressor for each of the
flagged frames, the frame immediately preceding the flagged frame, and the two frames
following the flagged frame (Power et al., 2012); see supplementary information for more
details of head motion and scrubbing. The average number of flagged frames is 79 (9%) out
of 900 frames at age 13 years, and 57 (6%) out of 900 frames at age 18 years. By including
frames surrounding the flagged frames the average number of scrubbed frames is 214 (24%)
out of 900 at age 13 years, and 154 (17%) out of 900 frames at age 18 years. The residuals of
the linear regression provided the voxel-wise denoised time series with a duration of 900
frames regardless of the number of frames scrubbing used in the regression. Temporal
bandpass filtering was applied at the frequency range of 0.008 to 0.080 Hz after linear
regression was performed that contained on average 39% of the total power spectral density
after denoising (Biswal et al., 1995; Ciric et al., 2017; Waheed et al., 2016).

All resting-state functional MRI scans were processed independently from each other,

including scans from subjects with longitudinal data.

4.2.4 Functional connectivity estimates

Functional connectivity matrices were obtained for the resting-state networks atlas
provided by the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012;
https://web.conn-toolbox.org/). The atlas is based on ICA analysis of resting-state scans of
497 unrelated young adults from the Human Connectome Project and provides regions of
interest (ROI) for 7 canonical cortical resting-state networks and the cerebellum: the core
Default Mode network (4 components), Sensorimotor (3), Visual (4), Salience (7), Dorsal Attention
(4), Frontoparietal (4), Language (4), and Cerebellar (2); see supplementary information for details
on the CONN atlas (Supplementary Figure C.1; Supplementary Table C.1), and for
comparison, a group-ICA decomposition was performed on the BrainSCALE resting-state

functional MRI scans used in this analysis (Supplementary Figure C.2).

The CONN toolbox atlas is based on a data-driven decomposition of resting-state
functional data from the Human Connectome Project that consists of most large-scale
canonical networks covering a large area of the cortical surface. Further decomposition of
each network into separate regions that include homologous contra-lateral regions allows
for studying global patterns of the developing functional brain within and between resting-
state networks. Its limited number of regions makes it suitable for the computational
complexity of twin modelling, and the moderate size of the regions provide the benefit of
increased signal-to-noise ratio (SNR) through spatial averaging of the inherently noisy

BOLD signal from neighboring voxels.
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Full-score and half-score measures of functional connectivity were obtained using full
Pearson correlation between spatially averaged denoised time series of two regions of
interest (ROI). Full-score measures were obtained by considering the entire denoised time
series of the 900-volume resting-state functional MRI scan. Half-score measures were
obtained by splitting the denoised time series into two independent halves of equal length;
the first half-score measure (H1) corresponding to the first 450 volumes of the denoised time
series, and the second half-score measure (H2) consisting of the remaining 450 volumes. All
functional connectivity correlations were transformed using Fisher’s r-to-Z transformation
prior to any statistical analysis. Mean functional connectivity for subsets of connections
(e.g. mean functional connectivity between all resting-state networks) was calculated as

the average of the r-to-Z-transformed correlations across the subset of connections.

4.2.5 Quality control

Incomplete resting-state fMRI scans and scans with discernable defects related to scanner
artefacts or receiver coil malfunction were discarded beforehand, resulting in the exclusion
of 18 of the 380 (5%) scans from 17 subjects; 11 of the 152 (7%) scans at age 13 years, and 7
of 228 (3%) scans at age 18 years (Supplementary Table C.2). In addition, individual full-
score and half-score measures were excluded when the corresponding mean FD of the time
series exceeded 0.30 mm/volume head motion or the number of scrubbed frames exceeded
more than half the number of frames in the time series (i.e. more than 450 scrubbed frames
for full-score measures, and more than 225 scrubbed frames for half-score measures). After
filtering, 97 full-score measures remain at TP1 (age 13 years), 108 half-score measures at
TP1 H1, 88 half-score measures at TP1 H2, 202 full-score measures at TP2 (age 18 years),
203 half-score measures at TP2 H1, and 200 half-score measures at TP2 H2 (Supplementary
Table C.2; Supplementary Figure C4). See supplementary information for more details on

quality control procedure and analysis of head motion.

4.2.6 Genetic modelling

Genetic modelling of twin and sibling data can provide information on the extent that
variation of a trait in the population is explained by genetic factors (Boomsma et al., 2002;
Posthuma et al., 2000). Monozygotic (MZ) twins share 100% of their genetic material and
dizygotic twins and full siblings share on average 50% of their segregating genes. Inclusion
of these relatives into an extended twin design enables decomposition of the phenotypic
variance (Vp) of a trait into three variance components: additive genetic (V,), common
environmental (V;), and unique environmental (Vz) components of variance. Additive
genetic influences represent effects of multiple alleles at different loci across the genome
that act upon the phenotypic trait. Common environment represents influences that are

shared between twins and siblings from the same family and causes them to be more alike
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than children grown up in different families. Unique environmental influences are not
shared between family members and may include measurement error (Boomsma et al.,
2002; Falconer and Mackay, 1996). If monozygotic (MZ) twins resemble each other more than
dizygotic (DZ) twins and siblings for a trait, then the hypothesis that the trait is influenced
by genetic factors is supported. If both MZ and DZ twins are more alike in resemblance than

expected based on genetics alone, common environmental influences are likely to play a role.

4.2.7 Structural equation modeling

Within genetic structural equation modelling (SEM), a phenotype can be modelled as
influenced by latent additive genetic factors, and common and unique environmental
factors. These factors are modelled as unobserved or latent variables with unit variance
where path coefficients going from latent trait to phenotype and are symbolized by a, c,
and e quantify their respective influence on the phenotype. The model is made identifiable
by putting constraints on the correlation p, between the latent variable A of family
members; p, = 1.0 for monozygotic twins, and p, = 0.5 for dizygotic twins and twin-sibling
pairs. The correlation p; between latent variable C of family members is constrained to
pc =1.0 for all twins and siblings from the same family. The latent variable E is
uncorrelated between individuals. The sum of the squared path coefficients a?, c?, and e?,
representing the variance components 4, C, and E, is equal to the phenotypic variance (V)
of a trait; i.e. V. = A+ C + E = a? + ¢? + e?. Heritability (h?) of the trait is estimated as the

proportion of phenotypic variance (V) that is due to additive genetic variance (4); i.e. h? =

2= 2“722 Structural equation models were defined using OpenMx version 2.8.3 (Neale
14 a“+c<+e

et al., 2015; https://openmx.ssri.psu.edu/), a package for structural equation modelling in R
version 3.4.2 (R Core Team, 2017; https://www.r-project.org/). Model fitting was performed
using full-information maximum likelihood (FIML) to take advantage of all available

information in case of missing data.

4.2.8 Modelling of twin and sibling data

Longitudinal data from extended twin designs can be modeled by Cholesky decomposition
(Supplementary Figure C.3) to estimate the genetic and environmental influences on
repeated observations (Neale and Cardon, 1992). A longitudinal Cholesky decomposition,
with multiple measurements of the same trait acquired at different ages within the same
individuals, allows for estimating the dynamics of genetic and environmental influences
on traits over age. This model provides estimates of heritability at the individual ages and
of the genetic and environmental correlations that explain the sources of stability across
ages. Genetic correlations represent the extent to which the same genes influence a trait at
multiple ages. A longitudinal Cholesky decomposition can also provide indication of

fluctuating influences of the same genes over time, or the presence of novel genetic
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influences (i.e. innovation) unique to a specific age (Teeuw et al., 2018; van Soelen et al.,
2012b). Here, we modeled the split-half phenotypic information as a common factor at
mean ages 13 and 18 years (van Baal et al., 1998; van Beijsterveldt et al., 2001) such that a

latent phenotypic factor F; represented the reliable component of the two half-score

j
measures at each age. Residual variance of a measurement (Es) that is not attributed to a
latent phenotypic factor is considered to be measurement error due to imprecisions of the
measurement instrument. Estimation of genetic and environmental components was
carried out for two submodels: the model with two latent phenotypic factors loading on
the half-scores at each age, and a second model with a single latent phenotypic factor
loading on all four half-scores (Figure 4.1). Heritability of a latent phenotypic factor F; (hf)
is estimated as the proportion of additive genetic variance of the latent phenotypic factor

(4;) over the variance of the latent phenotypic factor (V;): h} = ? The heritability estimate
J

Two-factor common pathway reliability model i Single-factor common pathway reliability model

11 f21 32 fa2
Twin A Twin A Twin A Twin A : Twin A Twin A Twin A Twin A
TP1H1 TP1H2 TP2 H1 TP2 H2 TP1 H1 TP1H2 TP2 H1 TP2 H2

es11 ©s22 !’sas s11 !eszz s33 | S44

Figure 4.1. A common pathway reliability model with two (left) and one (right) latent phenotypic factor.
Measurements are represented by rectangles for age 13 years (TP1) and age 18 years (TP2) for the first (H1) and
second (H2) half-score measures. Latent variables are represented by circles. The variance of latent common factor
Fj represents the reliable component of the measurements and explains part of the variance of the measurement
variables proportional to the square of the path coefficients on paths f};. Latent factors representing additive
genetics (4;), common environment (C;), and unique environment (E;) together explain the variance of the
a

common factor F; proportional to the square of their respective paths a and ej;. Measurement-specific

jir Geis
variances (i.e. residual variances not attributed to the common factor) are explained by the latent variables Eg;
explaining the residual variances of measurements proportional to the square of the loadings on paths eg,;. Family
members are linked through bidirectional paths on their latent variance components with values constrained to
1.0 for the additive genetic factor(s) (4;) between monozygotic twins, 0.5 for the additive genetic factor(s) (4;)
between dizygotic twins and siblings, 1.0 for common environmental factors (C;) for all pairs within one family,

and 0.0 for unique environment (E;).
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of a latent phenotypic factor can be projected back to obtain heritability estimates for the
individual half-score measures. According to path tracing rules, heritability of an individual
measurement M (hZ) due to heritability of the latent phenotypic factor is the sum of the
multiplication of the path coefficients along all the paths that visit an additive genetic
variance component; e.g. the heritability of the first half-score at age 13 years (M,) is h? =
fi1 - @11 - Q41 - f11, or simplified, h? = f3 - a?;, and the heritability of the first half-score at
age 18 years (M,) in the two-factor model is h3 = (f35 - Ap1 - Qa1 - f32) + ((faz - G2z - A2z * f32),
or simplified, h3 = f4 - (a3, + a%,) (see Figure 4.1). The genetic correlation (r,) between
the latent phenotypic factors in the two-factor model is defined as the additive genetic

covariance between the two factors over the square root product of the additive genetic

. cov(A4,A
variances of the two factors: r, = “224142)
g JA1-Az

4.2.9 Associations between functional connectivity and intelligence

The phenotypic associations between full-score functional connectivity (FC) estimates and
intelligence (IQ) at each age, and the phenotypic associations between change in full-score
functional connectivity with age (AFC) and change in IQ scores (AIQ) was assessed using
a bivariate Cholesky model. Change scores were computed as the difference between the
two ages. The bivariate Cholesky model included sex and age as fixed effects on each of

the measures to account for possible mean differences between sexes and ages.

4.2.10 Statistical testing

Significance of parameters was determined using the log-likelihood ratio test by comparing
the likelihood of the model with additional constraints on the parameters to the likelihood
of the less constrained model. For bounded variance components (e.g. heritability
estimates), the difference in -2 times the log likelihood (-2LL) between models with a
single constraint follows a 50:50 mixture of y? distributions with zero and one degree of
freedom, and a 50:45:5 mixtures of y? distributions with zero, one and two degrees of
freedom for models with two constraints, etcetera; all effectively allow p-values to be cut
in half (Dominicus et al., 2006).

Correction for multiple comparison was performed using FDR (Genovese et al., 2002) per
condition (e.g. testing for effects of sex on functional connectivity) for all between and
within resting-state network connections including mean functional connectivity

estimates for a total of 92 tests per condition.

4.2.11 Model selection
The log-likelihood ratio test was used to determine the most parsimonious model amongst

the models with different configuration of variance components on the latent phenotypic
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factors (i.e. ACE, AE, CE or E). The optimal number of latent phenotypic factors was

determined using the log-likelihood ratio test on the models with ACE variance components.

In advance of the results, note that in 24 of the 92 cases (26%) a model with two factors was
optimal (Supplementary Table C.4; Supplementary Table C.5) and that about half of these
two-factor models do not have statistically significant heritability or common
environmental influences at both ages (i.e. either E-AE, E-CE, or E-E configuration;
Supplementary Table C.6), and show mostly stable genetic influences primarily driven by
the increased power at age 18 years. Although the presence of two factors might also be
due to changes in unique environmental influence, we cannot distinguish between true
unique environmental influences and age-specific measurement error in the common
pathway reliability model with two factors. We therefore present our main analysis using
the results of the common pathway reliability model with a single factor first, followed by

the results from the two-factor model in a post-hoc fashion.

4.2.12 Post-hoc analyses

We performed a post-hoc analysis to validate the main findings from the CONN atlas when
global signal regression (GSR) is applied during the preprocessing stage. We performed a
second post-hoc analysis to validate the main findings using Yeo resting-state networks
atlas (Yeo et al., 2011). This atlas has a slightly different parcellation of the cortical surface
into networks, which includes an extended default mode network, i.e. the parahippocampal

and temporal regions in addition to the regions of the core default mode network.

4.3 RESULTS

4.3.1 Demographics

Data from 240 participants with either one or two resting-state functional MRI scans that passed
quality control were included in the analysis, providing a total of 315 scans (Table 4.3). The
twins were on average 12.2 + 0.23 and 17.2 + 0.17 (mean + SD) years old at time point 1 (TP1)
and time point 2 (TP2), with their older siblings on average 2.7 + 1.2 (mean * SD) years older.

4.3.2 Stability and reliability of functional connectivity

Group-level mean full-score functional connectivity matrices between and within resting-
state networks reveal minor changes in functional connectivity estimates between the two
timepoints (Figure 4.2). Mean functional connectivity at group-level ranges from +0.25 to
+0.71 at age 13 years and from +0.17 to +0.73 at age 18 years for connections between resting-
state networks, and ranges from +0.32 to +0.76 at age 13 years and from +0.33 to +0.84 at age
18 years for connections within resting-state networks (Figure 4.2; Supplementary Table

C.11; Supplementary Table C.12). Despite the appearance of “stable” functional connectivity
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Table 4.3. Demographics of participants in the BrainSCALE longitudinal study with resting-state fMRI scans.

Measure Inclusion TP1 Inclusion TP2 Longitudinal sample
Individuals (N) Total: 108 207 75

MZM: 17 31 13

MZF: 16 30 12

DZM: 8 32 7

DZF: 16 30 8

DZOS: 12 26 9

Siblings: 39 58 26
Age of twins Range: 11.8 -12.7 16.8 - 17.9 11.8-17.9
(vears) Mean + SD: 12.2£0.23 17.2 £ 0.17 14.7 £ 2.53
Age of siblings Range: 13.0 - 17.8 18.3 - 22.9 13.2 - 229
(vears) Mean + SD: 15.0 £ 1.20 19.8 £ 1.13 17.3 £ 2.70
Scan interval Range: N/A N/A 41-57
(vears) Mean + SD: N/A N/A 5.0 £0.29
Sex Females: 62 (57%) 112 (54%) 42 (56%)

Males: 46 (43%) 95 (46%) 33 (44%)
IQ scores Range: 65 — 147 75 - 152 79 - 1325

Mean + SD: 100.8 + 14.7 104.2 + 12.6 103.3+ 114
Mean FD Range: 0.09 - 0.28 0.09 - 0.27 0.11 - 0.24
(mm/volume) Mean + SD: 0.18 £ 0.04 0.17 £ 0.03 0.17 £ 0.03
Flagged frames Range: 3-234 0-183 N/A
(N) Mean + SD: 79 +51 57 + 42
Scrubbed frames  Range: 12 — 450 0 — 449 N/A
(N) Mean +SD: 214 + 121 154 + 106

Number of complete twin pairs, or sibling paired with at least one of the twins, are reported between parenthesis
in the participants row; IQ scores and mean FD for full-scores measures of participants with longitudinal data
were averaged across both measurements in the longitudinal data column. Flagged frames are the number of
frames within the scan that exceeded the threshold for head motion of FD > 0.30. Scrubbed frames are the number
of frames for which regressors were included in the preprocessing stage, and are derived from expansion of the
flagged frames by also including one frame prior and the two frames following flagged frames. Abbreviations (in
alphabetical order): DZF = dizygotic females; DZM = dizygotic males; DZOS = dizygotic opposite sex; FD =
framewise displacement; IQ = intelligence quotient; MZF = monozygotic females; MZM = monozygotic males; SD

= standard deviation; TP1 = time point 1; TP2 = time point 2.
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with age, high individual variation exists with low to moderate short-term (i.e. within age)
test-retest reliability (1, between networks range = [+0.13; +0.62]; rpn within networks range
= [+0.20; +0.66]; Supplementary Figure C.6; Supplementary Table C.11; Supplementary
Table C.12) and slightly lower long-term (i.e. between ages) test-retest stability (ron between
networks range = [+0.06; +0.47]; rpn within networks range [+0.06; +0.55]; Supplementary
Figure C.6; Supplementary Table C.11; Supplementary Table C.12).

4.3.3 Longitudinal age effects on functional connectivity

Functional connectivity between resting-state networks decreases with age (Bage mean FC
between RSNs = —0.0060; p = 0.032; FDR-corrected p = 0.054 [n.s.]; Figure 4.3; Supplementary
Table C.9) whereas functional connectivity within resting-state networks increases with age
(Bage mean FC within RSNs = +0.0094; p < 0.001; FDR-corrected p < 0.001; Figure 4.3;
Supplementary Table C.9), except for several connections within the salience network (SN)
involving the anterior cingulate cortex (ACC), left rostral prefrontal cortex (RPFC) and left
supramarginal gyrus (SMG) that decrease with age (Figure 4.3; Supplementary Table C.7;
Supplementary Table C.9). The strongest increases in functional connectivity occur mostly
within the sensorimotor network (Bage mean FC within SMN = +0.0256; p < 0.001; FDR-corrected
p < 0.001; Figure 4.3; Supplementary Table C.9) and the visual network (Bage mean FC within
VN = +0.0190; p < 0.001; FDR-corrected p < 0.001; Figure 4.3; Supplementary Table C.9).
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y , , _
|
DMN oo | DMN
SMN . 08 | | SMN
VN o7 (WN
0.6
SN 05 SN
"
03 DAN
FPN
02 | FPN
LN 0.1
0 LN
CBN ., : CBN
z z z2 z =z z z z ’ z z z z z z z z
E % > 2] g & — 8 g c% > [@] g & pu | 8

Figure 4.2. Group-level mean functional connectivity for connections between (left) and within canonical resting-
state networks (right) at age 13 years (lower triangles; TP1) and 5 years later at age 18 years (upper triangles;
TP2). For the order of regions within resting-state networks, see Supplementary Table C.1. Abbreviations (in
alphabetical order): CBN = cerebellar network; DAN = dorsal attention network; DMN = default mode network;
FPN = frontoparietal network; LN = language network; SMN = sensorimotor network; SN = salience network;

TP1 = time point 1; TP2 = time point 2; VN = visual network.
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Figure 4.3. Sex and longitudinal age effects on functional connectivity between and within canonical resting-state
networks. Thick lines represent effects significant after FDR correction for multiple comparison. Grey lines
represent the absence of any significant effect for that particular connection. The salience network has been
enlarged to accommodate the high number of connections within the network. Abbreviations (in alphabetical
order): ACC = anterior cingulate cortex; FC = functional connectivity; FEF = frontal eye fields; IFG = inferior
frontal gyrus; IPS = intraparietal sulcus; LP = lateral parietal; LPFC = lateral prefrontal cortex; MPFC = medial
prefrontal cortex; PCC = posterior cingulate cortex; PPC = posterior parietal cortex; pSTG = posterior superior

temporal gyrus; RPFC = rostral prefrontal cortex; RSN = resting-state network; SMG = supramarginal gyrus.

In addition, most contralateral connections between homotopic regions of the hemispheres
are amongst the strongest to increase with age (Figure 4.3; Supplementary Table C.9).
Several ipsilateral connections within the frontoparietal, salience, and language networks
(e.g. the connection between lateral prefrontal cortex (LPFC) and posterior parietal cortex
(PPC) show increase in functional connectivity (Figure 4.3; Supplementary Table C.9).
Including mean framewise displacement as an additional covariate in the functional
connectivity analysis does not alter the results. Moreover, the same pattern of age-related
effects is found in a post-hoc analysis when global signal regression was included during the

preprocessing stage, and when repeating the analysis with Yeo’s resting-state networks atlas.
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4.3.4 Sex and functional connectivity

Sex effects on functional connectivity are sparse, and after multiple comparison correction
found only for connections within the default mode network (DMN) and salience network
(SN) (Figure 4.3; Supplementary Table C.7; Supplementary Table C.9). Increased
functional connectivity for girls compared to boys is found within the default mode
network (DMN) (Bsex = —0.0748; p < 0.001; FDR-corrected p = 0.008; Figure 4.3;
Supplementary Table C.9), and is mostly due to the connections between the medial
prefrontal cortex (MPFC) and the PCC (Bsex = —0.0998; p < 0.001; FDR-corrected p = 0.006;
Figure 4.3; Supplementary Table C.9) and between the left lateral parietal cortex (LLP) and
the PCC (Bsex = —0.0934; p = 0.001; FDR-corrected p = 0.025; Figure 4.3; Supplementary
Table C.9). An opposing sex effect, where functional connectivity for boys is greater than
for girls, is found for the connection between the left and right anterior insula (alns) within
the salience network (SN) (Bsex = 0.1018; p = 0.001; FDR-corrected p = 0.025; Figure 4.3;
Supplementary Table C.9).

4.3.5 IQ and functional connectivity

None of the associations between functional connectivity and IQ test scores survived
correction for multiple comparison (FDR-corrected p = 0.3049 [n.s.]; Supplementary Table
C.11; Supplementary Table C.12).

4.3.6 Genetic and environmental influences on functional connectivity

About half of the connections between and within resting-state networks show influences
of either additive genetics or common environmental influences on the reliable component
of functional connectivity (i.e. the common factor), with heritability estimates ranging
between 40% to 100% and common environment estimates ranging between 30% to 60%
(Figure 4.4; Supplementary Table C.8; Supplementary Table C.10). In particular,
connections involving the frontoparietal network, both within and between networks,
show strong additive genetic influences (mean FC of connections within the frontoparietal
network h? = 97%; p < 0.001; FDR-corrected p < 0.001). In addition, the visual network (mean
FC within visual network h? = 96%; p < 0.001; FDR-corrected p = 0.002) the salience network
(mean FC within salience network h? = 59%; p < 0.001; FDR-corrected p = 0.008), and the
mean functional connectivity averaged over all within resting-state network connections
(h? = 73%; p < 0.001; FDR-corrected p = 0.001) show strong additive genetic influences
(Figure 4.4; Supplementary Table C.10). Common environmental influences are found in
particular within the language (left pSTG-right IFG ¢ = 50%; p < 0.001; FDR-corrected p =
0.001; and right pSTG-left IFG ¢ = 50%; p = 0.013; FDR-corrected p = 0.072 [n.s. after FDR
correction]; Figure 4.4; Supplementary Table C.10), sensorimotor (superior-left later ¢2
= 31%; p = 0.006; FDR-corrected p = 0.047; Figure 4.4; Supplementary Table C.10), and
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Figure 4.4. Genetic and environmental influences on the reliable component of functional connectivity between
and within canonical resting-state networks. Thick lines represent effects significant after FDR correction for
multiple comparison. Grey lines represent the absence of any significant effect for that particular connection. The
salience network has been enlarged to accommodate the high number of connections within the network.
Abbreviations (in alphabetical order): ACC = anterior cingulate cortex; FC = functional connectivity; FEF = frontal
eye fields; IFG = inferior frontal gyrus; IPS = intraparietal sulcus; LP = lateral parietal; LPFC = lateral prefrontal cortex;
MPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; PPC = posterior parietal cortex; pSTG = posterior
superior temporal gyrus; RPFC = rostral prefrontal cortex; RSN = resting-state network; SMG = supramarginal gyrus.

cerebellar network (anterior—posterior cerebellar ¢ = 45%; p < 0.001; FDR-corrected p = 0.001;
Figure 4.4; Supplementary Table C.10), and for several between resting-state network
connections (mean functional connectivity averaged over all between resting-state network

connections ¢ = 39%; p = 0.001; FDR-corrected p = 0.013; Figure 4.4; Supplementary Table C.8).

Within the core default mode network, connections involving the precuneus (PCC) show
additive genetic influences (MPFC-PCC h? = 79%; p = 0.002; FDR-corrected p = 0.012; and PCC—
LLP K2 = 55%; p = 0.011; FDR-corrected p = 0.031; and PCC-RLP h? = 48%; p = 0.015; FDR-
corrected p = 0.041; Figure 4.4; Supplementary Table C.10), whereas connections between the
medial prefrontal cortex (MPFC) right lateral parietal (RLP) are under common environmental
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influences (MPFC-RLP ¢ = 38%; p = 0.002; FDR-corrected p = 0.026; Figure 4.4; Supplementary
Table C.10). Mean functional connectivity averaged over all six connections within the
default mode networks show significant influences of common environment (¢ = 37%; p =
0.003; FDR-corrected p = 0.031; Figure 4.4; Supplementary Table C.10).

By definition of the common factor model, heritability at the individual half-score measures
depends on the proportion of variance explained by the common factor and the heritability
of the reliable factor. Averaged standardized factor loading across the four half-scores of
the individual connections ranged from 18% to 46% (mean standardized factor loadings
33%), with higher loadings on measurements at age 18 years (mean standardized factor
loadings: 41%) than at age 13 years (mean standardized factor loadings: 24%)
(Supplementary Figure C.7; Supplementary Figure C.8). Heritability estimates at
individual half-score measurements ranged from 5% to 53% and from 5% to 33% for common
environment estimates (Supplementary Figure C.7; Supplementary Figure C.8;

Supplementary Table C.8; Supplementary Table C.10).

We find a similar pattern of additive genetic and common environmental influences on the
reliable components of functional connectivity in a post-hoc analysis when using Yeo’s
resting-state networks atlas. However, when applying global signal regression during the
preprocessing stage, common environment estimates on the reliable component of
functional connectivity, which no longer contains the global signal, is drastically reduced,
and the reliable component of functional connectivity for connections previously influenced

by common environment is now primarily influenced by additive genetics instead.

4.3.7 Dynamic genetic and environmental influences on functional connectivity
throughout adolescence

A two-factor common pathway reliability model was a better fit to the data than a single
factor for 24 of the 92 connections (26%) (Supplementary Table C.4; Supplementary Table
C.5). However, only half of these connections have statistically significant heritability or
common environment estimates at both ages to warrant longitudinal investigation into
dynamics of genetic and common environmental influences. For seven connections there
is indication of possible dynamics in additive genetic or common environmental influences
with age (Supplementary Table C.6). Two connections within the default mode network
(DMN) show common environmental influences on changes in age-related functional
connectivity, between the medial prefrontal cortex (MPFC) and right lateral parietal (RLP)
with distinct genetic influences at each age due to innovation (¢4(AFC) = 99% [61%; 100%];
p = 0.003; innovation p = 0.006; Supplementary Table C.6) and between the MPFC and
posterior cingulate cortex (PCC) ((AFC) = 98% [1%; 100%]; p = 0.037; Supplementary Table

C.6). The connection between medial and occipital regions within the visual network (VN)
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shows additive genetic influences on changes in functional connectivity due to increasing
heritability originating from the same set of genes with age (a*(AFC) = 29% [2%; 96%]; p =
0.015; fluctuating influences p = 0.028; Supplementary Table C.6). The connection between
occipital and left lateral regions of the visual network (VN) shows common environmental
influences on change in functional connectivity with innovation in environment factors
over time (¢3(AFC) = 41% [17%; 93%]; p = 0.012; innovation p = 0.019; Supplementary Table
C.6). Three connections within the frontoparietal network (FPN) show with additive
genetic influences on changes in functional connectivity due to fluctuating influences from
the same genes: between the left lateral prefrontal cortex (LPFC) and left posterior parietal
cortex (PPC) (a*(AFC) = 58% [17%; 91%]; p = 0.002; fluctuating influences p = 0.003;
Supplementary Table C.6), between the left LPFC and right PCC (a*(AFC) = 22% [5%; 51%);
p = 0.003; fluctuating influences p = 0.006; Supplementary Table C.6), and between the left
PCC and right PCC (a*(AFC) = 48% [4%; 100%]; p = 0.015; fluctuating influences p = 0.029;
Supplementary Table C.6). The remaining connections with genetic or common
environmental influences at both ages do not reveal any significant dynamics in heritability
or common environment (Supplementary Table C.6). However, these results should be
interpreted with caution due to limited power to detect significant genetic or
environmental estimates at age 13 years, in part due to the reduced sample size at age 13

years.

4.4 DISCUSSION
With this longitudinal resting-state fMRI study, we measured the heritability of functional

connectivity throughout adolescent development for the first time. Approximately half of
the functional connections within and between canonical cortical resting-state networks
are influenced by either additive genetic (h* up to 53%) or common environmental
influences (¢? up to 33%) during adolescence. During adolescence, functional connectivity
between resting-state networks decreases with age, whereas functional connectivity within
cortical resting-state networks increases with age, except for several connections within
the salience network that decrease with age. There is limited evidence for dynamics in
genetic or common environmental influences, suggesting mostly stable influences across
adolescence. Girls had significantly stronger functional connectivity than boys within the
default mode network between the precuneus and medial prefrontal cortex and between
the precuneus and left lateral parietal cortex. Boys had significantly stronger functional
connectivity than girls within the salience network for the connection between the bilateral
insula. Associations between functional connectivity and intelligence did not survive
multiple comparison correction. Head motion is heritable across the ages and shows a small

but statistically significant decline with age (Supplementary Table C.3; Supplementary
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Figure C.5). The aCompCor method used by CONN is effective at removing head motion
effect cross-sectionally, however, longitudinal changes in functional connectivity estimates
between the canonical resting-state networks remain associated with the longitudinal
changes in degree of head motion of individuals (Supplementary Table C.13;
Supplementary Table C.14). The results remained consistent after including mean
framewise displacement as an additional covariate in the functional connectivity analysis

and after including global signal regression during the preprocessing stage.

We find significant heritability on functional connectivity in adolescence, h? ranging from
6% to 53% for 23 out of 55 (42%) connections within resting-state networks, and common
environment estimates ¢ ranging from 5% to 33% for 8 out of 55 (15%) connections.
Previous studies found heritability estimates ranging from 10% to 40%, and occasionally up
to 60% or 80% (Adhikari et al., 2018b; Colclough et al., 2017; Fu et al., 2015; Ge et al., 2017;
Glahn et al., 2010; Korgaonkar et al., 2014; Meda et al., 2014; Sudre et al., 2017; Yang et al.,
2016; Table 4.2), thus overall these findings are within the same range across the ages. The
notable exception is the default mode network. In our cohort the default mode network is
partially influenced by common environmental instead of additive genetics (mean FC
within DMN ¢ = 37%). Previous studies have established the default mode network being
influenced by additive genetics (Adhikari et al., 2018a; Fu et al., 2015; Ge et al., 2017; Glahn
et al.,, 2010; Korgaonkar et al., 2014; Meda et al., 2014; Sudre et al., 2017; Xu et al., 2016; Yang
et al., 2016). The discrepancy with previous studies may be due to increased sensitivity in
finding common environmental effects in the current study because of three reasons. One,
the extended twin design (i.e. including twin pairs and one of their singleton siblings) used
in this study provides additional power to detect significant common environment
estimates (Posthuma and Boomsma, 2000) allowing detection of statistically significant
common environmental estimate at individual measures as low as 5% when separating
measurement error from the common factor. However, most likely functional connections
in the brain are influenced by both additive genetics and common environment. Two, since
previous studies were conducted mostly in adults, it may be possible that heritability
estimates on functional connectivity increase with age, as is the case with heritability of
cognitive performance (Briley and Tucker-Drob, 2013). Indeed, the cohorts closest to our
age range find similarly low estimates for heritability of functional connectivity within the
default mode network (Fu et al., 2015; Yang et al., 2016). Finally, atlas choice and
preprocessing strategies, including global mean signal regression, all varied between these
studies, which could have introduced differences in heritability estimates. Although we
were able to replicate our results using Yeo’s resting-state atlas, including global signal
regression during the preprocessing stage substantially decreased the common

environment estimates in favor of additive genetics for some connections.
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Few other studies have investigated heritability of functional connectivity with resting-
state networks beyond the default mode network (Adhikari et al.,, 2018; Ge et al., 2017;
Sudre et al., 2017; Yang et al.,, 2016). Our heritability estimates for functional connectivity
within the frontoparietal network of h? = 14% at around age 13 years and h? = 40% at around
age 18 years are slightly lower than the estimates of h? = 32% to 58% found across lifespan
in families with ADHD family members (Sudre et al., 2017), and substantially less than the
estimate of h? = 65% reported in a sample of healthy young adults (Yang et al., 2016), but
more in line with results from the Genetics of Brain Structure (GOBS) and the Human
Connectome Project (HCP) studies (Adhikari et al., 2018a). The sensorimotor network in
our cohort is influenced by a mixture of additive genetics h? = 18% to 20% and common
environment ¢ = 5% to 16%, with influences of common environment previously reported
in young adults (Yang et al., 2016), and low to no heritability in the GOBS and HCP cohort,
although they did not test for common environmental influences (Adhikari et al., 2018a).
This is in stark contrast to the study performed on the Brain Genomics Superstruct Project
(GSP) cohort and alternative analysis of the HCP cohort where they found high heritability
estimates of h% = 60% to 70% (Ge et al., 2017).

We find significant heritability of functional connectivity between resting-state networks
in adolescence, with 8 out of 28 (29%) connections influenced by additive genetics with h?
= 5% to 50%, and 6 out of 28 (21%) connections influenced by common environment with
& = 6% to 25%. In particular, connections between the frontoparietal, dorsal attention, and
salience networks, all involved in higher order cognitive control, were influenced primarily
by additive genetics. Common environment played a considerable role for most sensory
networks, including the language network and cerebellum. So far, the only other study that
investigated heritability of functional connectivity between resting-state networks was
performed in young adults aged 18 to 29 years (Yang et al.,, 2016), where 8 out of 21 (38%)
connections between resting-state networks were influenced by additive genetics with h?
= 26% to 42%, and 11 out of 21 (52%) were influenced by common environment with ¢ =
18% to 47%, showing overall similar connectivity profiles. Interestingly, synchronous
resting-state activity in the brain has been associated with gene expression levels, where
distal functionally connected regions show similar gene expression profiles (Hawrylycz et
al., 2015), and the strength in functional connectivity was influenced by polymorphisms of
a set of genes enriched for ion channels in healthy adolescents (Richiardi et al., 2015). Here,
our study adds that functional connectivity within and between cortical resting-state
networks is strongly influenced by genes and common environment throughout adolescent
development. Including global signal regression during the preprocessing stage resulted in
decreased estimates for common environment and increased heritability estimates on the

reliable component of functional connectivity for some of the connections. This insight will
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have potential consequences for genetic studies that aim to find genetic variants implicated

in functional connectivity.

Varying estimates of heritability or common environment between half-score measures of
different sessions (i.e. between the two ages) may be an indication of dynamics in genes or
common environment that was tested with a two-factor common pathway model; e.g. the
change in heritability estimates for functional connectivity within the frontoparietal
network increased significantly from h? = 14% at age 13 years to h? = 40% at age 18 years.
However, the lower heritability estimates at age 13 years are likely due to the reduced
sample size as a result of motion scrubbing and exclusion due to presence of dental braces
incompatible with high magnetic fields or increased residual noise rather than represent
“true” changes in additive genetic or common environmental variances. This effect is
reflected in the two-factor common pathway model as “increasing” influences of the same
additive genetic or common environmental factor over time, and is consequently found in
the single factor common pathway model as varying estimates of heritability due to
differences in factor loadings on the individual half-score measures. Therefore, the results
from the two-factor model on dynamics of genetic and environmental influences are
suggestive at best and generally demonstrate stable additive genetic or common
environmental influences from a single source (Supplementary Table C.6). Varying
estimates for half-score of a single session (i.e. within the same age) are very unlikely to
represent short-term fluctuating genetic or environmental influences, but can most likely
be attributed to fluctuating noise (e.g. slight increase in head motion or restlessness during

second half of scan).

The longitudinal age effects that we found are subtle but wide-spread throughout the brain
despite most resting-state networks already appearing “adult-like” by age 2 years (Gao et
al., 2015; Gilmore et al., 2018). We found age-related decreases in functional connectivity
for about half of the connections between cortical resting-state networks, which likely
reflect segregation between functionally distinct modules of the brain. A previous
longitudinal study during early adolescence reported segregation between the
frontoparietal (FPN) and default mode network (DMN) (Sherman et al., 2014). Although our
results are not statistically significant, it suggests a possible decrease between the FPN and
DMN (Bage = —0.0076; p = 0.061 [n.s.]; FDR-corrected p = 0.089 [n.s.]) that is consistent with
prior reports. Previously, a decrease in functional connectivity between the dorsolateral
prefrontal cortex and posterior cerebellum, but not anterior cerebellum, was reported
(Bernard et al., 2016). We do not find age-related changes in functional connectivity
between the frontoparietal and cerebellar networks. However, we do not distinguish

between subregions of the network for between-network connectivity. Nearly two-thirds
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of the connections within resting-state networks show age-related increase in functional
connectivity that likely reflect integration within functional modules of the brain.
Previously longitudinal studies have reported on integration within the default mode
(DMN), frontoparietal (FPN), and language network (LN) during childhood and adolescence
(Long et al., 2017; Sherman et al., 2014; Wendelken et al., 2017; 2016; Xiao et al., 2016).
However, age-related changes in functional connectivity within the DMN, FPN, and SN are
not always consistently found during early adolescence (Sylvester et al., 2018). Similar to
previous reports, we find integration within the frontoparietal network (FPN) for the
ipsilateral connections between the frontal and posterior regions of the FPN (Wendelken
etal, 2017; 2016), and integration within the language network between the inferior frontal
gyrus (IFG) and posterior superior temporal gyrus (pSTG) (Xiao et al., 2016). Better
integration between frontal and parietal regions has been proposed to support better
cognitive performance in the Parieto-Frontal Integration Theory (P-FIT; Deary et al., 2010;
Jung and Haier, 2007). A notable exception to integration within resting-state networks is
the age-related decrease in functional connectivity within the salience network for
connections involving the anterior cingulate cortex (ACC), left rostral prefrontal cortex
(RPFC) and left supramarginal gyrus (SMG). The only other longitudinal study that
investigated the salience network in children and adolescents was between 8 and 13 years,
preceding our age range, reporting absence of significant age-related effects (Sylvester et
al., 2018). The anterior cingulate cortex plays an important role in motor control and
cognition, in particular reward-based decision making and response inhibition (Bush et al.,
2002; Stevens et al., 2011). A decreasing connectivity between the anterior cingulate cortex
and insula could possibly reflect a decoupling between the integration of external sensory
information and internal emotional and bodily state signals (Uddin et al., 2017) or indicate
segregation of bottom-up stimuli processing and top-down cognitive control processing in
the salience network that may coincide with improved self-control during adolescence
(Casey, 2013). The decreasing connectivity strength between networks and increasing
connectivity strength within networks that we find in this longitudinal study is the
opposite pattern of what is typically reported in cross-sectional literature, where there is a
shift from a local oriented (i.e. stronger functional connectivity between proximal regions)
to a more distributed organization (i.e. stronger functional connectivity between distal
regions) during childhood and adolescence (Cao et al., 2016; Ernst et al., 2015; Grayson and
Fair, 2017; Stevens, 2016). This discrepancy could be due to residual head motion effects on
changes in functional connectivity with age that are not always properly accounted for in
studies predating 2012 (Power et al., 2012), although despite our stringent control for head
motion there are still residual effects present. Secondly, cross-sectional studies do not

always show consensus on the direction of change and affected regions (Stevens, 2016),
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which may be due to the cohort effect. Few longitudinal studies have been conducted to
date (see Table 4.1), with even fewer conducting brain-wide analysis. Several longitudinal
studies show increasing functional connectivity within functional networks or decreasing
functional connectivity between functional networks with age consistent with our results
(Bernard et al., 2016; Long et al., 2017; Sherman et al., 2014; Wendelken et al., 2017; 2016).

We find significant sex effects within the default mode (girls showing stronger functional
connectivity) and salience network (boys showing stronger functional connectivity). Sex
effects in functional connectivity analyses are typically discarded as covariate of no
interest, despite extensive support for sex effects in behavior (Gur et al., 2012; Gur and Gur,
2016), brain gray matter (Giedd et al., 2012; Ruigrok et al., 2014) and white matter structure
(Herting et al., 2012; Ingalhalikar et al., 2014), and function (Sacher et al., 2013; Stevens and
Hamann, 2012). A few studies have reported sex effects for functional connectivity within
the default mode network (stronger functional connectivity in females compared to males)
and salience network (stronger functional connectivity in males compared to females) in
adults (Biswal et al., 2010) and across the lifespan (Zuo et al., 2010). These previous reports
are consistent with our findings, and corroborate that sex differences in brain functioning
are already present during adolescence (Gur and Gur, 2016), although sex effects are not
always found in these networks during development (Solé-Padullés et al., 2016; Sylvester
et al., 2018). The default mode network plays an important role in auto-biography memory
and emotion regulation (Mak et al., 2017; Raichle, 2015; Zhou et al., 2018). The increased
functional connectivity within the default mode network for girls may therefore explain
their better performance at memory and emotive tasks (Gur et al., 2012; Gur and Gur, 2016).
In contrast, the salience network plays an important role in overt attention/stimuli
processing, integration of multimodal sensory information, and switching between passive
and active tasks (Marek et al,, 2015; Seeley et al., 2007; Uddin, 2014; Zhou et al., 2018). The
increased functional connectivity within the salience network for boys may therefore explain

their better performance at visuospatial and motor tasks (Gur et al., 2012; Gur and Gur, 2016).

We do not find any association between functional connectivity and IQ scores that remain
significant after multiple comparison correction. One of the leading theories on cognitive
development postulates that better integration between frontal and parietal areas supports
better cognitive performance (Deary et al., 2010; Jung and Haier, 2007). Previous studies on
resting-state functional connectivity have provided support for this theory in both children
and adults (Dubois et al., 2018; Langeslag et al., 2013; Santarnecchi et al., 2017; Song et al.,
2008; Vakhtin et al., 2014). However, despite better integration in the frontoparietal
network (FPN) with age, we found no association with IQ test scores that survived multiple

comparison correction (Supplementary Table C.11; Supplementary Table C.12).
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Head motion is a major point of concern in resting-state fMRI measurements when
studying functional connectivity during childhood and adolescent development (Power et
al. 2012; Van Dijk et al. 2012; Satterthwaite, Wolf, et al. 2013). Heritability of head motion
during childhood, adolescence, and young adulthood was previously established
(Achterberg et al., 2018; Couvy-Duchesne et al., 2014; 2016; Engelhardt et al., 2017; Zhou et
al., 2016), and is consistent with our findings during adolescence (h? = 86% at age 13 years;
p < 0.0001; and h? = 43% at age 18 years; p = 0.0003). Preprocessing the resting-state data
with linear regression of white matter and cerebrospinal fluid signal components and
derivatives of re-alignment parameters using CONN toolbox appears to be mostly effective
to control for head motion at individual ages (i.e. cross-sectionally; Supplementary Table
C.13; Supplementary Table C.14). However, in a longitudinal setting, change in the degree
of head motion was still associated with changes in functional connectivity for more than
half of the generally long-distance connections between resting-state networks, all with
positive association (i.e. reduction in head motion results in smaller change in functional
connectivity; Supplementary Table C.13; Supplementary Table C.14), with only the
association between head motion and the connection between the sensorimotor and
salience network surviving multiple comparison correction. Including global signal
regression during the preprocessing stage — despite its controversy to introduce artificial
negative correlations considered to be most effective at reducing head motion effects — did
not substantially change the results in addition to the aCompCor method, as previously
found (Ciric et al., 2017). This suggests that despite stringent control of head motion during
preprocessing of the resting-state fMRI scans, not all variance due to head motion is
accounted for, possible due to complex non-linear interaction of head motion with the
BOLD signal (Satterthwaite et al., 2013). However, most connections within resting-state
networks, including long-distance connections between frontal and parietal regions, and
cross-hemisphere connections, showed few associations with head motion. Moreover, age-
related changes in functional connectivity were unaffected whether or not head motion
was included as covariate. All scans, including longitudinal scans, were processed
independently due to lack of publicly available tools that support longitudinal pipelines
such as used for structural imaging (Reuter et al., 2012), although longitudinal methods for
preprocessing of resting-state fMRI are becoming available (Hart et al., 2018).

A number of other limitations should be taken into consideration when interpreting these
results. First, resting-state fMRI scans were acquired at 1.5T MRI scanner, using an at the
time state-of-the-art fast repetition time (TR) T2-weighted PRESTO-SENSE acquisition
protocol. The field strength was intentionally not upgraded to higher field strengths to
minimize effects of scanner differences for longitudinal data acquisition. Although the fast

TR aims to minimize head motion between acquired volumes, the 3D acquisition makes it
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more sensitive to abrupt motion resulting in ghosting and blurring of the BOLD signal that
may require a different approach to denoising than traditional 2D single-shot EPI
acquisition protocol (van Gelderen et al., 2012). In addition, effort was taken to reduce in-
scanner head motion using mock-scanner session before actual acquisition to acclimate the
children during previous visitation at age 9 years when the children also experienced an
MRI scan but no resting-state fMRI scan was acquired (Durston et al., 2009; van Soelen et
al., 2012a). Secondly, although sample size is large for neuroimaging standard (i.e. N = 108
at age 13 years and N = 207 at age 18 years), it is modest in size for twin studies. In
particular, the reduced sample size at age 13 years due to exclusion of high motion subjects
has limited the number of subjects with longitudinal scans and will have an impact on the
power of this study to detect age-related effects. Combining the data across the ages using
common factor analysis with a single factor had the benefit to mitigate this reduction in
power for detecting statistically significant heritability or common environment estimates
under the assumption that these estimates remain stable across ages, which is the case for
most connections. Thirdly, resting-state fMRI is inherently noisy with no optimal strategy
to remove non-neuronal signal (e.g. due to head motion or vascular system) (Ciric et al.,
2017; Parkes et al., 2018). Alternative approaches or more advanced methods, such as
improving temporal signal-to-noise ratio using machine learning (Adhikari et al., 2018a) or
the use of a longitudinal preprocessing pipeline (Hart et al., 2018) may prove beneficial for
future studies. Finally, choice of atlas may influence the results as both the CONN and Yeo
atlas consist of predefined regions that do not allow for individual variation in localization
of brain function and the moderate size of the regions prevent analysis of possible localized
effects with behavioral measures such as cognitive performance on IQ tests. In addition,
both atlases do not include subcortical structures for which both longitudinal development
and heritability has been reported. Unfortunately, we could not use more fine-grained
atlases due to computational complexity of twin modelling and the limited spatial
resolution of our scans. However, the comparable results for both the CONN toolbox atlas
and Yeo’s resting-state network atlas suggests at least reasonable robustness of findings

independent of atlas choice.

In conclusion, there are wide-spread influences of additive genetics and common
environment on the functioning of cortical resting-state networks during adolescent
development that generally remain stable over time. Wide-spread subtle age-related
changes in functional connectivity occur in the presence of sizable individual variation,
with presence of sex effects to be taken into consideration in developmental studies on

functional connectivity.
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CHAPTER 5

ABSTRACT

Schizophrenia patients show signs of progressive aging in cognitive and physiological
domains, and the condition is associated with increased mortality. Accelerated aging, as
measured by MRI brain images and epigenetic clocks, has been reported, but little is known

about the interplay between these clocks in schizophrenia patients.

In schizophrenia patients and healthy subjects, accelerated aging was assessed in brain
tissue using a longitudinal MRI (N = 715 scans; mean scan interval 3.4 year) and in blood
using two epigenetic age predictors (N = 172). Differences (‘gaps’) between estimated, i.e.,
biological, ages and chronological ages were calculated, as well as the acceleration rate of
brain age. Bivariate associations between these aging measures as well as with polygenic

risk scores for schizophrenia (PRS; N = 394) were investigated.

Brain aging measures and epigenetic age predictors were not significantly associated. PRS
was significantly associated with brain age gap, brain age acceleration rate, and, negatively,
with Horvath’s epigenetic age predictor, but not with Levine’s epigenetic age predictor.
After controlling for disease status and multiple comparisons correction, these effects were
no longer significant. Our results could potentially imply that the (accelerated) aging

observed in the different tissues reflect distinct biological processes.

Keywords: schizophrenia; DNA methylation; epigenetics; genetics; polygenic risk scores

(PRS); structural magnetic resonance imaging (MRI); progressive aging; mediation analysis
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5.1 INTRODUCTION

Schizophrenia is a debilitating psychiatric disorder where the patients’ expected lifespan is
decreased on average by 15 to 20 years compared to the general population (Laursen et al.,
2014; Hjorthej et al., 2017). This shortened lifespan may be explained in terms of accelerated
aging of the body (Kirkpatrick et al., 2008). In two separate studies we have previously
reported on accelerated aging of the brain (Schnack et al., 2016) and epigenetic aging in blood
(Ori et al, 2019) for schizophrenia patients. However, whether or not these different

biological aging markers act in concert is not yet well understood.

Despite our current understanding of neuropsychiatric disorders, the etiology of
schizophrenia remains largely unknown. There are several indications of aberrant brain
development as early as the fetal period (Debnath et al., 2015; Kim et al., 2015; Faa et al., 2016),
with progressive changes of the brain even after the onset of psychosis (van Haren et al.,
2008; Hulshoff Pol and Kahn, 2008), which is characteristic for a progressive aging disorder
(Olabi et al., 2011). Accelerated biological aging occurs when the rate of biological aging is
increased as compared to chronological aging, and may in part explain the increase in early
mortality rate within the patient population (Kirkpatrick et al., 2008; Shivakumar et al., 2014;
Nguyen et al., 2017; Laursen, et al., 2014). Quantitative assessment of biological aging can be
performed using advanced statistical techniques such as machine learning algorithms. These
algorithms are trained to discover aging-related patterns in the properties of tissue from a
subject or donor (Bzdok, 2017; Cole and Franke, 2017; Jylhavid et al, 2017). Using
neuroimaging, the biological age of the brain can be predicted from gray matter distributions
(Cole and Franke, 2017; Cole et al, 2017; Valizadeh et al., 2017), white matter properties
(Mwangi et al, 2013), or brain-activity related properties (Dosenbach et al, 2010). For patients
with schizophrenia, accelerated aging of the brain occurs around the onset of psychosis
(Koutsouleris et al., 2014; Schnack et al., 2016; Nenadi¢ et al., 2017; Kaufmann et al., 2019;
Jonsson et al., 2019; Kolenic et al., 2018; Chung et al., 2018; Hajek et al., 2019; Shahab et al.,
2019) before stabilizing several years after onset (Schnack et al., 2016). Accelerated brain age
predicts all-cause mortality (Cole et al., 2018), is highly heritable and has a genetic overlap
with common brain disorders, including schizophrenia (Cole et al., 2017; Kaufmann et al.,
2019). For biological tissue samples, several molecular and phenotypic biomarkers of aging
have been reported for research into proteomic, transcriptomics, metabolomics, telomere
length, and DNA methylation levels (Jylhdvi et al., 2017; Nguyen et al., 2017). The age of a
tissue donor can be reliably estimated based on epigenetic methylation of DNA (Horvath et
al, 2012; Horvath, 2013; Hannum et al, 2013; Levine et al., 2018). While no significant
accelerated epigenetic aging has previously been observed schizophrenia, neither in post-
mortem brain nor blood tissue (Viana et al., 2017; Voisey et al., 2017; McKinney et al., 2017;
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McKinney et al, 2018), a recent large-scale DNA methylation study now robustly
demonstrates that epigenetic age is accelerated in whole blood using an DNAm age predictor
that strongly associates with mortality risk (Ori et al., 2019). The study furthermore reports
that a subset of cases who carry high schizophrenia polygenic risk present the fastest age
acceleration. This raises two intriguing questions; do cases who carry high schizophrenia
polygenic risk also present faster brain age acceleration? And is aging in the brain associated
with epigenetic aging in blood? Previously, no significant association between brain aging
and epigenetic aging was reported in a population study of typical aging elderly subjects
(Cole et al., 2018). However, little is known about the interplay of genetics, epigenetics, and

brain morphology with regard to accelerated aging in schizophrenia patients.

5.1.1 Current study

Here we investigated the associations between brain aging, epigenetic aging, and polygenic
risk for schizophrenia within a dataset of schizophrenia patients and healthy control
subjects. MRI-derived brain ages were estimated from structural MRI scans using Schnack’s
brain age predictor (Schnack et al., 2016), and epigenetic ages were estimated from whole-
blood array-based DNA samples profiles using Horvath’s (Horvath et al., 2012) and Levine’s
(Levine et al, 2018) epigenetic age predictors. Genotype-based polygenic risk for
schizophrenia was estimated using the schizophrenia GWAS summary statistics of the

Psychiatric Genome Consortium (Ripke et al., 2014).

5.2 MATERIALS AND METHODS

5.2.1 Cohort and sample description

Subjects included in this study were part of two longitudinal schizophrenia cohorts (van
Haren et al,, 2007; Boos et al.,, 2012). Brain age in these cohorts has been described before
(Schnack et al, 2016) and these cohorts were part of a study on epigenetic aging in
schizophrenia (Ori et al.,, 2019). Here we included unrelated subjects that had imaging data
and either epigenetic or genetic data available (Table 5.1; Figure 5.1), resulting in a dataset
of 411 unrelated subjects (193 cases, 218 controls, 36% female) of European descent spanning
a wide range of the adult lifespan (mean = 32.7 years, range = [16.7 to 67.5] at baseline). For
the majority of subjects (57%) longitudinal imaging data was available (up to five scans), with
a mean scanning interval of 3.4 years (range [0.9 to 7.0]). All patients met DSM-IV criteria for
a nonaffective psychotic disorder (including schizophrenia, schizophreniform disorder or
schizoaffective disorder). Written informed consent was obtained from all subjects, and both
studies were approved by the Medical Ethics Committee for Research in Humans (METC) of
the University Medical Center Utrecht.

110



PROGRESSIVE AGING IN SCHIZOPHRENIA

Table 5.1. Demographics table for individuals with data from the three modalities.

Measure Population MRI brain age®  Epigenetic ages  PRS schizophrenia
Subjects Total 411 [715] 172 394
(count) Controls 218 [345] 63 212

Patients 193 [370] 109 182
Age at baseline  Total 32.72 £ 11.41 32.31 £13.01 35.46 + 12.47
(mean * SD) Controls 34.92 +12.10 32.62 + 15.17 37.55 £ 13.17
(vear) Patients 30.24 + 10.05 32.13 £ 11.65 33.02 £ 11.16
Sex Total 149 : 262 57 :115 142 : 252
(female:male) Controls 115: 103 37:26 110 : 102

Patients 34:159 20:89 32:150

Abbreviations (in alphabetical order): MRI = magnetic resonance imaging; PRS = polygenic risk scores; SD =

standard deviation from the mean. 2 Longitudinal imaging data was available for most subjects. Total number of

scans between brackets.
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Figure 5.1. Overview of all subjects with their age at illness onset (not always available for older schizophrenia

patients), and age at MRI scans and blood sample acquisition for DNA and epigenetics.
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5.2.2 MRI brain age

Structural magnetic resonance imaging (MRI) scans were acquired on a 1.5 tesla Philips
scanner with a voxel resolution of 1x1x1.2 mm?®. Images were processed using a validated
in-house image-processing pipeline to produce gray matter density maps in standardized
space and used to predict individuals’ brain age. In brief, the predictor uses a model that
predicts chronological age based on the weighted sum of whole brain voxel-wise gray
matter densities. The model was trained on a sample of healthy control subjects and applied

on schizophrenia patients. See (Schnack et al., 2016) for details.

5.2.3 Blood-based epigenetic aging markers

DNA methylation data was obtained from whole-blood DNA samples using the Illumina
Infinium Human Methylation Beadchip technology according to manufacturer’s
guidelines. A total of 172 samples were assayed with either the 27K (N = 108 samples) or
450K (N = 64 samples) platform, which interrogate 27,578 and 485,512 CpG sites across the
genome, respectively. These data are a subset of previously published DNAm cohorts (Gene
Expression Omnibus (GEO) ID: GSE41037 and GSE41169) for which brain age estimates
from MRI scans were available. Blood-based DNAm age was estimated using two different
predictors (Horvath, 2013; Levine et al.,, 2018). These two DNAm age predictors were
designed for use with both the 27K and 450K platform allowing us to maximize our sample

size. See Supplementary Methods for details.
POLYGENIC RISK FOR SCHIZOPHRENIA

Whole-blood DNA samples were processed on Illumina’s HumanOmniExpressExome—-8
v1.2 and Illumina’s 550K platform. After quality control (see Supplementary Methods for
details), SNPs were imputed on the Michigan server (Das et al., 2016) using the HRC r1.1
2016 reference panel with European samples after phasing with Eagle v2.3. Polygenic risk
for schizophrenia was calculated from the SNP data using the schizophrenia GWAS
summary statistics of the Psychiatric Genome Consortium excluding Dutch subjects (Ripke
et al., 2014; see Supplementary Methods for details). Polygenic scores were calculated using
PLINK’s score function at ten GWAS p-value thresholds of significance of association: p <
5x1078, 107°, 1074, 1073, 0.01, 0.05, 0.10, 0.20, 0.5, and 1.0.

Polygenic risk scores were then harmonized to reduce the variation due to acquisition on
different platforms through principal component analysis on the full sample. The first
principal component contained the majority of the differential disease risk. This
component was standardized and used for subsequent analyses (Bergen et al., 2019). See

Supplementary Methods for more information.
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5.2.4 Data preparation

We used a linear mixed-effects regression models to correct the MRI brain age and
epigenetic age estimates for regression towards the mean (Le et al., 2018) and differences
in acquisition platform within the non-psychiatric controls (Supplementary Table D.1;
Supplementary Figure D.1). Age gaps were defined as the difference between the corrected
age estimates and the chronological age, and brain age acceleration as the annual rate of
change in corrected brain age estimates between consecutive scans. The age gaps and age
acceleration were subsequently corrected for possible differences between the sexes by
regression of the effect of sex within the healthy control population. The effects of sex were
removed from all measures by linear regression regardless of statistical significance and

prior to further statistical analyses (Supplementary Table D.2; Supplementary Figure D.2).

5.2.5 Statistical analysis

First, linear mixed-effects regression models were applied with each of the measures as the
dependent variable and diagnosis status as independent fixed effect covariate to test for
differences between the healthy controls and schizophrenia patients. The models included

random intercepts to account for the repeated measures of the longitudinal MRI scans.

Secondly, the associations between brain aging (age gap and age acceleration), epigenetic
aging (age gap from Horvath’s and Levine’s predictors), and polygenic risk for
schizophrenia were determined using Spearman’s correlation for all ten pairwise
combinations. Since the MRI scans and the blood samples may have been acquired at
different visitations, partial correlations were computed for the associations between brain
age and epigenetic age measures to account for the difference in age of the participant at
which the samples were acquired. No correction was applied for associations involving the
polygenic risk for schizophrenia as this measure is time-invariant. To assess whether
potential associations were driven by mean differences between patients and controls for

both traits, we repeated these analyses correcting for disease status.

For most subjects more than one MRI scan was available. In the bivariate analyses, the brain
age gap from the last MRI scan and the longitudinal brain age acceleration of the first two MRI
scans were used. This choice was made based on previous results that show brain age
acceleration for schizophrenia patients is maximal around the time of onset (i.e. typically around
the acquisition date of the earliest MRI scan) and that its cumulative effect results in a maximal

brain age gap for schizophrenia patients 5 years later before stabilizing (Schnack et al., 2016).

A Bonferroni correction was used to account for multiple testing. The corrected significance
threshold was set at p = 0.05/5 = 0.01 for group differences and p = 0.05/10 = 0.005 for the

tests of pairwise associations.

113



CHAPTER 5

5.3 RESULTS

Linear mixed-effects models with random intercepts revealed statistically significant effects
of status for the MRI brain age gap, longitudinal MRI brain age acceleration, Levine’s
epigenetic age gap, and polygenic risk scores for schizophrenia indicating accelerated age or
increased risk for schizophrenia patients, but not for Horvath’s epigenetic age gap (Table 5.2;

Figure 5.2).

Table 5.2. Group-differences between schizophrenia patients and non-patient controls in brain aging, epigenetic

aging, and polygenic risk scores for schizophrenia.

Measure Controls Patients Effect of
(Mean + SD) (Mean + SD) status

MRI brain age gap -0.06 £6.23 +3.98+7.24  +4.03

(vears + SD) (p <0.0001)*
MRI brain age acceleration 1.01 + 1.38 2.01 £2.26 +1.00
(vears/year + SD) (p <0.0001)*
Horvath’s epigenetic age gap +0.00 £3.56  -0.52+5.69 -0.52

(vears + SD) (p=0.5103)
Levine’s epigenetic age gap +0.00 £6.95  +2.27+6.74  +2.27

(vears + SD) (p=0.0354)

Polygenic risk for schizophrenia  +0.00 £ 1.00  +0.83 £ 0.96  +0.83
(mean + SD) (p <0.0001)*

Nominal p-values are reported with a significance threshold of p < 0.05 printed in boldface. Differences that
survive Bonferroni correction for multiple testing are marked with *. Abbreviations (in alphabetical order): SCZ

= schizophrenia patients; SD = standard deviation from the mean.

Bivariate association between measures from the three modalities revealed statistically
significant positive associations between polygenic risk score and MRI brain age gap and
acceleration, and a negative association between polygenic risk for schizophrenia and
Horvath’s epigenetic age gap (Table 5.3A; Figure 5.3). Bivariate associations within
modalities revealed strong positive correlations between MRI brain age gap and acceleration,

and between Horvath’s and Levine’s epigenetic age gaps (Table 5.3A; Figure 5.3).

After including status as a covariate in the partial correlation, the association between the
MRI brain age gap and acceleration with DNA polygenic risk scores are no longer
significant (Table 5.3B).
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MRI brain age Epigenetic age gaps Polygenic risk
(years) (years) (Z-standardized)
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Figure 5.2. Status effect on the means for MRI brain age gap and acceleration, epigenetic age gaps, and polygenic
risk for schizophrenia. Violin plots show an approximation of the distribution of scores within a subpopulation where
density is smoothed by a Gaussian kernel and max height scaled to unit value. Abbreviations (in alphabetical order):

PRS = polygenic risk score; SCZ = schizophrenia patients.

Table 5.3 (continued on the next page). Bivariate analysis between MRI brain age, epigenetic ages, and polygenic

risk scores for schizophrenia.

[A] Full MRI brain Horvath’s Levine’s DNA
correlations MRI brain age epigenetic epigenetic polygenic
age gap acceleration age gap age gap risk scores
MRI brain age - +0.36 -0.08 2 +0.02 2 +0.10
gap (p<0.0001)*  (p=03192)  (p=08388)  (p=0.0478)
MRI brain age  HC: 109 - +0.02 2 +0.03 2 +0.15
acceleration  SCZ: 126 (p=0.8743) (p=0.7470) (p =0.0258)
Horvath’s epi- HC: 63 HC: 39 - +0.42 -0.20
genetic age gap  SCZ: 109 SCZ: 68 (p<0.0001)" (p=0.0129)
Levine’s epi- HC: 63 HC: 39 HC: 63 - +0.08
genetic age gap  SCZ: 109 SCZ: 68 SCZ: 109 (p = 0.3261)
DNA polygenic  HC: 212 HC: 105 HC: 57 HC: 57 -
risk scores  SCZ: 182 SCZ: 121 SCZ: 98 SCZ: 98
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[B] Partial

correlations MRI brain Horvath’s Levine’s DNA
accounting for MRI brain age epigenetic epigenetic polygenic
disease status age gap acceleration age gap age gap risk scores
MRI brain age - +0.31 -0.052 -0.042 -0.01
gap (p<0.0001)*  (p=05333)  (p=05744)  (p=0.7781)
MRI brain age  HC: 109 - +0.04 2 +0.03 2 +0.06
acceleration  SCZ: 126 (p=0.7000) (p=0.8458) (p = 0.3466)
Horvath’s epi- HC: 63 HC: 39 - +0.45 -0.17
genetic age gap  SCZ: 109 SCZ: 68 (p<0.0001)" (p=0.0313)
Levine’s epi- HC: 63 HC: 39 HC: 63 - +0.03
genetic age gap  SCZ: 109 SCZ: 68 SCZ: 109 (p=0.7548)
DNA polygenic  HC: 212 HC: 105 HC: 57 HC: 57 -
risk scores  SCZ: 182 SCZ: 121 SCZ: 98 SCZ: 98

Table 5.3 (continued). Spearman’s correlation coefficients and their significant values are reported in the upper
right triangle. Samples sizes are reported in the lower left triangle. Statistically significant associations (nominal
p < 0.05) are printed in boldface. Associations that survive Bonferroni correction are marked with *. 2 Associations
between MRI brain age gap or age acceleration and epigenetic age gaps were corrected for interval between
acquisition of MRI scan and blood sample using partial correlations. Abbreviations (in alphabetical order): HC =

healthy controls; SCZ = schizophrenia patients; SD = standard deviation from the mean.

5.4 DISCUSSION

We investigated the associations between different biological aging markers and with
polygenic risk for schizophrenia. We found suggestive evidence of association between
polygenic risk for schizophrenia with MRI-derived brain aging and with Horvath’s
epigenetic aging, but not between polygenic risk for schizophrenia and Levine’s epigenetic

aging or between brain aging and epigenetic aging.

5.4.1 Brain aging and its association to polygenic risk for schizophrenia

Diagnosis status (schizophrenia vs. healthy) had a highly significant effect on brain aging.
The age gap, i.e., the difference between estimated age and chronological age, was 4 years
in patients (and zero in healthy subjects), and the brain age acceleration rate was 2
year/year (and 1 in healthy subjects), consistent with the previously reported results for

the broader sample (Schnack et al., 2016) and with other studies reporting accelerated aging
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Figure 5.3. Statistically significant associations between MRI brain aging, epigenetic aging, and polygenic risk for
schizophrenia. Abbreviations (in alphabetical order): HC = healthy controls; SCZ = schizophrenia.
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of the brain in schizophrenia patients (Koutsouleris et al., 2014; Nenadi¢ et al., 2017;
Kaufmann et al., 2019; Jonsson et al., 2019) and in subjects at clinically high-risk for
psychosis and first-episode patients (Kolenic et al., 2018; Chung et al., 2018; Hajek et al.,
2019; Shahab et al, 2019). Polygenic risk for schizophrenia (PRS), as expected, was
significantly higher in the patients as compared to the control subjects (p < 0.0001). We
found nominal significant associations between polygenic risk for schizophrenia and brain
age gap and acceleration. These associations were largely moderated by diagnosis status,
indicating that cases who carry higher polygenic risk for schizophrenia display faster brain
age acceleration. Our results are in line with recent work that observed an overlap between
common genetic variants associated with brain aging and common variants associated with
schizophrenia in the population (Kaufmann et al, 2019). Here, we observe a direct
association between brain aging and schizophrenia polygenic risk within individuals.
While these findings provide evidence for a shared mechanism between genetic risk of
schizophrenia and aging in the brain, replication and further work in a larger sample should
be a first priority for future work. This study nevertheless reports the first efforts and value
of such analyses. Structural brain aging could thus be used as an intermediate phenotype
for psychosis (Palaniyappan et al., 2017; Dukart et al,, 2017) and may show promise in

predicting transition to psychosis in at-risk populations (Koutsouleris et al., 2014).

5.4.2 Epigenetic aging and its association to polygenic risk for schizophrenia

We found that age was significantly accelerated by +2.3 year in schizophrenia patients as
compared to healthy controls for Levine’s epigenetic clock, but not for Horvath’s epigenetic
clock. Previous reports suggest no accelerated epigenetic aging or association with
premature mortality for schizophrenia in blood or post-mortem brain samples (McKinney
et al., 2017; Voisey et al., 2017; McKinney et al., 2018; Kowalec et al., 2019), with some
exceptions (Okazaki et al., 2019; Ori et al., 2019).

In addition, we found a significant negative association (rho = —0.20) between polygenic
risk for schizophrenia and Horvath’s epigenetic age gap regardless of diagnosis status, but
not for Levine’s epigenetic age gap (rho = +0.08; [n.s.]). We previously reported on the
association between polygenic risk and epigenetic age in a larger sample of schizophrenia
patients (Ori et al., 2019); the associations turned out to be age- and sex-specific, with
female patients above age 36 showing an increase in epigenetic age of 3 years. However,
the current sample is too small to stratify by age group or sex. In another study, polygenic
risk for schizophrenia was associated with mortality predictions based on Levine’s
epigenetic age and suicidal behavior (Laursen et al, 2017). This warrants caution

interpreting our findings and further emphasizes the need for follow-up studies.
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Accelerated epigenetic aging is heritable (Marioni et al., 2015; Li et al., 2015), with an
important role for the TERT locus related to telomerase and aging and nine other loci
related to metabolism and immune system pathways (Lu et al., 2017; Gibson et al., 2019).
No overlap between genetic variants identified for schizophrenia and epigenetic aging is
reported in a relatively small sample (Lu et al., 2018). However, there is an indication for
colocalization of genetic and epigenetic loci implicated in schizophrenia (Hannon et al.,
2016); epigenetic loci used to predict epigenetic age do not overlap with known epigenetic
loci implicated in schizophrenia (Mill et al., 2008; Hannon et al., 2016). Instead, it is possible
that the association between epigenetic age and polygenic risk for schizophrenia is
mediated by other factors, e,g, a shared pathway that increases risk of early mortality
(Marioni et al., 2015; Levine et al, 2018; Laursen et al., 2014) such a genetic predisposition
to smoking (Boardman et al., 2010) or stressful life events (Wolf et al., 2018).

5.4.3 Brain aging and its association with epigenetic aging

We did not find any significant association between the MRI brain age gap or age
acceleration with the DNAm age gap of either Horvath’s or Levine’s predictor (range of
rho = [-0.08; +0.03]; nominal p > 0.32). An absence of association between the MRI-derived
brain age gap and Horvath’s epigenetic age gap in blood samples has previously been
reported (Cole et al, 2018). Here we complement the previous finding by not only
replicating the null result for Horvath’s epigenetic age predictor (that is a reliable predictor
of chronological age regardless of tissue type or disease), but also investigating the
association between MRI brain aging and Levine’s epigenetic age predictor in blood, (which
might be more sensitive to aberrant biological aging due to the inclusion of extrinsic factors
more representative of apparent phenotypic aging) (Levine et al., 2018). However, the
association remains absent despite the effects of diagnostic status and associations with
polygenic risk for schizophrenia in the individual measures. As previously reported,
epigenetic aging in schizophrenia shows an age- and sex-specific effect in a larger study
that included this cohort (Ori et al., 2019), and accelerated aging of the brain is already
present in the first years following the onset of psychosis before it stabilizes several years
afterward (Schnack et al., 2016). The absence of an association between MRI brain aging
and epigenetic aging might be due to distinct aging processes. Epigenetic aging, in
particular Horvath’s epigenetic age predictor, is a measure of cellular aging rather than
cellular senescence (Lowe et al., 2016; Kabacik et al., 2018). In contrast, the aging of the
brain, in our study reflecting decreases in gray matter tissue, is likely due to cell senescence
rather than cellular aging (Fernandez-Egea, 2017), and it reflects changes in the
morphology of the cells or composition of the neuropil. This argument is used to explain
the absence of epigenetic aging in post-mortem samples of the brains of schizophrenia
patients (McKinney et al., 2017; Voisey et al., 2017; McKinney et al., 2018). The possibility

119



CHAPTER 5

of two independent aging processes was previously suggested given the lack of association
between the age gaps and the fact that combining information from the two ‘clocks’
improved mortality predictions (Cole et al., 2018). The absence of association with Levine’s
epigenetic age predictor, one that takes into account extrinsic factors of typical aging, from
our results affirms the conclusion that aging of the brain and epigenetic aging in blood
might be two distinct processes in the aetiology of schizophrenia, despite their
commonality in predicting mortality (Cole et al., 2018; Marioni et al., 2015; Chen et al.,
2016). A similar conclusion on the dissociation between brain aging and epigenetic aging
can be concluded for other psychiatric disorders based on the reports from several
independent studies. For bipolar disorder, accelerated epigenetic aging (Nenadi¢ et al.,
2017) but not aging of the brain (Fries et al., 2017; Shahab et al., 2019; Nenadi¢ et al., 2017)
has been reported, although lithium use may have confounded these results, since patients
who were not treated with lithium have been found to show increased brain age (Van
Gestel et al., 2919). For major depressive disorder, a large (N=1689) international
multicenter study (Han et al., 2020) has found accelerated aging of the brain, but within
smaller samples results are inconclusive (Koutsouleris et al., 2014; Besteher et al., 2019;
Kaufmann et al., 2019). Epigenetic aging in blood (Han et al., 2018) but not epigenetic aging

in post-mortem brain samples (Li et al., 2018) has been reported.

5.4.4 Limitations and future directions

There are a few limitations to this study that should be taken into account. First, the sample
size of this study, whilst large for a longitudinal neuroimaging study, is very modest for a
genetic or epigenetic study. Secondly, the cross-sectional design for epigenetics limits our
ability to detect a possible age accelerating rate in the blood and its association to
accelerating brain age (Nelson et al., 2020). Depending on the time lag between illness onset
and accelerated epigenetic aging, and because of the fact that most of the blood sample
were acquired at baseline, the effects of the disease on DNA methylation may have yet to
occur, especially in the younger adolescent population when onset of psychosis typically
occurs (Paus et al., 2008). Future studies, measuring both brain aging and epigenetic aging
in large, longitudinal, studies should further elucidate the possible (dynamic) relationships

between these different measures of biological aging.
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CHAPTER 6

6.1 HIGHLIGHTS

The research in this thesis has brought forward several findings of interest to the field of

adolescent brain development:

>

The thinning of the cerebral cortex during adolescence is heritable and can be
described by a brain-wide genetic factor with fluctuating influences across the ages
that acts in addition to secondary localized influences from novel genetic factors at
the different ages (Chapter 2).

Reliability modelling of the inherently noisy BOLD functional MRI signal can reveal the
“true” (i.e. unconfounded by measurement error) resting-state functional connectivity
between brain regions; this is reflected by the improved strength in the associations of
functional connectivity with various traits and by the increased heritability estimates

for the reliable component of functional connectivity (Chapter 3).

There is a subtle but wide-spread developmental pattern of resting-state functional
connectivity during adolescence; this is described by mostly increased functional
connectivity within brain networks and by decreased functional connectivity between
brain networks, and in addition to sex-specific effects for the functional connectivity
within the default mode network and within the salience network (Chapter 4).

Resting-state functional connectivity in the adolescent brain is partially influenced
by a mixture of stable genetic and common environmental factors; i.e. there is no
clear evidence for fluctuating influence of a core genetic or environmental factor or

indication for novel factors at the different ages (Chapter 4).

Progressive aging of the brain in patients with schizophrenia is accelerated around the
time of onset for the disorder, which typically occurs during adolescence, but does not
appear to be associated with progressive aging measured with epigenetics in blood,

although separately both are associated with polygenic risk for schizophrenia (Chapter 5).

6.2 GENERAL DISCUSSION

6.2.1 Maturation and sex effects on the adolescent brain

6.2.1.1 Development of cerebral cortical thickness in adolescence

In Chapter 2, we investigated the development of cortical thickness in the longitudinal
BrainSCALE study of children and adolescents at 9, 12 and 17 years of age. We report a gradual

decrease in thickness of the cerebral cortex between 9 and 12 years of age that is accelerated

between 12 and 17 years of age, with the most prominent changes occurring in the sensorimotor

regions (visual, sensor, and motor cortices) and the frontal pole (Chapter 2). Moreover, we
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reported that the accelerated thinning of the cortex that occurs between the ages 12 and 17
years makes the frontal, parietal, and temporal lobes at the age of 17 years distinct from those
at the ages of 9 and 12 years in hierarchical clustering analysis (Chapter 2).

The developmental pattern of cortical thinning is typically observed during adolescence
(Gogtay et al. 2004; Sowell et al., 2007; Raznahan et al., 2011; Wierenga et al., 2014; Zhou et
al., 2015), and was now revealed to accelerate and differentiate the cortex during late
adolescence based on three assessments per individual in the BrainScale cohort (van Soelen
et al, 2012; van Soelen et al, 2012). Despite the numerous studies on the development of the
cerebral cortex, no clear consensus has been reached whether cortical gray matter peaks
during childhood or shows a continuous decline from infancy onward (Walhovd et al.,
2017; Wierenga et al., 2014; Fjell et al., 2015). Between the ages 9 and 12 years, we reported
that a majority of the children in the BrainSCALE cohort showed only a slight decrease in
global cortical thickness, with several local cortical regions showing no significant changes
in thickness (Chapter 2; van Soelen et al., 2012; Brouwer et al., 2014). These findings would
suggest a possible plateau or peak in local cortical thickness before adolescence. For
average cortical thickness, the thinning of the cortex continues beyond adolescence, and
does not reach a plateau until adulthood between 30 and 60 years of age (Schnack et al,
2015). The rapid changes in the cortex during adolescence that results in phenotypic
separation of the cortex in late adolescence from that in late childhood and early
adolescence makes the frontal, parietal, and temporal lobe prominent candidates for

studying behavioral changes during adolescence from a neuroscience perspective.

6.2.1.2 Sexual differentiation in cortical thickness development in adolescence
In Chapter 2, we investigated possible sex effects on the development of cortical thickness
in the BrainSCALE cohort. However, we did not find any significant sex effects on the

development of global cortical thickness throughout adolescence (Chapter 2).

In previous research on the BrainSCALE cohort, the onset of secondary sexual characteristics
of puberty have been associated with decreased frontal and parietal gray matter densities at
the age of 9 years (Peper et al., 2009). Changes in the levels of follicle stimulating hormone
(FSH) in girls has been associated with changes in grey matter density between the ages 9
and 12 years, and levels of estradiol have been associated with grey matter density at age 12
years (Brouwer et al., 2015). This suggests that puberty may trigger the reorganization of
brain structures such as the thinning of the cortex during adolescence (Peper et al., 2011).
Despite the influence of puberty and pubertal hormones on the development of the cortex
and the difference in pubertal timing of about 1 to 2 years between the sexes (Fredriks et al.,
2000; Koenis et al., 2013), no differences between the sexes were present for the thickness of

the cerebral cortex (Chapter 2). Sex effects play a prominent role in explaining variation of
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volumetric and surface area measures of the brain structures (Lenroot et al., 2007; Ruigrok et
al, 2014; Herting et al, 2018), and could explain differences observed in behavior and
cognition between the sexes (Gur and Gur, 2016). However, the presence of sex effects on
cortical thickness is still disputed (Walhovd et al., 2017; Koolschijn and Crone, 2013; Sowell
et al., 2007; Lenroot and Giedd, 2010; Raznahan et al., 2011). Cortical thickness and surface
area are two largely independent measures that make up cortical gray matter volume
(Lenroot et al., 2007; Pannizon et al., 2009). Sex effects in cortical thickness might be explained
by interaction with the development of surface area in childhood and early adolescence as
the brain still grows in volume (Wierenga et al., 2014; Schnack et al.,, 2015). Alternatively, sex
effects may not necessarily be present on the means, but rather on the variances; with larger
variation in males compared to females (Wieringa et al., 2018). However, we performed a
qualitative analysis of sex effects in cortical thickness in Chapter 2, and we not find any
perceivable differences in phenotypic between regions of the cortex that precludes the

possibility of sex effects on the means or variances of cortical thickness.

6.2.1.3 Development of functional connectivity in adolescence

In Chapter 4, we investigated the development of brain-wide functional connectivity within
and between major cortical resting-state networks. We reported that there are changes in
functional connectivity during adolescence that are characterized by a remarkable
developmental pattern of increasing functional connectivity within cortical resting-state

networks and decreasing functional connectivity between networks with age (Chapter 4).

Although resting-state networks may already be established by early age (Turk et al., 2019;
Gao et al,, 2015), our results show that there are still wide-spread but subtle changes in the
functional coupling strength between brain regions during adolescence. Only a few
longitudinal studies have been performed on functional connectivity in typically
developing adolescents, with most studies focusing on specific connections (see overview
of literature in Table 4.1 from Chapter 4). These studies generally report increasing
functional connectivity within functional networks or decreasing functional connectivity
between functional networks with age that is consistent with our results (Bernard et al.,
2016; Long et al., 2017; Sherman et al., 2014; Wendelken et al., 2017; Wendelken et al., 2016).
These developmental changes in brain connectivity may explain cognitive and behavioral
changes during adolescence by tighter integration of functionally related brain regions and
segregation of unrelated regions (Wig, 2017). For example, the better integration within the
frontoparietal network we reported for the BrainSCALE cohort (Chapter 4) may support
better cognitive performance (Jung and Haier, 2007). The segregation between the anterior
cingulate cortex and insula of the salience network we reported for the BrainSCALE cohort

(Chapter 4) could reflect segregation of bottom-up stimuli processing and top-down
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cognitive control processing that might coincide with improved self-control and response
inhibition during adolescence in reward-based decision making (Casey, 2013; Uddin et al.,
2017; Bush et al., 2002; Stevens et al., 2011).

6.2.1.4 Sexual differentiation in functional connectivity development in adolescence

In Chapter 4, we investigated the effect of sex on functional connectivity within and
between the major cortical resting-state networks. We reported that there is increased
functional connectivity within the default mode network for girls compared to boys, and
an opposite sex effect with increased functional connectivity within the salience network

for boys compared to girls (Chapter 4).

Sex effects on functional connectivity have also been reported for adults and across the
lifespan (Biswal et al., 2010; Zuo et al., 2010), and corroborate that sex differences in brain
functioning are present during childhood and adolescence (Gur and Gur, 2016), with recent
reports that sex difference in functional connectivity are already present during pregnancy
in the fetal brains (Wheelock et al., 2019). These sex effects in functional connectivity could
have potential relevance to behavioral differences in adolescent development. The
increased functional connectivity within the default mode network for girls may explain
their better performance at memory and emotive tasks for its role in auto-biography
memory and emotion regulation (Gur et al., 2012; Raichle, 2015). Whereas the increased
functional connectivity within the salience network for boys may explain their better
performance at visuospatial and motor tasks for its role in overt attention/stimuli

processing, integration of multimodal sensory information (Gur et al., 2012; Uddin, 2014).

6.2.1.5 Necessity of stringent control for head motion effects on functional connectivity development
In addition to developmental finding of functional connectivity in the BrainSCALE cohort
reported in Chapter 4, we also report a sharp decline in the amount of in-scanner head
motion during the acquisition of the resting-state fMRI scans between the ages 13 and 18

years (Chapter 4).

The issue of head motion during scan acquisition has raised concerns for developmental
findings of functional connectivity (Power et al., 2012). Despite best efforts to control for
the effect of head motion during preprocessing of the resting-state scans, significant
residual effects of head motion on functional connectivity within and between resting-state
networks was present and was subsequently removed with additional regression during
statistical analysis (Chapter 4). Although head motion will likely remain an issue in
developmental studies, our results should be robust due to rigorous control for the effects

of head motion on functional connectivity in a longitudinal study design.
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6.2.1.6 Necessity of longitudinal studies on functional connectivity development
Cross-sectional studies on the development of functional connectivity do not always show
consensus on the direction of change and affected regions (Stevens, 2016). In contrast to
longitudinal studies, cross-sectional findings are confounded by possible cohort effects
(Mills and Tamnes, 2014; Crone and Elzinga, 2014; Telzer et al., 2018). This concern is
particularly true for the development of functional connectivity given the subtle changes
in functional connectivity we report in Chapter 4 in the presence of large inter-individual
variation typically present in functional connectivity and the sharp decline in head motion
with age. With only a few longitudinal studies that focus on the development of specific
connections for comparison, this emphasizes the need for more longitudinal studies in
brain functioning to replicate the developmental findings for functional connectivity we
report in Chapter 4 for the BrainSCALE cohort.

6.2.2 Genetic and environmental influences on brain development

6.2.2.1 Genetic and environmental influences on cortical thickness in adolescence

In Chapter 2, we investigated the dynamic influences of genes and environment on the
development of cerebral cortical thickness in the BrainSCALE cohort. We reported that the
thinning of the cortex is driven by a core genetic factor with fluctuating influences from
late childhood throughout adolescence, and novel genetic influences at the regional level
that may reflect differential expression of genes marking distinct stages of cortical

development in adolescence (Chapter 2).

Earlier genetic studies of cerebral cortex characteristics have reported evidence that
cortical thickness for regions across the brain, including homotopic regions on each
hemisphere, are influenced by a common genetic factor in both children and in adults
(Schmitt et al., 2008; Rimol et al., 2010; Chen et al., 2013; Wen et al., 2016; Schmitt et al.,
2017). The genetic correlation between some of these regions showed increased towards
the second decade of life (Schmitt et al., 2017), that could be related to an increasing
influence of the core genetic factor found in the BrainSCALE cohort (Chapter 2).

Moreover, we found that the core genetic factor influences both the cortical thickness
measured at a specific age as well as the rate of change for the accelerated thinning of the
cortex throughout adolescence (Chapter 2). Previous studies have reported genetic influences
on the change rate of brain structures (Brans et al., 2008; van Soelen et al., 2012; van Soelen
et al., 2013; Brouwer et al., 2014; Bootsman et al., 2015; Hedman et al., 2016; Brouwer et al.,
2017), and how genes that drive these changes in brain volumes and cortex thickness are also
responsible for intelligence (Brans et al., 2008; Brouwer et al., 2014), thinning of the cortex in
schizophrenia patients (Hedman et al.,, 2016), and growth of cerebellar volume is related to

stature during development (van Soelen et al., 2013). In a prior study of the BrainSCALE
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cohort, novel genetic influences were reported for local regions of the cortex at age 12 years
(van Soelen et al., 2012). In Chapter 2, we extended these findings with the third assessment
of the BrainSCALE cohort at age 17 years, and we reported that the novel genetic influences
expanded to additional regions of the cortex (Chapter 2). This genetic differentiation of the
cortex during adolescence might be the result of continued areal specialization of the cortex
that continues to develop well into early adulthood and beyond, in particular the frontal
cortex (Schnack et al., 2015; Fjell et al, 2015).

It has been suggested that areal specialization of the neocortex is established during early
development, and that later development is the result of more general maturational
processes affecting the entire neocortex (Pletikos et al., 2014). Several studies reported a
remarkably strong homogeneity in gene expression profiles among neocortical areas
despite their functional specialization (Roth et al., 2006; Kang et al., 2011; Hawrylycz et al.,
2015; Jaffe et al., 2015). These studies match the findings we reported from the BrainSCALE
cohort of a core genetic factor that influences the cortical thickness throughout the entire
brain and across childhood and adolescence (Chapter 2; van Soelen et al., 2012). However,
there is a distinct temporal differential gene expression during adolescence that is marked
by a second wave of substantial changes in gene expression at the end of adolescence
(Somel et al., 2010; Colantuoni et al., 2011; Pletikos et al., 2014; Jaffe et al., 2015). This
temporal differential gene expression of the cortex coincides with the novel genetic
influences and the more pronounced waxing and waning influences of the core genetic
factor we found in the BrainSCALE cohort during the accelerated thinning of the cortex
between the ages 12 and 17 years (Chapter 2). The thinning of the cortex during
adolescence has been linked to gene expression of genes related to synaptic function,
dendrite development, myelination, and cellular composition of the neuropil (Whitaker et
al., 2016; Kang et al, 2011; Jaffe et al, 2015). These studies support the idea that the
biological processes underlying the apparent cortical thinning observed during
development is due to pruning of neuronal synapses and dendrites accompanied by a
decrease in supporting glial cells, and a parallel increase of oligodendrocytes responsible
for myelination of neuronal axons (Huttenlocher, 1979; Bourgeois and Rakic, 1993;
Huttenlocher and Dabholkar, 1997; Paus et al., 2008; Paus, 2010; Petanjek et al., 2011; Miller
et al., 2012; Deoni et al.,, 2015). Together, the ongoing areal specialization of the cortex
during adolescence might be the result of shifting balances in ongoing maturational
processes and spurred by new genetic factors that could be related to the rapid cognitive

and behavioral changes during adolescence.
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6.2.2.2 Reliability modelling of functional connectivity for genetic studies

In Chapter 3, we investigated the application of a measurement model for improving the
reliability of noisy measures such as functional connectivity. We reported that reliability
modelling of functional connectivity can benefit genetic studies by detecting the genetic
signal for the stable and reliable component of functional connectivity that is free from

random measurement error (Chapter 3 and Chapter 4).

Twin studies have reported genetic control over brain activity at rest with generally low
heritability estimates (see overview of literature in Table 4.2 from Chapter 4). Heritability
estimates are influenced by the presence of measurement error (Posthuma et al., 2000). The
reliable component of functional connectivity can be derived by controlling for
measurement error using repeated measures or split-session measures in a measurement
model (van Baal et al., 1998; van Beijsterveldt et al., 2001; Brandmaier et al., 2018; Cooper
et al., 2019). An empirical evaluation of the utility of the measurement model revealed the
ability to extract a reliable component of functional connectivity that had increased
heritability (Chapter 3). This increase is due to standardizing genetic variances over the
variance of the reliable component rather than the full phenotypic variance that contains
the measurement error that would otherwise be attributed to an individual’s unique
environmental influences (Posthuma et al., 2000). The use of a measurement model resulted
in similar increases in heritability estimates as previous study using a custom linear mixed
effects model on repeated measures (Ge et al., 2017). This method has been published in a
public repository on Github?® and can be applied in other studies including in existing

resting-state studies on fMRI brain measurements.

6.2.2.3 Genetic and environmental influences on functional connectivity in adolescence

In Chapter 4 we applied the reliability modelling detailed in Chapter 3 to the resting-state
functional connectivity measures of the BrainSCALE cohort. We investigated the genetic
and environmental influences on brain-wide functional connectivity within and between
eight major cortical resting-state networks: the default mode, frontoparietal, dorsal
attention, salience, sensorimotor, visual, language, and cerebellar networks. We reported
that the reliable component of functional connectivity within and between the major
resting-state networks is influenced by additive genetics and common environmental

factors during adolescent brain development (Chapter 4).

So far, only a few studies have investigated genetic influences on networks beyond the
default mode network. These studies were mostly performed in adults and did not always

investigate influences from common environment that cannot be directly dismissed in a

3 https://github.com/jalmar/openmx-models/reliability/
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study of children living in the same household (Adhikari et al., 2018; Ge et al., 2017; Sudre et
al., 2017; Yang et al.,, 2016). One study in particular was close to the age range of the
BrainSCALE cohort and reported similar mixed influences of both additive genetics and
common environment on function connectivity of resting-state networks during early
adulthood (Yang et al,, 2016). In both studies, connections from the frontoparietal, dorsal
attention, and salience networks, all involved in higher order cognitive control, were
influenced primarily by additive genetics (Chapter 4; Yang et al, 2016). Common
environment plays a considerable role for most sensory networks, including the sensorimotor
network, language network and cerebellum in the BrainSCALE cohort (Chapter 4) that has
previously been reported only for the sensorimotor network (Yang et al.,, 2016). A notable
exception is the default mode network that is partially influenced by an additive genetic factor
or a common environmental factor in the BrainSCALE cohort instead of only an additive
genetic factor typically reported by the other studies (Chapter 4; Adhikari et al., 2018; Ge et
al., 2017; Sudre et al.,, 2017; Yang et al., 2016). The application of a measurement model and
the use of an extended twin design may have contributed to the improved detection of
common environmental influences. Although most likely a combination of both genetic and
environmental influences play a role with possible interaction between the two that could

not be modeled with the current limitation on sample sizes.

There was no strong indication for distinct genetic influences at the different ages or
heritability of the changes in functional connectivity, suggesting mostly stable influences
across adolescence (Chapter 4). This is in contrast to the dynamic genetic influences on the
structural brain of the BrainSCALE cohort we reported in Chapter 2 for the same ages. A
longitudinal study of functional brain development during infancy reported age-dependent
genetic effects on functional connectivity within resting-state networks (Gao et al., 2014).
Although it is possible that genetic influences of brain function at rest may have stabilized
during adolescence, additional longitudinal twin studies with larger sample sizes would be

needed to verify these results.

Where twin studies can tell if a trait is influenced by genetic factors, a gene discovery study
is needed to identify possible causal variants. In a genome-wide association study, the
strength in functional coupling between brain regions in healthy adolescents was
dependent on polymorphisms of a set of genes enriched for ion channels (Richiardi et al.,
2015). The synchronous resting-state activity in the brain has been associated with gene
expression levels in the cortex based on similarity in gene expression profiles for distal
functionally connected brain regions (Hawrylycz et al., 2015). The oscillatory activity of
the brain measured with electroencephalography (EEG) is associated with tissue-specific

expression of genes that also play a role in psychiatric disorders (Smit et al., 2018) These
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studies confirm that functional connectivity of the human brain is indeed partially

determined by genetics.

6.2.3 Brain development and cognitive performance

6.2.3.1 Individual differences in intellect, cortical thickness, and functional connectivity

In Chapter 4, we investigated the association between intelligence and the coupling
strength within and between the major cortical resting-state networks in the BrainSCALE
cohort, including the frontoparietal network that has been implicated to support a
distributed network of cognitive performance (Jung and Haier, 2007). However, no
significant association between intelligence and functional connectivity was found for
individual connections within or between the major cortical resting-state networks
(Chapter 4). Moreover, preliminary investigation of the association between intelligence
and cortical thickness in the BrainSCALE cohort revealed that the association previously
reported to appear around 12 years of age (Brouwer et al., 2014) started to diminish again

at age 17 years (not shown).

Previous research on the BrainSCALE cohort has reported an association between
cognitive abilities and global brain volumes already at the age of 9 years that is partially
determined by a genetic correlation (van Leeuwen et al., 2009). However, the phenotypic
and genetic association between (verbal) intelligence and cortical thickness does not
emerge until the age of 12 years (Brouwer et al,, 2014). At the age of 17 years, the
association between intelligence and cortical thickness started to disappear again, and is
most likely explained by the reversal of the association between intelligence and cortical
thickness (Schnack et al.,, 2015). This reversal of the association has implications for
studying cognitive development in late adolescence and emerging adulthood. Other
developmental studies have reported similar associations between intelligence and cortical
development during childhood and adolescence that is both dependent on age with
diminishing strength during late adolescence and show strong genetic overlap between the
two measures (Shaw et al., 2006; Burgaleta et al., 2014; Schmitt et al., 2019).

Previously research on the BrainSCALE cohort has linked cognitive performance to
increases in global network efficiency of the structural brain (Koenis et al., 2015; Koenis et
al., 2018). However, no association between intelligence and functional connectivity was
found for individual connections within or between the major cortical resting-state
networks (Chapter 4). Other studies have typically reported on increased functional
connectivity between regions that are part of the fronto-parietal network in association
with intelligence in adults, but extends to other regions depending on the type of the
cognitive process (Song et al., 2008; Hearne et al., 2016; Basten et al., 2015; Shearer et al.,

2020). Contemporary theories on human intelligence suggest that cognitive performance
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is attributed to the integration of a brain-wide regions that extend beyond the fronto-
parietal network, rather than supported by individual regions or structural or functional
connections (Jung and Haier, 2007; Deary et al., 2010; Barbey, 2017). Although, in contrast
to global efficiency of the structural brain, evidence that global efficiency of the functional
brain supports intelligence has been disputed (Kruschwitz et al., 2018). In general, there
have been sparse number of reports on associations between functional connectivity and
behavioral traits that has been attributed to unreliable measurements at the individual
functional connections of the brain (Vaidya and Gordon, 2013; Geerligs et al., 2017; Noble
et al,, 2019). The application of a reliability model in the association between functional
connectivity and traits may reveal the “true” association in absence of measurement error
(Leigh Wang, 2010; Cooper et al., 2019).

6.2.3.2 Improving the associations between functional connectivity and traits with reliability
modelling

In Chapter 3, we investigated the application of a measurement model for improving the
reliability of noisy measures such as functional connectivity. Empirical evaluation of the
utility of a measurement model in the Human Connectome Project Young Adult cohort for
different sample sizes and scan durations revealed improvement in association strengths
up to 1.8-fold (Chapter 3).

Associations between functional connectivity and behavioral measures are typically low
for resting-state functional connectivity (Vaidya and Gordon, 2013; Smith et al., 2015). The
sparse and conflicting reports of functional connectivity with measures such as intelligence
(Kruschwitz et al., 2018), might be the result of unreliable measurements that puts an upper
limit on the association (Vul et al, 2009; Leigh Wang, 2010). However, despite the
improvements in association strength using a measurement model to obtain estimates of
functional connectivity “free” of random measurement error, most traits remained only
weakly associated for individual connections (Chapter 3). Functional connectivity might
simply not be sensitive enough for detecting associations with behavioral traits at individual
connections but instead requires a holistic approach (e.g. multivariate or connectome-based
modelling) to find robust associations with behavior (Geerligs et al., 2017; Smith et al., 2015;
Finn et al., 2015; Rosenberg et al., 2015). Alternatively, the highly adaptive and flexible nature
of human behavior might be better supported by dynamic properties of functional
connectivity (Hutchison et al., 2013; Hilger et al., 2020). The measurement model and example
code are available on a public repository on Github* and can be applied in other studies

including in existing resting-state studies on fMRI brain measurements.

4 https://github.com/jalmar/openmx-models/reliability
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6.2.4 Brain development and progressive aging in schizophrenia

6.2.4.1 Accelerated aging in the brain of schizophrenia patients

In Chapter 5, we reported on accelerated aging of brain structure for patients with
schizophrenia that is nominally associated with polygenic risk for schizophrenia. The
presence of accelerated aging in schizophrenia is consistent with other studies reporting
accelerated aging of the brain in schizophrenia patients (Koutsouleris et al., 2014; Nenadi¢
et al., 2017; Kaufmann et al., 2019; Jonsson et al., 2019). We reported that individuals with
higher polygenic risk for schizophrenia displayed faster aging of the brain (Chapter 5) that
is in line with reported overlap between common genetic variants associated with brain
aging and common variants associated with schizophrenia in the population (Kaufmann et
al., 2019). Typical development provides a baseline for aberrant development that is usually
associated with psychiatric disorders such as schizophrenia (de Wit et al., 2016; Smieskova
et al,, 2010; Rapoport et al., 2012). The combination of polygenic risk for schizophrenia,
longitudinal brain changes, and clinical measures could be used to better predict transition
to psychosis (Perkins et al., 2019). However, discordance for the disorder in monozygotic
twins suggests that despite the high heritability of the disorder and brain structures in
general, the onset of the disorder might be a result of an interaction with the environment
that is unique to each individual (Smith, 1970; van Os et al., 2008).

6.2.4.2 Epigenetic aging in schizophrenia patients

In Chapter 5, we reported on epigenetic aging in blood that was significantly accelerated
in schizophrenia patients, but was not associated with accelerated aging in the brain.
Previous reports have suggested no accelerated epigenetic aging or association with
premature mortality for schizophrenia in blood or post-mortem brain samples (McKinney
et al, 2017; Voisey et al., 2017; McKinney et al., 2018; Kowalec et al., 2019), with some
exceptions (Okazaki et al., 2019; Ori et al., 2019). An absence of association between the
MRI-derived brain age gap and Horvath’s epigenetic age gap in blood samples has
previously been reported in elderly population (Cole et al., 2018). No overlap between
genetic variants identified for schizophrenia and epigenetic aging is reported in a relatively
small sample despite indication for colocalization of genetic and epigenetic loci implicated
in schizophrenia (Lu et al., 2018; Hannon et al., 2016). Moreover, epigenetic loci used to
predict epigenetic age do not overlap with known epigenetic loci implicated in
schizophrenia (Mill et al., 2008; Hannon et al., 2016). The absence of an association between
MRI brain aging and epigenetic aging has been reason to suspect distinct aging processes
are involved (McKinney et al., 2017; Voisey et al.,, 2017; McKinney et al., 2018; Cole et al.,
2018). The absence of association with Levine’s epigenetic age predictor, one that also takes

into account extrinsic factors of typical aging, from the results of the schizophrenia cohort
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affirms the conclusion that aging of the brain and epigenetic aging in blood might be two
distinct processes in the etiology of schizophrenia, despite their commonality in predicting
mortality (Cole et al., 2018; Marioni et al., 2015; Chen et al., 2016).

6.2.5 Methodological considerations

There are some methodological limitations that should be considered when interpreting
the findings of this thesis. First, the BrainSCALE cohort was acquired on 1.5 Tesla MRI
scanners that, in contrast to the 3.0 Tesla MRI scanners used in the schizophrenia cohort
and the Human Connectome Project Young Adult cohort, produce images with lower
signal-to-noise ratio (Frayne et al., 2003). Despite the availability of 3.0 Tesla MRI scanners
at follow-up assessments, a deliberate choice was made to continue using the same 1.5
Tesla MRI scanners to minimize the impact of scanner variations on the brain measures.
Second, although the BrainSCALE cohort has a decent sample size for neuroimaging, it is
relatively modest for twin studies. The sample size limits the power of the genetic analyses
in the ability to detect weak genetic signals, especially for noisy measurements such as
resting-state functional connectivity (Boomsma et al., 2000). However, restrictions on the
power of a study due to unreliable measurements can be partially lifted by the application
of reliability modelling. Similarly, the progressive aging study in the schizophrenia cohort
is limited in the availability of genetic and epigenetic samples. It should be noted that the
cohort was not used to identify genetic or epigenetic loci related to progressive brain aging.
Instead, the summary scores from large discovery samples were used to obtain the
polygenic risk for schizophrenia and epigenetic aging scores used in the analyses. Third,
although longitudinal statistical analyses were employed to take advantage of the repeated
measurements in the BrainSCALE and the schizophrenia cohorts, the data were not
processed using longitudinal pipelines. Longitudinal pipelines can help to minimize inter-
scan variation that may arise during processing (Reuter et al., 2012; Hart et al., 2018).
Finally, no longitudinal epigenetic samples were available in the schizophrenia cohort.
Although epigenetic modifications are believed to be relatively stable over time (Talens et
al., 2010; Shah et al., 2014), the timing of the epigenetic modifications can still play a crucial
role in the manifestation of psychiatric disorders (Kofink et al., 2013).

6.2.6 General conclusion

Understanding typical brain development in children and adolescents is important because it
provides a baseline for what is to be considered aberrant development, and helps to
understand what brain structures or functioning is responsible for adolescent behavior. The
inclusion of twins can determine to what extent variation in adolescent brain characteristics

and behavior are determined by genetic and environmental influences. Together, these
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studies can inform what makes some children thrive and others don’t, and aid in the

development of diagnostic tools and interventions to assist children who are struggling.

In this thesis, it has been established that the thickness of the cerebral cortex and its rate
of development during adolescence is largely under genetic control. A new wave of
influences from genetic origin marks the transition during adolescence. Aberrant
development is associated with psychiatric disorders such as schizophrenia. Accelerated
aging of the structural brain is in part genetically determined by genes implicated for
schizophrenia, but does not show a dependable association with epigenetic modifications
associated with aging phenotypes. Functional connectivity in the resting brain is also under
genetic control, but to a lesser extent than brain structures, and we found indication of
environmental influences from familial origin. This suggests that, while the development
of brain structures might be preordained based on the genetic markup inherited from the
parents, brain functioning might be more flexible to extrinsic influences that could be more

easily targeted by interventions.

Future studies are needed not only to extend research on adolescent brain development
and behavior, but also to validate and replicate existing research findings. Large
population-based cohorts can help by prospectively including subjects that have yet to
develop problems. Their statistical power will help to more reliably detect associations
between the adolescent brain and behavior of smaller effect sizes. Combined with a
longitudinal design and twin design, these studies could validate results from this thesis,
and be used to extend the results by investigating gene-environment interactions and

longitudinal statistical causal modelling that typically require large sample sizes.
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APPENDIX A.1 SUPPLEMENTARY INFORMATION FOR CHAPTER 2

A.1.1 Exclusion criteria participants

The BrainSCALE cohort consists of healthy typically developing children. Exclusion
criteria for participation in the study were: a known major medical or psychiatric history;
chronic use of medication; participation in special education; and physical or sensory
disabilities; having a pacemaker; metal materials in the head with the exception for dental

braces (van Soelen et al. 2012).

A.1.2 Demographics table

The demographics and zygosity of the twins for which structural MRI scans were available
for use in this study is presented in Supplementary Table A.1. Zygosity of same-sex twins
was determined by DNA polymorphisms. Handedness of participants was determined
using the Edinburgh Handedness Inventory (Oldfield 1971) followed by classification into
right-handed and non-right-handed (i.e. left-handed or ambidextrous) groups. Approximately
16% of the participants are non-right-handed.

A.1.3 Longitudinal repeated measurements
The BrainSCALE cohort is a longitudinal study with three measurements at age 9, 12 and
17 years. For this study, based on a subsample of the BrainSCALE cohort consisting of

Supplementary Table A.1. Demographics of the longitudinal twin sample from the BrainSCALE cohort based on

participants included in the analyses (i.e. after exclusion of substandard structural MRI scans).

Wave 1 Wave 2 Wave 3
Number of participants (female; 192 (99; 93) 125 (59; 66) 165 (86; 79)
male)
MZ male twins (complete pairs) 39 (17) 30 (13) 31 (15)
MZ female twins (complete pairs) 43 (21) 26 (10) 39 (18)
DZ-SS male twins (complete pairs) 39 (17) 23 (8) 33 (16)
DZ-SS female twins (complete pairs) 37 (16) 22 (10) 33 (15)
DZ-0S twins (complete pairs) 34 (15) 24 (10) 39 (13)
Mean age at scan in years (range) 9.2 (9.0t0 9.7) 12.2(11.7t0 13.1)  17.2(16.8 to 17.9)
Handedness (right; non-right) 160; 32 105; 20 140; 23

Abbreviations: MZ = monozygotic; DZ-SS = same-sex dizygotic; DZ-OS = opposite-sex dizygotic.
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twins only, 192 participants had good quality structural MRI scans available at baseline
measurement, 125 participants at the first follow-up, and 165 participants at the second
follow-up (Figure A.1). The temporary decline in available structural MRI scans for the
second wave is largely due to exclusion of participants with dental braces incompatible
with the magnetic field of the MR scanner; see Image Processing section from Chapter 2

for details on exclusion of substandard MRI scans.

Wave 1
9 years
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Supplementary Figure A.1. Venn diagram of overlap in participants with good quality structural MRI scans
between the three waves. Numbers reported are individual participants; e.g., the number 94 at the center of the
overlap between the three circles indicates that 94 individuals for which good quality structural MRI scans were
available in all three waves, and 19 + 94 = 113 individuals with good quality structural MRI scans available for

both wave 1 and wave 2, etcetera. Total number of unique individuals across the three waves is 215.

A.1.4 Path diagram of bivariate twin model
The path diagram for the bivariate model used to determine the overlap between genetic

and environmental factors of cortical regions is presented in Supplementary Figure A.2.

141



APPENDIX A
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Supplementary Figure A.2. Path diagram of bivariate AEmodel used to determine the overlap between genetic
factors of cortical regions across space and time. Cortical thickness measurements for two regions of interest x at
wave i and region y at wave j are used as observed variables (rectangular boxes) for the first (left half of path diagram)
and the second twin (right half of path diagram). Independent genetic factors A; and 4, (circles) load onto the cortical
thickness measurements through path coefficients. The genetic factor 4, represents genetic influences shared
between both regions through path coefficients a;; and a,;. Genetic factor 4, represents genetic influences specific
for one of the regions through path coefficient a,,. The same motif applies for the unique environmental factors E;
and E,, and path coefficients e, €,,, and e,,. The model is made identifiable by constraining the correlation between

genetic factors of both twins to 1.0 in case of monozygotic twins and 0.5 in case of dizygotic twins.

A.1.5 Interpolation of cortical thickness at intermediate ages

We fitted a cubic spline to local cortical thickness measurements at each vertex on the
surface mesh of the 3D model brain. Anchor points for the cubic spline were defined at the
mean age of the three measurements (i.e. at age 9.2, 12.2, and 17.2 years). The cubic spline
models were used to estimate local cortical thickness measurements between the ages 9.0

and 18.0 years at 0.01-year increments.

APPENDIX A.2 SUPPLEMENTARY RESULTS FROM CHAPTER 2

A.2.1 Development of cortical thickness across adolescence

We fitted cubic spline models to local cortical thickness at each vertex to reconstruct
estimates of local mean cortical thickness at intermediate ages (Video S1°). It reveals a
gradual decline in cortical thickness for most of the cortex with age, and accelerated

cortical thinning at medial frontal cortical regions from around age 12 to 13 years onward.

> Online supplementary data: https://dx.doi.org/10.1093/cercor/bhy005
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A.2.2 Heritability of cortical thickness

We obtained estimates for heritability of cortical thickness by fitting a longitudinal twin
model to the cortical thickness measurements (Supplementary Figure A.3). Regionally,
heritability of cortical thickness varies throughout the cortex, with 72.6% of the vertices
showing significant heritability for age 9 years (FDR-corrected p < 0.05), and 66.1% and 69.5%
of the vertices for ages 12 and 17 years respectively (Supplementary Figure A.3). Heritability
of cortical thickness is highest at the primary sensory and motor cortices, temporal cortices,
and midsagittal areas, including frontal poles, cingulum, and occipital cortex across the age
range, with local maxima up to 84% heritability (Supplementary Figure A.3).

Age 9 years Age 12 years Age 17 years

_——
T ]
0% heritability >75%

Supplementary Figure A.3. Estimated heritability of cortical thickness across the three ages 9 years (left panel),
12 years (middle panel), and 17 years (right panel). Heritability estimates that did not differ significantly from
zero (FDR adjusted p > 0.05) have been left grey. Approximately 72.6% of the vertices at age 9 years, 66.1% of the
vertices at age 12 years, and 69.5% of the vertices at age 17 years are significant for heritability of cortical thickness
(FDR adjusted p < 0.05). Heritability ranges from 0% (white-yellow) up to 75% or greater (black-red). Order of
views per age, from left to right, top to bottom: left lateral (Ll), right lateral (RI), left medial (Lm), right medial
(Rm), superior (S), inferior (I), anterior (A), and posterior (P).

A.2.3 Development and heritability of cortical thickness at regional level

We applied the longitudinal twin model described in the Methods sections of Chapter 2 to
the observed cortical thickness measurements at whole-brain and lobar level. In general,
the model with additive (4) and unique environmental (£) factors fitted the data best, with
exception for the right temporal lobe, right occipital lobe, right cingulate cortex, and
bilateral insula for which the model with only unique environmental (£) factors fitted the
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data best (Supplementary Table A.2). Augmented by the fact that evidence for common
environmental influences on cortical thickness in the literature is limited, we adopted the
AE model in all our analyses. The estimated cortical thickness, heritability, and changes in
cortical thickness and heritability of changes in cortical thickness at the whole-brain and

lobar level are presented in Supplementary Table A.3.

A.2.4 Determining the optimal number of clusters for hierarchical clustering

We applied hierarchical clustering to the phenotypic, genetic, and environmental
correlation matrices using the cluster package version 2.0.4 in R (Maechler et al. 2016).
Correlation matrices were transformed to distance matrices using 1-—r,, for the
phenotypic correlation matrix, 1 — |r,| for the genotypic correlation matrix, and 1 — |r,| for
the environmental correlation matrix. The hierarchical ordering of the regions into clusters
was obtained using the “ward.D2” linkage method for both the phenotypic and genetic

correlation matrices.

The average silhouette width (Rousseeuw 1987) was computed for each configuration of
clusters obtained from hierarchical clustering of the phenotypic and genetic correlation
matrices (Supplementary Figure A.4). A typical heuristic to determine the number of
clusters k4 is to maximize the average silhouette width. For clustering of the phenotypic
correlation matrix, the maximal number of clusters is k,,,, = 10, for the genetic correlation
matrix k,,,, = 12, and for the environmental correlation matrix k,,,, = 8 (Supplementary
Figure A.4). However, to account for model complexity, the optimal number of clusters

ko used in the analysis is determined as the lowest value of k with average silhouette

op
width within one standard error below the average silhouette width for the maximal
number of clusters k,,,,. For clustering of the phenotypic correlation matrix, the optimal
number of clusters is k,,. = 6, for the genetic correlation matrix k,,, = 7, and for the
environmental correlation matrix k,,, =6 (Supplementary Figure A.4). Although we
select an optimal number of clusters based on a widely-accepted selection criteria, we
believe the sequence in which clusters are formed presents a more meaningful insight into
the relation between regions than a single representation of an optimal number of clusters.
We have therefore provided the full dendrogram of the clustering algorithm from which the

clustering at any value of k can be determined (Figure 2.4 from Chapter 2).
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Silhouette coefficients for clustering of phenotypic correlation matrix
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Supplementary Figure A.4. The average silhouette width for each configuration of clusters obtained from
hierarchical clustering of the phenotypic, genetic, and environmental correlation matrices. Solid dots represent
the average silhouette width, and the error bars represent the standard error of the mean. The number of clusters
Kinax (marked with an asterisk *) is determined by the number of clusters that maximizes the average silhouette
width. The number of clusters k,,; used in the analysis (marked with a hash mark #) is determined by the
minimum value of k for which the average silhouette width is within one standard error below the average

silhouette width of k4, to account for model complexity due to the increasing number of clusters.
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.2.5 Hierarchical clustering of correlation matrices at select ages

We repeated the hierarchical clustering of the phenotypic, genetic, and environmental

correlation matrices using different combinations of ages. Clustering of correlation

matrices at each individual age reveals clear patterns where phenotypic and environmental

correlations are initially clustered by hemisphere (Supplementary Figure A.5).
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environmental (7,; right) correlation matrices at select ages. Phenotypic correlations were transformed using one

minus the phenotypic correlation, and genetic and environmental correlations were transformed using one minus

frontal;

the absolute of the genetic or environmental correlation. Labels for the regions are encoded as lobe (F

left hemisphere;

insula; and C = cingulate), followed by hemisphere (LH

parietal; T = temporal; O = occipital; I =

P=

and RH = right hemisphere), and finally age (9yo = age 9 years; 12yo = age 12 years; and 17yo = age 17 years).
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Subsequent divisions result in clusters where the frontal, parietal, and temporal lobes are
grouped together, the insula and cingulate are grouped together, and the occipital lobe is
shared between these two groups. Clustering of the genetic correlation matrix reveals a
similar grouping of the lobar regions, where a high number of clusters homologous regions
between the two hemispheres form a cluster rather than being separated in the first step
of the clustering algorithm (Supplementary Figure A.5). Clustering of correlation matrices
including two ages reveal similar patterns where regions of the same age are grouped
together (Supplementary Figure A.5). Most notable exceptions regarding clustering of
regions of the same age occur mostly for phenotypic and genetic correlations between age
9 and 12 years when changes in phenotype and genotype are subtle, as is reflected by the

high correlation between regions and across the two ages (Figure 2.4 from Chapter 2).

A.2.6 Qualitative evaluation of sex, handedness, and age at scan

We performed qualitative evaluation of the effects of sex, handedness, and age at scan on
estimates from the bivariate model for phenotypic, genetic, and environmental correlation
matrices (Supplementary Figure A.6), and estimates from the longitudinal model for
heritability of changes in cortical thickness and its decomposition into genetic innovation
and (de)amplification (Supplementary Figure A.7). The covariates were regressed from the
cortical thickness measures prior to modelling. Overall, the correction for covariates slightly
reduces the estimates for heritability of changes in cortical thickness accompanied by a slight
reduction in size of clusters, but the larger, most prominent clusters remain present

(Supplementary Figure A.7 compared to Figure 2.5 from Chapter 2).

Phenotypic correlation matrix Genotypic correlation matrix Environmental correlation matrix

Age 9 years Age 12 years Age 17 years Ago 9 yoars Age 12 years Ago 17 yoars Age 9 years Age 12 yoars Ago 17 yoars

I RH m RH m RH 0 RH 0 RH 0 RH v RH H RH H AH

Age9years

Age9years

Age 12 years
Age 12 years

fge 12 years.

Age 17 years.
Age 17 years.

Age 17 years

AH

1 o8 08 04 02 0 02 o4 06 08 1 1 08 06 o4 02 o0 02 o4 05 03 1 1 08 06 04 02 o 02 o4 05 o8

correlation coefficient correlation coefficient correlation coefficient

Supplementary Figure A.6. Phenotypic (left), genetic (middle), and environmental (right) correlation matrices of
absolute cortical thickness after correction for sex, handedness, and age at scan between major lobes of the cortex.
Correlations range from -1 (blue) to +1 (red). Correlations that did not significantly differ from zero (p > 0.05;
uncorrected) are left blank. Genetic correlations marked with a white dot indicate incomplete pleiotropy (i.e. unique
genetic factor for either region in addition to a shared genetic factor between both regions). Regions are ordered from
top-left to bottom-right, first by age (9, 12, and 17 years), then by hemisphere (LH = left hemisphere; and RH = right
hemisphere), and finally by lobe (F = frontal; P = parietal; T = temporal; O = occipital; I = insula; and C = cingulate).
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Age 9 — 12 years Age 12 — 17 years Age 9 — 12 years Age 12 = 17 years

0% heritability of change >75% -1.3 Pinnw(logmj 20 -13 Pamp(log‘o) -40 13 Pdeamu(“’gw) -4.0

Supplementary Figure A.7. Estimated heritability of (a) changes in cortical thickness and (b) its decomposition
into different genetic origins between the ages 9 and 12 years (left panel), and between the ages 12 and 17 years
(right panel) after correction for sex, handedness, and age at scan. (a) Heritability estimates that did not differ
significantly from zero (FDR adjusted p > 0.05) have been left grey. Approximately 2.4% of the vertices between
age 9 and 12 years and 20.8% of the vertices between age 12 and 17 years are significant for heritability of changes
in cortical thickness (FDR adjusted p < 0.05). Heritability estimates range from 0% (light-yellow) up to 75% or
greater (dark-red). (b) Heritability of changes in cortical thickness between the ages 9 and 12 years (left panel)
and between the ages 12 and 17 years (right panel) was decomposed into sources of genetic innovation (green;
13.5% of the vertices significant for heritability of changes in cortical thickness between the ages 9 and 12 years,
and 0.8% between the ages 12 and 17 years), and areas with amplification (red; 25.0% of the vertices between the
ages 9 and 12 years, and 30.6% between the ages 12 and 17 years) or deamplification (blue; 60.7% of the vertices
between the ages 9 and 12 years, and 33.0% between the ages 12 and 17 years) of a genetic factor across age. Areas
with significant heritability of changes in cortical thickness for which these sources could not be disentangled are
depicted in light grey (remaining 0.8% of the vertices significant for heritability of changes in cortical thickness
between the ages 9 and 12 years, and 35.6% between the ages 12 and 17 years). Scale bars for significance start at
logio-equivalent of p = 0.05. (a,b) Order of views per age, from left to right, top to bottom: left lateral (LI), right
lateral (Rl), left medial (Lm), right medial (Rm), superior (S), inferior (I), anterior (A), and posterior (P).

The effect of covariates on the correlation matrices is subtle resulting in minor shifts in
correlation estimates between regions across age (Supplementary Figure A.6 compared to
Figure 2.4 from Chapter 2). Particularly the environmental correlations between the
frontal, parietal, temporal, and occipital lobes across hemispheres at 17 years become more
pronounced. For the genetic correlation matrix, some associations disappear as they drop
below the significance threshold (e.g. for the insular and cingulate cortex), whereas other
associations appear as they now pass the significance threshold. The overall picture
remains the same, including the pattern for incomplete pleiotropy between regions and

across time, with only subtle changes due to the inclusion of the covariates.
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APPENDIX B.1 SUPPLEMENTARY METHODS FROM CHAPTER 3

B.1.1 MRI scan acquisition parameters of Human Connectome Project dataset

The MRI acquisition parameters of the Human Connectome Project (van Essen et al., 2013)
have been described elsewhere (Glasser et al., 2013). In brief, high-resolution structural MRI
scans were acquired on a 3 Tesla MRI scanner using a 3D MPRAGE pulse sequence (TR =
2400 ms; TE = 2.14 ms; TI = 1000 ms; flip angle = 8°; FOV = 224x224 mm; reconstructed
voxel size = 0.7 mm isotropic; bandwidth = 210 Hz/Px, iPAT = 2; acquisition time 7 minutes
and 40 seconds). Resting-state functional MRI scans were acquired on the same MRI
scanner using a multiband gradient-echo EPI pulse sequence (TR = 720 ms; TE = 33.1 ms;
flip angle = 52°; FOV = 208x180 mm; 72 slices; reconstructed voxel size = 2.0 mm isotropic;
multiband factor = 8; echo spacing = 0.58 ms; bandwidth = 2290 Hz/Px). Four runs of 1200
volumes per run (approximately 15 minutes per run) were acquired for each subject across
two sessions. Each session, the phase encoding direction was alternated between right-to-
left for the first run and left-to-right for the second run. More details on the resting-state

MRI acquisition protocol are provided in Smith et al., 2013; Ugurbil et al., 2013).

B.1.2 MRI processing pipeline for resting-state fMRI of the Human Connectome Project
The extensively processed fMRI data package provides precomputed denoised BOLD signal
time series for nodes in the brain based on group-ICA decomposition of the data at various
decomposition levels for the resting-state functional MRI scans of the Human Connectome
Project. The acquisition parameters and processing of this data have been described
elsewhere (Smith et al.,, 2013; Glasser et al., 2013). Briefly, one hour of resting-state fMRI
data was collected for each participant in four runs of 1200 volumes per run (effective TR
= 720 ms; total run length approximately 15 minutes per run) during two separate scan
sessions across two days. Each 15-minute run was preprocessed (Glasser et al., 2013) and
had artefacts removed using ICA+FIX (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014).
Cortical surfaces were aligned to a common template using areal-feature-based alignment
and the Multimodal Surface Matching algorithm (MSMAIL; Robinson et al., 2014; Glasser et
al., 2016). MELODIC’s Incremental Group-PCA (MIGP; Smith et al., 2014) was applied to
temporally demeaned and variance normalised datasets (Beckmann and Smith, 2004) to
generate the top 4500 weighted spatial eigenvectors. The group-PCA output was then
decomposed into spatially independent components at several different dimensionalities
(d=15, 25, 50, 100, 200, or 300) by group-ICA using FSL’s MELODIC tool (Hyvérinen et al.,
1999, Beckmann and Smith, 2004). The ICA decomposition was performed on gray-
ordinates that consist of cortical grey matter vertices and subcortical grey matter voxels
(Glasser et al., 2013). Finally, individual BOLD time series were obtained for each ICA

component (considered a ‘node’ in the network) using the standard “dual regression-stage—1”
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approach (Filippini et al., 2009). Note that two versions of the HCP processing pipeline were

used on this dataset.

B.1.3 Overview of the 50 independent components from the decomposition of the
resting-state data

The extensively processed fMRI data package of the Human Connectome Project provides
BOLD time series data for ‘nodes’ in the brain. These nodes were determined by group-
ICA decomposition of the resting-state functional MRI data that was performed for several
dimensionalities (d=25, 50, 100, 200, 300). In the analyses, the decomposition at d=50 was
used. Nodes were organized into their Louvain community order based on the similarity in
group-level mean functional connectivity patterns between nodes, thereby clustering
related nodes together (Supplementary Figure B.1). The same order of the nodes is used in

the matrix visualizations presented in this supplementary information document.
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Supplementary Figure B.1. Overview of the 50 components derived by independent component analysis of resting-
state functional MRI data. Components are ordered (left-to-right, top-to-bottom) based on their Louvain community
structure. Components are visualized on the axial slice with highest likelihood (yellow color) for the localization of

the component. Images of components were provided with the extensively preprocessed fMRI data package.
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B.1.4 Approximation of in-scanner head motion

We approximated in-scanner head motion of participants using the six registration
parameters from the intra-subject re-alignment procedure applied during minimal
preprocessing. Mean framewise displacement was calculated by averaging the sum of

absolute transformation parameters across the length of the time series (Power et al., 2012).

Distribution of in-scanner head motion
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Supplementary Figure B.2. Distribution of in-scanner head motion.

B.1.5 Group-level mean functional connectivity matrices and hierarchical organization
Group mean functional connectivity matrices were computed by averaging functional
connectivity estimates between all pairs of nodes over all subjects for each pair of nodes.
The matrices were reorganized into Louvain community structures using the igraph
software package (Csardi and Nepusz, 2006) and visualized using the corrplot software
package (Wei and Simko, 2017). The hierarchical ordering of the nodes at full-score
functional connectivity was subsequently applied to all further visualizations for ease of
comparison. All statistical and mathematical operations on functional connectivity are
performed on Fisher's r-to-Z transformed functional connectivity estimates. Consistency of
group-mean functional connectivity is estimated by the Pearson correlation coefficient (rho)
and the intraclass correlation coefficient with a two-way mixed effects model for a single
rater (ICC3,1; Shrout and Fleiss, 1979) computed using the R package irr (Gamer et al., 2019).

B.1.6 Selection of the seven representative traits

The Human Connectome Project dataset provides an extensive set of traits across various
domains of human behavior. Endocrinological, sociodemographic, family history of
neurological or psychiatric disorders, substance usage, raw test scores (including test
scores prior to age adjustment), answers to questionnaires, measures with highly skewed
distribution (e.g. due to boundary effects) and measures with fewer respondents than 50%
of the total sample size have been excluded. In addition, only measures that were continuous
or ordinal in nature were selected, providing a total of 110 traits. No transformations have

been applied to address possible non-normality in the distributions of the traits.
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A preliminary sweep was performed on a set of 110 of the traits to determine the extent of
their association with full-score functional connectivity using Pearson’s correlation after
regression of sex, age, head motion, and processing pipeline version as covariates of no
interest on the means of the functional connectivity estimate and sex and age on the means

of the trait in the standard behavioral association model (Figure 3.1E from Chapter 3).

Seven of the 110 traits from various domains were selected for extensive analysis based on
their association strength with functional connectivity: five traits (BPDiastolic — diastolic
blood pressure levels; CogTotalComp_AgeAdj - total composite score on cognition adjusted
for age; WM_Task_2bk_Acc — accuracy on all condition in the 2-back working memory
task; Emotion_Task_Median_RT — median response time for each condition in the emotion
task; and PicVocab_AgeAdj — picture vocabulary test score adjusted for age) were among
the most strongly associated measures with functional connectivity at any individual
connection, and two traits (Gambling_Task_Reward_Perc_Larger — percentage of trials that
received a ‘larger’ prediction in the gambling task; and Taste_AgeAdj — score on the taste
intensity test adjusted for age) were chosen because they were only weakly associated with

functional connectivity (Supplementary Table B.1).

Supplementary Table B.1 (continued on the next page). Summary statistics for the seven extensively tested traits

and their association with functional connectivity from the standard behavioral association model.

Summary Distribution of Distribution of
Measure statistics measure? associations with FC
BPDiastolic N=991
Diastolic blood pressure levels Mean + SD =
Physiological domain ; 1
Y g 76.5+10.4 Ia 10 +‘3 0.25 0 +0.2!
Range = [41.6; 115.2] Range = [-0.228; +0.236]
CogTotalComp_AgeAdj N=991
Total composite score on Mean + SD =
cognition adjusted for age
. . 114.2 £ 20.1 I3 +0 +‘3 -o.lzs 0 00!25
Cognitive domain
Range = [61.4; 156.1] Range = [-0.185; +0.207]
WM_Task _2bk_Acc N =995
Accuracy on all conditions in the Mean + SD =
2-back working memory task 83.9 + 10.3 T ‘ T 1
Working memory domain ? » oo * i
orring Y Range = [40.1; 101.4] Range = [~0.175; +0.196]
Emotion_Task _Median_RT N =995
Median response time from each Mean + SD =
condition in the emotion task r 1 T 1
775.0 +114.0 - 0 43 025 0 +0.25

Emotion domain
Range = [517.4; 1414.7] Range = [-0.193; +0.182]
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Summary Distribution of Distribution of

Measure statistics measure? associations with FC
PicVocab_AgeAdj N=1003
Picture vocabulary test score Mean + SD =

djusted fo f T 1 T f |
ZJU .e' dr age' 109.6 £ 15.0 -3 +0 +3 025 0 +0.25

ognitive domain Range = [65.7; 155.2] Range = [-0.191; +0.170]
Gambling_Task_Reward_P N=1001
erc_Larger Mean + SD =
Percentage of trials that received 49.8 + 15.7 f ! ! f ! !

. R L . -3 +0 +3 -0.25 +0 +0.25
a 'larger’ prediction in the Range = [1.8; 101.4] Range = [-0.096; +0.077]
gambling task
Gambling/Risk taking domain
Taste_AgeAd;j N =998
Score on the taste intensity test Mean + SD =
adjusted for age 93.6 + 14.2 — ; 1 T ; 1

-3 0 +3 -0.25 0 +0.25

S d i
ensory gomain Range = [60.0; 134.0] Range = [-0.86; +0.092]

Supplementary Table B.1 (continued). 2 Histograms of the distribution of behavioral measures are shown after

Z-standardization of the sex- and age-regressed measure.

B.1.7 Sparse sampling of connections to approximate improvement factor in behavioral
association strength

Due to the computational complexity of the reliability model, the improvement factor in
association strength between functional connectivity and the traits is estimated using a
sparse sampling scheme for all but seven traits. With the sparse sampling scheme, only the
top 20 connections with the strongest associations to functional connectivity from the
standard association model (both positive and negative) and the 5 connections with
weakest association (i.e. near zero) were sampled (representing only 2% of all connections,
thereby reducing computation complexity 50-fold). The seven fully-sampled traits were
used to verify if the sparse sampling scheme provided a representative estimate of the
improvement factor. This sampling scheme provided a good approximation of the
improvement factor compared to the actual improvement factor when all 1225 connections
were sampled, with mean absolute difference in improvement factor 2% (range from 0% to

5%; Supplementary Table B.2).
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Supplementary Table B.2. Improvement in association between functional connectivity and traits using the
reliability model on the full-sized dataset (i.e. all connections with an acceptable or good fit; max. 1225) and

sparsely sampling for only 25 of the connections.

Full sampling Sparse sampling scheme?

Improvement Improvement  Difference

Measure factor factor
BPDiastolic 1.226 1.165 -0.061
Diastolic blood pressure levels (— 5 %)

Physiological domain

CogTotalComp_AgeAdj 1.168 1.177 +0.009
Total composite score on cognition adjusted for age (+1%)

Cognitive domain

WM_Task_2bk_Acc 1.170 1.202 +0.032
Accuracy on all conditions in 2-back working (+3%)
memory task

Working memory domain

Emotion_Task Median_RT 1.162 1.133 -0.029
Median response time from each condition in (—2%)
emotion tasks

Emotion domain

PicVocab_AgeAdj 1.197 1.186 -0.011
Picture vocabulary test adjusted for age (—1%)

Cognitive domain

Gambling_Task_Reward_Perc_Larger 1.227 1.233 +0.006
Percentage of trials that received a ‘larger’ (+0%)
prediction in the gambling task

Gambling/Risk taking domain

Taste_AgeAdj 1.234 1.218 -0.016
Score on taste intensity test adjusted for age (—1%)

Sensory domain

The sparse sampling scheme uses only the top 20 strongest associated connections and the top 5 weakest
associated connections (2% of all connections) to approximate the improvement factor (i.e. average improvement

ratio in association strength).
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B.1.8 Heritability analysis of functional connectivity and its reliable component

A subset of this dataset, consisting of 311 monozygotic and 202 dizygotic twins, their 238
full-blood siblings and 225 full-blood siblings from non-twin families up to four family
members per family, was used for heritability analysis (Supplementary Table B.3).
Zygosity was determined by genotypic data or, when genotypic data was not available, by
self-report. Two participants were excluded due to missing zygosity, 20 participants due to
half-blood relationships, and 5 full-blood sibling participants due to exceeding a family size

of four with family members excluded at random.

Supplementary Table B.3. Demographics table for the subset of participants from the extensively processed fMRI
data package of the Human Connectome Project Young Adult cohort consisting of monozygotic and dizygotic

twins and full-blood siblings used for heritability analysis.

Measure Twins and full-blood siblings
Participants (N) 976

Families (N) 429

Age range (min; max) 22 to 36 years

Age (mean + SD) 28.71 £ 3.72 years

Sex ratio (female : male) 518 : 458

Abbreviations: SD = standard deviation of the mean.

Genetic modelling of twins and siblings can provide information on the extent to what
proportion of variation of a trait in the population is explained by genetic and
environmental factors (Boomsma et al., 2002; Posthuma et al., 2000). Based on the
assumption that monozygotic (MZ) twins share 100% of their genetic material and that
dizygotic (DZ) twins and full-blood siblings share on average 50% of their segregating
genes, the phenotypic variance (Vp) of a trait are typically decomposed into three variance
components: additive genetic (Va), common environmental (Vc), and unique environmental
(VE) components. Using structural equation modelling (SEM), these variance components
can be modelled by latent variables with unit variance for additive genetic (A), common
environment (C), and unique environment (E). The path coefficients a, ¢, and e quantify the
influence of their respective latent variable on the phenotype. The sum of the squared path
coefficients a?, ¢, and ¢, representing the variance components Va, V¢, and Vg, is equal to
the phenotypic variance (Vp) of a trait; i.e. Vo= Va + Vo + Vg = @ + & + €2, Heritability (h?)
of the trait is defined as the proportion of phenotypic variance (Vp) that is due to additive
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Supplementary Figure B.3. A measurement model with a single factor across two half-score measures of functional
connectivity extended to accommodate the family structure of the HCP data to estimate the genetic and environmental
influences on the reliable component of functional connectivity, and a traditional univariate Cholesky decomposition

model on the full-score measure of functional connectivity.

genetic variance (Va); i.e. h2 = Va/ Vp=a?/ (a® + ¢ + ¢?). The model is made identifiable by
constraints on the correlation between the latent variables of the family members based on
kinship; pa = 1.0 for monozygotic twins, pa = 0.5 for dizygotic twins and twin-sibling pairs,
and pc = 1.0 for all twins and siblings from the same family. The latent variable E is
uncorrelated between individuals (i.e. pg = 0.0). The reliability model was extended to
estimate the heritability of the reliable component of functional connectivity (Supplementary
Figure B.3). Heritability estimates from the reliability model were compared to heritability

estimates from a standard Cholesky decomposition of the full-score measure of functional
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connectivity (Neale and Cardon, 1992; Supplementary Figure B.3). Structural equation
models were defined using OpenMx version 2.11.5 (Neale et al., 2016; Boker et al., 2018;
https://openmx.ssri.psu.edu/), a package for structural equation modelling in R version
3.5.1 (R Core Team, 2018; https://www.r-project.org/). Model fitting was performed using
full-information maximum likelihood (FIML) to take advantage of all available information

in case of missing or incomplete data.

B.1.9 Partitioning of the BOLD time series for various total scan durations used in the
parameter sweep

BOLD time series for the desired scan durations were extracted from the original full-
length BOLD time series data by distributing four time blocks equally across all four scan
sessions, starting at the first volume of each scan session, and concatenating the time series
where necessary to create full-, half-, or quarter-score measures of functional connectivity

(Supplementary Figure B.4).
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Supplementary Figure B.4. Distribution of time blocks used to extract full-, half-, and quarter scores measures of
functional connectivity for various total scan duration. A distributed approach across all four scans was adopted
to prevent half-score measures from crossing scan boundaries (e.g. for a total time series length of 1600 volumes,
the second half-score measure would be computed across data from both scan #1 [volumes 801:1200] and #2

[volumes 1:400]).
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APPENDIX B.2 SUPPLEMENTARY RESULTS FROM CHAPTER 3

B.2.1 Stability of group-level mean functional connectivity

At group level, mean functional connectivity shows highly consistent estimates between
the two half-score measures of functional connectivity (rho = +0.996; ICC3,1 = 0.995), with
functional connectivity estimates ranging from —0.52 to +0.66 for the individual connections
(mean FC = 0.003) (Supplementary Figure B.5), and absolute differences between the two

half-score measures of less than 0.06 for individual connections.

Group-level mean H2 Group-level mean functional connectivity
functional connectivity H1 beween half-score measures
L] w 07
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Supplementary Figure B.5. Group-level mean functional connectivity matrix and consistency between two half-
score sessions. (A) Functional connectivity estimates for the first half-score measure at Day 1 (lower-left triangle)
and the second half-score measure at Day 2 (upper-right triangle) of functional connectivity organized into their
Louvain communities (see Supplementary Figure B.1 for order of nodes). (B) Consistency between the functional

connectivity estimates of the first half-score measure at Day 1 and the second half-score measure at Day 2.

B.2.2 Goodness of fit assessment of measurement models

The applicability of the measurement model to the data was assessed with the two goodness
of fit metrics Comparative Fit Index (CFI) and the root-mean-squared error of approximation
(RMSEA). Model fits with a CFI > 0.95 and RMSEA < 0.05 were deemed a good fit, model fits
with a CFI > 0.90 and RMSEA < 0.08 were deemed an acceptable fit, and the remaining models
(CFI < 0.90 or RMSEA > 0.08) were deemed an unsuitable fit. For the test-retest measurement
model, there were 760 connections (62% of all 1225 connections) with an acceptable or good
fit of the model to the data (Supplementary Figure B.6A). For the seven extensively sampled
traits, on average 1035 connections (84% of all connections) passed the goodness of fit criteria,

with highly similar distributions for the seven traits (Supplementary Figure B.6B).
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(A) Goodness of fit assessment forthe  (B) Goodness of fit assessment for the
test-retest measurement model trait association measurement model
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Supplementary Figure B.6. Assessment of goodness of fit for the measurement models in the full dataset. (A) For
the measurement models used to estimate test-retest reliability between the two reliable components of functional
connectivity. (B) And for the measurement models used to estimate the association between the reliable component
of functional connectivity and traits. For both panels, models with CFI > 0.95 and RMSEA < 0.05 are judged to be a
good fit, CFI > 0.90 and RMSEA < 0.08 are judged to be acceptable, and CFI < 0.90 and RMSEA > 0.08 are bad fits.

B.2.3 Improvement in association between functional connectivity and traits

The improvement factor in association strength for the three traits diastolic blood pressure
level (BPDiastolic), age-adjusted total cognitive composite score (CogTotalComp_AgeAd)),
and age-adjusted taste test score (Taste_AgeAd)) are presented in Figure 3.3 from Chapter
3. The improvement factor in association strength for the remaining four traits accuracy
on the 2-back working memory test (WM_Task_2bk_Acc), median response time to the
emotion tasks  (Emotion_Task_Median RT), age-adjusted picture vocabulary
(PicVocab_AgeAd)), and percentage of trials that received a ‘larger’ prediction in the
gambling task (Gambling_Task_Rweard_Perc_Larger) showed similar performance in the

full-length full-sized sample (Supplementary Figure B.7).
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Supplementary Figure B.7. Improvement in association strength between functional connectivity and the traits

accuracy on 2-back working memory task (WM_Task _2bk_Acc), median response time to emotion task

(Emotion_Task_Median_RT), picture vocabulary test adjusted for age (PicVocab_AgeAdj), and percentage of trials

received a ‘larger’ prediction in the gambling task (Gambling_Task_Reward_Perc_Larger).
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Supplementary Figure B.8. Increased heritability estimates of functional connectivity. Standard heritability is
estimated using a Cholesky decomposition of the full-score measure of functional connectivity (x-axis). A
measurement model applied to the half-score measures of functional connectivity was used to estimate heritability
of the reliable component of functional connectivity (y-axis). Data points are scaled by the average proportion of
variance explained by the reliable component, thereby emphasizing the more reliable and stable connections, and

color-coded by random grey values to allow for better distinction between individual data points.

B.2.4 Increased heritability estimates of functional connectivity

The heritability estimates of full-score functional connectivity using a standard Cholesky
decomposition was on average 39% (range = 0% to 75%; Supplementary Figure B.8). The
heritability estimates of the reliable component of functional connectivity was on average
59% (range = 0% to 93%; Supplementary Figure B.8). On average, the heritability estimates
improved with +0.20% points (range = —0.03 to +0.54; Supplementary Figure B.8).

B.2.5 Parameter sweep for association between functional connectivity and traits

The improvement in strength of the association between the reliable component of
functional connectivity and behtraits (i.e. the improvement factor) is greater for shorter
scan duration and smaller sample size for all seven extensively sampled traits (Figure 3.4;

Supplementary Figure B.9).

B.2.6 Minimal requirements of dataset for reliability modelling

The goodness of fit assessment from the parameter sweep was used to determine the
minimal requirements on the input dataset in terms of sample size and total scan duration
for reliability modelling. Although no clear boundary can be defined when a measurement
model is no longer suitable or practical to use, the chance that the measurement model
does not describe the data well for a random sample of participants starts to increase with

lower sample size or shorter scan durations (Supplementary Figure B.10).
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Supplementary Figure B.9. Improvement in association strength between functional connectivity and the traits
accuracy on 2-back working memory task (WM_Task_2bk_Acc), median response time to emotion task
(Emotion_Task_Median_RT), picture vocabulary test adjusted for age (PicVocab_AgeAd)), and percentage of trials
received a ‘larger’ prediction in the gambling task (Gambling_Task_Reward_Perc_Larger) for various sample sizes
(x-axis) and total scan duration (color-coding). Improvement factor (y-axis) is defined by the slope coefficient from
the linear regression of reliable association strength onto standard association strength over all sparsely sampled
connections. Color-shaded bands represent the 95% confidence interval of the means. For all panels, a standard
association model was used to estimate the association between the full-score measure of functional connectivity
and the trait. A measurement model applied to the half-score measures of functional connectivity was used to
estimate the association between the reliable component of functional connectivity and the trait. The other three

extensively tested measures showed similar patterns (Figure 3.4 from Chapter 3).
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Supplementary Figure B.10. Percentage of sampled connections for each combination of sample size and total
scan duration for which the goodness of fit for the measurement models deteriorated below acceptable levels (CFI
< 0.90 or RMSEA > 0.08). Total scan duration is reported as the number of volumes at TR = 720ms. Dotted lines
mark the boundary where on average more than 25% and 50% of the model fits are considered bad.
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ApPPENDIX C

APPENDIX C.1 SUPPLEMENTARY INFORMATION FROM CHAPTER 4

C.1.1 Resting-state networks atlas

Regions of interests (ROI) of canonical resting-state networks and their decomposition into
spatially separated components are extracted from the networks atlas provided by the
CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012; https://web.conn-
toolbox.org/). Networks were identified in resting-state MRI scans of 497 independent
young adults from the Human Connectome Project (Marcus et al., 2013) using the
independent component analysis pipeline built into the CONN toolbox. The atlas provides
regions of interest (ROI) for 7 canonical cortical resting-state networks and the cerebellum:
the core Default Mode network (4 components), Sensorimotor (3), Visual (4), Salience (7),
Dorsal Attention (4), Frontoparietal (4), Language (4), and Cerebellar (2), for a total of 32
components for all networks combined (Supplementary Figure C.1; Supplementary Table
C.1). The choice to use an atlas based on subjects of older age (young adults aged 22 to 35
years instead of adolescents) is warranted by the fact that spatial organization of canonical
resting-state networks have been reported to be “adult-like” by the second year after birth
(Gao et al., 2015). Moreover, group-level mean functional connectivity matrices of our
sample using the atlas shows satisfactory distinction between nodes of different resting-
state networks (i.e. stronger functional connectivity for connections within resting-state

networks than for connections between resting-state networks; Figure 4.2 from Chapter 4).

DorsalAttention

DefaultMode
Left anterior view

Supplementary Figure C.1. Atlas of canonical resting-state networks and their spatially distinct components
provided by the CONN toolbox version 18.a based on ICA decomposition of 497 young adults from the Human

Connectome Project.
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Supplementary Table C.1 (continued on the next two pages). The canonical resting-state networks and their

spatially distinct subcomponents.

Network Region X Y Z Volume Voxels Abbr. #
Default Mode  Medial pre- 1 55 -3 10768 397 MPFC 1
frontal cortex
Left lateral -39 =77 33 8328 302 LLP 2
parietal
Right lateral 47 -67 29 10608 382 RLP 3
parietal
Posterior 1 -61 39 38664 1446 pPCC 4
cingulate cortex
Sensorimotor Left lateral =55 -12 29 30272 1145 LLSMC 5
Right lateral 56 -10 29 30968 1132 RLSMC 6
Superior 0 =31 67 57016 2166 SSMC 7
Visual Medial 2 =79 12 79224 2921 MVC 8
Occipital 0 -93 -4 48712 1761 ovC 9
Left lateral =37 =79 10 24832 917 LLVC 10
Right lateral 38 =72 13 33968 1249 RLVC 11
Salience Anterior 0 22 35 8504 315 ACC 12
cingulate cortex
Left anterior -44 13 1 3568 132 LAlIns 13
insula
Right anterior 47 14 0 3104 121 RAlIns 14
insula
Left rostral =32 45 27 9328 353 LRPFC 15
prefrontal cortex
Right rostral 32 46 28 4648 172 RRPFC 16

prefrontal cortex
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Network Region X Y Z Volume Voxels Abbr. #
Left supra- -60 -39 31 1864 71 LSMG 17
marginal gyrus
Right supra- 62 =35 32 2272 90 RSMG 18
marginal gyrus

Dorsal Left frontal eye =27 -9 64 704 27 LFEF 19

Attention fields
Right frontaleye 30 -6 64 432 19 RFEF 20
fields
Left intraparietal -39 -43 52 26280 992 LIPS 21
sulcus
Right intra- 39 -42 54 25096 935 RIPS 22
parietal sulcus

Frontoparietal  Left lateral -43 33 28 13624 524 LLPFC 23
prefrontal cortex
Left posterior -46 -58 49 6656 245 LPPC 24
parietal cortex
Right lateral 41 38 30 14064 526 RLPFC 25
prefrontal cortex
Right posterior 52 -52 45 6696 243 RPPC 26
parietal cortex

Language Left inferior -51 26 2 3856 145 LIFG 27
frontal gyrus
Right inferior 54 28 1 4296 156 RIFG 28
frontal gyrus
Left posterior =57 -47 15 18104 676 LPSTG 29
superior
temporal gyrus
Right posterior 58 -42 13 13496 503 RPSTG 30
superior

176

temporal gyrus



SUPPLEMENTARY INFORMATION TO CHAPTER 4

Network Region X Y Z Volume Voxels Abbr. #
Cerebellar Anterior 0 -63 =30 18672 696 ACER 31
Posterior 0 =79 =32 43264 1591 PCER 32

Supplementary Table C.1 (continued). Coordinates of ROIs are reported in MNI space for the center of mass of
the region. Volumes of ROIs are reported in mm? for the atlas at 1.0 mm isotropic resolution. The number of
voxels in ROIs are reported for the atlas at 3.0 mm isotropic resolution (i.e. analysis space). Abbreviations: RSN =

resting-state network; ROI = region of interest.

Sensorimotor Default Mode
Lateral SMN Superior SMN Anterior DMN Posterior DMN
Ndd He1 NA b61Y NA 3o NA [BIPaN
|ensip

|ereedojuoiy

Salience
Nd4 by

Language
uonuany |esioqg

Supplementary Figure C.2. Group-ICA decomposition of the BrainSCALE resting-state functional MRI data into
components representing (parts of) the canonical cortical resting-state networks used in the analysis.

Abbreviations: DMN = default mode networks; VN = visual network; FPN = frontoparietal network.
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C.1.2 Group-ICA decomposition

We performed a group-ICA decomposition of the denoised scans using Melodic from FSL
version 5.0.10 (Beckmann and Smith, 2004). First, denoised scans were smoothed within the
brain mask using a 6 mm Gaussian kernel to increase voxel-wise SNR (Smith and Brady,
1997). Group-ICA decomposition was performed by concatenating scans for all subjects
across both ages using Incremental Group-PCA (Smith et al, 2014). The number of
components to extract was set to 20. This number was chosen from a range of values
because it resulted in the decomposition of the brain signal into the canonical resting-state
networks or its major constituents without breaking the networks apart in small fragments.
Statistical maps of the components are visualized on top of the structural MNI152 atlas at
a threshold of Z>5.

C1.3 Cholesky twin model

A Cholesky decomposition of twin and family data can be used to determine genetic and
environmental influences of one or multiple traits (Neale and Cardon, 1992). A multivariate
Cholesky model allows for estimating of genetic and environmental influences on
individual traits and overlap in shared variances between traits by genetic and

environmental correlations (Supplementary Figure C.3).

In this study, a Cholesky decomposition is used to account for non-independence between
family members of phenotypic correlation estimates in the association analyses between

intelligence and full-score functional connectivity, and in the reliability estimates between

Supplementary Figure C.3. A graphical representation of a generalized bivariate Cholesky model used to estimate
heritability of individual traits and the phenotypic and genetic correlation between the two traits. Latent twin
factors represented by circles load onto the individual measurements, with one set of variance components
loading on both measurements as shared components and one set of variance components unique to one of the
measures. Family members are linked through bidirectional paths on their latent variance components with values
constrained to 1.0 for the additive genetic factor(s) (4;) between monozygotic twins, 0.5 for the additive genetic
factor(s) (4;) between dizygotic twins and siblings, 1.0 for common environmental factors (C;) for all pairs within

one family, and 0.0 for unique environment (E;).
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full-scores (long-term stability) and half-scores (short-term reliability). Sex and age
coefficients on the means of the individual traits were included as fixed effects to account
for possible difference between the sexes or ages. For longitudinal models (i.e. models with
measurements of the same trait at different ages), the sex and age coefficient are shared

between measurements.

C.1.4 Quality control based on head motion and scrubbing of high-motion volumes

The amount of head motion during acquisition of the resting-state functional MRI scan was
retrospectively estimated as framewise displacement derived from the rigid-body
transformations of the realignment registration procedure. Framewise displacement (FD)
is defined as the sum of the absolute values of the first-order derivative of the realignment
parameters between volumes (Power et al, 2012), where rotational parameters are
converted from radians to arc length equivalent to motion of a point travelling on a circle

with a radius of 50 millimeter:
FD = |At,| + |4ty | + |At,] + |Ary| + |4r, | + |47,

Mean framewise displacement is calculated as the framewise displacement averaged along
the entire time series of a subject. Split-half scores of head motion were calculated as the
mean framewise displacement along the independent first and second half of the subject’s

time series.

Incomplete resting-state scans and scans with discernable scanner-related artefacts were
discarded beforehand, resulting in the exclusion of 11 scans at age 13 years and 7 scans at
age 18 years (Supplementary Table C.2; Supplementary Figure C.4). In addition, individual
full and half-score measures of functional connectivity were excluded from statistical
analysis if the mean framewise displacement for the corresponding measure was greater
than 0.30 mm/volume or the number of scrubbed frames exceeded 50% of the volumes on
which the functional connectivity measure was based (i.e. >450 volumes for full-score
measures, or >225 volumes for half-score measures). This resulted in an additional 33 to 53
full-score or half-score measures being excluded from statistical analysis at age 13 years,
and between 18 and 21 at age 18 years (Supplementary Table C.2; Supplementary Figure
C.4). Typically, subjects showed a slight increase in mean framewise displacement during
the second half of the scan compared to the first half of the scan, especially at age 13 years,
and consequently showed an increased number of scrubbed frames (Supplementary Figure

C.4). It is therefore possible that only one of the half scores was included in the statistical
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Supplementary Table C.2. Sample sizes during various stages of quality control.

Stage in quality control Split session score Age 13 years Age 18 years
Original sample 152 (100%) 228 (100%)
Post manual inspection 141 (93%) 221 (97%)
Post quality control Full scores (FS) 95 (63%) 200 (88%)
Half scores (H1) 106 (70%) 201 (88%)
Half scores (H2) 86 (57%) 198 (87%)

Percentages are reported with sample size of original dataset as baseline (i.e. 100%).

analysis. However, single half score measures may still contribute information to the
overall fit of the twin models because the full-information maximum likelihood (FIML)

estimator of OpenMx used in the twin analysis can operate on missing or incomplete data.

C.1.5 Analysis of head motion

A longitudinal bivariate Cholesky model with sex and age beta coefficients on the means
was used to investigate genetic and environmental influences on the logio-transformed full-
score measurements of mean framewise displacement after quality control (i.e. excluding
scans with artefacts and excessive head motion). The most parsimonious twin model
included additive genetic and unique environmental factors (i.e. a twin model with only
AE variance components loading on the measurements). There is a non-significant
phenotypic correlation between measurements of mean framewise displacement over time
for subjects with longitudinal measurements (rpn = +0.14; p = 0.1279 [n.s.]; Supplementary
Table C.3). There is a significant genetic influence on head motion at both ages (h? = 43%
to 86%; p < 0.003; Supplementary Table C.3) from the same genes pool (r. > +0.37; p =
0.0691; Supplementary Table C.3) that decreases significantly with age (Ah? = —43%; p =
0.0137). No effect of sex on head motion was found (Bsex [logio] = +0.0009; p = 0.9392;
Supplementary Table C.3; Supplementary Figure C.5). Despite stringent criteria for
exclusion of subjects with excessive head motion, a small but significant effect of age on
head motion was found (Bage [logi] = -0.0172; p < 0.0001; Supplementary Table C.3;
Supplementary Figure C.5). A significant negative association between mean framewise
displacement and IQ scores was found only at age 18 years (rpn = —0.20; p = 0.0160;
Supplementary Table C.3).

181



ApPPENDIX C

Supplementary Table C.3. The genetic influences and the effects of sex and age on full-score head motion

estimates.
Measure Age 13 years Age 18 years
Mean FD 0.18 + 0.04 0.16 £ 0.03
Mean FD (logio) -0.68  0.16 -0.78 + 0.09

Association with IQ score

Heritability (h?)
Phenotypic correlation (rph)
Genetic correlation (ra)
Effect of sex (Bsex)

Effect of age (Bage)

-0.23 [-0.53; 0.14]; p = 0.2287

86% [68%; 93%]; p < 0.0001
+0.14 [-0.04; 0.33]; p = 0.1279

+0.37 [-0.06; 1.00]; p = 0.0691

-0.20 [-0.35; —0.04];
p=0.0160

43% [21%; 63%]; p = 0.0003

+0.0009 [-0.0234; +0.0253]; p = 0.9392

-0.0172 [-0.0226; —0.0118]; p < 0.0001

Effects on head motion were assessed after quality control when subjects with excessive head motion have been

excluded from analysis based on their mean framewise displacement (FD) and number of scrubbed high motion

frames. Reported p-values are uncorrected for multiple comparison; beta coefficients are in logio-transformed

space.

Head motion
post quality control

0.6

0.5

0.1

girls = == head motion threshold

boys

/.2

Mean FD (mm/volume)
0.3
|

longitudinal data

linear regression of age

10

T T
15 20

Age (years)

25

Supplementary Figure C.5. Estimated full-score head motion by age of subjects after quality control when

subjects with excessive head motion have been excluded from analysis based on their mean framewise

displacement (FD) and number of scrubbed high motion frames.
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C.1.6 Reliability and stability of functional connectivity

We use the phenotypic correlation as a proxy for short-term test-retest reliability and long-
term test-retest stability assessment as it reveals coherence in individual variation within
split-session and between session estimates of functional connectivity. The phenotypic
correlation between full-scores measures and the two half-score measures at each age was
obtained using a bivariate Cholesky decomposition with ACE variance components to
account for non-independence between family members and included sex and age fixed

effects on the means.

Short-term reliability of functional connectivity is low to moderate for connections
between resting-state networks (rph = +0.36 + 0.09 at age 13 years; and rpn = +0.40 * 0.09 at
age 18 years; Supplementary Figure C.6) and within resting-state networks (rpn = +0.41
0.12 at age 13 years; and rpnh = +0.44 + 0.07 at age 18 years; Supplementary Figure C.6).
Long-term stability of functional connectivity is low for connections between resting-state
networks (7ph = +0.26 * 0.12; Supplementary Figure C.6; Supplementary Table C.11) and
within resting-state networks (rpn = +0.35 * 0.11; Supplementary Figure C.6;
Supplementary Table C.11).

C.1.7 Variance explained by the reliable component of functional connectivity

A proportion of the variance of each half-score measure can be explained by the reliable
factor that is determined by its standardized factor loadings. Standardized factor loadings
for a connection can vary from balanced (i.e. loading approximately equally on all four
half-score measures; e.g. the bilateral connection of the sensorimotor network;
Supplementary Figure C.8) to favoring the half-score measures of one of the ages (e.g. the
medial - occipital connection of the visual network (Supplementary Figure C.7) and the
sensorimotor — frontoparietal connection favoring age 18 years; Supplementary Figure
C.7) to favoring a single half-score measure (e.g. the visual — cerebellum, and salience —
frontoparietal connections; Supplementary Figure C.7; and the right IFG - left poster STG
connection of the language network favoring first half of age 18 years; Supplementary
Figure C.8). Variation in standardized factor loadings between half-scores may be
considered an indication for the level of noise (i.e. unique variance per half-score). On
average 33% of the variances can be explained by the reliable factor, with higher
standardized factor loadings on measurements at age 18 years (mean standardized factor
loadings: 41%) than at age 13 years (mean standardized factor loadings: 24%)
(Supplementary Figure C.7; Supplementary Figure C.8).
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Supplementary Figure C.6. Phenotypic correlation of individuals functional connectivity estimates for
connections between canonical resting-state networks (left) and with resting-state networks (right) for half-score
estimates (top; approximation of short-term test-retest reliability within sessions) and full-score estimates
(bottom; approximation of long-term test-retest stability between sessions). The phenotypic correlation
coefficients between half-score measures of the same scan session at age 13 years (TP1) are located in the lower-
left triangle, and correlation coefficients at age 18 years (TP2) are located in the upper-right triangle. For the order
of regions within resting-state networks, see Supplementary Table C.1. Abbreviations (in alphabetical order):
CBN = cerebellar network; DAN = dorsal attention network; DMN = default mode network; FPN = frontoparietal
network; LN = language network; SMN = sensorimotor network; SN = salience network; TP1 = time point 1;
TP2 = time point 2; VN = visual network.
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Between RSNs Common Factor Time point 1 Time point 2

Connection Model Factor Var. component TP1H1 TP1H2 TP2 H1 TP2 H2
Default Mode - Sensorimotor S N/A [ ] [ BN ]
0% 100% NA 6% 94%  NA 3% 97%  NA 56% 44%  NA 28% 72%
Default Model — Visual ce [ ]  42%mawr0% | ] ] ] B J
2% 58% p=0.00524* 5% 7% 88% 7% 9% 84%  12% 18% 70%  14% 20% 65%
Default Mode — Salience E :’ N/A [ I ] |
0% 100% NA 49% 51%  NA 15% 85%  NA 24% 76%  NA 7% 63%
Default Mode - Dorsal Attention AE -:| 37% [15%; 96%] | | | | - ] [ |
a7% 63% p=0.00933* 0% 0% 100% 1% 2% 98%  31% 63% 0% 3% 5% 92%
Default Mode - Frontoparietal e [ ] N/A [ | ] ] |
0% 100% NA 18% 82%  NA 24% 76%  NA 56% 44%  NA 21% 79%
betutode - Language  a¢ [IEE]  sowpeesa  EE] ) B B
50% 50% p=0.00368* 7% 17% 66% 6% 6% 89%  21% 271% 46% 1% 7% 85%
Default Mode - Cerebellum e [ ] wa [ | ] B ]
0% 100% NA 31% 69%  NA 41% 59%  NA 21% 70%  NA 16% B84%
Sensorimotor — Visual CE |:| 34% [11%; 56%] [ ] BN | |
34% 66%  p=0.00713" 6% 12% 82% 5% 9% 87%  14% 28% 58%  14% 27% 59%
Sensorimotor - Salience e [ ] wNa [ ] ] | ]
0% 100% NA  16% 84% NA 7% 93% N/A  35% 65% NA  24% 76%
Sensorimotor - Dorsal Attention AE -:I 42% [15%; 72%] [ ] J - J l J
42% 58% p=0.00438* 5% 7% 88% 1% 1% 99%  32% 44% 24% 1% 15% 73%
Sensorimotor - Frontoparietal Ae [ ] e9%[32%;100%] L ] [ |
69% 31% p=0.00088"* 7% 3% 89% 4% 2% 95%  35% 16% 49%  28% 12% 60%
Sensorimotor - Language re ] eswrewoonn [ | B | ] W |
65% 35% p=0.00442" 20% 11% 69%  12% 7% 81%  28% 15% 57%  23% 12% 65%
Sensorimotor - Cerebellum e [ N/A [ I BN ] ]
0% 100% NA 20% T1%  NA 24% 76%  NA 49% 51%  NA 72% 28%
Visual - Salience L I . | | | ] |
0% 100% NA 27% 73%  NA 12% 88% @ NA 3% 67%  NA 20% 71%
Visual - Dorsal Attention E [:‘ N/A [ | ] I |
0% 100% NA 39% 61%  NA 15% 85%  NA 41% 59%  NA 36% 64%
Visual - Frontoparietal e [ N/A [ ] BN I |
0% 100% NA 21% 79%  NA 16% 84%  NA 44% 56%  NA 55% 45%
Visual - Language ce [ ] 40%[15%;65%] [ | ] | |
40% 60% p=0.00748* 10% 15% 76% 9% 14% 77% 1% 17% 72% 13% 19% 68%
Visual - Cerebellum A I ] 54% [29%; 75%] L | W2 BN | ==
54% 6% p=0.00035" 6% 5% 89%  17% 14% 69%  26% 22% 51%  44% 37% 19%
Salience - Dorsal Attention S N/A [ | ] I ]
0% 100% NA 7% 93%  NA 0% 100%  NA 0% 100%  NA 13% 87%
Salience — Frontoparietal e [N ] 76% [49%; 100%]
6% 24% p=0.00002"** 1% 3% 85%  19% 6% 75% | 50% 15% 35%  20% 6% 74%
Salience - Language CE 32% [10%; 62%)]
guag
329 8% p=0.00945 0% 0% 99% 0% 0% 99%  25% 53% 22% 4% 10% 86%
Salience - Cerebellum CE I:l 49% [18%:; 83%] r | [ |
49% 51% p=0.00357* 8% O% 83% 1% 1% 98%  16% 17% 68%  12% 12% 75%
Dorsal Attention - Frontoparietal S N/A [ | ] [ | & I ]
0% 100% N/A  18% 82% NA 9% 91% NA  18% 82% NA  63% 37%
Dorsal Attention - Language e [ ] wa [ I BN ] ]
0% 100% NA 33% 67%  NA 26% 74%  NA 26% 75%  NA 20% 80%
Dorsal Attention — Cerebellum S N/A [ | B ] |
0% 100% NA 23% 77%  NA 28% 72%  NA 36% 64%  NA 60% 40%
Frontoparietal - Language AE 42% [11%:; 70%]
p guag
42% 58% p=0.01226" 12% 16% 72% 6% 8% 85% 24% 33% 43% 7% 10% 83%
Frontoparietal - Cerebellum S N/A [ ] B | ]
0% 100% NA 3% 64%  NA 6% 64%  NA 3% 27%  NA 26% 74%
Language — Cerebellum ce [ 42% [20%; 63%)] [ ] BN ] B |
42% 58% p=0.00058* 18% 25% 58%  12% 16% 72%  22% 30% 48%  15% 21% 63%
Mean FC Between All RSNs ce [ ] 30%[19%;60%] [ ] ] ]| |
39% 61% p=0.00069* 12% 19% 69% 0% 0% 99%  23% 36% 41% 1% 18% 71%

Supplementary Figure C.7. Variance components of the common factor mapped back to individual measures for
between resting-state networks connections with significant additive genetic or common environmental variance
components loading on the reliable common factor (after FDR correction). The confidence intervals and
uncorrected p-values are reported for the additive genetic or common environmental variance component; p—
values typeset in boldface are significant at uncorrected p-value < 0.05; p-values marked with a symbol are
significant after FDR correction at Q = 0.05 (* FDR-corrected p-value < 0.05; ** FDR-corrected p-value < 0.01; ***
FDR-corrected p-value < 0.001). Abbreviations: TP1 = time point 1 (at mean age 13 years); TP2 = time point 2 (at
mean age 18 years); H1 = first half-score measure; H2 = second half-score measure; RSNs = resting-state networks.
See Supplementary figure C.8 for legend.
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Within RSNs Common Factor Time point 1 Time point 2
Connection Model Factor Var. component TP1 H1 TP1 H2 TP2 H1 TP2 H2
MPFC - Right LP ce [ ] 38%I[16%;60%] [ ]| ] ] ]
38% 62% p=0.00167* 14% 22% 64% 9% 15% 76% 16% 27% 57% 13% 21% 66%
o
b MPFC - PCC Ae [N | 79% [34%; 100%] [ I ] [ ] I ]
= 9% 21% p=0.00225* 10% 3% 87% 4% 1% 95% 23% 6% 71% 19% 5% 76%
e
H Left LP - PCC A ] 55% [15%; 89%] [ ] [ ] [ | [ ]
8 55% 45% p=0.01055* 33% 27% 40% 15% 13% 72% 22% 18% 59% 14% 12% 75%
Right LP - PCC A ] 48%[12%; 78%] [ ] [ | BN | | W ]
48% 52% p=0.01542* 8% 8% 84% 8% 8% 84% 22% 23% 55% 17% 18% 65%
Left Lateral - Right Lateral Ae [ ] 45% [16%; 76%] = = [ | [ |
Sensori- 45% 55% p=0.00983* 18% 22% 60% 20% 24% 57% 20% 24% 56% 20% 24% 56%
motor Left Lateral — Superior CE :l 31% [12%; 53%] [ ] | | ]
31% 69% p=0.00612* 5% 11% 84% 2% 4% 93% 16% 36% 48% 14% 30% 56%
Medal-Occpral  ae [T ewesewoon ] [ ] B ) B
81% 19% p=0.00003*** 13% 3% 84% 3% 1%  95% 53% 12% 35% 23% 5% T1%
Medial - Left Lateral Ae [ ] 57% [19%; 88%]
57% 43% p=0.00629" 25% 19% 56% 19% 15% 66% 23% 17% 60% 26% 20% 54%
Medial - Right Lateral cE [ ] 36%[14%; 56%] [ | | B ] ]
§ 36% 64% p=0.00272* 25% 46% 29% 13% 24% 63% 12% 22% 66% 8% 16% 76%
2
s Occipital - Left Lateral Ae ] 45% [24%; 74%] [ [] [ | [ |
45% 55% p=0.00954* 6% 7% 871% 9% 11% 80% 20% 25% 55% 24% 29% 47%
Occipital - Right Lateral Ae ] 58% [22%; 88%] [ ] [ B | | ]
58% 2% p=0.00381* 10% 7% 83% 6% 4%  90% 29% 22% 49% 24% 17% 59%
Left Lateral - Right Lateral Ae ] 48% [13%; 79%] [ | ] B B | | ]
48% 52% p=0.01248* 8% 9% 83% 14% 15% 71% 28% 30% 42% 25% 27% 48%
ACC - Right RPFC Ae [ ] 58% [24%; 88%] [
58% 2% p=0.00262" 10% 8% 82% 23% 16% 61% 28% 21% 51% 25% 18% 57%
Left Anterior Insula - Right RPFC ce [ ] 32%M3%;52%] [ ] | ] ] J
32% 68% p=0.00350* 5% 10% 86% 7% 15% 79% 12% 24% 65% 21% 44% 35%
Right Anterior Insula - Left RPFC A [ ] 74%(s52%;100%] [ ] B | I | I ]
74% 26% p=0.00008** 25% 9% 66% 17% 6% 77% 36% 13% 51% 29% 10% 60%
Right Anterior Insula - Right RPFC ae ] 58% [27%; 75%] [] I | N | | I J
53% 47% p=0.00051* 1% 9% 80% 14% 13% 72% 31% 27% 42% 28% 24% 48%
3
o " . :
S Right Anterior Insula - Right SMG AE -:’ 49% [16%; 80%] . ] . | . | - |
% 49% 51% p=0.00637* 12% 12% 75% 13% 13% 73% 18% 18% 64% 31% 31% 38%
"
Left RPFC - Right RPFC ce [ ] 61%40%; 79%] [ ] 1 [ | J
61% 39% P<0.00001*** 4% 3% 93% 12% 8% 80% 29% 18% 53% 32% 20% 48%
Left RPFC - Left SMG A [ ] 53%[26%; 87%] [ | W B | . | ]
53% 47% p=0.00851* 4% 4%  92% 13% 12% 74% 20% 18% 62% 30% 27% 43%
Right RPFC — Left SMG AE 64% [31%; 92%]
64% 36% p=0.00084** 8% 5% 8% 23% 13% 64% 28% 16% 57% 30% 17% 53%
Left SMG - Right SMG A& ] 57% [27%; 82%]
57% 43% p=0.00096"* 21% 16% 63% 22% 17% 61% 34% 26% 40% 22% 17% 61%
Right FEF - Left IPS Ae ] 47% [13%; 79%]
Dorsal a7% 53% p=0.01104* 20% 23% 57% 12% 13% 75% 15% 17% 67% 18% 20% 62%
Attention Right FEF - Right IPS ae ] 46% [13%; 76%] = ] ] W | W ]
46% 54% p=0.01014* 23% 27% 51% 20% 24% 56% 16% 19% 65% 21% 25% 55%

Supplementary Figure C.8 (continued on next page). Variance components of the common factor mapped back
to individual measures for within resting-state networks connections with significant additive genetic or common
environmental variance components loading on the reliable common factor (after FDR correction). The confidence
intervals and uncorrected p-values are reported for the additive genetic or common environmental variance
component; p-values typeset in boldface are significant at uncorrected p-value < 0.05; p-values marked with a
symbol are significant after FDR correction at Q = 0.05 (* FDR~-corrected p-value < 0.05; ** FDR-corrected p—
value < 0.01; *** FDR-corrected p-value < 0.001). Abbreviations: TP1 = time point 1 (at mean age 13 years); TP2
= time point 2 (at mean age 18 years); H1 = first half-score measure; H2 = second half-score measure; RSNs =

resting-state networks.
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Within RSNs Common Factor Time point 1 Time point 2
Connection Model Factor Var. component TP1H1 TP1 H2 TP2 H1 TP2 H2
Left LPFC - Left PCC ae [ ] 6% [28%; 94%] [ [ [ =
63% 37% p=0.00173* 4% 2% 94% 3% 2% 95% 38% 22% 4% 23% 13% 64%
Left LPFG - Right PCC AE [ ] 50% [16%; 90%] [ ] W e | ] ]
% 50% 50% p=0.00536* 5% 5% 90% 14% 14% T72% 9% 9% 81% 31% 31% 38%
g Left PPC - Right LPFC AE 100% [71%; 100%] [ ] ] ] ]
.g 100% 0% p<0.00001*** 1% 0% 89% 43% 0% 57% 37% 0% 63% 37% 0% 63%
b3 Left PPC - Right PPC Ae [ | 2% [43%;100%] [ | I R | ] ]
82% 18% p=0.00023"* 14% 3% 83% 24% 5% T0% 23% 5% 7% 41% 9% 50%
Right LPFC - Right PPC ae [ ] 56% [24%;84%]
56% 44% p=0.00220* 25% 19% 56% 16% 13% 71% 27% 21% 53% 26% 20% 53%
° Left IFG - Right Posterior STG ce [ ] 50%[12%;86%]
E 50% 50% p=0.01260 6% 6% 90% 20% 20% 59% 7% 8% 85% 12% 12% 76%
=
H Right IFG - Left Posterior STG ce [ ] 50%I[24%;76%] [ ]| BN | ]
- 50% 50% p=0.00004** 1% 1% 97% 2% 2% 95% 33% 33% 34% 10% 10% 80%
Cerebellar Anterior - Posterior CE \:’ 45% [32%; 61%] [ ] ] ] |
45% 55% p=0.00002*** 19% 23% 58% 10% 13% 77% 18% 22% 59% 31% 38% 30%
Mean FC Within All RSNs ae [ ] 73% [50%; 97%]
73% 27% p=0.00004*** 28% 10% 62% 20% 8% T72% 40% 15% 45% 31% 12% 57%
123
z Mean FC Within Default ce [ 1 s7%15%;57%l [ ] IR ] ]
E 37% 63% p=0.00261* 13% 23% 64% 1% 19% 71% 16% 28% 56% 14% 23% 63%
£ Mean FC Within Visual Ae [ 6% I[51%;100%] (M ] W BE | | |
5 96% 4% p=0.00013** 42% 2% 57% 19% 1% 80% 32% 1% 67% 20% 1% 70%
'S
H Mean FC Within Salience AE I| 59% [34%; 87%] . ] . ] - ] - |
g 59% 1% p=0.00122* 16% 1% 72% 18% 13% 69% 29% 20% 51% 27% 19% 54%
Mean FC within Frontoparietal e | ore[es%;100%] [l ] W ] | |
97% 3% p<0.00001*** 14% 0% 85% 14% 0% 86% 40% 1% 58% 40% 1% 59%
Legend Details
Variance explained by common factor Variance of individual measures
. Additive genetics Variance of individual measure
explained by common factor
D Common environment Ve=X+Y

[] Unique environment M ]

X% Y% Z%
Measurement specific variance . o
Total variance of individual measure

|:| Residual variance (i.e. noise) Vi=X+Y+Z=V_ +V,=100%

Supplementary Figure C.8 (continued). Variance components of the common factor mapped back to individual
measures for within resting-state networks connections with significant additive genetic or common
environmental variance components loading on the reliable common factor (after FDR correction). The confidence
intervals and uncorrected p-values are reported for the additive genetic or common environmental variance
component; p-values typeset in boldface are significant at uncorrected p-value < 0.05; p-values marked with a
symbol are significant after FDR correction at Q = 0.05 (* FDR-corrected p-value < 0.05; ** FDR-corrected p-
value < 0.01; *** FDR-corrected p-value < 0.001). Abbreviations: TP1 = time point 1 (at mean age 13 years); TP2
= time point 2 (at mean age 18 years); H1 = first half-score measure; H2 = second half-score measure; RSNs =

resting-state networks.
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C.1.8 Supplementary data tables

A number of supplementary data tables (Supplementary Tables C.4 through C.14) are
available that contain estimated model parameters, including their confidence intervals and
significance levels, and model fit parameters, that were used to create figures and support

statements in this text. Below is a brief description of each table.

Table Description

Table C.4 Model fit parameters for both single and two-factor models to determine which

model best described the data — for connections between resting-state networks.
Table C.5 Same as Table C.4, but for connections within resting-state networks.

Table C.6 Heritability estimates of the two-factor model, with estimates for changes in
heritability, and heritability of changes, including tests for genetic innovation
and fluctuation of genes across the ages, and model fit parameters — for
connections, both within and between resting-state networks, where a two-factor
model best described the data (see Supplementary Tables C.4 and C.5).

Table C.7 Phenotypic parameter estimates from the single factor model, including group
mean functional connectivity (Figure 4.2 from Chapter 4), and beta coefficients
for sex, age, and head motion (Figure 4.3 from Chapter 4) — for connections

between resting-state networks.

Table C.8 Genotypic parameter estimates from the single factor model, including standardized
estimates of individual measures (Supplementary Figures C.7 and C8), and
standardized estimates of the common factor (Figure 4.4 from Chapter 4) - for

connections between resting-state networks.

Table C.9 Same as Table C.7, but for connections within resting-state networks.
Table C.10 Same as Table C.8, but for connections within resting-state networks.
Table C.11 Phenotypic association between functional connectivity and IQ test-scores, and

association between longitudinal change in functional connectivity and

longitudinal change in IQ test scores — for connections between resting-state

networks.

Table C.12 Same as Table C.11, but for connections within resting-state networks.

Table C.13 Same as Table C.11, but for mean framewise displacement instead of IQ test
scores.

Table C.14 Same as Table C.12, but for mean framewise displacement instead of IQ test
scores.
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C.1.9 Model fit criteria for one and two factor common pathway models of functional
connectivity between resting-state networks

Supplementary Table C.4 contains the model fit parameters for models with a single
common factor (1F) across both ages or two common factors (2F), one for each age, for
connections between resting-state networks. Model fit parameter were used to determine
the model that best described the data using the log-likelihood (LL) ratio test.

Supplementary Table C.4 (continued on the next page). Model fit criteria for common pathway reliability twin

model for functional connectivity between resting-state networks.

Connection One factor Two factors Optimal model
Default Mode - LL: -49.466 LL: -44.712 1F (p = 0.090)
Sensorimotor AIC: 126.932 AIC: 127.424

Default Mode - LL: -60.517 LL: -55.725 1F (p = 0.088)
Visual AIC: 149.034 AIC: 149.450

Default Mode - LL: -71.974 LL: -67.967 1F (p = 0.156)
Salience AIC: 171.948 AIC: 173.934

Default Mode - LL: -47.762 LL: -41.256 2F (p = 0.023)
Dorsal Attention AIC: 123.524 AIC: 120.512

Default Mode - LL:5.029 LL:5.673 1F (p = 0.936)
Frontoparietal AIC: 17.942 AIC: 26.654

Default Mode - LL: -37.274 LL: -35.157 1F (p = 0.516)
Language AIC: 102.548 AIC: 108.314

Default Mode - LL: 47.208 LL: 47.405 1F (p = 0.995)
Cerebellum AIC: -66.416 AIC: -56.810

Sensorimotor — LL: -121.349 LL: -116.315 1F (p = 0.073)
Visual AIC: 270.698 AIC: 270.630

Sensorimotor — LL: -63.770 LL: -61.703 1F (p = 0.530)
Salience AIC: 155.54 AIC: 161.406

Sensorimotor — LL: -108.293 LL: -106.557 1F (p = 0.628)
Dorsal Attention AIC: 244.586 AIC: 251.114

Sensorimotor — LL: -54.829 LL: -52.172 1F (p = 0.379)
Frontoparietal AIC: 137.658 AIC: 142.344

Sensorimotor — LL: -74.587 LL: -70.926 1F (p = 0.198)
Language AIC: 177.174 AIC: 179.852

Sensorimotor — LL: -113.738 LL: -107.469 2F (p = 0.028)
Cerebellum AIC: 255.476 AIC: 252.938
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Connection One factor Two factors Optimal model
Visual - Salience LL: -49.001 LL: -44.371 1F (p = 0.099)
AIC: 126.002 AIC: 126.742
Visual - Dorsal LL: -98.375 LL: -94.364 1F (p = 0.155)

Attention AIC: 224.750 AIC: 226.728

Visual - LL: -13.782 LL: -10.188 1F (p = 0.207)

Frontoparietal AIC: 55.564 AIC: 58.376

Visual - Language LL: -80.492 LL: -78.803 1F (p = 0.642)
AIC: 188.984 AIC: 195.606

Visual - LL: -95.041 LL: -91.136 1F (p = 0.167)

Cerebellum AIC: 218.082 AIC: 220.272

Salience — Dorsal LL: -11.376 LL: -9.377 1F (p = 0.550)

Attention AIC: 50.752 AIC: 56.754

Salience — LL: -55.419 LL: -52.757 1F (p = 0.378)

Frontoparietal AIC: 138.838 AIC: 143514

Salience — LL: -79.333 LL: -77.517 1F (p = 0.604)

Language AIC: 186.666 AIC: 193.034

Salience — LL: -1.346 LL:3.174 1F (p = 0.108)

Cerebellum AIC: 30.692 AIC: 31.652

Dorsal Attention - LL: -38.645 LL: -38.617 1F (p = 1.000)

Frontoparietal AIC: 105.290 AIC: 115.234

Dorsal Attention - LL: -138.999 LL: -137.039 1F (p = 0.561)

Language AIC: 305.998 AIC: 312.078

Dorsal Attention - LL: -31.692 LL: -28.019 1F (p = 0.196)

Cerebellum AIC: 91.384 AIC: 94.038

Frontoparietal - LL: -37.516 LL: -37.197 1F (p = 0.986)

Language AIC: 103.032 AIC: 112.39%4

Frontoparietal - LL: -0.882 LL:1.023 1F (p = 0.577)

Cerebellum AIC: 29.764 AIC: 35.954

Language — LL: —42.555 LL: -32.025 2F (p = 0.001)

Cerebellum AIC: 113.110 AIC: 102.050

Mean FC Between LL: 250.871 LL: 253.621 1F (p = 0.358)

All RSNs AIC: -473.742 AIC: -469.242

Supplementary Table C.4 (continued). The log-likelihood ratio test was used to determines the optimal number
of factors. Abbreviations: LL = log-likelihood; AIC = Akaike Information Criteria; 1F = model with one common
factor on all four split-half measures of functional connectivity; 2F = model with two common factors, each

loading on the two split-half measures of functional connectivity within a time point.
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C.1.10 Model selection criteria for one and two factor common pathway models of

functional connectivity within resting-state networks

Supplementary Table C.5 contains the model fit parameters for models with a single

common factor (1F) across both ages or two common factors (2F), one for each age, for

connections within resting-state networks. Model fit parameter were used to determine the
model that best described the data using the log-likelihood (LL) ratio test.

Supplementary Table C.5 (continued on the next four pages). Model fit criteria for common pathway reliability

twin model for functional connectivity within resting-state networks.

Connection One factor Two factors Optimal model

Default mode

MPFC - Left LP LL: 26.734 LL: 27.653 1F (p =0.871)
AIC: -25.468 AIC: -17.306

MPFC - Right LP LL: 1.771 LL: 7.501 2F (p =0.043)
AIC: 24.458 AIC: 22.998

MPFC - PCC LL: 1.445 LL: 7.741 2F (p =0.028)
AIC: 25.11 AIC: 22.518

Left LP - Right LP LL: -20.47 LL: -16.502 1F (p =0.160)
AIC: 68.94 AIC: 71.004

Left LP - PCC LL: -14.742 LL: -10.884 1F (p =0.173)
AIC: 57.484 AIC: 59.768

Right LP - PCC LL: -23.362 LL: -20.263 1F (p =0.287)
AIC: 74.724 AIC: 78.526

Sensorimotor

Left Lateral — Right LL: -101.748 LL: -91.811 2F (p =0.001)

Lateral AIC: 231.496 AIC: 221.622

Left Lateral — LL: -70.092 LL: -65.585 1F (p =0.109)

Superior AIC: 168.184 AIC: 169.170

Right Lateral - LL: -76.612 LL: -73.066 1F (p =0.214)

Superior AIC: 181.224 AIC: 184.132

Visual

Medial - OCCipital LL: -133.890 LL: -126.359 2F (p =0.010)
AIC: 295.780 AIC: 290.718

Medial - Left LL: -111.304 LL: -101.518 2F (p =0.002)

Lateral AIC: 250.608 AIC: 241.036
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Connection One factor Two factors Optimal model

Medial - Right LL: -91.045 LL: -75.266 2F (p < 0.001)

Lateral AIC: 210.09 AIC: 188.532

Occipital — Left LL: -123.151 LL: -116.770 2F (p = 0.026)

Lateral AIC: 274.302 AIC: 271.540

Occipital - Right LL: -129.103 LL: -121.779 2F (p = 0.012)

Lateral AIC: 286.206 AIC: 281.558

Left Lateral — Right LL: -152.271 LL: -144.463 2F (p = 0.008)

Lateral AIC: 332.542 AIC: 326.926

Salience

ACC - Left Anterior  LL: —26.947 LL: -26.114 1F (p = 0.893)

Insula AIC: 81.894 AIC: 90.228

ACC - Right LL: -21.391 LL: -14.485 2F (p=0.017)

Anterior Insula AIC: 70.782 AIC: 66.970

ACC - Left RPFC LL: -12.366 LL: -11.367 1F (p = 0.849)
AIC: 52.732 AIC: 60.734

ACC - Right RPFC LL: -26.544 LL: -22.631 1F (p = 0.166)
AIC: 81.088 AIC: 83.262

ACC - Left SMG LL: 1.775 LL: 1.879 1F (p = 0.999)
AIC: 24.450 AIC: 34.242

ACC - Right SMG LL: 19.679 LL: 21.898 1F (p = 0.488)
AIC: -11.358 AIC: -5.796

Left Anterior Insula  LL: -65.583 LL: -58.684 2F (p=0.017)

- Right Anterior AIC: 159.166 AIC: 155.368

Insula

Left Anterior Insula  LL: 8.095 LL:9.783 1F (p = 0.642)

- Left RPFC AIC: 11.810 AIC: 18.434

Left Anterior Insula  LL: 15.868 LL:20.113 1F (p = 0.131)

- Right RPFC AIC: -3.736 AIC: -2.226

Left Anterior Insula ~ LL: -23.246 LL: -20.835 1F (p = 0.438)

- Left SMG AIC: 74.492 AIC: 79.670

Left Anterior Insula  LL: -5.830 LL: -5.783 1F (p = 1.000)

- Right SMG AIC: 39.660 AIC: 49.566

Right Anterior LL: 33.946 LL:37.938 1F (p = 0.157)

Insula — Left RPFC AIC: -39.892 AIC: -37.876

Right Anterior LL: -4.724 LL: -1.717 1F (p = 0.305)

Insula - Right RPFC ~ AIC: 37.448 AIC: 41.434
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Connection One factor Two factors Optimal model

Right Anterior LL: -26.664 LL: -25.687 1F (p = 0.856)

Insula — Left SMG AIC: 81.328 AIC: 89.374

Right Anterior LL: -26.793 LL: -22.068 1F (p = 0.092)

Insula - Right SMG ~ AIC: 81.586 AIC: 82.136

Left RPFC - Right LL: -24.760 LL: -14.094 2F (p =0.001)

RPFC AIC: 77.520 AIC: 66.188

Left RPFC — Left LL: 23.278 LL: 26.101 1F (p = 0.342)

SMG AIC: -18.556 AIC: -14.202

Left RPFC - Right LL:12.200 LL: 14.230 1F (p = 0.541)

SMG AIC: 3.600 AIC: 9.540

Right RPFC - Left LL:2.212 LL: 6.481 1F (p = 0.129)

SMG AIC: 23.576 AIC: 25.038

Right RPFC - Right  LL: -39.683 LL: -37.539 1F (p = 0.509)

SMG AIC: 107.366 AIC: 113.078

Left SMG - Right LL: -61.609 LL: -46.602 2F (p < 0.001)

SMG AIC: 151.218 AIC: 131.204

Dorsal Attention

Left FEF - Right LL: -29.274 LL: -24.921 1F (p = 0.121)

FEF AIC: 86.548 AIC: 87.842

Left FEF — Left IPS LL: -13.481 LL: -10.767 1F (p = 0.366)
AIC: 54.962 AIC: 59.534

Left FEF - Right IPS ~ LL: -9.122 LL: -4.650 1F (p = 0.111)
AIC: 46.244 AIC: 47.300

Right FEF - Left IPS ~ LL: -57.588 LL: -52.736 1F (p = 0.084)
AIC: 143.176 AIC: 143.472

Right FEF - Right LL: -104.318 LL: -93.235 2F (p < 0.001)

IPS AIC: 236.636 AIC: 224.47

Left IPS - Right IPS LL: -40.069 LL: -31.766 2F (p = 0.005)
AIC: 108.138 AIC: 101.532

Frontoparietal

Left LPFC - Left LL: -39.561 LL: -25.094 2F (p < 0.001)

PPC AIC: 107.122 AIC: 88.188

Left LPFC - Right LL: -18.438 LL: -15.469 1F (p = 0.312)

LPFC AIC: 64.876 AIC: 68.938
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Connection One factor Two factors Optimal model

Left LPFC - Right LL: 52.982 LL: 60.209 2F (p=0.013)

PPC AIC: -77.964 AIC: -82.418

Left PPC - Right LL: 30.636 LL: 30.636 1F (p = 1.000)

LPFC AIC: -33.272 AIC: -23.272

Left PPC - Right LL: -0.786 LL: 5.603 2F (p = 0.026)

PPC AIC: 29.572 AIC: 26.794

Right LPFC - Right ~ LL: —6.964 LL: —4.982 1F (p = 0.554)

PPC AIC: 41.928 AIC: 47.964

Language

Left IFG - Right IFG ~ LL: 20.243 LL: 23.890 1F (p = 0.200)
AIC: -12.486 AIC: -9.780

Left IFG - Left LL: 1.421 LL: 3.116 1F (p = 0.640)

Posterior STG AIC: 25.158 AIC: 31.768

Left IFG - Right LL: -3.204 LL: -1.670 1F (p = 0.689)

Posterior STG AIC: 34.408 AIC: 41.340

Right IFG - Left LL: 44.773 LL: 46.697 1F (p = 0.572)

Posterior STG AIC: -61.546 AIC: -55.394

Right IFG - Right LL: 2.694 LL: 4.778 1F (p = 0.525)

Posterior STG AIC: 22.612 AIC: 28.444

Left Posterior STG -  LL: =57.990 LL: -57.074 1F (p = 0.872)

Right Posterior STG ~ AIC: 143.980 AIC: 152.148

Cerebellar

Anterior — Posterior ~ LL: —45.773 LL: —42.455 1F (p = 0.249)
AIC: 119.546 AIC: 122.910

Mean FC Within RSN

All RSNs LL: 456.201 LL: 457.709 1F (p = 0.550)
AIC: -884.402 AIC: -877.418

Default Mode LL: 444.530 LL: 446.529 1F (p = 0.302)
AIC: -861.060 AIC: -855.058

Sensorimotor LL: 203.990 LL: 207.011 2F (p = 0.036)
AIC: -379.980 AIC: -376.022

Visual LL: 5.089 LL: 11.046 2F (p = 0.003)
AIC: 17.822 AIC: 15.908

Salience LL: 51.818 LL: 60.850 1F (p = 0.765)
AIC: -75.636 AIC: -83.700
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Connection One factor Two factors Optimal model

Dorsal Attention LL: 250.402 LL: 251.691 2F (p =0.013)
AIC: -472.804 AIC: -465.382

Frontoparietal LL: 126.590 LL: 133.800 1F (p = 0.248)
AIC: -225.180 AIC: -229.600

Language LL: 194.572 LL: 197.900 1F (p = 0.977)
AIC: -361.144 AIC: -357.800

Supplementary Table C.5 (continued). The log-likelihood ratio test was used to determines the optimal number

of factors. Abbreviations: LL = log-likelihood; AIC = Akaike Information Criteria; 1F = model with one common

factor on all four split-half measures of functional connectivity; 2F = model with two common factors, each

loading on the two split-half measures of functional connectivity within a time point.
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C.1.11 Dynamics of genetic and environmental influences on functional connectivity
throughout adolescence

Supplementary Table C.6 contains estimated parameters and model fit parameters for the
common factor model with two factors for connections between resting-state networks.
The columns “Factor 1” and “Factor 2” contain the heritability (4?), common environment
(¢?), and unique environment (e?) estimates and their confidence intervals for that factor.
The dynamics column contains the change in heritability (A(a?)) or common environment
(A(c?)) estimates from age 13 years to age 18 years, and heritability (a?(A)) or common
environment (c?(A)) estimates of change in functional connectivity; both with confidence
intervals and statistical significance whether change is different from zero. In addition,
significance is reported on testing for innovation (innov), used to test whether unique genes
or common environment influence one of the common factors, and testing for fluctuating
influences (flux), used to test whether the same genes or common environment exerts a
different amount of influence on one of the common factors compared to the other.
Statistically significant effects are printed in boldface. The last column contains the log-
likelihood model fit parameters of the full model with ACE latent variance components
loadings on each of the common factors, and its nested models with only AE, CE, or E;
these parameters are used to determine which of the models (full or nested) best described
the data using the log-likelihood (LL) ratio test, with the best fitting model printed in bold.
Estimates without data because they do not apply are marked with N/A (e.g. no estimate for
c?, A(c?), or ¢2(A) are available in models for which an AE-model best described the data).

196



SUPPLEMENTARY INFORMATION TO CHAPTER 4

SIST-°7-4-4

£00°0 =d :xnyf

10S°L:°F-4D-4D 9000 = d :a0uw [%28 '%S€E] %LS 72 [%28 %02Z] %8% :
ST — - 0 = o, ‘o, o, . 0 = o, <o, o, . 0 = o, <o, o, .
LELY A -AV -AV (£00°0 = 9) [%001 <%19] %66 :(V);2  (100°0 = d) [%59 ‘%81] %€¥ :,0 (900°0 = d) [%08 %81] %25 473981 - DddIN
10S°L57-20v-40V (1040 =) [%8E+ ‘%ES-] %6-:(2)V V/N i V/N: spow Jmejeq
6620v-:"9-9-4 1880 =d :xnpf
S20'2s-° -4 -40 005'0 =d :aouuy [%£8 ‘%ED] %E9 .2 [%T18 %T+] %09 :
wn[agala)
€0Z°€E-°F -V -V (7570 =) [%0L %zl %eS (M2 (1000>0) [%L5 %L1 %280 (1000 > d) [%66 %61] %07 : - oZenduer
§z0'2e- 7 -4oV-40V (4880 =d) [%62+ ‘%EE-] %z-:(;2)V V/N i V/N: LEEYNET:
98'601-:°F -4 -4
L6S801-°-4)-HD [%00T ‘%00T] %0071 :;2 [%00T %00T] %007 :
08%°L0T- 4 -4V AV V/N:z0 V/N: wnypqeIay - [ENSIA
69%°L01-°q -HIV -HIV V/N V/N i V/N: udamdyg
06T'Sy-:9-4-4 Se70 =d xnyf
1€LTY- 9 -4 -4D 0050 =d :aouwy [%58 ‘%¥] %b9 ;2 [%00T ‘%¥+] %06 :
uonuany [estoq
192 19— 7 -4V -4V (€210 =4) [%16 ‘%L] %9¢€ (V)0 V/N:z0 V/N: — PO 3NEJRq
9ST1v-"F-20vV-40V (1,20 =4) [%66+ ‘%8E-]1%9Z+:(;D)V  (£00°0 =d) [%96 ‘%S1] %9¢ 1,0 (LZT'0=4) [%9S ‘%0] %01 : usamlag
pooyIYI-30] sotureuA(q Z 10308 1 10308 uor1dauuo0))

‘SouwIr} I9A0 soduanfjur

STUreuAp 10§ 1593 UL ey [9powr Aemyjed UOUIUIOD J0JOBJ-0M] B UT SRIUSN[JUT [EJUSUOIIAUS PUE o1}2ua0) *(safed ALy 1Xau 31} U0 panuIuod) 9-) d[qe], Arejuswaddng

197



ApPPENDIX C

69%°08-:°F -4 -4

8LY'SL- -4 -4D

[%600T ‘%00T] %00T :,2

[%600T ‘%00T] %0071 :

[et93e]
0909.- 59 -qV -qV V/Nig2 V/N g2 148ty - [eIpay
997'SL- 1 -4V -4IV V/N V/N V/N i [ensIA
01L'901-:° -7 -4
612201-:"9-42-4) [%00T ‘%00T] %0071 :;2 [%00T ‘%00T] %0071 :;2 —
8.ST0T-*7 -4V -4V V/Nig2 V/N g2 1Jo11 - [BIPAN
8IS T0T-:*9-4IV -4IV V/N V/N V/N [ensIA
79€9¢1- -4 -4 820°0 = d :xnjf
9¥9'LZ1-°9-42-4D LS7'0 =d :aouw (%29 ‘%0] %Lz ;2 [%66 ‘%L] %TL ;2
2€6'921-:°7 -V -V (s10°0 = d) [%96 %2] %62 :(V) ;1 V/N 22 V/N 22 1endog - [e1pa
6S€9Z1- 7 -0V -70V  (LL70 =) [%68 ‘%6¥-] %tt+ :(;p)V  (100°0>d) [%001 ‘%8¢] %€EL:,D (8€0°0 = d) [%€6 ‘%1] %62 :,0 [ensip
28296 :°g-4-4
627€6-:"9-40-40 [%00T ‘%00T] %0071 :;2 [%00T ‘%00T] %0071 :;2 —
11816~ -4V -AV V/N:z0 V/N'Z?  yy8ry - jesere Yol
11816~ 4 -4V -40V V/N V/N V/N i 10j0UWILIOSUDG
€69°0-°7-4-4 $90'0 =d :xnpf
L09°L T -9 -7D $50°0 =d :aouw [%1L'%6] %6E 72 [%¥6 ‘%zZ] %09 :,2
16£9 ° -4V -4V (££0°0 = d) [%001 ‘%1] %86 :(7) ;2 (1000 > d) [%16 ‘%62] %19 :,0 (810°0 = d) [%8L ‘%9] %0¥ : ;2 19d - 94dIN
YL L T-20V -20V  (8£5°0=4) [%08+ %bb-] %1+ :(2)V V/N i V/N spow Jnegq
pooyIYI-30] sotureuA(q Z 10308 1 10308 uor1dauuo0))

198



SUPPLEMENTARY INFORMATION TO CHAPTER 4

109°65—:°F-4 -4

1€L'85- 4 -4D-4D

[%600T ‘%00T] %00T :,2

[%600T ‘%00T] %0071 :,2

e[nsuj

JoLuy Y3y -

¥9,°85- 9 -qV -qV V/N:z2 V/N'2?  pnsuj ousiuy o1
$89'85- :°F ~HIV ~HIV V/N V/N:? V/N P 102U 20UBI[ES
8Ch L1-°-4-4
6¥9 -1 -40-40 [%00T ‘%00T] %0071 :;2 [%00T ‘%00T] %0071 :;2
e[nsuj JoLLuy
68S V1~ -4V -AV V/N 22 V/N:z2 SRy - 7OV
mw‘v‘VHI “wm -qIV -HIV <\Z 4\\2 "NG 4\\2 "NG MHOBH—UE Qoﬂuﬂmw
Por6bI- 7 -4-4
LESHYI- T -4D-HD [%00T ‘%00T] %007 :,2 [%00T ‘%001] %007 :,2 -
SL8 VYT~ T -AV -aV V/N 22 V/N'Z?  yy8ry - jesere o1
€9V ¥Y1- "9 -0V -40V V/N V/N:? V/N P [ensIA
8¢0°L21-:° -4 -4
LLTETT- T -4)-4) [%00T ‘%00T] %007 :,2 [%00T ‘%00T] %007 :,2 -
6LLTTT- 9 -V -V V/N:z2 V/N g2 148y - reandoQ
6LL 121~ T ~AIV ~HIV V/N V/N:? V/N P [ensIA
SEEETT-*H-A-4 $20°0 =d :xnyf
969'LTT- 7 4D -4 610°0 = d :a0uwy [%¥6 %29] %18 ;2 [%¥8 %6] %95 22 [e1o3e
195811~ :°7 -4V -gV (210°0 = @) [%€6 ‘%L1] %1% :(7) ;0 (¥20'0 = d) [%8¢ %9] %61:,0  (¥00°0 = d) [%16 %9T] %¥¥ :;0 13017 - Tendi00Q
0LL9TT- 7 -AoV -4V  (2€2°0=4) [%9T+ ‘%08-] %SZ-:(;2)V V/N D V/N gD [ensIA
pooyIYI-30] sotureuA(q Z 10308 1 10308 uor1dauuo0))

199



ApPPENDIX C

€960~ "4 -4 -4
S69°L2-H-40-4)
¥60°62-:°7 -4V -4V

¥60°S2-:°F ~AIV 40V

616¢c- -4 -4
095°2e- A -40-4)
99L° 1€~ °H ~AV -AV

99L' 1€~ *H -4V -4IV

299°L6-:°0 -4 -4
€S€°€6- " -A)~4D
1004654 -4V -V

SETE6- S ~AIV -AIV

S67'27S-:9-4-4
00€'Ly- 4 -4 -4D
209°9v—°F -4V -4V

209°9%- 5 -4V -AIV

89062~ °4-4-4
6¥69T- "1 -4 -4)
1871 :° -4V -4V
Y60 %1~ 4 -4IV -4IV

€00°0 = d :xnjf
0050 =d :aouwp
(2000 = d) [%16 %L1] %8S :(V) D

(9000 = 9) [%66+ %0c+] %8L+:(;D)V

V/N

V/N

8L6'0 =d :xnyf

0050 =d :aouwp

(L6%'0 =) [%¥T ‘%0] %0 :(7) .0
(8L6'0 =) [%0%+ ‘%LE-] %T-:(:D)V
LSL0=d:xnyf

0050 =d :aouwp

(68£°0 =) [%9 %0] %0 :(V) 0
(LSL0 =) [%SS+ “%9%-] %L+ :(;P)V

[%09 ‘%1] %2z ;2
V/N g2

(100°0 > d) [%66 ‘%0%] %8L :,0

[%600T ‘%00T] %00T :,2
V/N g2
V/N i

[%600T ‘%00T] %00T :,2
V/N g2
V/N i

[%28 ‘%ee] %19 :,2
V/N g2

(1000 > d) [%L9 ‘%81] %6€ :,0

[9%.LS *%9T] %S¢ .2
V/N g2

(100°0 > d) [%¥8 ‘%£¥] %59 :,0

[9%00T %SL] %001 :,2
V/N g2
(6170 =d) [%ST '%0] %0 :,P

[%600T ‘%00T] %00T :,2
V/N g2
V/N i

[%600T ‘%00T] %00T :,2
V/N g2
V/N i

[96.8 '%S€E] %19 :,2
V/N g2

(100°0 = d) [%59 ‘%€1] %6€ : ;0

[9669 ‘%LT] %Z¥ ;2
V/N g2

(100°0 > d) [%£8 ‘%1€] %86 :,0

Jdd
POT - DAdTHT
[erorredojuory

SdI S - SdI Yo'l
uorjusaje [esioq

SdI
WS - 494 Y8y
uorjuse [esioq

IS
Y3y - HINS ¥o'1
thguuﬂ voﬂuﬂmw

Dd4dd
W3y - DAdY WOl
thguuﬂ voﬂuﬂmw

pooyr-307

sorureuk(q

¢ 1010e

T 10)0e]

uorjoauu0)

200



SUPPLEMENTARY INFORMATION TO CHAPTER 4

S0z°0¢1 *7 -7 -4
628'Z€1 4 -40-4D
09621 4 -4V -4V

008'€€T -4 ~4IV ~4IV
6LTTSH-T-4
€92°6S :°H -0 -4)
05809 :°7 -4V -4V

V/N
£08'0=d :xnyf
0050 =d :aouup

(Z17°0 =4) [%SS ‘%0] %0 :(V) 0

[%600T ‘%00T] %00T :,2
V/N g2
V/N i

[%92 *%LT] %LY

~

V/N g2

[%600T ‘%00T] %00T :,2
V/N g2
V/N i

(%29 %0] %0% :,2
V/N g2

uonueNy [esioq

UM Od WedW

[ensiA
08809 -7V -4V (L08°0 =) [%Sh+ ‘%EL-] %9-:(;P)V  (100°0 > d) [%£8 ‘%¥e] %¢S:,0  (100°0 > d) [%0071 %£€] %09 ;D M Od ues
ovs8 g -7-4
8,801 :°F-40-4D [%00T ‘%00T] %0071 :;2 [%00T ‘%00T] %0071 :;2
0980T -7 -4V -4V V/N:z0 V/N:z0 J10}0WLIOSUSS
9%0'TT :°g -4IV -HIV V/N V/N i V/N i UM Od ueaw
€L70:°9-9-9 620'0 = d :xnyf
9,67 °7-40-4D ¥6£'0 =d :aouw [%89 ‘%0] %TT :;2 [%00T ‘%9] %08 :;2 Sdd
¢S - - ‘0 = o, ‘0, o . . .
LSS'S g -qV -qV (510°0 = d) [%00T ‘%¥] %8¥ :(7) ;D V/N g2 V/N g2 ST - Ddd BT
€09'S -4V -407V  (181°0=4) [%66+ %8Z-] %69+:(;p)V (1000 =d) [%001 ‘%2l %68:,0  (ST1°0=4) [%¥6%0] %0T ;D [e1arredojuory
8Ly'eS P q-4-4 900'0 = d :xnyf
606'8S :*T -4 -H4D 00S'0 =d :aouup [%LS ‘%S] %97 ;2 [%00T ‘%T19] %001 :;2 Sid
ccc S _ 0 = o ‘o, o, : : :
09665 :°F -4V -4V (£00°0 = d) [%I6 %5] %22 :(V) P V/N:z0 V/N:z0 WS - D4dT BT
602°09 :°F -40V -2V (6100 = d) [%96+ %L2+] % ¥L+:(;0)V  (100°0 > d) [%S6 ‘%€¥] %¥L:;0  (#8E0 =4) [%6E %0] %0 : ;0 [errredojuoiy
pooyIYI-30] sotureuA(q Z 10308 1 10308 uor1dauuo0))

201



ApPPENDIX C

's1eak g1 pue ¢] safe usamiaq
Ay1A109UU0d [euoriouny Jo syuauodwod [EI[AI Y} UO J0JIBJ [EIUIWUOIIAUS UOWIOD I0 SATIPPE 2109 B Jo saduanpjur Surjenjonyy ferodwa) = xnf sxeak g1 10 ¢ 25¢ je

A31A1109UU00 TRUOTIOUNJ JO SJUAUOIIOD S[RI[AI I} UO SIIUIN[JUT [BJUSTWUOIIAUD UOIWIOI IO dATIIppe anbrun jo soussaid = aouur £)1a109uuos feuonoung jo sjuauodurod
S[qeI[21 3Y3 Ul S2SUBYD UO SIOUSN[FUI [BIUSWUOIIAUD UOWIOD = (),0 [SIOUIMN[FUI [BIUSWUOIAUS UOWWOD UT paSueyd pajeI-a8e = (,2)V ‘AHANOIUU0D [eUOROUNJ JO
sjuauoduwod [qeI[31 Y3 UI SISUBYD UO SIOUIM[FUI IIIUIT IATIPPE = (V) ,D SIOUSNFUI O}9US 2ATIPPE UI paSueyd pajeai-a8e = (,0)y ‘JuswuoIiaus anbrun 4q paureidxs
AJATI9UU0D [eUonOUNY JO sjuRUOdWod S[qRI[I Y} JO JdURLIEA JO 2Fejusdred = ;5 JUSWUOIAUS UOUIUOD Aq PIUTR[dXd AJATIOAUUOD [eUONOUNJ JO sjuauodwod J[qera1
Y3 Jo oueLIRA JO 9SeIURdIad = ,0 ‘so1PURS dAnIppE Aq pauredxs A11ATOSUU0D [eUOROUNY JO SUIUOdWOD J[RI[31 Y} JO SOUBLIEA JO 35eIUa019d = ,D SUOHRIASIQ]Y "S0°0

> anfea—-d paoa1I0duN Je JURdNTUIIS dI8 30eJp[oq UT 19s3dA) sanfea—d ‘uostredwoo afdrnu 10§ pajosrrooun are sanfea-d pajroday “(panunuod) 9-) a[qe], Arejusmarddng

202



SUPPLEMENTARY INFORMATION TO CHAPTER 4

C.1.12 Phenotypic effects on functional connectivity between resting-state networks
Supplementary Table C.7 contains the estimated phenotypic parameters and model fit
parameters for the common factor model with a single factor for connections between
resting-state networks. The “Half-score” columns contain the group-mean and standard
deviation (M) of the functional connectivity estimates (see Figure 4.2 from Chapter 4), the
standardized estimates for the proportion of variance explained by the common factor (V)
and measurement-specific variance (V;; i.e. considered noise), and their confidence intervals
(see Supplementary Figures C.7 and C.8). The last three columns contain the beta
coefficients and their significance for sex (B, ), age (84.), and head motion (Br,) measured
as mean framewise displacement (mean FD); see Figure 4.3 from Chapter 4. Statistically
significant effects are printed in bold; with effects significant after FDR-correction marked
with symbols (* FDR-p < 0.05; ** FDR-p < 0.01; *** FDR-p < 0.001).
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C.1.13 Genotypic effects on the reliable component of functional connectivity between
resting—state networks

Supplementary Table C.8 contains the estimated genetic parameters and model fit
parameters for the common factor model with a single factor for connections between
resting-state networks. The “Half-score” columns contain the standardized estimates (i.e.
the proportion of variance of the individual half-scores explained by each component) for
heritability (a2), common environment (c?), unique environment (e?), and the
measurement-specific contribution (e2), including their confidence intervals, for each of
the half-score measures (see Supplementary Figures C.7 and C.8). The “Factor” column
contains the standardized estimates for heritability (af), common environment (cf), and
unique environment (ef) on the common factor, including their confidence intervals (see
Figure 4.4 from Chapter 4; Supplementary Figures C.7 and C.8). Statistically significant
effects are printed in bold; with effects significant after FDR-correction marked with
symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-corrected p < 0.001).
The last column contains the log-likelihood model fit parameters of the full model with
ACE latent variance components loadings on each of the common factors, and its nested
models with only AE, CE, or E; these parameters are used to determine which of the models
(full or nested) best described the data using the log-likelihood (LL) ratio test, with the best
fitting model printed in bold. Estimates without data because they do not apply are marked
with N/A (e.g. no estimate for cf or ¢ are available in models for which an AE-model best
described the data).
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C.1.14 Phenotypic effects on functional connectivity within resting-state networks

Supplementary Table C.9 contains the estimated phenotypic parameters and model fit
parameters for the common factor model with a single factor for connections within
resting-state networks. The “Half-score” columns contain the group-mean and standard
deviation (M) of the functional connectivity estimates (see Figure 4.2 from Chapter 4), the
standardized estimates for the proportion of variance explained by the common factor (V)
and measurement-specific variance (V;; i.e. considered noise), and their confidence intervals
(see Supplementary Figures C.7 and C.8). The last three columns contain the beta
coefficients and their significance for sex (B;,), age (844¢), and head motion (Br,) measured
as mean framewise displacement (mean FD); see Figure 4.3 from Chapter 4. Statistically
significant effects are printed in bold; with effects significant after FDR-correction marked
with symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-corrected p < 0.001).
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ApPPENDIX C

C.1.15 Genotypic effects on the reliable component of functional connectivity between
resting—state networks

Supplementary Table C.10 contains the estimated genetic parameters and model fit
parameters for the common factor model with a single factor for connections within
resting-state networks. The “Half-score” columns contain the standardized estimates (i.e.
the proportion of variance of the individual half-scores explained by each component) for
heritability (a2), common environment (c?), unique environment (e?), and the
measurement-specific contribution (e2), including their confidence intervals, for each of
the half-score measures (see Supplementary Figures C.7 and C.8). The “Factor” column
contains the standardized estimates for heritability (af), common environment (cf), and
unique environment (ef) on the common factor, including their confidence intervals (see
Figure 4.4 from Chapter 4; Supplementary Figures C.7 and C.8). Statistically significant
effects are printed in bold; with effects significant after FDR-correction marked with
symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-corrected p < 0.001). The
last column contains the log-likelihood model fit parameters of the full model with ACE
latent variance components loadings on each of the common factors, and its nested models
with only AE, CE, or E; these parameters are used to determine which of the models (full
or nested) best described the data using the log-likelihood (LL) ratio test, with the best
fitting model printed in bold. Estimates without data because they do not apply are marked
with N/A (e.g. no estimate for cf or ¢ are available in models for which an AE-model best
described the data).
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C.1.16 Associations between intelligence and functional connectivity between resting—
state networks

Supplementary Table C.11 contains the association coefficients between functional
connectivity and IQ test scores at age 13 years (FCrpi x IQ7p1) and age 18 years (FCrpy x
IQTp2), and the association between the longitudinal change in functional connectivity and
longitudinal change in IQ test scores between ages 13 and 18 years (AFCtp1,1p2 * AIQTp1,TP2)
for connections between resting-state networks. In addition, the table contains group-mean
and standard deviation of the full-score measures at age 13 years (FCrp1) and age 18 years
(FCrp2) (see Figure 4.2 from Chapter 4), the longitudinal change in functional connectivity
from age 13 years to age 18 years (AFCrp1,1p2), and the phenotypic correlation between the
full-scores of functional connectivity at age 13 and 18 years (FCtp; x FCrp2) used as estimate
for long-term test-retest reliability (see Supplementary Figure C.6). Statistically significant
associations are printed in bold; with association that are significant after FDR-correction
marked with symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-
corrected p < 0.001).
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C.1.17 Association between intelligence and functional connectivity within resting-

state networks

Supplementary Table C.12 contains the association coefficients between functional
connectivity and IQ test scores at age 13 years (FCrp1 x IQtp1) and age 18 years (FCrpz x
IQTp2), and the association between the longitudinal change in functional connectivity and
longitudinal change in IQ test scores between ages 13 and 18 years (AFCtp1.1p2 * AIQTp1,TP2)
for connections within resting-state networks. In addition, the table contains group-mean
and standard deviation of the full-score measures at age 13 years (FCrp1) and age 18 years
(FCrp2) (see Figure 4.2 from Chapter 4), the longitudinal change in functional connectivity
from age 13 years to age 18 years (AFCrp1,1p2), and the phenotypic correlation between the
full-scores of functional connectivity at age 13 and 18 years (FCtp1 x FCrp2) used as estimate
for long-term test-retest reliability (see Supplementary Figure C.6). Statistically significant
associations are printed in bold; with association that are significant after FDR-correction
marked with symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-
corrected p < 0.001).

243



ApPPENDIX C

60£SY0 =0 o1£zL0=d 0£9%¥0 =0 ¥55v0°0 =d Jorradng

[sT0+ %€ 0-1600- ‘[2T'0+2T0-1€00+ ‘[6Z0+:€T'0-180°0+  :[8%0+:10°0+] L2'0+ 8Z0F 600+ SZT0F 290 ST0FESO - [e193e7 Y8y

2919L'0=d 18%69'0 =d Ly1250=d 19.%0°0 =d Jorradng

fLz0o+ TZ0-1 v0'0+ ([8T0+:ZT0-]1€0°0+ :[8Z0+:ST0-]1200+  ‘[SP'0+:00°0+]1¥20+ OE0FTIT0+ STOFEI0 ¥Z0F S0 - [eI181eT 9]

011860 =d 87¥S60=d 692500 =d s LF000°0 = d [e1o3eT 33y

fezo+%z0-1000- ‘[STO+%T0-1000+  ‘[zvo+ 100+ 220+  ‘[€S°0+:LT°0+] LE0+ €E£0F8T0+ 9Z0F¥80 0£0F9L0 B AT RITY|

JOJOWLIOSUIS
578180 =d S1692°0=d LY1ST0=d +x67700°0 =d

[8z0+ ‘2z’0-1 €00+ :[20°0+:€Z0-]180°0- :[90°0+:9€0-19T°0-  ‘[15°0+ TT0+] €60+ SZ'0F 800+ ZZO0F 650 IZ0F S0 00d - d71343rd
986710 =d 98600 =d LLYZ6'0 =d ..081000 =d

f1v0+'so0-1 610+  ([100-Tg0-191°0- :[2Z°0+TZ0-]1T00+  ‘[650+:L10+] I¥°0+ E£Z0F ¥0'0+ ZZ0FSS0 ZZ0F %S0 00d - dT1¥91
79926'0 =d 09.L7°0=d 86L£6'0 =d ++6€0000 =d

[ezo+'sz0-1100- :[20°0+:€z0-180'0- ‘[ez0+TZ0-]1T100+  ([19°0+2T0+] sv'0+ £Z0F 800+ TZO0FE90 ¥20F8S0 dT13YSryd-d1¥o1
090ST'0 =4 61010 =d 20L£6'0 =d 860%0°0 =d

frvo+L00-l 610+ :[€0'0+:2Z0-]1€T'0- :[TZ°0+:2Z0-1T00-  ‘[¥¥0+ 100+l 20+ SZ'0F L0'0+ TZ0FSS0 0Z0F %S0 00d - D4dIN
625950 =d 9bLE£10=d 9%85y'0 =d ++:100000 > d

[seo+610-1800+ :[¥00+:9Z0-]ZT0- :[¥T0+:0£0-]600- ([290+:9g0+]¥S 0+ 2ZZ0FF00+ ZZOFESO TZ0FZS0 dTIYSH - DAdIN
15962°0 =d 10000 =d 0866L0=d +xx10000°0 > &

foco+ TT0-1 €10+  ([20'0-f0g0-191°0— ‘[6T'0+‘#Z°0-]1£00-  ([89°0+:5c0+] sS0+ 0Z'0F S0'0+ TZ0F6%0 0Z0F 640 dTY97 - DddIN

Uﬁoz :ﬂm.wuh—

2dLALQ[Y x ¢dLIdL) Y 2dLQY[ x 2dLD] LLQ] x LD L) x LD  edLdLDJVY L) L) uodI’UU0)

"SIOMIQU 9)e)Ss—TFUTISaT

UTyIIM AJIAT}OSUTOD [RUOTIOUNJ 10J 90USSI[[9IUT YIIM SIJBTT]Sd AJTATIO9UUOD [BUOIOUN JO SUONe0ssy “(safed XIs 1xau 9y} uo panunuod) gr-) dqe], Arejuswajddng

244



SUPPLEMENTARY INFORMATION TO CHAPTER 4

Z10Le0=d LST610=d 66,980 =4 ,920€0°0 =d
wro+:seo-lzro-  ([soo+:szo-]oro- ‘[ez0+'6T0-]1200+  :[0oS0+:€0'0+] 6270+ 9Z0F 900~ ¥Z0FEF0 TZ0FSH0 DAdYIUSd - DOV

1128L0=d 5968L0=d S016£0 =4 4050000 = d
fzzo+:8z0-]v00- ‘[eTo+:£10-]200- ‘[TTO+:0€0-]0T0-  ([€9°0+:€20+]1 9% 0+ TZO0FS00- TZOFI¥0 0Z0FZH0  DAddY3T- DIV
59%£8'0 =d 656900 =d 90kFh0=d 09900 =d e[nsuj .IoLIuY
[zzo+'8z°0-1 €0°0- ‘[10°0+:8Z0-1¥T'0- :[€T'0+:620-]180°0-  :[SP'0+‘200+] S0+ LZO0FH00- ZZ0F LSO TZ0FLSO 3y - DOV
L8LTV0=d 165520 =4 080150 =4 +2+100000 = d B[nSuj IoLIBIUY
feco+sTo-loTo+ ([900+:€z0-1800- ‘[Lz0+%T0-]1,L00+  ‘[69°0+:Sc0+] 650+ TZOFTO0- £20F9S0 0Z0TFESO ¥ - DIV
Qoﬂuﬂmw
1€1L60=d 091660 =4 L10VT0=d +x08200°0 = & [exereT 1ySry
[szo+ wzo-l10o00+ ([ST0+:ST0-]1000- ‘[8£0+:900-]1LT0+  ‘[FS0+‘cr0+]sc0+ ZEOF0Z0+ 0S0OFTILO LZOTF8S0 - [e121B7 O]
010650 =4 20028'0 =4 17¥850 =4 85600 =d [e193e7]
[8ro+:1e0-] L0c0-  ([eT0+:£T0-] 200~ ([9T°0+:£Z'0-]90°0-  ‘[cv0+:z00+] ¥ 0+ HE0F 600+ 8Z0F 650 STOFHSO0 IYSnY - [endooQ
8gzee0=d 162070 =d 078680 =4 ++001000 =d [e193eT]
feT0+'seo-1z10-  [60°0+:TZ0-1900- :[1Z’0+:€Z0-]1T00- ‘[zso+:sT0+]sco+ ZEOFHT'0+ 8Z0F LSO ¥20F 050 197 - [endooQ
6192L0=d 0958%'0 =4 Ibs80=d LL6V000=0d [e197e7]
lez0+‘0z0-1v0'0+ :[oT'0+:0Z0-]150'0- :[0Z'0+:€Z°0-]1200-  ‘[9%°0+:60°0+] 620+ ¥E0TF 600+ 920F 950 6Z0F IS0 y3ry - [eIpAN
yegeL0=d $09.L£0=d 590L80 =4 ++661000 =d [e193eT]
1z0+'6z0-1%0°0- :[80°0+:TZ0-]1200- :[0Z'0+:€Z0-]1200- ‘[zso+‘cro+lsco+ EECOFIT0+ LZ0F9S0 LZ0FO0S0 19T - [BIPAN

966710 =d S6££8°0=d 78929'0 =d 810800 =4
foro+€e0-]oT0- ([¥T0+:£10-1200- ([9T°0+:920-150°0- :[9%0+‘€0°0-1¥20+ €£0FE00+ LZOFT90 820F 650 [ENdDIQ - [BIPAN
[ensIA
2dLALQ[Y x ¢dLIdLD Y 2dLQY x 2dLD] LLQ] x LD L) x LD  edLdL)JVY L) L) uondIdUU0)

245



ApPPENDIX C

Jddd

L5690 =d 886170 =d 719090 =4 782000 =0 3y - emsuj

‘loz’o+ ‘6z0-150°0- ‘[600+ ‘1Z°0-190°0- ‘[8Z0+:2T'0-190°0+  ‘[65°0+:ST°0+] 0¥'0+ ¥Z0F ¥0'0+ ¥Z0F LS00 TZ0F0S0 Jouy WSry

96’0 =d 68€TE0 =0 11818'0=d 4072000 =0 D4dY Y71 - e[nsu|

[¥z°0+ ‘'sz0-110°0- ‘[80°0+ ‘€Z°0-180°0- ‘[¥Z0+‘6T'0-1£0°0+  [950+FT°0+] 80+ £Z0F 900+ 0Z0F2S0 TZ0F9¥0 Jouy WSry

IS

0L9%T'0=d €11600 =4 0¥s2z°0=d 42100000 > d 1YSTY - e[nsu]

200+ T¥0-181°0- [z0'0+:9Z0-1ZT'0- ([80°0+:€€0-]1€T'0-  ([s9'0+‘zE0+] IS0+ ZZTOF LO0+ ZZOF IS0 020 F9%0 JI0LI2IUY Y]

0219L0=d 6SHz00=d 85L£L0=d ++61000°0 =d HINS Yo' - e[nsu|

frzo+:Lz0-1%00-  ‘[zo0-‘6z0-191°0- ‘[FZ0+LT0-1%00+  :[6S0+‘2Z0+] ¢b'0+ ¥Z0F 200+ £Z0F¥S0 ZZ0TF0S0 JI0LIIUY Yo'

Dddy

68150 =4 ¥61SY'0 =d LTIV 0 =d L9%L00°0 =d 3y - ensuj

[veo+‘cro-1 210+ ‘[60°0+:0Z0-1900- ‘[0£0+‘€T0-1600+  :[950+ TT0+] 9¢0+ TZO0F+00+ TZO0F 640 8T'0F¥¥0 JoLeiuy Yo

¥88v70 =d 6¥586'0 =d 12€91°0=d 819¢0°0 =0 D4dY Yo7 - e[nsu|

‘[gero+‘or0-1¥10+ ‘[ST0+ ‘4T'0-] 000+ ‘[¥€0+:900-15T'0+ [0S0+ 200+] 6270+ #Z'0F 200+ TZO0FSSO 0Z0F0S0 JoLLiuy Y9

e[nsuj JoLLuy

77€050=4d 626000 =d 61L160=d ++GLT000=d 3y - emsuj

210+ '2€0-160°0-  :[s0'0-‘zg0-16T'0- :[0Z'0+:2Z0-]1T00- ([FS0+FL0+]19¢0+ LZOFLOO0+ ¥Z0FZL0 STOFLIO JI0LIIUY o'
SZ1E6'0 =d SI¥Sy 0 =d 289000 =& 051000 =d

Lz0+'sz0-1100+ :[60°0+:0Z°0-1900-  :[800-:F0-1620-  ‘[6S0+:ST0+] 850+ €Z0FT00+ 0Z0FEEO 0Z0F2E0 HWSWSY - DIV
1%898'0 =d 640200 =d 978110 =d ++092000 =d

lozo+ 2z 0-1200+  ([co0-‘Tg0-]1 10— [F0°0+:9€0-]1LT0-  ‘[FS 0+ FT0+]1 960+ ZZTOFH¥00- 0Z0FH¥E0 6T°0F9€0  HWSHIT-DIIV

2dLALQ[Y x ¢dLIdLD Y 2dLQY x 2dLD] LLQ] x LD L) x LD  edLdL)JVY L) L) uondIdUU0)

246



SUPPLEMENTARY INFORMATION TO CHAPTER 4

8v9cc0=d 656280 =4 157800 =d 4190000 =d SdI
fero+:seo-lzro- ‘lzro+:910-1z00- ‘[8c0+ 200-16T0+  :[09°0+:0Z°0+] €F'0+ €Z0F 200+ £Z0F8S0 TZ0TF8S0 Yo - 494 Yo'
018L6'0=d yreeT0=d 1.8810=d +x+700000 = d 444
‘lozo+wz0-]ooo+ :[eo0+:Szo-]TT0- ‘[bE0+:£00-1¥T0+  ([c90+‘6z°0+] 050+ SZ0F 800+ ZZOFZHO SZTOFLEO  IUSNY - JHA YOI
uonuany ~aw.—0h—

505610 =4 6£9%50 =0 98eLb0=d V70000 = d IS
[800+:8g0-] 910~ ‘[oT'0+:6T°0-] 400~ ‘[8Z'0+ 4T°0-]180°0+  :[950+‘6T°0+] 650+ 6Z°0F ZT'0+ SZ0F 290 9Z0F 0S50 IYSWH - DINS YT
19%£5°0 =d 019210 =d hreT0=d ++€0100°0 =0 HINS WS
210+ 1€0-180°0- [€00+:Sz0-]1TT'0- [20°0+:€€0-]1¥T'0-  ([8S0+:8T°0+] IF0+ SZOFLO0+ SZTOTFLVO 0Z0F I¥0 - Ddd¥ sy
929600 =d 89.200=0d 980570 =d 6EEET0 =0 IS
fvN%00-1€z0+  :[zoo-‘1€0-]1LT0- ‘[2€0+'600-]1 210+ ‘[050+:80°0-]¥Z0+ €Z0F200- €Z0FLEO 6T°0FSE0 HT-DAdYd 3y
§9079°0 =4 S8E0T0=d 8z6cT0=d LEL6T00=d IS
‘flozo+:€e0-] Lo0-  [z00+:9Z0-]2T'0- ‘[90°0+:££0-]9T'0-  ‘[zs0+:S0°0+] €0+ ZZ0F ¥00+ TZOFEF0 8T0F 80 IUS - DALY Yo'l
6L%96'0 =d 90L61°0=d $5988'0 =d L18.100=4d IS
[szo+:9z0-]t00- ‘[S00+:Sz0-]oT0- ‘[6T0+:2Z0-]200- ‘[2zS0+:90°0+] 1€0+ ZZOFE00- TZO0FLFO S8T0F8H0  HOT-DAdY Yo
122860 =d 9%7.L8'0=d 80STL0=d 081990 =d 04dyd
vzo+:sz0-]000- ‘[¥T0+:£10-1T00- ([8T°0+:9Z0-1%00- :[z€0+:2Z0-1900+ LZOFITO+ €£Z0F LSO TZ0F8H0 IS - Dddd Ho1
IS

££590'0 =4 Y110 =d 1eELT10=0 ++G81000 =0 3y - emsuj
100+ ¥v0-1 €z0- [€00+:9zZ0-1 210~ [20°0+:S€0-]1ST'0-  ‘[gS0+ FL0+]1SE0+ 9Z0F OT'0+ E£Z0FSS0 £20FL¥0 Jorauy Sy
889LL0=d L01200=4 SITLL0=d L21600°0 =d NS Yo' - e[nsu|
[zzo+'8Z°0-1¥0°0-  ‘[g0'0-‘T€0-]1LT'0- ([8T'0+:¥Z0-]1€0°0- ([sS0+‘2r0+]9c0+ E£Z0F E00+ £20F2S0 61°0F 870 Jouy WSy
2dLALQ[Y x ¢dLIdLD Y 2dLQY x 2dLD] LLQ] x LD L) x LD  edLdL)JVY L) L) uondIdUU0)

247



ApPPENDIX C

6L1850=0d L09S1°0=d heso=d 2100000 =0 Ddd sy

‘[8T°0+ ‘z€0-1 £L0'0- ‘[9Z°0+ 400-]1 TT0+ ‘[8Z0+:ST'0-]120°0+  <[89°0+‘FE€0+] ¥S0+ T1Z0FO0T'0+ ZZ0FO0L0 TZ0FS90 - 044718y
yze0e0=d 962190 =d S¥569'0 =d 8200 =d Ddd
fzro+'seo-l€ro- zr0+:070-1%00- :[2T'0+:9Z0-]1%00-  [9%°0+ T00+] 920+ 9Z°0 F 90°0+ 0Z'0FSS0 ZZ0F 640 IS -Ddd WOl
162L2°0=d 208£8'0 =4 1266L0=d 2100000 =d 04d1
qeeo+Tr0-1¥1°0+  ([FT0+:8T°0-120°0- ([SZ0+:6T1°0-]1 €00+  ([89°0+ FE0+]1 ¥S0+ 6T°0F €00+ TZOFIS0 8T0F8Y0 IS -Ddd WOl
8¥81°0 =0 016680 =4 1£28L°0=d L601€0°0 =0 Ddd

800+ ‘0v'0-1 LT°0- ‘[£T°0+ST'0-] T0'0+ :[8T'0+:€Z0-1€0°0- ‘[F¥0+:200+]sz0+ H%Z0F000- 610 F6%'0 8T'0F 8¥'0 IS - DAdTHT
L¥886'0 =d 999180 =d 59,680 =d 018500 =0 0dd1

vzo+ vz 0-1 000+ ‘[210+:€T0-1200+ ‘[6T°0+:2Z°0-1200-  [9%°0+:T0°0+] 920+ LZ'0F 100+ 0Z0F 190 ¥Z0F 090 IS -DAdTHT
169550 =d 1875’0 =d 169690 =d $£660°0 =d Ddd

[gr0+ ‘ze0-1800- ‘[Tz’0+‘0T0-1900+ ([9T°0+ 42 0-1%00- :[T¥0+%00-1020+ 0SOFITO+ €£Z0FT90 ¥Z0FLS0  HT-DddT¥HT
[erorredojuoxy

S879%'0 =d 1%02¢'0 =d $560€0 =d 6S8£T°0 =0 Sdl
[s€0+'sT0-1600+ ‘[1Z0+:£000-]1200+ :[r€0+:0T0-]1TT'0+ ‘[2Z¥0+:900-]16T°0+ 6Z0FTIT0+ ZZTOFHL0 ¥20F 690  IUSW - SdI Yo'
00292'0=d 185550 =d §8750'0 =d 820%00=4d SdI

‘foro+ Tr0-1¥1°0+ ([oT'0+‘6T°0-]1%0'0- :[0¥'0+:000-]1 TZ0+ [0S0+ T00+] 620+ TE0TFE00+ 920 F LSO LZO0FESO Y3y - A9 WSy
£905¥0 =4 €911L0=d 9Zhvz0=d L666T00=0d SdI
veo+910-l 010+ :[ZT°0+:8T°0-]1 €00 :[Z€0+:80°0-]1 ZT°0+  ‘[€5°0+:£0°0+] €0+ LZOF 400+ ZZOFL¥0 ¥20F 240  1oT- Add WS
Ly8Y6'0 =d 615LL0=d £9619°0 =d ++SIT000 =0 Sdl
[szo+'cz0-1 100+ :[ZT°0+:91°0-]120°0- :[2Z°0+:LT1°0-190°0+  ‘[SS0+:91°0+] L0+ SZO0FS00+ TZOFHF0 €Z0FTH0  SHY - 444 Yo'l
2dLALQ[Y x ¢dLIdLD Y 2dLQY x 2dLD] LLQ] x LD L) x LD  edLdL)JVY L) L) uondIdUU0)

248



SUPPLEMENTARY INFORMATION TO CHAPTER 4

St9zz0=d £6620°0=d 1T9L50=d +x+100000 > d
l6€0+'800-191°0+  [20'0-‘Tg0-]1 10— :[9T'0+:8Z°0-190°0-  ‘[£9°0+:9¢0+]1 ¥S0+ 9T'0 F 900+ 9T'0 F 950 9T'0F %S0 SpO I[nejo(
78£98'0=d 692210 =d 621%8'0=d 2100000 > d
[gsz’o+cz0-1zoo+ ‘[€00+:Lz0-1zT0- ‘[gZ0+‘6T0-1200+  ‘[99°0+‘cc0+] 250+ TT'0F SO0+ OT0F9S0 TT0FISO SNSY IV
SNSY UIgI M O UeaW
6¥L£6'0 =d 159840 =d 106,00 =4 s 110000 =0 JI0LI91s0d
[ezo+'sz0-110°0- ‘[1Z0+‘0T°0-]190°0+ ‘[8€0+:200-]16T°0+  :[99'0+:82°0+] 0S50+ +Z0F €00+ SZT0F9S0 £20F 250 - JoLsjuy
IB[[9qa13)
LS 1011931504
£¥£600 =0 06,600 =4 L8¢¥9'0=d +x+700000 = d ysrd - 9IS
fevo+ %00-11Z0+ :[z0'0+:2Z0-]12T'0- ‘[9T'0+:9Z'0-1500-  ‘[6S°0+:Sz0+] ¥¥°0+ 9Z'0F 90°0+ £Z0F 690 ¥Z0F 90 101191504 1§97
15¢8¢€0=d 0¥86L0=d 9,£89°0 =d L2FV00=d 9.LS JI0LI)S0d
seo+ w1r0o-l1 1170+ ‘[9T0+:€T0-1 200+ ‘[£T'0+:SZ°0-]1%00-  ‘[8%'0+ T00+] L2'0+ ¥Z'0F S0'0+ 0Z0F SS0 0Z0F 0S50 IYSry - HAIYSY
9L£€0=d 8£556'0 =d 0659L°0=d 60¥61°0=d 9LS 10118104
I[sgo+cr0-lzT0+ ([ST0+‘910-]000- ‘[LT0+:¥Z0-]€00- ‘[8E0+80°0-19T0+ %Z0FE00+ 6T0FSS0 LIT0FZS0  3oT-9H41ySrd
95,000 =d 1€5L2°0=d ¥6£250=d 298000 =d LS 101131504
‘peo+or0+] veo+  ([90°0+:2Z0-180°0- ([FT'0+:LZ0-]1L00-  ‘[6¥'0+:80°0+] 1€0+ E£Z0F SO0+ 0Z0F9V0 6T0FEF0 IS - HAI YT
69170 =d 1e€€L0=d L196%0 =d ++L2€000 =0 9.LS JI0LI)S0d
fzvo+ 010~ 170+ ‘[2T0+:ZT0-]1€0°0+ ([6Z°0+:ST0-180°0+  ‘[15°0+:CI0+] €60+ ¥Z'0F 900+ ZZ0FZ90 61'0F8S0 YO - DAl YT
89150 =d 55660 =d 8€150°0 =d L¥811°0=d REI
610+ :5€0-1600- ‘[eT0+:£10-1200- ‘[000+‘T¥0-]12Z°0- :[¥¥0+:900-1T20+ €Z0F 600+ 6T0F 290 6T0FLS0 IS - DAI YT
adenSueTq
2dLALQ[Y x ¢dLIdLD Y 2dLQY x 2dLD] LLQ] x LD L) x LD  edLdL)JVY L) L) uondIdUU0)

249



‘(sTeak g1 98e ueowr Je) 7 jurod awmy = g, {(sTeak ¢1 o9fe ueowr Je) 1 jurod swmy = 1], ‘2d ] 03 Td] Woij jusrjonb aouaSiaur ur aSueyd
= O1v “9uanonb soualiEiur = O] ‘z2dL 03 4L Wwoiy AA1oauuod [euorouny ul afueyd = DIV AIADIUUOD [BUONOUNJ = D SUORIAIQQY (1000 > dn[eA—d PIjdarIod
~AAT ssx T0°0 > O0[EA-F PIIIIIOI—YS ,, G0°0 > oN[eA-d PIIII0I-Y( ,) §0°0 = O I8 UOIII00 Y IolJe JUedIUSIS aTe [OqUUAS B [IIm payrewr sanfea—d G0'0 >

aneA-d Pajda1Iodun Je JUedIUIIS Ie 90BJP[oq UT 19sad4A) sanfea—d ‘uostredwoo afdrnuu 10§ pajdairrodun are sanfea—d pajrodsy “(panunuod) g1 D d[qe], Arejusursjddng

ApPPENDIX C

015010 =4 780£5°0 =4 S00£b'0 =4 ++GE1000 =d
wyo+so0-11z0+ :[oT'0+:020-]1500- ‘[€T°0+:0£0-1600-  [FS0+:ST0+] L0+ LT'0F 900+ ST'0F8S0 ¥T'0F %S0 adenguer]
68€£5°0 =0 1510L0=d 650860 =4 ++86€000=d
[zr'0+ ‘ze0-1800- ‘[6T°0+‘cT0-1€0°0+ ‘[TZ0+:TZ0-]1000+  :[s50+:€T°0+] &0+ LT'0F SO0+ STOF6S0 91°0FSS0 [e91edOTUO ]
L66£50=d 50£59'0 =4 616800 =4 VL6000 =d
[eco+'81°0-180°0+ :[TT'0+:8T°0-]1 £0'0- :[8E0+:€0°0-]16T°0+  ([6S0+:€T0+] L0+ 0Z'0F SO0+ LT'0FSS0 8T0F IS0 uonUSHY [esioq
9ZL1L0=d $5850°0 = d 608990 =d ++€€0000 =d
frzo+:0c0-1500-  ‘[000-f0c0-]1sT°0- ‘[LT0+:920-1500- :[€9°0+:€z0+] 9p'0+ STOF €00+ STOFISO E£T0F LV 0 doudI[eS
625£9'0 =d €L5¢5°0=d 788160 =d ++€€2000 =d
gr0+:0€0-1900- ‘[oT0+:0z0-1500- ‘[FZ'0+TZ0-1T0O0+  ‘[zp0+‘TT0+]1€0+ 9Z0F IT0+ TZO0F 090 0Z0F S0 [ensip
6£998°0 =4 $289L0 =d SZLET0=d 176000 =d
fzzo+9z0-1zo0- ‘[ZT0+'sT0-1200+ ‘[9£0+:S0°0-19T0+  ‘[es0+‘2ro+]l¥E0+ 9Z0F ZT0+ E£ZTO0FTILO £20FT90 J10}0WLIOSUDS
2dLALQ[Y x ¢dLIdLD Y 2dLQY x 2dLD] LLQ] x LD L) x LD  edLdL)JVY L) L) uondIdUU0)

250



SUPPLEMENTARY INFORMATION TO CHAPTER 4

C.1.18 Associations between head motion and functional connectivity between resting-

state networks

Supplementary Table C.13 contains the association coefficients between functional
connectivity and mean framewise displacement at age 13 years (FCtp: x FDrp1) and age 18
years (FCtp2 x FDrpy), and the association between the longitudinal change in functional
connectivity and longitudinal change in mean framewise displacement between ages 13
and 18 years (AFCrp1,tp2 x AFD1p1.TP2) fOr connections between resting-state networks. In
addition, the table contains group-mean and standard deviation of the full-score measures
at age 13 years (FCrp1) and age 18 years (FCrpz) (see Figure 4.2 from Chapter 4), the
longitudinal change in functional connectivity from age 13 years to age 18 years
(AFCrpi,p2), and the phenotypic correlation between the full-scores of functional
connectivity at age 13 and 18 years (FCtp1 x FCrp2) used as estimate for long-term test-
retest reliability (see Supplementary Figure C.6). Statistically significant associations are
printed in bold; with association that are significant after FDR-correction marked with
symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-corrected p < 0.001).
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C.1.19 Associations between head motion and functional connectivity within resting-

state networks

Supplementary Table C.14 contains the association coefficients between functional
connectivity and mean framewise displacement at age 13 years (FCrp; x FDrp1) and age 18
years (FCtp2 x FDrpy), and the association between the longitudinal change in functional
connectivity and longitudinal change in mean framewise displacement between ages 13
and 18 years (AFCtpi,tp2 * AFDtp1,TP2) fOr connections within resting-state networks. In
addition, the table contains group-mean and standard deviation of the full-score measures
at age 13 years (FCrp1) and age 18 years (FCrpz) (see Figure 4.2 from Chapter 4), the
longitudinal change in functional connectivity from age 13 years to age 18 years
(AFCrpip2), and the phenotypic correlation between the full-scores of functional
connectivity at age 13 and 18 years (FCtp1 x FCrp2) used as estimate for long-term test-
retest reliability (see Supplementary Figure C.6). Statistically significant associations are
printed in boldface; with association that are significant after FDR-correction marked with
symbols (* FDR-corrected p < 0.05; ** FDR-corrected p < 0.01; *** FDR-corrected p < 0.001).
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APPENDIX D

APPENDIX D.1 SUPPLEMENTARY INFORMATION FROM CHAPTER 5

D.1.1 Correcting for regression toward the mean, and platform and sex effects
Regression toward the mean occurs when a statistical model trained on a trait of a set of
subjects for which the outcome is dependent on a large number of factors, is applied to an
independent set of subjects. The extremes of the distribution, in this case the youngest and
oldest participants in the study, will have scores (i.e. predicted age) that congregate toward
the mean of the original study population (Cutter, 1976), and needs to be corrected before
age gaps are computed by including age as covariate to avoid potential misleading findings
(Khoury et al., 2018; Le et al., 2018).

To correct for regression toward the mean, a linear mixed-effects regression model with
random intercept is fitted to the healthy controls subpopulation to re-establish the baseline
of typical aging in the current sample. The predicted age is used as the dependent variable,
and the true chronological age is used as the independent variable. Predicted ages
(d@Geprea,;) for all subjects, including the patient subpopulation, are then projected to their
corrected estimates (age,,.q;) using the slope (8;) and intercept (8,) from the fit of the

linear regression model

agepred,i = (a/g\epred,i - ﬁo) /ﬁl

For the epigenetic ages, an additional beta coefficient for the microarray platform was
included in the model for the epigenetic ages to account for possible differences between
the two Illumina platforms used to acquire the methylation data. After corrections, healthy
controls are centered around mean error of zero with an average aging rate of 1.0 predicted

year per chronological year (Supplementary Figure D.1; Supplementary Table D.1).

Correction for regression to the mean Correction for regression to the mean Correction for regression to the mean

(Corrected) brain age
40
|
(Corrected) Horvath epigenetic age
40
I
(Corrected) Levine epigenetic age

Chronological age Chronological age Chronological age
Supplementary Figure D.1. Projections of the predicted MRI brain and epigenetic age estimates to their corrected

age estimates after correction for regression toward the mean and platform effects.
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Supplementary Table D.1. Regression coefficients used to correct the predicted MRI brain and epigenetic ages

from regression toward the mean.

MRI brain age Horvath epigenetic age  Levine epigenetic age
Healthy controls (N) 218 63 63
Samples (N) 345 63 63
Iumina platform N/A 51:12 51:12
ratio (27K : 450K)
Slope (age effect) +0.805 +1.119 +1.047
Intercept +6.830 -0.544 -9.224
Platform effect N/A -8.272 (p = 0.0116) -4.399 (p = 0.3968)

Estimates were based on the healthy subpopulation. 2 Negative platform effect indicates predicted ages were lower

on Illumina’s 27K platform compared to predicted ages on Illumina’s 450K platform.

The age gap (also referred to in literature as “age acceleration”) of the subjects is then
defined as the difference between their corrected age prediction and chronological age. For
MRI brain age, longitudinal age acceleration (or “age gap acceleration”) is defined as the
annual rate of change in [corrected] predicted brain ages between two consecutive MRI
scans; i.e. values greater than 1.0 suggest the brain ages faster than typical in healthy
controls, and values less than 1.0 suggest the brain ages slower than typical in healthy
controls. The same approach as before is used to correct for possible differences in the age
gap and the age acceleration between sexes: a linear mixed-effects regression model with
random intercept is fitted to the healthy controls subpopulation with the age gap or age
acceleration as the dependent variable and sex of the subjects as the independent variable
(Supplementary Table D.2; Supplementary Figure D.2), followed by the removal of the sex
effect from all subjects to a gender-neutral level. For age acceleration, the distribution is

centered to mean 1.0 such that the unit at predicted year per chronological year is retained.

D.1.2 Epigenetic aging markers

Blood-based DNAm age was estimated using two different predictors (Horvath, 2013;
Levine et al., 2018). These two DNAm age predictors were designed for use with both the
27K and 450K platform allowing us to maximize our sample size. Other blood-based age
predictors, like the Hannum clock (Hannum et al., 2013), were not analyzed as these are

not applicable to the older 27K array.
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Supplementary Table D.2. Regression coefficients used to correct the corrected MRI brain and epigenetic age

gaps from possible sex effects.

MRI brain MRI brain Horvath epigenetic  Levine epigenetic
age gap age acceleration age gap age gap

Healthy 218 109 63 63
controls (N)
Samples (N) 345 127 63 63
Sex ratio 115:103 50:77 37:26 37:26
(female : male)
Intercept -0.035 +0.958 +0.325 -0.040
Sex effect? -1.523 +0.278 +3.721 —-0.456

(p = 0.0618) (p = 0.2452) (p = 0.0001) (p = 0.7999)

Estimates were based on the healthy subpopulation. 2 A positive effect of brain age gap indicates that males’ brain
age is estimated older than those of females with respect to their true age. A positive brain age acceleration means

faster acceleration in males.

MRI brain age gap MRI brain age acceleration Horvath epigenetic age gap Levine epigenetic age gap

g o 2 9 4
] s ] 3]
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Correted brain age gap (years/year)
0
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Corrected epigenetic age gap (years)
0
1

Corrected epigenetic age gap (years)
0
1

-20
1

-20
1

-20
1

Sex ato FM=115:103 Sex atio FM=47:62 Sex atio FM=37:26 Sexratio FM=37:26
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Supplementary Figure D.2. Sex effects on MRI brain and epigenetic age gaps and MRI brain age acceleration
within the healthy controls subpopulation.

DNA methylation data was obtained from whole-blood DNA samples using the Illumina
Infinium Human Methylation Beadchip technology according to manufacturer’s
guidelines. A total of 172 samples were assayed with either the 27K (n=108 samples) or
450K (N=64 samples) platform, which interrogate 27,578 and 485,512 CpG sites across the
genome, respectively. These data are a subset of previously published DNAm cohorts (Gene
Expression Omnibus (GEO) ID: GSE41037 and GSE41169) for which brain age estimates
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from MRI scans were available. For all samples, IDAT files and thus raw fluorescence
intensity values were available and read into an RGChannelSetExtended object in the R
programming environment (R Core Team, 2017) using the read.metharray function in the
minfi package (v1.20.2) (Aryee et al., 2014) for analysis.

We first applied data processing and normalization strategies separately for each platform.
For 27K arrays, normal-exponential out-of-band (noob) correction was applied using the
preprocessNoob function in minfi (Aryee et al., 2014). For 450K arrays, background and dye-
bias correction were applied using the preprocessENmix function in the ENmix package (Xu
et al., 2016). Probe design type correction was then applied by Regression on Correlated
Probes (RCP) through the rcp function of the ENmix framework and processed beta values
generated for downstream analyses. Levine phenotypic age was then estimated based on
the weighted sum of methylation beta values of 511 probes. Levine phenotypic age is a
compound index score based on chronological age and nine other phenotypic biomarkers
characteristic for aging (Levine et al., 2018). Horvath’s epigenetic age predictor (Horvath,
2013) was applied to the raw methylation data and uses a custom internal BMIQ
normalization procedure to normalize the methylation beta values of each sample to a
‘golden standard’ and predict the chronological age of the sample based on the weighted

sum of methylation beta values of 353 probes.

D.1.3 Computation and harmonization of polygenic risk scores

Whole-blood DNA samples were processed on Illumina’s HumanOmniExpressExome—-8
v1.2 and Ilumina’s 550K platform. Quality control procedures were performed using
PLINK v1.9 (Purcell et al., 2007). SNPs and samples with call rates below 95% and 98%,
respectively, were removed. Sex errors, heterozygosity (F < 3 standard deviation (SD)),
homozygosity (F > 3 SD) and relatedness by pairwise identity by descent (IBD) values were
assessed from a subset of SNPs that satisfied a strict SNP QC (minor allele frequency (MAF)
threshold > 0.10, Hardy-Weinberg equilibrium (HWE) p > 1e—05, linkage disequilibrium
(LD) based SNP pruning (R? < 0.2)). After removing failing samples, a regular SNP QC was
performed (SNP call rate>0.98, HWE p > 1e-06, MAF > 0.01). Ethnicity was assessed by MDS
clustering with Hapmap Phase 3 and samples that deviated more than 3 SD were removed.
Strand ambiguous SNPs and duplicate SNPs were removed. Mendelian errors were set to
missing followed by another missingness check (0.02 threshold) for samples and SNPs, and

SNPs with a differential missingness between cases and controls were removed.

After quality control, SNPs were imputed on the Michigan server (Das et al., 2016) using the HRC
r1.1 2016 reference panel with European samples after phasing with Eagle v2.3. Post-imputation
QC steps included: removing SNPs with INFO score < 0.8, MAF < 0.01, SNPs that had a discordant
MAF compared to the reference panel, strand ambiguous and multi-allelic SNPs.
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Overlapping SNPs between the schizophrenia GWAS summary statistics, 1000 reference
Genome, and dataset of interest were selected. The following SNPs were excluded: i)
insertion, deletion or ambiguous SNPs, 2) MAF < 0.01 and SNPs with imputation quality
(R?) < 0.8, 3) SNPs located in complex-LD regions (Price et al., 2008). The remaining SNPs
were clumped in two rounds using PLINK: round 1 (physical distance threshold 250kb, LD
threshold R? < 0.5), round 2 (physical distance threshold 5,000kb, LD threshold R? < 0.2).
The resulting SNPs were used for polygenic risk score calculation. Odds ratios in the

schizophrenia summary statistics were log-converted to beta values.

To reduce possible effects of cross-platform variation, all polygenic risk scores were
harmonized using a published method to reduce between-cohort variation (Bergen et al.,
2019). The procedure involves normalizing the polygenic risk scores for all subjects,
including schizophrenia patients, based on the mean within the healthy controls
subpopulation for each platform and threshold independently and then re-scaling the data
back to the means and variances of the original distribution. Since polygenic risk scores at
different thresholds are correlated, a principal component analysis is applied to the
normalized polygenic risk scores of the combined datasets across all thresholds to obtain a
single component that contains the majority of the disease-differential variance. The first
principal component (PC1) explains 69.9% of the variance in polygenic risk scores across
the thresholds and its factor loadings show a strong disease differentiating power at an
odds ratio of 2.50 for schizophrenia (Supplementary Table D.3) that is consistent with
previously reported results (Bergen et al., 2019).

The factor loadings of the PC1 were Z-standardized based on the distribution of the healthy
controls subpopulation, such that the mean score of the healthy subpopulation is zero, and
that a positive score represents an increased risk for schizophrenia compared to the norm

within healthy controls.

270



SUPPLEMENTARY INFORMATION TO CHAPTER 5

Supplementary Table D.3. Principal component analysis on the harmonized polygenic risk scores for schizophrenia.

Principal Percentage variance Odds ratio for
component explained schizophrenia
PC1 69.9% 2.50
PC2 17.6% 1.05
PC3 5.8% 1.04
PC4 2.5% 1.00
PC5 1.8% 1.02
PCé6 1.3% 1.02
PC7 0.6% 1.02
PC8 0.3% 1.02
PC9 0.2% 1.03
PC10 0.0% 1.05
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APPENDICES

ALGEMENE INTRODUCTIE

De adolescentie is de periode die de overgang representeert tussen kind en volwassene. Het
is een periode in het leven waarin grote veranderingen plaatsvinden in gedrag en in
lichamelijke kenmerken. Onder andere de toename in kritisch denken, de ontwikkeling van
zelfidentiteit en moreel kompas, en binding met leeftijdsgenoten zijn belangrijke
ontwikkelingen die tijdens de adolescentie plaatsvinden om tot een onathankelijk persoon
op te groeien. In deze periode kunnen ook gedragsproblemen voorkomen, zoals het
onnodig nemen van risico's, impulsiviteit, delinquentie en het gebruik van alcohol of drugs.
Daarnaast is de adolescentie een periode waarin sommige psychiatrische stoornissen, zoals
schizofrenie, vaak voor het eerst voordoen. Parallel aan deze veranderingen in het gedrag
blijven de hersenen zich tot ver in de jongvolwassenheid ontwikkelen. De ontwikkeling is
niet bij iedereen hetzelfde, er is sprake van heterogeniteit in de ontwikkeling. De
heterogeniteit in de vele aspecten die betrokken zijn bij de ontwikkeling van kinderen en
adolescenten leidt tot aanzienlijke verschillen hoe het met hen vergaat als volwassene. Dit
roept de vraag op 'waarom sommige kinderen beter gedijen dan anderen’; en welke rol de
hersenen, genen, en omgevingsfactoren daarbij hebben. In het veld van de ‘imaging
genetics’ worden methoden uit de neuroimaging en genetica gecombineerd om de relaties
tussen gedrag, de hersenen, genen, en omgevingsfactoren te ontcijferen. In voorgaand
onderzoek is aangetoond dat structurele en functionele eigenschappen van de hersenen
sterk erfelijk bepaald kunnen zijn. Daarnaast is gebleken dat ook de mate van
veranderingen in de hersenen erfelijk bepaald zijn. De uitdrukking van de genen die
betrokken zijn bij de ontwikkeling van de hersenen worden sterk gereguleerd door onder
andere omgeving, voornamelijk tijdens de vroege levensjaren. Maar ook op latere leeftijd
kunnen omgevingsfactoren invloed hebben op de expressie van genen, bijvoorbeeld door
regulatie via epigenetische modificaties. Er wordt verondersteld dat dit dynamische
samenspel van genetische en omgevingsinvloeden op de hersenen verklaart waarom
bijvoorbeeld eeneiige tweelingen met dezelfde genetische achtergrond discordant kunnen
zijn voor zeer erfelijke aandoeningen zoals schizofrenie. Dit samenspel kan mogelijk ook

antwoord geven op de vraag ‘waarom sommige kinderen beter gedijen dan anderen’®.

SAMENVATTING

In dit proefschrift worden de invloeden van genen en omgeving op de ontwikkeling van de
hersenen beschreven. Hier wordt specifiek gekeken naar de genetische invloeden op de
dikte van de hersenschors en de connectiviteit van functionele netwerken tijdens de

ontwikkelingen van de hersenen in de adolescentie (hoofdstuk 2 & 4). Dit onderzoek is

6 Consortium on Individual Development; https://individualdevelopment.nl

320



NEDERLANDSE SAMENVATTING

gedaan in een longitudinaal cohort van adolescente tweelingen en een oudere broer of zus
die deelnamen toen de tweelingen 9, 12, en 17 jaar oud waren. Voor het onderzoek naar
connectiviteit van functionele netwerken wordt gebruik gemaakt van een meetmodel
waarvan de bruikbaarheid empirisch is beoordeeld in de openbare ‘Young Adult’ dataset
van het ‘Human Connectome Project’ (hoofdstuk 3). Daarnaast wordt de genetische en
epigenetisch bijdrage aan versnelde veroudering van de hersenen beschreven in een cohort

van patiénten met schizofrenie (hoofdstuk 5).

Ontwikkeling van de hersenschors tijdens de adolescentie

In hoofdstuk 2 worden de genetische invloeden op de dikte van de hersenschors tijdens
de kindertijd en adolescentie beschreven. Eerder onderzoek naar de ontwikkeling van de
hersenschors in de eerste twee metingen van het BrainSCALE cohort heeft aangetoond dat
de mate van veranderingen in de dikte van de hersenschors beinvloed wordt door genen,
en waaruit is gebleken dat tijdens de eerste jaren van de adolescentie nieuwe genen een rol
gaan spelen. Dit onderzoek is nu uitgebreid met de derde meting van het BrainSCALE
cohort dat is afgenomen toen de tweelingen 17 jaar oud waren. Deze derde meting volgt
op een periode van versnelde ontwikkeling van de hersenschors zoals gebruikelijk wordt
waargenomen tijdens de adolescentie. Uit dit vervolgonderzoek blijkt dat hoofdzakelijk
dezelfde genetische factor de dikte van de hersenschors gedurende de kindertijd en
adolescentie bepaald. De verschillende gebieden van de hersenschors worden daarnaast
deels beinvloed door genetische factoren die specifiek zijn voor die gebieden. De
verdunning van de hersenschors tijdens adolescentie is voornamelijk toe te schrijven aan
fluctuerende invloeden van de gemeenschappelijke genen. Daarnaast zijn er aanwijzingen
gevonden voor lokaal-specifieke constante en nieuwe genetische factoren. Dit onderzoek
heeft de dynamiek van genetische invloeden op de hersenschors over tijd en locatie laten
zien voor de ontwikkelende hersenen tijdens de adolescentie, wat gepaard gaat met een

golf aan invloeden van een nieuwe genetische factor.

Betrouwbaar meten van functionele connectiviteit van het brein

In hoofdstuk 3 wordt het gebruik van een meetmodel voor het betrouwbaarder meten van
functionele connectiviteit van de hersenen beschreven. Vrijwel geen eigenschap kan
volledig betrouwbaar gemeten worden zonder bijkomstigheid van willekeurige meetruis.
Deze meetruis zorgt ervoor dat de sterkte van de verbanden tussen eigenschappen en de
erfelijkheid van eigenschappen onderschat worden. Met behulp van een meetmodel kan de
betrouwbare component van een eigenschap, dat bepaald wordt door wat gemeenschappelijk
is tussen parallelle of herhaalde metingen, bijvoorbeeld de twee helften van een functionele
MRI-scan sessie die afgenomen is in rusttoestand, afgezonderd worden van de meting-

specifieke variatie. Vervolgens kan de “ware” sterkte van de verbanden tussen bijvoorbeeld
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functionele connectiviteit van de hersenen en gedragsmaten bepaald worden, of kan de
erfelijkheid van de betrouwbare component van functionele connectiviteit bepaald worden,
alsof de eigenschap feilloos gemeten is. In dit onderzoek is de toegevoegde waarde van het
gebruik van een meetmodel voor het betrouwbaarder meten van functionele connectiviteit
van de hersenen empirisch beoordeeld in de openbare ‘Young Adult’ dataset van het
‘Human Connectome Project’ voor verschillende lengtes van de MRI-scans en aantal
participanten in het onderzoek. Daaruit blijkt dat het betrouwbare component van
functionele connectiviteit van de hersenen aanzienlijk meer consistent is bij herhaalde
metingen die over twee dagen verspreid zijn dan wanneer er geen gebruik gemaakt wordt
van een meetmodel. Dit model schat een tot bijna twee keer hogere “ware” sterkte van de
associatie tussen de betrouwbare component van functionele connectiviteit en gedragsmaten
in, en geeft een hogere schatting voor de erfelijkheid van functionele connectiviteit. Dit
onderzoek heeft laten zien dat gedrags- en genetische studies baat hebben bij het gebruik
van een meetmodel dat in staat is om de betrouwbare component van een eigenschap te

identificeren in het onderzoek naar de functionele connectiviteit van de hersenen.

Ontwikkeling van functionele connectiviteit tijdens de adolescentie

In hoofdstuk 4 wordt de ontwikkeling van functionele connectiviteit van de grootschalige
netwerken in de hersenen tijdens de adolescentie voor de kinderen van het BrainSCALE
cohort beschreven. Andere — voornamelijk cross-sectionele — onderzoeken rapporteren
inconsistente bevindingen met betrekking tot de ontwikkeling van functionele
connectiviteit van de hersenen in kinderen. Dit kan voorkomen bij cross-sectionele studies
wanneer veranderingen tussen proefpersonen op verschillende leeftijden groter zijn dan
de veranderingen bij longitudinale ontwikkeling van de individuele proefpersonen.
Voorgaande genetische studies rapporteren voornamelijk kleine genetisch invloeden op
functionele connectiviteit van de hersenen. Dit kan onder andere verklaard worden door
grote intra-individuele verschillen die mogelijk toe te wijden zijn aan de relatief
onbetrouwbare metingen van functionele connectiviteit in de hersenen. In mijn
longitudinale onderzoek wordt het meetmodel, dat in hoofdstuk 3 beschreven wordt,
toegepast op de functionele MRI-scans afgenomen in rusttoestand om de invloeden van
genen en omgeving op de stabiele en betrouwbare component van functionele connectiviteit
te bepalen, en de verschillen te bepalen tussen kindertijd en adolescentie. Uit dit onderzoek
blijkt dat de functionele connectiviteit tussen de netwerken afneemt met de leeftijd, terwijl
de functionele connectiviteit binnen de netwerken over het algemeen juist toeneemt met
de leeftijd. Deze veranderingen in functionele connectiviteit vinden plaatsen ongeacht het
cognitief presteren van de kinderen. Daarnaast bepaalt het geslacht van kinderen en
jongeren de sterkte van de functionele connectiviteit in bepaalde netwerken; bij meisjes is

de functionele connectiviteit in het ‘default mode’ netwerk — dat actief is tijdens rust en
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onder andere betrokken is bij zelfreflectie — sterker dan bij jongens, en een tegengesteld
effect in het ‘salience’ netwerk — dat onder andere betrokken is bij aandacht en bottom-up
stimuli verwerking. De individuele verschillen in de sterkte van functionele connectiviteit
van de hersenen kan deels verklaard worden door genetische invloeden. Er zijn geen
aanwijzingen gevonden dat deze genetische invloeden veranderen tijdens de ontwikkeling
van de functionele netwerken in de adolescentie. Naast genen spelen voor sommige
netwerken de invloeden vanuit een gemeenschappelijke omgeving een belangrijke rol bij
het verklaren van individuele variatie in de sterke van functionele connectiviteit. Dit
onderzoek heeft aangetoond dat ook tijdens de adolescentie er subtiele maar
wijdverspreide veranderingen in het functioneren van netwerken van de hersenen
plaatsvinden die in vervolgonderzoek mogelijk in verband gebracht kunnen worden met
veranderingen in gedrag tijdens de adolescentie. Daarbij spelen genen en
gemeenschappelijke omgevingsfactoren een belangrijke rol in het bepalen van de mate van

functionele connectiviteit in de hersenen.

Versnelde veroudering in patiénten met schizofrenie

In hoofdstuk 5 wordt het verband tussen versnelde veroudering in de hersenen en
versnelde veroudering zoals gemeten via epi-genetica in het bloed bij patiénten met
schizofrenie onderzocht in verhouding tot het genetisch risico op schizofrenie. De
versnelde veroudering wordt berekend door het verschil tussen de voorspelde leeftijd van
de patiént aan de hand van een MRI-scan of DNA-monster en de chronologische leeftijd van
de patiént. In twee voorgaande studies is onathankelijk van elkaar aangetoond dat de
hersenen van patiénten met schizofrenie versnelde veroudering laat zien met name in de
beginperiode waarin de aandoening zich voor het eerst voordoet, en dat ook de voorspelde
biologische leeftijd gemeten via epi-genetische modificaties voorloopt op de
chronologische leeftijd. Uit het huidig onderzoek is gebleken dat de versnelde veroudering
van de hersenen niet eenduidig samenhangt met de versnelde veroudering gemeten door
epi-genetica, ondanks dat beide verouderingsprocessen deels verklaard worden door het
genetisch risico op schizofrenie. Nadat de diagnose status van de proefpersonen in acht
genomen is en een correctie voor meerdere vergelijkingen is toegepast, waren deze effecten
echter niet langer significant. Deze resultaten kunnen mogelijk wijzen op (versnelde)
veroudering in de verschillende weefsels die verschillende biologische processen
weerspiegelen, ondanks dat beide processen afzonderlijk van elkaar in verband zijn

gebracht met genetisch risico op schizofrenie.

SLOTOPMERKING

In hoofdstuk 6 worden de belangrijkste bevindingen van de onderzoeken uit de

hoofdstukken 2 tot en met 5 opgesomd en gevolgd door een algemene discussie van de
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bevindingen. Ik concludeer dat het bestuderen van de gezonde ontwikkeling van de
hersenen bij kinderen en adolescenten belangrijk is omdat het een basis vormt voor wat
als afwijkende ontwikkeling moet worden beschouwd bij neuro-psychiatrische
aandoeningen zoals bijvoorbeeld schizofrenie. Daarnaast helpt deze kennis mee om te
begrijpen welke structuren of functies van de hersenen verantwoordelijk zijn voor
verandering in het gedrag van adolescenten. Door tweelingen bij de studie te betrekken
kan bepaald worden in welke mate individuele variatie in structuur en functie van de
hersenen en gedrag van adolescenten door genetische en omgevingsfactoren beinvloed
worden. Samen kunnen deze onderzoeken informeren waarom sommige kinderen beter
gedijen dan anderen, en kunnen deze onderzoeken helpen bij de ontwikkeling van
diagnostische hulpmiddelen en interventies om kinderen die het moeilijk hebben weer op

de juiste weg te helpen.

Vervolgonderzoek van adolescentie naar volwassenheid in dit cohort is niet alleen nodig
om de kennis over de ontwikkeling en het gedrag van de hersenen van adolescenten uit te
breiden, maar ook om de bestaande onderzoeksresultaten te valideren en repliceren.
Grootschalige cohorten die de basis vormen voor populatieonderzoeken kunnen daarbij
helpen doordat zij prospectief onderzoek mogelijk maken. De statistische kracht van deze
grootschalige studies kan helpen om de associaties tussen de hersenen en gedrag tijdens
adolescentie met kleinere effectgroottes betrouwbaarder te detecteren. Gecombineerd met
een longitudinale onderzoeksopzet en het betrekken van tweelingen in het onderzoek
kunnen deze studies de resultaten van dit proefschrift valideren, en zich vervolgens richten
op het uitbreiden van de resultaten door gen-omgevingsinteracties of causale verbanden te

onderzoeken.
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Na vier jaar hard zwoegen — oké, inmiddels misschien wat langer dan vier jaar — ligt er dan
eindelijk zo’n boekje waar je op mag promoveren. Ook al staat alleen mijn naam op de
voorkant, veel personen hebben een bijdrage geleverd aan dit proefschrift waarvoor ik hen

graag zou willen bedanken.

Allereerst zou ik graag de tweelingen, hun ouder broers en zussen, en hun ouders willen
bedanken voor deelname aan de BrainSCALE studie. Ontzettend veel respect dat de meeste
van jullie een tweede of zelfs derde keer zijn op komen dagen, zonder jullie was deze studie

nooit van de grond gekomen.

Daarnaast zou ik graag de promotoren en copromotor prof. dr. Hilleke Hulshoff Pol, prof.
dr. Dorret Boomsma, en dr. Rachel Brouwer in het algemeen willen bedanken voor het
beschikbaar stellen van het promotietraject en hun ondersteuning tijdens het werk. Het
was mij een waar genoegen om onder jullie leiding onderzoek te mogen doen. Ik heb er
veel van geleerd, niet alleen over ontwikkeling van de hersenen, genetica, en statistiek,
maar ook wat “onderzoek doen” inhoudt en hoe onderzoek benut kan worden voor

maatschappelijk belang.

Beste Hilleke, jouw energie en vrolijkheid werkt aanstekelijk. Ook als ik zelf wat somber
gesteld was over de tegenvallende resultaten wist jij er altijd een positieve twist aan te geven.
Het heeft mij geleerd om ook de kleine overwinningen te zegenvieren, want elke stap vooruit
is er weer één. Dat optimisme heeft zeker bijgedragen aan het afronden van dit boekwerk. Ik
zou jou graag willen bedanken voor het vertrouwen en de hulp bij het doorzetten om dit

mogelijk te maken, en bij het zetten van de volgende stap in de onderzoekwereld.

Beste Dorret, de colleges tijdens de cursus Complex Trait Genetics waren ontzettend
interessant en hebben veel geholpen bij mijn werk met genetica. Je was altijd bereid om
kritisch de pagina’s lange teksten te beoordelen, ook als je op het punt stond om op
vakantie te gaan. Ik keek altijd erg uit naar het commentaar, want de grote schat aan kennis
die jij bezit over alles genetica en tweelingen is van onschatbare waarde. Jij zorgde ervoor
dat alles juist en duidelijk opgeschreven stond zodat reviewers er nauwelijks nog een speld

tussen kregen. Voor die hulp ben ik jou zeer dankbaar.

Beste Rachel, bedankt dat je altijd beschikbaar was om vragen te beantwoorden of knopen
door te hakken. Jouw bereidbaarheid om anderen te helpen met jouw uitgebreide kennis
over statistiek is zeer bewonderenswaardig. Daar heb ik dan ook ontzettend veel hulp aan
gehad, zeker bij de complexe tweelingmodellen. Ik heb veel plezier gehad aan onze
wekelijkse bijeenkomsten waar we konden brainstormen over allerlei mogelijke analyses
en bespreken hoe we de resultaten het best op konden schrijven. Ik zal die momenten heel

erg gaan missen.
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Tevens zou ik graag de leescommissie, bestaande uit prof. dr. Floor Scheepers, prof. dr.
Sarah Durston, prof. dr. Nick Ramsey, prof. dr. Rick Dijkhuizen, en prof. dr. Barbara
Franken, willen bedanken voor hun tijd om dit boekje door te lezen, te beoordelen, en

zitting te nemen tijdens de promotieplechtigheden.

Mijn dank gaat uit naar de PhD-studenten die mij voorgingen in de BrainSCALE studie:
dr. Inge van Soelen, dr. Jiska Peper, dr. Suzanne Swagerman, en dr. Marinka Koenis;
bedankt voor jullie inzet bij het verzamelen van data en het opbouwen van een sterke basis
aan onderzoeksresultaten om op voort te mogen bouwen. Beste Marinka, het was erg fijn
om in het begin iemand te hebben die mij op weg kon helpen met artikelen, software,

toegang tot de data, en hulp bij het regelen van allerlei zaken rondom de PhD.

Mijn werkplek was prettig; dank aan alle kantoorgenoten: Elise, Jasper, Pascal, Judith,
Bart, Martijn, Jessica, Sonja, Herm, Merel, en Elizabeth; om hulp bij te kunnen zoeken
wanneer ik vast kwam te zit, om mijn frustraties te kunnen uiten als het even niet meer
lukt of tegen zat, om kennis of interessante feitjes mee te kunnen delen, of gewoon even
lekker afgeleid te raken van het harde werk. Het was gezellig om met jullie een kantoor te

delen, een gezelligheid die de laatste tijd sterk gemist wordt.

Graag zou ik prof. dr. Roel Ophoff willen bedanken voor het beschikbaar stellen van een
stageplek in UCLA; ik kijk nog altijd met veel plezier terug naar mijn tijd in California.
Daarnaast ook dank aan dr. Anil Ori en dr. Hugo Schnack voor hun kennis en
ondersteuning bij het afronden van het manuscript over epigenetica en brain aging dat is

voortgekomen uit deze stage.

Ook bedankt aan de bachelor- en masterstudenten Philip, Jodo, Maxime, Zyneb en Karis.
Het was erg leuk om jullie te mogen begeleiden en een fijne afleiding van het dagelijkse
ritme. Bedankt voor jullie inzet, waarvan delen ook ten goede zijn gekomen aan de
hoofdstukken in dit boekwerk.

Op de achtergrond valt er veel te regelen om een promotie mogelijk te maken. Mijn dank
gaat uit naar Jeanette en Janneke voor hun hulp bij het grotendeels over te nemen en in
goede banen te leiden van alle administratieve zaken. Daarnaast Thijs en Yumas voor het
onderhouden en ondersteunen van het lokale computer infrastructuur, waar dierbaar
gebruik van is gemaakt; en het HPC-team voor het onderhouden en de ondersteuning van
het centrale rekencluster, zonder die rekenkracht had dit werk er vele jaren langer over
gedaan. En BCRM - of tegenwoordig CEN - voor het aanbieden van cursussen en het
organiseren van de maandelijkse X-talks en jaarlijkse bijeenkomsten. Bedankt aan
iedereen die niet bij naam genoemd is, maar op zijn of haar eigen manier een steentje

heeft bijgedragen aan het afronden van mijn promotietraject.
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Ook buiten werk om zijn er personen die ik graag zou willen bedanken voor hun

ondersteuning bij het afronden van dit boekje.

Beste Bart, wie had verwacht dat we ooit bij elkaar op hetzelfde kantoor terecht zouden
komen? Natuurlijk hadden we tijdens onze studie wilde plannen om onze interesses te
combineren tot één project, maar het was uiteindelijk toch een verassing toen bleek dat wij
allebei een promotietraject begonnen op dezelfde afdeling! Wij kennen elkaar al zo lang dat
ik niet weet waar ik zou moeten beginnen, laat staan dat er ruimte is om in detail gaan; maar
weet dat ik onze vriendschap altijd zeer gewaardeerd heb en blij ben dat wij nog steeds zo’n
hechte band hebben. Het is immers niet zonder reden dat wij elkaar als ‘broer’ beschouwen.
Bedankt voor al jouw hulp en ondersteuning in persoonlijke sfeer en op werk; ook in de
moeilijke tijden. Ik hoop dat wij nog veel tijd samen mogen doorbrengen, en dat onze dochters

net zo'n goede band met elkaar mogen ontwikkelen dat zij zich als ‘zusjes’ zullen beschouwen.

Beste Marnix en Age, ik denk nog altijd terug aan de tijd die wij samen hebben
doorgebracht tijdens onze studie in Enschede. Dat was een heerlijke tijd, waarin wij
geregeld met elkaar optrokken om op de Calslaan te barbecueén, films te kijken of te
gamen, te sporten bij de Stretchers of deel te nemen aan hardloopwedstrijden, en op
vakantie te gaan naar Schotland en Luxemburg. Ook na onze studie heb ik veel plezier aan
de contacten die wij onderhouden om samen te wandelen of te gamen. Zo veel leuke
herinneringen dat ik trots ben om jullie hier als vrienden te noemen en te kunnen bedanken
voor die leuke tijd. Nu de drukke tijd van het afronden van mijn promotie er bijna op zit

kijk ik er naar uit om de gameavonden weer op te pakken.

Beste Inge en Ronald, het voelt wat cliché om de ouders te bedanken, maar met een oprecht
hart zou ik jullie willen bedanken voor praktisch alles. Als ouders hebben jullie een
belangrijke rol gespeeld bij wie ik ben geworden, zo doende ook mijn academische carriére.
Bedankt voor jullie ondersteunende rol en het aanbieden van mogelijkheden om mijn eigen
interesses te volgen, de unieke kans om aan tweetalig onderwijs deel te nemen, en de
gelegenheid om naar de universiteit te kunnen gaan. De beste eer die ik jullie kan geven is het

rolmodel van de ouders die jullie zijn over te nemen bij het opvoeden van mijn eigen kinderen.

Lieve Roos, de afgelopen jaren is een bijzondere tijd geweest waarin veel is gebeurd naast de
promotie; wij zijn gaan samenwonen, getrouwd, en hebben onze dochter Vera mogen
verwelkomen. Met name het laatste jaar is ook voor jou best pittig geweest, terwijl een groot
deel van mijn tijd opging aan werk of afronding van mijn promotie moest jij voor Vera
zorgen. Ze is een lekker levendige en eigenwijze dame, en de stilte en rust in huis zal niet snel
terugkeren voordat zij oud genoeg is om haar eigen paden te bewandelen. Maar met deze

laatste zin kan ik beloven weer meer tijd over te houden om samen met jullie door te brengen.
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“If I could gather all the stars and hold them in my hand,
the colours I would then possess would not be half as grand
as those which I have seen when I look deep into your eyes

or come across when I have kissed your lips, I realize.

If I could ponder all the truths that men have sought since time began
they would not teach me more than if I were to touch your hand.
For truth, to know one whom we have touched appears as simple lies

and nothing could be truer than your touch, I realize.

If T were given lasting life as only God can do,
I'd shun it all and turn away if I could live with you.
For even God has never known the immeasureable size

of the love that is within your heart, I realize.”

A poem by Kim Ault
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Understanding typical brain development in children and adoles-
cents is important because it provides a baseline for what is to be
considered aberrant development. This knowledge can also be used
to determine what parts of the brain is responsible for cognitive and
behavioral development in adolescence and can inform on psychia-

tric disorders that have their onset in adolescence, such as schizophr-

enia. With a longitudinal twin study des1gn the genetlc and environ-

mental influences _on bra1n and behav1or as well as therr '

i developmental changes can be d1sentangled

In thrs thes1s I show that 1) the tlnckness of the cerebral cortex and‘

its rate of development durrng adolescence is largely: under ‘genetic

control, with a new genetic factor markmg the transition durmg ado-

‘lescence; ii) functional connect1v1ty in the adolescent bra1n is in part .

* also determined by genes, along Wlth several 1nd1cat1ons of influen-

ces from common environment, that remam largely stable: over time.

This suggests that the development of the structure of the bra1n is

: considerably influenced by genes while the functronlng of the brain
is more flexible to adapt to the environment. Patlents with schizo=

" phrenia experience. accelerated aging. I'looked at accelerated aging -
based on the structure of the brain and epIgenetlc modlﬁcatlons and
found iii) no clear ev1dence that these two aglng processes are rela- ; ;
ted despite that both are part1ally determmed by genes r’plrcated in 1 ¢
schlzophrenla This suggests the poSs1b1llty for two distinct agmg ~

processes aﬂ‘ectmg accelerated agrng in pat1entM1th schrzophrema
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