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GENERAL INTRODUCTION

CHAPTER 1

GENERAL INTRODUCTION

Alcohol use is a serious risk factor for disease. Although beneficial effects of alcohol use have been
reported, the total net effect on health is disadvantageous. Light to moderate levels of alcohol use
have been related to lower risks for coronary heart disease (CHD) and type 2 diabetes, but for
individuals who drink heavily (even occasionally) relative risks are higher. In Western countries, 8-
12% of (in)direct aversive health effects are due to alcohol use (calculated in DALYs, disability-
adjusted life years) in men, while this is 0.5-3% for women (Rehm et al. 2003). Most alcohol-
attributable deaths result from cancer, cardiovascular disease, liver cirrhosis, diabetes and injury
(Rehm et al. 2003). The average daily volume of alcohol intake (ADV) associated with increased
mortality risk lies around 35-45 grams (~3 glasses). Risk of disease already starts to increase at an
ADV of 25 grams (for hypertension, liver cirrhosis, chronic pancreatitis, various cancers), although
for some diseases the ADV needed is much higher (>60 grams for type 2 diabetes, stroke; >89
grams for CHD, i.e. >4 and >6 glasses) (Dawson 2011). Other possible negative effects of alcohol use
encompass alcohol use disorders (AUD; e.g. addiction), mental health problems, disruption of social
relationships, loss of work productivity, as well as aggression, violence, and legal problems (NIAAA
2000).

The vast majority of people consumes alcohol, at least occasionally, which is likely to be
explained by the positive effects of alcohol use on stress reduction, mood elevation, relaxation, and
increased sociability (NIAAA 2000). Based on data from the World Health Organization, in the
Netherlands, 82% of men and 64% of women aged 15 or older consumed alcohol in the past year.
The prevalence of current drinking is even higher in the UK (90% and 82%), Germany (96% and
95%), Canada (81% and 74%) and Australia (88% and 80%), but lower in the USA (72% and 59%).
The prevalence of heavy drinking however is highest among the Dutch. Twenty percent of Dutch
men report to drink heavily (>60 grams of alcohol weekly at least once a week, i.e. >4 glasses) and
five percent of the women. Estimates for the other countries are: 10% and 3% (Australia), 13% and
3% (USA), 14% and 2% (Germany) and 16% and 4% (Canada) (no estimates are reported for the
UK) (World Health Organization 2011). Data from the Netherlands Twin Register (NTR) indicate
that 9-17% of men and 3-11% of women drink heavily (>21 and >14 glasses per week respectively
for individuals aged =218) (Geels et al. 2013). Given the high prevalence of alcohol use and heavy
drinking in combination with the multitude of disease associations, understanding the causes of

individual differences in (problematic) alcohol use is important.
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1. Drinking guidelines and definitions of (problematic) alcohol use

Drinking guidelines on safe alcohol use are based on its harmful consequences for health
and vary across countries (Health Counsel of the Netherlands, 2006; Dawson et al., 2011) as well as
within countries across advisory organizations (Health Counsel of the Netherlands, 2006).
Differences can partly, but not entirely, be explained by variation in the standard drink size
between countries (Dawson et al., 2011) that ranges from 8 grams (UK) to about 14 grams (USA)
(Dawson 2011; Health Counsel of the Netherlands 2012). Defining a standard drink size as
containing 10 grams of alcohol, the Health Counsel of the Netherlands recommends daily alcohol
use not to exceed two glasses of alcohol for men (<20 grams) and one glass of alcohol for women
(=10 grams). These daily limits do not refer to an average daily volume of alcohol intake (e.g. heavy
weekend drinking with five days of non-drinking), but emphasize that alcohol use should be kept
within daily limits, each day. Countries generally recommend complete abstinence for youth and
women that are (trying to get) pregnant, or breastfeeding (Health Counsel of the Netherlands
2012).

Definitions of problematic alcohol use can be separated into those that focus on the amount
of alcohol consumption (e.g. excessive drinking) and those that refer to the negative physical and
social effects of alcohol use (AUDs) (Fiellin et al. 2000). Excessive alcohol use is defined as drinking
more than three alcoholic beverages a day on average for men (ADV >30 grams) and more than two
alcoholic drinks on average for women (ADV >20 grams) (Health Counsel of the Netherlands 2012).
Excessive drinking is known to put individuals at risk for alcohol-induced health-related
consequences (therefore also known as ‘hazardous drinking’) (Fiellin et al. 2000). AUD diagnoses
are based on manuals as the Diagnostic and Statistical Manual of Mental Disorders (4th edition;
DSM-1V) (American Psychiatric Association 2000) and the International Classification of Mental and
Behavioral Disorders (10t edition; [CD-10) (World Health Organization 1992). The DSM-1V
(American Psychiatric Association 2000) distinguishes two types of AUDs: alcohol dependence and
alcohol abuse. Alcohol dependence is defined as a maladaptive pattern of alcohol use, leading to
clinically significant impairment or distress, broadly characterized by physical dependence
(tolerance, withdrawal symptoms), psychological dependence (craving), loss of control (exceeding
intended amount; unable to cut-down use), and physical and social consequences of maladaptive
alcohol use. The diagnosis of alcohol abuse can be seen as a lighter version or precursor of alcohol
dependence. It can be defined as a maladaptive pattern of alcohol use, leading to clinically
significant impairment or distress, that is manifested by interpersonal and social problems due to

alcohol use, without having symptoms of dependence or loss of control (Van den Brink 2010).
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Although the diagnosis of AUD does not require a specific level of alcohol consumption, excessive
alcohol use is a predictor for developing AUD. Both the average volume of consumption and the
frequency of heavy drinking are independently associated with the risk of AUD. Drinking five or
more drinks at a day for men (=70 grams) or four or more for women (256 grams), was associated
with a higher incidence of AUD, and the frequency of drinking these amounts further increased this
risk (Dawson 2011). To avoid the development of AUDs, some organizations recommend to avoid
daily drinking (Health Counsel of the Netherlands 2012).

Several brief screening instruments have been developed to detect excessive alcohol use
and alcohol use disorders, including the CAGE questionnaire (Ewing 1984), and the Alcohol Use
Disorders Identification Test (AUDIT) (Saunders et al. 1993). The AUDIT is developed to screen for
excessive alcohol use that puts the health of individuals at risk. In addition to screening for
excessive alcohol use it performs well in detecting alcohol dependence. Several shortened versions
exist that show comparable screening properties (Reinert and Allen 2007). The CAGE, designed to
detect alcohol dependence, is also valuable in detecting alcohol abuse, but less so in screening for
excessive alcohol use. When combining the CAGE with alcohol consumption items on quantity and
frequency, the performance in screening for excessive drinking is much increased (Dhalla and
Kopec 2007; Berks and McCormick 2008). An overview of the measures for (problematic) alcohol

use and other phenotypes that are used in this thesis is given in Chapter 2.

2. Alcohol metabolism and resulting tissue damage

Health-related consequences of alcohol use may, at least partly, be ascribed to effects of
alcohol metabolism that primarily takes place in the liver. In humans, there are three pathways of
alcohol oxidation. The bulk of ingested ethanol is oxidized by the alcohol dehydrogenase enzymes
(ADH) which are present in the cytosol. At high alcohol concentrations and during chronic alcohol
abuse, the cytochrome P450 isozymes, including CYP2E1, that are present in the endoplasmic
reticulum, contribute to alcohol metabolism. This system is also called the microsomal ethanol
oxidizing system (MEOS). A third, but minor, oxidative pathway is formed by the enzyme catalase
that is located in the peroxisomes. Alcohol that is oxidized through these pathways results in the
formation of acetaldehyde, a highly reactive and toxic byproduct that, with the enzyme aldehyde
dehydrogenase (ALDH), is oxidized to acetate in the mitochondria (Zakhari 2006). The toxicity of
acetaldehyde diminishes the capacity of the mitochondria to metabolize acetaldehyde, leading to
higher levels of acetaldehyde in the mitochondria which contributes to alcohol-related tissue

damage (Caballeria 2003). Other conditions that can result from alcohol oxidation and that can
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induce tissue damage are fatty liver, oxidative stress, hypoxia (through increased oxygen
consumption) and inflammation. See Figure 1 for an overview of the metabolic changes in the liver

associated with alcohol metabolism (taken over from Callalleria (2003)).
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Figure 1 Metabolic changes in the liver associated with alcohol metabolism (taken over from

Caballeria, 2003)

The development of fatty liver, an excess of triglycerides in the liver, results from a change
in the redox (reduction-oxidation) state in the cytosol and mitochondria. The conversion of ethanol
to acetaldehyde by ADH and from acetaldehyde to acetate by ALDH, involves an intermediate
carrier of electrons, nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH. This
results in an increased NADH/NAD+ ratio in the cytosol and mitochondria (Zakhari 2006). This
redox imbalance leads to an excess of triglycerides in the liver by complex mechanisms that
increase fatty acid synthesis, decrease hepatic lipoprotein secretion, increase mobilization of fatty
acids from adipose tissue favoring their hepatic reuptake and decrease fatty acid oxidation
(Caballeria 2003).

The oxidation of ethanol and acetaldehyde results in the generation of oxygen-containing

free radicals, called reactive oxygen species (ROS). ROS are toxic because they react with
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macromolecules including proteins, lipids and DNA, what can cause their degradation. A variety of
enzymes as well as (non-enzymatic) anti-oxidants protect cells from ROS. A disturbance in the
balance between ROS generating and protecting factors, resulting in an excess of ROS is called
oxidative stress. The presence of certain metals in the cell, especially iron, promotes the interaction
between some free radicals and thus catalyzes ROS. Chronic alcohol consumption increases iron
levels in the body through increased iron absorption from food (a characteristic not limited to iron-
rich red wine) and therefore ameliorates the toxic effects of alcohol on the body (Wu and
Cederbaum 2003).

Ethanol tends to increase the oxygen intake by hepatocytes which can induce other liver
cells in a state called hypoxia. Oxygen is needed for NADH (the reduced form of NAD+ that results
from ethanol oxidation) to pass through the mitochondrial electron transport system in the
mitochondria. During this process, H+ is removed from NADH, to obtain NAD+ that can be used
again for ethanol oxidation. Oxygen is used to bind to the H+ molecules to form H,0 (Zakhari 2006).
If liver cells that are close to the fresh blood supply (near the hepatic artery) take up increased
amounts of oxygen, not enough oxygen may be left for liver cells that take up their oxygen supply
later in the blood track (near the hepatic venule), leaving those cells in a state called hypoxia
(Caballeria 2003). After chronic alcohol consumption, the liver cells near the hepatic venule are the
first to show cell death (Cunningham and Van Horn 2003).

The immune system can be modulated by the effects of alcohol in several ways. One is the
activation of the body’s inflammatory response to the various biochemical metabolic effects that
result from alcohol metabolism. Fatty acid accumulation in the liver induces synthesis of pro-
inflammatory cytokines. Acetaldehyde can bind to proteins of various cellular membranes forming
acetaldehyde-protein complexes that induce antibodies to bind to these complexes and destroy the
hepatocytes that contain them. Death cells, for instance those that result from hypoxia or
mitochondrial damage, also activate the inflammatory response (Wang et al. 2010). Second, long
term alcohol exposure causes a change in the cytokine milieu resulting in a systematic
inflammatory condition that can damage various tissues (Wang et al. 2010). Chronic alcohol
consumption can cause leakiness of the digestive tract, which can result in the release of endotoxins
in the blood that activate Kupffer cells that reside in the liver (Kovacs and Messingham 2002).
These Kupffer cells stimulate the release of several inflammation-promoting cytokines such as
tumor necrosis factor alpha (TNF-a), interleukin (IL)-1f3, and IL-8. Kuppfer cells are a major source
of ROS, further increasing possible tissue damage (Vidali et al. 2008). In addition, alcohol use is

known to have immunosuppressive effects on both the innate and the adaptive immune system,
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increasing the risk of infections (Molina et al. 2010; Kovacs and Messingham 2002). Finally, liver
injury that results from inflammation can diminish the liver’s ability to regulate inflammatory
responses, which further ameliorates injury through the inflammatory response (Wang et al. 2010).

It should be noted that ethanol is also metabolized through non-oxidative pathways and can
take place outside the liver as well. Non-oxidative pathways of ethanol metabolism include
formation of molecules called fatty acid ethyl esters (from the reaction of alcohol with fatty acids)
and formation of phospholipids that are known as phosphatidyl ethanol (Zakhari 2006). ADH
activity is present in the stomach and colon mucosa. Marked gender differences have been
observed for ethanol metabolism in the stomach. Gastric ADH activity is lower in women, which
may be one reason why women are more susceptible to the toxic effects of alcohol. It is suggested
that bacteria, that make up most of the flora in the human colon, can oxidize ethanol to

acetaldehyde by bacterial ADH and subsequently to acetate by bacterial ALDH (Caballeria 2003).

3. Epidemiological research on the effect of alcohol use on fatty liver and oxidative stress
Epidemiological research on alcohol use supports the effects on liver injury described
above, at least for heavy drinking. A longitudinal study showed that an increase in the quantity of
alcohol consumed was associated with a higher risk of developing a fatty liver and a decrease in
alcohol consumption with reduction of fat tissue within the liver (Bedogni et al. 2007). In most
studies, a higher prevalence of fatty liver was observed among heavy drinkers (>40 grams ADV or
alcohol abuse diagnosis) compared to individuals who drink less than 40 grams alcohol per day or
abstainers (Hiramine et al. 2011; Bellantani et al. 1997; Pares et al. 2000; Chen et al. 2004; Fan et al.
2005). Studies among Japanese individuals consistently show that moderate drinking is associated
with a lower prevalence of fatty liver when compared to abstaining (Yamada et al. 2010; Hiramine
etal. 2011; Omagari et al. 2009; Gunji et al. 2009). This higher prevalence of fatty liver among
abstainers could not be attributed to individuals who had stopped drinking because they received a
diagnosis of fatty liver. Participants who had received the diagnosis of fatty liver during a previous
examination were comparable in their level of alcohol use to participants who received the
diagnosis of fatty liver for the first time (Hamaguchi et al. 2012). Furthermore, whereas for
Japanese women, the prevalence of fatty liver among heavy drinkers was comparable to that among
abstainers (Omagari et al. 2009; Hamaguchi et al. 2012; Yamada et al. 2010), for Japanese men, in
some studies the prevalence of fatty liver among heavy drinkers was lower than that of abstainers

(Hamaguchi et al. 2012; Yamada et al. 2010), although not in all (Omagari et al. 2009).
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Effects of oxidative stress are detectable at both moderate and heavy drinking levels.
Although the detection of alcohol-induced ROS generation in vivo is difficult (Wu et al. 2006),
alcohol exposure has an effect on anti-oxidant levels and on surrogate markers of oxidative stress.
Anti-oxidant carotenoid concentrations were lower in excessive drinkers (>25 grams ADV) than in
abstainers (Sugiura et al. 2005). After drinking either beer, wine or spirits for 30 days (40 grams
alcohol/day), levels of lipid peroxidation were increased and anti-oxidants levels decreased
(Addolorato et al. 2008). Increased levels of oxidative stress, as measured by urid acid
concentrations, were detected among normal weight excessive drinkers (>30 grams alcohol/day
(Oliveira et al. 2010) as well as moderate drinkers (1-21 glasses alcohol/week) (Alatalo et al.
2009a) relative to abstainers (BMI <25). Note however, that in the study of Alatalo et al. (2009a),
urid acid levels for women were comparable to those for abstainers (taking effects of BMI into

account). Thus, the effect of oxidative stress by alcohol may be dependent on sex.

4. Liver enzyme levels and its relation to alcohol use

This thesis focuses on alcohol use and blood levels of three enzymes that give an indication
of injury to the liver: gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT) and
aspartate aminotransferase (AST). Blood levels of these liver enzymes were originally proposed as
biomarkers for detection of heavy drinking (Whitfield 2001), but, overall, their clinical value has
proven to be limited.

GGT is a glycoprotein enzyme (a large molecule made up of both proteins and
carbohydrates) that is situated on the membrane of cells in several tissues, including cells that are
involved in bile production (Peterson 2004). It is involved in maintaining adequate levels of
intracellular glutathione, the most abundant intracellular antioxidant, that are needed to protect
the cell from oxidants that result from the metabolism of ethanol and other products (Whitfield
2001). Increases in GGT activity are thus expected during ethanol metabolism, to protect the cell
from oxidative stress. Studies consistently show that GGT levels and the incidence of elevated levels
is increased for heavy drinkers (>40 grams ADV) relative to abstainers as well as to moderate
drinkers (Alatalo et al. 2009b; Chen et al. 2003; [oannou et al. 2006; Nakanishi et al. 2000;
Conigrave et al. 2002). The odds ratios associated with elevated GGT levels due to heavy alcohol use
range from 3.85 to 18.4 (Scouller et al. 2000; Lee et al. 2001; Nakanishi et al. 2000; Higashikawa et
al. 2005; Sillanaukee et al. 2000b; Steffensen et al. 1997; Arndt et al. 1998). Most studies report
increased GGT levels for moderate drinkers in comparison to those for abstainers (Lee et al. 2001;

Nakanishi et al. 2000; Higashikawa et al. 2005; Arndt et al. 1998; Liangpunsakul et al. 2010),
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although in some studies GGT levels are similar to that of abstainers (Sillanaukee et al. 2000b;
Steffensen et al. 1997). Whereas increasing levels of alcohol consumption are associated with
increasing levels of GGT, its value as a marker of chronic alcohol use/abuse is limited. This is
because an increase in GGT levels is not specific to heavy drinking (and conversely, not every heavy
drinker has elevated GGT levels). Sensitivity estimates for GGT in detecting heavy drinking (>40
grams ADV) or a diagnosis of alcohol abuse or dependence, ranged from 7% to 65% for males; and
from 7% to 61% for females, at a specificity of 90-95%. For studies that estimated the specificity to
be 80-85%, the sensitivity was estimated to be around 39%-71% (Salaspuro 1999; Allen et al.
2000; Sillanaukee and Olsson 2001; Alte et al. 2004; Aertgeerts et al. 2001; Conigrave et al. 2002).
The large differences in the sensitivity/specificity estimates can be explained by differences in the
definition of problematic alcohol use that were used (>40/ >60/ >80 grams ADV/current/lifetime
disorder of alcohol abuse/dependence), as well as by differences between studies in the prevalence
of heavy drinking. Lower sensitivities are expected, and were detected, among the general
population, in which the prevalence of heavy drinking is lower, than in medical wards and primary
health care settings (Salaspuro 1999).

The association of alcohol use with aminotransferase levels (AST and ALT) is weaker than
that with GGT. Blood levels of AST and ALT are markers of hepatocellular injury, that increase when
damage to the liver cell membrane leads to increased leakage of AST and ALT into the circulation
(Pratt and Kaplan 2000). ALT is present in several organs and muscle, but mostly in the liver and is
therefore more specific to liver injury than AST which is found in the liver and skeletal muscle
(Hannuksela et al. 2007), but also in the heart, and kidneys (Pratt and Kaplan 2000). An AST/ALT
ratio of 22:1 is reported to be suggestive of alcoholic liver disease (Hannuksela et al. 2007; Sorbi et
al. 1999; Nyblom et al. 2004). Although there is evidence that AST levels are increased by heavy
drinking, they are not or only to a small degree increased by moderate levels of alcohol use. One
study detected higher AST levels among moderate drinkers than among abstainers (Liangpunsakul
etal. 2010), but another did not (Alatalo et al. 2009b). In three other studies the incidence of
elevated AST levels among moderate drinkers was comparable to that of abstainers (Lee et al.
2001; Steffensen et al. 1997; Arndt et al. 1998). Heavy drinking was associated with increased
(incidence of elevated) AST levels, compared to abstainers, in most studies (Arndt et al. 1998;
Alatalo et al. 2009b; Chen et al. 2003; Conigrave et al. 2002), but not in all (Lee etal. 2001) and in
one study AST levels were elevated only among women (Steffensen et al. 1997). The sensitivity of
AST to detect problematic alcohol use has been estimated around 11-45% at a specificity of 90-95%

and around 50% at a specificity of 80% (Salaspuro 1999; Conigrave et al. 2002).
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There is some suggestion that ALT levels are increased by heavy alcohol use, but clear
evidence is absent. Moderate drinking was associated with elevated ALT levels in two studies
(Alatalo et al. 2009b; Ioannou et al. 2006) (in Alatalo et al. (2009b) for men only), but not in three
others (Lee et al. 2001; Steffensen et al. 1997; Arndt et al. 1998). Of four studies that looked at the
effect of heavy drinking (Lee et al. 2001; Steffensen et al. 1997; Alatalo et al. 2009b; Arndt et al.
1998), two studies detected higher ALT levels or an increase in elevated levels among heavy
drinkers compared to abstainers (Arndt et al. 1998; Alatalo et al. 2009b). One study did not detect
such an effect (Lee et al. 2001), and another only among women (Steffensen et al. 1997). The
sensitivity of ALT to detect problematic alcohol use is estimated between 35% and 47% at a
specificity of 85% (Salaspuro 1999).

Liver enzyme levels are associated with disease and mortality. GGT, ALT and AST all
strongly predict liver disease and liver-related mortality (Ruhl and Everhart 2009; Kazemi-Shirazi
etal. 2007; Hyeon et al. 2004; Lee et al. 2008), with GGT and ALT showing relations with other
diseases also. Strong associations have been found for GGT and ALT with type 2 diabetes (Fraser et
al. 2009), and for GGT with cardiovascular disease (Targher 2009; Fraser et al. 2007) as well as
cancer and chronic kidney disease (Targher 2009). These disease associations cannot be solely
explained by the negative effects of alcohol use alone, since most disease associations are still
present when taking alcohol use into account (Targher 2009; Ruhl and Everhart 2009; Fraser et al.
2009).

In clinical practice, GGT, ALT and AST are used as markers of liver injury. To explain their
role in other disease, GGT and ALT have been proposed as surrogate markers of fatty liver (Targher
2009; Schindhelm et al. 2006) and GGT as marker of oxidative stress as well (Lee et al. 2004). The
role of GGT and ALT as marker of fatty liver comes from the positive correlations of GGT and ALT
with liver fat content. ALT is suggested to be most closely related to the amount of liver fat (Targher
2009), which is further underlined by the association of the 1148 allele of the PNPLA3 gene
(chromosome 22) with ALT. The 1148 variant of the PNPLA3 gene is associated with hepatic fat
content and fatty liver, and predisposes individuals to an 28% increase in ALT activity (Vernon et
al. 2011). ALT, GGT, and (to a lesser degree) AST levels increase with increasing levels of BMI
(Alatalo et al. 2008). Partial correlations taking alcohol consumption or BMI into account, show that
ALT levels depend more on BMI, whereas GGT levels are most dependent on differences in ethanol
intake (partial correlations for AST were not reported) (Alatalo et al. 2008).

The role of GGT as marker of oxidative stress is complex. Although GGT is involved in

protecting the cell from oxidative stress by maintaining adequate levels of the intracellular
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antioxidant glutathione, the presence of iron is suggested to trigger pro-oxidant effects of GGT (Lee
etal. 2004). Thus on the one hand, increases in GGT can mark increases in glutathione that actually
present anti-oxidant effects to protect the cell from oxidative stress during normal metabolism, e.g.
that of alcohol. On the other hand, increases can indicate the presence of ROS. Indeed, higher levels
of GGT were associated with higher levels of markers for oxidative stress (Lee et al. 2004; Yamada
etal. 2006; Bo et al. 2005) and lower levels of serum anti-oxidants (Sugiura et al. 2005; Lee et al.
2004; Lim et al. 2004). In addition, GGT and ALT correlate positively with CRP, a marker of

inflammation (Yamada et al. 2006; Kerner et al. 2005).

5. Aim and research question

Alcohol use, especially heavy alcohol use, is associated with several changes in the body,
including liver injury. Liver enzyme levels are used as markers of liver injury, and likely reflect, at
least partly, effects of alcohol-related injury. The exact nature of the association between alcohol
use and liver enzyme levels is not yet entirely clear however. Not every drinker has elevated liver
enzyme levels, which may reflect genetic differences among individuals causing individual
differences in liver enzyme levels. If alcohol use is associated with increased liver enzyme levels,
and both alcohol use and liver enzyme levels are genetically mediated, then the question arises
whether, and if so, to what extent, the genetic epidemiology of alcohol use and liver enzyme levels is
shared, which is the focus of this thesis.

This thesis takes a genetic perspective on alcohol use and liver enzyme levels to elucidate
the association between them. It first describes what amount of the variance in alcohol use and
liver enzyme levels, and the overlap among them, can be ascribed to genetic and environmental
effects. These analyses are based on data from twins and their family members registered with the
Netherlands Twin Register (NTR) (Boomsma et al. 2002¢; Boomsma et al. 2006). Twin-family
designs can determine the importance of genetic risk factors for alcohol use and liver enzyme
levels, and the amount of genetic overlap in risk factors among these traits, by the fact that mono-
and dizygotic twin pairs and their family members differ in genetic relatedness to different degrees.
Next, genetic marker data are analyzed to estimate what part of the (twin-family based) heritability
estimates for alcohol use and liver enzyme levels are attributable to assessed genetic marker data.
[t is then examined if the association between alcohol use and liver enzyme levels can be traced
back to genetic marker data. These analyses are based on data from NTR individuals as well as from

participants of the Netherlands Study on Depression and Anxiety (NESDA) (Penninx et al. 2008).
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Furthermore, a gene finding study is performed to detect genetic risk loci that explain differences

alcohol use.

6. Outline thesis

First, a method section explains the methodology that has been applied to investigate the
genetic architecture of alcohol use and liver enzyme levels (Chapter 2). Chapters 3 to 8 can be
subdivided into two parts. In the first part, studies are presented that rely on twin-family data to
obtain estimates of the heritable component of variation in alcohol use and liver enzyme levels. In
these studies the genetic relatedness between individuals is inferred and the influence of genetic
effects is estimated based on the correlations between the phenotypic values of family members. In
the second part of this thesis, studies are presented that make use of genetic marker data (single
nucleotide polymorphisms, SNPs) with the aims of gene finding and studying the genetic
architecture of alcohol use and liver enzyme levels explained by SNPs.

Chapter 3 studies the importance of genetic and environmental influences in explaining
individual differences in alcohol intake. For this study, the resemblance in alcohol intake levels
among twins pairs, their siblings and parents is analyzed to obtain an estimate of the heritability.
Besides effects of genetic transmission, effects of cultural transmission from parents to offspring
are tested. Does the level of alcohol intake by the parents affect that of their children, e.g. through
social modeling, even when the transmission of the genetic risk affecting alcohol intake levels is
taken into account?

Chapter 4 describes a study on the development of symptoms of alcohol abuse and
dependence (AAD) from adolescence into young adulthood, an important timeframe for the
development of alcohol use, and how this development can be explained. For this study,
longitudinal data on the CAGE are analyzed (Ewing 1984), collected in twins aged 15-32 years old.
Specifically, it is examined what the relative contribution is of genetic and environmental effects on
the development of symptoms of AAD in adolescence and young adulthood. Can this development
be explained by one set of genes, or do different genes get expressed along adolescence and young
adulthood, for instance when individuals tend to leave the parental home?

Chapter 5 describes what part of individual differences in blood levels of the liver enzymes
GGT, ALT and AST can be ascribed to genetic effects. By analyzing the resemblance in liver enzyme
levels among twin- and sibling pairs and parents and offspring, an estimate on the heritability is

obtained. By analyzing data from twins, siblings and parents, possible effects of spousal
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resemblance on the heritability can be taken into account, and non-additive genetic effects and
effects of shared environment can be estimated simultaneously.

Chapter 6 presents a study on the association of alcohol intake with GGT. The relation
between alcohol intake levels and GGT among twins and their family members can inform the
underlying mechanism of association. Do individuals have elevated GGT levels because they drink
higher amounts of alcohol ? (i.e. alcohol intake causes increased GGT levels) Or is there a common
cause, e.g. shared genetic factors that influence both alcohol consumption as well as variation in
GGT levels which explains the association between alcohol use and GGT at the population level?

In Chapter 7, a candidate gene study is performed on the association of loci in the ADH gene
cluster with measures of alcohol use. This gene cluster harbors functional variants in the ADH1B
and ADH1C genes which have been associated with risk for alcoholism previously (Edenberg 2007).
Relatively little is known about genetic variants in other ADH genes and how these are related to
measures of alcohol use other than alcoholism however, which is the focus of this study.

Chapter 8 examines what part of the variance in liver enzyme levels and their covariance
with alcohol use can be explained by genetic marker data. Two relatively novel methods are applied
to estimate the heritability of alcohol use and liver enzyme levels based on SNPs (genetic marker
data that differ from the DNA reference variant by a single base pair, A, C, T, G). A first method is
based on the genetic relatedness among individuals implemented in the software package GCTA
(Yang et al. 2011a) and a second method on density estimation (proposed by So et al. (2011)). In
addition, it is explored if part of the variation in liver enzyme levels that can be explained by SNPs,
is shared with that for alcohol use.

This thesis is concluded with a summary and general discussion (Chapter 9) and Dutch

summary (Chapter 10).
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CHAPTER 2

DATA (COLLECTION) AND METHODS

This chapter consists of two parts. The first part briefly introduces the two cohorts that provided
the data for the studies in this thesis and gives an overview of the variables analyzed. The second
part presents an in detail description of the methodology that was used to study the genetic

architecture of alcohol use and liver enzyme levels.

1. Data and data collection

The data on alcohol use and liver enzyme levels analyzed in this thesis come from twin-
families registered with the Netherlands Twin Register (NTR) and from participants of the
Netherlands Study on Depression and Anxiety (NESDA). First a short description of the NTR is
presented and its longitudinal survey study on health, lifestyle and personality in which alcohol
data were collected, followed by an overview of the actual measures on alcohol use that were
studied for this thesis. Next, the NTR biobank study is introduced that provided the information on
the liver enzyme levels. To give information on the comparability of the NTR biobank participants
to the general NTR sample with regards to alcohol use, data are presented on alcohol use for those
participating and not participating in the NTR biobank. After this, the NESDA study is introduced.

Finally, the phenotypic relation between alcohol use and liver enzyme levels is shortly described.

1.1 The Netherlands Twin Register (NTR) survey studies on alcohol use

The NTR was established in 1987 to study genetic and environmental influences on traits
related to health, lifestyle, personality, psychopathology, cognition, and development (Boomsma et
al. 2002c¢). To this purpose, a longitudinal survey study on health, lifestyle and personality was
started in 1991 in adolescent and adult twins and their family members (Adult NTR; ANTR), see
Willemsen et al. 2013 for the most recent description). Surveys have been sent out every 2-4 years
and at present, nine surveys have been conducted. In the first years, only twins and their parents
were invited to participate, but later the invitation was extended to siblings, spouses and most
recently children of twins. A separate NTR cohort was followed from birth (the Young NTR; YNTR,
see Beijsterveldt et al. (2012) for a detailed description). Since 2009, these twins, once they reach
the age of 18, and their family members, are also invited into the ANTR surveys. The studies
presented in this thesis make use of the data on alcohol use that were collected between 1991 and

2012 as part of the first eight surveys. Nearly all individuals who participated in ANTR research at
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least once, filled out questions on alcohol use (98.5% of individuals aged =15). At present, data on
alcohol use are available for >31,000 participants of the ANTR (Table 1). Only a small percentage of

these individuals was life-time abstainer (2.7% of men; 4.5% of women).

Table 1 Number of NTR and NESDA participants with data on alcohol use, liver enzyme levels and
SNPs

Alcohol data Liver enzyme data SNP data »
N N N
NTR twins males 5,277 1,302 1,419
females 9,232 2,497 2,930
siblings  males 1,630 531 294
females 2,582 1,334 620
parents males 4,439 1,170 840
females 5,340 1,462 1,032
spouses males 1,302 224 171
females 719 142 100
other males 157 9 4
females 345 87 20
total 31,023 8,758 7,430
NESDA b males 736 744 744
females 1,473 1,491 1,491
total 2,209 2,235 2,235

a Numbers refer to individuals with genotyping data who also had data on alcohol use or liver enzyme levels. Genotyping

of individuals is still ongoing. Note that these numbers differ from the number of participants in Chapter 8, as here in

contrast to Chapter 8 related individuals are included.
b These numbers reflect a subgroup of all NESDA participants for whom quality controlled genotyping data and data on

liver enzyme levels and alcohol use were available at the time Chapter 8 was written.

1.2 Measures of alcohol use

Data on alcohol use comprised questions on alcohol consumption (drinking quantity and
drinking frequency), symptoms of alcohol abuse and dependence (AAD) as measured by the four
CAGE items, age at onset of alcohol use (experimental alcohol use/regular alcohol use/getting
drunk), physical reactions after alcohol use, and beverage preference. Table 2 provides an overview

of the measures available for alcohol use, and the years in which they were collected.
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Table 2 Overview of alcohol use measures 2 available through ANTR surveys

Survey number (year of start data collection)

1 2 3 4 5 6 7 8
1991 1993 1995 1997 2000 2002 2004- 2009-
2008 2012

Initiation X X X X X X X X
Frequency X X X X X X X
Quantity X X X X X X X
CAGE X X X X X X
AUDIT X
Frequency of getting drunk X X X X
Frequency binge drinking b X X
Max. no. drinks in 24 hours
in past year X
Age at onset experimental use X X X X X X
Age at onset regular use X X X X X
Age at onset getting drunk X X X X
Physical reactions after use X X X
Beverage preference X X X
Situation-specific urges to drink X
Reasons not to drink at a regular
basis X

a Measures shown in italic are analyzed for this thesis.

b Defined as drinking >5 alcoholic beverages on one occasion.

Drinking frequency In surveys 2-7, drinking frequency was assessed by the question ‘How
often do you drink alcohol? Also count the times that you only drank a small amount (e.g. half a pint
of beer or a few sips of wine)’. The response categories were ‘I don’t drink alcohol’, ‘once a year or
less’, ‘a few times a year’, ‘about once a month’, ‘a few times a month’, ‘once a week’, ‘a few times a
week’ and ‘every day’. In survey 8, individuals were asked to take the past year in mind with the
question being phrased as ‘How often did you drinking alcohol in this period?’ Response categories
were ‘I don’t drink alcohol’, ‘monthly or less’, ‘two to four times a month’, ‘two to three times a
week’, ‘four to five times a week’, ‘six times a week or daily’. Response categories from surveys 2-7
and survey 8 were combined into: ‘I don’t drink alcohol or less than once a year’ ‘monthly or less’,
‘two to four times a month’, ‘two to five times a week’, ‘six times a week or daily’.

Drinking quantity Data were available from survey 2 (1993) onwards. In surveys 2-7,
drinking quantity was surveyed by the question ‘How many glasses a week do you drink on average
(including the weekend)?’. There were seven response categories: ‘less than 1 glass’, ‘1-2 glasses a
week’, ‘3-5 glasses a week’, ‘6-10 glasses a week’, ‘11-20 glasses a week’, ‘21-40 glasses a week’ and

‘more than 40 glasses a week’. In survey 8, individuals were asked to report for each day of the
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week the number of glasses of beer, wine and spirits they drank in an average week. These
numbers were summed and then categorized as in the earlier surveys.

Symptoms of AAD The CAGE, which indicates symptoms of alcohol abuse and dependence/
risk for problematic alcohol use (problem drinking liability), was included in all surveys from
survey 3 (1995) onwards. The CAGE derives its name from the phrasing of its four questions
(Ewing 1984): ‘Have you ever felt you should Cut down on your drinking?’, ‘Have people Annoyed
you by criticizing your drinking?’, ‘Have you ever felt bad or Guilty about your drinking?’, ‘Have you
Ever had a drink first thing in the morning to steady your nerves or to get rid of a hangover?’. In
survey 8, CAGE items could be answered with ‘yes, not in the past year’, ‘yes, in the past year’, and
‘no’. In other years, each item could be answered with ‘yes’ or ‘no’. The frequency of the two ‘yes
categories’ in survey 8 combined, was comparable to the one ‘yes category’ of earlier years, and
therefore combined into one ‘yes’ category.

Age at onset experimental alcohol use In surveys 2-5, age at onset of experimental alcohol
use was measured with the question ‘If you have ever used any of the substances listed below,
please indicate the age at which you used them for the first time’ followed by the item ‘“Tried an
alcoholic drink’. In surveys 2-4 there were eight response categories: ‘11 or younger’, ‘12’,‘13’, ‘14’,
‘15’,16’,17’, and '18 or older’. In survey 5 response categories were brought back to five: ‘11 or
younger’,’12-13’,’14-15’,°16-17’ and '18 or older’. In surveys 1 and 8, the question was phrased as
an open-ended question, of which the answers were brought back to the categories described above
if information needed to be combined over different surveys. In survey 1, the question was phrased
as ‘At what age did you start using alcohol?’. In survey 8 the question was ‘At what age did you try
alcohol for the first time?’.

Age at onset regular alcohol use Age at onset of regular alcohol use was determined in
surveys 2-5 (1993-2000) in a similar way as described for experimental alcohol use with the
question being followed by ‘regularly drank alcohol’. Response categories were the same as
described for experimental alcohol use. In survey 8, age at onset of regular alcohol use was
determined by an open ended question ‘At what age did you start using alcohol regularly?’ for
which answers could be brought back to the categories in surveys 2-5, if age at onset was to be
combined over surveys.

Age at onset getting drunk In survey 2-4, information on age at onset of getting drunk was
obtained in the same manner as described for experimental alcohol use with the item now being
followed by ‘gotten drunk or tipsy’. Again, the same age categories apply. In survey 8, age at onset of

getting drunk was measured by the open-ended question ‘At what age did you get drunk or very

22



DATA (COLLECTION) AND METHODS

tipsy for the first time?’ For survey 8, age reported by the participants could be categorized as in
surveys 2-4, if necessary.

Physical reactions to alcohol Whether persons experienced physical reactions after alcohol
use was determined in surveys 2, 3 and 8 with the question ‘Do you experience unpleasant physical
reactions, like flushing of face or body, itching, sleepiness or heart beating after drinking one or two
glasses of alcohol?” with response categories being ‘always’, ‘sometimes’ and ‘never’.

Beverage preference Beverage preference was assessed with the question ‘What do you
drink preferably?’ In surveys 3 and 5, response categories were ‘wine’, ‘beer’ and ‘spirits (gin,
whisky, liquor etc.)’ with the question followed by ‘you can indicate one preference only’. In survey
8, the question was not followed by the addition that only one preference could be given. Response
categories were ‘wine’, ‘beer’, ‘spirits (e.g. gin, mix drinks, cocktail)’, and a fourth option ‘no

preference’.

1.3 Blood collection and liver enzyme levels

In the period 2004-2009, 9,530 adults registered with the NTR participated in a large blood
collection study. As part of this study, adult NTR participants were visited at home, or when
preferred at work, to provide blood and urine samples. Sampling took place in the morning
(between 7.00 and 10.00 a.m.). Participants had been asked to fast from 10 p.m. the night before, to
refrain from smoking one hour before the home visit, and, at the day of the home visit, to abstain
from physical exertion and medication if possible. Compliance was checked in a brief interview, that
also obtained information on health and smoking status. In addition, height, weight and hip and
waist circumference were determined (for a detailed description of the NTR biobank and the blood
collection procedures, see Willemsen et al. 2010).

The liver enzyme levels were determined in heparin plasma. At the time of blood sampling,
blood was collected in two heparin plasma tubes that were turned 8-10 times immediately after
collection to prevent clotting and stored in melting ice during transport. Processing of the tubes
took place within six hours (average transport time 196 minutes) at one central laboratory in
Leiden. There was no association between transportation time and hemolysis. In the central
laboratory, plasma was collected and six samples of 500 puL were snap-frozen and stored at -30 °C.
These aliquots were used to determine the level of gamma-glutamyl transferase (GGT), alanine
(ALT) and aspartate aminotransferase (AST) in units per liter (U/L) by Vitros assays (Vitros 250,

Ortho-Clinical diagnostics) (Johnson & Johnson, Rochester, USA). The reference intervals were as
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follows: <50 U/L (males) and <35 U/L (females) for GGT; <45 U/L (males) and <40 U/L (females)
for ALT; <40 U/L (both sexes) for AST.

For this thesis, SNP data were analyzed that were genotyped on five platforms: Affymetrix
6.0, Affymetrix 5.0-Perlegen (Affymetrix, Santa Clara California), [llumina 660, Illumina Omni
Express 1M and [llumina 370 (Illumina, San Diego, California). In total, liver enzyme levels were
determined for 8,758 participants and genotypic information was available for 5,834 persons (see

Table 1).

1.4 Alcohol use and liver enzyme levels within the Netherlands Study on Depression and Anxiety

Chapter 8 of this thesis also presented data on alcohol use, liver enzyme levels and SNP data
from individuals who participated in the NESDA study (N=2,027). The NESDA study is a
longitudinal cohort study on the course and consequences of anxiety and depressive disorders and
includes 2,981 individuals, who currently or in the past, suffered from depression or anxiety
disorders, or participated as healthy control. At the baseline assessment, information was obtained
on mental health outcomes and psychosocial, clinical, biological and genetic determinants through
questionnaires, psychiatric interviews and blood samples. During the baseline assessment, data on
alcohol use were obtained by questionnaires (AUDIT questionnaire to measure alcohol
consumption and severity of alcohol problems) as well as by psychiatric interviews (DSM-1V
diagnosis of alcohol use disorders). For the study presented in Chapter 8, questionnaire data on
drinking quantity were analyzed and data on liver enzyme levels (GGT, ALT and AST).

To obtain a measure on drinking quantity that was comparable to that in the NTR, the first
two questions of the AUDIT questionnaire were combined. AUDIT item 1 assessed drinking
frequency: ‘How often do you have a drink containing alcohol?’ with response categories ‘never’,
‘monthly or less’, ‘two to four times a month’, ‘two to three times a week’, ‘four or more times a
week’. AUDIT item 2 assessed drinking quantity at a drinking day: ‘How many drinks containing
alcohol do you have on a typical day when you are drinking? with response categories ‘1 or 2’, ‘3 or
4’,'50r6’,'7,80r 9’,’10 or more’. To calculate alcohol intake levels, (each category of) drinking
frequency was expressed as the number of drinking days per year and (each category of) drinking
quantity as the midpoint number of glasses consumed at a drinking day. The last category of
drinking quantity was given the midpoint value of 11 based on the median number of drinks per
day, reported by NTR participants who drank more than 10 glasses per day. If individuals reported

to ‘never’ drink alcohol on the first AUDIT item, they were assigned an alcohol intake level of 0
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glasses alcohol per year. Drinking quantity per week could then be calculated by dividing the
number of drinks per year by 52.

Blood samples collected at the baseline assessment were used to determine liver enzyme
levels and to obtain genotypic information (Penninx et al. 2008). Before the start of the blood
sample collection, NTR and NESDA protocols for processing and storage of blood samples were
largely harmonized (Boomsma et al. 2008). For NESDA, blood sampling took place at seven field
sites that were within walking distance of a laboratory between 8.30 and 9.30 a.m. after an
overnight fast. Participants did not receive further instructions regarding smoking or strenuous
exercise. At the laboratory, blood samples were processed within an hour (Boomsma et al. 2008;
Penninx et al. 2008), including determination of GGT, ALT and AST levels in U/L with Roche
Diagnostic assays (Chambers et al. 2011).

The total number of NESDA participants with data on alcohol use, liver enzyme levels and

SNPs is given in Table 1.

1.5 Alcohol use NTR biobank sample versus general NTR sample

Tables 3 and 4 give for each drinking category, the number of NTR biobank participants
with liver enzyme data and the number of NTR participants who did not participate in the biobank
study and therefore did not provide data on liver enzyme levels. To test whether individuals who
participated in the NTR biobank sample were a selected sample, drinking patterns were compared
for a random set of unrelated individuals who differed in whether or not they participated in the
NTR biobank study. Not-current drinkers were included in these comparisons and were assigned a
drinking quantity of <1 glas per week. For males, drinking patterns were similar for those who
participated in the biobank study and those who did not (drinking frequency x%(4)=12.14, p=.02;
drinking quantity x2(4)=6.75, p=.15). Females who participated in the biobank study drank
somewhat more frequent (x2(4)=37.31, p<.001), but consumed less at a time (x2(4)=47.84, p<.001)
than females who did not participate in the biobank study, though differences were minor. Among
female participants of the biobank study, 16.2% drank =4 times per week and 69.0% less <5 glasses
per week. For females who did not participate in the biobank study, this was 12.9% and 62.9%

respectively.

1.6 Alcohol use NTR biobank sample versus NESDA sample
Tables 3-6 show mean liver enzyme levels stratified by levels of drinking frequency,

quantity and risk for problematic alcohol use (as indicated by the CAGE and AUDIT), for NTR and
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NESDA. For NESDA, 39.3% of male participants drank >4 times a week versus 26.5% for NTR
(27.4% vs. 26.5% for females respectively). Among NESDA participants, 13.3% of males drank =21
glasses per week and 3.4% of females. Among NTR, this was 9.0% and 2.1% respectively. Risk for
problematic alcohol use as measured with the AUDIT was estimated to be present for 34.9% and
17.4% of male and female NESDA participants respectively, and for 10.6% and 4.4% of male and
female NTR participants. In Tables 3-6, mean levels of BMI did not differ over drinking categories.

Thus the level of alcohol use is suggested not to be dependent on BMI.

1.7 Relation alcohol use and liver enzyme levels

With regression analyses it was estimated what amount of variance in liver enzyme levels
could be attributed to different measures of alcohol use. Regression analyses were performed
including age as fixed effect, separately over source (NTR vs. NESDA) and sex. For the NTR sample,
only unrelated individuals were included in the analyses. Measures of alcohol use explained a
significant amount of variance in GGT, but not in ALT. For AST, results were mixed. The CAGE and
AUDIT, but not drinking quantity, explained a significant amount of variance among male NTR
participants, whereas drinking quantity, but not the AUDIT, explained variance among female NTR
and male NESDA participants. For drinking quantity and the AUDIT, the amount of explained
variance was highest. Around 2-4% of the variance in GGT could be explained by these measures of

alcohol use (see Table 7).
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CHAPTER 2

Table 7 Variance of liver enzyme levels 2 explained by measures of alcohol use

NTR NESDA
males females males females
GGT frequency  1.6% n.s. n.s. n.s.

quantity®  3.5% 1.0% 3.1% 1.6%

CAGE 1.9% 0.8% - -
 AUDIT  28%  12%  40%  17%
ALT frequency n.s. n.s. n.s. n.s.

quantity n.s. n.s. n.s. n.s.

CAGE n.s. n.s. - -
.. AUDIT _ ns _ns.___ns. o ns.
AST frequency n.s. n.s. n.s. n.s.

quantity n.s. 0.4% 1.1% n.s.

CAGE 0.8% n.s. -- --

AUDIT 1.6% n.s. n.s. n.s.

n.s.= not significant (at a=.01)
a Liver enzyme levels are log-transformed.

b Analyses in Chapter 3, 6 and 8 are based on drinking quantity expressed in the amount of alcohol consumed in

grams per day. Explained variance for GGT by alcohol intake in grams per day was 4.0%, 1.7%, 5.0% and 2.4% for
male NTR participants, female NTR participants, male NESDA participants and female NESDA participants

respectively.

2. Methods to study genetic effects

To study the genetics of alcohol use and liver enzyme levels two sets of methods were
used. The first set of methods estimated the heritability of traits based on the known genetic
relatedness between monozygotic (MZ) and dizygotic (DZ) twin pairs and their family members
(registered with the NTR). The second set of methods used genetic marker data (single
nucleotide polymorphisms, SNPs) that were available for a subset of NTR participants as well as
for NESDA participants. SNP data were used to estimate the SNP-based heritability as well as to
perform gene finding studies. The basis of all these methods is given by the biometric model, the
cornerstone of quantitative genetics. The discussion of the different methods is therefore

preceded by a short introduction to the biometric model.

2.1 Biometric model

Quantitative genetics is concerned with the polygenic inheritance of quantitative
differences between individuals (Falconer 1996), in contrast to Mendelian genetics that
describes the inheritance of a dichotomous trait by a single gene (Kwan et al. 2007).
Quantitative genetics (and its biometric model) lies at the heart of methods to estimate
heritability as well as gene finding.

The biometric model describes how genetic variation is related to phenotypic variation.

Genetic variation affects the mean phenotypic level in a population. In the simplified case of a
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trait that is influenced by one gene with two alleles (4, Az with allele frequencies p and q
respectively, where p+g=1), there are three possible genotypes, A:4;, A4z, A2Az, that occur with
the following frequencies: p?, 2pq, and q? (under the assumption of Hardy Weinberg
equilibrium, HWE). Having assigned these genotypes genotypic values of +a, d and -a
respectively, the mean phenotypic level in the population can be expressed as the sum of the

product of genotype frequencies and genotypic values (Falconer 1996):
#=2a(p—q)+2dpq 1)

The phenotypic variance in a population can be expressed as the sum of variation due to genetic
effects (G) and variation due to environmental effects (E) (Fisher 1918). If the genetic variance
(var(G)) and environmental variance (var(E)) are assumed to be independent, the covariance
between G and E, 2cov(G,E), is zero. The phenotypic variance can then be formulized as follows

(Falconer 1996):
var(P) = var(G)+ var(E) (2)

The genetic variance can be obtained by taking the sum of the difference between the genotypic
values and the population mean multiplied by their respective genotypic frequencies. Starting of
with a one gene (two-allele) model, the genetic variance can be separated into variance due to
additive genetic effects (average allelic effects or breeding values; var(A4)) and variance due to
dominance genetic effects (interaction between two alleles at one locus; var(D)). Then the

genetic variance can be given as (Falconer 1996):

var(G) - p(a—u)*+2pq(d—u)*+q° (~a—p)° 3)
- 2pg(a+d(g-p))*+(2pqd)®
=var(A)+var(D)

The ratio of var(G) to the total phenotypic variance (var(P)) expresses the broad-sense
heritability of a trait (total h2). The ratio of var(A) to the total phenotypic variance, is called the
narrow-sense heritability (h?) (Falconer 1996). To obtain estimates on the amount of variance
that can be ascribed to genetic effects, data from genetically informative individuals can be
modeled (e.g. data from twins), or genetic variants can be analyzed (e.g. SNP data). These

methods will be described below.
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CHAPTER 2

2.2 Methods to estimate the heritability based on the inferred genetic relationship among family
members

Phenotypic values can be correlated among relatives to obtain estimates on the relative
influence of genetic and environmental influences on these traits. The classic approach to study
the relative influence of genetic and environmental variation underlying a trait is to study the
phenotypic similarity of MZ twins reared apart (twin-adoption design) or to compare
phenotypic similarity among MZ twins with that of DZ twins (classical twin design; CTD)
(Boomsma et al. 2002a). In this thesis, different variations/ extensions of the CTD are applied
which are described below. In Chapter 3, two variants of the CTD were applied, a multivariate
CTD and a longitudinal simplex model. In Chapter 4, 5 and 6, data were modeled with the
extended twin-family design (an extension of the CTD), which allows for the inclusion of data
from family members other than twins. Variances due to genetic and environmental effects
according to these models were estimated with classic Mx (Neale et al. 2006) and OpenMx

(Boker et al. 2011), two statistical programs for structural equation modeling (SEM).

2.2.1 The classical twin design

The relative contribution of genetic and environmental effects can be estimated by
comparing the phenotypic similarity between the members of MZ twin pairs versus that of DZ
twin pairs, under a number of assumptions (Jinks and Fulker 1970).

The cornerstone of the CTD is the equal environment assumption (EEA), that postulates
that the difference between the similarity between DZ twins as compared to MZ twins can be
ascribed to effects of genes alone, not to differences in environmental effects. It is thus assumed
that the amount of environmental variance that is shared between twins is equal for MZ and DZ
twins (Jinks and Fulker 1970). Research on the validity of the EEA shows that for some traits,
MZ twins are more similar in their environmental experiences than DZ twins (Felson 2009).
With regard to alcohol use, research on whether contact and/or closeness between twins
predicts similarities in alcohol use is mixed. Whereas cohabitation, social contact, and overlap in
friends were related to similarity in alcohol consumption (Hettema et al. 1999; Horwitz et al.
2003; Rose et al. 1990), similarity in childhood treatment, co-socialization, and perceived
similarity did not predict alcohol dependence concordance (Kendler and Gardner 1998).
Importantly, increased environmental similarity in itself does not necessarily invalidate the
EEA. From the concept of gene-environment correlation it is expected to find that MZ twins who
share all their genes will be more similar in environmental exposures elicited by their genotype
and thus in closeness and contact, than DZ twins who share 50% of the genetic material on
average. The right question to ask is then whether twins experience more similar environments

because they are treated as identical, instead of whether they elicit similar environments based
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on their genotype (Eaves et al. 1978). From this perspective it is interesting to examine whether
perceived zygosity has an additional effect on trait similarity when genetic similarity is taken
into account (as captured by the ‘true’ zygosity) (Scarr 1968), given there is a substantial
proportion of twins who is misinformed about their zygosity. DZ twins who are perceived by
themselves and their direct environment as being MZ (e.g. by their parents) may behave more
similarly and may be expected to be more alike, which may increase their trait similarity. In
contrast, MZ pairs incorrectly labeled as DZ pairs may be less similar for the trait of interest
than MZ pairs who were labeled correctly. Perceived zygosity had little impact on twin
similarity for alcohol dependence (Xian et al. 2000; Kendler et al. 1993). Neither was there an
effect of physical similarity on concordance for alcoholism (Hettema et al. 1995), supporting the
notion that MZ twins are not treated more similarly because they are identical.

Predictions following from the invalidation of the EEA hypothesis (Lykken et al. 1990),
are supported to some degree however, which suggests that the EEA does not entirely hold true.
First, it is predicted that if greater frequency of contact leads to more similarity, individuals,
including spouses, become more similar to each other the longer they are together (in this
thesis also called ‘cohabition effects’). Whereas spousal resemblance for alcohol use is partly
due to partner choice guided by one’s own phenotype (and hence by one’s own genotype,
because var(P)=var(G)+var(E), a process called phenotypic assortment), additional
cohabitation effects have been observed (that is, after taking effects of phenotypic assortment
into account) (Grant et al. 2007) especially during the first years of the relationship (Leonard
and Eiden 2007; Ask et al. 2012). Second, it is predicted that MZ twins reared apart, who did not
have contact with each other, would be less similar than MZ twins reared together. Pedersen et
al. (1992) found that for MZ twins who differed in the degree to which they were reared apart,
greater similarity in rearing environment, predicted greater similarity in total alcohol
consumption, although effects accounted for only 2% of the variation. Thus whereas there is
some evidence for additional environmental similarity among MZ twins pairs compared to DZ
pairs, on the whole, the validity of the EEA is supported and overall the influence of any
additional environmental similarity among MZ twins on heritability estimates is likely to be
small.

According to the CTD, MZ twins are assumed to share all their genetic material with
their co-twin (all additive and dominance genetic variation). DZ twin pairs are assumed to share
about half of their segregating genetic material, that is, they are assumed to share 50% of the
additive genetic variation (having 25% chance to inherit none of the parents alleles in common,
50% to inherit one allele in common and 25% to inherit two alleles in common at a specific
locus). Given that sharing variation due to genetic dominance requires that both alleles at a

locus are shared, resultantly, DZ twins are assumed to share 25% of the dominance variation.
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Both types of twins are assumed to share some part of their environmental effects, and
this part is called shared environmental effects (C). The environmental effects that twins do not
share with their co-twin are called non-shared, unique or individual-specific environmental
effects (E). This also includes measurement error of the trait. Incorporating variation due to

these effects, equation (2) is then extended to (Falconer 1996):

var(P) =var(A)+var(D)+var(C) +var(E) (4)

Given that the 4, D, C, and E factor means are fixed at zero, for univariate phenotypes, the
phenotypic value p; for individual j can be described as a linear function of the sum of the
regression weight (S, f4 B. fe) times the respective factor score (g; d; c¢; e;) denoting the
additive genetic, genetic dominance values, shared environmental and non-shared

environmental values for that individual respectively (Martin and Eaves 1977):

pj:ﬂ00j+...+ﬂaaj+ﬂddj+ﬂccj+ﬂeej (5)

The first term ,*0; +.. indicates that for subject j any fixed effects o; with regression weight f3,
can be included in the equation (e.g. age). For here, it is assumed that the factor variances are
fixed at 1 for identification purposes. An example of this model is given in Figure 1a.

The genetic influence on a trait (var(G)), can be estimated from the degree to which MZ
twins are more alike than DZ twins, whereas non-shared environmental effects (var(E)) are
estimated from the degree to which MZ twins are dissimilar to each other. An estimate of the
variance due to shared environmental effects (var(C)) is obtained from the notion that twins
share 100% of the variation due to shared environmental influences with their co-twin (by
definition), but not with other twins. Covariances for MZ (cov(MZ)) and DZ twin pairs (cov(DZ))

can then be formulized as follows:

cov(MZ) = var(P)—var(E) (6)
=var(A)+var(D)+var(C)
cov(DZ) -0.5var(A)+0.25var(D)+var(C) (7)
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/_)1 1 /71 /71 /71 I /71 /71
PYHH PLHY
1
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—

Figure 1a Path diagram for variance decomposition with classical twin design (CTD)

PT1-PT2= phenotype of twin 1, phenotype of twin 2

A=additive genetic factor (correlates 1 within MZ twin pairs, .5 within DZ twin pairs)

D= genetic dominance factor (correlates 1 within MZ twin pairs, .25 within DZ twin pairs)

C=shared environmental factor (correlates 1 within twin pairs)

E=individual-specific environmental factor (uncorrelated within or across twin pairs)

a,c,d,e = path loadings (c-paths estimated in ACE model with d-paths fixed to zero; d-paths estimated in ADE model

with c-paths fixed to zero)

In the equations above, four parameters need to be estimated: var(A), var(D), var(C) and var(E).
Given that there are three observed values (var(P), cov(MZ) and cov(DZ)), this poses a problem
of underidentification. The common solution is to determine whether shared environmental
influences or effects of dominance contribute most to the phenotypic variation and fix the other
variance component to zero. If twice the DZ correlation is equal to or larger than the MZ
correlation, var(D) is fixed to zero and the so-called ACE model is fitted to the data. If the MZ
correlation is larger than twice the DZ correlation, var(C) is fixed to zero and the ADE model is
fitted. In the ADE model, if var(C) is nonzero, var(A) is overestimated by a factor 3var(C), var(D)
underestimated by 2var(C) and var(C) by its true value. Conversely, in the ACE model, if var(D)
is nonzero, var(A) is overestimated by a factor 1.5var(D), var(C) underestimated by 0.5var(D),
and var(D) by its true value (Keller and Coventry 2005). The CTD provides useful estimates on
the genetic architecture of a trait with this knowledge in mind and as long as the estimates are
broadly interpreted. That is, var(C) also reflects other types of effects, including phenotypic
assortment and var(D) is reflective of effects due to dominance as well as epistasis (Keller et al.
2010) that results from the interaction between two alleles at different loci. The interacting

effects of alleles resulting from genetic dominance and epistasis are also referred to as non-
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additive genetic effects, in contrast to additive genetic effects that assume a linear relation
between the genetic variants and the phenotypic values.

In the CTD, variation component due to genetic dominance is completely confounded
with effects of (additive-by-additive) epistasis, which are correlated 1 for MZ twins and .25 for
DZ twins (Heath et al. 1984). Additive-by-additive epistasis reflects that additive effects of two
alleles interact (Falconer 1996). If higher-order epistatic interactions among alleles underlie the
phenotypic variance, then the overall correlation between non-additive variation among DZ
pairs (consisting of all possible interactions among alleles) will be lower than .25. The reason
for this is that higher-order interactions between alleles are less frequently shared within DZ
pairs. Since estimating additive genetic effects, non-additive genetic effects and the true
correlation between the non-additive genetic variance components for DZ twins in the CTD will
result in model under-determination given that there are only three observed statistics
(phenotypic variance, MZ covariance, DZ covariance), the correlation between variance
components due to non-additive genetic effects is usually fixed at .25 assuming the absence of
higher-order interactions between alleles (Keller and Coventry 2005).

If partner choice is random with regard to the phenotype in question (random mating),
the correlation between additive genetic values of DZ twins and sibs is estimated at 0.5. If
instead partners choose their spouses based on the phenotype of interest (that is, phenotypic
assortment), the additive genetic variation among DZ twins increases (Jinks and Fulker 1970)
which in the CTD mimics shared environmental variance. The reason for this is that because
most, if not all, traits are partly genetically determined, phenotypic assortment induces the
genetic influences on the spousal phenotypes to be correlated. When partners are more alike
genetically, they will transmit genes that are more alike and therefore, under phenotypic
assortment, the additive genetic covariance among DZ twins will increase (that is, the
correlation among the additive genetic values for DZ twins >.5). The effect of non-random
mating is dependent on the correlation between the additive genetic effects on the phenotypes
of the parents. Since the correlated phenotypes of the spouses cannot increase the genetic
covariance among (genetically identical) MZ twins, phenotypic assortment increases the
similarity among DZ twins relative to MZ twins, coming up as effects of the shared environment
(Lynch and Walsh 1998). There are other mechanisms underlying spousal resemblance that do
not induce the genetic effects on the two parental phenotypes to be correlated. If the causes of
spousal resemblance are wholly environmental in origin, there will be no consequences for the
genetic variation, for instance in the case of social homogamy which describes assortment
between individuals from the same social background (Heath and Eaves 1985). The same is true
when spousal resemblance results from cohabitation effects. By this mechanism spousal

resemblance is a function of relation length, having the consequence that spouses become more
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alike phenotypically the longer they are together (Van Grootheest et al. 2008). The pattern of
correlations among twins and spouses and the spouses of their cotwin can inform the
mechanism of assortment (Heath and Eaves 1985).

Effects of cultural transmission, that is effects of parental trait values on that of their
children which cannot be accounted for by genes they have in common (Eaves 1976), are
suggested by social learning theory (Bandura and McClelland 1977) that views parents as being
role models for their children. With regard to alcohol use, parental alcohol use may set the
reference for their children, with the effect that when children see their parents drink, they may
imitate that behavior (Quigley and Collins 1999). If cultural transmission is present, the genes
that parents transmit will covary with the environmental influences they present for their
children, leading to passive gene-environment (A-C) correlation. Effects of cultural transmission
as well as effects of A-C correlation will increase the shared environmental variance component
(Eaves 1976).

Gene-environment correlation and gene-environment interaction affect the CTD
estimates (Jinks and Fulker 1970). Active gene-environment (A-E) correlation arises when an
individual creates or seeks out his own environment based on his or her genotype. A person
with a genetic predisposition to use alcohol may seek out friends who use alcohol as well.
Passive gene-environment (4-C) correlation occurs when parents provide an environment for
their offspring that is correlated with the genes they transmit (Plomin et al. 1977). An alcoholic
may for instance not only transmit genes that predispose his or her offspring to alcoholism, but
also show an allowing attitude towards drinking and/or provide a home environment in which
drinks are abundant and thus more accessible. Positive A-E correlations will be incorporated in
the additive genetic variance component, and positive A-C correlations will come up as shared
environmental effects. Negative A-E and A-C correlations will decrease the respective variance
components (Purcell 2002). Gene-environment interaction refers to a different reaction to
different environments for individuals with the same genotype or to different reactions to the
same environment depending on the genotype. Positive AXE interactions will be estimated as
variance due to non-shared environmental effects (E), whereas positive AxC interactions will be
estimated as variance due to additive genetic effects (4). Gene-environment interaction is not
estimated as a separate variance component in the CTD, but can be incorporated (e.g. in the so-
called moderator model) (Purcell 2002) or can be studied in other ways. When the genetic
correlation is less than 1 for a trait that is studied in two different environment, gene-
environment interaction is suggested (Boomsma et al. 2002b). Otherwise gene-environment
interaction can also be studied by correlating the MZ pair differences with the MZ pair sums. A

correlation between MZ pair differences and pair sums shows that the distribution of
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environmental influences within families is not independent of the total variance, and is thus
indicative of GxXE interaction (Jinks and Fulker 1970).

Another assumption of the CTD postulates that data of twins are representative for non-
twins and conclusions generalizable to the general population. Criticism focuses on the unusual
prenatal and postnatal circumstances in which twins grow up compared to non-twins (Eaves et
al. 1978). Comparing data of twins to their non-twin siblings can answer whether twins and
non-twins are comparable for the trait of interest. Poelen et al. (2005) already showed that
within the NTR, data of twins on alcohol use collected in surveys 2-5 are largely comparable to
those of singletons. In Chapters 3 and 5, this will be examined for the data that were used in this
thesis.

In summary, estimates based on the CTD give valuable information on the underlying
genetic architecture of a trait, as long as the variance components are interpreted broadly. That
is, var(A) is reflective of additive genetic effects, as well as A-E correlation and AxC interaction.
Var(D) indicates variance due to effects of dominance as well as additive-by-additive epistasis.
Var(C) reflects shared environmental effects, but may also indicate effects of phenotypic
assortment, cultural transmission and A-C correlation. Var(E) reflects non-shared individual-

specific environmental effects (including measurement error) as well as AXE interaction.

2.2.2 Multivariate CTD

In the multivariate case, the variances of the separate phenotypes as well as the
covariance between them, can be decomposed into sources of variation due to additive genetic
effects, dominance, shared environmental effects and non-shared individual-specific
environmental effects (Eaves and Gale 1974). An additional advantage of multivariate modeling
is the increase in power to detect genetic and environmental effects (given that the
measurements are correlated) (Schmitz et al. 1998). The identification of the (co)variance
components is similar to that described above and is given by equations (6) and (7). One
representation of the variance decomposition of multiple traits is the Cholesky decomposition
which is represented for the bivariate case in Figure 1b. This decomposition constrains the
matrices (that is, variance components) to be positive definite by modeling the variance
components as the product of a triangular matrix with its transpose. In the multivariate case,
the Cholesky decomposition specifies a first genetic factor to influence all the phenotypes, a
second genetic factor to influence all phenotypes but the first, a third to influence all the
phenotypes but the first and second (Neale and Cardon 1992), etcetera. The same holds true for
the C, D and E factors.
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1
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Figure 1b Path diagram for variance decomposition with bivariate ACE model

P111,P2T1, P1T2, P2T2 = phenotype 1 of twin 1, phenotype 2 of twin 1, phenotype 1 of twin 2, phenotype 2 of twin 2

A1, A2 = additive genetic factors for phenotype 1 and 2 (correlates 1 within MZ twin pairs, .5 within DZ twin pairs)
C1, C2= shared environmental factors for phenotype 1 and 2 (correlates 1 within twin pairs)

E1, E2 = individual-specific environmental factors for phenotype 1 and 2 (uncorrelated within or across twin pairs)
ain,az1, azz = additive genetic path loading from first factor to phenotype 1, additive genetic path loading from first
factor to phenotype 2 (indicating additive genetic covariance path), additive genetic path loading from second factor
to phenotype 2 (indicating unique variance to phenotype 2)

c11,C21, 22 = shared environmental path loading from first factor to phenotype 1, shared environmental path loading
from first factor to phenotype 2 (indicating additive genetic covariance path), shared environmental path loading
from second factor to phenotype 2 (indicating unique variance to phenotype 2)

e11,e21, €22 = non-shared individual-specific environmental path loading from first factor to phenotype 1, individual-
specific environmental path loading from first factor to phenotype 2 (indicating individual-specific environmental
covariance path), individual-specific environmental path loading from second factor to phenotype 2 (indicating

unique variance to phenotype 2)

The covariance decomposition in variation due to genetic effects (additive/non-
additive) and environmental effects (shared/non-shared) provides information on the nature of
the association, as explained by De Moor et al. (2008). Do the phenotypes correlate
phenotypically, because they are (partly) influenced by the same genes (i.e. through genetic
pleiotropy)? Or because they are (partly) influenced by the same environmental factors? Or is
one phenotype causing the other, which predicts that both the genetic factors and the
environmental factors are correlated?

The causes of covariation are typically expressed in terms of the genetic and

environmental correlations. These reflect the correlations between the genetic or
environmental effects on two (or more) traits. The additive genetic correlation (I'g) reflects the

correlation between the additive genetic effects on two traits, for example, alcohol use (ALC)
and liver enzyme levels (LIV), and is a standardized measure of the additive genetic covariance

(cov(AarcLiv)) divided by the square root of the product of the genetic variances of the separate
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phenotypes (var(Aawc), var(Aiv)). The correlation between non-additive genetic effects on two

traits (I'q), between shared environmental effects on two traits (I'c) and between non-shared

individual-specific environmental effects on two traits (I'e) can be similarly derived. For
example, the correlation between non-shared individual-specific effects on alcohol use and liver
enzyme levels (I'e, ALc LIV) is calculated by dividing the environmental covariance among the

traits (cov(Eaiciiv)) by the square root of the product of the separate environmental variances of
the traits (var(Eawc), var(ELw)) (Martin and Eaves 1977). The additive genetic and non-shared
individual-specific environmental correlations rgaicivand reaicuiv for the association of alcohol

use (ALC) and liver enzyme levels (LIV) can thus be given as:

i cov(AaLc, Liv) Y
la, ALC, LIV \/V3r(AALC)+ var(Apy)
cov(E aLc,Liv) Y

Fe ALC,LIV = Var(E p o)+ var(E )

The genetic contribution to the observed correlation among phenotypes is calculated by
multiplying the genetic correlation with the heritabilities of the separate phenotypes. This
shows that a high genetic correlation will make a large contribution to the observed phenotypic
correlation only if both traits are highly heritable. The same is true for the environmental
contribution to the phenotypic correlation. Large proportions of variance that can be attributed
to environmental effects in combination with a large environmental correlation will result in a

large contribution to the observed correlation that is environmental in origin (Falconer 1996).

2.2.3 Longitudinal simplex modeling

A specific example of the analysis of multiple phenotypes is given when the same
variable is measured repeatedly for the same individuals. When the correlations among the
measurements are highest for adjoining observations and decrease when the time interval
between the observations increases, the correlation structure forms a ‘simplex’. When
longitudinal data conform a ‘simplex’ structure, these cannot be analyzed in the same way as
multiple phenotypes, especially when the number of time points increases (Boomsma and
Molenaar 1987). The autoregressive process among observations that are ordered in time can
be modelled in a ‘simplex’ model. In a first-order nonstationary autoregressive model, each
latent variable at time point t is predicted by the latent variable at time point ¢-1 (Boomsma and

Molenaar 1987).
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The aim of longitudinal twin data analysis is to estimate the genetic and environmental
processes as they unfold over time. Questions that can be asked are whether additive genetic
variance increases over time, and if so, whether this is due to amplification of existing genetic
influences or whether other genes are expressed and new genetic variance comes into play
(Molenaar et al. 1991). To answer these questions, the (single) latent factors (genetic and
environmental) that figure in the CTD (see equation (5)) are replaced by simplex structures that
causally relate the latent factor at time point ¢ to that at time point ¢-1. A representation of this

model is given by Figure 1c.

Figure 1c Path diagram for variance decomposition with longitudinal simplex model (6 time

points) (shown for 1 twin only)

P1T1-PsT1= phenotype of twin 1 at time point 1-6 (phenotypes for twin 2 left out of the model for clarity of
presentation)

A1-Ae = additive genetic factors for time points 1-6

C1-Ce = shared environmental factors for time points 1-6

E1-E6 = non-shared individual-specific environmental factors for time points 1-6

Ba1-Bas = regression coefficients representing transmission of additive genetic variance for time points 1-6
Bc1-Bes = regression coefficients representing transmission of additive genetic variance for time points 1-6
Be1-Bes = regression coefficients representing transmission of additive genetic variance for time points 1-6
(A1- (A6 = additive genetic innovation terms for time points 1-6

{c1- {c6 = shared environmental innovation terms for time points 1-6

(E1- (E6 = non-shared environmental individual-specific innovation terms for time points 1-6

QmE = factor representing measurement error (equal over time points 1-6)
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For the ACE model, with a;, ¢;;, and e;; representing the additive genetic, shared
environmental and non-shared environmental values for subject j at time point ¢ respectively,

the structural model can be given by:
ajt :ﬂa,t*aj,t—ﬁé’a,j,t
Cjit ::Bc,t*cjytflJré/c,j,t

* 10
€jt=Pey ejytflJ'Ce,ivt a4

Thus, the additive genetic value for subject j at time point t is a function of the additive genetic
value at time point ¢-1 that is transmitted, S, * a;+1, plus the additive genetic innovation term
{aj+ Shared environmental and non-shared environmental values at time point ¢ for subjectj are
similarly related to earlier time points. The regression coefficients (S5 Bes Be:) in the
transmission paths indicate the magnitude of the amplification or attenuation of the genetic or
environmental influences that were present at the earlier time point. Transmission paths
represented by regression coefficients >1 indicate that the genetic influences that were present
at an earlier time point are augmented, whereas regression coefficients <1 indicate that the
genetic influences that were present at the earlier time point are attenuated. The innovation
terms ({os (o1 {ec) indicate whether new genetic influences have emerged that were not present
at the earlier time points. The innovation terms at time point ¢ are thus uncorrelated with the
effects of the latent factor at time point ¢-1.

In the simplex model, non-shared environmental influences can be separated from
effects due to measurement error. Measurement error is modeled to be time specific and not to
influence subsequent time points, whereas the innovation terms can influence the following
observations. Measurement error variances for the first and last time point cannot be
distinguished from the innovation terms and thus need to be constrained to other measurement
error variances for reasons of model identification (Boomsma et al. 1989). In the notation
above, the factor loadings that relate the observed values to the latent factors are fixed to 1 and
the innovation and transmission paths are estimated, but the simplex model can be specified in

other ways as well (Neale and Cardon 1992).

2.2.4 The extended twin-family design

The CTD can be extended to include parents and siblings into a so-called extended twin-
family design (ETFD) in which effects due to the shared environment, phenotypic assortment,
cultural transmission, and passive (A-C) gene-environment correlation can be separately
estimated. By including data of siblings, it can be examined whether variances and covariances

of data on twins are comparable to that of siblings, to test for a special twin environment. By
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including data of parents, two extra pieces of information are added: the covariance among
parents (cov(FM)) and that between parents and offspring (cov(P0)). Including parents in the
design allows for two extra parameters to be estimated above those that can be estimated in the
CTD. Two models that are commonly employed that make use of this extra information are the
ACDE model and the ACE model with cultural transmission from parents to offspring (shown in

Figure 1d).

11
PPN,
dQEs

5
/71 /7.5 /71 /71 /} ,J) ,7-5 /71
Q\f_’.d R%idg?/e

P ¢ Pr

Figure 1d Path diagram for variance decomposition with extended twin-family design (ETFD)

(shown for DZ twin pair with parents)

Pra, PMo, P11, PT2 = phenotype of father, mother, twin 1, twin 2

A= additive genetic factor with variance Ra (differs from 1 in the case of phenotypic assortment)

D= non-additive genetic factor

C=shared environmental factor with variance Rc (differs from 1 in the case of shared environmental transmission)
E=individual-specific environmental factor

a,c,d,e= path loadings (d-paths estimated in ACDE model; set to zero in ACE model with shared environmental
transmission)

tFA,T1, tFA,T2, tMO,T1, tMO,T2 = shared environmental transmission paths from father to twin 1, father to twin 2, mother
to twin 1, mother to twin 2 (estimated in model with shared environmental transmission; set to zero in ACDE model)
RA,c=covariation between A and C (differs from 1 in the case of shared environmental transmission)

A =path representing correlations between the latent factors induced by phenotypic assortment
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In both models the effect of phenotypic assortment can be modeled by introducing two
correlations: s, the correlation between the phenotypic values of the parents (s*var(P)) and m,
the correlation among the additive genetic effects (breeding values) resulting from phenotypic
assortment (m*var(A)). If phenotypic assortment is the sole reason for covariation among the
parental phenotypes, then the relation between s and m can be expressed as m=sh2, with h?
being the narrow-sense heritability of the phenotype in question (Falconer 1996).

In the ACDE model var(A), var(D), var(C) and var(E) are estimated as well as the
covariance among parents (cov(FM)). The covariances for MZ and DZ twins, parents and parents

and offspring are given by (Falconer 1996):

cov(MZ) =var(P)—var(E) (6)
=var(A)+var(D)+var(C)

cov(DZ) =0.5var(A)*(1+m)+0.25var(D)+varC) (7b)

cov(PO) =0.5var(A)*(1+s) (11)

cov(FM) =s*var(P) (12)

If spousal resemblance, s, is zero, the equations above reduce to:

cov(MZ) = var(P)—var(E) (6)
=var(A)+var(D)+var(C)

cov(D2) =0.5var(A)+0.25varD)+varC) (7)

covPO) =0.5var(h) (11b)

cov(FM) =0 (12b)

As a result of phenotypic assortment, the between-family variation in the offspring generation
due to additive genetic effects is increased. The within-family variation in the offspring
generation due to additive genetic effects, also called segregation variance, is unaffected by
phenotypic assortment (provided that the number of genes at play is large) (Falconer 1996).
Segregation variance results from the fact that parents do not transmit average genetic effects
to their offspring (which would eliminate within-family additive genetic variation), but transmit
one of every two alleles for each locus (thus giving rise to additive genetic within-family
variation). In the presence of phenotypic assortment that results in correlated additive genetic
effects for spouses, the additive genetic variation in the offspring generation (between-family

variation + within-family variation) will therefore be greater than 1 (Keller et al. 2009).
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In the ACE model with cultural transmission, cultural transmission can be modeled as
well as the resulting passive-gene environment (4-C) correlation that is induced when parents
transmit both their genes and environment to their children (Eaves 1976). Under the ACE
model with cultural transmission the covariances among the twins, parents and parents and

offspring can be given as follows (based on Neale et al. (1994)):

var(P) =var(A)+var(C)+var(E) ~2cov(A,C) (5b)

cov(MZ) =var(P)—var(E) (6b)
=var(A)+var(C)+2cov(A,C)

cov(DZ) =0.5var(A)*(1+0.5cov(A P)*s)+varC)+2cov(AC) (7¢)

cov(PO) =cov(C, P)*(1+s)+0.5var(A)*(1+s)*cov(A P) (11c)

covV(FM) =s*var(P) (12)

Note that when estimating the cultural transmission path ¢, another parameter needs to be set
to zero to keep the model identified, usually var(D). As described above, the ETFD can model
effects of phenotypic assortment and passive gene-environment (A4-C) correlation. By including
data of family members other than twins (parents, siblings), the number of individuals is
increased and the power to detect effects of dominance as well as effects of the shared
environment is augmented (Posthuma and Boomsma 2000). Furthermore, by including siblings
in the design, a specific twin environment can be tested for. The absence of a specific twin
environment suggests that twins resemble each other to the same extent as non-twins (after e.g.
correction for age differences), thus that twin-specific prenatal or postnatal effects (e.g. low
birth weight) are not affecting the trait of interest.

It should be noted that the ETFD also depends on assumptions that are not readily
tested. As described above, the correlation between the non-additive genetic variance
components among DZ twins needs to be fixed to avoid under-determination, assuming absence
of higher-order interaction between alleles. In addition, in the ETFD, additive-by-additive
epistasis tends to overestimate var(4) (Keller et al. 2010). This follows from the parent-
offspring covariance in equations (11), (11b) and (11c) that do not explicitly model effects of
epistasis, whereas epistatic effects are shared among offspring and parents and offspring.
Overall however, Var(D) appears to only slightly underestimate the effects of all non-additive
genetic variation (effects due to dominance and epistatis) and in practice ETFD estimates agree

well with the true values broad-sense heritability estimates (Keller et al. 2010).
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2.3 Methods to estimate genetic effects based on SNP data

The second set of methods used in this thesis to study genetic effects relied on genetic
marker data, called SNPs. As estimated in the 1000 Genomes project (Altshuler et al. 2010b),
~0.6% of the human sequence variation consists of SNPs. SNPs are variations in the DNA
sequence that differ among individuals by a single nucleotide (4, T, C, G) and form the most
prevalent type of genetic markers among humans (Frazer et al. 2009). Approximately, 15
million SNPs have been catalogued by the 1000 Genomes Project (minor allele frequency (MAF)
>.01 for non-functional variants and >.001 for functional variants) (Altshuler et al. 2010b). As a
reference, the entire human genome sequence consists of nearly three billion base pairs. Around
~80% has been assigned biochemical functions with a higher fraction of bases thought to be
involved in gene regulation than in the coding of proteins (ENCODE Project Consortium 2012).
The correlation structure in the genome, called linkage disequilibrium (LD), makes it possible to
capture most of the genetic SNP variation with only a subset of all SNPs, called tagging SNPs
(Frazer et al. 2009). This LD among SNPs results from the fact that blocks of DNA are generally
inherited together. For example, based on the Hapmap II data reference set, around 550,000
SNPs were needed to tag most of the 2.6 million common SNPs in Caucasians (MAF >.05; r?=>.8).
With around 1 million SNPs all common SNP variation was captured (MAF > .05; r?=1) (Frazer
etal. 2007).

Four methods are discussed that were applied in this thesis and made use of SNP data.
The first method, association analysis, focuses on individual SNP associations with the aim of
gene finding. The other methods, polygenic risk score prediction, methods based on genetic
relatedness (Yang et al. 2010) and density estimation (So et al. 2011), examine what proportion

of the phenotypic variation can be ascribed to the total effect of all SNPs.

2.3.1 Genetic association analysis

Association analysis is concerned with the question whether phenotypic variation can
be explained by genotypic differences at a locus (Long et al. 1997). It can be performed for a
subset of loci (in a candidate gene study) or genome-wide (in a genome-wide association, GWA,
study) (Balding 2006). GWA studies have the advantage that no prior information on
susceptibility loci is needed. It has the disadvantage of running many tests which renders the
need to correct for multiple testing (Hirschhorn and Daly 2005). A SNP with a p-value <5x10-8 is
considered genome-wide significant in a GWA study (Stranger et al. 2011).

In association analysis, the phenotypic value for a quantitative trait p; for subjectj is

modeled as a linear function of the additive genetic effect of SNP i and a residual &;:
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1
Pj=v+B,0j+-+ Fixi*ej ()

Here, v denotes the intercept and 3, the regression coefficient for any fixed effect o; for subject j.
x;; refers to the number of A; alleles for SNP i for subject j and the regression weight f3;
represents the additive genetic effect for SNP i. According to the biometric model, the regression
weight f5; corresponds to the average effect of allelic substitution («), that is, the effect of having
an A; allele instead of having an A; allele (a;- az) (Kwan et al. 2007). For categorical data, logistic
regression models can be applied instead of linear regression models. By taking the logit of
disease risk (m), log (m/(1- r)), risk of disease is transformed to the 0-1 scale. The regression
models can be extended to include effects due to dominance (the genotypic values minus the
additive effect for that genotype or breeding value).

Given that most association studies are restricted to the usage of tagging SNPs, a SNP
that is significantly associated with the trait of interest is unlikely to be the causal variant. The
power to detect the causal variant is dependent on the LD between the tagging SNP and the
causal variant, r?, that itself is dependent on sample size and allele frequencies. A low r?
between the tagging SNP and the causal variant implies that a large sample size is needed to
detect the LD between the variants (relative to the sample size that is needed to detect an
association for directly genotyping the causal SNP), whereas in the case of a high 2, no
additional increase in sample size is needed to detect the disease association via the tagging SNP
(Balding 2006). The dependence of r2 on differences in MAF between SNPs has the consequence
that tagging SNPs (that often have a MAF >.01) are in low LD with rare causal variants (often

MAF<.01) even if they are in the same genomic region (Visscher et al. 2012).

2.3.2 Methods to estimate the heritability based on all SNPs

Although GWA studies have successfully detected SNPs that contribute to trait variation,
the aggregated effect of genome-wide significant SNPs only explains a small part of the
heritability for these traits (with the exception of diseases as age-related macular degeneration
and type 1 diabetes) (Stranger et al. 2011). Explanations for the so-called ‘missing heritability’
(Maher 2008) include (a) small SNP effects that do not cross the threshold for multiple testing,
(b) underestimated effect sizes of associated SNPs because of incomplete LD between the
tagging SNPs and causal variants, (c) the specific contributions of rare alleles (MAF <.01), as
well as structural variation, that are poorly tagged by the current available chips due to
incomplete LD between tagging SNPs and causal variants, and (d) overestimated heritability

estimates (Stranger et al. 2011). Several methods have been proposed to test whether the first

49



CHAPTER 2

explanation holds true, that is to what extent SNP effects are captured by commonly available

chips.

2.3.2.1 Polygenic risk score prediction

In their classic paper, Purcell et al. (2009) tested the hypothesis that the genetic risk is
due to the additive effects of ‘potentially thousands’ of individual SNP effects that are too small
to pass the stringent significance thresholds. The polygenic risk score approach consists of
selecting (partially overlapping) sets of SNPs that are associated with the trait of interest in a
discovery sample for varying thresholds of association (Purcell et al. 2009). The selected
subsets of SNP associations will contain false positives, but if the signal of truly associated SNPs
is strong enough, polygenic risk scores based on these SNP sets may still predict trait variation
in an independent target sample (Demirkan et al. 2010). For an independent target sample, a
polygenic risk score for subject j can be calculated as follows (based on additive SNP effects for
SNPs i to n that resulted from a GWA study in a discovery sample):

yj:bi Xij ++ Dn X (14)

Thus, for every individual j in the target sample, for each SNP i (selected in that particular SNP
set) the number of risk alleles x; is counted (0,1,2) and multiplied by the regression weight for
that SNP (b;) that resulted from the association study in the discovery sample, and then summed
into a polygenic risk score y;. The calculation of genetic risk scores can be performed in e.g. Plink
(Purcell et al. 2007). The genetic risk score can then be used as a predictor of the phenotypic
values in the target sample in a regression model. Additionally, it can be examined whether the
genetic risk score contributes to other traits to test for genetic overlap among traits (Purcell et
al. 2009).

The utility of polygenic risk scores in predicting trait variation depends on the (narrow-
sense) heritability of the trait. If the heritability is low, the prediction of trait variation with the
polygenic risk score will be poor. The opposite does not necessarily hold true. Whether the
polygenic risk score predicts phenotypic trait variation does not only depend on the heritability,
but also on (not mutually exclusive factors as) LD between SNPs selected for polygenic
prediction and the causal variants, the accuracy of the estimated effect sizes of the selected
SNPs, and sample size (Wray et al. 2008). A larger sample size implies better estimates of effect
sizes and will therefore give a better representation of which alleles are truly associated,
whereas a larger target set will increase the significance of the prediction of polygenic risk score
(for a similar amount of variance explained). For quantitative traits, the amount of variance that
can be explained by the polygenic risk score can be directly compared to the heritability

estimate resulting from twin and family studies. For categorical traits, the prediction of the trait
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depends on the prevalence. To compare the polygenic risk score prediction for categorical traits,
the proportion of variance that can be explained by SNPs can be best expressed on the

underlying liability scale (that is not dependent on the prevalence of disease) (Lee et al. 2012a).

2.3.2.2 GRM method

To estimate the heritability explained by SNPs, Yang et al. (2010) developed a method
that relied on estimating the genetic relatedness for each pair of individuals (expressed in a
Genetic Relatedness Matrix, GRM) and including this pairwise genetic relatedness as a random
effect in a linear mixed model to predict the phenotypic similarity among these individuals. If
most trait variation is due to SNPs that are poorly tagged by SNPs on commercially available
chips, the GRM-based estimate will not be much higher than the total variance that can be
explained by all genome-wide significant SNPs that already have been detected. If there are
many SNPs with effects that are too small to pass the significance threshold however, then the
GRM-based estimate will be higher (Visscher 2010).

In a linear mixed model, the phenotypic value p; for subject j is expressed as a function of
fixed effects o;, the total genetic effects w; and residual effects e; (with the W and E factor means

fixed at zero) (Yang et al. 2011b):

pi:ﬂooj+"'+ﬂwwj+ﬁeej (15]
W ~ N(0, R*var(W) (16)
E ~ N(0, I *var(E)) (17)

Bo represents the regression coefficient for any fixed effect o; for subjectj. W is normally
distributed as W ~ N(0, R*var(W)). R is the N by N genetic relatedness matrix with realized
additive genetic relationship coefficients for each pair of N individuals, who, although unrelated
in the conventional way, share part of their DNA based on the correlation structure in the DNA.
Var(W),is the polygenic additive genetic variance explained by the SNPs that is estimated via
residual maximum likelihood (REML) analysis. Residual effects (E) are normally distributed as E
~ N(0, I*var(E)) with I being the N by N identity matrix and var(E), the variance component for
residual effects estimated via REML analysis. The phenotypic variance var(P) can be
decomposed into variance resulting from polygenic additive genetic SNP effects var(W) and

residual effects var(E) (Yang et al. 2011a):

var(P) =var(W)+var(E) (18)
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The proportion of variance that can be explained by all SNPs is calculated as the ratio of var(W)
to var(P). Note that the covariance between the phenotypic values of two individuals is
proportional to their genetic relationship, and not influenced by residual effects (only
‘unrelated’ individuals are included and shared environmental effects are thus assumed to be
zero; that is the off-diagonal elements of the matrix I are zero) (Yang et al. 2011b). An additional
reason to exclude related individuals is that they may share causal variants above those that are
captured by SNPs, thus confounding SNP effects with genetic effects not captured by SNPs (Yang
etal. 2011b). Yang et al. (2010) have excluded one of each pair of individuals with a genetic
relatedness >.025 (corresponding to third or fourth cousins).

For two individuals j and k, the pairwise additive genetic relatedness (Rj) based on SNPs

i to n can be calculated as follows (Yang et al. 2010):

(xij—2p)(xi—2p) .
2p;1-p) S

1
Rik=hi

2 2
1 Xij*(].+2pi)Xi-+2[l)i )
Ly ! =k
RiK nZi 2p;iA-p) )

(19)

If j#k, the correlation between the additive genetic values between two individuals j and k based
on a given SNP i is calculated as the product of the number of risk alleles x; for SNP i minus the
mean number of risk alleles for SNP i (np with n=2 representing the mean for a binary SNP
variable with frequency p) for subject j and subject k, standardized by the heterozygosity of SNP
i (np(1-p) with n=2 representing the variance of a binary variable with frequency p). The
genome-wide additive genetic relationship for individuals j and k is then obtained by taking the
mean over the additive genetic correlations for each SNP i indexed 1 to n. If j=k, the formula is
slightly different and describes the correlation of additive genetic values of an individual with
him/herself. This correlation is estimated and is not exactly 1 to minimize sampling variation
(Yang et al. 2011a).

The significance of the variance components var(W) and var(E) (and that of fixed
effects) can be tested by comparing the model fit of the full model to that of the reduced model
with the likelihood ratio test. The significance is dependent on the standard error of the GRM-
based estimates that decreases as sample size increases (Yang et al. 2010). If the causal SNPs
have a distribution of MAF that is similar to that of tagging SNPs, GRM-based estimates are
unbiased, in contrast to the polygenic risk score approach that is based on effect sizes that are
estimated in a discovery set that do not provide unbiased estimates of the effect sizes in the
target set (Visscher 2010). When causal SNPs have a distribution of MAF that, on average, is
lower than that of the tagging SNPs, the GRM method will underestimate the heritability due to
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all SNP effects (Yang et al. 2010). Denser SNPs will provide higher LD with the causal SNPs, and
can thereby increase the GRM-based estimate of total variance that can be explained by SNPs,
but if there are systematic differences between the MAF of tagging SNPs and causal SNPs, then
the GRM-based estimates will still be biased downwards (Visscher 2010).

Note that for categorical data stringent SNP data quality control (QC) is important since
artificial allele differences between cases and controls will appear as genetic variance. See Lee et
al. (2011) for SNP QC step when working with categorical data. Since GRM-based estimates are
dependent on SNP density and differences in the distribution of MAF of tagging SNPs and causal
SNPs however, too stringent QC may avertedly cause too many SNPs to be excluded, resulting in

GRM-based estimates that are biased downwards.

2.3.2.3 Density estimation (DE) method

So etal. (2011) developed a density estimation (DE) method that estimates the
proportion of phenotypic variance explained by SNPs by comparing the distribution of observed
test statistics from a GWA study to that expected under the null hypothesis of no effect. They
reasoned that if sample size would be infinite, all susceptibility variants would be detected,
regardless how small their effect. Thus if the ‘true’ effect sizes of SNPs would be known (that is,
effect sizes that would result if there was no random noise) then the total variance explained by
all SNPs (var(W)) could be obtained by summing these ‘true’ effect sizes for all independent SNP
signals. Their method thus relies on recovering the true effect sizes of SNPs from the observed
effect sizes. Expressed mathematically: the expected value of the true effect size, §;for SNP i
given an observed effect size z;, that is E{8i/z;}.The observed effect sizes can be expressed as z-
scores and result from a GWA study or meta-analysis. To estimate the expected effect size 6;
given an observed effect size z; they refer to Efron (2009) who proved that the expected value
of the effect size § given an observed effect size z is equal to taking the derivative of ¢ with
respect to z (with i being the log of the observed z-statistics divided by the z-statistics under
the null):

E(5|z) =y'(2), withw(z) = |ogM (20)
#(2)

The DE method assesses how much the observed distribution of effect sizes (f{z;)) differs from
what is expected when all SNP effects are zero (f{zi/6=0)). Whereas the majority of the observed
effect sizes will be close to zero, some SNPs will have non-zero effects which will be reflected in
a distribution f{z;) with somewhat heavier tails than what is expected under the null

distribution. The expression of the distribution of expected z scores f{z;) takes the assumption
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that z given ¢ is normally distributed with mean ¢ and a standard deviation of 1. With y(§)
denoting the prior density function of § and ¢(z) the standard normal density function, the

marginal distribution of f{z;) can then be expressed as follows (following Bayes’ theorem that

P(B)=P(B|A)*P(A)):

t(@)= [ 1(2lo)y(6)ds = [p(z—6)y(5)do (21)

For continuous traits, the variance explained by SNP i (var(W;)) can be obtained by the formula
for ANOVA. That is, sums of squares (SS) due to regression divided by the sums of squares about

the mean is equal to SS due to regression divided by SS due to residuals + SS due to regression:

[EG|2)F (22)

) GIoT

Denoting the function to convert the observed to the expected effect sizes with ¢, the total
variance that can be explained by SNPs (var(W)) is obtained by summing the expected effect

sizes for all independent SNPs.
varW) = Y & (2)} (23)

To perform the DE method, So et al. (2011) provide a R script available at the developer’s

webpage https://sites.google.com/site/honcheongso/software/total-vg

The script provides two Kernel estimation procedures. So et al. (2011) note that the so-called
unconditional Kernel estimator is more accurate and stable than the so-called conditional
Kernel estimator. To avoid total var(W) to be inflated by redundant SNP effects, SNPs that are in
high LD with other SNPs need to be removed by pruning. Pruning is dependent on the LD
pattern and thus independent of the SNP associations with the trait (So et al. 2011). When raw
SNP data are available, these can be used. Otherwise pruning can be performed based on the LD
pattern in a reference set (for example, the HapMap CEU reference set). Based on SNP data sets
consisting of .1-2.6 million SNPs, So et al. (2011) recommend pruning based on a r? threshold of
.25, 100-SNP sliding window and proceeding by 25 SNPs in each step (with the Plink
command “--indep-pairwise 100 25 0.25”). In addition, So et al. (2011) recommend to randomly
permute the sign of the z-statistics (positive or negative) a 100 times, then run the DE method

for each permutation and calculate a mean estimate over the 100 permutations, to ensure more
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stable estimates. A loop function to run this permutation is present in the script for binary
variables.

Since the DE method proposed by So et al. (2011) does not rely on any distributional
assumptions, standard errors cannot be derived analytically. When multiple pruned sets are
extracted (that show <50% overlap in SNPs), the density method can be performed multiple
times and an estimate of variability can be calculated. One way to obtain multiple pruned sets
that overlap <50%, is to prune the SNP data set with the command above, then select n random
samples that contain 50% of the SNPs that are included in the pruned set. Then the full SNP data
set is pruned n times, each time excluding another random sample of the SNPs from this full SNP
data set when starting to prune (with the Plink command “--exclude myrandomset.dat --indep-
pairwise 100 25 0.25”). To obtain a single number that represents the total amount of variance
that can be explained by all SNPs, the mean of the n estimates that resulted for the n sets can be
calculated. The estimate of variability is then obtained by taking the standard deviation of the n

mean estimates for the n pruned sets.

2.4 Summary

The methods that are applied in this thesis to study genetic effects on alcohol use and
liver enzyme levels can be distinguished into methods that use the known genetic relatedness
among family members to estimate genetic effects (twin-family based heritability studies, e.g.
the CTD and the ETFD) and methods that rely on SNP data (association studies, SNP-based
heritability studies).

With the CTD phenotypic variance is usually decomposed in variance due to additive
genetic effects (A), non-shared individual-specific effects (E) and either shared environmental
effects (C) or effects of genetic dominance (D) that can also reflect epistatic effects. In variations
of the CTD, the covariance among traits can be investigated to test whether the association
among the traits (e.g. at the population level) may be causal or better explained by shared
genetic effects. With data on multiple time points the covariance among the time points can be
used to describe the causes of variation that underlie the development of a trait over time (e.g.
in a simplex model). When the CTD is extended to include data of siblings and parents (the so-
called ETFD), effects of shared environmental effects (C) can be estimated simultaneously with
those of genetic dominance (D). In the ETFD further questions can be addressed that include (a)
whether twins are comparable to singletons, which if this is the case, supports the
generalisability of the conclusions to non-twin populations, (b) whether there are effects of
cultural transmission from parents to offspring, beyond the genetic transmission effects from
parents to offspring, and (c) whether heritability estimates are affected by effects of phenotypic

assortment.
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Methods based on SNP data applied in this thesis, were used to further explore the
additive genetic variation underlying alcohol use and liver enzyme levels. Association analysis
tests whether additive SNP effects significantly influence phenotypic trait variation. SNP-based
heritability methods estimate what part of the phenotypic variation is due to the joint effect of
all SNPs, assuming an additive model. The DE method proposed by So et al. (2011) is based on
comparing the distribution of observed effect sizes (resulting from a GWA study or meta
analysis) to that what would be expected if no effects of SNPs on the trait were expected. Given
that the (shape of the) distribution of expected effect sizes (for SNPs with effect sizes >0) is
correctly assumed, the difference between the observed and expected distribution of effect sizes
gives an estimate of the variance that can be explained by all SNPs simultaneously. The GRM
method (Yang et al. 2011a) correlates differences in phenotypic values among individuals with
differences in genetic values among individuals. The GRM method is thus similar to twin-family
based heritability studies in which phenotypic differences among family members are
correlated with the inferred genetic relatedness among them. In contrast to the latter however,
the GRM method, is not inferring the genetic relatedness among individuals but calculating it
from SNP data for ‘unrelated’ individuals. Since DNA is inherited in blocks, ‘unrelated’
individuals share part of the correlation structure in the DNA, which can be expressed as the
realized genetic relatedness between individuals. By restricting the analysis to ‘unrelated’
individuals, shared environmental effects on the covariance among individuals can be assumed
to be absent and confounding SNP effects with genetic effects that are not captured by SNPs is
avoided. Finally, the polygenic risk score approach, uses effect sizes as detected by a GWA
(meta-analysis) study in a discovery sample to test how much phenotypic variance can be

explained in a target set.
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CHAPTER 3
EXPLAINING INDIVIDUAL DIFFERENCES IN ALCOHOL INTAKE IN ADULTS:

EVIDENCE FOR GENETIC AND CULTURAL TRANSMISSION? 1

Abstract

Objective The current study aimed to describe what proportion of individual differences
in adult alcohol intake is due to genetic differences among individuals and what proportion to
differences in environmental experiences individuals have been exposed to, taking the possible
influence of spousal resemblance on heritability estimates into account. It was also tested
whether effects of cultural transmission of alcohol intake from parents to offspring were
present.

Method In a twin-family design the effects of cultural and genetic transmission, shared
and non-shared environmental influences on alcohol intake, and spousal resemblance were
tested with genetic structural equation models. Data originated from adult twins, and their
siblings, parents (N=12,587) and spouses (N=429) registered with the population-based
Netherlands Twin Register (63.5% female, age 18-97).

Results Alcohol intake (grams per day) was higher among men than women and
increased with age. Broad-sense heritability estimates were similar over sex and age (53%).
Spousal resemblance was observed (r=.39), but did not significantly affect the heritability
estimates. No effects of cultural transmission were detected. Overall, 23% of the variation in
alcohol intake was explained by additive genetic effects, 30% by non-additive genetic effects
and 47% by non-shared individual-specific environmental effects.

Conclusions Individual differences in adult alcohol intake are explained by genetic and
individual-specific environmental effects. The same genes are expressed in males and females,
as well as over age. A substantial part of the heritability of alcohol intake is due to non-additive
gene action. Effects of cultural transmission that have been reported in adolescence are not

present in adulthood.

1 This chapter is under revision for publication in Journal of Studies on Alcohol and Drugs as:
van Beek, JHDA, de Moor, MHM, Geels, LM, Willemsen, G, Boomsma, DI. Explaining individual differences
in alcohol intake in adults: evidence for genetic and cultural transmission?
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1. Introduction

Alcohol use conveys risk for medical conditions (e.g. cancer) (Rehm et al. 2003; Dawson
2011) as well as psychosocial problems (e.g. alcohol use disorders; AUD) (NIAAA 2000). Despite
these well-known risks, the vast majority of people consumes alcohol, at least occasionally. In
Western countries, the prevalence of current drinking ranges between 72-96% in men and 59-
95% in women. Heavy drinking is also common. For example, 9-17% of Dutch men and 3-11%
of women drink heavily (>21 glasses and >14 glasses per week respectively for individuals aged
>18) (Geels et al. 2013). Given the high prevalence of alcohol use in combination with the
aforementioned risks, understanding the causes of individual differences in alcohol intake is
important.

Twin studies can provide insight into the role of genetic and environmental factors in
the variation in alcohol intake. Genetic and environmental effects on the phenotypic trait
variation can be separated by the comparison of resemblance among monozygotic (MZ) twins
pairs (assumed to share all their genetic material) and dizygotic (DZ) twins (who share about
half of their segregating genes) (Van Dongen et al. 2012). For alcohol intake, heritability
estimates range around 50% for adults (Hansell et al. 2008; Dick et al. 2009b; Dick et al. 2011;
Kendler et al. 2008c; McGue 1999), with somewhat lower heritabilities for young adults (around
age 20-30): between 30% and 40% (Hansell et al. 2008; Dick et al. 2011; Geels et al. 2012). The
remainder of variation is mostly due to non-shared individual-specific environmental effects,
although some studies have reported evidence for additional effects of the shared environment
for young adults (Geels et al. 2012; Kendler et al. 2008c). These findings leave some issues
unresolved, that include (a) whether parent-offspring resemblance in alcohol intake levels is
fully explained by genetic resemblance, or whether parents’ drinking has additional effects on
the drinking behavior of their adult offspring that are not accounted for by the transmission of
their genes (i.e. effects of cultural transmission), (b) whether non-random mating has an effect
on the heritability, (c) to what degree the heritability of alcohol intake reflects effects of additive
versus non-additive gene action, and (d) whether genetic and environmental influences on
alcohol intake are equally important for men and women and over age.

Parents can affect the drinking level of their offspring by the genes they transmit, and/or
the environment they provide for their children. The effect of parental alcohol intake on the
alcohol intake level of their children that cannot be accounted for by genes they have in
common, is referred to as cultural transmission. Effects of cultural transmission are suggested
by social learning theory (Bandura and McClelland 1977) that views parents as being role
models for their children. Consequently, when children see their parents drink, they may
imitate that behavior (Quigley and Collins 1999). Alternatively, effects of cultural transmission

can result from inadequate parenting associated with parental drinking, such as being less
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inclined to enforce strict drinking rules, which is known to affect adolescent drinking (Engels
and Bot 2006). Although effects of cultural transmission have been reported for alcohol
initiation in mid adolescence (Koopmans and Boomsma 1996), results on whether effects of
cultural transmission extend into adulthood are mixed. A large extended twin-family study
reported evidence for cultural transmission of drinking frequency (Maes et al. 1999) and a
study among adults raised by either biological or non-biological parents showed that having a
parent with AUD increased the risk of having a diagnosis of alcohol abuse as an adult, even after
taking genetic influences into account (Newlin et al. 2006). Not all studies detected effects of
cultural transmission however (Kendler et al. 1994; Slutske et al. 2008; Baker et al. 2012). The
studies that did were conducted in very large samples (N>14,000) (Maes et al. 1999; Newlin et
al. 2006) suggesting that a proper test of cultural transmission of alcohol intake requires large
sample sizes, which the current study will provide (N~12,500).

Heritability estimates of alcohol intake may be biased if spouses choose their partner
(partly) based on their drinking behavior (i.e. phenotypic assortment), for instance because
they enjoy the social activity of drinking together. When spouses choose each other based on
his/her level of alcohol intake, individuals indirectly ‘choose’ their spouse based on the genes
that affect alcohol intake levels with the result that spouses become genetically more alike than
expected by chance. This will augment the genetic similarity among the offspring. When no
phenotypic assortment is at play, the genetic similarity for DZ twins (and full siblings) is
expected to be 50% (resulting from the possibility of inheriting 0, 1 or 2 parental alleles in
common with the respective probabilities of 25%, 50% and 25%). When the genetic similarity
among spouses is increased, the probabilities of inheriting alleles in common is increased for DZ
twins (and full siblings), resulting in an increased genetic similarity among these individuals.
The increased genetic similarity among spouses cannot increase the genetic similarity among
MZ twins any further, as they already share ~100% of their genetic material, so the DZ twin
similarity will be increased relative to the MZ twin similarity, resulting in an overestimation of
environmental effects that are shared among twins and an underestimation of genetic effects.
Alternatively, assortative mating may be explained by mechanisms such as social homogamy
and cohabitation effects, which have no effect on heritability estimates. Social homogamy
results from choosing a spouse from the same stratum. Cohabitation effects refer to the process
whereby spouses become more alike the longer they are together (Van Grootheest et al. 2008).
Spousal resemblance for alcohol use has been attributed to all three mechanisms, but mostly to
phenotypic assortment and cohabitation effects. Phenotypic assortment has been observed for
alcohol use disorders (Grant et al. 2007; Maes et al. 1998; Agrawal et al. 2006; Leonard and
Eiden 2007), regular alcohol use (Agrawal et al. 2006) and alcohol intake levels (Reynolds et al.
2006; Ask et al. 2012). After taking effects of phenotypic assortment into account, additional
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cohabitation effects have been observed (Grant et al. 2007) especially during the first years of
the relationship (Leonard and Eiden 2007; Ask et al. 2012). Effects of social homogamy have
also been detected (Maes et al. 1998; Reynolds et al. 2006), but those were smaller than effects
of phenotypic assortment (Maes et al. 1998).

Genetic resemblance among relatives may result from additive and non-additive gene
action. If the joint genetic effect is equal to the sum of the separate effects, gene action is
additive. To the extent that allelic effects interact, either within loci (dominance) and/or
between loci (e.g. additive-by-additive epistasis), non-additive gene action is present. Although
non-additive effects have been reported for genes involved in alcohol metabolism (Chen et al.
1999; Kuo et al. 2008a) its effects in explaining differences in alcohol intake levels have to our
knowledge not been explored.

The large sex differences in alcohol use that have been described as one of the few
universal gender differences in human behavior (Holmila and Raitasalo 2005) will likely have
their origin in biological factors as well as cultural factors. Biological factors include sex
differences in the breakdown and elimination of alcohol. Women have higher amounts of body
fat and consequently lower amounts of body water, as well as lower activity of the enzyme
alcohol dehydrogenase in the stomach. Since the amount of alcohol that is metabolized in the
stomach is lower (‘first pass’ alcohol metabolism), peak blood alcohol levels among women are
higher, which has been hypothesized to reduce their alcohol intake (Wilsnack et al. 2000).
Cultural factors influencing drinking behavior include gender roles. The current study will
examine whether the sources of variation in alcohol intake differ over sex, including that of
additive versus non-additive gene action. The latter were detected for frequency of alcohol use
(Maes et al. 1999) but have not been studied yet for alcohol intake levels.

A means to study the magnitude of additive and non-additive genetic effects as well as
environmental effects (individual-specific or shared within the offspring generation) is
provided by the so-called extended twin-family design that includes data from parents as well
as twins and siblings. This design can take effects of phenotypic assortment into account and
allows for the estimation of cultural transmission effects (under specific constraints). The
current study examines the genetic architecture of alcohol intake by analyzing data from 13,016
twins, siblings, parents and spouses registered with the Netherlands Twin Register (NTR)
(Boomsma et al. 2002c). The amount of variation that can be ascribed to additive, non-additive
genetic effects and/or shared environmental and non-shared environmental influences will be
estimated, while taking effects of spousal resemblance into account. Differences in the
importance of genetic and environmental effects over sex and age and effects of cultural

transmission will be tested.
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2. Methods
2.1 Participants

Data on alcohol intake originated from adult twins and their family members registered
with the Netherlands Twin Register (NTR) who participated in the longitudinal survey research
on health, personality and lifestyle that is ongoing since 1991 (Boomsma et al. 2002c;
Willemsen et al. 2013). For this study we analyzed data on alcohol intake that were collected in
the eighth NTR survey, which was sent out in the period 2009-2011. Data on ever alcohol use
were available for 16,661 individuals. Data were excluded for 376 individuals who reported to
never have drunk any alcohol. For 1,869 individuals data on alcohol intake were missing. For
700 individuals alcohol intake data were considered invalid and therefore excluded (number of
drinks per day or week>100, >4 standard deviations above the mean, and/or inconsistent with
data on drinking frequency). For 1,129 individuals, data were excluded, since they were not
biological relatives of the twins (N=67), zygosity was unknown (N=24), they formed part of a
triplet/quadruplet (N=89), were a sibling in a family with more than two same-sex siblings
(N=21; a maximum of two same-sex siblings were included per family), or had another relation
to the twin than co-twin, sibling or parent (N=499, including 240 spouses for whom data on
length of their relationship was not available). Hence, data on alcohol intake were analyzed for
13,016 individuals: 6,619 twins, 1,492 siblings, 4,476 parents, as well as data on alcohol intake
and relationship duration from 429 spouses of twins. Overall, 63.5% was female (year of birth
1911-1992). Individuals were categorized into five zygosity by sex groups, based on the
zygosity and sex of the twins. See Table 1 for a complete overview of the number of individuals.
For same-sex twins, zygosity was determined by DNA comparison (51%) or survey questions
on physical similarity when the twins were young. Agreement between DNA zygosity and

zygosity based on survey questions was >96% (Willemsen et al. 2013).

2.2 Measures

Respondents were asked to report the number of glasses of beer, wine and spirits they
drank for each day of the week keeping the past 12 months in mind. In the analyses described
below, alcohol intake was analyzed as the average amount of (grams of) alcohol consumed per
day. This was calculated by summing the number of drinks per week, multiplied by 14 grams

alcohol per glass, divided by 7 (days in the week).
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Table 1 Number of participants per zygosity by sex group

Number of participants

Zygosity by twins b brothers sisters fathers mothers spouses
sex group 2

MZM 945 (57%) 65 84 172 212 81

DZM 541 (50%) 40 61 143 159 35

MZF 2,413 (65%) 121 180 355 467 157

DZF 1,229 (57%) 75 115 203 288 69

DOS 1,491 (44%) 71 154 314 390 87
Families

without twins¢ 0 176 350 663 1,110 0

Total 6,619 548 944 1,850 2,626 429

a MZM: monozygotic males, DZM: dizygotic males, MZF: monozygotic females, DZF: dizygotic females, DOS: dizygotic
opposite-sex
b percentage reflects what proportion of twins is part of a complete twin pair

¢ families in which twins did not participate

2.3 Statistical analyses

The genetic analysis of alcohol intake was performed by fitting saturated and structural
equation models to raw data based on maximum likelihood estimation, using the statistical
software package Mx (v1.54) (Neale et al. 2006) in five zygosity by sex groups. A saturated
model was specified containing 16 sex-specific familial correlations to describe the resemblance
in alcohol intake among family members (model 1). These were five twin correlations (for MZ
males (MZM), DZ males (DZM), MZ females (MZF), DZ females (DZF), DZ opposite sex (DOS)),
three twin-sibling and three sibling-sibling correlations (male-male, male-female, female-
female), four parent-offspring correlations (father-son, mother-son, father-daughter, mother-
daughter) and one spouse correlation (father-mother). In this model, two means, and two
variances (males, females) were estimated. Age was included as a covariate, adding two
regression coefficients to be estimated (males, females). This saturated model was used to test
for differences in means, variances and associations over sex (models 2a-e). Differences in the
familial correlations were tested in four submodels. First, the presence of a special twin
environment was examined by testing whether twin correlations could be constrained to be
equal to DZ twin-sibling and sibling-sibling correlations (model 3). Second, sex differences in
the correlations were tested by equating correlations over sex for DZ twin/sibling pairs (model
4a), parent-offspring pairs (model 4b) and MZ twin pairs (model 4c). Third, age effects on the
correlations were tested by equating correlations for parent-offspring pairs, to those for
offspring (DZ twin/siblings) pairs. Since parent-offspring pairs differ more in age than offspring
pairs, when correlations for both pairs can be constrained to be equal, there are no age effects

on the correlations which gives an indication that genetic effects underlying differences in
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alcohol intake are similar over age (model 5). Then, spousal resemblance for alcohol intake was
tested for significance (model 6). In case of significant spousal resemblance, we explored
whether this could be explained by cohabitation effects by estimating the correlation between
the absolute difference in alcohol intake for spouses and the duration of their relationship in
months (performed on data of 429 twin-spouse pairs and 903 parental pairs with data on
relationship duration). If living together influences resemblance between spouses, this
correlation will be negative, i.e. smaller differences between spouses who have been together
longer. The resulting pattern of familial correlations informed the second step, whether sex
differences and/or spousal resemblance needed to be specified in the genetic model.

Structural equation modeling was performed to estimate how much of the phenotypic
variance in alcohol intake could be ascribed to genetic differences among individuals and how
much to environmental differences. Factor models were specified in which alcohol intake
among family members was regressed on latent factors that represented the genetic and
environmental contributions to alcohol intake (Neale et al. 1994) (see Figure 1). In these
parent-offspring models, alcohol intake of fathers and mothers (depicted as PFA and PM0) and
their offspring (depicted as PT1 and PT2 for twin 1 and twin 2, siblings not depicted in the figure
for clarity of presentation) was regressed on additive genetic factors (with factor loadings a),
shared environmental (factor loadings c) and non-shared environmental factors (factor loadings
e). The amount of variance ascribed to genetic and environmental factors can be estimated by
the fact that family members share their genetic and environmental background to different
degrees. MZ twin pairs are assumed to share all of their genetic material (that is, the additive
genetic factors (A) were modeled to correlate 1 within twin pairs), whereas DZ twin
pairs/siblings, and parents and offspring are estimated to share half of their segregating genes
(A factors were modeled to correlate .5 for DZ twin, sibling and parent-offspring pairs). Shared
environmental influences (represented by C factors) were correlated 1 among the offspring
generation within each family and 0 with those from other families or the parental generation.
Spousal resemblance was modeled to run via a A-path that represents the correlations between
the latent genetic and environmental factors influencing the phenotypes of the parents, that
result from phenotypic assortment. The increase in the additive genetic variance (RA) that
results from phenotypic assortment is modeled through the additive genetic variance
component that is larger than 1 in the case of phenotypic assortment. The variance of the
additive genetic factor in the offspring generation (.5) reflects the segregation variance that
emerges due to recombination. This within-family additive genetic variance emerges since
parents pass their alleles, not genotypes, giving rise to new genetic variance in the offspring

generation (Keller et al. 2009).
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Cultural transmission of alcohol intake was tested in the so-called ACE model with
cultural (shared environmental) transmission. Cultural transmission would be indicated by
significant path loadings from parents to offspring (tFA,T1, tMO,T1, tFA, T2, tMO,T2). Since
parents also contribute to variation in the offspring by transmission of their genetic values
(indicated by the paths from the additive genetic factors in the parental generation to those in
the offspring generation), cultural transmission refers to the non-genetic, environmental
transmission of alcohol intake from parents to offspring. The presence of both genetic and
shared environmental transmission, gives rise to a correlation between the additive genetic and
shared environmental factors (A-C correlation, represented by RA,C). The remainder of the
variance, that is, the amount of variance that was not accounted for genetic, shared
environmental, or cultural transmission effects, was estimated as non-shared, individual-
specific environmental effects (E).

In the ACDE model, cultural transmission paths were fixed to zero (for model
identification reasons) and non-additive genetic influences (D) were estimated (with factor
loadings d). These can be estimated by assuming that MZ twin pairs share all their genetic
material with each other including non-additive genetic factors (i.e., D factors are correlated 1)
whereas DZ twins and sibling pairs share on average a quarter of the non-additive genetic
factors (D factors are correlated .25) and parent-offspring pairs share none of their non-additive
factors. By setting cultural transmission to zero, A-C correlation was no longer implicated and
set to zero as well.

If the saturated model indicated sex differences in the correlation structure, sex-specific
factor loadings were estimated (resulting in a sex-specific variance decomposition). If not, these
were constrained to be equal over sex. Qualitative sex differences in environmental factors
(shared by the offspring generation) could be examined by testing whether the correlation
between the shared environmental factors (rc,0S) was lower than 1 in opposite-sex offspring
pairs. Along the same line, it could be examined whether qualitative sex differences in the
genetic factors were present by testing whether the genetic correlation for opposite-sex parent-
offspring pairs was significantly lower than .5. Model comparisons were based on the likelihood

ratio test with a significance level of .01 (Bentler and Bonett 1980).
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Figure 1 Path diagram for variance decomposition with extended twin-family design (ETFD)

(shown for DZ twin/sibling pair with parents)

PrA, PMo, PT1, PT2 = phenotype of father, mother, twin/sibling 1, twin/sibling 2

A= additive genetic factor with variance Ra (differs from 1 in the case of phenotypic assortment)

D= non-additive genetic factor

C=shared environmental factor with variance Rc (differs from 1 in the case of shared environmental transmission)
E=individual-specific environmental factor

a,c,d,e= path loadings (d-paths estimated in ACDE model; set to zero in ACE model with non-genetic shared
environmental transmission)

trFA,T1, tFA, T2, tM0,T1, tM0,T2 = non-genetic transmission shared environmental paths from father to twin/sibling 1,
father to twin/sibling 2, mother to twin/sibling 1, mother to twin/sibling 2 (estimated in ACE model with non-genetic
shared environmental transmission; set to zero in ACDE model)

RA,c=covariation between A and C (differs from 1 in the case of shared environmental transmission)

A =path representing correlations between the latent factors induced by phenotypic assortment

Note: possible sex differences in the a, ¢, d, e and t path loadings have been omitted from the figure for reasons of

clarity in the presentation
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3. Results

Table 2 shows the untransformed values of alcohol intake in grams per day, separately
for male and female twins, siblings and parents. After taking the natural logarithm of alcohol
intake levels, alcohol intake levels became close to normally distributed (skewness -.5, kurtosis -
.5 versus skewness 2.2, kurtosis 7.5 for untransformed levels). Subsequent analyses were
performed on log-transformed values of alcohol intake. Model fit statistics for these models are

presented in Table 3.

Table 2 Descriptive statistics for males and females, separately for twins, and their siblings,

parents and spouses 2

males females
mean (SD) N mean (SD) N
twins alcohol intakeb 19.3(18.7) 2076 | 10.4(11.7) 4543
age 33.0 (14.6) 33.0 (14.0)
siblings alcohol intake 20.2 (19.0) 548 10.1(11.5) 944
age 38.7 (14.3) 36.9 (13.4)
parents alcohol intake 21.5(18.9) 1850 | 12.4(12.4) 2626
age 56.6 (8.1) 53.4 (8.2)
spouses alcohol intake 17.9(15.9) 273 9.9 (12.0) 156
age 45.3 (12.0) 40.4 (12.7)

a data of twins, siblings and parents were analyzed to estimate to estimate heritability and, or cultural effects by

genetic models; data of parents and spouses of twins were analyzed to study the mechanism of spousal resemblance

for alcohol use

b untransformed values for alcohol intake in grams/day

Alcohol intake was higher among men than women and increased with age similarly for both
sexes (beta=.11; r=.09). Inspection of the scatter plots did not indicate influence of outlier
values. Variances were comparable across sex. In subsequent models, two means were specified
(males, females) along with one variance and one age regression (equal over sex).

Familial correlations as estimated in the saturated model, are shown in Figure 2. DZ
twin correlations were not systematically larger than sibling correlations, indicating that
genetic and environmental effects make similar contributions to alcohol intake for DZ twins and
siblings, rendering a special twin environment unlikely. There were no significant sex
differences in the correlations. MZ correlations (rwm.53; ruz.54) could be constrained to be
equal over sex (r.53), as could DZ twin/sibling correlations (rozmysis-22; Tozrjsis-24; T'oosysis-16;
Troverair,-20) and parent-offspring correlations (rearusr-son-17; Fuorner-paventer -20; Featusr-pavener - 14, Fuorisr-
son-12; Foverare.-16). Thus, the same genetic risk factors influence alcohol intake in males and

females.
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CHAPTER 3

Parent-offspring pairs, who differ more in age than offspring pairs (DZ twin/siblings), showed a
similar resemblance in alcohol intake levels as the offspring pairs (rovera..18), indicating that
similar genes are expressed over age. Alcohol intake correlated significantly between spouses (r
.39). Strictly speaking, spousal resemblance did not increase with increasing relationship length
(at a=.01), but the correlation was very close to significant (x2(1)=6.51, p=.011; r=-.07, 95% CI -
.13, -.02), suggesting that cohabitation effects may explain some of the spousal resemblance for
alcohol intake, although large effects are unlikely. In the genetic model, spousal resemblance for
alcohol intake was therefore modeled as resulting from phenotypic assortment. Given that the
correlations did not differ across sex, path loadings and cultural transmission paths were
constrained to be equal over sex.

Cultural transmission of alcohol intake was not significant and hence, the ACDE model],
being more parsimonious, gave a better fit compared to the saturated model than the ACE
model with cultural transmission. Taking the ACDE model as a reference, non-additive genetic
effects were significant, but shared environmental effects were not. In the final model, 23.4% of
the variance in alcohol intake was explained by additive genetic effects (95% CI 19.1%, 27.5%),
29.9% by non-additive genetic effects (95% CI 23.9%, 36.0%), and 46.7% by non-shared
individual-specific environmental effects (95% CI 43.1%, 50.7%). Quantifying the effect of
spousal resemblance on the heritability indicated that .1% of the broad-sense heritability could

be ascribed to effects of phenotypic assortment.

|male MZ —_—— {507
female MZ
|male DZ—
male twin-sib
male sib-sib
female DZ
femalel twin-sib
female sib-sib
opp sex DZ
opp sex twin-sib
opp se:)( sib-sib
fqther-son —_— 165
mqther-son _— 125
father-daughter — {143
mother-daughter
father-mother

- 536

A22

274

341

.250
.249
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300

—_— 4 393
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Figure 2 Familial correlations for alcohol intake (with 95% confidence intervals )
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4. Discussion

We examined the genetic architecture of alcohol intake in a large sample of adult twins,
siblings, and parents. Specifically, we tested (a) whether there were effects of cultural
transmission, (b) if heritability estimates were affected by non-random mating, (c) to what
degree the heritability was due to additive versus non-additive gene action and (d) if the
importance of genetic and environmental risk factors differed over sex and age.

Effects of cultural transmission or the shared environment on adult alcohol intake are
not present. Spouses resemble each other in their alcohol intake levels (r.39). Large
cohabitation effects were not detected however, suggesting that most of the spousal
resemblance is due to effects of phenotypic assortment. Taking phenotypic assortment for
alcohol intake into account did not significantly influence the heritability estimates. Alcohol
intake is higher among men than women, and increased with age. The latter is likely to be
explained by increased welfare standards and healthy life years among the Dutch elderly (Geels
et al. 2013). Previous research has pointed at a lower heritability of alcohol intake among
women (Dick et al. 2009b; McGue 1999), but the current study shows that the genetic
architecture underlying differences in alcohol intake is similar over sex (broad-sense hz 53%)
and age. The absence of sex differences in this study and other recent studies (Dick et al. 2009b;
Dick et al. 2011; Geels et al. 2012; Sartor et al. 2010) may be explained by the growing
convergence in male and female alcohol use due to earlier initiation and augmented alcohol
intake by women (Geels et al. 2013; Keyes et al. 2011) which has been associated with changes
in gender roles (Keyes et al. 2011; Rahav et al. 2006). Interestingly, a substantial part of the
underlying genetics of alcohol intake is due to genes that act in a non-additive manner (30%).

Genes have been hypothesized to impact variation in alcohol use via two broad
pathways (Kendler et al. 2012). Genetic effects specific to alcohol intake can reflect those on
alcohol metabolism (Hurley and Edenberg 2011; Van Beek et al. 2010) and sensitivity to the
response to alcohol (Schuckit 2009; Heath et al. 1999). A second pathway through which genes
can have their effect on alcohol intake is by personality characteristics such as impulsivity,
disinhibition, sensation seeking (Schuckit 2009) and externalizing psychopathology (Kendler et
al. 2011a; Krueger 1999), which are traits that influence risk for substance use in general
(Kendler et al. 2012). Interestingly, for both alcohol metabolism (Chen et al. 1999; Kuo et al.
2008a) and personality (e.g. novelty seeking) (Keller et al. 2005), non-additive genetic effects
have been detected.

[t is tempting to speculate about the underlying mechanism generating these non-
additive genetic effects. It can be argued that the genetic non-additivity may reflect a different
expression of genes over age. This interpretation is unlikely given that the offspring and parent-

offspring correlations were not significantly different from each other. Alternatively, the non-
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additive genetic effects can reflect effects of dominant gene action and/or epistasis. Dominant
gene action requires that individuals share both alleles at a locus. This is assumed to be the case
for all MZ twin pairs, and for one quarter of the DZ twin-sibling pairs, but not for parent-
offspring pairs, because parents transmit only one of their alleles to their children. Effects of
dominant gene action are thus suggested when DZ twin/sibling correlations are higher than
those among parent-offspring pairs. Epistasis represents the effects of interacting risk alleles
from different loci, which is assumed to be equal for all first-degree relatives. In the presence of
additive-by-additive epistasis, all first-degree relatives are assumed to share 25% of the non-
additive genetic variation. Model fitting could be then be performed to disentangle non-
additivity due to dominance and that due to additive-by-additive epistasis (Heath et al. 1984). In
the case of higher-order epistasis, the correlation between non-additive genetic factors is lower
than .25 for first-degree relatives since the more alleles are interacting, the less probable it is
that DZ twin or sibling pairs share all these interacting alleles (Posthuma et al. 2003). Higher-
order epistasis would thus predict that model fit improves when the correlation among non-
additive genetic factors in the offspring correlation is lowered (Keller et al. 2005). When
exploring possible effects of dominance and epistasis for the current study, clear effects were
not detected. Parent-offspring correlations and offspring correlations were similar, suggesting
additive-by-additive epistasis rather than dominance. When assuming that the correlation
between non-additive genetic factors for DZ twins and siblings was .20 or .15, an improve in
model fit was not observed hence evidence for higher-order epistasis was not detected.
However, power may be low to detect these effects in this study. Heath et al. (1984) showed that
power was sufficient to disentangle genetic dominance from additive-by-additive epistasis for
highly heritable trait. Further research could focus on the power of these tests in less heritable
traits, for different levels of genetic dominance and (different types of) epistasis. Nevertheless, a
clear effect of non-additive gene action is evident irrespective of the precise mechanism. Future
gene finding studies may benefit when taking this non-additivity into account, for instance by
using prediction models that involve complex interactions among genetic markers, such as
random forests (Molinaro et al. 2011).

There was no evidence for culturally transmitted effects of alcohol intake from parents
to offspring. Differences may be partly explained by the use of self-report data. In the current
study, all participants reported on their own drinking behavior. Any rater effects (measurement
error) were included in the estimates of individual-specific environmental effects. With regard
to the two large studies that reported evidence for effects of cultural transmission, Maes et al.
(1999) also analyzed self-reported data on alcohol use, whereas Newlin et al. (2006) analyzed
data from probands along with their reports on their parents’ alcohol use. Similarity between

the proband and his/her biological parents was estimated as effects resulting from both cultural
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and genetic transmission, but for probands from adoptive or step families, any (reported)
similarity in the proband’s alcohol use behavior and that of his/her parents, was a direct
measure of cultural transmission. Thus to the extent rater effects were present, these were
incorporated in the estimates of cultural transmission.

The absence of effects of cultural transmission of alcohol intake does not mean that
parents cannot influence the drinking behavior of their children apart from the transmission of
their genes. For younger adolescents cultural transmission of alcohol use patterns of parents to
children seems to play a role, although peer influences on adolescent alcohol use are generally
larger than parental influences (Hopfer et al. 2003; Allen et al. 2003). For adolescents aged 15-
16, it might explain up to 10% of the variation in alcohol use (Koopmans and Boomsma 1996).
In addition, parents can influence adolescent drinking through certain styles of parenting that
may be unrelated to the parents’ own drinking behavior (Smit et al. 2008; Petrie et al. 2007;
Eijnden et al. 2011).

It might be argued that including the group of not-current drinkers in the study, has
introduced bias if these include individuals who have stopped drinking because of their
propensity to indulge into heavy drinking (which is likely to be reflective of a high genetic risk
for heavy drinking). This seems unlikely however. For 1,426 out of 1,714 not-current drinkers,
data were available on their reasons for not drinking and only 0.8% stopped drinking because
of problems with alcohol use. Most individuals reported not to drink alcohol because they did
not like the taste (52.9%), did not feel the need to drink (16.3%) or because of reasons of health
(17.5%). Some only drank at special occasions (2.1%). Other reasons for not drinking were
(unpleasant) side effects (3.3%), principles or reasons of belief (2.0%), fear of alcohol problems
because of what occurred in their surroundings (2.4%) or other reasons (2.6%).

To conclude, the current study showed that 53% of the variation in adult alcohol intake
is explained by genes, taking the significant spousal resemblance into account. Effects of cultural
transmission were not significant. The substantive amount of non-additive genetic variation
representing effects of dominant gene action and/or epistasis presents an important venue for

further study.
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CHAPTER 4
STABLE GENETIC EFFECTS ON SYMPTOMS OF ALCOHOL ABUSE AND DEPENDENCE

FROM ADOLESCENCE INTO EARLY ADULTHOOD 2

Abstract

Relatively little is known about how genetic influences on alcohol abuse and dependence
(AAD) change with age. We examined the change in influence of genetic and environmental
factors which explain symptoms of AAD from adolescence into early adulthood. Symptoms of
AAD were assessed using the four AAD screening questions of the CAGE inventory. Data were
obtained up to six times by self-report questionnaires for 8,398 twins from the Netherlands
Twin Register aged between 15 and 32 years. Longitudinal genetic simplex modeling was
performed with Mx. Results showed that shared environmental influences were present for age
15-17 (57%) and age 18-20 (18%). Unique environmental influences gained importance over
time, contributing 15% of the variance at age 15-17 and 48% at age 30-32. At younger ages,
unique environmental influences were largely age-specific, while at later ages, age-specific
influences became less important. Genetic influences on AAD symptoms over age could be
accounted for by one factor, with the relative influence of this factor differing across ages.
Genetic influences increased from 28% at age 15-17 to 58% at age 21-23 and remained high in
magnitude thereafter. These results are in line with a developmentally stable hypothesis that
predicts that a single set of genetic risk factors acts on symptoms of AAD from adolescence into

young adulthood.

2 This chapter is published as:

van Beek, JHDA, Kendler, KS, de Moor, MHM, Geels, LM, Bartels, M, Vink, JM, van den Berg, SM, Willemsen, G,
Boomsma, DI (2012) Stable genetic effects on symptoms of alcohol abuse and dependence from adolescence
into early adulthood. Behav Genet 42: 40-56
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1. Introduction

Twin and adoption studies have consistently shown that the risk for a lifetime history of
alcohol abuse/dependence (AAD) is strongly influenced by genetic factors with estimates of
heritability ranging around 28% in adolescents (Dick et al. 2009b) and from 45 to 64% in adults
(Cloninger et al. 1981; Goodwin et al. 1973; Heath et al. 1997; Kendler et al. 1992; Kendler et al.
1997; Knopik et al. 2004; Liu et al. 2004; Pickens et al. 1991; Prescott and Kendler 1999; Reed et
al. 1996; Sartor et al. 2010; True et al. 1999). These cross-sectional studies could however not
examine whether AAD in adolescence and adulthood is influenced by the same or different
genetic factors. For this, longitudinal studies are needed. Within a longitudinal design, the
relative contributions of genetic and environmental influences have been explored from
adolescence into young adulthood for a wide range of alcohol-related phenotypes. Generally,
with increasing age the importance of additive genetic factors increases and that of shared
environmental influences decreases for alcohol use measures such as alcohol initiation
(Koopmans and Boomsma 1996; Viken et al. 1999), frequency of alcohol use (Geels et al. 2012;
Rose et al. 2001; Viken et al. 1999), quantity of alcohol use (Kendler et al. 2008c; Geels et al.
2012) and perceived alcohol availability (Gillespie et al. 2007). In contrast to alcohol use, the
change of the genetic underpinnings of symptoms of alcohol misuse during adolescence and
early adulthood, has seldomly been explored in a longitudinal design.

In this paper, the primary goal is to investigate how genetic risk factors for symptoms of
AAD change across age. In particular, we seek to discriminate between two hypotheses about
the developmental pattern of genetic risk factors for AAD symptoms in the key time period of
adolescence and early adulthood. In this period drinking habits are commonly formed, levels of
alcohol consumption typically peak (Koppes et al. 2000; Midanik and Clark 1994; Moore et al.
2005; Poelen et al. 2005) and symptoms of AAD usually begin (Harford et al. 2006; Schuckit et
al. 1998). The developmentally stable hypothesis predicts that a single set of genetic risk factors
will impact on AAD symptoms from late adolescence through early adulthood. By contrast, the
developmentally dynamic hypothesis predicts that new genetic influences on AAD symptoms
“come on line” at a particular age. These genetic innovations give rise to a qualitative change in
genetic effects. Regardless of qualitative change, the importance of genetic risk factors may
change quantitatively over time. This can result from genetic amplification, if the importance of
genetic influences increases over age, or from genetic attenuation if the importance of genetic
factors declines during development.

The current study analyzed longitudinal survey data on symptoms of AAD in a cohort of
8,398 twins from the Netherlands Twin Register aged between 15 and 32 years. Symptoms of
AAD were assessed by the CAGE, a four item screening instrument for AAD, and were obtained

up to six times. To ensure data from participants of different ages and sex could be meaningfully
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compared, measurement invariance of the CAGE was tested over age and sex. In addition to the
primary goal of clarifying the nature of genetic effects on AAD symptoms over age, we also
examined qualitative and quantitative changes of environmental risk factors. To achieve this
aim, simplex models were fitted by which genetic and environmental influences could be
separated from variance due to measurement error and the presence of genetic and

environmental innovation could be tested.

2. Methods
2.1 Sample

Data came from a sample of twins (aged 15-32 years; N=8,398) who were registered
with the Netherlands Twin Register (NTR) and had answered survey questions about symptoms
of AAD as part of the ongoing longitudinal study on health, personality and lifestyle that is being
conducted in all active participants (twins and their relatives) of the Adult Netherlands Twin
Register (ANTR) since 1991 (Boomsma et al. 2002c; Boomsma et al. 2006). Questions about
AAD symptoms were included in the surveys in 1995, 1997, 2000, 2002, 2004/2005 and
2009/2010.1In 2009/2010, twins of 18 years and older (and their family members) who were
followed since their birth by the Young Netherlands Twin Register (YNTR) (Bartels et al. 2007)
were also invited to take part in the ANTR study. Extended information about the NTR sample
and data collection can be found in Boomsma et al. (2002; 2006).

In our sample, very few participants under the age of 15 reported symptoms of AAD
(see also Poelen et al. (2005)). Therefore, to study the genetic architecture of AAD symptoms
during adolescence and early adulthood, we included all participants aged 15 or older with data
on symptoms of AAD. Because we collected data on symptoms of ADD from 1995 to 2010,
spanning a 16 year period, the upper age limit was 32 years. Thus, for this study data on
symptoms of AAD were analyzed if obtained between the ages 15 and 32. Zygosity for same-sex
twin pairs was based on DNA polymorphisms if available (42%), or otherwise on survey
questions about zygosity (58%). Agreement between DNA zygosity and zygosity based on
survey questions for same-sex twins was 97% (Willemsen et al. 2005). The 8,398 participants
(62% female; year of birth 1964-1991) provided up to six measurements of AAD symptoms.
Amongst this group, 1.9% had reported that they had not or rarely drunk alcohol. For 1,588
individuals (18.9%) two measurements on AAD symptoms were analyzed, for 1,175 (14.0%)
three, for 778 (9.3%) four, for 344 (4.1%) five and for 24 individuals (0.3%) six measurements.
Additional repeated measures at age 14 or younger or age 33 or older were available but not
analyzed for 674 of the 8,398 individuals (15,0%). The relative large number of twins with one
survey (N=4,489; 53.5%) was mainly due to the entry from participants of the YNTR in
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2009/2010 who were invited to participate in the ANTR research for the first time (N=2,151;
47,9%).

2.2 Measure

Symptoms of AAD were assessed by the CAGE, originally developed as a screening
instrument for medical settings (Ewing 1984), which gives an indication of the presence of
symptoms of AAD (Dhalla and Kopec 2007). The CAGE consists of four items that can be
answered with ‘yes’ or ‘no’: Have you ever felt that you should Cut down your drinking?; Have
people Annoyed you by criticizing your drinking?; Have you ever felt bad or Guilty about your
drinking?; Have you ever had a drink in the morning (as an ‘Eye opener’) to steady your nerves
or get rid of a hangover? In 2009/2010, there were three response categories: ‘yes, during the
last year’; ‘yes, not during the last year’. These two yes categories were recoded into one, since
its frequency was comparable to the frequency of the single yes categories in earlier years. If
one of the four CAGE items was missing (N=64; 0.3%), its value was imputed based on the mean
of the three other answers. In case of two or more missing answers (N=30; 0.2%), the CAGE was
set to missing.

The number of participants aged 15-17 who gave two or more positive responses on the
CAGE was low (see Table 1). This leads to numerical problems when analyzing longitudinal twin
data. Therefore, the analyses were conducted on the dichotomy of zero versus one or more yes
answers. In analyses that are described in more detail below, we investigated whether this

dichotomization influenced the results.

2.3 Data file restructuring

The mean age across surveys was 19.7 (SD 2.9) in 1995, 21.6 (SD 3.6) in 1997, 24.2 (SD
3.9) in 2000, 26.4 (SD 3.7) in 2002, and 26.9 (SD 3.6) in 2004/2005. Due to the entry of a large
new group of young participants, the mean age was 22.9 (SD 4.9) in 2009/2010. To study age-
related changes in genetic influences on AAD symptoms, the data file was restructured from
observations by survey to observations by age band. Six age groups were created: 15-17, 18-20,
21-23, 24-26, 27-29, and 30-32, since surveys were sent out every 2-3 years. If two or more
observations of one individual fell into the same age band, the most recent measurement was
selected (at which the co-twin also answered the CAGE). Table 2 shows the number of

observations for each age group, separately for sex and zygosity.
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CHAPTER 4

2.4 Data analysis

Data analysis consisted of four steps: testing whether the CAGE was measurement
invariant over age and sex, estimation of longitudinal and twin correlations, cross-sectional
genetic modeling and longitudinal genetic modeling. In all analyses, the CAGE was treated as a
threshold character assuming that a standard normal liability distribution underlies the ordered
categories.

Measurement invariance We first investigated whether the CAGE was measurement
invariant over age and sex. From the dataset as described above one observation per individual
was selected. For individuals with repeated measures, observations were selected that gave age
groups of roughly the same size. This resulted in the following 12 mutually exclusive age by sex
groups: twins aged 15-17 (383 males, 691 females); twins aged 18-20 (698 males, 1142
females); twins aged 21-23 (530 males, 754 females); twins aged 24-26 (353 males, 705
females); twins aged 27-29 (870 males, 1487 females); twins aged 30-32 (343 males, 442
females).

In Mplus 5.1 (Muthen and Muthen 2007) one factor models were specified with the four
CAGE items as indicators. First, a configural invariance model was fitted. In this model the factor
loadings and thresholds were estimated for each group. Strong factorial invariance and strict
factorial invariance models were tested in line with Slof-op ‘t Landt et al. (2009). In the strong
factorial invariance model, the factor loadings and thresholds were constrained to be equal over
the 12 groups. The residual variances and means and variances of the latent factor were then
estimated. In the strict factorial invariance model, the residual variances were also constrained
to be equal over groups. This model tested if for all groups the same proportion of variance is
explained by the latent factor. In an additional model, sex differences at the latent factor level
were evaluated by constraining the factor means for males and females to be equal. Absence of
sex differences at the latent factor level is not a requirement for measurement invariance, but
makes the interpretation of results from the cross-sectional and longitudinal analyses easier.
Model fit was evaluated with the RMSEA, a measure that indicates the approximate fit of the
measurement model in the population, since the 2 difference test is directly affected by sample
size. An estimate in between .00 and .05 indicates good model fit (Schermelleh-Engel et al.
2003). To correct for the non-independence of twin data, for all models option complex was
used. This method was shown to perform satisfactory in the context of family data by Rebollo,
de Moor, Dolan, and Boomsma (2006).

Estimation of longitudinal and twin correlations To get a first impression of the relative
importance of genetic and environmental influences on AAD symptoms, tetrachoric twin
correlations for the dichotomous CAGE scores (0 vs. 1+ yes answers) were estimated. These

analyses were performed with the package polycor (polychor(varl, var2, ML=T, std.err=T)) in R

80



STABLE GENETIC EFFECTS ON SYMPTOMS OF ALCOHOL ABUSE AND DEPENDENCE FROM ADOLESCENCE INTO EARLY ADULTHOOD

(version 2.9.2; http://www.r-project.org/) (R Development Core Team 2012) using maximum
likelihood estimation. For each of the five zygosity by sex groups, six cross twin-within age
correlations (30 in total), 15 cross twin-cross age correlations (75 in total), and 15 within
person-cross age correlations were computed.

Sex differences in the correlations and the prevalence of one or more yes answers were
tested cross-sectionally by model fitting in Mx (version 3.2) (Neale et al. 2006). In a multigroup
analysis of five zygosity by sex groups, qualitative and quantitative sex differences in the
correlations were tested for by constraining the correlations to be equal over sex. To examine
sex differences in the prevalence, a sex effect on the threshold was tested for significance. The fit
of the restricted models was compared to that of the full model using the likelihood ratio test.

To investigate whether the way the CAGE was dichotomized affected the results,
correlations based on the dichotomous CAGE were compared to those based on the CAGE with
three response categories: 0, 1, and 2+ yes answers. The polychoric correlations for the CAGE
with three response categories were estimated for the age groups 18-20, 21-23, 24-26, 27-29
and 30-32 cross-sectionally, using Mx. For the 15-17 year olds the number of 2+ yes answers
was too low to estimate polychoric correlations. In the analyses described above on a few
occasions empty cells were observed (0.7-1.7%). These were replaced by 1 to be able to run the
model estimation.

Genetic analyses The relative importance of genetic and environmental influences on the
CAGE was investigated by decomposing the variance-covariance structure of the dichotomous
CAGE (0 vs. 1+ yes answers) into latent factors representing additive genetic (A), non-additive
genetic (D) or shared environmental influences (C) and unique environmental (E) influences.
First, cross-sectional genetic analyses were conducted for each age group separately. Next,
longitudinal genetic analyses were performed. All genetic analyses were conducted in Mx (Neale
et al. 2006) in two zygosity groups, as sex differences in the twin correlations were absent. For
model identification purposes, the variance was fixed at unity for all age groups in both the
cross-sectional models as well as in the longitudinal model.

Cross-sectional genetic analyses The decision to fit an ACE or ADE model was based on
the correlation structure for a particular age group. If the correlation for MZ twins was smaller
than twice the correlation for DZ twins, an ACE model was fitted. If the MZ correlation was more
than twice the DZ correlation, the ADE model was fitted to the data. The importance of additive
genetic, non-additive genetic and shared environmental factors was tested by dropping the a, d
or c parameter from the model and comparing the fit of the restricted model with that of the full
model using the likelihood ratio test.

Longitudinal genetic analyses The change in genetic and environmental influences on

symptoms of AAD, and specifically whether genetic influences could be best described by the
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developmentally dynamic or by the developmentally stable hypothesis, was explored by
modeling the data in a longitudinal ACE model. The longitudinal model, which examines the
cross-age correlations as well as the within-age correlations, has more power to discriminate
between additive genetic and shared environmental factors than the cross-sectional models,
which only examine the within-age correlations. In the longitudinal model, one threshold (six in
total) and one deviation from the threshold for females (six in total) were estimated in each age
group.

In the saturated (full ACE) model the variance-covariance structure was first explored
with a Cholesky decomposition (6 A factors, 6 C factors, 6 E factors) (model 1). In model 2, the
sex effects on the thresholds were constrained to be equal over the six age groups. Simplex
models were specified to test whether the genetic and environmental influences on AAD
symptoms showed qualitative or quantitative change. The final model was built by testing a
series of restricted submodels. The unique environmental structure was first examined,
followed by the development of shared environmental influences and finally by the structure of
the genetic influences. All submodels were compared to the preceding model, with the
likelihood ratio test.

First, in submodel 3a an unique environmental simplex structure was specified
(Gutmann 1955; Boomsma and Molenaar 1987) that allowed for both stable and dynamic
influences. This model contained six latent unique environmental variance components, each
with one observed measurement as its (only) indicator. The unique environmental variance
underlying the observed measurement at a particular age group was determined by the
transmission terms () that describe the amplification or attenuation of the unique
environmental variance that was already present in the previous age group (Ei- 1), plus the
innovation terms (¢) that allow for new unique environmental variance ‘coming on line’: E; = BE;
Ei_1+ {E; (Neale and Cardon 1992). Since 15-17 was the first age group, no unique
environmental variance could be transmitted from an earlier age group. Therefore, the unique
environmental variance for this age group reduced to {E;2 For the CAGE at age 18-20, the
unique environmental variance equaled BE;? * (E:2 + {E;? and for age 21-23 BE2* (BE:2 * {(Es2+
{E2?) + (E32. The unique environmental covariance over age is modeled to run via the
transmission terms only and can therefore be separated from variance due to measurement
error that is modeled to influence the variances but not the covariances. For model
identification purposes, a constraint has to be applied to the measurement error variance at the
outer categories (Neale and Cardon 1992). In this study, variance due to measurement error
was constrained to be the same for all age groups (submodel 3a). Whether unique
environmental influences were purely age-specific was tested by fixing the transmission terms

at zero in submodel 3b.
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Secondly, a simplex structure was specified for shared environmental influences
allowing for both stable and dynamic influences (submodel 4a). Next, in submodel 4b the shared
environmental innovation terms were dropped from the model to test whether shared
environmental influences could be described by one factor.

Thirdly, the genetic structure was investigated. In submodel 5a a simplex structure was
specified for genetic factors including transmission and innovation terms that allowed for both
stable and dynamic genetic influences. Subsequently, in submodel 5b, the innovation terms
were dropped from the model allowing for stable genetic influences only. The simplex structure
including transmission and innovation terms is shown in Figure 1a and the model without the

innovation terms is shown in Figure 1b.

1517 18-20 21-23 24-26 27-29 30-32

Figure 1a Simplex structure with innovation for analyzing 6 age groups (in squares) (shown for
1 twin only), with 6 latent variance components (A1 to A6), 5 transmission terms (f:1 to ff5) and
6 innovation terms ({4; to {A¢).

1

1517 18-20 21-23 24-26 27-29 30-32

Figure 1b Simplex structure without innovation for analyzing 6 age groups (in squares) (shown
for 1 twin only), with 6 latent variance components (A1l to A6), 5 transmission terms (51 to f5s)

and 1 innovation term ({4;).
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3. Results
3.1 Measurement invariance

The configural invariance model, in which the factor loadings and thresholds were
estimated freely for each group, had a good fit (x2(21)=19.84, p=.531; RMSEA=.001).
Constraining the factor loadings and thresholds over the groups to be equal was allowed, as
indicated by the fit of the strong factorial invariance model (x2(36)=43.66, p=.178;
RMSEA=.017). Restricting the residual variances to be equal over the groups in the strict
factorial invariance model was also permitted, based on the RMSEA (x2(71)=119.21, p<.001;
RMSEA=.031). This means that for different ages and sexes, the same proportion of the variance
can be explained by the latent factor. The CAGE, as it is administered in our surveys, is thus
measurement invariant over age and sex. Accordingly, answers on the CAGE can be compared
from one age and sex to another. With the CAGE being measurement invariant over age and sex,
differences in the prevalence are allowed for when these result from a difference at the latent
factor level. In an additional model it was examined whether sex differences existed at the latent
factor level by testing whether the factor means for males and females could be constrained to
be equal. This changed the model fit based on the RMSEA from good into acceptable
(Schermelleh-Engel et al. 2003) (x2(73)=246.54, p<.001; RMSEA=.058), suggesting that sex

differences exist at the latent factor level.

3.2 Longitudinal and twin correlations
In Table 3 within person-cross age correlations are presented for the dichotomous CAGE

scores (0 vs. 1+ yes answers).

Table 3 Estimates of tetrachoric within-person correlations (with standard errors and number

of observations) for the CAGE as dichotomy (0 vs. 1+ yes answers)

15-17 18-20 21-23 24-26 27-29  30-32
15-17 1
18-20 .43 (.07) 1
N=672
21-23  .41(.08) .59 (.04) 1
N=616 N=1224
24-26  .38(.08) 45 (.05) .65 (.03) 1
N=540 N=1125 N=1586
27-29  .20(.14) .47 (.06) 67 (.03)  .75(.03) 1
N=289 N=840 N=1270  N=1551
30-32  .29(.14) 48(.08)  .63(.04) .69(03) .73(.03) 1
N=177 N=455 N=922 N=1147  N=1167
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For intervals up to 12 years, the correlations were of similar magnitude. For intervals larger
than 12 years, the correlations started to decrease, but the number of individuals for whom data
was available on these large time intervals was relatively small.

The tetrachoric cross-twin correlations are shown in Table 4. The cross twin-within age
correlations (presented at the diagonal in italic) showed a different pattern for MZ and DZ
twins. MZ correlations were of similar magnitude for the ages 18-29:.40-.50 for MZF and .50-.60
for MZM. At age 15-17 the correlations were somewhat higher (r MzZM =.73; r MZF = .54) and for
MZM at age 30-32 somewhat lower (.35). DZ correlations started high at age 15-17 (r DZM =.68;
r DZF =.56; r DOS = .48), but were much lower at later ages. This was seen most clearly for DZM,
but was also true for DZF and DOS twins. This pattern suggests the influence of shared
environmental factors at younger ages and the increase of importance of genetic influences over
time.

The cross twin-cross age correlations (shown off-diagonal in Table 4) were lower than
the within person-cross age correlations. Overall, cross twin-cross age correlations also
decreased over age, although the pattern was less consistent than that seen for the within
person correlations.

Table 5 provides the results for testing sex differences in the correlations cross-
sectionally. For all age groups, male and female MZ correlations and male DZ, female DZ and DZ
opposite sex correlations could be constrained to be equal. Therefore, Table 5 shows the pooled
correlations over sex, together with thresholds estimates and deviations from the threshold for
females. As described in the section on measurement invariance, there was some indication for
true sex differences in CAGE scores (i.e., sex differences that were not due to differences in
measurement across sex). To account for these differences, sex effects on the thresholds were
tested. Dropping the sex effect on the threshold led to a significantly worse model fit in all age
groups (15-17: x2(1)=15.86, p<.001; 18-20: x2(1)=109.33, p<.001; 21-23: x2(1)=153.15, p<.001;
24-26:%%(1)=157.37, p<.001; 27-29: x2(1)=67.86, p=.001; and 30-32: x2(1)=59.65, p<.001). This
indicates that the prevalence of giving one or more positive answers differed for men and
women. Men more often gave a positive answer on one or more CAGE items than women.

Table 5 also presents the twin correlations and threshold estimates for the trichotomous
CAGE (0 vs. 1 vs. 2+ yes answers). The estimates for the dichotomous (0 vs. 1+ yes answers) and
trichotomous CAGE (0 vs. 1 vs. 2+ yes answers) were highly similar. Thus, dichotomizing the
CAGE using one positive item as cut-off did not bias the observed correlations, nor the
thresholds estimates or deviation from the threshold for females as compared to analyzing the
CAGE using three response categories. Therefore, further results are presented for the

dichotomous CAGE only.
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CHAPTER 4

3.3 Cross-sectional genetic analyses

Table 6 shows the ACE or ADE variance components estimates and model fitting results
for the cross-sectional genetic analyses. Since the MZ correlation was smaller than twice the DZ
correlation for the age groups 15-17, 18-20 and 30-32, the ACE model was fitted for these age
groups. For the age groups 21-23, 24-26, and 27-29, the MZ correlation was more than twice the
DZ correlation and thus the ADE model was fitted. Comparison of the full models showed an
increase of unique environmental factors over time, explaining 38% of the variance in AAD
symptoms at age 15-17 and 59% at age 30-32. Shared environmental influences decreased over
time. While almost half of the variance (45%) was explained by shared environmental
influences at age 15-17, and 19% of the variance at age 18-20, no shared environmental effects
were present for the ages 21-29. At age 30-32, shared environmental influences accounted for
12% of the variance again. Genetic influences showed an increase in importance over age. At age
15-20, 18% of the variance in AAD symptoms was explained by genetic influences. At age 18-20,
this increased to 28% and for the ages 21-29, 50% of the variance could be explained by genetic
factors. At age 30-32 genetic influences were less important, explaining 28% of the variance.

For all ages the reduced AE model did not fit significantly worse than the ADE model
(model fit statistics shown in Table 6). At the ages 15-17, 18-20 and 30-32, also a reduced CE
model fitted the data well, indicating that familial factors were clearly important for this age.
Since the AE model described the data well for all age groups, but the CE model was also

possible at ages 18-20 and 30-32, the ACE model was selected for the longitudinal analyses.

3.4 Longitudinal genetic analyses

Table 7 presents the model fit results for the longitudinal genetic analyses. Constraining
the sex effects (differing thresholds for males and females) to be equal over the six age groups
deteriorated the model fit significantly as compared to the saturated model (model 2:
x2(5)=17.69, p=.003). Therefore, in subsequent models separate sex effects for the female
threshold deviation from the threshold for males were retained for the different age groups.

The unique environmental simplex model with innovation and transmission terms fitted
the data well (model 3a: x2(9)=7.78, p=.557). Fixing the transmission terms at zero and thereby
imposing the matrix with unique environmental factors to be diagonal worsened the model fit
(model 3b: x2(5)=26.66, p<.001). This indicates that unique environmental covariance is present
over time and shows that both stable and dynamic unique environmental influences impact the

CAGE.
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Table 6 ACE and ADE variance component estimates and model fit results for the cross-

sectional genetic analyses @

Age A D C E -211 #par df X2 Adf P
15-17 ACE 0.18 0.45 0.38 831.13 5 1204
AE  0.68 0.32 834.00 4 1205 2.87 1 0.090
CE 0.58 0.42 831.46 4 1205 0.34 1 0.562
E 1.00 869.45 3 1206 38.32 0.000
1820 ACE 028 019 053 365637 5 3636
AE 0.51 0.50 3658.00 4 3637 1.63 1 0.202
CE 0.40 0.60 3658.70 4 3637 2.33 0.127
E 1.00 3719.73 3 3638 63.36 0.000
'21-23 ADE 006 044 050 364404 5 3490
AE 0.6 0.54 3645.98 4 3491 1.94 1 0.163
E 1.00 3699.24 3 3492 55.20 0.000
2426 ADE 024 026 052 313085 5 303%
AE 048 0.52 3131.39 4 3035 0.54 1 0.462
E 1.00 3178.66 3 3036 47.81 0.000
'27-29 ADE 004 047 049 262002 5 252
AE 047 0.53 2621.27 4 2553  1.25 1 0.264
E 1.00 2657.78 3 2554 37.76 0.000
30-32 ACE 028 012 059 221115 5 2225
AE 0.42 0.58 2211.43 4 2226 0.28 1 0.597
CE 0.34 0.66 2212.18 4 2226 1.03 1 0.310
E 1.00 223351 3 2227 2236 2 0.000

2 For models printed in bold, the model fit does not differ significantly from the full (ACE or ADE) model (a =.05)

Subsequent modeling of the shared environmental influences showed that the simplex
model including both transmission and innovation terms (model 4a; x2(10)=3.45, p=.969) fitted
the data well. Dropping the shared environmental innovation terms from the model was
allowed (model 4b; x2(5)=.17, p=.999) indicating that shared environmental innovation was not
present and that one shared environmental factor influenced the CAGE.

Finally, fitting a genetic simplex model with transmission and innovation terms did not
worsen the model fit (model 5a: x2(10)=11.62, p=.311). The final model without genetic
innovation terms did not fit significantly worse than the model with genetic innovation (model
5b: x2(5)=8.81, p=.147). This final model showed that one stable genetic factor was influencing
the CAGE over age.

The parts of the (co)variance that can be explained by additive genetic, shared
environmental and unique environmental factors as estimated in the final model are presented
in Table 8. Results suggested that 25% of the variance at a particular age could be accounted for

by measurement error. In Figure 2 the associated parameter estimates of this model are shown.
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STABLE GENETIC EFFECTS ON SYMPTOMS OF ALCOHOL ABUSE AND DEPENDENCE FROM ADOLESCENCE INTO EARLY ADULTHOOD

When taking variance due to measurement error into account (letting A+C+E sum up to
100%), it can be seen that shared environmental influences showed rapid attenuation over
time. While explaining 57% of the variance at age 15-17, (almost) no environmental effects
were present anymore for the ages 21-32. Genetic factors showed quantitative changes in its
influences over time, increasing from 28% at age 15-17 to 58% at age 21-23. Genetic influences
remained high at later ages, accounting for still 52% of the variance at age 30-32. The influence
of unique environmental influences was small at age 15-17 (15%), but amplified during the next
years. At age 30-32 unique environmental influences were as important as additive genetic
influences in explaining differences in the CAGE. Interestingly, phenotypic stability and change
in the CAGE over time could be largely attributed to additive genetic factors, although at later
ages unique environmental factors also contributed to the stability and change.

For unique environmental influences a simplex structure with innovation terms was
specified, allowing for stable and dynamic influences. At younger ages the largest part of unique
environmental influences was due to unique environmental innovation. According to the final
model, at age 18-20, 98% of the unique environmental variance was due to innovation
(.582/(.342*.272 +.582) * 100%). At age 21-23, this was 83% (.502 /[(.342 *.272 + .582) * .382 +
.502]* 100%) and at age 24-26, 65% (472 /([(.342 *.272 + .582) *.382 + .502] *.632+ .472) *
100%). At later ages, the largest part of unique environmental influences consisted of those
experienced earlier and transmitted to a later age. For example, at age 27-29, only 16% of
unique environmental variance was due to innovation (.232 /[([(.342 *.272 +.582) *.382 + .502 ]
*.632+.472)* 912+ .232] * 100%) and 84% to unique environmental factors experienced earlier
in life. For age 27-29, 72% of unique environmental influences consisted of those transmitted
from earlier ages and 28% was due to innovation (.322 /([([(.342 * .272 +.582) *.382 + .502] *
632+ .472)*% 912+ .232] * 892 +.322) * 100%).
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STABLE GENETIC EFFECTS ON SYMPTOMS OF ALCOHOL ABUSE AND DEPENDENCE FROM ADOLESCENCE INTO EARLY ADULTHOOD

4. Discussion

Our main goal was to study the temporal pattern of genetic factors for AAD symptoms
during the critical developmental period from adolescence into early adulthood. Studying age-
related changes was allowed, since the CAGE assessed the same phenotype across age 15-32
and across men and women, as indicated by the analyses on measurement invariance. In
particular, we wanted to discriminate between the developmentally stable and developmentally
dynamic hypotheses that predict quite different patterns for cross age genetic effects on
symptoms of AAD. Genetic innovation was not detected, which provides evidence in favor of the
developmentally stable hypothesis. That is, genetic risk factors for symptoms of AAD appear to
be temporally stable across the key developmental period from mid-adolescence into early
adulthood. The same genetic risk factors are important at younger and older ages. This is in line
with Sartor et al. (2008) who found that one common genetic factor could explain the rate of
progression from age at alcohol initiation to age at occurrence of the first symptom of AAD and
age at onset of an alcohol dependence diagnosis. Although in our study no qualitative changes in
genetic factors were found, quantitative changes were present. Genetic influences amplified
from age 15-17 to age 21-23 and then remained high.

Genetic factors can impact on risk for AAD symptoms at a wide range of levels and are
likely to share genetic influences on alcohol consumption measures, partly (Whitfield et al.
2004) or (almost) entirely (Grant et al. 2009; Kendler et al. 2010). Genetic influences include
those on alcohol metabolism by the ADH and ALDH gene cluster (Edenberg et al. 2006; Luo et al.
2006; Kuo et al. 2008b; Macgregor et al. 2009; Van Beek et al. 2010), the level of response to
alcohol (Schuckit et al. 2004) and neurotransmitters related to the reward system that interact
directly and indirectly with ethanol (e.g., dopamine, and GABA) (Enoch 2008; Smith et al. 2008;
Munafo et al. 2007). Genetic influences on AAD also act via general predispositions to abuse licit
and illicit psychoactive drugs (Kendler et al. 2007; Agrawal et al. 2008), predispositions toward
externalizing behaviors in general (Cerda et al. 2010) and the tendency to self-select into
environments where alcohol is widely available and its misuse socially condoned (Kendler et al.
2007; Gillespie et al. 2007). In addition, genetic factors for AAD can have their influence by
acting on co-morbid psychiatric symptomatology, such as depression or anxiety disorders

(Cerda et al. 2010; Saraceno et al. 2009).
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STABLE GENETIC EFFECTS ON SYMPTOMS OF ALCOHOL ABUSE AND DEPENDENCE FROM ADOLESCENCE INTO EARLY ADULTHOOD

This project had the additional goal of clarifying the change in environmental influences
on symptoms of AAD between the ages 15 and 32. A single shared environmental factor had a
large influence on AAD symptoms at age 15-17, but quickly attenuated over time. Consistent
with Dick et al. (2009b) shared environmental influences on symptoms of AAD are important in
adolescence, but less (during age 18-23) or not (from 24-26 onwards) at later ages. Attenuation
of shared environmental influences in this period of life is observed for other phenotypes as
well, such as for IQ (Segal and Johnson 2009), social attitudes and nicotine initiation (Bergen et
al. 2007) and makes sense from a developmentally point of view in which individuals of this age
tend to leave the parental home and sometimes also the neighborhood. The shared
environmental effects could be a reflection of parenting practices (Latendresse et al. 2010),
drinking family members (Poelen et al. 2007; McGue et al. 1996), or religious upbringing
(Kendler and Myers 2009). The home environment that parents provide for their children might
also in part reflect the genes the parents transmit to their children. If parents transmit both
genes and environment -referred to as genetic and cultural transmission- this induces a passive
correlation between G and C (Rijsdijk and Sham 2002). Passive G-C correlation might for
instance occur if one of the parents suffers from AAD which also creates an environment in
which the availability of alcohol at home is more likely. In addition to familial influences
originating at home, the shared environmental effects in twins might also reflect the influence of
peers’ alcohol use when twins share the same peer group (Fowler et al. 2007b).

The cross-sectional analyses suggested that shared environmental influences were also
present at age 30-32 in close correspondence with Kendler et al. (2008c) who found shared
environmental effects for alcohol consumption for roughly the same age. For people of this age,
who commonly start a family life in this period of life (CBS 2011), a decrease in alcohol
consumption is not surprising. In particular in women (62% of our sample), alcohol
consumption will change when being pregnant or breastfeeding. Therefore, at least for women,
the shared environmental effects at age 30-32 might reflect a decrease in alcohol consumption
during pregnancy and breast feeding that is shared within twin pairs, given that age at first birth
is partly due to shared environmental influences (Neiss et al. 2002; Rodgers et al. 2008).
However, it should be noted that in the longitudinal analyses shared environmental influences
were only observed in adolescence and not at age 30-32. It will be interesting to see whether in
a few years we can detect evidence for shared environmental factors for people aged 30 and
older as we continue our longitudinal data collection and the number of individuals of age 30
and older will increase.

Unique environmental effects increased at age 18-20, the age at which individuals
commonly leave the parental home, and remained of similar magnitude at later ages. The

variance explained by environmental factors specific to an individual increased from 15% in
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adolescence to 40-48% during early adulthood. Whereas at younger ages unique environmental
influences were largely age-specific, from age 27-29 onwards the largest part of unique
environmental influences resulted from those experienced earlier which were then transmitted
to a later age. These unique environmental influences can represent any influences that the
twins do not have in common, like a specific group of friends, relationships, life events, or
working environment.

Our results show that symptoms of AAD are already reported by adolescents. In 15-17
year olds, 15.8% of men and 9% of women reported one or more symptoms. These percentages
are not surprising given the high frequency of alcohol consuming adolescents in the
Netherlands. Although according to Dutch legislation people have to be aged 16 or older to buy
beer and wine and 18 or older for spirits/hard liquor, the rate of ‘success’ for obtaining these
substances under the age of 16/18 is estimated at 85%. Three in four adolescents report to have
consumed alcohol in the last month at least once and a substantial group even more than 10
times (23% of male, 10% of female alcohol-consuming adolescents) (Trimbos Institute 2010).

We did not find evidence for genetic innovation although others have. In Malone et al.
(2004) genetic innovations were suggested for symptoms of alcohol dependence at age 17, 20
and 24 years. However, they focused on transmission at the phenotypic level, rather than at the
level of latent genetic and non-genetic factors. Under this parameterization, a change in
heritability is only possible by including a term for genetic innovation. In our analyses,
transmission coefficients were specified at the level of latent genetic, common environmental
and unique environmental factors. This is a less constrained model that indicated genetic
stability without genetic innovation. When analyzing our data with a phenotypic simplex model,
genetic innovations were significant (x2(5)=41.30, p<.001). This does not reflect new genetic
influences however, but the fact that the amounts of genetic, common and unique
environmental variance that are transmitted, are not equal to each other. For different
phenotypes genetic innovation has been detected, for instance for fears and phobias (Kendler et
al. 2008a), anxiety and depression (Kendler et al. 2008b) and externalizing behaviors (Wichers
et al. 2013). Our analyses showed that a model without genetic innovation fitted the data as well
as a model with genetic innovation. This does not mean that genetic innovation is entirely
absent. If we test all genetic innovation parameters separately, parameters at age 21-23 and 24-
26 are significant (p=.038 and p=.009 respectively). Still, our results indicate that the majority of
genetic influences are stable over time, and genetic innovation effects are small.

A next step would be searching for susceptibility genes for AAD symptoms. Recently, a
number of genome wide association studies have been conducted for alcohol dependence
(Bierut et al. 2010; Treutlein et al. 2009; Edenberg et al. 2010; Lind et al. 2010; Kendler et al.

2011b). Two closely linked intergenic SNPs at chromosome 2q35 achieved genome-wide
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significance in the combined analysis of the discovery and follow-up sample in Treutlein et
al.(2009). In other studies no SNP met criteria for genome-wide significance (Bierut et al. 2010;
Edenberg et al. 2010; Kendler et al. 2011b), or genome-wide significant SNPs could not be
replicated in a follow-up sample (Lind et al. 2010). Some evidence was found for gene clusters.
For instance, in Lind et al. (2010) the top SNPs could be placed in a gene network coding for ion-
channels and cell adhesion molecules. Edenberg et al. (2010) found several SNPs on
chromosome 11 that were independently marginally associated with alcohol dependence. In
regard to the genetic overlap of AAD and alcohol consumption measures (Grant et al. 2009;
Kendler et al. 2010), the recent finding of a genome-wide significant association of a SNP at
chromosome 7q11.22 with alcohol consumption (Schumann et al. 2011), is also relevant.

The search for susceptibility genes can be aided with a thorough assessment of how
genetic influences change across age. When there is no evidence of genetic innovation over time,
as for the phenotype under study, a sum score over all available data points might give more
power to detect susceptibility loci than analyzing one time point only because sum scores tend
to be more reliable than single observations. However, in a scenario in which genetic innovation
is present, summing over different observations in time can lead to a considerable drop in
power as compared to analyzing one data point only. This was outlined in a simulation study by
Minica et al. (2010). With data generated under a one genetic factor model (four time points;
heritability of .6; unique environmental effects at .4), the power to detect a genetic risk variant
was .96 when a sum score of the four observations was analyzed, and .56 when only one data
point was analyzed (a = .01; with a power of .99 for the true model). In the scenario with genetic
innovation present and a genetic risk variant that entered the model at the fourth time point (h2
=.6; e2=.4), the power dropped to .03 when a sum score was analyzed, whereas it stayed at.56
when only observations at the fourth time point were analyzed (a =.01; power true model >
99).

This study includes some potential limitations. First, there is a question of the degree to
which the sample is representative. This was examined in two studies on the effect of non-
cooperation in the Netherlands Twin Register (Vink et al. 2004b; Distel et al. 2007). Vink et al.
(2004b) found that the proportion of individuals endorsing two or more positive symptoms on
the CAGE was greater in families with low versus high cooperation and in incomplete versus
complete twin pairs. However, the differences were modest in magnitude and not statistically
significant after correction for multiple testing. In a later study no difference was detected
between high and low cooperative families in the proportion of individuals that scored two
positive items or more (Distel et al. 2007). Therefore, the sample is considered to be relatively
unbiased with respect to symptoms of AAD. Secondly, the assessment of symptoms of AAD

consisted of a four-item self-report questionnaire. The CAGE has been successfully used as a
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screening instrument for AAD (Dhalla and Kopec 2007; Maisto and Saitz 2003; Aertgeerts et al.
2004) and socially undesirable behaviors such as symptoms of AAD may be better assessed
using self-administration methods than interviews (Tipping et al. 2010; Bowling 2005). Lastly,
the CAGE inquires about ‘ever’ having symptoms of AAD (Ewing 1984). This would imply that
participants cannot answer an item with ‘no’ when they have answered ‘yes’ to that item at an
earlier assessment. In total, 8,398 subjects took part in the study and for 3,909 there were at
least two observations. In this last group, 5.8% of the replies was inconsistent (determined as
the number of inconsistent answers as a function of the total number of replies). That is, a no-
reply followed an earlier yes-reply. Giving an inconsistent response was relatively more
frequent among males (x2(1)=35.30, p<.001), who on average endorse symptoms of AAD more
often than women and therefore have a higher chance of giving an inconsistent response, and
individuals who entered the study at a younger age (x%(5)=133.06, p<.001). Since variance due
to measurement error was taken into account in our analyses, the effect of inconsistencies due
to measurement error is likely to be minor. It is however likely that certain variability in AAD
symptoms has gone undetected by the restriction of the phrasing of the CAGE items to ‘ever’.
This might have inflated the stability in symptoms of AAD over time which could have had its
effect on our findings of genetic stability.

The absence of genetic innovation might be due to a lack of statistical power resulting
from the fact that we used a cut-off score of one or more positive answers such that data from
the youngest age group (15-17) could be included also, instead of using a cut-off of two or more
yes answers as is usually done. In other populations with a low prevalence of AAD a cut-off
score of one or more positive answers was also applied (Buchsbaum et al. 1992). More
importantly, the cut-off of 21 yes answers did not affect the twin correlations or threshold
estimates. To fully address the question whether absence of genetic innovation was due to a
lack of power since we used the cut-off of 21 positive answers, the analyses were repeated using
three response categories (0, 1, 2+ yes answers) and four response categories (0, 1, 2, 3+ yes
answers) for the age groups spanning from 18 to 32 years. The youngest age group was not
included, since in this group the frequency of two or more yes answers was too low. Including
more response categories did not change the results. Dropping the terms for genetic innovation
did not worsen the model fit significantly for the CAGE as trichotomy (x2(4)=.530; p=.971), nor
when the CAGE was analyzed with four response categories (x2(4)=.681, p=.954). This renders
lack of power as an explanation for the absence of genetic innovation, unlikely.

In conclusion, genetic influences on symptoms of AAD in adolescence and young
adulthood are best described by the developmentally stable hypothesis. Symptoms of AAD are
influenced by stable genetic risk factors and environmental influences that are largely age-

specific.
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CHAPTER 5

THE GENETIC ARCHITECTURE OF LIVER ENZYME LEVELS: GGT, ALT AND AST 3

Abstract

High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause
mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT
and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex
has not often been explored, and it is not clear to what extent non-additive genetic and shared
environmental factors may play a role. To examine the genetic architecture of GGT, ALT and
AST, plasma levels were assessed in a large sample of twins, their siblings, parents and spouses
(N=8,371; age range 18-90).

For GGT and ALT, but not for AST, genetic structural equation modeling showed
evidence for quantitative sex differences in the genetic architecture. There was no evidence for
qualitative sex differences, i.e. the same genes were expressed in males and females. Both
additive and non-additive genetic factors were important for GGT in females (total heritability
hz 60%) and AST in both sexes (total hz 43%). The heritability of GGT in males and ALT for both
sexes was due to additive effects only (GGT males 30%; ALT males 40%, females 22%).
Evidence emerged for shared environmental factors influencing GGT in the male offspring
generation (variance explained 28%). Thus, the same genes influence liver enzyme levels across
sex and age, but their relative contribution to the variation in GGT and ALT differs in males and
females and for GGT across age. Given adequate sample sizes these results suggest that genome-
wide association studies may result in the detection of new susceptibility loci for liver enzyme

levels when pooling results over sex and age.

% This chapter is published as:
van Beek, JHDA, de Moor, MHM, de Geus, EJC, Lubke, GH, Vink, JM, Willemsen, G, Boomsma, DI (2013) The

genetic architecture of liver enzyme levels: GGT, ALT and AST. Behav Genet 43:329-339
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1. Introduction

High levels of liver enzymes y-glutamyl transferase (GGT), alanine and aspartate
aminotransferase (ALT, AST) increase risk of disease and all-cause mortality. For GGT, strong
associations are found with liver disease (2007; Ruhl and Everhart 2009), type 2 diabetes
(Fraser et al. 2009) and cardiovascular disease (Targher 2009; Fraser et al. 2009). There is also
evidence for a relationship of GGT with cancer and chronic kidney disease (Targher 2009). ALT
and AST levels are predictive of liver disease (Kim et al. 2004; Lee et al. 2008) and liver-related
mortality (Ruhl and Everhart 2009). In addition, ALT is associated with type 2 diabetes (Fraser
etal. 2009).

In clinical practice, blood levels of GGT, ALT and AST are used to index liver injury. GGT
is found in liver and biliary epithelial cells, and is a sensitive marker of hepatobiliary disease,
although non-specific to its cause. AST and ALT blood levels increase when the liver cell
membrane is damaged and thus mark hepatocellular injury (Pratt and Kaplan 2000). To explain
their role in other diseases, GGT and ALT have been proposed as surrogate markers of fatty liver
(Targher 2009; Schindhelm et al. 2006; Vernon et al. 2011), while GGT is also seen as a marker
of oxidative stress (Lee et al. 2004). Variation in liver enzyme levels within the normal reference
range predicts disease (Targher 2009) and it is therefore important to investigate the
underlying sources of variation that explain individual differences in liver enzyme levels.

Genetic factors influence variation in liver enzyme levels. For adults, heritability
estimates for GGT, ALT and AST range between 32%-69%, 22%-44% and 21%-40%
respectively (Rahmioglu et al. 2009; Whitfield et al. 2002; Pilia et al. 2006) (studies with
N=3000). For ALT and AST these estimates increase to 64% and 61% if smaller studies are also
included (Whitfield and Martin 1985; Makkonen et al. 2009; Sung et al. 2011; Lin et al. 2009;
Loomba et al. 2010; Nilsson et al. 2009; Bathum et al. 2001).

The contributions of additive, non-additive genetic factors and shared environmental
influences in explaining differences in liver enzyme levels thus vary widely. This may be due to
the fact that most studies are based on a comparison of resemblance in monozygotic and
dizygotic twins, which gives an overall estimate of heritability (h2), but cannot distinguish well
between additive and non-additive genetic effects (Keller et al. 2010) and in smaller twin
studies it is also difficult to estimate the contribution of shared environmental factors
(Posthuma and Boomsma 2000). Evidence for non-additive genetic effects that can be attributed
to intra-locus (dominance) or inter-locus interaction effects (epistasis), was reported in two
studies (Bathum et al. 2001; Makkonen et al. 2009) but not in two others (Whitfield et al. 2002;
Rahmioglu et al. 2009). Shared environmental influences on liver enzymes can consist for
example of effects of stress or dietary similarity that some families may have been exposed to

while others have not (Whitfield and Martin 1985; Rahmioglu et al. 2009). Such factors may be
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shared within generations e.g. by the offspring or between spouses, or by all family members.
Spousal resemblance is present when the similarity between spouses for a particular trait is
higher than expected by chance. If individuals choose a spouse who is similar for a particular
trait (phenotypic assortment), the genetic factors influencing the spousal phenotypes become
correlated which results in a higher genetic similarity between first-degree relatives. If spousal
resemblance is not modeled, estimates of heritability and shared environmental influences may
be biased (Van Grootheest et al. 2008; Keller et al. 2010). One form of shared environment is
represented by the influence of the parental phenotype on their offspring’s phenotype after
genetic transmission has been taken into account (sometimes referred to as cultural
transmission). Effects of the shared environment on GGT, ALT and AST have been detected in a
combined sample of adolescents and adults (estimates 9%-14%) (Herbeth et al. 2010), and by
two studies in adults (Rahmioglu et al. 2009; Whitfield and Martin 1985), but not by six other
studies (Pilia et al. 2006; Nilsson et al. 2009; Makkonen et al. 2009; Bathum et al. 2001;
Whitfield et al. 2002; Sung et al. 2011). The estimation of non-additive genetic and shared
environmental effects requires additional data from non-twin family members and large sample
sizes (Posthuma and Boomsma 2000; Keller et al. 2010).

Few studies have examined whether the genetic architecture of liver enzymes differed in
males and females or across age. Results have been inconclusive. A study among >6,000
Sardinians detected a larger heritability of GGT in females than males, although there was no
evidence for qualitative sex differences in the heritability (Pilia et al. 2006). Results of two
studies on quantitative sex differences in the heritability of GGT among the elderly were not
consistent (Bathum et al. 2001; Nilsson et al. 2009). For ALT, although quantitative sex
differences in the heritability were not observed (Bathum et al. 2001; Nilsson et al. 2009; Pilia et
al. 2006), a linkage study suggested qualitative sex differences in the association of ALT with
quantitative trait loci (QTLs) at the chromosomal region 7p12-15. ALT levels in males, but not in
females, were associated with QTLs in this area, suggesting differential gene expression in this
region over sex (Brouwers et al. 2006). Results on sex differences in the heritability of AST have
not been reported. A recent genome wide association study demonstrated that the effects on
GGT by genetic loci at the GGTI locus (chromosome 22) interact with age (Middelberg et al.
2012). Several SNPs (including one that affects expression of GGT1, GGT2 and GGTLA4 in the
human liver) decreased GGT levels in adults, whereas it increased GGT levels in adolescents.
Other SNPs (located between GGT1 and PIWIL3) increased GGT levels in adolescents, but not in
adults. Additional age heterogeneity was observed for SNPs in the CELFZ gene at chromosome
10 that may affect GGT expression through the coding for specific transcription factors
(Middelberg et al. 2012). Evidence for age by genotype interaction effects on GGT and AST also

comes from the rather low genetic resemblance between parents and their offspring in a study
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by Herbeth et al. (2010), although Pilia et al. (2006) did not detect differences in the
(standardized estimates of) heritability of either GGT, ALT or AST.

Our study examines to what extent variation in liver enzyme levels can be attributed to
genetic factors (additive and non-additive) and environmental factors (shared and non-shared
among family members) and if there is evidence for sex and age by genotype interaction. Data
on plasma GGT, ALT and AST levels were collected in a large sample of twins, their siblings,
parents and spouses (N=8,371) as part of the Netherlands Twin Register biobank project
(Willemsen et al. 2010; Willemsen et al. 2013) .

2. Methods
2.1 Participants

Data originate from twins and their family members who participated in the NTR
biobank study that was conducted from 2004 to 2008. Details can be found in Willemsen et al.
(2010). The study protocol was approved by the Central Ethics Committee on Research
Involving Human Subjects of the VU University Medical Center, Amsterdam.

Data on GGT, ALT and AST plasma levels were assessed in 8,758 participants. We
excluded data for 387 family members, who were (a) not biological parents, or full siblings of
twins (N=37), (b) twins from pairs for whom information on zygosity was not yet known (one
twin was randomly selected to be included, N=4), (c) triplets if data from their two brothers or
sisters were already included (N=6), (c) siblings from families with more than two same-sex
siblings (a maximum of two siblings were included per family; N=135), or (d) relatives other
than twins, siblings or parents, such as children of twins or siblings, grandparents, aunts, uncles,
cousins (N=205).

Families were categorized into five groups, based on sex and zygosity (monozygotic, MZ;
dizygotic, DZ) of the twin pair. Data of 257 spouses of twins were included in analyses of
spouses resemblance. Analyses were performed on 8,371 individuals (8,114 individuals for the

genetic analyses and 257 spouses of twins; 62.8% female; age range 18-90) (see Table 1).

2.2 Assessment of liver enzymes

Liver enzymes were determined in plasma that was collected in heparin plasma tubes.
Vitros assays (Vitros 250, Ortho-Clinical Diagnostics; Johnson & Johnson, Rochester, USA) were
used to determine GGT, ALT and AST levels in units per liter (U/L) (Willemsen et al. 2010).
Reference values provided by the laboratory were as follows: for GGT <50 U/L (males) and <35
U/L (females); for ALT <45 U/L (males) and <40 U/L (females); for AST <40 U/L (both sexes).

These reference values were based on the guidelines of the Dutch Association of Clinical
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Chemistry and Laboratory Medicine (NVKC). Enzyme levels were compared to the reference

values.

Table 1 Number of participants as a function of zygosity by sex of twins within the family

Zygosity by sex group? twinsb siblings parents spouses
MZM 603 (78.8%) 131 298 53
DZM 329 (68.1%) 81 213 24
MZF 1,391 (81.5%) 268 536 102
DZF 697 (78.3%) 188 352 40
DOS 767 (66.8%) 210 455 38
Families without twins 835 760
Total 3,787 1,713 2,614 257

a MZM: monozygotic males, DZM: dizygotic males, MZF: monozygotic females, DZF: dizygotic females, DOS: dizygotic
opposite-sex

b percentage reflects what proportion of twins is part of a complete twin pair

2.3 Statistical analyses

Liver enzyme values were In-transformed to approximate normality. Age, transformed
to z-scores, was used as a covariate (z-score=0 corresponding to mean age 45.5, SD=14.7; range
z-scores -1.86-3.07). Seasonal effects on liver enzyme levels were first explored with ANOVA in
SPSS. The decrease in liver enzyme levels for individuals whose blood was sampled in spring,
was tested for significance by including it as an (additional) fixed effect (dummy coded as 0/1)
in the models fit with Mx v3.2 (Neale et al. 2006). Model comparisons were based on the
likelihood ratio test (Bentler and Bonett 1980) with a significance level of .01.

A saturated model served to obtain familial correlations, which were computed while
correcting liver enzyme values for sex and age. Sixteen sex-specific correlations were estimated:
five twin correlations (MZM, DZM, MZF, DZF, DOS), three twin-sibling and three sibling-sibling
correlations (male-male, male-female, female-female), four parent-offspring correlations
(father-son, mother-son, father-daughter, mother-daughter) and one spouse correlation (father-
mother). Next, the effects of age and sex were examined on enzyme levels and on the familial
correlations. To explore age by genotype effects, we tested whether correlations are lower for
pairs of relatives who show a larger age difference, i.e. we compared correlations for DZ twin
pairs, sibling pairs, and parent-offspring pairs.

Quantitative sex differences in the correlation structure were tested by equating
correlations over sex between all first-degree relatives and for MZ pairs. Qualitative sex
differences were examined by equating the opposite-sex offspring correlation to the same-sex

offspring correlation. Qualitative sex differences in the parent-offspring correlations were
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tested by comparing the correlation for opposite-sex parent-offspring pairs to same-sex parent-
offspring pairs.

Finally, spousal resemblance was examined by testing if the correlation between liver
enzyme values of spouses was larger than zero. If this was the case, we explored whether
correlations could be explained by cohabitation effects by estimating the correlation between
the absolute difference in enzyme levels for spouses and the duration of their relationship. If
living together influences resemblance between spouses, we expect this correlation to be
negative, i.e. smaller differences between spouses the longer they are together. Data for these
analyses were available for 984 spouse pairs with information on the duration of their
relationship (727 parents of twins and 257 twin-spouse pairs). If no strong evidence was
detected for cohabitation effects, it was assumed that phenotypic assortment was the
mechanism underlying the spousal correlations, and hence was implemented as such in the
genetic model.

To estimate the sources of variance of liver enzyme levels, variance decomposition
models were fit to the data (depicted in Figure 1, see the Supplementary Materials to this
chapter for an explanation and identification of these models). The variance in liver enzyme
levels due to additive genetic influences (A), common environmental influences shared within
the offspring generation (C), and non-shared individual-specific environmental influences (E)
was estimated in two models. In the ACE model, shared environmental transmission from
parents to offspring was taken into account (also known as cultural transmission), whereas in
the ACDE model parent-offspring these transmission paths were set to zero (for reasons of
model identification) and variance due to non-additive genetic influences was estimated (see
Neale and Cardon (1992) (1992) and Posthuma (Posthuma et al. 2003) for details on twin-
family variance decomposition models). Constraints in the genetic model were based on the
results from saturated models (including those on spousal resemblance and sex differences). A
detailed description of all tests performed is given in the Supplementary Materials to this

chapter.
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r
Psg C,08 Poa

Figure 1 Path diagram for variance decomposition (shown for DOS twin pair with parents)
PFA, PMo, Pso, PDA = phenotype of father, mother, son, daughter

A= additive genetic factor with variance RA (differs from 1 in the case of phenotypic assortment)

D= non-additive genetic factor

C=shared environmental factor with variance Rc (differs from 1 in the case of shared environmental transmission)
E=individual-specific environmental factor

a,c,d,e= path loadings (d-paths estimated in ACDE model; set to zero in ACE model with shared environmental
transmission)

rc,0s=correlation between shared environmental factors for opposite-sex

tFA,S0, tFA,DA, tMO,50, tMO,DA = shared environmental transmission paths (estimated in ACE model with shared
environmental transmission; set to zero in ACDE model)

Ra,c=covariation between A and C (differs from 1 in the case of shared environmental transmission)

A =path representing correlations between the latent factors induced by phenotypic assortment
J'=male-specific path loadings

Q=female-specific path loadings
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3. Results

For 1,318 (15.7%), 40 (.5%) and 165 (2.0%) individuals, GGT, ALT or AST levels were
elevated compared to the reference values. Age and sex affected liver enzyme levels. Table 2
shows the means and medians of GGT, ALT and AST, with SDs, ranges and the correlations with
age. The association with age was significant for all three liver enzymes (GGT: x2(6)=183.29,
p<.001; ALT: x2(6)=68.32, p<.001; AST: x2(6)=143.86, p<.001). Mean GGT levels were higher
among parents than offspring (males: x2(1)=12.74, p<.001; females: x2(1)=15.72, p<.001),
although ALT and AST levels did not differ for the parental and offspring generation (ALT males:
Xx2(2)=3.53, p=.172; ALT females: x2(2)=9.01, p=.011; AST males: x2(2)=.41, p=.816; AST females:
Xx2(2)=3.95, p=.139). Means were higher for men than women (GGT parents: x2(1)=66.03,
p<.001; GGT offspring: x2(1)=401.47, p<.001; ALT: x2(1)=265.96, p<.001; AST: x2(1)=316.38,
p<.001).

Seasonal effects were present for ALT and AST levels, but not for GGT. Individuals who
were visited in spring (April-June) had significantly lower ALT and AST levels than individuals
who were visited in other seasons (ALT: x2(1)=15.17, p<.001; AST: x2(1)=341.66, p<.001; GGT:
Xx%(1)=5.66, p=.017). Correcting for the effect of season when individuals were visited, did not
change the familial correlations (data available upon request).

Familial correlations for GGT, ALT and AST are displayed in Figures 2a-c respectively.
Supplementary Materials Table S1 presents the model fit statistics for all submodels, described
below, that tested age and sex effects on the correlations. Furthermore, Supplementary
Materials Tables S2a-c give an overview of the parameter constraints that are tested in each
submodel, to explain the number of degrees of freedom that are associated with these tests. The
amount of variance explained by genetic and environmental factors as estimated in the best

fitting genetic models, is presented in Table 3.
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Figure 2a Familial correlations for GGT (with 95% confidence intervals)
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Figure 2b Familial correlations for ALT (with 95% confidence intervals)
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Figure 2c Familial correlations for AST (with 95% confidence intervals)
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GGT

For GGT, there were quantitative sex differences in the offspring correlations (rozm/sis .43;
Iozessis -21), but not in the MZ correlations (rv; .60). The correlations among opposite-sex family
members indicated no qualitative sex differences. The correlations among family members
differed as a function of age, especially among men (x2(3)=32.06, p<.001; rv; .50; rsiss -4 1; Iear-or
.13). Spousal resemblance was not present.

The ACDE model provided a better fit (x2(8)=16.98, p=.030) than the ACE model with
shared environmental transmission (x%(4)=46.83, p<.001), compared to the saturated model.
For females, both additive and non-additive genetic influences were important (drop D:
Xx%(1)=25.68, p<.001). Shared environmental effects were not present (x2(1)=.000, p=.999). For
men, additive genetic influences explained a significant amount of variance (drop A+D:
X%(2)=74.31, p<.001), whereas non-additive genetic influences did not (drop D: x2(1)=.33,
p=.565). In men, shared environmental factors played a role (x2(1)=26.82, p<.001), which
explains the age differences and quantitative sex differences in the correlation structure noted
above. The absence of qualitative sex differences in the correlations (see Supplementary
Materials Table S1) indicates that the same genes are expressed in men and women. Additional
analyses showed that the age differences in the correlations for GGT among males were
quantitative, due to additional environmental effects shared within the offspring generation (C),
rather than being due to a different expression of genes across age (qualitative age differences).
This was tested by estimating the genetic correlation between fathers and their male offspring
and testing whether this correlation was significantly lower than .5. Taking the ACE (males) -
ADE (females) model as a reference, allowing the genetic correlation between father and their
male offspring to be lower than .5 did not significantly improve model fit, whereas dropping
shared environmental effects among males from the model deteriorated model fit (still allowing
for a genetic father-son correlation <.5) (x2(1)=35.44, p<.001).

In the final model, for males, 30% of the variance was explained by additive genetic,
28% by shared environmental and 42% by non-shared individual-specific environmental
factors. For females, this was 32% by additive genetic, 28% by non-additive genetic, and 40% by

individual-specific environmental factors.
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ALT

For ALT, the correlation structure was similar over age, thus genotype by age
interactions were not present. There was an indication for sex by genotype interactions,
however. There were quantitative sex differences in the MZ correlations (1w -43; ruzz.31), but
not in the correlations among first-degree relatives (r.14). Spouses resembled each other in
ALT levels (r.14) which was not explained by cohabitation effects, as the correlation between
the difference in liver enzyme levels within spouse pairs and the duration of their relationship
was not significant (r=-.02, 95% CI: -.08, .04).

The ACDE model fit the data better (x2(6)=12.92, p=.044) than the ACE model with
shared environmental transmission (x%(6)=25.50, p<.001), compared to the saturated model.
Analyses of submodels showed that additive genetic factors influenced variation in enzyme
levels (drop A+D: x2(5)=87.38, p<.001), but non-additive genetic factors (drop D: x2(2)=5.72,
p=.057), or shared environmental influences (x?(2)=1.32, p=.518) did not. This resulted in the
AE model as the final model. The amount of variance explained by additive genetic factors and
non-shared individual-specific environmental factors was 40% and 60% for males, and 22%

and 78% for females respectively.

AST

For AST, the correlation structure was similar over age and sex, thus genotype by age or
sex interactions were not present. Spousal resemblance was significant (r.16). The correlation
between the difference in liver enzyme levels within spouse pairs and the duration of their
relationship was significant (x2(1)= 6.92, p=.009) but the effect was small (r=-.09; 95% CI: -.15,
-.02) suggesting that cohabitation effects play a minor role. Familial correlations were .45 for
MZ pairs and .16 for first-degree relatives, suggesting the presence of non-additive genetic
effects rather than shared environmental effects.

The ACE model with shared environmental transmission did not fit the data as well
(x2(9)= 42.55, p<.001) as the ACDE model (x2(10)= 28.24, p=.002), compared to the saturated
model. Submodels were evaluated for the ACDE model and showed evidence for both additive
and non-additive genetic effects (drop D: x2(1)=14.32, p<.001). Shared environmental
influences did not explain any variation (x2(1)=.00, p=1). According to the final ADE model, 28%
of the variance could be explained by additive genetic factors, 15% by non-additive genetic
factors and 57% by non-shared (individual-specific) environmental factors (for both men and

women).
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4. Discussion

Variation in liver enzyme levels is moderately heritable. For GGT and ALT, quantitative
sex differences in the genetic architecture were present, but there was no evidence that
different genes were expressed in men and women. In addition, there were quantitative age
differences in the relative importance of genetic and environmental influences on GGT that are
due to environmental effects that were shared within the male offspring generation (cz 28%),
but not among parents and offspring. The results from our sex-specific analyses in which
additive and non-additive genetic and shared and non-shared environmental influences could
be estimated simultaneously may explain variability in previous heritability estimates
(Rahmioglu et al. 2009; Whitfield et al. 2002; Pilia et al. 2006) (studies N>3,000). For GGT in
males as well as for ALT (both sexes), only additive genetic influences were important (GGT h?
males 30%, ALT h2 males 40%, females 22%). For GGT in females and AST (both sexes), genetic
influences consisted of both additive and non-additive effects (hz 60% and 43% respectively).
The different heritability estimates over sex for GGT and ALT correspond to the lower and
upper bounds of previous heritability estimates (32%-69% and 22%-44% respectively).
Likewise, the narrow-sense heritability estimates for GGT in females and AST (both sexes) (32%
and 28% respectively) reflect the lower bound of previous heritability estimates (32% and
21%), whereas the broad-sense heritability estimates (60% and 43%) correspond to the upper
bound of these estimates (69% and 40%).

The genetic and environmental influences on liver enzyme levels may derive from the
biological effects of factors that are in turn partly genetically and partly environmentally
mediated. These include metabolic risk factors (Whitfield et al. 2002; Loomba et al. 2010;
Makkonen et al. 2009; Skurtveit and Tverdal 2002), inflammation parameters (Neijts et al.
2013), alcohol use (Whitfield and Martin 1985; Sung et al. 2011; Skurtveit and Tverdal 2002),
smoking (Honjo et al. 2001; Skurtveit and Tverdal 2002; Vink et al. 2004a), and coffee
consumption (Honjo et al. 2001; Vink et al. 2009; Skurtveit and Tverdal 2002). Shared
environmental effects for GGT (28% for males in our sample) have been detected before for
both males and females (aged 18-34) (Whitfield and Martin 1985). These effects may reflect
shared environmental influences on the above mentioned metabolic and lifestyle factors. In
studies that examined the association between liver enzyme levels and metabolic risk factors
(Whitfield et al. 2002; Makkonen et al. 2009) or alcohol use (Whitfield and Martin 1985; Sung et
al. 2011), shared environmental factors could not explain the covariance among these traits
however.

Genome-wide association (GWA) studies have started to elucidate the genetic pathways
underlying variation in liver enzyme levels. For GGT, genome-wide significant associations have

been found for loci in or near the genes involved in glutathione metabolism (GSTTZB, GGT1)
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(Chambers et al. 2011; Middelberg et al. 2012; Yuan et al. 2008; Kamatani et al. 2010), biliary
transport (ATP8B1) (Chambers et al. 2011), alcohol metabolism (ALDHZ) (Kamatani et al.
2010), lipid metabolism (HNF1A4, CEPT1), carbohydrate metabolism and insulin signalling
(GCKR, MLXIPL, SLC2AZ2) (Chambers et al. 2011; Middelberg et al. 2012; Yuan et al. 2008),
inflammation and immunity (GCKR, STAT4, CDH6, ITGA1, HNF1A, RORA, CD276 (Chambers et al.
2011; Middelberg et al. 2012), glycoprotein biology (FUTZ) (Chambers et al. 2011), as well as
for other genes, including the C140rf73 gene (Chambers et al. 2011; Middelberg et al. 2012) that
is strongly expressed in the liver but of which the function is uncertain (Chambers et al. 2011).
Variants in the PNPLA3 gene, involved in energy utilisation and storage by adipocytes, has been
associated with both AST and ALT levels (Chambers et al. 2011; Kollerits et al. 2010; Sookoian
and Pirola 2011; Yuan et al. 2008; Kamatani et al. 2010). For AST, a significant variant was
detected in a gene implicated in inflammation and immunity (MRC1) (Kamatani et al. 2010).
Additional loci have been detected for ALT in or near genes involved in glucose and lipid
metabolism (TRIB1, CHUK) (Chambers et al. 2011; Yuan et al. 2008), inflammation and
immunity (CPN1) (Chambers et al. 2011; Yuan et al. 2008) and the biogenesis of mitochondria
(SAMMS50) (Yuan et al. 2008).

Spousal resemblance was detected for ALT and AST. It can thus be hypothesized that the
seasonal effects that were observed for ALT and AST may underlie this spousal resemblance. If
family members are measured closer in time, seasonal effects, if present, will come up as an
effect of the shared environment and/or spousal resemblance. Correcting for the effect of
season, did not change the familial correlations, rendering this interpretation less likely (data
available upon request). The seasonal effects were similar to those found in a large Japanese
study (based on almost 300,000 liver function test results). While ALT and AST levels showed
seasonal variation, showing peak values in the winter and a nadir in the summer, GGT did not
(Miyake et al. 2009). In future research, it will be of interest to further examine the mechanism
that underlies this annual variation in liver enzyme levels.

There was some evidence for cohabitation effects (Van Grootheest et al. 2008) on the
spousal resemblance for AST. That is, spouses are more similar in their AST levels the longer
they are together. The effects were small however. Spousal resemblance for AST and ALT was
therefore modelled as resulting from phenotypic assortment, assuming that the largest part of
spousal resemblance is due to phenotypic assortment for factors correlated with liver enzyme
levels, such as alcohol, cigarette and coffee consumption, metabolic risk factors and physical
exercise (Conigrave et al. 2003; Skurtveit and Tverdal 2002). This will not have affected the
results for AST to a great extent. Assuming spousal resemblance was absent changed the

heritability with only 1.3%, indicating that if spousal resemblance for AST would be due to
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cohabitation effects rather than to phenotypic assortment, by assuming it was fully explained by
phenotypic assortment, did not drastically change the results.

The effects of sex and age effects on mean liver enzyme levels are in accordance with the
literature. A different distribution of levels of GGT, ALT and AST over sex and age has been
previously reported (Pilia et al. 2006; Stromme et al. 2004), but the exact mechanisms for these
effects are not clear. We detected a positive correlation for GGT with age for females
(roze/sismomusr=-27) and males in the offspring generation (rpzysis =.21), but little change with age
for older men (reamuers= --04) in agreement with Middelberg et al. (2012). Lower ALT levels in
older men (age>60) have been detected before (Pilia et al. 2006; Stromme et al. 2004),
supporting our finding that ALT levels among men were negatively associated with age. For
females, lower ALT levels among older women were not reported by earlier studies (Pilia et al.
2006; Stromme et al. 2004). AST levels in females increased with age, whereas those for males
remained constant, in accordance with Pilia et al. (2006).

The sex differences in the genetic architecture of GGT and ALT might reflect genetic
effects on alcohol use and/or BMI that show different relationships with liver enzyme levels in
men and women (Skurtveit and Tverdal 2002), which may partly result from the effect of sex
hormones. GGT levels are known to vary with differences in the hormonal balance in women
(Sillanaukee et al. 2000a) and some animal studies suggests that estrogens may be important in
the development of alcohol-related liver injury. Chronic alcohol consumption results in a
different gene expression in female rat livers, although it is not clear whether this is directly
caused by hormonal influences (Eagon 2010).

The current study allowed to disentangle additive genetic, non-additive genetic effects,
shared environmental and non-shared environmental effects on variation in liver enzyme levels
that mark liver injury and other disease. By the inclusion of data on non-twin family members,
power has improved (Posthuma and Boomsma 2000) allowing us to test for genotype by sex
and genotype by age interactions. Results from these tests show that overall, there was no
evidence for qualitative sex or age differences in the heritability, although quantitative sex and
age differences were detected for GGT and ALT. It should be noted however that the current
study does not have the power to detect the small gene by age (and gene by sex) effects that
may be present at the level of individual SNPs. Our results therefore do not imply that these do
not exist, as they evidently are present, as demonstrated by Middelberg et al. (2012). It will be
interesting to explore whether a possible implication of our results, namely that gene finding
studies on liver enzyme levels may benefit from combining data across sex and age, holds true.
Although pooling data over sex and age in gene finding studies will introduce noise in the
prediction model, because of the sex- or age dependent effects of some SNPs, it is hypothesized

that, overall, combining results over sex and age will increase the true association signal to a
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greater extent because of the increase in power and the fact that, qualitative sex or age
differences in these twin-family based estimates of the heritability were not important.

In summary, genes play a substantial role in explaining differences in plasma levels of
GGT, ALT and AST (h2 22%-60%), which are important markers of liver injury and other
disease. Genetic influences on liver enzyme levels include additive and non-additive genetic
effects. Genotype by sex interactions (for GGT and ALT) and genotype by age interactions (for
GGT in males) were present, but there was no evidence that different genes are expressed
across sex or age. This suggests a positive message for genome-wide association studies. Pooling
data over sex and age (with appropriate covariates to adjust sex and age mean level differences)
may increase the signal-to-noise ratio to detect susceptibility loci because of increased power,

without introducing too much heterogeneity that will dilute the association signal.
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SUPPLEMENT TO CHAPTER 5

THE GENETIC ARCHITECTURE OF LIVER ENZYME LEVELS: GGT, ALT AND AST

Statistical analysis of the genetic architecture of liver enzyme levels

The genetic analysis of liver enzyme levels was performed with saturated models and
structural equation models. In the model we have called the full saturated model, 16 familial
correlations were estimated, six means, six beta coefficients for the age regression, and six
standard deviations (SDs) (for twins, siblings, and parents, separate for both sexes). This model
is referred to as model 1a. In a series of submodels, sex and age differences in means and
variances were tested, as well as age and sex effects on the correlation structure. This was done
by comparing the model fit results for the constrained models with the full model, based on the
likelihood ratio test with a significance level (a) of .01. If model fit deteriorated significantly for
the constrained model compared to the full model, the specific parameter constraints were not
allowed (e.g. sex-invariant familial correlations), thus informing which effects were present (e.g.
sex effects on the correlations).

Fixed effects of age were examined by (a) testing whether mean enzyme levels differed
for twins, siblings and parents (within sex), (b) constraining betas for the age regression to zero
to see if an effect of age was present, if so, (c) by constraining the betas to be equal within sex
(equating betas for twins, siblings and parents) to test whether the age effect was similar for
twins, siblings and parents who differ in mean age, (d) by constraining the betas over sex to test
whether the age effect was equal over sex. Fixed effects of sex on enzyme levels were tested by
equating mean enzyme levels over sex. To test for fixed effects of age and sex on the variance,
the standard deviations (SDs) were equated for twins, siblings, and parents within sex and over
sex respectively. Model 1b included the constraints on the means, SDs and age regression that
were allowed based on the tests described above and provided information on the 16 familial
correlations given in Figures 2a-c.

The effect of age on the familial correlations was tested in models 2a-c, and that of sex
on the familial correlations in models 3a-e. In model 2a it was tested whether twin-sibling
correlations were similar to sibling-sibling correlations. Using this model as a reference, in
model 2b it was tested whether dizygotic (DZ) twin correlations could be constrained to sibling
correlations. When this was allowed, no evidence was present for a special twin environment.
Model 2c tested whether correlations among first-degree relatives could be equated. Since
parent-offspring pairs show larger within-pair age differences than offspring and DZ twin pairs,
the absence of significant differences in these correlations would indicate that there were no

age differences in the heritability. Model 3a and 3b tested for quantitative sex differences in the
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correlations. In model 3a it was tested whether the correlation among monozygotic twin pairs
could be constrained to be equal. In model 3b this was tested for all first-degree relatives. Model
3c and 3d tested for qualitative sex differences in the correlations. In model 3c, male and female
DZ twin and sibling correlations were constrained to be equal. Taking this model as a reference,
with model 3d it was examined whether the correlations among opposite-sex DZ twin and
sibling pairs could be equated to same-sex DZ twin and sibling pairs. The presence of spousal
resemblance was tested in model 4. When significant spousal resemblance was detected (model
4), we explored whether this could be explained by cohabitation effects. This was tested by
estimating the correlation between the absolute difference in enzyme levels for spouses and the
duration of their relationship in Mx v3.2 (Neale et al. 2006) in two zygosity groups (MZ, DZ). If
living together influences resemblance between spouses, this correlation will be negative, i.e.
smaller differences between spouses the longer they are together. This test was based on data
of 727 parental pairs and 257 twin-spouse pairs with data on relationship duration.

Structural equation modeling was performed to estimate the sources of variance that
could explain differences in liver enzyme levels. Factor models were fit to the data by which
phenotypic values were regressed on latent factors specifying the genetic and environmental
contributions (see Figure 1). In the ACE model with shared environmental transmission, the
variation in the phenotypic values for fathers, mothers, sons and daughters (depicted as PFa,
PMo, Pso, PDA respectively) was regressed on three latent variables: an additive genetic factor
(with factor loadings ad and a@ for males and females respectively), and a shared
environmental (factor loadings ¢ and ¢%) and non-shared environmental factor (factor
loadings e and e?). If there were sex differences in the correlation structure, the factor
loadings were sex-specific (and thus the variance decomposition by AWA’), otherwise, these
were constrained to be equal over sex. MZ twin pairs were modeled to share their entire genetic
material (that is, the additive genetic factors (A) correlate 1 within twin pairs), whereas DZ twin
pairs/siblings, and parent and offspring are estimated to share half of their genes (A factors
were modeled to correlate .5 DZ twin, sibling and parent-offspring pairs). The latent additive
genetic variance in the offspring generation of .5 reflects the segregation variance that emerges
due to recombination. This within-family additive genetic variance emerges since parents pass
alleles, not genotypes, to their offspring and resulting in new genetic variance for every
generation. C factors reflecting shared environmental influences were correlated 1 among the
offspring generation within each family. This model allowed for shared environmental
transmission from parents to offspring, indicated by tFA,S0, tM0,50, tFA,DA, tMO,DA. The presence
of both genetic and shared environmental transmission, gives rise to a correlation between the
additive genetic and shared environmental factors (A-C correlation). This is represented by

RA,C. Spousal resemblance was modeled to run via the A-path that represents the correlations
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between the latent genetic and environmental factors influencing the phenotypes of the parents,
that result from phenotypic assortment. The presence of phenotypic assortment will increase
the additive genetic variance, represented by RA.

If the familial correlations suggested qualitative sex differences, it could be tested
whether these resulted from a (a) different expression of genes over sex, (b) differences in the
environmental factors either shared within the offspring generation or (c) resulting from a sex-
specific transmission of shared environmental effects from parents to offspring. Whether liver
enzyme levels among males and females were affected by different genes could be tested by
estimating the genetic correlation between opposite-sex parent-offspring pairs and testing
whether this correlation was significantly different from .5. Qualitative sex differences in the
environmental factors shared by the offspring generation, could be examined by estimating the
correlation between the shared environmental factors (rc,0S) in opposite-sex offspring pairs
and testing whether this correlation differed significantly from 1. Qualitative sex differences in
the shared environmental transmission paths could be explored by testing whether shared
environmental transmission differed significantly for opposite-sex parent-offspring pairs and
same-sex parent offspring pairs.

In the case familial correlations did not indicate evidence for qualitative sex differences,
the tests described above to explore the qualitative sex differences in the genetic model were
not performed. Thus if the familial correlations did not suggest qualitative sex differences, the
genetic correlation for opposite-sex parent-offspring pairs was fixed to .5; the correlation
between the shared environmental factors for opposite-sex twin/sibling pairs to 1; and the path
loadings for the shared environmental transmission for opposite-sex parent-offspring pairs
equated to those for same-sex parent-offspring pairs (resulting in the estimation of one sex-
invariant shared environmental transmission path).

The ACDE model differed from the ACE with shared environmental transmission model
in that the shared environmental transmission paths from parents to offspring were set to zero
(for reasons of model identification) and additionally, non-additive genetic influences (D) were
estimated (with factor loadings d& and d@). D factors correlated 1 among MZ twin pairs and .25
among DZ twins and sibling pairs. By dropping shared environmental transmission from the
model, A-C correlation was no longer implicated and set to zero.

If the familial correlations suggested age differences, the genetic models allowed to
examine whether these represented quantitative or qualitative age differences in the
heritability. Qualitative age differences denote a different expression of genes over age and
would be indicated if the genetic correlation between same-sex parent-offspring pairs is
significantly lower than .5. Note that with data of twins, siblings and parents, simultaneous

estimation of the genetic parent-offspring correlation, and additive genetic, non-additive
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genetic, shared environmental and non-shared environmental factors is not possible and one of
these has to be set to zero to keep the model identified (a model estimating the genetic
correlation between parents and offspring and cultural transmission effects from parents to
offspring is also not identified). Quantitative age differences do not reflect a different expression
of genes over age, but indicate that the heritability differs over age, for instance because of the
presence of shared environmental effects or non-additive genetic effects that are shared within

the offspring generation but not between parents and offspring.
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CHAPTER 6
THE ASSOCIATION OF ALCOHOL INTAKE
WITH GAMMA-GLUTAMYL TRANSFERASE (GGT) LEVELS:

EVIDENCE FOR A CAUSAL EFFECT?4

Abstract

Background Blood levels of gamma-glutamyl transferase (GGT) are used as a marker for
(heavy) alcohol use. The role of GGT in the anti-oxidant defense mechanism that is part of
normal metabolism supposes a causal effect of alcohol intake on GGT. However, there is
variability in the response of GGT to alcohol use, which may result from genetic differences
between individuals. This study aimed to determine whether the association between alcohol
intake and GGT at the population level is causal or reflects the effects of shared genes (e.g.
genetic pleiotropy).

Methods Data on alcohol intake (grams alcohol/day) and GGT, originating from twins,
their siblings and parents (N=6,465), were analyzed with structural equation models. Bivariate
genetic models tested whether genetic and/or environmental influences on alcohol intake and
GGT correlated significantly.

Results Phenotypic correlations between alcohol intake and GGT were significant in men
(r=.17) and women (r=.09). Genetic influences on alcohol intake and GGT correlated
significantly (p<.001), whereas environmental influences did not (p=.041).

Conclusions In this healthy population sample, the association of alcohol intake with GGT
is most likely explained by shared genetic effects. Future longitudinal twin studies should
determine whether a causal effect of alcohol use on GGT is confined to heavy drinking

populations.

* This chapter is under revision for publication in Drug and Alcohol Dependence as:

van Beek, JHDA, de Moor, MHM, Geels, LM, Sinke, MRT, de Geus, E]JC, Lubke, GH, Kluft, C, Neuteboom, ], Vink, JM,
Willemsen, G, Boomsma, DI. The association of alcohol intake with gamma-glutamyl transferase (GGT) levels:
evidence for a causal effect?
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1. Introduction

Blood levels of the liver enzyme gamma-glutamyl transferase (GGT) are used as a
biomarker for heavy drinking (Peterson 2004). GGT is implicated in alcohol use by keeping
intracellular glutathione, the body’s most abundant anti-oxidant, at adequate levels to protect
cells from oxidative stress resulting during metabolism, including that of alcohol (Whitfield
2001). Experimental studies support a causal relation between heavy alcohol use and increased
GGT levels, but also in experimental settings there is variability in the response of GGT to
alcohol which depends on individual characteristics, such as sex, age, and previous drinking
habits (Whitfield 2001). This inter-individual variability in GGT levels in response to alcohol
may reflect the effect of genetic differences between individuals. The association of alcohol use
and GGT levels at the population level (Conigrave et al. 2003) may then not result from a causal
effect of alcohol use on GGT levels but be reflective of genetic effects on alcohol use that are
shared with those on GGT (e.g. genetic pleiotropy).

There is evidence that genetic influences on alcohol use and GGT are correlated.
Variation in GGT and alcohol use is moderately heritable, with a broad-sense heritability of
30%-70% for GGT (Van Beek et al. 2013a), ~50% for alcohol intake (Van Beek et al. 2013c) and
the overlap in genetic risk factors estimated at 8% (Whitfield and Martin 1985). Genetic
variants in the ALDH2 gene linked to alcohol metabolism (Wang et al. 2012) have also been
associated with levels of GGT (Kamatani et al. 2010). Three studies showed that the effect of
these genetic variants on GGT was absent when stratifying individuals according to alcohol use
(Kamatani et al. 2010; Nose et al. 2008; Tseng et al. 2008), suggesting that the effect of alcohol
use on GGT is causal. In two other studies, the effect was attenuated but still present, with lower
GGT levels among carriers of the ALDH2*2 allele (Takeshita et al. 2000; Takeuchi et al. 2011),
providing support for the hypothesis of shared genes. These effects though detected among
East-Asians may extend to alcohol-related variants of the ALDH1A1 and ALDH1B1 genes that, in
contrast to the ALDH2*2 allele, are not invariant in European populations (Hurley and Edenberg
2011). In addition, alcohol use is affected by many more genetic variants (Morozova et al. 2012)
that may also influence GGT levels.

The nature of the association between alcohol use and GGT levels can be tested by
conducting a bivariate genetic analysis using data from twins and their family members. Twin
studies can dissect phenotypic trait variation as well as covariation between traits into effects
that can be ascribed to genetic differences between individuals and differences in the
environment that individuals were exposed to. Monozygotic (MZ) twins are assumed to share
all their genetic material, whereas dizygotic (DZ) twins share about half of their genes.
Comparing the phenotypic resemblance among MZ twins versus that of DZ twins thus gives an

indication of the importance of genetic and environmental factors (Van Dongen et al. 2012). By

130



THE ASSOCIATION OF ALCOHOL INTAKE WITH GAMMA-GLUTAMYL TRANSFERASE (GGT) LEVELS: EVIDENCE FOR A CAUSAL EFFECT?

including data of family members other than twins (parents, siblings), the number of individuals
is increased and the power to disentangle genetic and environmental effects is augmented
(Posthuma and Boomsma 2000). If alcohol use is causally influencing GGT levels, both genetic
influences and environmental influences on alcohol use must be correlated with those for GGT.
If either genetic influences on alcohol intake and GGT or environmental influences on alcohol
intake and GGT are not correlated, a causal effect of alcohol use on GGT levels is less likely. The
presence of a correlation between the genetic influences on alcohol intake and GGT but not
between the environmental influences suggests that the association emerged due to shared
genes (De Moor et al. 2008).

Two twin(-family) studies have investigated whether genetic and environmental effects
on alcohol use are correlated with those for GGT (Whitfield and Martin 1985; Sung et al. 2011).
In both studies, alcohol use significantly predicted GGT levels among males (r=.19-.39), but not
among females (at a=.01), underlining that GGT is a less sensitive marker of alcohol use in
women. Regarding the results for men, genetic and environmental effects on GGT were
correlated with those for problematic alcohol use in Koreans (N3=811) (Sung et al. 2011), in
line with a causal effect of alcohol use on GGT. In a sample of 199 Australian men, Whitfield and
Martin (1985) detected that genetic influences, but not environmental influences, on alcohol
intake and GGT were significantly correlated, thus pointing at effects of shared genes. The
discrepancy in findings may be explained by differences in sample size (and associated
differences in power), ethnicity, and/or phenotype. If the effect of problematic alcohol use on
GGT is not a mere reflection of (extreme) alcohol intake, then a different mechanism may be at
play with a different etiology.

The aim of this study is to examine the mechanism that underlies the association of
alcohol intake with GGT in a healthy Dutch population sample. By modeling data from 6,465
twins and their family members, it is tested whether the association of alcohol use with GGT
could be causal in origin or is better explained by shared genes. Sex differences in the

mechanism underlying the association are examined.

2. Methods
2.1 Participants

Data on alcohol intake and GGT levels originated from adult twins and their family
members registered with the Netherlands Twin Register (NTR) (Boomsma et al. 2002c;
Willemsen et al. 2013). Information on GGT levels determined in plasma were present for 8,754
individuals (aged 218) who participated in the NTR biobank study conducted between 2004
and 2008 (Willemsen et al. 2010). Data on alcohol intake came from the 2002, 2004 and 2009

surveys of the longitudinal survey study on health, personality and lifestyle. Analyses were
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performed on data from 6,465 individuals for whom data on alcohol intake and levels of GGT
were present (3,193 twins, 1,304 siblings, and 1,968 parents from 2,815 families). Data of 2,289
individuals were excluded, including data of abstainers (N=121) and individuals with known
liver disease (N=11) (see Supplementary Materials for a complete list of excluded individuals).
Individuals were categorized into five zygosity by sex groups (see Table 1), based on the
zygosity of the twin pair, which for same-sex twins was determined by DNA comparison.

Overall, 64.9% was female (year of birth 1915-1988).

Table 1 Number of participants per zygosity by sex group

Number of participants

Zygosity by sex

group? twins? brothers sisters fathers mothers
MZM 487 (67.4%) 42 56 94 112
DZM 252 (56.3%) 29 37 65 83

MZF 1,230 (75.0%) 81 124 189 225

DZF 602 (70.8%) 58 76 118 146

DOS 622 (56.3%) 61 89 148 176
Families without

twins ¢ 0 102 549 267 345
Total 3,193 373 931 881 1,087

a MZM: monozygotic males, DZM: dizygotic males, MZF: monozygotic females, DZF: dizygotic females, DOS: dizygotic
opposite sex

b percentage reflects what proportion of twins is part of a complete twin pair

¢ families in which twins did not participate

2.2 Measures

GGT levels were determined in blood collected between 7.00 and 10.00 a.m. after an
overnight fast at the participant’s home. Participants were asked to refrain from smoking one
hour before the home visit, and to abstain from physical exertion and medication on the day of
the home visit, if possible. Blood was collected in heparin plasma tubes that were turned gently
8-10 times immediately after collection to prevent clotting (Willemsen et al. 2010). During
transportation, heparin plasma tubes were stored in melting ice. When the samples arrived at
the laboratory, plasma was collected and six samples of 500 pL were snap-frozen and stored at -
30 °C. Levels of GGT were determined with Vitros assays (Vitros 250, Ortho-Clinical Diagnostics;
Johnson & Johnson, Rochester, USA)5 in units per liter (U/L) (Willemsen et al. 2010).

Self-report data on alcohol use were obtained from surveys 6, 7 and 8 collected between

2002-2012, as part of the longitudinal study on health, lifestyle and personality (Willemsen et

> Acceptance criteria: Inter-assay CV <5.0%; Intra-assay CV <3.5%
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al. 2013). If alcohol data were available from two or more surveys, the survey was selected for
which the time interval to the biobank visit was smallest (absolute time difference 15.1 months
on average, SD=13.3). Alcohol intake was measured by the question ‘How many glasses a week
do you drink on average?’. In survey 6 and 7, response categories were: ‘less than 1 glass’, ‘1-5
glasses a week’, ‘6-10 glasses a week’, ‘11-20 glasses a week’, '21-40 glasses a week’, and ‘more
than 40 glasses a week’. In survey 8, individuals were asked to report the number of glasses of
beer, wine and spirits they drank for each day of the week. These numbers were summed and
categorized as in survey 6 and 7. In the analyses described below, alcohol intake was analyzed
as the average amount of (grams of) alcohol consumed per day. This was obtained from the
question given above by taking the median number of drinks per week for each category (0, 3, 8,
15, 30.5 or 46), multiplied by 14 grams of alcohol per glass, divided by seven (days in the week).
The last category ('more than 40 glasses a week’) was given the value of 46 based on the median
number of drinks among individuals who reported to consume 41 or more drinks per week in
survey 8 (in which number of drinks was reported as a continuous measure). Alcohol intake
(Van Beek et al. 2013c) and GGT (Van Beek et al. 2013a) were highly skewed and log-

transformed to approximate normality. Age effects were regressed out prior to the analyses.

2.3 Statistical analyses

The bivariate genetic analyses of alcohol intake with GGT levels were conducted in Mx
(v1.54) (Neale et al. 1994; Neale et al. 2006) and performed in five zygosity by sex groups. The
analyses consisted of two steps. First, a saturated model (model 1) was fitted that estimated the
familial cross-trait correlations as well as the familial within-trait correlations for alcohol intake
and GGT. Means and variances were modeled as in Van Beek et al. (2013a,c). For alcohol intake,
one variance was estimated (equal over sex) and two means (males, females). For GGT, four
means were estimated (for parents and offspring, separately over sex) and three variances
(male offspring, female offspring, parents; see also Supplementary Materials). The significance
of the cross-trait correlations between alcohol intake and GGT was evaluated in an overall
model (model 2) and separately by sex (models 2a, 2b). Model comparison was based on the
likelihood ratio test with a significance level of .01 (Bentler and Bonett 1980).

In a second step, by structural equation modeling it was estimated what part of the
correlation of alcohol intake with GGT could be ascribed to genetic and what part to
environmental correlations. This was done in bivariate genetic factor models (Neale et al. 1994).
The amount of the variance and covariance of alcohol intake and GGT that can be ascribed to
genetic and environmental factors, can be estimated because family members share their
genetic and environmental background to different degrees. MZ twin pairs share (nearly) all of

their genetic material, whereas DZ twin and sibling pairs, share half of their segregating genes
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on average. Parents and their offspring share exactly 50% of their segregating genes. Non-
additive genetic influences that reflect effects of interacting risk alleles due to dominance
and/or epistasis (Posthuma et al. 2003), can be estimated because these are correlated 1 in MZ
pairs, whereas DZ twins and sibling pairs share on average a quarter (.25) of the non-additive
genetic factors. Parent-offspring pairs share none of the non-additive genetic factors. Individual-
specific environmental effects are not shared between family members, and are estimated as
the remainder of the (co)variance that is not captured by genetic and/or environmental effects
that are common to family members. For the covariance structure, a model was specified that
included additive genetic (A), non-additive genetic (D) and individual-specific environmental
factors (E) (model 3; see Figure 1), informed by the fact that shared environmental influences
(C) were not significantly influencing alcohol intake levels (Van Beek et al. 2013c) and thus
could not influence the covariance with GGT. The Supplementary Materials offer further details
on the bivariate variance-covariance decomposition of alcohol intake and GGT.

The genetic and environmental correlations between alcohol intake and GGT were
tested for significance separately over sex (models 4-6). If genetic influences on alcohol intake
and GGT were correlated and environmental influences on alcohol intake and GGT were
correlated, this would be consistent with a causal effect of alcohol intake on GGT. If only the
genetic effects were correlated, but the environmental effects were not, the association was
better explained by shared genes.

The correlations between genetic and environmental influences on alcohol intake (ALC)
and GGT (GGT), were calculated from the genetic and environmental variances (var) and
covariances (cov) for these traits. The additive genetic correlation rqaiceer, non-additive genetic
correlation rgarceer, and individual-specific environmental correlations rearceer, can then be

expressed as follows:

; ~ cv(AaLc,cGT) . ~ cov(Dacc ceT)
3 ALC.G6T ™ e A o) v Agar) 4.ALC.CGT ™ [iar( D ) *verDagr)

r ~ covEaic,ceT)
e, ALC,GGT \/var(EALC)*var(EGGT)

3. Results
3.1 Descriptives

Table 2 shows levels of alcohol intake, GGT, and age separately for males and females.
Alcohol intake and GGT were higher in men than women. Inspection of mean GGT levels over
drinking categories did not show evidence of a J-shaped function. GGT levels linearly increased

with drinking categories (data available upon request).
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Table 2 Descriptive statistics? for males and females

Mean (SD)
Males females
alcohol grams/day ~ 18.1(18.4) | 8.7 (12.0)
GGT 40.0 (38.4) | 26.9 (30.5)
age 46.4 (15.7) | 43.5(13.8)

a untransformed values for alcohol in grams/day and GGT

3.2 Genetic analysis of alcohol intake with GGT

Alcohol intake predicted GGT levels. The phenotypic correlation of alcohol intake with
GGT was significant in men (r=.17) and women (r=.09) (Table 2). Model fit statistics of the
tested models and conclusions that follow from it, are reported in Table 3. Familial cross-trait
correlations were significant for MZ pairs (rwzw=.14; rwzr=.07), but not for first-degree relatives
(see Table 4). The bivariate genetic model that specified additive (A), non-additive (D) and
individual-specific environmental factors (E) affecting the covariation of alcohol intake with
GGT (ADE model), fitted well compared to the saturated model. For both males and females,
genetic factors correlated between GGT and alcohol, but there was no significant correlation
between the environmental factors (at a=.01). This suggest the presence of genetic pleiotropy.
Since the environmental correlation was close to significant however (p=.041), a causal effect of
alcohol intake on GGT may play a role.

The overlap in genetic influences on alcohol intake and GGT was mainly found for non-
additive genetic effects. For females, the correlation between non-additive genetic influences on
alcohol intake and GGT (rq) was .39 (95% confidence interval, Cl,.06-.47) with the correlation
between additive genetic influences on alcohol intake and GGT (7¢) estimated at .00 (95% CI
.00-.15). For males, all non-additive genetic effects on GGT were modeled to be shared with
alcohol intake (rq=1), with rq again estimated at .00 (95% CI.00-.12). Looking at the specific
contribution of these genes, for men 7.6% of the variance in GGT could be explained by non-
additive genetic effects that were shared with those for alcohol intake. For women, this was

4.6%.
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Table 4 Cross-trait correlations for alcohol intake with GGT, for male-male, female-female and

opposite-sex pairs

Cross correlations alcohol intake with GGT
(95% confidence intervals)

Male-male Female-female Opposite sex
Within-person 0.169 (0.127, 0.210) 0.093 (0.062, 0.123)
MZ 0.140 (0.064, 0.214) 0.072 (0.025, 0.118)
DZ/sib 0.007 (-0.071, 0.084) -0.035 (-0.084, 0.014)  -0.041 (-0.096, 0.015)
Parent-offspring -0.015 (-0.084, 0.054) 0.005 (-0.040, 0.050) -0.040 (-0.092, 0.011)*

-0.041 (-0.103, 0.020)°

a cross-trait correlation for father-daughter

b cross-trait correlation for mother-son

4. Discussion

The current study examined whether the association of alcohol intake with GGT in a
Dutch healthy population sample is best explained by a causal effect of alcohol intake on GGT or
by shared genes (e.g. genetic pleiotropy). Since there was a significant genetic correlation of
alcohol intake with GGT, but an environmental correlation that was not significant at a=.01, in
this healthy population sample results seem most consistent with genetic pleiotropy, in line
with Whitfield and Martin (1985).

The difference in results between our study and that among Koreans (Sung et al. 2011),
may suggest that the mechanism underlying the association of alcohol use with GGT differs over
ethnicity. Alternatively, the causal effect of alcohol use on GGT levels is dependent on the level
of (heavy) drinking. Although NTR participants are representative to the Dutch population for
regular alcohol use (Distel et al. 2007), male NTR participants drank less and not as heavy as the
Korean participants (127 grams/week, 16% AUDIT scorez8 versus 181 grams/week, 39%
AUDIT score 28 respectively) (Sung et al. 2011). It is possible that some sensitization occurs in
the liver during heavy drinking that is absent or different from that in normal drinkers. This
sensitization may be triggered by factors that differ between normal drinkers and heavy
drinkers, such as certain diet specifics (e.g. low carbohydrate, high fat content), the
development of fatty liver, iron overload or certain immune reactions (Whitfield 2001). Future
longitudinal twin studies should test whether a causal effect of alcohol use on GGT is confined to
heavy drinking populations.

This study is the first to show that genes for alcohol intake and GGT are shared among
women. Female NTR participants drank more than those in the study by Sung et al. (2011) (62
grams/week versus 53 grams/week), which may explain the higher correlation of alcohol use
with GGT among Dutch compared to Korean women. Given that the response of GGT is

dependent on previous drinking habits (Whitfield 2001), the higher correlation of alcohol use
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with GGT among Dutch women is likely due to the augmented alcohol consumption in this
group over the past years (Geels et al. 2013).

The rather low within-person correlations of alcohol intake with GGT (.09-.17) might in
part be due to the time difference between the blood draw and the assessment of alcohol intake
(15 months on average). Other studies detected higher correlations for alcohol intake with GGT
for males (r=.20-.40), although not for females (r=.00-.30) (Conigrave et al. 2003; Whitfield and
Martin 1985; Sung et al. 2011). The influence of this time interval on the results is considered to
be minor however. First, the surveys inquired about alcohol consumption in the past year and
were therefore assumed to capture regular alcohol use, the type of drinking pattern that is most
clearly associated with GGT (Conigrave et al. 2003). The stability of alcohol intake over time was
high (r=.80 for over a two year period; .67 for over a six year period) and the correlation
between alcohol intake and GGT was not dependent on the time difference (data available upon
request). Second, the correlation between alcohol intake and GGT was comparable to that in
another Dutch sample that assessed liver enzyme levels and alcohol use at the same day (.11-.17
for females-males), as shown in a previous study (Van Beek et al., in preparation). The lower
correlations are more likely explained by variation in whether or not participants drank alcohol
during the days preceding the home visit. Although participants abstained from food and drinks
from 10 p.m. the night before the blood collection, for individuals who had been drinking
heavily earlier that evening, GGT levels would have been temporarily increased, leading to noise
in the overall prediction (which is not equal to bias). Conversely, it may be argued that our
results were biased since by including frequent as well as infrequent drinkers in the sample, not
all participants will have been drinking the days preceding blood collection, which may have
diluted the association signal. The aim of the study was not to show an increase in GGT after
drinking however, but to test whether at the population level, individuals who drink more have
higher GGT levels and to explain that association. Nevertheless, to examine whether any dilution
of the association signal might have occurred because we included not-frequent drinkers in the
sample, we reran the analyses on data restricted to individuals who reported to drink at least
several times per week to increase the likelihood of sampling individuals who had been
drinking in the days preceding blood collection. Results were similar. The bias resulting from a
dilution of the association signal due to sampling time, is therefore considered to be minor.

In the current study that compared the hypothesis of full causality versus full genetic
pleiotropy, data were more consistent with the latter, although the environmental correlation
between alcohol intake and GGT was close to significant and a causal effect of alcohol intake on
GGT could not be ruled out. Whereas the power to detect shared genetic effects (additive and
non-additive) was very good (.95 for a=.01) it was lower for environmental effects (.51 for

a=.01; .73 for a=.05). The reality may be complex, with a combination of genetic pleiotropy and

138



THE ASSOCIATION OF ALCOHOL INTAKE WITH GAMMA-GLUTAMYL TRANSFERASE (GGT) LEVELS: EVIDENCE FOR A CAUSAL EFFECT?

causality explaining the association at the population level. The mechanism of association may
be dependent on drinking level with genetic pleiotropy explaining the association in a low
drinking population and causality that in a heavy drinking population as stated above. This can
suggest gene by alcohol interaction, which presents an interesting venue for future research.

The shared genetic effects detected in this study may reflect genetic effects on
cardiometabolic traits that are associated with alcohol use and GGT levels. Genetic risk factors
for GGT have been linked to cardiometabolic traits such as levels of cholesterol (LDL, HDL),
triglycerides, glucose, and insulin resistance (Chambers et al. 2011; Kim et al. 2011; Whitfield et
al. 2002). In reverse, the CDH13 gene associated with alcohol dependence (Morozova et al.
2012), has been associated with blood pressure, hypertension (Johnson et al. 2011), and
metabolic syndrome (Fava et al. 2011). The DSCAML1 gene linked to alcohol phenotypes in
humans and other species (Morozova et al. 2012), has been associated to levels of triglycerides
(Pollin et al. 2008). Alcohol use and conditions of the cardiometabolic syndrome have similar
effects on liver functioning through induction of oxidative stress via mitochondrial defects
(Mantena et al. 2008). Since GGT has been coined a marker for fatty liver (Targher 2009) and
oxidative stress (Lee et al. 2004), the shared genetic effects on alcohol intake and GGT may
reflect that the genetic etiology of alcohol-induced and obesity-induced fatty liver disease is
partly shared causing an association between alcohol use and GGT at the population level.

Despite the shared genetic effects for alcohol use and GGT, genome wide association
studies for GGT have not yet detected variants that have been implicated in alcohol use (e.g. see
Chambers et al. (2011)), with the exception of (variants in close linkage with) the ALDH2*2
allele in East-Asian populations (Kamatani et al. 2010; Kim et al. 2011; Baik et al. 2011). Based
on the current findings it will be interesting to take the substantive non-additive genetic
variation underlying the association of alcohol intake and GGT into account by performing gene-
finding studies that assume a (2df) genotypic model instead of an (1df) additive model. In
addition, prediction models may be fitted that involve complex interactions among the genetic
markers, such as random forests (Molinaro et al. 2011).

To conclude, the current study detected that the association between alcohol intake and
GGT at the population level is best explained by shared genes, although an additional causal
effect of alcohol intake on GGT cannot be ruled out. The observation that the relation between
alcohol intake and GGT is genetically mediated involving mostly non-additive genetic effects
warrants further study and calls for gene-finding efforts that take dominant genetic effects and

complex gene interactions into account.
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SUPPLEMENT TO CHAPTER 6
THE ASSOCIATION OF ALCOHOL INTAKE
WITH GAMMA-GLUTAMYL TRANSFERASE (GGT) LEVELS:

EVIDENCE FOR A CAUSAL EFFECT?

Number of participants and reasons for exclusion

Information on GGT levels was present for 8,754 individuals (aged =18). Analyses were
performed on data from 6,465 individuals for whom data on alcohol intake and levels of GGT
were present (3,193 twins, 1,304 siblings, and 1,968 parents). Data were excluded for 11
individuals with known liver disease (ICD-10 codes K70-K77), 1523 individuals who did not
participate in the 2002-2009 surveys, and 121 individuals who reported to have never drunk
any alcohol. For 133 persons who participated in the 2002-2009 surveys, data on alcohol intake
were missing, and for 31 individuals excluded during data cleaning (because of
extreme/impossible values, see Van Beek et al. (2013c)). For 470 individuals, data were
excluded, since they were not biological relatives of the twins (N=26), zygosity was not yet
known (N=2), they formed part of a triplet (N=2), were sibling in a family with more than two
same sex siblings (N=64; a maximum of two same sex siblings was included per family), or had
another relation to the twin than co-twin, sibling or parent (mostly spouse of twin, N=315; other

N=61, e.g. child).

Description bivariate genetic analysis

Bivariate genetic analysis was performed with saturated models and structural equation
models. The bivariate saturated model estimated 30 familial correlations. Ten familial
correlations were estimated for alcohol intake, nine for GGT and eleven cross-trait correlations
for the relation of alcohol intake with GGT. For alcohol intake, GGT and the cross-trait
covariance of alcohol intake with GGT, these were five offspring correlations (MZM twin pairs,
MZF twin pairs, male-male DZ/sibling pairs, female-female DZ/sibling pairs, and opposite sex
twin/sibling pairs), and four parent-offspring correlations (father-son, mother-daughter, father-
daughter, mother-son) (thus, 27 in total). In addition, two within-person cross-trait correlations
(males, females) were estimated for the relation between alcohol intake and GGT, and one
spouse correlation for alcohol intake. As spousal resemblance for GGT was negligible (Van Beek
et al. 2013a), this was not included, nor was cross-trait spousal resemblance for alcohol intake
with GGT.

Structural equation models were informed by the results based on univariate genetic

structural equation models performed on alcohol intake (Van Beek et al. 2013¢) and GGT (Van
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Beek et al. 2013a). Variation in alcohol intake was best explained by effects of additive and non-
additive gene action as well as individual-specific environmental effects for both men and
women (Van Beek et al. 2013c). Results for GGT differed over sex. Variation in GGT among
women was explained by additive genetic, non-additive genetic and non-shared individual-
specific environmental factors, whereas for men, non-additive genetic effects were not
significant, but shared environmental effects were (Van Beek et al. 2013a). In the structural
equation models of this study, based on these previous results, alcohol intake of fathers,
mothers, sons and daughters (depicted as ALCg,, ALCwo, ALCso, ALCys respectively) was regressed
on factors representing additive genetic (A1), non-additive genetic (D1), and individual-specific
environmental effects (E1). The factor loadings (a1, di, e1) were allowed to differ over sex
(represented as ai,m, a1, dim, di,;, €1,m, €1,7). Variation in GGT levels among females (mothers
depicted as GGTwo, daughters as GGTy,) could also be ascribed to additive genetic (A), non-
additive (D) genetic and individual-specific environmental effects. If GGT levels would be
uncorrelated with levels of alcohol intake, variation in GGT would be solely regressed on factors
that were specific to GGT, that is on Azs, D2rand Ey¢ (the factors loadings azi, d215, and ez1f would
be set to zero). As can be seen in Figure 1, GGT levels are assumed to be correlated with alcohol
intake and this correlation is specified through the factor loadings a1, dz21,, €21, that run from
the factors for alcohol intake (A1, D1y, E1¢) to GGT. For males, the same principle holds true. The
association of alcohol intake with GGT among males was modeled to be influenced by alcohol-
effects (A1m, D1,m, E1,m with factor loadings az1m, d21,m, and ez1,m and GGT-specific effects (A2, Cy, E2
with factor loadings azm, com, and ez m).

The amount of variance and covariance ascribed to genetic and environmental factors,
can be estimated by the fact that family members share their genetic and environmental
background to different degrees. MZ twin pairs are assumed to share their entire genetic
material (that is, the additive genetic factors (A) were modeled to correlate 1 within twin pairs),
whereas DZ twin pairs, siblings, and parent and offspring are estimated to share half of their
genes (A factors were modeled to correlate .5 for DZ twin, sibling and parent-offspring pairs).
Non-additive genetic influences (D) can be estimated by assuming that MZ twin pairs share all
their genetic material with each other including non-additive genetic factors (that is: D factors
are correlated 1), DZ twins and sibling pairs share on average a quarter of the non-additive
genetic factors (D factors are correlated .25), and parent-offspring pairs share none of their non-
additive genetic factors. Shared environmental influences (represented by C factors) on GGT in
males were correlated 1 among co-twin/siblings and 0 with their parents. Variance and
covariance that was individual-specific (not shared between family members) was estimated as

E.
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GGT levels were assumed to be independent among parents. Spousal resemblance for
alcohol intake was modeled to run via the A-path that represents the correlations between the
latent genetic and environmental factors influencing the phenotypes of the parents, that result
from phenotypic assortment. The increase in the additive genetic variance (RA) that results
from the presence of phenotypic assortment for alcohol intake was modeled through the
additive genetic variance component. The variance of the additive genetic factors in the
offspring generation (.5) reflects the segregation variance that emerges due to recombination.
This within-family additive genetic variance emerges since parents pass their alleles, not
genotypes, giving rise to new genetic variance in the offspring generation (Keller et al. 2009).

Constraints were equal to those in the univariate models: two means (males/females),
one variance (equal over sex) for alcohol intake (Van Beek et al. 2013c) and four means (male
twins/siblings, female twins/siblings, fathers, mothers) and three variances (male

twin/siblings, female twin/siblings, parents) for GGT (Van Beek et al. 2013a).
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CHAPTER 7
ASSOCIATIONS BETWEEN ADH GENE VARIANTS AND ALCOHOL PHENOTYPES

IN DUTCH ADULTS ¢

Abstract

Recently, Macgregor et al. (2009) demonstrated significant associations of ADH
polymorphisms with reactions to alcohol and alcohol consumption measures in an Australian
sample. The aim of the present study was to replicate these findings in a Dutch sample. Survey
data on alcohol phenotypes came from 1,754 unrelated individuals registered with the
Netherlands Twin Register. SNPs in the ADH gene cluster located on chromosome 4q (n=491)
were subdivided in seven gene sets: ADH5, ADH4, ADH6, ADH1A, ADH1B, ADH1C and ADH7.
Within these sets associations of SNPs with alcohol consumption measures, age at onset
variables, reactions to alcohol and problem drinking liability were examined. Of the original 38
SNPs studied by Macgregor et al. (2009), six SNPs were not available in our dataset, because one
of them had a minor allele frequency <.01 (rs1229984) and five could not be imputed. The
remaining SNP associations with alcohol phenotypes as identified by Macgregor et al. (2009),
were not replicated in the Dutch sample, after correcting for multiple genotype and phenotype
testing. Significant associations were found however, for reactions to alcohol with a SNP in
ADHS5 (rs6827292, p=.001) and a SNP just upstream of ADH5 (rs6819724, p=.0007) that is in
strong LD with rs6827292. Furthermore, an association between age at onset of regular alcohol
use and a SNP just upstream of ADH7 (rs2654849, p=.003) was observed. No significant
associations were found for alcohol consumption and problem drinking liability. Although these
findings do not replicate the earlier findings at the SNP level, the results confirm the role of the

ADH gene cluster in alcohol phenotypes.

6 This chapter is published as:
van Beek, JHDA, Willemsen, G, de Moor, MHM, Hottenga, J], Boomsma, DI (2009) Associations between ADH
gene variants and alcohol phenotypes in Dutch adults. Twin Res Hum Genet 13:30-42
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1. Introduction

Alcohol is commonly used in Western societies: the vast majority of adults report to
have drunk alcohol in the previous 12 months (Ahlstrom et al. 2001; Wilsnack et al. 2000; CBS
2008; Van Laar et al. 2008). There is substantial individual variation in the amounts of alcohol
consumed. Based on data from the World Health Organization 15.7% of individuals aged 15 and
older are classified as heavy drinkers (males >40g and females >20g pure alcohol per day)
(Rehm et al. 2006).

The harmful effects of alcohol on health are well-documented. Increased alcohol use has
been linked to over 60 chronic health diseases, ranging from cancers and heart disease to
depressive disorders and birth defects (Rehm et al. 2003). Alcohol use disorder is in the top 10
conditions with the highest burden of disease (WHO 2008; Begg et al. 2007; Hilderink and van 't
Land 2008). In addition, alcohol takes its toll through motor vehicle accidents and other alcohol
related injuries (Rehm et al. 2003; Van Laar et al. 2008). In Western European countries, 6.6%
of deaths among males can be attributed to alcohol consumption (Rehm et al. 2006). However,
there is also evidence that alcohol can have beneficial effects on health. For example, moderate
alcohol use has been associated with a decreased risk of both coronary heart disease and
ischaemic stroke (Burger et al. 2004). Given the large impact of alcohol consumption, it is
important to understand the causes of individual differences in alcohol use.

Twin studies have shown that individual differences in a range of different alcohol
phenotypes are all explained to some degree by differences in genetic makeup (Dick et al.
2009b). Additive genetic influences explain between 30% and 54% of the variation in alcohol
consumption among adults (Whitfield et al. 2004; Hansell et al. 2008; Kendler et al. 2008c).
Heritability estimates for the risk of alcoholism or abuse in adults range from 30% to 75%
(Kendler et al. 1997; Heath et al. 1997; Prescott and Kendler 1999; Knopik et al. 2004; Jang et al.
2000; Sartor et al. 2009; Xian et al. 2008; Walters 2002). Estimates of genetic influences on
alcohol initiation are more variable. Although the average heritability is estimated to be around
26% (Dick et al. 2009b), estimates range from 0 to 83% (Poelen et al. 2008; Pagan et al. 2006;
Rhee et al. 2003; Rose et al. 2001; Viken et al. 1999; Penninkilampi-Kerola et al. 2005; Han et al.
1999; Fowler et al. 2007a; Koopmans and Boomsma 1996; Stallings et al. 1999; Sartor et al.
2009) . The heritability of age at onset of regular alcohol use has been estimated at 35-43%
(Stallings et al. 1999; Liu et al. 2004).

One of the mediating mechanisms by which genes may influence alcohol use, is through
alcohol metabolism (Higuchi et al. 2006). Two groups of genes that have received much
attention are the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH) gene
clusters that code, respectively, for the ADH and ALDH enzymes that are involved in the break-

down of ethanol. ADH is one of the main enzymatic pathways metabolizing ethanol into
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acetaldehyde, a highly toxic by-product. ALDH oxidizes acetaldehyde into a less toxic compound,
acetate, which is subsequently converted into water and carbon dioxide. Variants of ADH and
ALDH genes encode enzymes with different characteristics that can change the rate by which
ethanol is metabolized and hence influence alcohol use and other alcohol-related phenotypes
(Edenberg 2007).

ADH enzymes are encoded by 7 different genes, located in a 365 kb region on
chromosome 4q, that have been categorized into 5 classes: a) ADH1A, ADH1B and ADH1C that
encode the enzymes a-, -, and y-ADH; b) ADH4 that encodes p-ADH, ¢) ADH5 that codes for -
ADH, d) ADH6 that encodes an ADH enzyme little is known about and e) ADH7 that encodes o-
ADH. ALDH is encoded by two genes. Gene ALDH1A, located on chromosome 9q21.13, codes for
the enzyme ALDH1. The ALDH2 gene located on chromosome 12q24.2, codes for the enzyme
ALDH2. Most variants in the ADH and ALDH gene clusters are changes in single nucleotide
polymorphisms, also called SNPs (Edenberg 2007).

Macgregor et al. (2009) investigated whether genetic variants in the ADH and ALDH2
genes were associated with alcohol consumption, physical reactions to alcohol and alcohol
dependence in an Australian population sample from Western European descent (n=4,597; age
range 26-89). They genotyped 38 polymorphisms in the ADH gene cluster and 8 polymorphisms
in the ALDH2 gene. Significant associations were found between variants in the ALDH2 gene
and measures of alcohol dependency. Variants in the ADH genes were found to be related to
alcohol consumption measures and physical reactions and only marginally with alcohol
dependency measures. The most significant finding was obtained for the association of marker
rs1229984 (ADH1B) with alcohol consumption variables (p=2.7 x 10-%¢ - 8.9 x 10-%8) and
physical reactions (p=8.2 x 10-97), but significant associations for other SNPs were also reported.

In this paper we sought to replicate Macgregor et al.’s (2009) findings on the association
of ADH polymorphisms with alcohol consumption measures, physical reactions to alcohol and
alcohol dependency. To this end, the data from 1,754 unrelated individuals registered with the
Netherlands Twin Register (NTR) were analyzed. The participants were unselected for alcohol
use and comparable to the Australian sample in age and phenotypic assessments. A problem
drinking scale was used as a proxy for alcohol dependency. In addition, we examined the
associations between ADH polymorphisms and age at onset of alcohol use. The participants
were genotyped on 64 SNPs in the ADH gene cluster. To enlarge the coverage of the region, 427
additional SNPs were imputed. Two different methods that correct for multiple SNP testing
were used and compared: one method, based on linkage disequilibrium (LD), corrected for the

effective number of SNPs tested; another method corrected for multiple testing by permutation.
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2. Materials and methods
2.1 Participants

Participants took part in a longitudinal survey on health, lifestyle and personality
conducted in adult twins and their family members registered with the Netherlands Twin
Register (NTR). Characteristics and recruitment of participants are described in Boomsma et al.
(2002c) (Boomsma et al. 2006). Since 1991, every two to four years participants have received
surveys with questions about health, lifestyle and personality. Twins were approached in 1991,
1993, 1995, 1997, 2000, 2002 and 2004 /2005. Parents were invited to participate at all time
points except 1997 and 2000. Siblings were asked to participate from 1995 onwards and
spouses since 2000. Questions about alcohol use were included at all time points. In total,
23,173 individuals completed at least one questionnaire. For 1,774 individuals with information
on alcohol phenotypes, genome-wide quality controlled SNP data were available as part of a
genome wide association study (GWAs) on Major Depressive Disorder (GAIN-MDD study). NTR
participants in the MDD study were biologically unrelated, of Western European ancestry and
mainly served as healthy controls. Detailed information on the GAIN-MDD study, recruitment
and DNA collection can be found in Boomsma et al.(2008). Permission for the GAIN-MDD study
was obtained from the Ethics Committee of Research on human subjects of the VU University
Medical Center, Amsterdam.

Nearly all individuals with information on alcohol phenotypes had drunk alcohol at least
once. Individuals who reported to have never drunk alcohol were excluded (n=20; 1.1%). This
resulted in a sample of 1,754 individuals (n=1,112 female; 63.4%). The median year of birth was
1959 (ranging from 1923 to 1986). The majority of individuals (n=1,204; 68.6%) provided data

on three to seven surveys, 419 (23.9%) on two and 131 (7.5%) on one survey.

2.2 Phenotyping

For alcohol consumption variables, physical reactions to alcohol and problem drinking
liability, reports were only included if the participant was 26 or older at questionnaire
completion. For age at onset variables no restriction was set on the age of the respondent, but
data were set to missing when no age of onset was reported. The exact number of individuals
with genotypic information differs per phenotype, not only because of age restrictions, but also

because not all questions about alcohol use were included in all surveys.

2.2.1 Alcohol consumption
Data on alcohol consumption were collected with two questions included at all time
points except 1991. The first question was ‘How often do you drink alcohol? Also count the

times that you only drank a small amount (e.g. half a pint of beer or a few sips of wine)’. The
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response categories were ‘I don’t drink alcohol’, ‘once a year or less’, ‘a few times a year’, ‘about
once a month’, ‘a few times a month’, ‘once a week’, ‘a few times a week’ and ‘every day’. Based
on this question four frequency measures were defined in 1,565 individuals:

- Daily drinking (last and maximum reported) analyzed as a dichotomous ‘yes’/‘'no’

variable.

- Weekly drinking or more (last and maximum reported) analyzed as a dichotomous

‘yes’/‘no’ variable.
Last reported frequency of alcohol use measures was based on most recent information, for
maximum reported frequency the measurement with the highest frequency was taken. For the
327 individuals who participated in only one survey, last reported and maximum reported
frequency of alcohol consumption measures were based on the same measurement and thus
similar.

The second question was ‘How many glasses a week do you drink on average (including the
weekend)?’. There were seven response categories: ‘less than 1 glass’, ‘1-2 glasses a week’, ‘3-5
glasses a week’, ‘6-10 glasses a week’, ‘11-20 glasses a week’, ‘21-40 glasses a week’ and ‘more
than 40 glasses a week’. Based on this question two quantity measures were defined in 1550
individuals:

- Number of alcoholic drinks per week (last and maximum reported) with six response

categories (the categories ‘1-2 glasses a week’ and ‘3-5 glasses a week’ were combined).
For last reported number of drinks the most recent information was taken. Maximum number of
drinks reported was based on the survey with the highest number of drinks reported. For the
353 individuals who participated in the survey only once, last reported and maximum number

of drinks reported were based on the same measurement.

2.2.2 Age at onset alcohol use

Information on age at onset of alcohol use was collected for three traits: experimental
alcohol use (included in surveys in 1991, 1993, 1995, 1997 and 2000; n=1,384), regular alcohol
use (included in 1993, 1995, 1997 and 2000; n=1,098) and getting drunk or tipsy (included in
1993, 1995 and 1997; n=624). For these behaviors the question started with ‘If you have ever
used any of the substances listed below, please indicate the age at which you used them for the
first time’ and was followed by “Tried an alcoholic drink’, ‘Regularly drank alcohol’ and ‘Gotten
drunk or tipsy’. In 1991 age at onset was a continuous measure. In 1993, 1995 and 1997 there
were eight response categories: ‘11 or younger’, ‘12’, ‘13, “14’, ‘15’,“16’,“17’, and '18 or older’. In
2000 response categories were brought back to five: ‘11 or younger’,'12-13’,°14-15’,’16-17’
and '18 or older’. Based on the three questions three phenotypes were defined:

- Age at onset of experimental alcohol use with the same response categories as in 2000.
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- Age at onset of regular alcohol use, with the same categories as in 2000.
- Age at onset of getting drunk with response categories coded as '17 or younger’ and '18
or older’.
Data were set to missing when no information was reported on age at onset. For individuals
who provided data on age at onset of experimental alcohol use (1=914), regular alcohol use
(n=592) or getting drunk (n=278) on multiple surveys, the lowest reported age at onset was

taken.

2.2.3 Physical reactions to alcohol

Information on experiencing unpleasant physical reactions after alcohol use was based
on one question included in 1993 and 1995 (n=872). This question ‘Do you experience
unpleasant physical reactions, like flushing of face or body, itching, sleepiness or heart beating
after drinking one or two glasses of alcohol?’ with response categories ‘always’, ‘sometimes’ and
‘never’ was used to define Physical reactions to alcohol with the analyzed categories ‘yes’
(always; sometimes) and ‘no’ (never). The 559 individuals who filled out this question in both
years, were classified as experiencing reactions to alcohol if in one of the two surveys they had

responded ‘yes’.

2.2.4 Problem drinking liability

Risk for problem drinking was assessed by the CAGE (Ewing 1984) that was included at
all time points except 1991. The CAGE consists of four items: ‘Have you ever felt you should cut
down on your drinking?’, ‘Have people annoyed you by criticizing your drinking?’, ‘Have you
ever felt bad or guilty about your drinking?’, ‘Have you ever had a drink first thing in the
morning to steady your nerves or to get rid of a hangover?’. Each item could be answered with
‘yes’ or ‘no’. The number of yes items was used to define Problem drinking liability (n=1,559). To
take into account the possibility of non-random missing data and prevent assigning a low
liability score to possible problem users, data of individuals were set to missing in case of two or
more missing items. If one item was missing the mean value was imputed. For the 1,226

individuals who filled out the CAGE twice or more, the maximum score was taken.

2.3 Genotyping and imputation

DNA was isolated from whole blood (Boomsma et al. 2008). Genotyping was performed
by Perlegen Sciences using high-density oligonucleotide arrays. The 599,156 SNPs on these
arrays had been selected to tag common variation in the Hapmap European and Asian panels
(Sullivan et al. 2009). Genotyping procedures, genotyping calling rate algorithms and quality

control procedures are available in the Supplementary Methods of Sullivan et al. (2009). In the
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ADH gene cluster on chromosome 4q successfully genotyped SNPs were selected (n=64)
ranging from base pair position 100186714 to base pair position 100626045 (build 36, release
24), to cover the same region as Macgregor et al. (2009).

SNPs that were not genotyped in this region, but that were included in the HapMap
dataset were imputed. Imputation was done using Impute v0.5 (Marchini et al. 2007), with as a
reference set the Hapmap2 CEU panel (build 36) which was obtained from the Impute website

https://mathgen.stats.ox.ac.uk/impute/impute.html. Imputed genotypes were set to missing if

none of the possible genotypes reached a maximum average genotype posterior probability of
.70. Exclusion of SNPs with a minor allele frequency (MAF) <.01 (n=152; all imputed) resulted in
a final marker set of 491 SNPs of which 64 SNPs were genotyped and 427 imputed. Six of the 38
SNPs analyzed by Macgregor et al. (2009) were not included in the present study. Five of these
were not genotyped as part of the GAIN-MDD study nor included in the HapMap2 dataset. One,
the ADH1B polymorphism rs1229984, was imputed, but was excluded from further analyses
since it had a MAF <.01.

2.4 Statistical analysis

First, to examine the possible occurrence of selection bias, the genotyped sample was
compared to a random sample of NTR participants without genotypic data, stratified by sex and
age, on alcohol phenotypes. These comparisons were done in SPSS (version 15.0) by chi-
squared tests on categorical variables and t-tests for independent samples on quantitative
variables.

Next, associations between ADH polymorphisms and alcohol phenotypes were
investigated by performing regression analyses in PLINK 1.06 (Purcell et al. 2007). Categorical
data were analyzed with logistic regression; quantitative data were analyzed with linear
regression. We modeled an additive effect and sex was included as covariate in each analysis.
Age at completion of the survey was used as an additional covariate for last reported alcohol
consumption measures. For maximum reported alcohol consumption variables, age at onset
variables, problem drinking liability and reactions to alcohol we used year of birth as a
covariate. SNPs in the ADH gene cluster were subdivided and analyzed within seven gene sets:
ADHS5, ADH4, ADH6, ADH1A, ADH1B, ADH1C and ADH7. These gene sets were defined as all
SNPs ranging from the midpoint of one intergenic region until the midpoint of the next
intergenic region, thereby including the SNPs in the particular gene. The outer gene sets
spanned a larger intergenic region to include the same region as Macgregor et al. (2009): the
ADHS5 gene set was defined as all SNPs ranging from rs1230210 (in the gene METAP1, flanking
the ADH region) to the midpoint of the intergenic region between ADH5 and ADH4; the ADH7
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gene set was defined as all SNPs ranging from the midpoint of the intergenic region between

ADH1C and ADH7 to rs1583971. The seven gene sets are described in Table 1.

Table 1 Description of gene sets within ADH gene cluster on chromosome 4

Gene set from SNP to SNP (bp?) Totalno. No.SNPs No. SNPs Mg
(bp?) of SNPs genotyped imputed

ADHS5 rs1230210 rs1840231 79 6 73 15.38
(100186714) (100246202)

ADH4 rs6819724 rs10024022 119 11 108 15.88
(100247474) (100307276)

ADH6 rs6532803 rs7439160 37 4 33 12.41
(100316196) (100380677)

ADH1A rs2173199 rs13145277 34 5 29 10.11
(100390402) (100437458)

ADH1B rs1229988 rs1789888 24 5 19 11.19
(100438024) (100466593)

ADH1C rs1789891 rs10516439 85 9 76 17.53
(100469442) (100522181)

ADH7 rs2851292 rs1583971 113 24 89 30.34
(100522524) (100626045)

a Base pair position SNP as estimated in Hapmap2, build 36, release 24

b Effective number of SNPs in gene set (for explanation see paragraph on Statistical Analyses)

Testing for associations between 491 genetic variants and 11 phenotypes posed the challenge
how to deal with the problem of multiple testing. To reduce the type 1 error rate two methods
to handle multiple SNP testing were applied and one method to handle multiple phenotype
testing. The first method regarding multiple SNP testing was based on the correction of p-values
for the number of tests performed. Given the fact that the LD structure among SNPs is not
independent, adjusting the p-value for the actual number of tests would be overly stringent and
result in a loss of power (Nyholt 2004). With the first method the p-values were therefore
adjusted for the estimated number of independent SNPs tested. Calculation of the number of
independent SNPs (also called the effective number of SNPs; M) was based on the number of
eigenvalues of the n x n correlation matrix of allele frequencies of SNPs using equation 5 by Li
and Ji (2005). For each gene set Mt was estimated by an interface developed by Nyholt (2004),

available at http://genepi.gimr.edu.au/general/daleN/SNPSpD/. SNPs in perfect LD (r?=1) were

automatically removed to obtain better estimates (Nyholt 2005). With the estimates of M., as
summarized in Table 1, the asymptotic p-value of the most significant SNP per gene set was
adjusted for multiple testing by correcting the p-value of the SNP for the estimate of M of that
gene set.

The second method to deal with the problem of testing multiple SNPs was based on

permutation. In PLINK 1.06 (Purcell et al. 2007) set-based tests were performed using gene sets
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as described in Table 1 to select up to n SNPs per gene set that were independently associated
with the particular phenotype and derive an empirical p-value based on permutation. This
method had the advantage of selecting more than one significant SNP (if independent from each
other) and could therefore give a better coverage of the association signal of the gene set than
was possible with the first method employed. Set-based tests were performed as follows. First,
within each gene set LD was calculated for each pair of SNPs. Next, regression analysis with sex
and age (at completion or year of birth) as covariates was carried out. Based on these regression
analyses, the most significant SNP per gene set with a threshold p-value below .05 was selected
(--set-p 0.05; default value). Other significant SNPs were selected (p<.05) in order of decreasing
significance, only if these were relatively independent (r?<.5) from the SNPs already selected (--
set-r2 0.5; default value) and if the number of selected SNPs did not exceed 5 (--set-max 5;
default value). Since alcohol phenotypes can be seen as complex traits with many variants of
small effects involved (O'Dushlaine et al. 2009), a threshold p-value of .05 was chosen over a
more stringent p-value. Subsequently, for each gene set the mean of the test statistics of selected
SNPs was calculated. Then, within the dataset, phenotype labels were permuted 10,000 times (--
mperm 10000) keeping the LD between SNPs constant. For each permuted dataset SNPs were
selected as described above (if p<.05; in order of decreasing significance; independent of
already selected SNPs) and for each permutation set the mean of test statistics of selected SNPs
was calculated. This resulted in a distribution of mean test statistics that was used to calculate
an empirical p-value for each gene set and phenotype based on the number of mean test
statistics from the permuted datasets that exceeded the original mean test statistic of the actual
dataset.

Lastly, the fact that multiple phenotypes were tested (n=11) was accounted for. This
correction was done in addition to the corrections for multiple SNP testing described above.
Since the phenotypes tested were correlated, applying a Bonferroni correction by dividing the
significance level of .05 by the actual number of phenotypes (n=11), would be too conservative
and results in a loss of power (Nyholt 2004). Therefore correction for multiple phenotype
testing was done by correcting the significance level of .05 for the number of independent
phenotypes. An estimate of the number of independent phenotypes, derived from the number of
eigenvalues of the n x n correlation matrix of phenotypes, was based on equation 5 given by Li
and Ji (2005), analogous to the estimation of Mef, and obtained by another interface developed

by Nyholt (2004), available at http://gump.qgimr.edu.au/general/daleN/matSpD/ . The number

of independent phenotypes in this study was estimated to be 7. This resulted in a significance
level of .05/7=.007. Therefore, for all analyses conducted, a p-value of .007 or less was

considered significant.
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3. Results
3.1 Comparison of genotyped sample with random sample

Table 2 shows that individuals in the genotyped sample were comparable to individuals
in the random NTR sample in last reported alcohol consumption measures, age at onset
variables, problem drinking liability and in the frequency of experiencing physical reactions to
alcohol. Based on maximum reported alcohol consumption measures however, individuals in
the genotyped sample more often reported to have drunk alcohol daily and weekly and reported
to have drunk more glasses of alcohol per week than individuals in the random NTR sample (p-

values <.007).

3.2 Associations of ADH polymorphisms with alcohol phenotypes

For each phenotype Tables 3-6 show the unadjusted asymptotic p-values, the p-values
adjusted for the number of independent SNPs per gene set and the empirical p-values for the
most significant SNPs per gene set.

Alcohol consumption None of the ADH polymorphisms were significantly associated with
alcohol consumption measures after correction for multiple SNP and phenotype testing, for
either of the test methods applied (see Table 3).

Age at onset of alcohol use Based on empirical p-values derived by permutation, but not

on adjusted p-values (corrected for the number of independent SNPs), one polymorphism in the
ADH?7 gene set (rs2654849), located 40.4 kb upstream of the ADH7 gene (base pair position
100615713, build 36) was significantly associated with age at onset of regular alcohol use
(empirical p-value =.003), as can be seen in Table 4. Individuals who started regular alcohol use
at an earlier age more often have the minor G allele at this locus (8=-.10; MAF=.34; major
allele=T). Other associations between ADH polymorphisms and age at onset measures were not
detected.

Physical reactions to alcohol Table 5 shows that a non-coding genetic variant in ADH5,
rs6827292, was significantly associated with experiencing unpleasant physical reactions to
alcohol, based on its empirical p-value (p=.001). Each copy of a C-allele (MAF=.044) conveyed an
increased risk for experiencing physical reactions to alcohol, compared to carrying a T-allele
(odds ratio(OR)=2.426; base pair position 100212017, build 36). Its p-value adjusted for the
effective number of SNPs tested, was marginally significant (adjusted p-value =.008). The same
applied for the genetic variant rs6819724 in the ADH4 gene set. Based on its empirical p-value
the marker rs6819724 was significantly associated with experiencing physical reactions to
alcohol (empirical p-value =.0007), but considering its adjusted p-value, rs6819724 was only
marginally significant (adjusted p-value =.008).
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Table 2 Description of alcohol-related phenotypes for genotype sample and comparison with

random stratified sample

Genotype Comparison Test statistic
sample sample
Ever used alcohol N 1774 1774 x*(1)=.212, p=.645

________________________________ Yes(%)  1754(98.9)  1751(98.7)
Daily drinking N 1565 1750 x(1)=3.235, p=.072

(lastreported) Yes (%) ... 324(20.7) 319(182)
Daily drinking N 1565 1750 x*(1)=14.306, p<.001*

_(maximum reported) _Yes(%) 404(258) 355(203)
Weekly drinking or N 1565 1750 x’(1)=4.281, p=.039

_more (lastreported) _ Yes (%) . 1028(65.7) ... 1089(62.2)
Weekly drinking or N 1565 1750 x*(1)=15.830, p<.001*
more (maximum Yes (%) 1128 (72.1) 1149 (65.7)

reported)
No. drinks per week N 1550 1736 x(5)=9.367, p=.095
(last reported) <1 (%) 454 (29.3) 540 (31.1)

1-5 (%) 491 (31.7) 606 (34.9)
6-10 (%) 281 (18.1) 280 (16.1)
11-20 (%) 252 (16.3) 243 (14.0)
21-40 (%) 65 (4.2) 61 (3.5)

________________________________ >40(%) . T005) U3 oo
No. of drinks per N 1550 1736 X*(5)=25.746, p<.001*
week (maximum <1 (%) 359 (23.2) 485 (27.9)
reported) 1-5 (%) 484 (31.2) 591 (34.0)

6-10 (%) 298 (19.2) 307 (17.7)
11-20 (%) 295 (19.0) 270 (15.6)
21-40 (%) 103 (6.6) 72 (4.1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >0(%) 117 118
Age at onset N 1384 905 X’(4)=13.526, p=.009
experimental use <12 (%) 104 (7.5) 38 (4.2)

12-13 (%) 177 (12.8) 101 (11.2)
14-15 (%) 423 (30.6) 277 (30.6)
16-17 (%) 422 (30.5) 300 (33.1)

________________________________ 18+ 258(186)  189(209)
Age at onset regular N 1098 698 X’(4)=4.268, p=.371
use <12 (%) 3(0.3) 5(.7)

12-13 (%) 12 (1.1) 7 (1.0)
14-15 (%) 103 (9.4) 55 (7.9)
16-17 (%) 311 (28.3) 184 (26.4)

________________________________ 18+ (%) ........669.(60.9) _ _ 847(640) . ...
Age at onset getting N 624 351 x*(1)=4.353, p=.037

drunk <18(%) _______ 239(383) 111(3%6)
Physical reactionsto N 872 512 x(1)=.890, p=.346

Jaleohol Yes(%) 225(258) 448y
Problem drinking N 1559 1748 t(3305)=-.584, p=.559
liability M 476 .459

SD .832 .855

* = significant at the a=.007 level (adjusted for multiple phenotype testing)
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CHAPTER 7

Each copy of a G-allele at this locus (MAF=.045) increased the risk of experiencing physical
reactions, compared to carrying an A-allele (OR=2.417). Rs6819724 was located 18.7 kb
upstream of the ADH5 gene (base pair position 100247474, build 36). Additional analyses
showed that rs6827292 and rs6819724 were in LD 1 with each other. SNP rs6819724, located
just intermediate of the genes ADH4 and ADH5, was included in gene set ADH4. Therefore a
significant result was obtained in both gene sets.

Problem drinking liability Table 6 summarizes the test results for the associations
between ADH polymorphisms and problem drinking liability per gene set. None of the p-values

reached significance after correction for multiple SNP and phenotype testing by either method.

Table 5 Most significant SNPs per gene set (based on asymptotic p-values adjusted for the

effective number of SNPs and empirical p-values) for physical reactions to alcohol (n=872)

Gene set SNPs Min. pb Adj. p¢ Emp. p4
ADH5 rs6827292 .0005 .008 .001*
ADH4 rs6819724 .0005 .008 .0007*
ADH6 rs7439160 .053 .658 1f
ADH1A rs17028770f .025 .253 .182
ADH1B rs1693439 .039 436 332
ADH1C rs17586246  .038 .666 449
ADH7 rs2718682 .003 .091 151

rs11933667¢

rs7696921¢

For legend, see Table 3.

Table 6 Most significant SNPs per gene set (based on asymptotic p-values adjusted for the
effective number of SNPs and empirical p-values) for problem drinking liability (n=1,558)

Gene set SNPs Min. pb Adj. p¢ Emp. p4
ADH5 rs1154400! .054 .831 1f
ADH4 rs2851247 .053 .842 1f
ADH6 rs6830685 .028 347 224
ADH1A rs904092 .022 222 .169
ADH1B rs1693457 .021 .235 202
rs6810842¢

ADH1C rs2866152 .067 1 1f
ADH7 rs12505135  .019 576 330

kSNP rs1154400 is in LD 1 with SNPs rs1311620; these SNPs have the same p-value.
For further legend, see Table 3.
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4. Discussion

The aim of the present study was to replicate the associations between polymorphisms
in the ADH gene cluster and alcohol consumption variables and physical reactions to alcohol
previously demonstrated by Macgregor et al. (2009). Associations between ADH
polymorphisms and age at onset of alcohol use and problem drinking liability were also studied.
The associations between genetic variants in the ADH1B, ADH1C, ADH4 and ADH5 genes and
current alcohol use which were found by Macgregor et al. (2009) were not replicated in the
current study. Because of the low MAF of the ADH1B polymorphism rs1229984, the
associations of this SNP with alcohol phenotypes could not be tested. Our study does however
show that three other polymorphisms in the ADH gene cluster are associated with alcohol
phenotypes. The genetic marker rs2654849, located 40.4 kb upstream of ADH7, was found to be
associated with age at onset of regular alcohol use. Two other SNPs in high LD with each other
were associated with experiencing physical reactions to alcohol: rs6827292, a non-coding
genetic variant located in ADH5 and rs6819724 located 18.7 kb upstream of ADH5. At this point
it is unknown whether one of these markers is a causal variant itself, or whether they are in LD
with the causal variant. Interestingly, Edenberg et al. (2006) reported significant SNPs in the
same region between ADH4 and ADHS5 for alcohol dependence. The specific significant variants
detected in this study have not been reported in the literature before for the alcohol phenotypes
that we studied or related phenotypes. Still, the number of studies focusing on variants across
the entire ADH region is small. So far, only four studies have been conducted in populations
from Western European descent (Macgregor et al. 2009; Luo et al. 2006; Edenberg et al. 2006;
Kuo et al. 2008b).

Physical reactions to alcohol were linked to SNPs in different genetic regions than in
previous studies. The ‘Asian flush’ has been related to variants in the ALDH2 gene on
chromosome 12 and, to a lesser extent, in the ADH1B gene that we also studied (Shibuya et al.
1989; Takeshita et al. 1996; Chen et al. 1998). Variants in these genes are hypothesized to
change the rate at which alcohol is metabolized. The resulting excess of acetaldehyde is
considered to give heightened reactions to alcohol (Eng et al. 2007). In the present study,
reactions to alcohol were associated with the ADH5 gene polymorphism rs6827292 and the
nearby SNP rs6819724. This raises the question whether reactions to alcohol reported in this
study are comparable to the Asian flushing response characterized by facial flushing, nausea,
and tachycardia (Brooks et al. 2009). In line with the description of the Asian flush given by
Brooks et al. (2009) and Chen et al. (1998), the present study inquired whether people
experienced reactions as flushing of face or body, itching, sleepiness or heart beating after
drinking one or two glasses of alcohol. Experiencing nausea was not included in the question

however. Further research is necessary to investigate which regions of the ADH gene cluster are
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related to experiencing physical reactions to alcohol in Western populations and by what
mechanism.

The genetic variant rs2654849 was associated with age at onset of regular alcohol use.
Large studies in adults have demonstrated that age at onset of drinking is associated with
alcohol dependence, with people that started drinking early being more likely to experience
(symptoms of) alcohol dependence (Hingson et al. 2006; Dawson et al. 2008). Furthermore,
twin studies have shown that age at onset of alcohol use and alcohol dependence status are
correlated at the genetic level with a genetic correlation of .54-.59 indicating substantial overlap
in the genetic factors that affect both traits (Sartor et al. 2009; Grant et al. 2006). In future
studies it would therefore be interesting to test whether the SNP rs2654849 is also associated
with alcohol dependence.

Variants of ADH genes are assumed to encode enzymes that influence the rate by which
ethanol is metabolized (Edenberg 2007). Birley et al. (2009) investigated which genetic variants
in the ADH gene cluster were associated with alcohol metabolism in vivo. They found inter-
individual variation in the early stages of alcohol metabolism (absorption of ingested alcohol) to
be associated with SNPs in or near ADH7 and also with SNPs in the ADH1A, ADH1B, ADH4
genes. Variance in the elimination rate of alcohol was related to markers in the ADH1B and
ADH1C genes and to variants located in the intergenic region between ADH1C and ADH7. About
20% of the genetic variance in alcohol metabolism could be explained by the combined effects
of these SNPs (Birley et al. 2009). These findings were unlinked to the significant SNPs in the
present study. This could indicate that the ADH gene cluster is also related to alcohol use by
other mechanisms than the metabolizing pathway. Examples of other pathways that can relate
genes to alcohol traits are sensitivity to the effects of alcohol (level of response) or personality
traits that increase the risk of substance related problems such as impulsivity, sensation seeking
and disinhibition (Schuckit 2009).

Further evidence for the role of the ADH gene cluster in explaining individual
differences in alcohol use comes from studies among Western populations of European descent
that have looked at alcohol dependency. These studies demonstrated positive associations with
alcohol dependence for ADH1A markers (Edenberg et al. 2006), haplotypes (Kuo et al. 2008b)
and diplotypes (Luo et al. 2006). A meta-analysis showed variants in the ADH1B to be
associated with alcoholism (Zintzaras et al. 2006). They did not find evidence for an association
between variants in the ADH1C gene and alcoholism, although a recent study did detect
haplotypic association between the ADH1C gene and alcohol dependence (Kuo et al. 2008b).
This discrepancy might be explained by the fact that variants in the ADH1B and ADH1C genes
are in strong LD, the risk for alcoholism associated with the ADH1C gene possibly being
attributable to a variant in the ADH1B gene (Chen et al. 1999; Osier et al. 1999). Positive
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associations between alcohol dependence and ADH gene variation have also been detected for
ADH4 genotypes (Luo et al. 2006) and haplotypes (Edenberg et al. 2006), for ADH5 genotypes
(Luo et al. 2006) and haplotypes (Kuo et al. 2008b)and variants in the ADH7 gene (Edenberg et
al. 2006). Whether these variants are specific to alcohol dependency or also influence alcohol
use, awaits further study.

Testing 491 ADH polymorphisms provided a detailed picture of the association signal in
the ADH region. Yet it had the drawback of increasing the multiple testing problem. This was
dealt with in two ways. The first method corrected for multiple testing by adjusting the
asymptotic p-value of the most significant SNP in a gene set for the effective number of SNPs in
that set. The second method was based on empirical p-values derived by permutation. Both
adjusted and empirical p-values were subjected to a significance-level corrected for testing of
multiple phenotypes as well. When comparing the performance of the two methods to correct
for multiple testing, adjusting p-values for the effective number of SNPs seems a slightly more
conservative approach than correction based on permutation. Three SNPs were significant
considering their empirical p-values, but not (rs2654849) or only marginally significant
(rs6827292 and rs6819724) when considering the p-values adjusted for the effective number of
SNPs in the gene set. This difference in p-values might be due to an overestimation of Mes
resulting from the fact that higher-order SNP correlations are not captured in the pairwise LD
estimates on which the Mefis based (Nyholt 2005). In line with the observed differences in p-
values in this study, the literature considers using empirical p-values based on permutation one
of the best ways to correct for multiple testing (Knight et al. 2008).

A possible limitation of the current study is that most individuals in the genotyped
sample were selected as having a low liability for MDD to serve as control in the GAIN-MDD
study. This might have caused a difference in the comparability between our sample of hyper
controls and the Australian sample. The comparison between the genotyped NTR sample and
random NTR sample however shows few differences for alcohol phenotypes, in spite of
reported associations between alcohol consumption and depression (Graham et al. 2007).
Individuals in the genotyped sample more often reported to have drunk alcohol daily and
weekly and reported higher quantities of alcohol use, but not more problem drinking than in the
random NTR sample. This finding is in line with the existing research that moderate drinking is
associated with less mental health problems compared to light or heavier drinking (Chen 2006).
The comparability of this sample to the Australian sample is further strengthened by the
agreement in frequencies of alcohol phenotypes, such as alcohol use ever and alcohol use in the
previous 12 months.

A further limitation is that the sample size of the replication study was smaller than that

of the Australian discovery sample. Obviously, this influenced the power to detect effects of the
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size found by Macgregor et al. (2009). We carried out ad-hoc power analyses for phenotypes
with different prevalence. For phenotypes for which the prevalence was low, the power to
detect significant effects after correcting for multiple SNP testing (within gene sets) and
multiple phenotype testing was low regardless of relative risk (RR). For phenotypes with a
higher prevalence (around 65%; e.g. weekly drinking) power was still relatively low for a RR of
1.1 (between .25 and .55 for SNPs with a MAF ranging from .20 to .40). For a RR of 1.2 or higher
the power was very good (> .95). Thus, for most phenotypes we had sufficient power to detect
associations with modest to large effect sizes (RR>1.2), but our power to detect very small effect
sizes was low (RR~1.1).

In order to maximize coverage of the genetic variation in the ADH gene cluster, we
imputed all SNPs in HapMap?2 that were not genotyped. This is a sensible route to undertake
given that the LD structure in the present study is similar on a genome-wide level to the
HapMap reference set (Pardo et al. 2009). Still, six genetic markers could not be analyzed. The
top SNP in Macgregor et al. (2009), rs1229984, was imputed, but had to be discarded from the
analyses, since its MAF was <.01 (based on the HapMap2-CEU sample). Five other markers
analyzed by Macgregor et al. (2009) could not be imputed, as they were not included in the
HapMap2-CEU reference set. A total of 491 SNPs was measured or imputed across the ADH
region. In our analyses we divided the region into seven gene sets, which corresponded with the
known genes in this region. Corrections for multiple testing were carried out within gene sets. It
could be argued that the entire ADH region should be considered as one gene set. In that case
the association between age at onset of regular alcohol use and SNP rs2654849 still is
significant (empirical p-value =.004). The associations of physical reactions with rs6827292 and
rs6819724, for which data on 872 individuals were available, would however no longer be
significant (empirical p-value =.127).

In conclusion, the present study contributes to the existing evidence that the ADH gene

cluster is important for understanding the genetics of alcohol use.
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CHAPTER 8
HERITABILITY OF GGT, ALT AND AST LEVELS
ESTIMATED FROM GENOME-WIDE SNP DATA

AND ITS GENETIC COVARIANCE WITH ALCOHOL USE?

Abstract

Plasma levels of liver enzymes can mark liver injury and increase with heavy drinking.
Twin-family studies suggest that variation in liver enzyme levels is moderately heritable, but
genome-wide association (GWA) consortia have traced less than 2% of the variance back to
effects of single nucleotide polymorphisms (SNPs). In the current study, we estimated the
heritability of the levels of three liver enzymes (GGT, ALT en AST) using genome-wide SNP data
in 5,084 unrelated individuals of the NTR/NESDA sample and using meta-analysis results from
GWA consortia on GGT and ALT. The heritability was estimated by two different methods, one
based on genetic relatedness and the other on density estimation. Secondly, we test whether
part of the genetic variance due to SNPs is shared with that for alcohol intake. For this we (a)
compared heritability estimates with and without regressing out effects of alcohol intake, (b)
calculated the correlation between additive genetic SNP effects on liver enzyme levels and
additive SNP effects on alcohol intake in a bivariate analysis based on genetic relatedness, and
(c) tested whether polygenic scores based on the GWA meta-analysis results predicted alcohol
intake levels.

Depending on the method, 15-17%, 2-15% and 13% of the variance in GGT, ALT, and
AST was explained by the joint effect of genome-wide SNPs respectively. These estimates
correspond to 50-57%, 7-52% and 46% of the narrow-sense heritability estimates for these
liver enzymes from twin-family studies. Heritability estimates using meta-analysis results were
more than halved (GGT 8%; ALT 5%). Alcohol intake correlated with GGT levels in both sexes
(r=.18-.27), but not consistently with ALT and AST. The question regarding shared variance
with alcohol intake was therefore examined for GGT only. Regressing out the effect of alcohol
intake did not affect heritability estimates, nor were additive SNP effects on GGT and alcohol
intake levels significantly correlated. However, polygenic risk scores based on the GWA meta-

analysis results for GGT explained 0.25% of the variance in alcohol intake.

7 Part of this chapter is submitted as:

Van Beek, JHDA, Lubke, GH, de Moor, MHM, Willemsen, G, de Geus, EJC, Hottenga, ]], Walters, RK, Smit, JH,
Penninx, BWJH, Boomsma, DI. Heritability of GGT, ALT and AST levels estimated from genome-wide SNP
data.
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To conclude, currently used genome-wide SNP platforms contain substantial
information regarding the underlying genetic variation in liver enzyme levels, indicating that a
substantial part of this genetic variation is not missing but undetected. Using polygenic risk
scores the association of alcohol intake with GGT can be traced back to SNPs. Given adequate
sample sizes, this information may lead to the detection of new susceptibility loci for alcohol

use, liver enzyme levels and their association.
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1. Introduction

Blood levels of the liver enzymes y-glutamyl transferase (GGT), alanine and aspartate
aminotransferase (ALT, AST) predict liver disease and all-cause mortality (Kazemi-Shirazi et al.
2007; Hyeon et al. 2004). Clinically, these enzymes are used as markers for liver injury (Pratt
and Kaplan 2000). Risk of liver disease is increased by heavy drinking (Mann et al. 2003) and
epidemiological studies show increased levels of GGT, ALT and AST among heavy drinkers (>40
grams alcohol/day) compared to abstainers (Arndt et al. 1998; Alatalo et al. 2009b). In most
studies, GGT is also increased among moderate drinkers, whereas AST and ALT are not or not
consistently elevated (Alatalo et al. 2009b; Arndt et al. 1998; Liangpunsakul et al. 2010).

Variation in liver enzyme levels and the association with alcohol use can be partly
explained by genetic differences among individuals. Broad-sense heritability estimates for liver
enzyme levels from twin-family studies range from 22% to 60% (Van Beek et al. 2013a).
Although genetic influences on liver enzyme levels are substantial, most of the genes underlying
the variation are still unidentified. For GGT, the combined effect of all genome-wide significant
single nucleotide polymorphisms (SNPs with p-values <5x10-8) explains 2% of the variation, for
ALT and AST this is less than 1% (Chambers et al. 2011; Kamatani et al. 2010). Several
explanations for this so-called ‘missing heritability’ (Maher 2008) have been put forward. The
sample sizes of current genome-wide association (GWA) studies might be too small to detect the
effects of individual SNPs under the stringent significance thresholds that are used to correct for
multiple testing (Purcell et al. 2009). Alternatively, genetic variation may be due to effects other
than those captured by SNPs on currently used platforms (e.g. rare variants or copy number
variants) (Stranger et al. 2011). To gain insight in the genetic architecture of liver enzyme levels
and optimize the success of future gene finding studies, it is important to know to what extent
genetic variation underlying liver enzyme levels is not yet detected because of inadequate
power to find small SNP effects and to what extent it is not captured by the SNPs that have been
analyzed (either measured or imputed).

By examining the proportion of the variation in liver enzyme levels that can be explained
by the joint effect of all measured and imputed genome-wide SNPs it can be tested to what
extent the heritability is hidden instead of missing, and secondly, whether part of this variation
is shared with that for alcohol intake. The degree to which this estimate is higher than the
proportion of variance that is currently explained by genome-wide significant SNPs, most likely
reflects associations that have not yet been detected due to the multiple testing burden.

Two methods have been proposed to study the aggregate effect of SNPs on phenotypic
variability. The first method, implemented in the software package genome-wide complex trait
analysis (GCTA) (Yang et al. 2010; Yang et al. 2011a), is a two-step procedure where the first

step consists of estimating the genetic relationship matrix (GRM) between all pairs of subjects.
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This pair-wise genetic relatedness is calculated as a correlation between two individuals using
all SNPs. In the second step, the pair-wise genetic relatedness is used as a random effect in a
linear mixed model to estimate the proportion of variance attributable to additive genetic
effects. To avoid confounding additive SNP effects with genetic effects shared between family
members that are not captured by SNPs, genetic relatedness is calculated for ‘unrelated’
individuals only. The method relies on the fact that ‘unrelated’ individuals are still distantly
related, which can be traced back to the correlation structure in the genome. Distantly more
related individuals have more alleles in common than distantly less related individuals.
Applying the method to unrelated individuals also circumvents the problem that phenotypic
similarity among individuals can be due to shared environmental effects (Yang et al. 2010). The
GRM method provides an unbiased estimate of the variance that can be explained by the joint
additive effects of all SNPs if the causal SNPs are perfectly correlated with the
measured/imputed SNPs (i.e,, if linkage disequilibrium, LD, is 1). In the case of imperfect LD, for
instance because the distribution of minor allele frequencies (MAF) differs for the causal and
measured/imputed SNPs, estimates are biased downwards.

The density estimation (DE) method proposed by So, Li and Sham (2011) provides an
alternative approach to estimate the proportion of variance that can be ascribed to SNP effects.
The DE method compares the distribution of observed effect sizes of SNPs that resulted from a
GWA study (or meta-analysis of GWA studies) to the distribution expected under the null
hypothesis of zero effects. The extent to which the distribution of observed effect sizes has
thicker tails than the distribution under the null reflects the proportion of phenotypic variance
that is captured by SNPs. Specifically, the proportion of phenotypic variance explained is
estimated from ‘true’ effect sizes computed using a correction for sampling variation suggested
by Efron (2009). To avoid inflated estimates due to SNPs with non-zero effects that are in LD,
the SNP data need to be pruned to obtain independent SNP signals. The phenotypic variance of
continuous phenotypes due to SNPs is calculated using a sums of squares approach similar to
ANOVA (So etal. 2011).

The current study has two aims. The first aim is to apply the GRM and DE methods to
estimate the genetic variance due to all SNPs separately for GGT, ALT and AST levels. Secondly,
we examine whether part of the variation in liver enzyme levels that can be ascribed to SNPs is
shared with that for alcohol intake. The latter is accomplished by testing whether (a) regressing
out effects of alcohol intake lowers the variance components for liver enzyme levels attributable
to additive SNP effects, (b) the genetic correlation between liver enzyme levels and alcohol
intake differs significantly from zero in a bivariate GRM analysis, and (c) polygenic risk scores
based on GWA meta-analysis results for liver enzyme levels predict alcohol intake levels (Lee et

al. 2012b).
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Data originate from (a) participants of the Netherlands Twin Register (NTR; N=3,057
unrelated subjects) (Boomsma et al. 2002c), (b) participants of the Netherlands Study on
Depression and Anxiety (NESDA; N=2,027 unrelated subjects) (Penninx et al. 2008) and (c) the
available summary statistics from a meta-analysis on GGT and ALT (N=55,000) by an
international consortium (Chambers et al. 2011). To compare the performance of the two
methods, the GRM and DE approaches were also applied to data on BMI and height in the
NTR/NESDA samples as well as to the available summary statistics from two large meta-
analysis on BMI and height by the GIANT consortium (Speliotes et al. 2010; Lango Allen et al.
2010). BMI and height serve as bench mark traits for which the additive genetic variance

explained by SNPs has been studied before (Lubke et al. 2012; Yang et al. 2011b).

2. Materials and Methods
2.1 Participants

For 5,797 subjects who participated in the NTR biobank study (Willemsen et al. 2010),
genotype data and data on liver enzyme levels were available. Data were excluded for six
individuals with known liver disease (ICD-10 codes K70-K77) and 164 individuals from non-
European descent. Data were selected from unrelated individuals, which resulted in a sample of
3,057 NTR participants (60.7% females; year of birth 1915-1987). For 2,213 individuals who
participated in the NESDA biobank study (Penninx et al. 2008), liver enzyme levels and
genotype data were available. Data were excluded for 115 individuals from non-European
descent and for 71 persons who were related to other NESDA or NTR participants, resulting in
2,027 unrelated individuals whose data were included in the analyses (66.6% females; year of
birth 1939-1988). The total NTR/NESDA sample thus consisted of 5,084 unrelated individuals
(3,057 +2,027). For 4,842 individuals, data on alcohol intake in grams per day were available
(NTR: 2,832; NESDA: 2,010). Permission for the biobank studies was obtained from the Central
Ethics Committee on Research Involving Human Subjects of the VU University Medical Center
Amsterdam, and informed consent was obtained from all participants (Willemsen et al. 2010;
Penninx et al. 2008).

Meta-analysis summary statistics (z-scores and p-values) for GGT and ALT levels
originated from a large meta-analysis on data from 52,350 individuals with Caucasian ethnicity
(including 1,721 NTR and 1,724 NESDA participants; <5% of the total sample size), as well as
from 8,739 participants with an Indian-Asian background (Chambers et al. 2011).

For comparison purposes, analyses were also performed on BMI and body height. For
nearly all NTR/NESDA participants, data on BMI (N=5,065) and body height (N=5,071) were
assessed at the same time as their liver enzyme data. Meta-analysis summary statistics (p-

values) from large GWA studies on BMI (N=249,796, including 3,516 participants from
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NTR/NESDA) (Speliotes et al. 2010) and height (N=183,727, including 3,522 NTR/NESDA
participants) (Lango Allen et al. 2010) were downloaded from

http://www.broadinstitute.org/collaboration/giant/index.php /GIANT consortium data files.

Table 1 gives a summary of all data that were available for each phenotype, with the respective

numbers of participants.

2.2 Genotyping and quality control

Genotyping in the combined NTR/NESDA sample was performed on five platforms:
Affymetrix 6.0, Affymetrix 5.0-Perlegen (Affymetrix, Santa Clara California), [llumina 660,
[llumina Omni Express 1M and Illumina 370 (Illumina, San Diego, California). SNP data quality
control (QC) was performed in two steps. A first round of QC was platform-specific. SNPs were
aligned to the Hapmap 3 build 37 reference set (Altshuler et al. 2010a). SNPs were removed if
the number of alleles was >2, if SNPs matched to none or multiple positions, if SNP missingness
was >5%, allele frequencies deviated from Hardy-Weinberg equilibrium (HWE; p<.000001),
Mendelian error rate was >1%, double samples typed error rate was >1%, MAF was <.01 and/or
if alleles were C/G or A/T and MAF >.35. SNPs were then aligned to the 1000 Genomes
reference set (Altshuler et al. 2010b) and SNPs were excluded if allele frequencies differed >.20
compared to the reference set. Samples were excluded if missing rate was >10%, heterozygosity
<-.10 or >.10, principal component (PC) values indicated batch effects, or sex status did not
match genotypic sex. Imputation was performed with Impute2 (Howie et al. 2009) using the
1000 Genomes CEU sample as reference set (Altshuler et al. 2010b). A second round of quality
control was performed on the imputed set. SNPs were excluded if allele frequencies differed
from HWE (p<.000001), differed >.15 compared to the reference set, SNPs showed large
platform-specific case-control differences (p<.00001), Mendelian error rate >2%, if imputation
quality was low (r?_hat <.3, proper info <.3, SNP info <.3) or MAF <.001. Overall, 29,311,591

SNPs were excluded in these QC steps, resulting in a final dataset of 8,115,142 autosomal SNPs.

2.3 Phenotypes

Liver enzymes were determined in heparin plasma tubes that were collected after
overnight fasting. Before the start of the blood sample collection, the NTR and NESDA biobank
protocols for processing and storage of blood samples were harmonized (Boomsma et al. 2008).
For the NTR biobank project, blood samples were collected in the morning at the participant’s
home or, if preferred, at his/her work. and processing took place at one central laboratory
within six hours (average transport time 196 minutes). Blood was collected in two heparin

plasma tubes, which were stored in melting ice during transportation.
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When the samples arrived at the laboratory, plasma was collected and six samples of
500 pL were snap-frozen and stored at -30 °C. Liver enzyme levels were determined with Vitros
assays (Vitros 250, Ortho-Clinical Diagnostics; Johnson & Johnson, Rochester, USA) in units per
liter (U/L) (Willemsen et al. 2010). The average time between blood sample collection and liver
enzyme determination was 37.0 months (SD=11.9). For NESDA, blood sampling took place
during the NESDA baseline assessment at seven field sites that were within walking distance of
a laboratory. At the laboratory, processing of blood samples and determination of liver enzyme
levels was performed within the hour (Boomsma et al. 2008; Penninx et al. 2008). Liver enzyme
levels were determined with Roche Diagnostic assays (Chambers et al. 2011).

Information on alcohol intake was collected through self-report questionnaires and
analyzed as grams of alcohol consumed per day. For NTR participants, data on alcohol intake
came from multiple surveys collected between 2002-2011 as part of the longitudinal studies on
health, lifestyle and personality (Boomsma et al. 2002¢; Willemsen et al. 2013). Alcohol intake
was measured by the question ‘How many glasses a week do you drink on average?’ with
response categories: ‘< 1 glass’, ‘1-2 glasses, ‘3-5 glasses’, ‘6-10 glasses’, ‘11-20 glasses’, ‘21-40
glasses’ and > 40 glasses’ per week, or with the option to report the number of glasses of beer,
wine and spirits per day of the week. The average intake in grams per day was calculated by
taking the midpoint number of glasses per week for each drinking category divided by 7, and
multiplied by 14 (grams of alcohol per glass). If alcohol data were available from multiple
surveys, the survey closest in time to the biobank visit was selected. The average time between
the biobank visit and measurement of alcohol use was 15 months (SD=12.4).

For NESDA participants, the level of alcohol intake was calculated from the first two
items of the AUDIT questionnaire that was collected at the day of the blood sample collection.
Item 1 assessed drinking frequency: ‘How often do you have a drink containing alcohol?’ with
response categories ‘never’, ‘monthly or less’, ‘two to four times a month’, ‘two to three times a
week’, ‘four or more times a week’. Item 2 assessed drinking quantity at a drinking day: ‘How
many drinks containing alcohol do you have on a typical day when you are drinking? with
response categories ‘1 or 2’,‘3 or4’,‘5 or 6’,‘7,8 or 9°,’10 or more’. To calculate alcohol intake
levels, (each category of) drinking frequency was expressed as the number of drinking days per
year and (each category of) drinking quantity as the midpoint number of glasses consumed at a
drinking day. The last category of drinking quantity was given the midpoint value of 11 based
on the median number of drinks per day reported by NTR participants who drank more than 10
glasses per day. Alcohol intake in grams per day was calculated by dividing the number of
drinking days per year by 365 (days in the year), multiplied by the midpoint number of drinks
per drinking day, multiplied by 14 (grams of alcohol per glass). If individuals reported to ‘never’

drink alcohol on the first AUDIT item, they were assigned an alcohol intake level of 0 grams of
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alcohol per day. For subsequent analyses, liver enzyme values and alcohol intake in grams per

day were log-transformed to approximate normality.

2.4 Statistical analyses
2.4.1 Preparatory analyses

Fixed effects of source and sex Differences in liver enzyme levels were examined with
respect to source (NTR, NESDA), and sex (male, female) by ANOVA. Correlations between liver
enzyme levels and alcohol intake (grams/day) were estimated as a function of source and sex.
Based on these analyses, regression analyses were carried out with source (NTR/NESDA), age
(for all phenotypes but height), year of birth (for height), sex, time in months between blood
draw and liver enzyme assessment, two PCs representing platform effects, three PCs
representing population stratification and lab effects® as covariates. All regression analyses
were performed in SPSS 20.0 (IBM Corp. 2011). The residuals from these regression analyses
were used in all subsequent analyses.

GWA In the NESDA/NTR dataset SNP associations were tested in a linear model
assuming additive SNP effects using Plink (v1.07) (Purcell et al. 2007). GWA results are the
input for the methods to estimate heritability, and were therefore inspected by quantile-
quantile (QQ) and Manhattan plots. QQ plots depict the observed distribution of p-values
against the expected p-values. Manhattan plots show the p-values of the individual association
tests for each SNP. Thresholds for suggestive and genome-wide significance were 1x10-5 and
5x10-8 respectively.

Effect of level of pruning on GRM and DE method The performance of the GRM method
was explored by comparing the standard errors around the GRM-based estimates under four
scenarios that differed in levels of LD-based SNP and relatedness pruning: (a) no LD-based SNP
pruning, no relatedness pruning, (b) no LD-based SNP pruning, relatedness pruning <.025, (c)
LD-based SNP pruning at r2 .95, no relatedness pruning, (d) LD-based SNP pruning at r2 .95,
relatedness pruning <.025. To apply the DE method on the NTR/NESDA SNP dataset the
recommendation of So, Li and Sham (2011) to prune at a level of r2.25 may not be valid, since
this recommendation was based on datasets containing .1-2.6 million SNPs and the NTR/NESDA
dataset contained ~8 million SNPs. The effect of LD-based SNP pruning was therefore explored
by estimating DE-based heritability estimates under four levels of pruning: r2 <.25, r2 £.10, r2
<.05,12.00. For each level of pruning, a 100-SNP sliding window was used, proceeding by 25
SNPs in each step (Plink options e.g. --indep-pairwise 100 25 0.00).

8 Lab effects (among NESDA participants) were (significant and) included as covariate for AST levels only,
not for GGT and ALT levels.
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2.4.2 Main analyses

Estimation of SNP-based heritability with GRM method The genetic relatedness matrix
was estimated for all individuals (option --make-grm) using the free software package GCTA
(v1.04) (Yang et al. 2011a). Then, a linear mixed model with the genetic relationships as a
random coefficient was used to estimate the phenotypic variance that is due to genetic
relatedness. Estimation was performed using restricted maximum likelihood (REML) (option --
reml). In additional analyses, the variance that can be explained by SNPs on each individual
chromosome was estimated by genetic relatedness matrices that were estimated for each
chromosome separately.

Estimation of SNP-based heritability with DE method Analyses with the DE method were
performed in R2.15.1 (R Development Core Team 2012) with the script for continuous traits
obtained from the developer’s website:

https://sites.google.com/site /honcheongso/software /total-vg The method takes a vector with

z-statistics as input that correspond to the effect sizes of SNPs obtained in a GWA study. Under a
standard normal probability distribution, z-statistics correspond to specific p-values and vice

versa (ignoring the sign of the z-statistics), with z-statistics defined as the standardized

— X=X
deviation of a value x to the mean X, thatis Zz = ———, with sd(x)=1. Using this relation, z-

statistics were extracted from GWA p-values or obtained as part of the downloaded GWA meta-
analysis. The sign of the z-statistics was permuted 100 times, in order to avoid incorrect
estimates in case all observed effects are in the same direction. So, Li and Sham (2011)
described two different estimates, based on conditional and unconditional kernel estimation
respectively, but noted that unconditional Kernel estimation is more accurate and stable with
pruned data than conditional Kernel estimation. This was in line with our preliminary results.
Therefore reported results were based on unconditional Kernel density estimation. To avoid
inflation of the variance explained by SNPs by redundant SNP effects, SNPs in high LD with
other SNPs were removed by pruning. Note that pruning was independent of the trait
associations. In the GWA meta-analysis data on liver enzymes, BMI and height, raw SNP data
were not available, and pruning was based on the LD pattern among SNPs as observed in the
Hapmap 2 CEU reference set (release 22, hapmap-ceu-all.zip) that had been used as a reference
set for imputation for the individual cohorts included in the meta-analyses, and which was
downloaded from the Plink website

http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml#hapmap. For the GWA meta-analysis

data, pruning was based on a r? threshold of .25, a 100-SNP sliding window and proceeding by
25 SNPs in each step (Plink options --indep-pairwise 100 25 0.25) as suggested by So, Li and
Sham (2011). For the NTR/NESDA dataset, final estimates were based on truly independent
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SNPs (corresponding to a r2 level of .00; --indep-pairwise 100 25 0.00; left ~50,000 SNPs in
pruned set, see Supplementary Table S2). This level of pruning would serve as a lower bound of
the variance explained by all SNPs. To obtain an indication of the stability/variability of the
heritability estimates, the Hapmap and NTR/NESDA dataset were pruned 10 times. The analysis

was carried out on each pruned set, and results were then averaged.

Tests for shared SNP effects on liver enzyme levels and alcohol intake Whether part of the
variance in liver enzyme levels ascribed to SNPs was shared with that for alcohol intake was
tested (a) by comparing variance components due to SNPs with and without regressing out
effects of alcohol intake, (b) by calculating the genetic correlation between liver enzyme levels
and alcohol intake in a bivariate GRM analysis, and (c) with polygenic scores.

Applying the GRM and DE methods, in univariate analyses on the NTR/NESDA data it
was tested whether including alcohol intake as fixed effect in the GRM or DE analysis changed
the amount of variance explained by SNPs. The GRM method, based on the same genetic
relatedness matrix as described above, included alcohol intake as fixed effect in a linear mixed
model. For the DE method, GWA analyses were performed for NTR/NESDA participants with
and without including alcohol intake as additional fixed effect. If SNP effects on liver enzyme
levels reflect SNP effects on alcohol use, then regressing out the variance in liver enzyme levels
due to alcohol use, will result in a lower estimate of variance explained by SNPs.

A bivariate GRM analysis (Lee et al. 2012b) estimated the correlation between the
additive SNP effects on alcohol intake and liver enzyme levels in a linear mixed model, based on
the genetic relatedness matrix described above. This correlation, here referred to as the genetic
correlation r, between alcohol intake and liver enzyme levels, is defined as the standardized

genetic covariance between alcohol intake and liver enzyme levels:

 cov(Aprcouy)
la,ALC,LIV = Jvar(Ap ) “var(Ap )

That is, the genetic correlation r, between alcohol intake (ALC) and liver enzyme levels (LIV) is
defined as the additive genetic covariance between alcohol intake and liver enzyme levels due
to SNPs cov(Aaicuv), divided by the square root of the product of the additive genetic variance
component for alcohol intake due to SNPs (var(Aaic)) and the additive genetic variance
component for liver enzyme levels (var(Aww)).

With the polygenic score approach (Purcell et al. 2009), sets of SNPs are selected that
are associated with the trait of interest in a discovery sample for different levels of association
which are then used for prediction of a trait of interest in a validation sample. GWA meta-

analysis summary statistics (Chambers et al. 2011) served as the discovery set and alcohol
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intake data of NTR/NESDA individuals as target set. Eleven sets of SNPs were created that
contained SNPs with meta-analysis p-values <.01, .1, <.2,£.3,<.4,<.5,<.6,<.7,<.8,<.9 and <1.
For each individual in the target set, based on each set of SNPs, polygenic risk scores were
calculated by multiplying the meta-analysis z-score of the selected SNP with the number of
effect alleles for the individuals in the target set (Plink option --score). The polygenic scores
were tested for prediction of alcohol intake levels by performing a linear regression analysis in
R.

An overview of all analyses performed on the datasets is included in Table 1. All
statistical tests were considered to be significant if p-values <.01, which roughly corresponds to

estimates that are larger than 2.5 times their standard error/estimate of variability.

3. Results
3.1 Preparatory analyses

Fixed effects of source and sex Table 2 summarizes the mean and median liver enzyme
levels (with SD and range) for NTR and NESDA, separately over sex. Mean liver enzyme levels
and alcohol intake were higher for men than women. For both sexes, GGT and alcohol intake
levels were higher in NTR than in NESDA participants, whereas for ALT and AST the reverse
was observed (see Table 2). Table 3 shows the correlations among liver enzyme levels and
alcohol intake, by source and sex. There were positive correlations among the three liver
enzyme levels ranging from .26 to .67. The correlation between GGT and ALT was higher for
NESDA than NTR participants (.54-.56 versus .26-.31). Correlations between AST and GGT and
AST and ALT were similar in NTR and NESDA (~.38 and ~.59 respectively). Alcohol intake was
significantly correlated with GGT levels in both sexes (.18-.27), whereas it was not consistently
associated with ALT and AST levels (Table 3). These results were similar when partialling out
the effect of age. Hence, the overlap in variance of liver enzyme levels due to SNPs with that for
alcohol intake, was tested for GGT only.

GWA Supplementary Figures S1.1-6.1 show the QQ plots with p-values for the SNP
associations for liver enzyme levels, alcohol intake, BMI and height that resulted from GWA
analyses performed on the NTR/NESDA datasets. Figures S1.1a-S6.1a show the QQ plots for the
NTR dataset, Figures S1.1b-S6.1b for the NESDA dataset and Figures S1.1c-S6.1c for
NTR/NESDA combined. QQ plots are also given for the downloaded meta-analysis results for
liver enzymes, BMI and height (Figures S1.1d-6.1d). In line with the published results, these
show that the observed p-values strongly deviate from the line with expected p-values,
indicating large polygenic variation for GGT, ALT (Figures S1.1d, S2.1d), BMI and height (Figures
S5.1d, S6.1d). For the NTR/NESDA data, observed p-values showed a much weaker deviation

from the line with expected p-values as can be seen in Figures S1.1c-6.1c. For ALT and to a
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lesser extent for alcohol intake, the observed p-values for the combined NTR/NESDA data fell
below the line with expected p-values (Figures S2.1c, S4.1c), whereas this was not the case
when the NTR and NESDA data were analyzed separately (Figures S2.1a-b, S4.1a-b). This may
indicate phenotypic or genetic heterogeneity. For subsequent analyses we therefore reported
results for NTR and NESDA separately as well as combined. Manhattan plots for liver enzyme
levels, alcohol intake, BMI and height for the NTR/NESDA datasets and the GWA meta-analysis
data are shown in Supplementary Figures S1.2-6.2.

Effect of level of pruning on GRM and DE method Standard errors around the GRM-based

estimates were lowest when no pruning was performed on either SNPs or the relatedness
among individuals (see Supplementary Table S1). For subsequent analyses, the GRM method
was therefore applied without SNP or relatedness pruning. DE-based estimates on the
proportions of variance explained by SNPs reached impossible values (>1) for at least one of the
phenotypes when performing LD-based SNP pruning at a level of r2 >.00 (see Supplementary
Table S2) for the NTR/NESDA data. For subsequent analyses on the NTR/NESDA data, the DE
method was therefore performed on truly independent SNPs (corresponding to pruning at r?

.00).

3.2 Main analyses
SNP-based heritability based on GRM and DE methods Table 4 shows the GRM- and DE-

based estimates for the variance explained by SNPs for liver enzyme levels, alcohol intake, BMI
and height. For both methods, the variability of the variance estimates became smaller as the
sample size increased. Note that GRM-based estimates for BMI and height were significantly
different from zero (estimates >2.5 times estimate of variability), whereas those for liver
enzyme levels and alcohol intake were not.

Both methods agreed very well on the point estimate of heritability for GGT (15-17%) and AST
(13%). The estimates for ALT were more variable. Based on the DE method, 15% of the variance
could be explained by SNPs, whereas the GRM-based estimate was only 2%. Note that for ALT
and to a lesser degree for AST, GRM-based estimates on the combined NTR/NESDA data were
lower than those for the separate sets, whereas for GGT, alcohol intake and BMI, GRM-based
estimates for the combined NTR/NESDA set were in between those for the separate NTR and
NESDA sets. This may reflect the phenotypic/genetic heterogeneity that was observed for ALT
(see Figure S2.1c as compared to Figures S2.1a-b), although it should be noted that estimates of
variability were large, and differences between ALT and AST estimates were not significant. In
total, 15% of the variance in alcohol intake could be explained by the combined effect of SNPs

(based on the NTR/NESDA data).
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CHAPTER 8

Interestingly, a significant part of the SNP effects were attributable to two chromosomes (4, and
15 explaining ~4.5%, of the variance each) according to chromosome-specific GRM analyses
(see Supplementary Table S3). For liver enzyme levels none of the chromosomes separately
explained a significant part of the variance.

For BM], the total variance due to SNPs was 17-22%. The estimates for height differed
significantly between 23% and 58%, according to the DE and GRM method respectively
(confidence intervals of +/-2.5 times the estimate of variability did not overlap). Note that the
estimate of 23% should be considered as a lower bound on the variance explained by SNPs,
namely that is due to all measured/imputed SNPs. This estimate will differ from the true
variance since measured/imputed SNPs are in imperfect LD with the causal variants (So et al.
2011). Comparing the GRM- and DE-based estimates to the amount of additive genetic variance
for these phenotypes as estimated with a extended twin-family design (see Table 4) shows that
about half of the additive genetic variation was explained by additive SNP effects. That is, 50-
57% of the additive genetic variance of GGT, 7-52% for ALT, 46% for AST, 65% for alcohol
intake, 42-55% for BMI, and 30-76% for height.

Comparison of DE-based estimates using the NTR/NESDA GWA results and the GWA meta-

analysis results The DE-based estimates for the GWA meta-analysis results for GGT, ALT and BMI
were much lower than those based on the NTR/NESDA GWA results. This was surprising given
the large polygenic variation that was suggested by the QQ plots for the meta-analysis (see
Supplementary Figures S1.1d-S6.1d). Note that the DE estimates based on the GWA meta-
analysis results for liver enzymes are within the confidence intervals of the GRM estimates for
GGT and ALT. According to the DE estimates, ~8% of the variance in GGT and ~5% of the
variance in ALT was explained by SNP effects, corresponding to ~27% and ~17% of the
narrow-sense heritability of GGT and ALT respectively. The DE estimates based on the GWA
meta-analysis results for BMI and height were 10% and 26% respectively, corresponding to
25% and 34% of the narrow-sense heritability (Table 4). A potential cause for the low estimates
using meta-analysis p-values in the DE method is heterogeneity among the individual cohorts in

the GWA meta-analysis.
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CHAPTER 8

Shared SNP effects for GGT and alcohol intake Including alcohol intake as an additional

fixed effect did not significantly decrease GRM or DE estimates (Table 5). According to the
bivariate GRM analysis, the genetic correlation between GGT and alcohol intake was .35, but this
correlation was not significantly different from zero (s.e..35). Polygenic scores based on the
meta-analysis for GGT (Chambers et al. 2011) significantly predicted alcohol intake levels for all
p-value thresholds from <.1 to <1 however, although explained variance did not exceed 0.25%.
Hence, the overlap in SNP effects indicated by the polygenic risk score approach was not

confirmed by the GRM and DE method.

Table 5 GRM-based and DE-based estimates (estimate of variability) for GGT with/without

alcohol intake as additional fixed effect

GRM-based DE-based?
without alcohol  with alcohol without alcohol  with alcohol
as fixed effect as fixed effect as fixed effect as fixed effect
NTR .036 (.123) .051 (.123) 269 (.044) .341 (.028)
NESDA .309 (.188) 297 (.188) .374 (.036) 408 (.060)
NTR+NESDA .150 (.080) .140 (.080) 173 (.016) .189 (.020)

a3To obtain DE-based estimates, NTR/NESDA SNP dataset was pruned at r2 level of .00, using a 100 SNP sliding

window, proceeding by 25 SNPs in a step (see Supplementary Table S2 and text for details)

4. Discussion

The current study aimed at estimating the proportion of variance of liver enzyme levels
that can be explained by the joint effect of all SNPs, and at testing whether part of this variance
was shared with that for alcohol intake. The study also addressed a series of methodological

issues that arise when applying different methods for estimating SNP-based heritability.

4.1 SNP-based heritability based on GRM and DE methods

For GGT and AST, ~16% and ~13% of the phenotypic variance can be explained by
additive SNP effects respectively. For alcohol intake this was 15% with a significant fraction
explained by chromosomes 4 and 15. Estimates for ALT ranged from 2% to 15%. With these
estimates about half of the additive genetic variance for these phenotypes can be explained by
genome-wide assessed SNPs. Given that current GWA studies have explained less than 2% of the
phenotypic variation in liver enzyme levels by actual SNP effects (Kamatani et al. 2010;
Chambers et al. 2011), we can conclude that currently used SNP platforms contain relevant, but
undiscovered, information with regard to the underlying genetic variation in liver enzyme
levels.

The low GRM-based estimate for ALT is consistent with the observation that Chambers

etal. (2011) did not detect more than four significant SNPs in the combined data from >55,000
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individuals. This may be explained by genetic or phenotypic heterogeneity among the NTR and
NESDA sample that was suggested by the QQ plots for ALT in which the observed p-values
showed a much larger deviation from the line from expected p-values when data from NTR and
NESDA were analyzed separately than when data from NTR and NESDA were combined.
Alternatively, polygenic variation underlying ALT can be truly close to zero, which is however
contradicted by the significant heritability estimate (due to additive genetic effects) resulting

from a twin-family study (Table 4).

4.2 Association alcohol intake with liver enzyme levels and shared SNP effects

Alcohol intake was associated with GGT levels in both sexes, whereas ALT and AST were
not consistently associated with alcohol consumption. This is most likely explained the fact that
the NTR/NESDA sample contained relatively few heavy drinkers. Among the NTR/NESDA
participants, 9.6% of men drank heavily (>21 glasses alcohol/week; >42 grams alcohol/day)
and 6.4% of women (>14 glasses alcohol/week; >28 grams alcohol/day). Whereas levels of GGT,
ALT and AST are elevated among heavy drinkers, most studies show that among moderate
drinkers, only GGT is increased and not ALT or AST (Alatalo et al. 2009b; Arndt et al. 1998;
Liangpunsakul et al. 2010).

With the polygenic risk score approach, there was evidence for shared SNP effects for
GGT and alcohol intake levels. The amount of variance explained was small, however, and a lack
of power of the GRM and DE methods to detect such a small effect may be the reason why these
methods could not confirm this common SNP association. Otherwise it can be argued that the
lack of common SNP variation may be reflective of the fact that alcohol intake and GGT are
causally related to each other, not only through a common genetic pathway. If individuals prone
to (heavy) alcohol use show elevated GGT levels as a consequence of their drinking, regressing
out variance of GGT due to alcohol use does not necessarily lead to a decrease in variance
explained by SNPs, but may instead result in a similar or even higher proportion of variance
explained. However, the bivariate GRM analysis could not detect significant overlap in SNP
effects on alcohol intake and GGT either, although it did not rely on the assumption that the
association between alcohol intake and GGT must be due to common genetic effects, not to a
causal effect of alcohol use on GGT. Futhermore, in a bivariate genetic analysis on alcohol intake
with GGT in a sample of 6,465 twins and their family members we did not detect evidence for a
causal effect of alcohol use on GGT. Instead, the association between alcohol intake and GGT was
best explained by shared genetic effects that acted in a non-additive manner: interacting risk
alleles that influence alcohol intake as well as GGT (Van Beek et al. 2013b). To test whether we
did not detect common SNP variation because the methods that were applied assumed that

additive SNP effects were underlying the association of alcohol intake with GGT, whereas the
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true model implied non-additive SNP effects, we ran a GWA analysis for GGT under a model of
dominance (Plink options --linear --genotypic), and applied the DE method. Since the DE
method relies on summary statistics, it is not restricted to testing additive SNP effects alone. The
amount of variance ascribed to dominant gene effects did not differ significantly when including
alcohol intake as fixed effect (.14, with estimate of variability .02 versus .16 estimate of
variability .02). Hence, the lack of common SNP variation is not explained by having applied a

model assuming additive SNP effects, whereas the correct model implied dominant gene action.

4.3 Comparison of liver enzyme results to BMI and height

To examine the performance of the GRM- and DE-based methods, analyses were
performed for BMI and height, two phenotypes for which the amount of SNP variation has been
studied previously (Yang et al. 2011b; Lubke et al. 2012; Kutalik et al. 2011). Estimates for BMI
(17- 22%) agreed very well with GRM-based estimates in another study (15-17%) (Yang et al.
2011b) and correspond to about half of the additive genetic variation in BMI. For height, results
were less consistent. According to the GRM method, a large proportion of the variance of height
can be ascribed to additive SNP effects (58%; 76% of the narrow-sense h?). The DE-based
estimate did not fall in the confidence interval (CI) of the GRM-based estimate however (+/-2.5x
s.e.). That is, according to the DE method, the amount of variance explained by SNPs is much
lower (23%; 30% of the narrow-sense h?). This DE estimate was not significantly different from
the proportion of variance explained by SNPs in a previous study among NTR/NESDA
participants however that was imputed against the Hapmap 2 reference set and pruned at a

level of r2.25 (29%; CI 21.2%-37.8% based 2.5x s.e.) (Lubke et al. 2012).

4.4 Methodological considerations
The present study raised several methodological considerations.

Pruning Since some concerns had been expressed about the robustness of the GRM
method when dealing with strong LD between SNPs (Speed et al. 2012), the effect of relatedness
and/or LD-based SNP-pruning was explored. With regard to the GRM method, pruning was
associated with larger standard errors around the estimates and was therefore not employed.
For the NTR/NESDA sample, the DE method was applied to truly independent SNPs (r2.00),
since less stringent SNP pruning resulted in impossible estimates of proportions of variance
explained by SNPs for AST. Given that the amount of variance that could be ascribed to SNP
effects for height was much lower based on the DE method (23%) than that based on the GRM
method (58%), whereas estimates agreed for GGT, AST, alcohol intake and BM], it may be
argued that the optimal level of LD-based SNP pruning is dependent on the specific genetic

architecture of the phenotype. That is, it may depend on how many SNPs have an effect and how
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many of those SNPs happen to be in high or moderate LD with other SNPs. The DE method is
introduced as a method to uncover that part of the heritability that is captured by
measured/imputed SNPs. The variance explained by SNPs in the pruned set < variance
explained by all measured/imputed SNPs in the dataset < all additive genetic variance in the
genome (So et al. 2011). The DE estimate of 23% thus gives a lower bound of the variance that
can be explained by SNPs for height. The estimate was not significantly different from thatin a
previous study among NTR/NESDA participants (29%, s.e. 3.5), although that dataset was
imputed against the Hapmap 2 reference set and pruned at r2.25 (Lubke et al. 2012). It is
therefore argued that LD-based SNP pruning has not been too stringent.

Difference in DE-based estimates from the NTR/NESDA GWA and the GWA meta-analysis
results DE estimates based on the meta-analysis results were lower than those for the
NTR/NESDA GWA results (with the exception of height). Given that DE estimates for the
NTR/NESDA sample agreed very well with those based on the GRM-method (for GGT, AST and
alcohol intake), the estimates based on the meta-analysis results likely represent
underestimates of the variance explained by SNPs rather than that the DE estimates for the
NTR/NESDA sample were being overestimated. A first explanation for the low estimates for the
meta-analysis results may be heterogeneity among the samples that went into the meta-
analysis. If not taken into account sufficiently this will lead to a lower amount of variance that
can be explained by SNPs. Take for example the situation in which SNP effects from two equal
sized samples are combined through inverse variance meta-analysis. In the case of genetic
heterogeneity, if SNP x has an effect in sample 1 (Iog(Odds Ratio, OR)=1) but not in sample 2
(Iog(OR)=0), the meta-analysis effect size of this SNP is halved (log(OR)=0.5), but its explained
variance reduced to one quarter, since explained variance is proportional to log(OR) squared.
That is, a quarter of the variance due to SNP x is lost when combining effects through inverse
variance meta-analysis as compared to the average variance explained weighted by sample size
(the square of {[log(OR1)*N1 + log(OR2)*N2]/N1+Nz}) (P.C. Sham, personal communication). It
might be argued that the large polygenic variation that is evident from the QQ plots for the
meta-analysis data argues against a loss of variance explained (Figures S1.1d-6.1d). The
deviation of observed p-values is not only reflecting true association signals however, but also
false positives. Since the DE method corrects observed effects for sampling fluctuation to get
‘true’ effect sizes, the deviation of observed p-values that is evident in the QQ plots will only to
some extent be picked up by the DE method.

By means of simulation studies it was tested whether the DE method was dependent on
sample size. This was not the case. When the true population was simulated to consist of 30,000
individuals, drawing samples of 3,000 individuals each did not result in overestimated

proportions of variance explained by SNPs. The lower DE estimates based on the meta-analysis
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results could not be explained either by the DE method being sensitive to the distribution of
effect sizes. Simulating data under the assumption that the distribution of SNP effect sizes was
exponential, thatis small effects for SNPs that are relatively common and large effects for SNPs
with low MAF, did not lead to distorted DE-based estimates (R.W., unpublished data). Given the
results from this simulation study, the low DE-based estimates for the meta-analysis as well as
the lower DE-based estimates for the combined NTR/NESDA dataset compared to the separate
datasets, are strongly suggestive of effects of genetic/phenotypic heterogeneity.

Second, the DE estimates based on meta-analysis results may be underestimated if
genomic control correction has affected the SNP associations. In most meta-analyses p-values
are corrected for the genomic control inflation factor (Asc), and often double corrected (e.g. see
Lango Allen et al. (2010) and Speliotes et al. (2010)). First, the study specific p-values are
corrected for the study-specific genomic inflation factor. Next meta-analysis p-values are
corrected for the overall genomic inflation factor. Since p-values are the direct input for the DE
method, any correction of the p-values will result in lower DE estimates. For the current study,
the DE estimates based on the meta-analysis results are based on p-values that were
‘uncorrected’ for the overall genomic inflation factor correction (by transforming the p-values
into x2 statistics, multiplying the x2 statistics by the genomic inflation factor and then calculating
new p-values from these new x2 statistics). Nevertheless, to the extent that the first study-
specific genomic control correction has affected the SNP associations, the DE estimates for

meta-analysis data will be underestimated.

4.5 Future research

More research is needed to explore the merits and limitations of the GRM and DE
methods. In future research it will be interesting to explore whether the performance of the DE
method can be further improved when the optimal level of pruning is considered to be a meta
parameter whose value needs to be set through cross validation. The basic idea is that the
choice of the level of pruning is guided by the prediction error, with the preferred pruning level
having the lowest prediction error. For the DE method this may be implemented by pruning the
SNP dataset x times, each time for a different level of SNP pruning, then drawing k random
samples for each pruned set x, calculating the DE estimate for each of the k samples, and
calculating the standard error over all k samples for each level of pruning. Then, for the level of
SNP pruning that is associated with the lowest prediction error (expressed as variability around
the mean), the actual amount of variance can be estimated in fresh data (that is, a random draw
of the data that was set aside beforehand). The performance of the DE and GRM method can
then be further compared to newly developed methods to estimate the amount of variance

explained by SNPs, such as those that propose improvements on current methods (e.g. the GRM
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method) (Speed et al. 2012), other means to estimate and sum ‘true’ effect sizes for SNPs in
pruned SNP sets (Kutalik et al. 2011) and/or those that derive from other statistical (e.g.
Bayesian) backgrounds (Stahl et al. 2012).

In addition, work needs to be done on computing standard errors which are are not
automatically obtained for the DE method. In this study an estimate of the variability of the DE
estimates was obtained by repeating the DE method on 10 different pruned sets. To the extent
that SNPs in different pruned sets reflect the same information because they are in considerable
LD, these estimates of variability may have underestimated the true variability around the
estimates. Future studies could focus on ways to derive standard errors analytically,
numerically or through bootstrapping.

To conclude, about half of the additive genetic variation in liver enzyme levels and
alcohol intake can be explained by SNP effects as captured on currently used SNP platforms.
Based on polygenic risk scores, the association of alcohol intake with GGT can be traced back to
genetic polymorphisms. Given adequate sample sizes, this information may lead to the detection
of new susceptibility loci that may elucidate new biological pathways of alcohol use, liver

enzyme levels and their association.
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SUMMARY AND GENERAL DISCUSSION

CHAPTER 9

SUMMARY AND GENERAL DISCUSSION

The studies described in this thesis aimed to unravel the genetic architecture of variation in
alcohol use and blood levels of three liver enzymes, gamma-glutamyl transferase, alanine and
aspartate aminotransferase (GGT, ALT and AST). As these three liver enzymes are markers of
liver injury, and the risk of liver injury increases with heavy drinking, genetic factors underlying

the association between alcohol use and liver enzymes received special attention.

1. Summary

Chapter 1 outlined definitions of (problematic) alcohol use, and gave a short literature
overview of the relation between alcohol use and liver injury. Chapter 2 provided an overview
of the data that were analyzed in this thesis, describing the measurement of alcohol use and the
assessment of liver enzyme levels. This chapter also introduced the statistical methods that
were applied to estimate heritability based on twin-family designs and genetic effects from
genome-wide marker data. With twin-family designs the heritability of traits is estimated based
on the known genetic relatedness among mono- and dizygotic twin pairs, their parents and their
siblings. Methods that employ genetic marker data can determine what part of the family-based
heritability estimates of traits is attributable to effects of measured/imputed genetic variants
(here single nucleotide polymorphisms, SNPs) as well as locate important risk variants
associated with alcohol use and/or GGT. The data that are analyzed in this thesis came from
adolescent and adult participants of the Netherlands Twin Register (Adult NTR; ANTR)
(Boomsma et al. 2002¢; Willemsen et al. 2013) and the Netherlands Study of Depression and
Anxiety (NESDA) (Penninx et al. 2008).

Using methods that rely on the known genetic relatedness among family members,
Chapters 3, 4 and 5 showed that variation in alcohol use and liver enzyme levels is substantially
heritable. Chapter 3 estimated the broad-sense heritability of alcohol intake (grams per day)
among adults at 53%, with a considerable proportion of the variation due to genetic influences
that act in a non-additive way (30%) (see Table 1). Although men report higher levels of alcohol
intake than women, variation in alcohol intake is equally heritable among men and women, with
the same genes expressed in both sexes. Genetic influences are also similar across the different
ages. Parent-offspring pairs (who show a larger within-pair age difference than twin/sibling
pairs), are equally correlated in their alcohol intake levels. Spouses resemble each other in
alcohol intake levels (correlation between spouses: 0.39, 95% confidence interval, CI, .34-.44).

Cohabitation effects were not significant (at a=.01; p=.011), suggesting that spousal
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resemblance mainly comes from phenotypic assortment. That is, individuals choose their
spouse (partly) based on (factors related to) his or her alcohol intake level.

In Chapter 4, the development of symptoms of alcohol abuse and dependence (AAD)
was studied from adolescence into young adulthood, an important time of life in which drinking
habits are commonly formed. In this longitudinal study, data of twins were categorized into six
age groups of three years each, from 15-17 years until 30-32 years, according to age at
assessment of AAD symptoms. The frequency of symptoms of AAD was substantially higher in
males than females. Sex differences in the heritability for the risk of AAD symptoms were not
detected. The development in risk of having one or more symptoms of AAD for across this age
period between 15 and 32 years was explained by one genetic factor, representing a set of
genes that increased in importance over age. At ages 15-17 years, genetic effects explained 28%
of the variance, and environmental factors that were shared among twins were more
prominent. Genetic influences readily increased in importance when subjects became older,
whereas the importance of shared environmental influences declined. At ages 21-23, the
heritability of risk of AAD symptoms increased to 58% and stayed high at 52-56% at ages 24-32.
The increase in heritability over age was not due to genetic innovation but due to an
augmentation of genetic influences that were already present in adolescence.

Chapter 5 indicated that variation in liver enzyme levels was moderately heritable.
There were quantitative sex differences in the heritability, with heritability sometimes being
higher in men and sometimes higher in women (see Table 1). The broad-sense heritability of
GGT was 30% in males and 60% in females. For ALT, the broad-sense heritability was 40% and
22% for males and females respectively. For AST, 43% could be explained by genetic influences
in both sexes. Non-additive genetic factors played a role for AST (both sexes 15%) and GGT in
females (28%), but not for ALT (both sexes) and GGT in males.

Opposite-sex and same-sex pairs resembled each other to the same degree in liver
enzyme levels, indicating that the genes underlying variation in liver enzyme levels are similar
for men and women. In other words, there is evidence for quantitative, but not for qualitative
sex differences. Parent-offspring pairs and sibling pairs, despite larger within-pair age
differences for the first group than for the second, resembled each other to the same extent in
ALT and AST levels, indicating that the same genes were expressed over age. There were
quantitative age differences in the relative importance of genetic and environmental effects on
GGT that were due to environmental effects that were shared within the male offspring
generation (c2 28%), but not among parents and offspring. The shared environmental effects on
GGT could not be accounted for by seasonal effects or spousal resemblance. These were present

for ALT and AST (7 spouse=.15), but not for GGT.
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Chapter 6 focused on the association of alcohol intake with GGT at the population level
and how this association could be explained. | examined whether increased GGT levels co-occur
with high levels of alcohol intake, because alcohol intake causally influences GGT levels, or
whether both are explained by the same genetic factors that induce a correlation between
alcohol intake and GGT at the population level (genetic pleiotropy). Higher levels of alcohol
intake predicted higher GGT levels in men (r=.17) and women (r=.09). Genetic effects on alcohol
intake were correlated with those on GGT levels (p<.001), whereas the correlation between
environmental effects on alcohol intake and GGT was not significant (at a=.01; p=.041). These
findings are most consistent with an effect of shared genes. That is, in this healthy population
sample the association of alcohol intake with GGT is induced by genes that affect alcohol intake
as well as GGT, although a causal effect could not be ruled out. Interestingly, the genetic effects
on alcohol intake and GGT mainly acted in non-additive manner, possibly reflecting effects of
interacting risk alleles (due to genetic dominance or epistasis). Looking at the specific
contribution of these genes, for men 7.6% of the variance in GGT could be explained by non-
additive genetic effects that were shared with those for alcohol intake. For women, this was
4.6%.

Chapter 7 described a candidate gene study on the association of SNPs in the ADH gene
cluster with measures of alcohol use (alcohol consumption, reactions to alcohol use, symptoms
of AAD and age at onset of alcohol use). Significant associations (at a=.007) were found for
reactions to alcohol with a SNP in ADH5 (rs6827292) and a SNP just upstream of ADH5
(rs6819724) that was in strong linkage disequilibrium (LD) with rs6827292. Furthermore, an
association between age at onset of regular alcohol use and a SNP just upstream of ADH7
(rs2654849) was observed. No significant associations were found for alcohol consumption and
symptoms of AAD. SNP associations that were detected in a previous study (Macgregor et al.
2009) were not replicated. Nevertheless, the detection of the three novel SNPs highlights the
importance of the ADH gene cluster in explaining variation in alcohol phenotypes.

In Chapter 8 it was estimated what proportion of the variance of liver enzyme levels
could be explained by the joint effect of all SNPs and whether part of this variance was shared
with that for alcohol intake. Two relatively novel methods were applied. With the Genetic
Relatedness Matrix (GRM) method, the genetic relatedness among pairs of individuals was
estimated based on SNP data. This pair-wise genetic relatedness was included as random effect
in a linear mixed model, implemented in the software package genome-wide complex trait
analysis (GCTA) (Yang et al. 2011a), to estimate the variance attributable to additive SNP effects.
The density estimation (DE) method proposed by So et al. (2011) was based on comparing the
effect sizes of SNP associations resulting from GWA or GWA meta-analysis studies to the

expected distribution of effect sizes under the null hypothesis of no effect. Data came from three
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sources: (a) unrelated participants of the NTR, (b) unrelated participants of the NESDA study
(Penninx et al. 2008), and (c) a large consortium from which GWA meta-analysis summary
statistics on SNP associations for GGT and ALT were available (Chambers et al. 2011). Around
15-17% of the variance in GGT, 2-15% of the variance in ALT and 13% of the variance in AST
could be explained by the joint effect of all SNPs, based on the NTR/NESDA data. For alcohol
intake, this was 15%, with a significant proportion of the variation explained by chromosomes 4
and 15 (each ~4.5%). These estimates indicate that ~50% of the narrow-sense-heritability of
liver enzyme levels and alcohol intake is attributable to effects of measured/ imputed SNPs.
Applying the DE method to GWA meta-analysis results for GGT and ALT, resulted in much lower
estimates than based on the NTR/NESDA data (GGT 8%; ALT 5%).

Higher levels of alcohol intake correlated significantly with increased GGT in both sexes,
whereas associations with ALT and AST were not consistent. Common SNP variation was
therefore examined for alcohol intake with GGT only. The GRM and DE method did not detect
evidence for common SNP variation. Polygenic risk scores based on GWA meta-analysis results
for GGT significantly predicted alcohol intake levels in the NTR/NESDA set, although the amount

of explained variance did not exceed 0.25%.

2. General discussion
2.1 Genetic risk for alcohol intake levels

About 50% of individual differences in alcohol intake levels and symptoms of AAD are
attributable to genetic effects, as indicated in Chapters 3 and 4. Chapter 8 showed that 15% of
the variation in alcohol intake can be ascribed to effects of measured/imputed SNPs, with
chromosomes 4 and 15 contributing significantly to this variation (explaining ~4.5% each).

Chromosome 4 and 15 harbor well known candidate genes for alcohol phenotypes that
are involved in the two broad pathways by which genes are hypothesized to impact variation in
alcohol use (Kendler et al. 2012). Genetic effects specific to alcohol use include those on alcohol
metabolism (Hurley and Edenberg 2011) and sensitivity to the response to alcohol (Schuckit
2009; Heath et al. 1999). A second pathway through which genes can have their effect on
alcohol use is by personality characteristics such as impulsivity, disinhibition, sensation seeking
(Schuckit 2009) and externalizing psychopathology (Kendler et al. 2011a; Krueger 1999), traits

that influence risk for substance use in general (Kendler et al. 2012).
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CHAPTER 9

Chromosome 4 contains the ADH gene cluster involved in alcohol metabolism that
include the ADH1B and ADH1C genes that are known to influence the rate of alcohol metabolism
(rs1229984 and rs1693482 present two functional variants in these genes) (Hurley and
Edenberg 2011). The SNP associations detected for regular alcohol use (rs2654849 just
upstream of ADH7) and reactions to alcohol use (rs6827292 in and rs6819724 just upstream of
ADH5) in Chapter 7, highlight the importance of the ADH gene cluster for alcohol-related
phenotypes. Although SNPs detected in Chapter 7 do not cause changes in gene products, they
may affect expression of coding genes as suggested by Hurley and Edenberg (2011). In
additional analyses, it was explored whether SNPs in the ADH gene cluster were associated with
alcohol intake levels in the GWA analyses in Chapter 8. The three SNPs detected in Chapter 7
were not significantly associated with alcohol intake levels in the NTR/NESDA sample (p-values
>.6). However, seven other SNPs met the study-wide significance level as calculated in Chapter 7
(rs190421768 in ADH5; rs145110520 in ADH6; rs138542405 in between ADH6 and ADH1A;
rs138244919 in ADH1C; rs114714597 in between ADH1C and ADH7; p-values <.007). For
neither of these SNPs significant associations have been reported before. Replication of these
associations is therefore needed before strong conclusions can be drawn.

GABAA receptor coding genes located on chromosome 4 and 15 are implicated in the
mesolimbic dopamine reward system that is involved in the development of alcoholism (Enoch
2008) and are suggested to be related to personality characteristics related to addiction. The
GABRAZ2 gene in the GABAA receptor chromosome 4 gene cluster has been associated with
externalizing behavior (Dick et al. 2009a) and impulsivity by questionnaire responses and
insula activity activation measured in a fMRI study (Villafuerte et al. 2011). The GABRG3 gene in
the GABAA receptor chromosome 15 gene cluster is hypothesized to be associated with
externalizing behavior and disinhibition (Dick et al. 2006). In the GWA results for the
NTR/NESDA sample, however, SNPs in the GABRA2 and GABRG3 genes did not meet the levels
of genome-wide nor suggestive significance (p-values>5x10-8 and >1x10-5).

In line with the substantive impact of non-additive genetic effects on alcohol intake
levels (30%; see Table 1) as described in Chapter 3, it is interesting to find that non-additive
genetic effects have been implicated for traits related to the two general pathways by which
genes are hypothesized to impact variation in alcohol use. That is, non-additive genetic effects
have been detected for alcohol metabolism (Chen et al. 1999; Kuo et al. 2008a) and for
personality traits such as novelty seeking (Keller et al. 2005).

The non-additive genetic effects on alcohol intake described in Chapter 3 may reflect
effects of genetic dominance or epistasis. Epistasis represents the effects of interacting risk
alleles from different loci, which are assumed to be shared to the same degree for all first-

degree relatives. In the presence of additive-by-additive epistasis, all first-degree relatives are

208



SUMMARY AND GENERAL DISCUSSION

assumed to share 25% of the non-additive genetic variation. In the case of higher-order
epistasis, the amount of non-additive genetic variation is less frequently shared among first-
degree relatives. Dominant gene action, refers to effects of interacting risk alleles at the same
locus and thus requires that individuals share both alleles at a locus. This is assumed to be the
case for one quarter of the DZ twin-sibling pairs, but not for parent-offspring pairs, because
parents transmit only one of their alleles to their children. MZ pairs are perfectly correlated for
all non-additive genetic factors, regardless of whether effects are due to dominance or epistasis
(Heath et al. 1984). Based on similar parent-offspring correlations and offspring correlations
(Chapter 3), it may be argued that dominant gene action does not likely explain a large part of
the non-additive genetic variation. Along the same line, higher-order epistasis can be considered
as being less likely, since setting the correlation between non-additive genetic factors for DZ
twins and siblings from .25 to .20 or .15 did not improve model fit (Keller et al. 2005). Additive-
by-additive genetic epistasis would then be the most likely source of non-additive genetic
variation underlying alcohol intake. However, comparing parent-offspring and offspring does
not allow to estimate the correlation between the non-additive genetic values among the
offspring generation. Without information on the actual genetic variants it is almost impossible
to estimate the correlation between non-additive genetic values among the offspring generation
that would give an indication of epistasis (Keller and Coventry 2005). Nonetheless, regardless
of the precise underlying mechanism the evidence for genetic non-additivity is clear. Gene
finding studies for measures of alcohol use may benefit if they would take these substantive

non-additive genetic effects into account.

2.2 Genetic risk for increased liver enzyme levels

The genetic influences on liver enzyme levels described in Chapter 5 may reflect genetic
effects on factors that influence liver enzyme levels, including alcohol use (see Chapter 6),
smoking (Conigrave et al. 2003; Broms et al. 2006; Vink et al. 2004a; Broms et al. 2006; Swan et
al. 1996), coffee consumption (Cadden et al. 2007; Laitala et al. 2008; Vink et al. 2009),
cardiometabolic risk factors (Loomba et al. 2010; Whitfield et al. 2002; Makkonen et al. 2009;
Van Dongen 2013) and inflammation parameters (Neijts et al. 2013).

Genetic pathways underlying variation in liver enzyme levels have been further
elucidated by genome-wide association (GWA) studies. For GGT, genome-wide significant
associations have been found for loci in or near genes involved in glutathione metabolism
(GSTT2B, GGT1) (Chambers et al. 2011; Middelberg et al. 2012; Yuan et al. 2008; Kamatani et al.
2010), biliary transport (ATP8B1) (Chambers et al. 2011), alcohol metabolism (ALDHZ2)
(Kamatani et al. 2010), lipid metabolism (HNF1A, CEPT1), carbohydrate metabolism and insulin
signalling (GCKR, MLXIPL, SLC2A2) (Chambers et al. 2011; Middelberg et al. 2012; Yuan et al.
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2008), inflammation and immunity (GCKR, STAT4, CDH6, ITGA1, HNF1A, RORA, CD276
(Chambers et al. 2011; Middelberg et al. 2012), glycoprotein biology (FUTZ) (Chambers et al.
2011), as well as for genes with unknown or uncertain function (Chambers et al. 2011),
including the C140rf73 gene (Chambers et al. 2011; Middelberg et al. 2012) that is strongly
expressed in the liver. Variants in the PNPLA3 gene, involved in energy utilisation and storage
by adipocytes, have been associated with both AST and ALT levels (Kollerits et al. 2010; Yuan et
al. 2008; Sookoian and Pirola 2011; Chambers et al. 2011; Kamatani et al. 2010). For AST, in
addition a significant variant was detected in a gene implicated in inflammation and immunity
(MRC1) (Kamatani et al. 2010). For ALT, additional loci have been detected in or near genes
involved in glucose and lipid metabolism (TRIB1, CHUK) (Chambers et al. 2011; Yuan et al.
2008), inflammation and immunity (CPN1) (Yuan et al. 2008; Chambers et al. 2011), alcohol
metabolism (ALDHZ2) (Kamatani et al. 2010) and the biogenesis of mitochondria (SAMM50)
(Yuan et al. 2008).

2.3 Association of alcohol intake with liver enzyme levels

Whereas alcohol intake significantly predicted GGT levels (males: r=.17; females=.09;
Chapter 6), alcohol intake was not consistently associated with AST and ALT levels (as
described in Chapter 8). AST and ALT levels are known to increase with heavy drinking, but not
so much with moderate drinking (Arndt et al. 1998; Alatalo et al. 2009b; Liangpunsakul et al.
2010), whereas GGT increases with moderate drinking as well as heavy drinking. Overall, the
number of heavy drinkers was small in the NTR/NESDA sample. Among men, 9.6% drank
heavily (>21 glasses alcohol/week; >42 grams alcohol/day) and 6.4% of women (>14 glasses
alcohol/week; >28 grams alcohol/day). Alcohol intake levels were predictive of AST levels in
male NESDA participants and female NTR participants (r=.09-.10), but not in female NESDA
participants, nor among male NTR participants. The increased AST levels among male NESDA
participants may be explained by the finding that problematic alcohol use was more frequent
among male NESDA participants than among female NESDA participants and NTR participants.
Problematic alcohol use, as indicated by an AUDIT score 28 was observed among 35% of the
male participants in the NESDA study, 17% of the female NESDA participants, 11% of the male
NTR participants and 4% of the female NTR participants (see Chapter 2). This does not explain
the significant correlation between alcohol intake and AST levels among female NTR

participants however (r=.09) .
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2.4 Genetic overlap for alcohol intake with GGT

Chapter 6 showed that the association of alcohol intake with GGT at the population level
was best explained by an effect of genetic pleiotropy. This finding does not necessarily
contradict that alcohol use increases GGT levels in experimental settings (Conigrave et al. 2003),
but suggests that in relatively healthy population samples, genes that influence alcohol use, also
affect variation in liver enzyme levels, resulting in a correlation between alcohol drinking and
increased liver enzyme levels at the population level. The genetic effects on alcohol intake and
GGT were largely non-additive, possibly reflecting effects of interacting risk alleles due to
genetic dominance or epistasis. For females, non-additive genetic influences on alcohol intake
and GGT correlated (rq) .39 (95% CI .06-.47), whereas the correlation between additive genetic
effects (r,) was estimated at.00 (95% CI.00-.15). For males, all non-additive genetic effects
were modeled to run via alcohol intake to GGT only (rs=1), as non-additive genetic effects
unique to GGT were not significant among males (described in Chapter 5). Additive genetic

effects on alcohol intake and GGT for males correlated .00 (95% CI .00-.12).

Chapter 8 tested whether this common genetic variation could be traced back to measured SNP
effects. Assuming an additive model underlying SNP effects on GGT and the association with
alcohol intake, the GRM and DE method could not replicate the common genetic variation that
was detected in Chapter 6. Based on a different approach, polygenic risk scores based on GWA
meta-analysis summary statistics from a large consortium for GGT significantly predicted
alcohol intake levels in the NTR/NESDA sample, although the amount of variance explained did
not exceed 0.25%. There are several reasons that may explain the null findings of the GRM and
DE method with regard to the common genetic variation underlying alcohol intake and GGT.
First, the power of the GRM and DE methods may be too low to pick up the rather low
amount of shared genetic variance underlying alcohol intake levels and GGT. The correlation
between alcohol intake and GGT was rather low, which is likely due to the fact that respondents
were asked to report on their level of alcohol intake during the past year, and not whether they
had been drinking during the days before the blood collection. Based on the relation between
alcohol use and GGT in our sample, it is reasonable to expect a decrease of ~1.7% in the SNP-
based heritability of the covariance of alcohol intake and GGT. If for males, 7.6% of the variance
in GGT and for females 4.6% of the variance in GGT is due to genetic effects shared with those
for alcohol intake (Chapter 6), then overall, that is for males and females together, 5.6% of the
variance in GGT can be ascribed to genetic effects on alcohol intake that are shared with those
for GGT (weighting the results for males and females by the 1:2 ratio in number of male versus
female participants). This estimate of 5.6% represents the broad-sense heritability. Assuming

that the proportion of the broad-sense heritability of the covariance of alcohol intake and GGT
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that can be ascribed to SNP effects is equal to the proportion of the broad-sense heritability of
alcohol intake and GGT attributable to SNP effects (for alcohol intake 15%/53%; for GGT 15-
17%/30% for males; for GGT 15-17%/60% for females), would suggest that ~30% of the
covariance could be ascribed to SNP effects. Under this scenario, a decrease of ~1.7% in SNP-
based heritability is expected. The GRM and DE estimates are characterized by large confidence
intervals however in which a change of 1.7% would easily go undetected (i.e. the estimate of
variability for the GRM method was 8%; for the DE method 1.6%; see Chapter 8, Table 5). That
is, even when regressing out variance due to alcohol intake truly decreases the heritability of
GGT due to SNPs by 1.7%, this change would not be significant. The polygenic risk score
approach did not suffer from this problem as was evident from the fact that the 0.25%
explained variance was significant.

If the association between alcohol intake and GGT is causal instead of best explained by
genetic pleiotropy, then regressing out variance due to alcohol intake does not necessarily
result in a lower heritability. Since under a causal model not only genetic effects on alcohol
intake and GGT are correlated, but also the environmental effects, regressing out variance due
to alcohol use may lower the total variance which may result in a higher heritability (given that
heritability is calculated as the proportion of genetic variance divided by the total variance). In
contrast, regardless of whether the association between alcohol intake and GGT is best
explained by a causal effect or by shared genes the bivariate GRM analysis and the polygenic
risk score approach are assumed to work. The reason for this is that under both scenarios the
genetic risk factors underlying alcohol intake and GGT are correlated, which will result in a
significant genetic correlation in the bivariate GRM analysis and a significant amount of
phenotypic variance explained by genetic risk scores based on SNP associations for alcohol use
or SNP associations for GGT (given adequate power). GRM-based and DE-based point estimates
for variance components attributable to SNP effects seemed indeed to increase somewhat
(instead of decrease) after regressing out variance due to alcohol intake (Chapter 8, Table 5),
but the change of the increase was not significant. Thus in line with Chapter 6, findings on the
association of alcohol intake with GGT are most consistent with an effect of shared genes,
although a causal effect cannot definitely be ruled out.

Alternatively, the null-findings of the GRM and DE method may have resulted from
applying the wrong underlying model of risk. The GRM and DE method assumed that additive
SNP effects underlie variation in liver enzyme levels and its association with alcohol intake,
whereas Chapter 5 showed that GGT levels in females were influenced by substantial non-
additive gene action and Chapter 6 had indicated that that the overlap of alcohol intake with
GGT was due to non-additive rather than additive genetic effects. It was therefore tested

whether by assuming that dominant SNP effects would underlie the variation in GGT levels and
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the association with alcohol intake, the DE method could detect significant common SNP
variation. The DE method only needs p-values as input and is thus not restricted to fitting an
additive model. Regressing out variance due to alcohol intake did not significantly lower the
amount of variance in GGT that could be explained by dominant SNP effects. Hence, the null
findings are not likely explained by the fact that an additive model was assumed to underlie
variation in liver enzyme levels and the association with alcohol intake, whereas the ‘true’
underlying model of risk would involve genetic dominance. Further research is needed to test
whether SNP-based heritability methods that include epistatic effects can significantly detect
common SNP variation for the association of alcohol intake with GGT.

Fourth, the non-additive genetic variation underlying the variation of alcohol intake and
GGT (Chapter 6) may not reflect effects of genetic dominance or epistasis, but gene by age
interaction. In the genetic model fitted in Chapter 6, non-additive genetic variation was modeled
to be shared among the offspring generation, not between parents and offspring. Since the
within-age difference is smaller for offspring pairs than for parent-offspring pairs, gene by age
interaction will show up as effects shared within the offspring generation, that is, as non-
additive genetic effects (Eaves et al. 1978). Gene by age interaction for GGT has been
demonstrated for genetic loci at the GGT1 locus on chromosome 22. For one group of SNPs,
including one that affects expression of GGT1, GGT2 and GGTLA4 in the human liver, having the
minor allele was associated with a decrease in GGT levels in adults, whereas it increased GGT
levels in adolescents. Another group of SNPs (located between GGT1 and PIWIL3) affected GGT
levels in adolescents, but not in adults. Additional heterogeneity for adults and adolescents was
observed for SNPs in the CELF2 gene that codes for transcription factors that may have trans-
acting effects on GGT expression (Middelberg et al. 2012). With regard to the association of
alcohol use with GGT, gene by age interaction effects may result from fluctuation in sex
hormone levels which are thought to underlie variation in GGT levels, at least for women
(Sillanaukee et al. 2000a). GGT levels are higher among postmenopausal women, women who
take hormone treatment to increase fertility, and those who use oral contraceptives
(Sillanaukee et al. 2000a). Given the link of GGT and alcohol use with immunity and
inflammation (Sierksma et al. 2004; Sierksma et al. 2002; Reuter et al. 2009), here the
association between age-related fluctuations in estrogen among women and associated
differences in immunity is also of interest (Gameiro et al. 2010). It should be noted however that
the cross-trait correlations in Chapter 6 were not fully congruent with gene by age interaction.
Gene by age interaction effects predict higher offspring cross-trait correlations than parent-
offspring cross-trait correlations (Eaves et al. 1978). The finding that DZ/sibling cross-trait

correlations were not higher than parent-offspring correlations is thus not consistent with this
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interpretation. Further research is necessary to explore possible effects of gene by age

interaction in the explanation of the association of alcohol intake with GGT.

2.5 Methodological considerations regarding methods to estimate variance due to SNPs

Chapter 8 aimed to estimate the amount of variance of liver enzyme levels and alcohol
intake that could be explained by SNPs. Two relatively novel methods were applied: a GRM
method as implemented in GCTA (Yang et al. 2011a) and the DE method as proposed by So et al.
(2011). Several methodological considerations, mainly with regard to the DE method, were
addressed.

First, DE estimates based on the GWA meta-analysis data were lower than the estimates
based on the NTR/NESDA dataset, which was not specific to liver enzyme levels, but also
present for BMI which was used as a bench mark trait (not for height, see the discussion below).
Given that simulation studies showed that the DE method was not dependent on sample size
nor sensitive to violations of the assumption of normally distributed effect sizes (see Chapter 8),
possible explanations of the lower meta-analysis-based SNP-based heritability estimates are the
correction of p-values for the genomic inflation factor in GWA meta-analysis, and heterogeneity
between the samples that are included in the meta-analysis. Since effect sizes based on p-values
are the direct input for the DE method, correcting p-values based on the genomic control
inflation factor will lower the amount of variance that can be explained by SNPs. The possible
impact of heterogeneity not only applies to DE estimates, but also to GRM-based estimates. In
the case of genetic heterogeneity, when combining SNP effects, a substantial proportion of the
variance may be lost. If for example SNP x has an effect in study 1 (log(0Odds Ratio, OR)=1) but
not in study 2 (log(OR)=0), the meta-analysis effect size of this SNP (based on inverse variance
meta-analysis) is halved (log(OR)=0.5), but its explained variance is reduced to one quarter,
since explained variance is proportional to log(OR) squared. That is, a quarter of the variance
due to SNP x is lost as compared to the average variance explained weighted by sample size (P.C.
Sham, personal communication).

Second, decisions needed to be taken with regard to the level of SNP pruning that was
performed (i.e. the removal of one of each pair of SNPs that is in LD above a certain threshold;
LD-based SNP pruning) and relatedness pruning (the removal of one of each pair of individuals
who are too closely related). For the GRM method, inclusion of related individuals in the GRM-
based analysis should be avoided to ensure that heritability estimates do not reflect more than
just the variance captured by the measured/imputed SNPs, and do not become confounded with
shared environmental effects among individuals. To ensure relatedness and population
stratification are maximally reduced, relatedness pruning is suggested by removing individuals

whose pairwise genetic relatedness >.025 (Yang et al. 2010) (corresponding to cousins two to
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three times removed). In addition, some concern had been expressed about the robustness of
the GRM method in the presence of strong LD between SNPs (Speed et al. 2012). In Chapter 8,
the precision (i.e. standard errors) of the heritability estimates was therefore examined under
different scenarios of LD-based SNP pruning and relatedness pruning. Relatedness pruning
(exclusion of individuals with relatedness >.025) and SNP pruning (removing SNPs in extreme
high LD, r2>.95) yielded higher standard errors, probably due to the usage of less information
(when pruning out SNPs in high LD) and/or restriction of range (when excluding individuals
based on their pairwise relatedness). Analyses were therefore performed without performing
SNP or relatedness pruning.

With regard to the DE method, So et al. (2011) recommended LD-based SNP pruning at a
level of r2>.25, based on SNP data sets containing .1-2.6 million SNPs. These numbers of SNPs
correspond well to the number of SNPs when datasets are imputed against the Hapmap
reference set. In the current study, this recommendation could not be followed. SNP data were
analyzed that were imputed against the 1000 Genomes reference set (~8 million SNPs).
Applying the recommended level of pruning (r?>.25) resulted in (impossible) proportions of
variance that exceeded 1. For the analyses in Chapter 8, only ‘truly’ independent SNPs were
selected (corresponding to r2>.00, using a 100 SNP sliding window, taking steps by 25 SNPs at a
time).

As a benchmark, the DE method was also applied to GWA meta-analysis results of BMI
and height. For BMI, the DE-based estimate on the variance explained by SNPs agreed well with
that based on the GRM method (22% versus 17% respectively), but for height, the amount of
variance that could be ascribed to SNP effects based on the DE method was much lower (23%)
than that based on the GRM method (58%). It may be possible that the optimal level of LD-based
SNP pruning is dependent on the specific genetic architecture of the phenotype. That is, in
addition to the appropriate level of SNP pruning being dependent on the SNP density of the
dataset, it may depend on the genetic architecture of a trait, including how many SNPs have an
effect and how many of those SNPs happen to be in high or moderate LD with other SNPs.
Future work should address how to determine the optimal level of SNP pruning for different
phenotypes.

The performance of the GRM and DE method can be further compared to other newly
developed methods to estimate the amount of variance explained by SNPs, such as those that
propose improvements on current methods (e.g. on the estimation of the GRM matrix) (Speed et
al. 2012), those that use other means to estimate and sum true effect sizes for SNPs in pruned
SNP sets (Kutalik et al. 2011) and/or derive from other statistical (e.g. Bayesian) backgrounds
(Stahl et al. 2012). In addition, the performance of the DE method to estimate heritability based

on GWA meta-analysis data can be compared to the variance that can be explained by the joint
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effect of all SNPs by performing a joint GWA analysis of meta-analysis data. With a recently
added feature in the GCTA software package (Yang et al. 2012), it is possible to perform a joint
GWA analysis on GWA meta-analysis summary statistics by using the LD structure between
SNPs as observed in one of the meta-analysis samples. Note that this joint GWA analysis on
meta-analysis statistics is equivalent to a multiple regression analysis on the raw genotype and
phenotype data. In contrast to the DE method, observed effect sizes are not corrected to their
‘true’ effect size in this method however. In addition, betas with standard errors (or the log(OR)
for categorical data) are needed as input, which are obtained from inverse variance meta-
analysis (or from single GWA analyses), whereas the DE method can be applied to the GWA
meta-analysis p-values alone. For GGT and ALT levels p-value based meta-analysis was
performed weighted by sample size (Chambers et al. 2011) and betas and standard errors were

therefore not available.

2.6 Implications of findings
2.6.1 Recovering the missing heritability for alcohol use and liver enzyme levels

Although the heritability of alcohol use and liver enzyme levels is substantial (Table 1),
GWA studies have tracked less than 2% of the variance back to effects of SNPs (Chapter 8, Table
4). To examine the so-called missing heritability (Maher 2008) two relatively novel methods
were applied to estimate the SNP-based heritability of alcohol intake levels and liver enzyme
levels. When focusing on the NTR/NESDA data, around 15-17% of the variance in GGT, 2-15% of
the variance in ALT, 13% of the variance in AST and 15% of the variance in alcohol intake could
be explained by the joint effect of all SNPs. Given that less than 2% of the variation in liver
enzyme levels has been explained by effects of SNPs (see Chapter 8, Table 4), ~12% of the
variance in liver enzyme levels and alcohol intake is explained by SNPs having effect sizes that
are too small individually to reach the genome-wide significance thresholds typically used to
correct for multiple testing (14% minus 2%). With these estimates, around 50% of the narrow-
sense heritability would be explained. Thus, currently used SNP platforms contain substantial
information on the underlying genetic variation in alcohol intake and liver enzyme levels.

These estimates leave another ~50% open for additional explanations for the missing
(narrow-sense) heritability. These include (a) underestimated effect sizes of associated SNPs
because of incomplete LD between the measured/imputed SNPs and causal variants, (b) the
specific contribution of rare alleles (MAF <.001), as well as structural variation, if poorly tagged
by the current available SNPs, and (c) overestimated heritability estimates if epigenetics or
gene-environment interactions contribute to the narrow-sense heritability (Stranger et al. 2011;
Manolio et al. 2009). Given that non-additive genetic variation underlying alcohol intake and

AST and GGT levels was substantial, further research should also focus on the performance of
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SNP-based heritability methods to also capture the non-additive genetic effects on trait
variation. Whereas the GRM method currently tests for additive SNP effects only, the DE method

can be applied to (p-values of) (dominant as well as) epistatic SNP effects as well.

2.6.2 Directions for therapeutic interventions

This thesis describes the genetic architecture of variation in alcohol use and blood levels
of three liver enzymes, GGT, ALT and AST that are used as marker for liver injury. By
understanding more of the biological processes that influence variation in alcohol use and its
association with liver enzyme levels, new information might be obtained on pathways in disease
causation (Fugger et al. 2012). By following up the research on the shared genetic risk factors
for alcohol use and GGT, biological pathways may be implicated in alcohol use, liver enzyme
levels and their association, that may lead to the subsequent identification of new targets for
treatment of, for example, alcohol-induced fatty liver disease.

With heritabilities explaining up to 50% (Table 1), substantial room is also left for
environmental influences, even if part of the non-genetic influences represents noise and
measurement error in the data. With regard to risk of developing symptoms of AAD, genetic
influences were shown to present stable risk factors, whereas non-shared individual-specific
environmental influences were largely age-specific (Chapter 4). This presents interesting
information from a clinical perspective. A particular treatment targeting symptoms of AAD may
be very effective at one point, but wane with age. Given that genetic risk is stable over age,
treatments should focus on providing individuals with the tools to handle this continuing
genetic risk.

It should be emphasized that genetic effects explaining differences in a trait on a
population level, does not preclude that environmental interventions are effective. A disease
that is completely genetic in origin, may well be directed by an environmental intervention
(Fugger et al. 2012). The classic example here is phenylketonuria (PKU), an autosomal recessive
genetic disorder due to a mutation in the hepatic enzyme phenylalanine hydrooxylase. If
untreated, individuals with this condition suffer from mental retardation, seizures and other
medical problems. If patients maintain a life-long PHE-restricted diet, they will have a nearly
normal development (Poustie et al. 2009). That is, to determine the influence of behavioral
interventions for prevention or treatment of problematic alcohol use, experimental studies are

needed, preferably in genetically informative samples.
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2.7 Future research
2.7.1 Moderation of association between alcohol use and liver enzyme levels

Future research should investigate whether the effect of alcohol use on liver enzyme
levels is dependent on the level of drinking and/or other factors that are correlated with liver
enzyme levels, such as BMI, smoking, coffee consumption, medication use (Conigrave et al.
2003; Skurtveit and Tverdal 2002), and (sex) hormone levels (Sillanaukee et al. 2000a). As
described in Chapter 6, the association of alcohol use with GGT was best explained by genetic
pleiotropy. Given that earlier research pointed at a causal effect of alcohol use on GGT for a
heavy drinking population (Sung et al. 2011), the mechanism of association of alcohol intake
with GGT may be dependent on the level of drinking, that is, there may be gene by alcohol
interaction. Complex relationships between alcohol use, liver enzyme levels and other factors
such as obesity or smoking are proposed by the so-called two-hit hypothesis, that states that
alcohol-related liver injury will develop as a consequence of continued heavy drinking in
combination with so-called second hit factors (obesity, smoking) (Mantena et al. 2008). In two
studies, the effect of smoking on GGT was found to be dependent on the level of drinking.
Among heavy drinkers, smoking increased GGT levels, whereas in the absence of heavy
drinking, the effect of smoking on GGT was either not significant (Breitling et al. 2011), or no
longer significant when the effects of inflammation parameters were taken into account

(Wannamethee and Shaper 2010).

2.7.2 Relation of alcohol use with cardiovascular/metabolic traits

Light to moderate alcohol consumption has been associated with a reduced risk of
cardiovascular disease and type 2 diabetes. Protective mechanisms of moderate alcohol include
healthy changes in lipid profiles (increased HDL levels), blood clotting factors (lower levels of
fibrinogen), inflammation (e.g. lower levels of CRP, IL-6), and/or specific constituents of wine
and beer (e.g. polyphenols) (Di Castelnuovo et al. 2010; Brien et al. 2011). Increased insulin
sensitivity after moderate alcohol consumption has been proposed as an additional biological
mechanism to explain reduced risk for type 2 diabetes (Rehm et al. 2010). For both alcohol use
and GGT, genetic risk factors have been linked to levels of cardiovascular/metabolic traits. That
is, genetic influences on GGT variation have been associated with cholesterol (LDL, HDL),
triglycerides, glucose, and insulin resistance (Chambers et al. 2011; Kim et al. 2011; Whitfield et
al. 2002). Genes for alcohol dependence (e.g. the CDH13 gene and DSCAML1 gene) (Morozova et
al. 2012) have been associated with triglycerides (Pollin et al. 2008), blood pressure,
hypertension (Johnson et al. 2011) and the metabolic syndrome (Fava et al. 2011). Further

understanding of the association of alcohol intake with GGT may thus be gained by examining
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the relation of alcohol intake, drinking frequency and GGT with cardiovascular/metabolic traits
and to explore the role of the immune system in these relations.

Inflammation is a key element in alcoholic liver injury (An et al. 2012). Chronic alcohol
consumption can cause leakiness of the digestive tract, which can result in the release of
endotoxins in the blood that activate Kupffer cells that reside in the liver. These Kupffer cells
activate nuclear factor kB (NF-kB) which stimulate the release of pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNF-a) and interleukin-1 (IL-13) as well as other
cytokines with anti-inflammatory properties such as IL-6 and IL-10 that play a role in reducing
alcoholic liver injury by induction of STAT 3 (Signal Transducer and Activator of Transcription)
(An et al. 2012). Moderate alcohol consumption has been shown to suppress NF-kB activity
(Blanco-Colio et al. 2000), resulting in a J-shaped function between alcohol use and
inflammation parameters. That is, light to moderate alcohol consumption among non-alcoholic
individuals has been associated with lower IL-6 and CRP levels than abstinence or heavy
drinking (Volpato et al. 2004; Marques-Vidal et al. 2012; Wannamethee et al. 2007; Imhof et al.
2004; Imhof et al. 2001; Stewart et al. 2002; Albert et al. 2003). Increases in IL-6, IL-1f3, IL-8,IL-
10, IL-12 and TNF-a have been detected for alcoholics without liver disease (Nicolaou et al.
2004; Laso et al. 2007; Gonzalez-Quintela et al. 2008).

Inflammation and oxidative stress stimulate each other (creating an vicious cycle) via
several factors including NF-kB in which the anti-oxidant glutathione also plays a role (e.g. in
protecting the cell from endoplasmatic reticulum stress that can be induced by alcohol)
(Kulinsky and Kolesnichenko 2009). GGT, involved in keeping intracellular glutathione at
adequate levels to protect the cell from oxidative stress (Whitfield 2001) is thus also closely
involved in the inflammatory response. A first look at the correlations between alcohol intake
and GGT with inflammation parameters, lipids and metabolic traits, collected in the NTR
biobank study, showed that alcohol intake correlated .18 with HDL, but not significantly with
other lipids or inflammation parameters, which could not be accounted for by a J-shaped
relation between alcohol use and inflammation parameters. GGT correlated in between .2-.3
with triglycerides, cholesterol, insulin and CRP, had correlations between .1 and .2 with LDL,
glucose, fibrinogen and IL-6, between 0 and .1 with TNF-a and between 0 and -.1 with HDL
(taking effects of sex and age into account).

The relation between alcohol use, GGT and cardiovascular/metabolic traits could be
further explored by taking specific drinking patterns into account. Cardioprotective effects have
only been observed if the pattern of light to moderate drinking did not include heavy drinking
episodes (Rehm et al. 2010). The association with GGT is highest for regular heavy drinkers
(Conigrave et al. 2003), rendering it important to disentangle the association of alcohol use and

GGT for frequent and infrequent drinkers. Furthermore, associations of alcohol intake with GGT
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may be different for different kinds of alcohol beverages. Alcoholic beverage preference is
moderately heritable (see Appendix), making it important to take genetic effects on the
association of alcohol use, GGT and alcoholic beverage preference into account. Moderate
drinking levels of wine and beer, but not spirits, have been associated with a lower risk for
cardiovascular diseases, whereas increased levels of drinking (beer, wine, spirits) are associated

with a higher risk for cardiovascular disease (Costanzo et al. 2011).

2.7.3 The mechanism underlying the disease associations with GGT not explained by alcohol use

Finally, more research can be performed on the specific role of GGT as a marker of
disease, that cannot be accounted for by effects of alcohol alone. There are strong associations
with type 2 diabetes, cardiovascular disease, chronic kidney disease and cancer, even when
alcohol intake is controlled for (Targher 2009).

GGT has both anti-oxidant as well as pro-oxidant properties. Through its role in the
metabolism of extracellular glutathione, intracellular glutathione can be formed that is needed
to protect the cell against free radicals. GGT may thus be reflective of levels of oxidative stress
that are related to risk of disease. However, in the presence of iron or other metals, GGT itself
has been suggested to generate free radicals (Lee et al. 2004). Hence, GGT may play a causal role
in disease itself as well. The pro-oxidant effects of GGT cannot explain that GGT is already
predictive of disease within the normal reference range however, since at low levels of GGT, the
pro-oxidant effects of GGT must be low. Neither can all disease associations be explained by GGT
being a marker for fatty liver (Lee and Jacobs 2009). ALT levels are more closely related to
levels of hepatic fat than GGT (Targher 2009), whereas GGT is related to a wider range of
disease than ALT which is mainly associated with liver disease and type 2 diabetes (Fraser et al.
2007; Fraser et al. 2009; Hyeon et al. 2004). GGT has therefore also been proposed to reflect
levels of environmental pollutants. Since glutathione plays an important role in the excretion of
harmful materials such as heavy metals and given that GGT plays a role in regulating
intracellular levels of gluthathione, GGT may be induced through exposure to xenobiotics (Lee

and Jacobs 2009).

3. Conclusions

Different indicators of alcohol use, including intake and symptoms of alcohol abuse and
dependence, as well as liver enzyme levels are substantially heritable in the Dutch population.
These findings come from twin-family studies and from SNP-based heritability estimates that
describe the joint effect of genome-wide measured SNPs on alcohol use and liver enzyme levels.
The last findings indicate that currently used SNP platforms contain substantive information on

the underlying genetic risk alleles for alcohol intake and liver enzyme levels. Further
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methodological research needs to focus on SNP-based heritability methods that also capture
non-additive genetic effects on trait variation. The association of alcohol intake with one
particular liver enzyme, GGT, is on the population level most likely due to effects of shared
genes, although a causal effect cannot be ruled out entirely. Future research can further explore
the genetic basis of the relation between alcohol use and liver enzyme levels in combination
with related factors such as inflammation and cardiometabolic traits. This information may lead
to the detection of new biological pathways implicated in alcohol use, liver enzyme levels and

their association.
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CHAPTER 10
NEDERLANDSE SAMENVATTING:
GENETICA VAN ALCOHOLGEBRUIK EN LEVERENZYMEN

(DUTCH SUMMARY)

1. Alcoholgebruik en gezondheid

Alcoholgebruik vormt een risico voor de gezondheid. In Westerse landen kan bij mannen
8-12% van de ziektelast (‘burden of disease’) worden toegeschreven aan effecten van
alcoholgebruik (berekend in DALY’s, disability-adjusted life years). Bij vrouwen is dit 0,5-3%
(Rehm et al. 2003). De meest voorkomende doodsoorzaken waarbij alcohol een rol speelt, zijn
kanker, cardiovasculaire stoornissen, levercirrose, diabetes en letselschade (bijv. vanwege rijden
onder invloed) (Rehm et al. 2003). Inname van 35-45 gram alcohol per dag (~3 glazen) is al
geassocieerd met een verhoogd sterfterisico. Een vergroot risico voor de gezondheid begint bij
zo'n 25 gram alcohol per dag (voor aandoeningen als hoge bloeddruk, levercirrose, chronische
alvleesklierontsteking, kanker), hoewel het risico op sommige aandoeningen zoals coronaire
hartziekte (CHD) en type 2 diabetes, juist lager ligt voor mensen die licht tot matig alcohol
gebruiken en het gezondheidsrisico pas bij een veel hogere alcoholinname ontstaat (>60
gram/dag voor type 2 diabetes, beroerte; >89 gram/dag voor CHD; d.w.z. bij >4 en >6 glazen)
(Dawson 2011). Naast somatische gezondheidsrisico’s, kan problematisch alcoholgebruik leiden
tot verslaving, vermindering van arbeidsproductiviteit, agressie, geweld en het in aanraking
komen met justitie (NIAAA 2000).

Ondanks de hierboven genoemde (gezondheids)risico’s drinkt de meerderheid van de
Nederlandse bevolking in meer of mindere mate alcohol. Dit is waarschijnlijk te verklaren vanuit
het positieve effect van alcoholgebruik op het reduceren van spanning, het verhogen van de
gemoedstoestand en het vergemakkelijken van het sociaal contact (NIAAA 2000). Volgens de
Wereldgezondheidsraad (WHO) heeft 82% van de Nederlandse mannen en 64% van de
Nederlandse vrouwen van 15 jaar of ouder wel eens alcohol gedronken in het afgelopen jaar.
Gegevens van het Nederlands Tweelingen Register (NTR) geven aan dat 9-17% van de mannen
en 3-11% van de vrouwen zwaar drinkt (respectievelijk >21 en >14 glazen per week voor
personen 218 jaar) (Geels et al. 2013). Gezien deze prevalentiecijfers in combinatie met de
hierboven genoemde gezondheidsrisico’s is kennis van de oorzaken van individuele verschillen
in (problematisch) alcoholgebruik belangrijk.

Effecten van alcoholgebruik op de gezondheid kunnen, althans gedeeltelijk, worden

toegeschreven aan de effecten van alcoholafbraak in de lever. Alcoholmetabolisme verloopt bij
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mensen via verschillende routes, waarvan die via het enzym alcoholdehydrogenase (ADH) het
belangrijkst is. De oxidatie van alcohol door middel van ADH resulteert in de vorming van
acetaldehyde, een zeer reactief en toxisch bijproduct dat met behulp van het enzym aldehyde
dehydrogenase (ALDH) in de mitochondria kan worden omgezet in acetaat (Zakhari 2006).

De afbraak van alcohol kan op verschillende manieren leiden tot leverschade. Enerzijds
is het tussentijdse afbraakproduct acetaldehyde toxisch, wat bijvoorbeeld de capaciteit van de
mitochondria om acetaldehyde om te zetten in acetaat vermindert, zodat het niveau van
acetaldehyde in de mitochondria verhoogt en alcoholgerelateerde weefselschade kan ontstaan
(Caballeria 2003). Anderzijds is alcoholmetabolisme geassocieerd met metabole veranderingen
in de lever zoals een verhoogd zuurstofverbruik, oxidatieve stress en leververvetting die op
zichzelf weer kunnen leiden tot leverschade. Figuur 1 geeft een samenvattend overzicht van de
metabole veranderingen in de lever als gevolg van alcoholmetabolisme (overgenomen van

Callalleria, 2003).
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Figuur 1: Alcoholmetabolisme en metabole veranderingen in de lever (overgenomen van

Caballeria, 2003)

Allereerst gaat alcoholoxidatie gepaard met een toename in het zuurstofverbruik (Zakhari
2006). Als levercellen die dicht bij de verse bloedtoevoer zitten teveel zuurstof opnemen voor de

afbraak van alcohol, kan dit leiden tot een zuurstoftekort voor levercellen die later op de route
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van zuurstof worden voorzien, waardoor deze cellen in een staat van hypoxie kunnen raken en
kunnen afsterven (Caballeria 2003; Cunningham en Van Horn 2003).

De oxidatie van ethanol en acetaldehyde resulteert in de vorming van reactieve
zuurstofdeeltjes (radicalen; de zogenaamde reactive oxidative species, ROS). Deze deeltjes zijn
toxisch omdat ze reageren met macromoleculen zoals eiwitten, lipiden en DNA en deze daardoor
kunnen beschadigen. Verschillende enzymen en (niet-enzymatische) antioxidanten kunnen de
cel beschermen tegen ROS. Wanneer de hoeveelheid ROS-genererende factoren echter groter is
dan de hoeveelheid beschermende factoren raakt de cel in een staat van oxidatieve stress en kan
leverschade ontstaan (Wu and Cederbaum 2003).

De afbraak van alcohol gaat gepaard met een verandering in de redox (reductie-oxidatie)
balans in het cytosol en de mitochondria (Zakhari 2006) wat kan leiden tot leververvetting, een
overmaat van triglyceriden in de lever, via complexe mechanismen die de synthese en opslag
van vetzuren in de lever bevorderen en de oxidatie van vetzuren verminderen (Caballeria,
2003). Deze verschillende metabole veranderingen in de lever kunnen vervolgens weer reacties

van het immuunsysteem ontlokken die kunnen resulteren in leverschade (Wang et al. 2010).

2. Leverenzymen als markers voor leverschade

Dit proefschrift richt zich op de oorzaken van variatie in alcoholgebruik en in
bloedwaarden van drie enzymen die een indicatie geven van schade aan de lever: gamma-
glutamyltransferase (GGT), alanine aminotransferase (ALT) en aspartaat aminotransferase
(AST). GGT is betrokken bij het instandhouden van een optimaal intracellulair niveau van
glutathion, een van de belangrijkste lichaamseigen antioxidanten. GGT is daarmee van invloed
op de bescherming van de cel tegen oxidanten die vrijkomen bij de afbraak van ethanol
(Whitfield 2001). Bloedwaarden van AST en ALT vormen markers van leverschade die stijgen
wanneer het celmembraam beschadigd raakt, waardoor een verhoogde hoeveelheid AST en ALT
in de bloedsomloop terechtkomt (Pratt en Kaplan 2000). ALT is aanwezig in verschillende
organen en spieren, maar vooral in de lever en is daarom meer specifiek voor leverschade dan
AST dat niet alleen wordt gevonden in de lever en skeletspier (Hannuksela et al. 2007), maar
ook in het hart en de nieren (Pratt en Kaplan 2000). Bloedwaarden van GGT, ALT en AST zijn
sterke voorspellers van leverziekte (Ruhl en Everhart 2009; Kazemi-Shirazi et al. 2007; Hyeon et
al. 2004; Lee et al. 2008). Naast leverziekte zijn GGT en ALT ook met andere aandoeningen
geassocieerd. GGT en ALT zijn beiden geassocieerd met type 2 diabetes (Fraser et al. 2009)
terwijl GGT ook is gerelateerd aan hart- en vaatziekten (Targher 2009; Fraser et al. 2007),
kanker en chronische nierziekte (Targher 2009). Om hun rol in deze andere aandoeningen te

verklaren zijn GGT en ALT voorgesteld als surrogaat markers van leververvetting (Targher
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2009; Schindhelm et al. 2006) en GGT daarnaast als marker van oxidatieve stress (Lee et al.

2004).

3. Alcoholgebruik en de relatie tot leverenzymen

De rol van GGT bij het voorkomen van oxidatieve stress bij alcoholmetabolisme
(metabole stress) en de relatie van AST en ALT tot leverschade veronderstelt een positief
verband tussen alcoholgebruik en leverenzymwaarden. Matig alcoholgebruik hangt inderdaad
samen met verhoogde bloedwaarden voor GGT (Lee et al. 2001; Nakanishi et al. 2000;
Higashikawa et al. 2005. Arndt et al. 1998; Liangpunsakul et al. 2010). De relatie tussen matig
alcoholgebruik met de aminotransferases (AST en ALT) is echter zwak (Alatalo et al. 2009b;
Liangpunsakul et al. 2010) of zelfs afwezig (Lee et al. 2001; Steffensen et al. 1997; Arndt et al.
1998). Bij zwaar alcoholgebruik is er wel een duidelijke verhoging te zien in GGT-bloedwaarden
en lijken ook AST en ALT beinvloed te worden (Conigrave et al. 2002; Arndt et al. 1998; Alatalo
et al. 2009b). Ondanks dat bloedwaarden van GGT, ALT en AST oorspronkelijk waren
geintroduceerd als marker in de detectie van zwaar drinken (Whitfield 2001) is hun waarde
hierin beperkt. De reden hiertoe is dat een toename van leverenzymen niet specifiek is voor
zwaar drinken, en omgekeerd, dat niet bij iedere zware drinker de leverenzymwaarden zijn
verhoogd (Peterson 2004).

Samenvattend lijkt GGT geassocieerd te zijn met zowel matig als zwaar alcoholgebruik en
heeft zwaar alcoholgebruik ook een invloed op AST en ALT. Verschillende mechanismen zouden
deze samenhang kunnen verklaren. Gezien de relatie van AST en ALT met leverschade en de rol
van GGT bij het beschermen van de cel tegen metabole stress, zou er sprake kunnen zijn van een
causaal effect van alcoholgebruik op leverenzymwaarden. Ook is het mogelijk dat de samenhang
tussen alcoholgebruik en leverenzymwaarden kan worden verklaard door een set genen die

zowel een effect uitoefent op alcoholgebruik als op leverenzymwaarden.

4. Onderzoeksvragen

In dit proefschrift wordt een aantal vragen onderzocht die volgen uit de hierboven
geschetste relatie tussen alcoholgebruik en leverenzymen. Eerst worden de oorzaken in variatie
in alcoholinname onderzocht. Vervolgens kijk ik naar de oorzaken van variatie in symptomen
van alcoholmisbruik. Daarna wordt de genetica van leverenzymen belicht, en wordt de relatie
tussen alcoholgebruik en de relatie met GGT-bloedwaarden gemodelleerd als een functie van
pleiotrope genetische effecten die deze samenhang zouden kunnen verklaren. De bovenstaande
vragen worden beantwoord door gebruik te maken van statistische technieken uit de genetische
epidemiologie. De laatste twee hoofdstukken onderzoeken het belang van direct gemeten

genetische varianten.
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5. Onderzoeksmethodologie

Hoofdstuk 2 geeft een overzicht van de gegevens over alcoholgebruik en
leverenzymwaarden die in dit proefschrift zijn geanalyseerd. Gegevens over alcoholgebruik en
leverenzymwaarden die binnen dit proefschrift werden geanalyseerd zijn afkomstig van
volwassen deelnemers van het Nederlands Tweelingen Register (Adult NTR; ANTR) (Boomsma
etal. 2002c; Willemsen et al. 2013) en de Nederlandse Studie naar Depressie en Angst (NESDA)
(Penninx et al. 2008). Dit hoofdstuk introduceert ook de statistische methoden die werden
toegepast om de erfelijkheid van alcoholgebruik en leverenzymwaarden te bepalen op basis van
tweelingfamilie- en genetische markerdata. Met het tweelingfamiliedesign is de erfelijkheid van
eigenschappen geschat op basis van de genetische verwantschap tussen een-eiige tweelingen,
twee-eiige tweelingen en hun familieleden (die verschilt tussen één-eiige tweelingen en twee-
eiige tweelingen, hun ouders en hun broers en zussen). Vervolgens is met genetische
markerdata (hier single nucleotide polymorphisms, SNPs) geschat welk deel van deze
erfelijkheidsschatting zoals op basis van het tweelingfamiliedesign is bepaald, kan worden
toegeschreven aan de effecten van gemeten en geimputeerde genetische varianten. Daarnaast is
met genetische markerdata (SNPs) in een genetische associatiestudie getracht specifieke

risicovarianten voor alcoholgebruik te lokaliseren.

6. Genetische invloeden op alcoholgebruik en leverenzymwaarden op basis van
tweeling(familie)studies

In Hoofdstuk 3 is onderzocht in welke mate genetische en omgevingsinvloeden
individuele verschillen in alcoholgebruik onder volwassenen verklaren. De erfelijkheid van
alcoholgebruik (uitgedrukt in aantal grammen alcohol per dag) wordt geschat op 53%, waarbij
een aanzienlijk deel van de verschillen in alcoholgebruik wordt verklaard door nonadditieve
genetische invloeden (30%) (zie tabel 1). Nonadditieve genetische invloeden beschrijven
effecten die niet simpelweg bestaan uit een optelsom van elk van de afzonderlijke effecten van
de genen, maar uit effecten van genen die onderling interacteren.

Naast effecten van genetische transmissie, werden effecten van culturele transmissie
onderzocht van ouder op kind. Hierbij wordt gekeken of na controle voor de genetische
samenhang tussen ouders en kinderen, het drinkgedrag van de ouders nog steeds van invloed is
op het drinkgedrag van de kinderen, bijvoorbeeld via social modelling. Uit een eerdere studie
was bekend dat effecten van culturele transmissie van alcoholgebruik aanwezig zijn in de
adolescentie (Koopmans and Boomsma 1996). Uit de huidige studie blijkt dat effecten van
culturele transmissie bij alcoholgebruik onder volwassenen geen rol (meer) spelen.

Hoewel mannen meer alcohol drinken dan vrouwen, is de relatieve invloed van

genetische effecten op alcoholgebruik voor mannen en vrouwen gelijk. Deze relatieve invloed
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van genen is ook vergelijkbaar over verschillende leeftijdsgroepen. Ouder-kindparen lijken even
sterk in hun alcoholgebruik op elkaar als tweeling-/broer- en/of zusparen (hoewel de eerste
gekenmerkt worden door een groter leeftijdverschil dan de laatste). Ook partners lijken op
elkaar in hun niveau van alcoholgebruik (correlatie tussen echtgenoten: 0.39, 95%
betrouwbaarheidsinterval, CI, 0,34-0,44). Deze gelijkenis is echter niet gecorreleerd met de duur
van hun relatie (bij a=0,01; p=0,011), wat suggereert dat de gelijkenis tussen partners vooral
komt door een fenomeen wat fenotypische selectie (‘phenotypic assortment’) wordt genoemd.
Hierbij kiezen mensen hun partner uit (mede) op basis van (factoren die verband houden met)
zijn of haar fenotype, zoals alcoholgebruik, of een eigenschap die samenhangt met
alcoholgebruik.

Hoofdstuk 4 beschrijft een studie naar de ontwikkeling van de symptomen van
alcoholmisbruik en afthankelijkheid (AAD) gedurende de adolescentie en jongvolwassenheid, een
belangrijke periode voor de ontwikkeling van alcoholgebruik, en hoe deze ontwikkeling kan
worden verklaard. Als maat voor de frequentie van symptomen van AAD zijn
vragenlijstgegevens van de CAGE (Ewing 1984) geanalyseerd. De CAGE, een acroniem, bestaat
uit vier vragen die informeren naar vier symptomen van AAD: het gevoel te moeten stoppen met
drinken (Cutdown), lastiggevallen worden met kritiek op het drinkgedrag (Annoyed), zich slecht
of schuldig voelen over het drinkgedrag (Guilty), en 's ochtends drinken tegen de zenuwen of
kater (Eye Opener). De CAGE-data zijn verzameld bij tweelingen die toen tussen de 15-32 jaar
oud waren en zijn geanalyseerd in zes leeftijdscategorieén (van elk drie jaar, van 15-17 tot 30-32
jaar, naar de leeftijd waarop de tweelingen de vragenlijst hadden ingevuld). Hierbij is
onderzocht wat de relatieve bijdrage is van genetische en omgevingseffecten op de ontwikkeling
van symptomen van AAD in de adolescentie en jonge volwassenheid. Daarnaast is onderzocht of
deze ontwikkeling kan worden verklaard door één set van genen of dat er nieuwe genen tot
expressie komen gedurende de adolescentie en jongvolwassenheid (genetische innovatie),
bijvoorbeeld rond de periode waarin adolescenten gewoonlijk het ouderlijk huis verlaten.

AAD-symptomen worden aanzienlijk vaker door mannen dan vrouwen gerapporteerd,
maar er zijn geen sekseverschillen in de erfelijkheid. De ontwikkeling in het risico op het hebben
van een of meer AAD symptomen gedurende de adolescentie en jongvolwassenheid wordt
verklaard door één set genen, waarvan de invloed groter wordt naarmate personen ouder
worden. Er is dus geen sprake van genetische innovatie, maar van een vergroting van genetische
invloeden die reeds aanwezig zijn in de adolescentie.

Op de leeftijd van 15-17 jaar zijn omgevingsinvloeden die worden gedeeld tussen
tweelingen belangrijker dan genetische effecten die 28% van de variantie verklaren. Naarmate
individuen ouder worden, nemen genetische invloeden in belang toe terwijl de relatieve invloed

van gedeelde omgevingseffecten daalt. Op 21-23 jarige leeftijd, wordt de invloed van genetische
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effecten op het risico op het hebben van een of meer AAD-symptomen geschat op 58%. In de
jaren daarna blijft de invloed van genen hoog (52-56% gedurende de leeftijd van 24-32 jaar).

Hoofdstuk 5 beschrijft in hoeverre individuele verschillen in bloedwaarden van de
leverenzymen GGT, ALT en AST aan genetische effecten kunnen worden toegeschreven. Er
worden kwantitatieve sekseverschillen gevonden in de erfelijkheid van GGT en ALT (maar niet
van AST), waarbij de erfelijkheid van ALT hoger is bij mannen en die van GGT hoger is bij
vrouwen (zie tabel 1). De erfelijkheidsschatting (gebaseerd op additieve + nonadditieve
genetische effecten) voor GGT is 30% voor mannen en 60% voor vrouwen. Voor ALT is de
erfelijkheidschatting 40% en 22% voor mannen en vrouwen respectievelijk. Wat betreft AST kan
43% van de variantie worden verklaard door genetische invloeden (voor zowel mannen als
vrouwen). Niet-additieve genetische effecten speleen een rol bij AST (in zowel mannen en
vrouwen 15%) en bij GGT in vrouwen (28%), maar niet bij ALT (beide geslachten) en bij GGT in
mannen.

De correlatie tussen leverenzymwaarden van familieleden van gelijke sekse is even sterk
als die tussen leverenzymwaarden van familieleden van ongelijk geslacht, wat aangeeft dat er
geen kwalitatieve sekseverschillen zijn in de genetica van leverenzymen. De correlatie tussen
ALT- en AST-niveaus van ouder- en kindparen en broer-/zusparen is even groot, wat aangeeft
dat voor deze leverenzymen, de genen die bijvoorbeeld op 20-jarige leeftijd van invloed zijn op
ALT- en AST-niveaus grotendeels dezelfde zijn als die op 50-jarige leeftijd. Voor GGT waren er
kwantitatieve leeftijdsverschillen in het relatieve belang van genetische en omgevingseffecten.
Dit was het gevolg van omgevingsinvloeden op GGT die gedeeld werden tussen (tweeling)broers
(c2 28%), maar niet tussen ouders en hun kinderen. Deze gezamenlijke omgevingseffecten
konden niet worden verklaard vanuit bijvoorbeeld seizoensinvloeden die weliswaar aanwezig

waren voor ALT en AST maar niet voor GGT.

7. Associatie tussen alcoholgebruik en leverenzymwaarden

Een toename in alcoholgebruik is voorspellend voor een toename in GGT (mannen:
r=0,17; vrouwen: r=0,09; Hoofdstuk 6). Alcoholgebruik was niet significant geassocieerd met
ALT. De associatie tussen alcoholgebruik en AST was inconsistent. Bij NTR-deelnemers was
alcoholgebruik geassocieerd met AST bij vrouwen, maar niet bij mannen, terwijl bij NESDA-
deelnemers het verband andersom was: alcoholgebruik was geassocieerd met AST-niveaus bij
mannen, maar niet bij vrouwen (Hoofdstuk 8). Dit is waarschijnlijk te verklaren vanuit het feit
dat het NTR/NESDA-sample relatief gezond is qua alcoholgebruik. Onder de mannen kan 9,6%
gecategoriseerd worden als zware drinker (>21 glazen alcohol/week;> 42 gram alcohol/dag).

Onder de vrouwen is dit 6,4% (>14 glazen alcohol/week;> 28 gram alcohol/dag).
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Dit bevestigt de bevinding uit eerdere studies dat AST en ALT-waarden verhoogd zijn onder
zware drinkers, maar niet of nauwelijks onder matige drinkers. GGT laat daarentegen een
toename zien bij zowel matig drinken als zwaar drinken (e.g. Arndt et al. 1998; Alatalo et al.
2009b; Liangpunsakul et al. 2010).

In Hoofdstuk 6 is verder onderzocht hoe de associatie tussen alcoholinname en GGT het
beste kan worden verklaard. Hebben individuen verhoogde GGT-waarden omdat ze meer
alcohol drinken of is er een gemeenschappelijke oorzaak die de associatie tussen alcoholgebruik
en GGT op populatieniveau kan verklaren, bijv. gedeelde genetische factoren die van invloed zijn
op zowel alcoholgebruik als variatie in GGT (genetische pleiotropie)? Gegevens over
alcoholinname en GGT bij tweelingen en hun familieleden kunnen hierin inzicht geven.

De associatie van alcoholgebruik met GGT op populatieniveau kan het beste worden
verklaard door een effect van genetische pleiotropie. Genetische invloeden op alcoholgebruik
zijn gecorreleerd met die op GGT (p<0,001), terwijl de correlatie tussen omgevingseffecten op
alcoholinname en GGT niet significant was (bij =0,01, p=0,041), wat het meest in
overeenstemming is met een effect van gedeelde genen, hoewel een causaal effect van
alcoholgebruik op GGT niet kan worden uitgesloten. Deze bevinding is niet noodzakelijk in
tegenspraak met de bevinding dat alcoholgebruik GGT verhoogt in experimentele settings
(Conigrave et al. 2003), maar stelt dat in deze relatief gezonde populatie de genen die
alcoholgebruik beinvloeden, ook variatie in leverenzymen veroorzaken, waardoor een correlatie
tussen alcohol drinken en verhoogde leverenzymen op populatieniveau ontstaat. Genen die een
rol spelen bij alcoholgebruik, verklaren 7,6% van de variantie in GGT bij mannen en 4,6% van
variantie bij vrouwen. Interessant is dat de genetische effecten op alcoholgebruik en GGT
voornamelijk niet-additief op elkaar inwerken, wat kan wijzen op interacterende risicoallelen

(vanuit genetische dominantie of epistase).

8. Genetische invloeden op alcoholgebruik, leverenzymwaarden en hun samenhang op basis van
genetische markerdata

Hoofdstuk 7 en 8 presenteren studies die gebruikmaken van SNP-data. SNPs zijn
genetische varianten waarbij het DNA op één nucleotide (adenine, A; cytosine, C; thymine, T;
guanine, G) kan verschillen van het DNA uit de referentieset (van een populatie).

In Hoofdstuk 7 is een kandidaatgenstudie uitgevoerd naar de associatie van SNPs in het
ADH-gencluster en verschillende maten van alcoholgebruik. Het ADH-gencluster bestaat uit
zeven genen, waarvan de ADH1B en ADH1C genen functionele varianten herbergen die in eerder
onderzoek zijn geassocieerd met het risico op alcoholisme (Edenberg 2007). Aangezien relatief
weinig bekend was over genetische varianten in de andere ADH-genen en hoe deze betrekking

hebben op andere maten van alcoholgebruik dan alcoholisme, is in hoofdstuk 7 onderzocht of
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SNPs binnen dit gencluster samenhangen met frequentie en mate van alcoholgebruik,
lichamelijke reacties na alcoholgebruik, symptomen van AAD en leeftijd bij aanvang van het
alcoholgebruik. Er zijn significante associaties gevonden (@=0,007) voor reacties na
alcoholgebruik met een SNP in ADH5 (rs6827292) en een SNP net stroomopwaarts van ADH5
(rs6819724), dat in een sterke samenhang (linkage disequilibrium, LD) verkeert met SNP
rs6827292. Daarnaast is de associatie tussen leeftijd bij aanvang van regelmatig alcoholgebruik
en een SNP net stroomopwaarts van ADH7 (rs2654849) significant. Er zijn geen significante
associaties gevonden voor alcoholgebruik en symptomen van AAD. Hoewel SNP-associaties uit
een eerdere studie (Macgregor et al. 2009) niet werden gerepliceerd, wijzen de drie nieuwe
SNP-associaties op het belang van het ADH-gencluster in het verklaren van verschillen in maten
van alcoholgebruik.

In Hoofdstuk 8 is geschat welk deel van de variantie in leverenzymwaarden kan worden
verklaard door het gezamenlijke effect van alle SNPs en of een deel van deze variantie wordt
gedeeld met die van alcoholgebruik. Hiertoe zijn twee relatief nieuwe methoden toegepast. Met
de genetische verwantschap Matrix (GRM) methode, is de paarsgewijze genetische
verwantschap tussen individuen geschat op basis van SNP-data. Deze paarsgewijze
verwantschap is opgenomen als random effect in een linear mixed model, geimplementeerd in
het softwarepakket genome-wide complex trait analysis (GCTA) (Yang et al. 2011a). Hiermee
werd de variantie geschat op basis van additieve SNP-effecten. De dichtheidsschatting (DE)
methode, voorgesteld door So et al. (2011), is gebaseerd op het vergelijken van de effectgroottes
van SNP-associaties afkomstig uit GWA- of GWA meta-analyse studies met de verwachte
verdeling van effectgrootten onder de nulhypothese van geen effect. Data waren afkomstig uit
drie bronnen: (a) ongerelateerde deelnemers aan het NTR-onderzoek, (b) ongerelateerde
deelnemers aan de NESDA-studie (Penninx et al. 2008), en (c) een groot consortium van waaruit
GWA meta-analyseresultaten beschikbaar waren over SNP-associaties voor GGT en ALT
(Chambers et al. 2011).

Op basis van de NTR/NESDA data kan ongeveer 15-17% van de variantie in GGT, 2-15%
van de variantie in ALT en 13% van de variantie in AST worden verklaard door het gezamenlijke
effect van alle SNPs. Voor alcoholgebruik is dit 15%, waarbij een aanzienlijk deel van de variatie
wordt verklaard door chromosomen 4 en 15 (elk ~4,5%). Deze schattingen geven aan dat ~50%
van de erfelijkheidsschattingen (op basis van additief genetische effecten) van leverenzymen en
alcoholgebruik verklaard kan worden door de effecten van de gemeten en geimputeerde SNPs.
Deze bevindingen wijzen erop dat SNPs inderdaad informatie bevatten aangaande de
onderliggende genetische risicoallelen voor alcoholinname en leverenzymen. Verder
methodologisch onderzoek moet zich concentreren op SNP-gebaseerde

erfelijkheidschattingsmethoden die ook niet-additieve genetische effecten op de variatie
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meenemen. Opvallend is dat de DE-methode in veel lagere erfelijkheidsschattingen van GGT en
ALT resulteert wanneer deze worden gebaseerd op de GWA meta-analyseresultaten (GGT 8%,
ALT 5%) dan gebaseerd op de NTR/NESDA data. Dit kan mogelijk worden verklaard vanuit
heterogeniteit in effectgroottes van SNPs tussen de verschillende samples uit de meta-analyse.

Tenslotte is onderzocht of de variatie in GGT die kan worden toegeschreven aan SNP-
effecten, gedeeld wordt met SNP-effecten voor alcoholgebruik. Zowel met de GRM- als met de
DE-methode is geen evidentie gevonden voor gemeenschappelijke SNP-variatie. Dit kan mogelijk
worden verklaard door een lage power van de SNP-gebaseerde methoden of dat de relatie
tussen alcoholinname en GGT door een ander ziektemodel wordt beschreven dan zoals in de
studie verondersteld (een causaal effect van alcoholinname op GGT i.p.v. gedeelde genen en/of
nonadditief genetische effecten en/of leeftijdsinteractie i.p.v. additief genetische effecten). Met
polygenetische risicoscores op basis van de GWA meta-analyseresultaten kan alcoholinname in
de NTR/NESDA-set wel worden voorspeld, maar de hoeveelheid verklaarde variantie is niet

hoger dan 0,25%.

9. Conclusies

Een aanzienlijk deel van de individuele verschillen in alcoholgebruik (o.a. alcoholinname,
symptomen van alcoholmisbruik en -afhankelijkheid) en leverenzymwaarden in de Nederlandse
bevolking kan worden toegeschreven aan genetische variatie, zoals bepaald met het
tweeling(familie)design en met nieuwere technieken als de GRM- en DE-methode. Met de laatste
technieken is een deel van de genetische basis van alcoholgebruik en leverenzymwaarden
herleid tot variatie in de DNA-sequentie (SNPs). Wat betreft de relatie tussen alcoholinname en
leverenzymwaarden, blijkt alcoholinname voorspellend voor GGT-niveaus, maar geen robuuste
voorspeller van ALT- of AST-niveaus. Met het tweelingfamiliedesign kan worden vastgesteld dat
de associatie tussen alcoholinname en GGT op populatieniveau in elk geval gedeeltelijk kan
worden toegeschreven aan een effect van gedeelde genen.

De bevinding dat verschillen in alcoholgebruik en leverenzymwaarden gedeeltelijk zijn
toe te schrijven aan SNP-effecten, geeft aan dat de huidige SNP-platforms informatie bevatten
over risicoallelen die ten grondslag liggen aan verhoogd alcoholgebruik en leverenzymwaarden.
Aangezien de invloed van nonadditieve genetische effecten op alcoholgebruik en
leverenzymwaarden aanzienlijk is, zal toekomstig onderzoek zich moeten richten op methoden
die ook nonadditieve genetische effecten meenemen in de SNP-gebaseerde
erfelijkheidsschattingen. Deze informatie kan leiden tot het opsporen van nieuwe biologische

paden die ten grondslag liggen aan alcoholgebruik, leverenzymen en hun samenhang.
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