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INTRODUCTION



Chapter 1

TWIN DESIGN

Comparisons of twin pairs have long been a vital methodology to derive the degree
to which a specific phenotype is influenced by genetic factors. The first studies to
utilize the comparison of monozygotic and dizygotic twin pairs to deduce heritability
of human traits were performed in the early 1920s, and focused on corneal refraction,
melanocytic naevi, and I1Q [1-3]. In the subsequent years, twin studies would be utilized
to study a large number of measurable human phenotypes that were just as diverse
as the phenotypes observed in the seminal studies. The “classical” twin design (CTD)
generally involves both monozygotic (MZ) and dizygotic (DZ) twin pairs and notes
the similarities or differences in a specific measurement within these groups. These
observations are interpreted in the context that MZ twin pairs completely share their
genome while DZ twins share, on average, half of their genome. Observing a higher
degree of similarity in the MZ twins relative to the DZ pairs, for a particular trait, usually
in the form of an increased correlation coefficient, is indicative of a proportion of the
overall variance in that trait being attributable to heritable components (A). While
these twin groups differ in the amount of shared genetic material, both co-twins,
either MZ or DZ, are subjected to very similar environmental conditions throughout
their development. Regardless of zygotic status, co-twins are generally reared in the
same fashion, subjected to similar diets, and often several other critical environmental
factors.

Given that both MZ and DZ co-twins share their environmental conditions to an equal
degree, the correlations observed between sets of MZ and DZ twin pairs would be
equally impacted by environmental factors. Thus, the relative correlations obtained
from MZ and DZ pairs are also informative for determining the effect of shared
environment (C). Although both MZ and DZ twin pairs share a large proportion of
their environments, there are still aspects of each twin’s environment that are unique
to that twin relative to their co-twin. These factors could include a traumatic event or
accident that only affected one twin or simply attending separate schools. The effect
of these unique environmental influences, termed the unique environment (E), can be
determined by observing the difference in correlations between MZ twin pairs for a
particular trait. These three variation sources cumulatively influence the overall trait
variation found in a population (V,= V,+ V_+ V).

ACE MODELING

Through the use of data collected from twin participants, it is possible to partition
the overall variance of a phenotype into the respective additive genetic, shared,
and unique environmental components, using an ACE model [4]. The ACE model,
efficiently represented with a path diagram, aims to visually represent a model of
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the aforementioned genetic and environmental factors’ influence over an observed
phenotype. Figure 1.1 shows the visual representation of the ACE path diagram. In
this path diagram, the observed phenotypes are depicted with boxes, whereas the
latent or unobserved variables, A, C, and E, representing the additive genetic, common
environment, and unique environment components respectively, are depicted with
circles. The latent variables have an effect, denoted by a, c and e, on the variance of
the observed phenotype of interest. Information regarding the covariance of latent
variables between twin pairs is conveyed with a double-sided arrow. For MZ twin
pairs, the covariance between the additive genetic components is always 1 due to
completely sharing a genome. Similarly, the covariance between DZ twins' additive
genetic components can be adequately estimated at 0.5 because DZ twin pairs share,
on average, 50% of their genome. A covariance of 1 is observed between the common
environmental components of both MZ and DZ twin pairs because both types of twins
share certain aspects of their environments entirely. There is no arrow connecting
the unique environmental components influencing a phenotype of co-twins as these
factors are inherently unique to a single twin regardless of zygotic status. The model's
parameters in Figure 1.1 are generally estimated using full information maximum
likelihood methods implemented in programs such as OpenMx [5].

An alternative model is the ADE model, where the genetic influences are not restricted
to additive genetic variance but also include non-additive variance (V,) due to epistatic
allele-allele interactions or allelic dominance. In the classical twin study, a choice must
be made between ACE or ADE models based on the pattern of twin correlations.
However, extended twin-family designs, which add data from parents and siblings,
or second-degree relatives, to data from the twins themselves, can simultaneously
estimate the ACDE components while relaxing the classical twin designs assumptions
regarding mating and cultural transmission [6, 7]. The urgency of such complex models,
however, has been questioned. In the most comprehensive analysis of the causes of
individual differences in human traits important to medicine, psychology, and social
sciences thus far, Polderman et al. reported on a meta-analysis of twin correlations
and reported variance components for 17,804 traits from 2,748 publications including
14,558,903 partly dependent twin pairs [8]. The mean estimate of heritability across
all traits was 49%. For a majority (69%) of traits, the observed twin correlations are
consistent with a simple and parsimonious model where twin resemblance is solely
due to additive genetic variation, with relatively modest influences from shared
environment or non-additive genetic variation. Even so, the shared environment did
show an impact on some of the traits, particularly those with low heritability. As this
dissertation will show, the microbiome is a trait meeting this description.
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MzZ=1.0,DZ=0.5

(99 Qo5

Twin 1 Twin 2

Figure 1.1 | Example of ACE path diagram. Depicts the latent components A, C and E and the
effect these components have on the observed phenotype of interest.

THE NETHERLANDS TWIN REGISTER AT VU

Because of the position of authority that the twin design gained in the study of
individual differences in human traits, specifically the long-standing issue of nature
versus nurture, many countries have spawned national twin registries, with larger
countries like the US even maintaining multiple region-specific registries [9]. Amongst
these is the Netherlands Twin Register, maintained by the Department of Biological
Psychology at the Vrije Universiteit (VU) Amsterdam, the data of which are at the
core of the current dissertation. For more than three decades, the Netherlands Twin
Register (NTR) has invited twins and their family members to participate in research
studies [10], including siblings, spouses, children, parents, and even grandparents of
twins. A primary driver has been to perform the type of analyses depicted in Figure
1.1 to detect the genetic and non-genetic contribution to cognitive and emotional
development in childhood and adolescence, and adult behavioral and health and
well-being outcomes. These outcomes were partly assessed by 2-3 yearly surveys
and partly by experimental studies of, e.g., autonomic nervous system function,
cardiovascular risk, brain structure and function, neurocognitive test performance
and 1Q, or (an)aerobic fitness and daily physical activity.

The largest of the experimental studies, the NTR biobank study of nearly 10,000
participants, set out to characterize NTR participants on a host of metabolic and
immunological risk factors and create a resource for future “omics” biomarker
studies. Examples of biomarkers assessed for all NTR Biobank participants include
body mass index (BMI), waist-hip ratio, HDL-C, LDL-C, triglycerides, Hb1Ac, fasting
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glucose and insulin, liver enzymes, Greactive protein, fibrinogen, interleukin (IL)-6,
TNF-a, and soluble IL-6 receptor. Together these biomarkers allow an assessment of
cardiometabolic risk and chronic low-grade inflammation. The term cardiometabolic
risk describes an individual’'s chances of damaging their heart and blood vessels
when one or more of the following risk factors are present: obesity, high LDL (“bad”)
cholesterol, high blood fat (triglycerides), insulin resistance. Each of these risk factors
is dangerous on its own, but a combination dramatically increases the risk of heart
disease and stroke, particularly if blood pressure is also heightened. Metabolic
syndrome, syndrome X, cardiometabolic syndrome, and insulin resistance syndrome
are other terms for this cluster of risk factors. Low-grade inflammation is usually
defined as “the chronic production, but at a low-grade state, of inflammatory factors.”
Low-grade inflammation does not stem from an overt infection but reflects a slight
increase in the concentrations of multiple inflammatory factors compared to a healthy
individual, even if each remains in the healthy range. Cytokines are often involved in
low-grade inflammation [11, 12]. They have an important role in cell-to-cell signaling
in the coordinated immune response to infection and can also act in the brain and
induce behavioral changes like sickness behaviors.

DNA collection constituted an essential element of the NTR biobank project, setting
the stage for a continuous and ongoing DNA collection effort in all NTR participants
who have ever provided any phenotype information. DNA is collected from whole
blood for most adult participants. Adult twins are typically asked to provide a buccal
sample in addition. Buccal swabs are used for oral DNA collection in young twins
and their siblings and parents. The motivation for such large-scale DNA collection is
evident. Progress in technology for directly measuring genetic variants at the DNA
level has made it possible to quantify the genetic similarity between individuals
without the need for data on family relationships. Direct measurement of genetic
variants, most often Single Nucleotide Polymorphisms (SNP), is possible through the
use of technologies such as polymerase chain reaction (PCR), microarray genotyping,
and full genome sequencing [13]. All of these technologies are capable of providing
information about segregating alleles within the genome. The data obtained through
these technologies, particularly those from microarray platforms, are now commonly
used in genome-wide association studies (GWAS). These studies use large samples
of human genomic data, coupled with phenotypic information of interest, to discover
genetic loci significantly associated with that phenotype [14-16]. The success of the
international GWAS consortia in terms of the number of confirmed loci is staggering,
with the GWAS catalog containing more than 6000 GWAS comprising >75000+ variant-
trait associations from nearly 4000 publications (https://www.ebi.ac.uk/gwas/).
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THE NTR-AVERA COLLABORATION

The processes of measuring genetic variants and the subsequent data analyses
require specialized skill sets, which often necessitates collaboration between research
groups that focus on these areas to answer complex genetic questions. To this end, a
collaboration was formed between the Avera Institute for Human Genetics (AIHG) and
the VU/NTR. Within this collaboration, the molecular genetics laboratory at AIHG has
brought forth the expertise and infrastructure capable of performing a vast array of
molecular genetic experiments. The NTR research group, in turn, provided expertise
concerning the many aspects of biobanking, phenotype collection, and advanced
statistical methods vital to carrying out genetic research in longitudinal twin-family data.

From the genesis of the collaboration, AIHG has produced large amounts of genetic
data on NTR participants through the use of DNA microarray technologies. Among
the many microarray capabilities within the AIHG repertoire are the Axiom-NL array
[17] and its successor, a customized version of the lllumina Global Screening (GSA)
array [18], which are both themselves products of the NTR-Avera collaboration. These
platforms optimize population-specific genotyping assays using an appropriate whole-
genome sequence reference set and add SNPs known to influence pharmacogenomic
responsivity, traits like cardiometabolic diseases and common psychiatric disorders,
and traits of specific interest to NTR like fertility and twinning.

The AIHG genotyping and Avera-VU collaborative scientific input has been successfully
employed in large-scale genetic discovery studies spanning numerous fields including
but not limited to attention problems [19-24], aggression [25], substance use [26-
28], personality [29], exercise behavior [30], depression [31-35], intelligence [36],
cortical and subcortical brain structures [37-39], DNA methylation [40-42], twinning
and female Fertility [43, 44] and many other traits [45-48].

Apart from its genotyping facilities, the AIHG lab provides NTR with many other
sequencing-based technologies. An example is the large-scale epigenotyping possibilities
using the lllumina Methylation arrays that investigate >450k or >850k (EPIC) DNA
methylation sites to offer a broad view of methylation state, covering CpG islands, genes,
and enhancers. Particularly when located in a gene promoter, DNA methylation typically
acts to modify gene transcription, which may be as extreme as complete silencing of the
gene. Studies in MZ twins have shown an age-related divergence of methylation patterns
due to environmental rather than genetic influences [41, 49, 50]. Overall, there is a global
loss of DNA methylation during aging. Differences in the speed of this loss act like a
biological clock predicting disease-onset better than actual chronological age [51, 52].
In this dissertation, however, | used a second strategy to study aging and age-related
disease based on an adaptive DNA trait, the measurement of which | implemented
at AIHG for the NTR-Avera collaboration: the assessment of telomere length.
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TELOMERE LENGTH

Aging is a process all humans inevitably face throughout their lifetime. At this point, it
has been predicted that the number of individuals over the age of 60 will double from
11% to 22% between 2000 and 2050 [53]. Given the expected dramatic increase in the
aging population, it is of the utmost importance that we understand the aging process
to help individuals live longer, healthier lives. Furthermore, as we age, it is essential
to understand the molecular nature of aging and discover biomarkers that lend
information regarding an individual's aging process. One commonly used molecular
test is to measure the telomere regions of an individual's DNA via molecular methods.
Telomeres are genomic regions situated at the ends of chromosomes that provide
chromosomal stability and many other functions critical to biological processes [54].
The telomere, which caps the end of each strand of DNA, is subjected to attrition
throughout the life span due to the end replication problem, which results in the
loss of approximately 50-100 base pairs per mitotic division [55]. Once a significant
portion of the telomeric region has been degraded, the cell enters a state of replicative
senescence characterized by a marked change in gene expression and the inability to
divide further [56, 57]. Despite constant telomere degradation over the life span of a
cell, mechanisms are available for telomere elongation, mainly through the use of the
enzyme telomerase. The observation of telomere attrition in proliferating cells and
the immortality conveyed via telomerase activation suggests that telomeres act as
a central biological clock mechanism [58]. This association between telomere length
and a so-called biological clock is supported by studies highlighting an association
between telomere length and life span in humans [59-62].

To learn about telomere-associated dynamics across an individual's lifetime, studying
telomere dynamics longitudinally, starting from a young age, is pivotal. One hindrance
to this process is collecting DNA from individuals at a very young age. The standard
method of telomere measurement utilizes blood-derived DNA. Intravenous blood
draws on infants are considered by many to be an unnecessary burden on a young
child. The ability to use a more easily collectible DNA sample would greatly aid
researchers’ ability to collect and perform telomere measurements at a young age.
Specifically, buccal-derived DNA in place of leukocyte-derived DNA would greatly
facilitate large-scale telomere measurement studies in child samples as it just needs
a buccal swab and no blood draws.

In a large and overlapping set of participants, the NTR collected DNA from both
blood and buccal samples. Using these DNA samples, an extensive characterization
of the telomere length was undertaken for this dissertation exploiting two specific
advantages of the NTR in full (multiple tissues sampling and the genetically informative
design). These advantages make it feasible to understand how estimates of the cause
of variation in telomere length (i.e., the ACE variance components in Figure 1.1) may
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differ between various biological tissues. Additionally, the repeated measurement
structure in part of the blood samples allows us to study if and how telomere length
measurements can vary across different laboratories.

HUMAN MICROBIOME

Although data derived from genome-wide genomic marker platforms (e.g., SNPs or
CpGs), especially when coupled with missing data imputation, are incredibly useful
for many discoveries, these platforms do not come without limitations. Microarray
technologies, for example, are only capable of measuring SNPs known to exist and
are designed with a priori knowledge regarding the genetic architecture surrounding
the SNP of interest, which is necessary for the design of nucleotide probes to query
a particular genomic location of interest. In order to directly measure novel genetic
variants, technologies such as DNA sequencing are available. AIHG has provided
the means to directly sequence all nucleotides within the human genome, mainly
through next-generation sequencing technologies [63]. One realm of research carried
out by the joint NTR-Avera research collaboration that requires these measurement
techniques is microbiome research.

The microbiome refers to the collective genomes of the commensal, symbiotic
and pathogenic microorganisms found in and on all multicellular organisms. These
prominently include bacteria - estimates have determined that there is at least one
bacterial cell per human cell residing on the human body [64], but also archaea,
protists, fungi, and viruses. These microorganisms have been found to be crucial
for immunologic, hormonal, and metabolic homeostasis of their host and impact
several aspects of human health [65]. The strongest direct empirical evidence that
microbiomes can drive disease comes from experiments, mostly in animal models,
in which the microbiome from diseased donors is “transplanted” into healthy germ-
free hosts. By showing that the recipients of the obesity-associated microbiome
themselves developed obesity, a strong case was made, e.g., the microbiome’s
involvement in obesity [66]. Health effects of the microbiome composition have
been particularly intensely researched for obesity and a range from autoimmune
and cardiovascular diseases to mental disorders. Although the full human microbiome
consists of many microorganisms that inhabit many parts of the human body, I will
focus on the bacterial constituents of the gut microbiome in this dissertation. The
necessity of sequencing techniques in gut microbiome research stems from the lack
of a full genomic and taxonomic characterization of the many microorganisms that
inhabit the microbiome-associated communities.

International projects such as MetaHIT and the Human Microbiome Project [67, 68]
have used large scale sequencing to demonstrate a vast amount of variability in the
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human gut microbiome both within and between subjects. Sequencing approaches
fall into one of two categories. Shotgun metagenomics charts the collective genome
of microorganisms from a sample by shearing all extracted DNA, sequencing the
small fragments, and combining them into contigs for annotation of gene functions.
Targeted amplicon studies focus on one or a few marker genes and use these markers
to reveal the composition and diversity of the microbiome. Metagenomics approaches
have the advantage of providing much richer data on the potential molecular
functionality present in microbial communities. However, these experiments are
quite resource intensive. Alternatively, targeted amplicon studies allow for taxonomic
identification without the need for the large amount of resources necessary to carry
out the metagenomic sequencing methods. These methods are commonly carried
out through the sequencing of the 16S rRNA gene. This process involves amplifying
particular variable regions within the 16 rRNA gene of a microbiome community’s
bacterial constituents. This gene region is amplified from the DNA of all bacterial
members present within a sample and sequenced. 16S rRNA gene sequence data
provide a relatively unbiased characterization of bacterial and archaeal diversity
while sufficiently economical to allow large-scale epidemiological sampling. It is the
approach used throughout this dissertation.

The most widely used software packages to handle16S rRNA gene sequence data
from complex microbial communities are QIIME (http://www.giime.org) and mothur
(http://www.mothur.org). Both packages are open source and have online tutorials
and forums. In this dissertation, | have predominantly used mothur [69]. A microbiome
analyses end product is a frequency count for the number of sequence reads that
cluster into so-called operational taxonomic units (OTU). OTU assignment of a read
is based on a percentage of sequence identity (%ID). Various thresholds of sequence
identity are used to represent different taxonomic levels (e.g., 97% ID for species,
95% for genera). These taxonomic thresholds are known to be very rough estimates:
the degree of sequence variability depends on the region of the 16S rRNA gene
sequenced, the length of the amplicon, and the specific taxa in question. OTUs picked
at 97% sequence identity provide a naming convention for related bacterial species,
while acknowledging that there is no rigorous “species” concept for bacteria.

A rather important choice with a significant impact on downstream findings is the
OTU-picking algorithm chosen. OTU clustering algorithms fall into two main categories:
de novo and reference-based methods. In de novo OTU picking, all sequences are
used and clustered into OTUs, without any external reference sequences [70]. In
contrast, reference-based OTU picking (also called phylotyping) uses a reference
sequence database, such as the Ribosomal Database Project (RDP, http://rdp.cme.
msu.edu/), greengenes (https://greengenes.secondgenome.com/), or SILVA (https://
www.arb-silva.de/) to classify samples into known microbial taxa based on sequence
similarity between the sample and the reference taxon. Sample sequences that fail
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to sufficiently match the reference sequence database are discarded, or clustered
separately in the case of open-reference OTU picking.

Although | appreciate that both methods have pros and cons (see http://giime.
org/tutorials/index.html ), | have predominantly used de novo clustering in this
dissertation. This choice was guided by the fact that defining OTUs using the reference-
based approach can lead to a poor representation of the actual distances between
sequences [70] leading to the lumping together of microbes into a single taxon, that
are in fact quite distinct.

At the level of an individual, the microbiome can be qualitatively characterized by
the OTU abundances for all OTUs encountered in that individual or by assessing the
abundances of higher-level taxonomic groups, such as orders or families: summing
the sequences for all OTUs belonging to the group of interest (collapsing taxonomies).
In short, OTU-picking algorithms yield lists of OTUs with taxonomic labels. Note
that a majority of the detected OTUs will not be shared at appreciable abundance
levels by all individuals in a study [71]. In de novo clustering, many OTUs will lack a
complete taxonomy label; for example, the classification might include a family level
categorization but might lack genus or species categorization. At first glance, taxa
that have associated genus/species information are more appealing and tend to get
more weight in discussion of results. This is incorrect. OTUs without genus/species
information are frequently both more abundant and more representative of total
diversity than are OTUs with genus/species names.

After sequences have been assigned to OTUs, their phylogenetic relationships can be
inferred, either by using an existing reference database with an associated phylogeny
(such as RDP, greengenes, or SILVA) or by inferring the phylogeny using de novo
sequence alignment tools. Even after sequences have been assigned to OTUs and
related to one another using a phylogenetic tree, the scale of the data is still extensive.
To avoid interpreting many spurious associations, care must be taken to correct
association statistics for multiple comparisons, as there are generally hundreds of
OTUs being tested for association with, e.g., cardiometabolic risk. Also, abundances of
OTUs are seldom normally distributed because many samples will have zero counts
for rare OTUs. Various approaches exist to interpret microbiome data to reveal
meaningful patterns in microbial diversity. Typical methods include applying metrics
of within-individual diversity (like the alpha-diversity) or between-individual diversity
(like the beta-diversity), which can be visualized using ordination techniques, such as
principal coordinates analysis (PCoA) that summarize beta diversity relationships in
two- or three-dimensional scatterplots.

Building on this, individuals can be classified into distinct groups based on their
microbiome composition. Classification methods can be supervised or unsupervised.
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Supervised classification methods can be used to determine which taxa differ between
predefined groups of samples (e.g., obese versus normal weight, cases versus controls,
genotype A versus genotype B) and to build models that use these discriminatory
taxa to predict the classification of a new sample [72]. Unsupervised classification,
or clustering, does not use any prior knowledge about the samples and categorizes
them into clusters based on the abundances of specific taxa. A between-individual
distance metric, such as UniFrac or Bray-Curtis, is used to generate these clusters.

GENETIC AND ENVIRONMENTAL INFLUENCES ON THE HUMAN
GUT MICROBIOME

Microorganisms within the gut microbiota have exposure to myriad conditions that
help shape community membership. In animal studies, these conditions prominently
include inoculation at birth (the maternal effect, breeding and raising conditions in the
facility, co-caging, the water acidity, food, bedding) for which a number of experimental
mitigation strategies have been devised [73]. In humans, the microbiome is impacted
by several factors including, but not limited to, age, antibiotics, diet, lifestyles,
pregnancy, mode of delivery, and ethnicity [74-88]. Strong evidence further exists for
an impact of the shared living environment on the gut microbiome reflected amongst
others in the resemblance seen in the microbiome composition of family members
or people sharing a neighborhood [89-101].

Although similarities of the gut microbiota of family members have been partly
attributed to a shared environment, the host genetic profile is also clearly capable of
shaping this diverse ecosystem of microorganisms [102-110]. Recent extensive cohort
studies have further strengthened our understanding of the role of human genetics
in influencing the gut microbiota by unraveling associations between specific loci in
the human genome and individual taxa of the gut microbiota [111].

Taken the evidence for influences of the host genetic profile and shared environmental
influences on microbiota composition, genetically informative study designs can be
particularly useful in studying the gut microbiota. In this thesis, | will use such designs
to examine the mechanisms through which genetic and environmental variation
impacts the gut microbiome. Understanding the mechanisms by which host genetic
factors influence the gut microbiota and thus, in turn, impacts the development of
disease is essential for developing biological therapies targeting the gut microbiota.
In parallel, understanding the mechanisms by which modifiable environmental factors
influence the gut microbiota may lead to new strategies for disease prevention.
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HUMAN GUT MICROBIOME AND HEALTH ASSOCIATED BIO-
MARKERS

An area of research that has been of active interest to the scientific community is
understanding how the gut microbiota can influence the development of obesity.
Current hypotheses put forth that the gut microbiota of obese individuals may be
more efficient at extracting energy from food the host consumes [66]. Animal studies
have demonstrated that the gut microbiota of obese animals is capable of inducing an
increase in fat accumulation in germ-free animals receiving microbiota transplantation
from obese animals relative to animals receiving transplantation from lean donors
[66]. It is worth noting that, along with the induction of increased fat accumulation,
comorbidities such as changes in neuroinflammation and cognitive disruptions have
also been induced through the transfer of the gut microbiota of obese hosts to
recipient animals [112]. These findings suggest at least a partially causal effect of the
gut microbiota on the development of obesity and other closely related health factors.

Obesity is known to be associated with changes in the cardiometabolic and
inflammatory biomarker profile of humans [113] so by extension any microbiome
effects on obesity may impact these two classes of health associated biomarkers.
Indeed, various studies have found significant association between the microbiome
on the one hand and inflammatory risk factors on the other [114-117]. However,
the causality of these associations cannot readily be deduced. One of the most
basic functions the microbiome plays is in the defense against pathogens through
competition for resources. Furthermore, the human microbiome has been found to
participate in a multitude of complex interactions with both the innate and adaptive
immune responses of the human host [65]. Modulations in immune factors may,
therefore, themselves affect the gut microbiota composition through changes in the
immune-commensal interactions [118].

While the crosstalk and interactions between commensal microbes and the human
host seem like a logical extension of the immune systems well-characterized role in
interacting with microorganisms, the effect of microbially-derived metabolites on
disease states such as metabolic syndrome and cardiovascular disease is currently
less clear [119]. Even when associations are found, similar concerns apply regarding
their causality. Behavioral factors commonly implicated in obesity, like eating behaviors
and physical (in)activity are well-known to influence the inflammatory and metabolic
profiles of the human hosts, while also having the capability of modulating the gut
microbiota composition [120, 121]. Finally, an association between the microbiome on
the one hand and obesity, metabolic and inflammatory risk factors on the other can be
caused by independent effects of a common genetic vulnerability on the microbiome
and the respective health associated biomarkers.
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Introduction

Simply put, does the composition of the gut microbiota increase the risk for disease?
Do disease risk factors themselves change the composition of the gut microbiota? Or
are they both reflective of common genetic and environmental factors? In this thesis, |
will address this question of causality focusing on cardiometabolic and inflammatory
variables as the main parameters of interest.

HYPOTHESES AND OBJECTIVES OF THE DISSERTATION

This dissertation examines the genetic and environmental determinants of telomere
length and microbiome composition using several distinctive study designs allowed by
having data available in whole-genome genotyped members of a twin family cohort.
The work put forth within this dissertation takes advantage of unique study designs
to answer several questions pertaining to human aging, obesity, and obesity related
biomarkers of compromised health. In the second chapter, the classical twin design
is used to determine the heritability of telomere repeat mass (TRM). This informative
twin design, coupled with direct genomic measurement methods that utilize PCR to
measure the TRM of individuals’ genomic content, allowed for the estimation of the
heritability of TRM. Earlier studies have attempted to establish the importance of
genetic factors to variation in this measure of biological aging in blood [122, 123], but
itis not clear if the heritability estimates hold across different tissue types. Availability
of repeated samples from multiple biological tissues collected simultaneously from
multiple participants allowed for the comparison of telomere measurements and
subsequent heritability estimates between different tissues. These comparisons
allow us to answer questions regarding the suitability of buccal DNA for telomere
measurement. Such information is invaluable for individuals planning large-scale
or longitudinal epidemiological studies that include telomere measurement. In
samples repeatedly tested after significant handling and processing we could also
test the effects of these procedures on heritability estimation. We hypothesized that
buccal-derived DNA, even after repeated sample handling, would provide a suitable
alternative to blood-derived DNA for TRM measurement purposes via gPCR.

Chapters three to five, using a series of different designs, all address the main question
of the relative contribution of genetic and environmental influences on individual
variation in the diversity and composition of the human gut microbiome. They
capitalize on the stool samples collected in a subsample of over 400 NTR biobank
participants in which an extensive characterization of the composition and diversity
of the gut microbiome was undertaken for this dissertation. Microbiome composition
was charted through the use of 16S rRNA sequencing to determine the taxonomy of
the microorganisms present in the gut microbiota of the NTR participants. Chapters
three and five are focused on the environmental effects, whereas chapter four has
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Chapter 1

the genetic effects as the central theme and describes my contribution to a large
international genome-wide association consortium [124].

Chapter three also specifically addresses the question of causality underlying the
well-known association with obesity. It does so by employing two different genetically
informative designs, the discordant MZ twin design and a recall-by-genotype design.
The latter examines the differences between individuals at varying degrees of genetic
risk for obesity, determined through the use of polygenic risk scores (PRS) created
with the results of GWAS aimed at identifying loci influencing BMI. The BMI-PRS
was calculated for a large population of NTR participants, after which fecal samples
were obtained from individuals at the ends of the population distribution for genetic
predisposition for obesity and actual observed BMI. This selection included individuals
who fell within the top or bottom 25% of the observed BMI distribution and either the
top or bottom 20% of the distribution of genetic predisposition for obesity (see Figure
1.2). Fecal DNA from these participants was sequenced similarly to the BMI discordant
MZ twin pairs. The use of this study design allowed us to examine the nature of the
association between the gut microbiota and BMI in more detail.
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Figure 1.2 | Example plot representing the 4-corners design. Computed polygenic risk scores
are on the X axis while BMI is on the Y axis. The blue lines represent the cutoffs of the top and
bottom 25% of the BMI distribution and the red lines show the top and bottom 20% cutoff for
the polygenic risk scores.
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In testing the effect of BMI (high/low) and genetic risk (high/low) on the composition
of the gut microbiota, we anticipated two outcomes. If the causal chain is high genetic
risk — high BMI — gut microbiota composition, we expect a main effect of BMI (high/
low) only. This expectation is based on the assumption that the relationship between
genetic risk and composition is mediated by BMI. In contrast, if gut microbiota
composition is a cause of high BMI, we expect a main effect of BMI independent
of genetic risk on gut microbiota composition. The availability of MZ twin pairs in
which one twin had a low and the co-twin had a high BMI further allowed us to
discriminate between a direct causal effect of BMI on gut microbiota composition
and an association brought about by genetic pleiotropy. The so-called discordant MZ
design compares genetically identical individuals selected to be significantly different
in a trait of interest. The discordant MZ twin design provides the ultimate case-control
matching for genetic profile, pregnancy, age, sex, and childhood environment. If BMI
is the causal agent, a comparison of MZ twins selected to be discordant for BMI
should show a distinct composition of the gut microbiota in the lower and higher BMI
individuals. We hypothesized that high BMI would be associated with quantitative
(smaller species diversity) and qualitative effects (enrichment for different species)
on the gut microbiome.

Chapter four is based on a large meta-analysis of the genetic contribution to variation
in diversity and composition of the microbiome by the MiBioGen consortium [124].
We used the results of this meta-analysis to test how well the results of the NTR
were reflective of the meta-analysis, where a good correspondence would act as a
general validation of the results used throughout this thesis. Specifically, we tested
whether the top consortium mbQTL showed at least nominal significance in the NTR,
and vice versa, whether the top NTR-specific mbQTL was among the genome-wide
significant results of the consortium. In addition, we explored the idea that a priori
knowledge from heritability estimates from the classical twin design could be used to
reduce the multiple testing burden in microbiome genetics. This would be the case
if the more heritable taxa tend to show much smaller p-values in the genome-wide
association tests relative to less heritable taxa. By focusing the GWA effort on taxa
that demonstrate a minimal MZ twin correlation, the p-value penalty for multiple
testing could be relaxed.

Chapter five highlights the use of yet another genetically informative design feasible
with twin-family data. It utilizes samples collected from MZ twin pairs that cohabitate
and MZ twin pairs that no longer cohabitate. Additionally, this study utilizes samples
collected from spouse pairs who cohabitate. The use of the MZ twin-spouse study
design is unique in that it allowed us an opportunity to key in on the environmental
influences of the gut microbiota by observing shared microbiota features within
cohabitating but genetically unrelated individuals. Contrasting the co-twins and
spouses’ gut microbiotas allows for an exciting look at the role of environmental and
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genetic influences on shaping the gut microbiota composition. In addition to this
unique look at environmental impacts on the gut microbiota composition, the wealth
of existing phenotypic data collected within the NTR enabled us to compare the
microbiota composition to metabolic and inflammatory associated phenotypes. This
comparison aids in understanding which aspects of the gut microbiota are associated
with meaningful physiological changes with the host. We hypothesized that this
genetically informative study design would help us show that cohabitation results in
similarities in the gut microbiome composition of individuals. We further hypothesize
that these gut microbiome similarities may influence health-associated phenotypes
in the domains of cardiometabolic risk and chronic low-grade inflammation.

Chapter six first presents a summary of the main results in the various chapters and
then discusses where we stand with regard to the relative contribution of genetic
and environmental effects to variation in the composition of the gut microbiome
and with regard to the progress in understanding the role of the gut microbiome in
human health.
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Chapter 2

ABSTRACT

Telomere length has garnered interest due to the potential role it may play as a
biomarker for the cellular aging process. Telomere measurements obtained from
blood-derived DNA are often used in epidemiological studies. However, the invasive
nature of blood draws severely limits sample collection, particularly with children.
Buccal cells are commonly sampled for DNA isolation and thus may present a non-
invasive alternative for telomere measurement. Buccal and leukocyte derived DNA
samples obtained from participants collected during the same time period were
analyzed for telomere repeat mass (TRM). TRM was measured in buccal-derived DNA
samples from individuals for whom previous TRM data from blood samples existed.
TRM measurement was performed by quantitative polymerase chain reaction (QPCR)
and was normalized to the single copy 36B4 gene relative to a reference DNA sample
(K562). Correlations between TRM from blood and buccal DNA were obtained and also
between the same blood DNA samples measured in separate laboratories. Using the
classical twin design, TRM heritability was estimated (N = 1892, MZ = 1044, DZ = 775).
Buccal samples measured for TRM showed a significant correlation with the blood-1
(initial TRM measurement) (R =0.39, p <0.01) and blood-2 (TRM at AIHG) (R = 0.36, p
<0.01) samples. Sex and age effects were observed within the buccal samples as is
the norm within blood-derived DNA. The buccal, blood-1, and blood-2 measurements
generated heritability estimates of 23.3%, 47.6% and 22.2%, respectively. Buccal
derived DNA provides a valid source for the determination of TRM, paving the way
for non-invasive projects, such as longitudinal studies in children.
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INTRODUCTION

Telomere measurements have been of great interest as a potential tool for assessment
of the cellular aging process. The telomere, which caps the end of each strand of DNA,
is subjected to attrition throughout the life span due to the end replication problem,
which results in the loss of approximately 50-100 base pairs per mitotic division [1].
Once a significant portion of the telomeric region has been lost, the cell enters a state
of replicative senescence characterized by a marked change in gene expression, as
well as the inability to further divide [2, 3]. Telomere length has also been implicated
in the development of many disorders, either as a marker or causal agent [4, 5].

The telomere region consists of hexanucleotide (TTAGGG) repeat sequences, which are
associated with multiple protein factors such as the shelterin complex [6, 7]. Although
no exons are contained within the telomeric region, it plays a vital role in genomic
protection, stability, and can impact regulation of gene expression elsewhere in the
genome [8]. In spite of constant telomere degradation over the life span, mechanisms
are available for telomere elongation, mainly through the use of the enzyme
telomerase. Telomerase is generally inactive in most somatic cells, but activation is a
hallmark of immortal cells [9]. The observation of telomere attrition in proliferating
cells, as well as the immortality conveyed via telomerase activation, suggests that
telomeres act as a central biological clock mechanism [10]. This is compounded
by studies highlighting an association between TL and life span in humans [11-15].

Several studies have addressed the genetic contribution to individual differences in TL
in humans [16-20], and specific genomic loci associated with mean leukocyte TL have
been identified [16]. In addition to genetic factors, multiple factors such as smoking,
sedentary behavior, and periods of high stress, which themselves are partly genetic,
may contribute to individual differences in TL [21].

In order to address the role of telomere dynamics in the development of both aging
and specific disease pathologies, it is necessary to perform telomere measurements in
alongitudinal manner. Investigations into telomere attrition across multiple time points
would shed light on differences in telomere attrition over age. However, this presents
a challenge as DNA derived from circulating leukocytes obtained by intravenous blood
draw is currently the most widely used DNA source for telomere studies. It has been
observed that telomere measurements are correlated among somatic tissues regardless
of replicative capacities [22-24]. This presents the possibility of utilizing other cellular
sources of DNA for telomere measurement studies. Buccal-derived DNA samples are
easily collected and are commonly used in biomedical research [25-27]. The use of
buccal-derived DNA in place of leukocyte-derived DNA would greatly facilitate large-
scale telomere measurement studies. Buccal swab samples are generally composed
of buccal epithelial cells but can also contain a small fraction of leukocytes [28].
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The use of gPCR for quantifying relative telomere abundance does not provide
an estimate of definitive telomere length due to telomere heterogeneity across
chromosomes, rather this technique allows for the determination of the relative
abundance of telomere repeat mass present within a sample. Due to this, gPCR-
based telomere measures are referred to as TRM rather than TL. Here we compared
telomere repeat mass measures based on buccal-derived DNA with TRM measures
based on leukocyte-derived DNA. The blood and buccal samples were obtained
in a sample of monozygotic and dizygotic twins. The twin data provide us with the
unique opportunity to estimate the heritability of buccal and blood-based TRM, and to
estimate the genetic correlation between the two measures. Our aim is to determine
whether TRM measures in buccal-derived DNA are suitable for large scale studies of
TRM.

The original leukocyte-derived DNA, which was previously measured for TRM, was
subjected to a second TRM measurement to compare the effects of sample handling
on TRM measurements. It has been documented that variations in the DNA extraction
processes have an impact on telomere measurements, which may have implications
for large epidemiological studies [29, 30] as repeated handling of genomic material
may lead to changes in the telomere regions, thus altering TRM results. We addressed
this issue here as well, as it is relevant to the design of epidemiological studies and
to biobanking procedures.

MATERIALS AND METHODS

PARTICIPANTS

Blood and buccal samples for DNA extraction were obtained concurrently from
individuals in the Netherlands Twin Register [31, 32], as previously described [33]. The
telomeric DNA from blood samples was measured twice, once in Leicester (England)
as a part of a previous study [20] (Blood-1), and once at the Avera Institute for Human
Genetics (AIHG; Blood-2). The buccal DNA TRM measurement was performed only
once at the AIHG (Buccal). The total sample size comprises 1892 individuals clustered
in 1133 families. The individuals include 1809 twins (271 MZ male, 773 MZ female,
156 DZ male, 320 DZ female, and 299 DZ opposite sex), 77 siblings (of whom 12
are multiples, e.g., a member of a triplet), 5 mothers and 1 father. There were 618
MZ twin pairs and 501 DZ twin pairs. Zygosity was based on genome-wide single
nucleotide polymorphism (SNP) data [34]. The 1892 individuals are distributed over
the 1133 families as follows: 1 member (429 families), 2 members (652 families), 3
members (49 families) and 4 members (3 families). Of the 1892 individuals, 589 were
males (31%) and 1309 (69%) were females. The mean age was 34.18 years (SD = 13.2,
min = 12, max = 78). The Blood-1 TRM measures are available in all 1892 individuals.
The measures were distributed over 33 batches (plates), with the mean number per
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batch equal to 57.3 (SD = 15.3). The Blood-2 TRM measures are available in N = 1338,
distributed over 40 batches (mean number per batch 34.3, SD = 12.3). The Buccal TRM
measures are available in 1691, distributed over 40 batches (mean number per batch
42.2,SD =10.5). The study was approved by the Central Ethics Committee on Research
Involving Human Subjects of the VU Medical Center, Amsterdam, NL. All participants
and/or parents provided informed consent for the study. Written informed consent
was obtained from the appropriate next of kin, caretakers, or guardians for all minors
present within the study.

MEASUREMENT OF TELOMERE REPEAT MASS

The TRM analysis performed in Leicester has been described previously [20]. At AIHG
TRM measurements were generated by gPCR to amplify the telomeric region of the DNA,
as well as amplification of a single copy gene for normalization purposes. Itis important
to note that previously generated telomere measurements were referred to as telomere
length whereas in this manuscript the results of gPCR-based telomere analysis are
referred to as telomere repeat mass. The primers used to amplify the telomeric region
were tel1B (5-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3') (600nM) and
tel2B (5-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3') (600nM). The single
copy reference gene was amplified using 36b4U (5-CAGCAAGTGGGAAGGTGTAATCG3)
(300nM) and 36b4D (5-CCCATTCTATCATCAACGGGTACAA-3") (500nM). Each gPCR
reaction contained 20 ng of DNA as input, and all samples were run in triplicate
(Applied Biosystems ViiA 7). The cycling conditions for both reactions were an initial
95-C for 15 minutes, followed by 30 cycles of 95°C for 15 seconds, and 58°C for 1
minute. Contained within each gPCR batch (telomere and 36b4) was a calibrator
sample K562 (Promega, Madison, WI) used for comparison using Cawthon's calculation
method [35]. A standard curve ranging from 100 ng to 6.25 ng was included in each
telomere and 36B4 gPCR run. TRM was expressed as a ratio of the telomere region
(T) to the single copy 36b4 (S), resulting in a T/S ratio. Each TRM measurement was
compared to the K562 sample included with each plate, resulting in a relative TRM
ratio.

STATISTICAL ANALYSIS

All TRM measures were first corrected for batch effects by means of an analysis of
variance (ANOVA), with batch as the fixed factor. Unless stated otherwise, the residuals
were used in the subsequent analyses. We studied the effects of age and sex on TRM
and the linear association between the TRM measures with linear regression analysis,
using generalized estimating equations (GEE) [36]. We corrected the standard errors
for the dependency in the data due to family clustering [37]. We regressed Buccal
TRM on Blood-2 TL TRM and on Blood-1 TRM separately. In addition, we regressed
Blood-2 TRM on Blood-1 TRM to estimate the association between the blood-based
measures of TRM (Table 2.1). In all analyses, we included sex and age as covariates.
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Table 2.1 | Regression analyses of TRM measures (standard errors in parentheses). ** p<0.01; %
variance is the variance explained by the predictor. The percentage in parentheses is due to the
predictor + age + sex. The parameter b is the raw regression coefficient in the regression analyses
including the covariates age and sex.

Dependent Predictor b (st err) % variance

Buccal TRM Blood-2 0.286 (0.0314)** 10.8% (13.9%)
Buccal TRM Blood-1 0.208 (0.0183)** 12.2% (15.3%)
Blood-2 TRM Blood-1 0.373(0.0180)** 30.4% (39.4%)

The data from twins were used to estimate the contributions of genetic and
environmental influences to the phenotypic (co)variance of the TRM measures. Twins
raised together form the basis of the classical twin design, which exploits the fact that
MZ twins are genetically (nearly) identical, while DZ twin share on average 50% of their
alleles [38-40]. The CTD allows us to fit an ACE model, which includes additive genetic
(A), shared environmental (i.e., shared by the twins; C), and unshared environmental
effects (E) on TRM. The phenotypic TRM variance is modeled as o? = 0°,+ 0°+
0%, and the twin covariances are modeled as Opqy; raun = 0%4 T 0% IN MZs, and Gy,
T = 0.5%0%,+ 0% in DZs. We obtain standardized estimates, usually denoted h?, c2,
and e?, by calculating h? = ¢?,/0 ,, ¢* = 0? /o?,,, and e? = 02 /% . Note that h?is the
heritability (hence h?rather than a2, although the notation is arbitrary). Dropping C (or
A) from the model reduces the model to an AE (CE) model. The statistical significance
of variance components (e.g., .2 or ¢,>) can be tested by means of a likelihood ratio
test. Itis well established that TRM decreases with age (see Table 2.2). Itis also possible
that contributions of A, C, and (or) E to the phenotypic variance changes with age.
To investigate this, we fit a moderated ACE model, in which the A, C, and E variance
components are free to vary in magnitude with age [41].

The univariate twin model can readily be extended to the multivariate case [42].
That is, we can decompose the phenotypic 3x3 covariance matrix of the 3 TRM
measures, 2., into genetic and environmental components analogously to the
univariate case: X, =2, +X +2, where theX, > and 2 represent the additive
genetic, shared and unshared environmental 3x3 covariance matrices, respectively.
The twin 1—twin 2 covariance matrix is modeled X =X, + 2. in the MZs,

TRM1-TRM2
and X o rae = 0.5%2, + 2 in the DZs. This decomposition reveals the contributions
of genetic and environmental effects to the phenotypic variances and covariances
amongst the TRM measures. We used the full information maximum likelihood (FIML)
estimation in the OpenMx R library to fit the twin models [43]. We first estimated the
MZ and DZ covariance matrices. Note that these are 6x6 because we have 3 TRM
measures, observed in two twin members. Table 2.3 contains the FIML estimates of
the correlation and covariance matrices in the MZ and DZ twins estimated with age
and sex as covariates. Table 2.3 also includes the number of observed values for each

phenotype.
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Table 2.2 | Age and sex effects on batch corrected TRM (standard errors in parentheses).
** p<0.01, *p<0.05, % variance is the variance explained by sex and age. The percentage in
parentheses is due to age alone. The parameters b are the raw regression coefficients.

variable N b (sex) b (age) % variance
Blood-2 TRM 1338 .0678 (.0168)** -.0067 (.00067)** 9.0(7.5)
Buccal TRM 1691 .0306 (.0156)* -.0036 (.00059)** 3.1(2.8)
Blood-1 TRM 1892 1130 (.0217)** -.0105 (.00082)** 10.1 (8.5)

Table 2.3 | Full information maximum likelihood estimates of twin variances, covariances, and
correlations, corrected for sex and age. The correlations are shown below the diagonal in italics.
The within phenotypic correlations are underlined. N represents the number of observed values.

MZ twin 1 MZ Twin 2
Blood-1 Blood-2 Buccal Blood-1 Blood-2 Buccal

N 375 257 321 390 261 338
Blood-1 0.179 0.062 0.037 0.117 0.057 0.042
Blood-2 0.518 0.079 0.019 0.055 0.028 0.025
Buccal 0.319 0.244 0.076 0.046 0.023 0.036
Blood-1 0.655 0.466 0.393 0177 0.074 0.044
Blood-2 0.512 0.384 0.313 0.676 0.068 0.026
Buccal 0.356 0.32 0467 0.38 0.354 0.077

DZ twin 1 DZ twin 2
N 522 410 478 522 402 478
Blood-1 0177 0.06 0.051 0.076 0.043 0.033
Blood-2 0.565 0.063 0.028 0.032 0.025 0.021
Buccal 0.415 0.383 0.086 0.034 0.017 0.03
Blood-1 0422 0.296 0.274 0.182 0.07 0.038
Blood-2 0.346 0.345 0.798 0.563 0.085 0.028
Buccal 0.301 0.311 0373 0.324 0.356 0.075

ACE MODELING

We investigated the contributions of genetic and environmental influences to
the phenotypic covariance matrices by fitting an ACE model, with age and sex as
covariates. As mentioned above, in fitting the ACE model, we modeled the 3x3
phenotypic covariance matrix (Z,,,)as X, = 2, + Z.+ 2, where I is the 3x3 additive
genetic, 2 is the 3x3 shared environmental, and X is the 3x3 unshared environmental
covariance matrix. In Figure 2.1 and in Table 2.4, we express each covariance matrix
as Z = DRDY, where D is a (3x3) diagonal matrix containing the standard deviations,
and Ris the 3x3 correlation matrix. By calculating %, / >, ,, we obtain the contribution
of additive genetic effect to the phenotypic variances (i.e., diagonal elements of X, /
2 o) @nd covariances (off-diagonals elements of >, /% ). The diagonal elements are
the heritabilities (h?). The same applies to the environmental covariance matrices Z ./

Zoawand 2./ 2 where the standardized diagonals are the c?s and, e?s, respectively.
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Finally, we tested whether the estimates of the variance components in univariate
ACE models (0?,, 0°, and 0?.) varied with age. We did this by modeling o, as ¢, = b,
+ b, *age, o =Db +b *age, and o, =b . + b *age [41]. That is, we considered the
possibility that the genetic and environmental standard deviations linearly increase (or
decrease) with age. The test of age moderation boils down to the test of the omnibus
hypothesis: b,, =b,.=b,. = 0.

V.222

BLOOD-2

/ \\__070_0,//// '

-062

Figure 2.1 | Path diagram depicting the A, C, and E variance components calculated for each of
the sample groups.

RESULTS

Age and sex together explained 9%, 3.1%, and 10.1% of the variance in Blood-2 TRM,
Buccal TRM, and Blood-1 TRM, respectively. The percentages of variance explained by
age alone equaled 7.5%, 2.8%, and 8.5%, respectively. We tested for the interaction
(sex X age), but this interaction was consistently insignificant (p > 0.1). Batch effects
accounted for 12.4% (TRM Blood-1), 23.1% (TRM Blood-2), and 23.3% (TRM Buccal) of
the variance. The zero-order correlations among TRM measures were 0.36 (Blood-
2—Buccal), 0.39 (Buccal—Blood-1), and 0.62 (Blood-2 -Blood-1).

Age and sex corrected twin correlations estimated through FIML were 0.655
for MZ twins and 0.422 for DZ twins in the Blood-1 measurements. The Blood-2
measurements performed at the AIHG had MZ and DZ correlations of 0.384 and
0.345, respectively. Similar analyses were performed on the Buccal samples yielding
a MZ correlation of 0.467 and a DZ correlation of 0.373 (Table 2.5).
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Table 2.4 contains the parameter estimates of the (trivariate) ACE model, including the
estimates of the standardized variance components (h?, ¢?, and e?), with their upper
and lower 95% Cls (last three rows). The heritability of the Blood-1 TRM measure is
0.476, i.e., about 47.6% of the phenotypic variance is due to genetic effects. The C
and E effects account for about 17.9% and 34.5% of the TRM variance, respectively.
The standardized variance components of the Blood-2 TRM and Buccal TRM equal
h2=0.222 and h? = 0.233, respectively with C effects accounting for 18.6 and 24.4%,
and E effects accounting for 51.9 and 45.6% of the Blood-2 and Buccal TRM variance,
respectively. We note that the E influences contribute relatively little to the covariance
among the TRM measures (see 2./Z . in Table 2.5); whereas both the A and C
effects contribute considerably to the covariances among the blood and buccal TRM
measures. The genetic correlations between Buccal TRM and the Blood-1 and Blood-2
TRM are 0.663 and 0.789, respectively. The genetic correlation between Blood-1 and
2 TRMis 0.983.

We tested the significance of the A and C effect by dropping these from the model.
Dropping C resulted in chi?(6) = 10.97 (p = 0.089). In contrast, dropping A resulted in
chi(6) = 49.15 (p<0.001). From this, we may conclude that the contributions of C to
the phenotypic covariance matrix is not significant, but the contributions of A are.
However, the fact that we cannot reject the hypothesis 2. = 0 is likely to be due to a
lack of statistical power [45]. We therefore retained the ACE results.

Next, we tested whether variance components were moderated by age. For both
blood DNA TRM measures and for buccal TRM measures, the results indicate that
there is no evidence to support the hypothesis of age moderation of the variance
components o?,, 0°., and o%, with the chi?3) for Blood-1 being equal to 4.32 (p = 0.23);
for Blood-2 1.46 (p = 0.69), and for Buccal 3.38 (p = 0.37). Based on these results we
conclude that there is no evidence to support the hypothesis of age moderation of
the variance components @?,, 0%, and ¢?.

Table 2.5 | FIML estimates of MZ and DZ twin correlations for the TRM measures (corrected for
sex and age), with lower and upper 95% confidence intervals.

95% lower correlation 95% upper
MZ Blood-1 0.598 0.655 0.704
MZ Blood-2 0.289 0.384 0.469
MZ Buccal 0.388 0.467 0.537
DZ Blood-1 0.312 0.422 0.516
DZ Blood-2 0.209 0.345 0.464
DZ Buccal 0.268 0.373 0.468
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DISCUSSION

The ability to utilize buccal samples in lieu of a blood sample would greatly increase
the ability to perform longitudinal TRM studies. Due to the negligible invasiveness of
buccal DNA sampling, future studies may be designed that may span a long period
of time, including TRM measurement at birth. Utilizing blood and buccal-derived
DNA collected from 1892 participants, mostly twins, we were able to investigate the
relationship between DNA derived from different cellular sources, as well as investigate
the genetic and environmental components associated with TRM.

The buccal-derived TRM measurements showed a significant association with both sex
and age indicating that the TRM data is showing an expected result (telomere attrition).
Similar observations have been widely observed in previous studies [46, 47]. This is
evidence of similarities in telomere dynamics between the tissue types, which would
allow for use of buccal-derived DNA samples for telomere measurement studies. Note
that the effect of age on blood based TRM is appreciably greater than the effect on
buccal based TRM. This may be due to greater error variance of buccal-derived TRM
measurements. We address the contributions of genetic and environmental influences
to these phenotypic associations in the analyses of the twin data.

Buccal samples showed a significant phenotypic correlation with both of the blood
measurements performed on the same sample multiple years apart. This finding
highlights the ability of buccal-derived DNA samples to characterize the cellular aging
process in a similar manner as blood-derived DNA. The blood and buccal samples
showed similarity compared to measurements regardless of the laboratory performing
the assay.

Using twin data to observe phenotypic correlations between MZ and DZ as well as
to fit ACE models was informative in yielding estimates of genetic and environmental
influences on the TRM phenotype of the sample types under study. Given an AE
model we would expect the DZ correlations to be about half the MZ correlations.
However, the DZ correlations are clearly larger, which suggests the presence of shared
environmental influences [19]. These correlations are consistent with an ACE model.
We note that the blood based TRM measures correlate about 0.58 (0.518 and 0.565 in
the MZs and 0.676 and 0.563 in the DZs). The correlation between the blood based and
buccal based TRM measures are smaller, ranging from 0.244 to 0.415. The two blood
measurements showed a difference in estimated heritability with the Blood-1 estimate
at 46.7% of total phenotypic variance, whereas the repeated blood measurement and
the buccal sample measurements both showed a heritability estimate of 22.2% and
23.3% respectively. Discrepancies within the TRM measurements replicated on the
same blood samples may arise due to a combination of inter-lab variation and possible
degradation of samples due to extended handling.
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Measurement of the blood samples at different time points allowed for information
to be derived concerning the effects of extended handling, as well as inter-lab
variation. There have been questions raised regarding the reliability of the relative
TRM measurements produced in different laboratories [48, 49]. This study showed
a difference in the heritability estimates of TRM both produced in replicated blood
samples. The blood samples were first measured in one laboratory, shipped
elsewhere, utilized for genomic analysis, and then finally shipped for TRM analysis a
second time. It is possible that the extended sample handling, as well as known inter-
lab variation in TRM measurement, is responsible for the differences in heritability
estimates observed.

Having the ability to easily sample buccal-derived DNA would open the doors to
further large-scale longitudinal sample collections for TRM measurement. The
negligible invasiveness of the collection process makes collection possible from an
early age. Cohorts such as those included within the NTR can be followed over multiple
time-points in order to investigate temporal effects on TRM throughout an individual’s
life span.
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Chapter 3

ABSTRACT

The human gut microbiota has been demonstrated to be associated with a number
of host phenotypes including obesity and obesity-associated phenotypes. This study
was aimed at further understanding and describing the relationship between the gut
microbiota and obesity associated measurements obtained from human participants.

Here we utilize genetically informative study designs including a four-corners design
(extremes of genetic risk for BMI and of observed BMI) (N = 50) and the BMI monozygotic
discordant twin pair design (N = 30) in order to help delineate the role of host genetics
and the gut microbiota in the development of obesity.

Our results highlight a negative association between BMI and alpha diversity of the
gut microbiota. The low genetic risk / high BMI group of individuals had a lower gut
microbiota alpha diversity when compared to the other three groups. Although the
difference in alpha diversity between the lean and heavy groups of the BMI discordant
MZ twin design did not achieve significance, this difference was observed to be in
the expected direction with the heavier participants having a lower average alpha
diversity. We have also identified 9 operational taxonomic units (OTUs) observed to
be associated with either a leaner or heavier phenotype, with enrichment for OTUs
classified to the Ruminococcaceae and Oxalobacteracege taxonomic families.

Our study presents evidence of a relationship between BMI and alpha diversity of
the gut microbiota. In addition to these findings, a number of OTUs were found to
be significantly associated with host BMI. These findings may highlight separate sub-
types of obesity, one driven by genetic factors, the other more heavily influenced by
environmental factors.
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INTRODUCTION

Microbial organisms are now understood to be important residents within the
human host. This finding is strengthened through a multitude of studies implicating
commensal microbes in many host biological processes such as nutrient metabolism
[1, 2], developmental processes [3, 4], and predispositions to certain disease states
[5]. One of the areas garnering particular interest is the association of the human
microbiota, mainly that of the gastrointestinal tract, in the development of obesity,
and obesity-associated phenotypes [6-8]. Recent work has demonstrated the ability
of the gut microbiota of obese animals to induce obesity in non-obese animals [5]. It is
worth noting that along with the induction of obesity, comorbidities such as changes
in neuroinflammation and subsequent cognitive disruptions have also been induced
through the transfer of the gut microbiota of obese mice to non-obese mice [9].

These findings suggest a causal effect of the gut microbiota on the development of
obesity, but they do not rule out simultaneous but reverse causal effects of obesity on
the gut microbiota. Obesity is associated with changes in the inflammatory profile in
humans that may affect gut microbiota, as well as with eating behaviors and physical
activity patterns that may also impact the microbiota [10, 11]. Therefore, associations
between obesity and the composition of gut microbiota may also reflect reverse
causal effects. A specific composition of the gut microbiota may increase the risk for
obesity, whereas obesity, either directly or through the lifestyle behaviors of which
obesity is a marker or a codeterminant, may also actively change the composition of
the gut microbiota [12].

In order to understand the complex nature of the interactions occurring between
the gut microbiota and the human host, it is necessary to have proper models to do
so. Studies performed in animals have provided one necessary approach to study
microbiota dynamics in a genetically controlled environment. We do not yet know
the extent to which results derived from mice can be extrapolated to humans. There
are large differences in the anatomy of the murine and human gastrointestinal (Gl)
tract, and up to an 85% difference is found in the bacterial genera observed within
the mouse Gl tract relative to that of a human [13, 14]. Experimental manipulation of
the human gut microbiota is feasible [15], but difficult to do on the scale possible in
animal models. A potential approach to examine causal effects of the gut microbiota
in observational studies in humans is to exploit the fact that individual differences in
the gut microbiota composition are partly caused by heritable variation [16, 17]. If we
assume that the heritability of obesity reflects, in part, the heritable effects on the gut
microbiota, genetically informative designs can be used to test the predictions from
causal hypotheses in both directions [18, 19]. Here, we make use of two genetically
informative designs: (1) unrelated individuals selected to be in four corners defined by
low or high genetic risk for BMI and by observed high or low BMI, and (2) genetically
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identical monozygotic twins discordant for current BMI. Genetic risk was defined
on the basis of a multi-SNP genetic risk profile from the recent meta-analysis of the
GIANT consortium [20].

The aim of this study was to elucidate the gut microbiota constituents and subsequent
community structure that differentiates heavier from leaner human individuals. This
is achieved through 16s rRNA analysis to identify microbial community members
within the gut microbiota. We hypothesized that high genetic risk for increased BMI
will be associated with quantitative (smaller species diversity) and qualitative effects
(enrichment for different species) on the gut microbiota. Using the four-corners
design, we tested whether this association is compatible with a causal effect of the gut
microbiota on BMI [18]. In testing the effect of BMI (high/low) and genetic risk (high/
low) on the composition of the gut microbiota, we anticipated two outcomes. If the
causal chain is high genetic risk — high BMI — gut microbiota composition, we expect
a main effect of BMI (high/low) only (Figure 3.1). This expectation is based on the
assumption that the relationship between genetic risk and composition is mediated
by BMI. In contrast, if gut microbiota composition is a cause of high BMI, we expect
a main effect of BMI and genetic risk on gut microbiota composition (Figure 3.1). This
expectation does not depend on the absence (or presence) of a direct relationship
between genetic risk and composition. Furthermore, the availability of MZ twin data
allowed us to use the co-twin control method to discriminate between a direct causal
effect of BMI on gut microbiota composition and an association brought about by a
'third factor’ such as shared environment or shared genes that influence both BMI and
microbiota composition [21]. If BMI is the causal agent, a comparison of genetically
identical twins selected to be discordant for BMI should show a distinct composition
of the gut microbiota in the lower and higher BMI individuals.

MATERIALS AND METHODS

PARTICIPANTS

The first group of individuals (N = 50) was selected from a large population (N = 11,495)
within the Netherlands Twin Register for which BMI and polygenic risk score scores
for BMI were available (Table 3.1) [22]. This allows for the use of a four-corner design
where the study participants are selected from the top and bottom 25% of the BMI
distribution, and the top and bottom 20% of the distribution of BMI polygenic risk
scores produced using genome-wide SNPs. The second group of individuals (n = 30)
were MZ twins (15 pairs) discordant for BMI (mean BMI difference 4.2 + 1.9 kg/m?(range
1.0-8.2) that have been previously described in detail elsewhere (Table 3.1) [23]. All
study participants were female in order to decrease the possibility of sexual dimorphic
confounding factors. Participants were excluded if they were not within 18-75 years
of age, had experienced recent weight change, or had been currently diagnosed with
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heart disease, liver or renal disease, diabetes mellitus, malignancies, uncontrolled
thyroid disease, or psychiatric or neurological disorders. In addition, participants were
also excluded if they were pregnant, breast feeding, currently taking psychoactive
or glucose-lowering drugs, or had reported drug/alcohol abuse. Due to the fact that
participants were initially selected for an MRI-associated study, participants were also
excluded based on MRI contraindication. Body fat measurements for all individuals
were obtained through the use of bio-electrical impedance. The study was approved
by the ethics committee of the VU Medical Centre and was performed in accordance
with the Helsinki Declaration. All subjects involved provided written informed consent.

SAMPLING METHODS

Fecal samples were collected from individuals and stored at 4°C until delivered to
the laboratory within 36 hours. Anaerocult was used in order to preserve anaerobic
species present within a sample. The samples were homogenized, aliquoted, and
stored at -80°C until utilized for DNA extraction.

BMI POLYGENIC RISK SCORE

Polygenic risk scores were calculated based on 77 of the 97 SNPs previously identified
as having a role in obesity. These 77 SNPs were the ones that reached genome-wide
significance level (5 x 1078) within individuals of European ancestry. The scores were
determined by summing the risk alleles weighted by their respective effect sizes.

Table 3.1 | Descriptive Statistics for the Study Participants

MZ twins Four-corners

Leaner Heavier High BMI/  Low BMI/  HighBMI/ Low BMI/

twin twin Low GR Low GR High GR High GR
N 15 15 9 14 14 13
Age 29(9.9) 29(9.9) 39.84(5.8) 36.70(6.8) 39.40(5.6) 35.07(8.0)
BMI 24.25(3.2) 28.22(3.6) 31.20(2.1)  20.87(0.97) 34.08(5.1) 20.63(1.9)

)
Body Fat (Kg) 22.03(6.8) 30.51(8.3) 3579(11.6) 17.20(3.3) 39.27(11.1) 17.25(4.1)
Waist-hip ratio 0.80(0.06) 0.84(0.08) 0.88(0.06) 0.78(0.04) 0.89(0.05) 0.78(0.03)
Inverse Simpson 2552 (11.3) 22.66 (11.4) 15.44(5.3) 29.07(8.4) 24.14(5.6) 27.24(6.9)

SEQUENCING METHODS

DNA was extracted using the MO Bio PowerSoil Kit with the addition of the heating
steps from the Power Fecal Kit (Mo Bio, Carlsbad, CA). Sequencing library preparation
and indexing was adapted from Kozich et al. to generate libraries for sequencing-by-
synthesis on the lllumina MiSeq platform [24]. The V4 region of the 16S rRNA gene
was chosen for amplification and sequencing [24]. Sequence data was generated
on the MiSeq platform, using a 2 x 251 paired-end sequencing run with 20% Phix to
increase base diversity during the run. Use of a mock community aided as a positive
control, and a non-template negative control was also sequenced.
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MICROBIOTA SEQUENCING QUALITY CONTROL AND DATA ANALYSIS

MiSeq reads were filtered based upon the work published by Kozich et al. describing
a method for analysis of dual-indexed amplicon sequences resulting from the Illumina
MiSeq platform [24]. The MiSeq sequencing run resulted in demultiplexed paired-end
FASTQ files for each sample, which were then analyzed using the Mothur software
package version 1.36.1. The forward and reverse reads were overlapped, producing
contigs for each sample (Figure 3.2). The joining of reads resulted in 6,188,475 reads.
Sequences were filtered to remove sequences with ambiguous bases, as well as
sequences shorter than 275 bp. The SILVA v123 database was trimmed to cover the
V4 region of the 16s rRNA gene, and unique sequences were subsequently aligned
to the customized SILVA v123 database [25]. After alignment and filtering, the reads
were preclustered to join sequences that are within two nucleotides of one another.
UCHIME was used to identify and remove possible chimeric reads from the data
[26]. After chimera removal, the sequences were classified using the naive Bayesian
classifier trained on the Ribosomal database project (RDP) training set [27]. Non-
bacterial lineages were removed; these included eukaryotes, archaea, chloroplasts,
mitochondria, as well as unknown lineages. Within the samples sequenced was a
mock community of 20 known bacterial sequences. This mock community was used
to calculate the error rate of the sequencing run after read filtering. The reads from
this mock community were compared to the known sequences, and the error rate
was determined to be 0.0053%. The mock community was removed from further
processing. After the quality control process, 4,838,970 sequences remained, 45,057
of which were unique sequences. Unique sequences were then clustered into
operational taxonomic units with a 0.03 cut-off using the average-neighbor clustering
algorithm. Consensus taxonomies of the OTUs were determined using classify.OTU
command within Mothur. The OTU clustering ultimately resulted in 4,236 unique
OTUs. Of these 4,236 OTUs, 67.68% were unclassified at the genus level and 36.66%
of all OTUs were unclassified at the family level. In order to achieve proper sampling
depth for all samples, the reads for each sample were subsampled to the lowest read
depth, which was 36,783 reads.

STATISTICAL ANALYSES

In order to investigate the alpha diversity associated with the sampled communities,
inverse Simpson values were generated. Inverse Simpson values are a function of
both the species richness (number of species present) and the relative abundances
of species level organisms. Inverse Simpson values were generated using the Mothur
software package [28]. In order to compare the inverse Simpson values for the
four-corners individuals, a two-way ANOVA was employed. A paired samples t-test
was utilized to determine whether there was a difference in mean inverse Simpson
values between the BMI discordant MZ twins. Beta diversity calculations have been
performed for the individuals within the four-corners design. We generated Bray-
Curtis dissimilarity measures between all 50 individuals and then tested whether

56



BMI and the Gut Microbiome

the mean BC measures were significantly different between any of the groups. First,
we tested whether or not there was a significant difference in BC distances between
the high/low BMI groups and the high/low genetic risk groups by utilizing a t-test
with 10,000 permutations. To expand upon this, we also split the 50 four-corners
individuals into their respective groups (low BMlI/low PRS, low BMI/high PRS, high
BMI/low PRS, high BMI/high PRS) and tested for any differences using a one-way
ANOVA with 10,000 permutations. In the same manner we tested whether there was
a significant difference in BC distances between the group of leaner co-twins relative
to the heavier co-twins. BMI was regressed on the inverse Simpson diversity values
by utilizing the GEE package within R, accounting for the relatedness of the MZ twin
pairs. To more fully capture obesity, this regression was repeated for two additional
traits, waist-hip ratio and body fat percentage.

A. X
BMI Polygenic a C
risk score o BMI # Gut Microbiota
Composition
y
B.
BMI Polygenic a d
risk score = BMI & Gut Microbiota
Composition

Figure 3.1 | (A). Given the causal model depicted in the top diagram, x is assumed to equal 0 and
thus the two-way ANOVA employed is expected to yield a main effect of BMI, but no effect of BMI
polygenic risk. This model would reflect a paradigm in which genetic risk for BMI influences BMI
which subsequently influences the gut microbiota composition. (B). Under this causal model, the
two-way ANOVA is expected to yield a main effect of both BMI and BMI polygenic risk score. This
expectation does not depend on the absence or presence of a direct relationship between BMI
genetic risk and gut microbiota composition (i.e., y may be 0 or greater than 0.)
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Figure 3.2 | Bioinformatics pipeline utilized to analyze 16S rRNA data.

To detect OTUs differentially enriched within leaner and heavier individuals two
classification strategies were used: LEfSe analysis, and the random forest approach.
The LEfSe analysis is aimed at determining a significantly different presence of OTUs
in various subgroups (e.g., low vs. high BMI) with an alpha of 0.05 for both the Kruskal-
Wallis and Wilcoxon tests within LEfSe [29]. The traditional LEfSe analysis was modified
to include 100,000 permutations, from which an empirical p value was derived. The

LDA threshold was set at 2.0.

Random forest classification was performed on the four-corners individuals within the
Mothur software. The OTUs sampled per split were calculated based on the log2 of the
total number of features. Each classification utilized 20,000 trees. Other parameters
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included using tree pruning with a pruning aggressiveness of 0.9. Trees with an error
rate above 0.4 were discarded. Any feature with a standard deviation less than 0.1 was
also discarded. Of note, the random forest classifier allows for the identification of
OTUs that do not necessarily have a linear relationship with the phenotype of interest.

Regression analysis was performed by utilizing the generalized estimating equations
to account for the MZ twin pairs present. BMI, WHR, and body fat mass (kg) were
regressed on the separate OTU abundances, while accounting for family structure.
Because of the presence of outliers in the OTU data, points were removed that
fell outside of four standard deviations from the mean for that specific OTU. The
regression on the multiple OTU abundances was corrected for multiple testing via a
false discovery rate correction.

For the purposes of the LEfSe, random forest and regression analyses, OTUs were
discarded if they were not present within at least 40% of all individuals (32 people).
This resulted in a total of 279 OTUs remaining, including an OTU that combines all
excluded OTUs.

RESULTS

ALPHA DIVERSITY COMPARISONS

The two-way ANOVA, including main effects of PRS and BMI and their interaction
on the mean inverse Simpson index values, showed a significant main effect of BMI,
that is, a difference in alpha diversity between individuals with obesity and leaner
participants (p = 0.00009), with a decreased alpha diversity within the gut microbiota
of individuals with obesity. The main effect of genetic risk was not significant (Table 3.2).

There was an unanticipated significant interaction between genetic risk and BMI
(p =0.0096). Plotting the inverse Simpson values clearly showed the high BMI/low
genetic risk individuals had a decreased alpha diversity (Figure 3.3).

Inverse Simpson values were also generated for the BMI discordant twin pairs.
The gut microbiota of the heavier twin had a lower average inverse Simpson value
relative to the mean values of the leaner twins. However, this difference failed to reach
significance (p = 0.298; Table 3.3).

REGRESSING BMI, BODY FAT, AND WAIST-TO-HIP RATIO ON INVERSE SIMPSON VALUES
In order to investigate the relationship between alpha diversity and a number of
different obesity-associated measures including BMI, kilograms of body fat, and
WHR, we regressed these outcomes on the inverse Simpson values in the subjects
from both the four-corners and BMI discordant twins (n = 80). The data from the two
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study designs were combined in order to increase the sample sizes for the regression
analyses. Significant negative relationships were observed between BMI and alpha
diversity as well as body fat and alpha diversity (Table 3.4). WHR measures were not
significantly associated with alpha diversity.

REGRESSING OTU ABUNDANCES ON POLYGENIC RISK SCORES

Using the four-corners design, each of the 279 OTUs were regressed on the polygenic
risk scores to identify OTUs associated with individuals with varying degrees of genetic
risk for obesity. After multiple testing correction, there were no significant associations
between the polygenic risk scores and any of the OTUs.

BETA DIVERSITY MEASUREMENTS

Comparison of the Bray-Curtis (BC) distances between the four-corners participants
showed that there was no significant difference between any of the four groups (Figure
3.4). Similarly, there was no statistical difference between the BC distances of high
BMI individuals versus low BMI individuals or for the high genetic risk group versus
low genetic risk group (Figure 3.5, Figure 3.6). Testing for a difference between the
leaner co-twin groups relative to the group of heavier co-twins also failed to reach
statistical significance (Figure 3.7).

Table 3.2 | Effects of Genetic Risk, BMI, and Their Interaction on the Mean Inverse Simpson Values

F p-value
Genetic Risk 3.108 0.085
BMI 18.439 0.00009
Genetic Risk * BMI 7.293 0.009658
Four-Corners Design Diversity
AA
High BMI High