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Chapter 1: Introduction: Behavior Genetics 
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The aim of the first chapter of this thesis is to review the current practice of 
behavior genetics. We define behavior genetics broadly as the study of the role of 
genetic and environmental variables in phenotypic individual differences. We 
employ the term phenotype, as this is the accepted term in genetics, for any 
measured (observed) characteristic. Alternatively we use the term trait (but 
without the association of stability, as in trait psychology). While behavior genetics 
often is associated with psychology, we define behavior more broadly to 
encompass any human phenotype, which is directly or indirectly relevant to 
behavior, and which is characterized by appreciable individual differences. As such, 
this definition of behavior genetics encompasses genetic epidemiology, psychiatric 
genetics, and psychogenetics. We limit this chapter to human behavioral genetics, 
but acknowledge the common foundation of animal and human genetics in 
underlying statistical and biological models and methods,1-4  and the relevance of 
animal studies to human behavior.5 For an example of findings from animal 
behavior genetics informing human behavior genetics, see chapter 6 of this 
dissertation. Finally, we assume that the phenotypes of interest are complex, i.e., 
subject to the effects of many genes of small effect and many environmental 
effects, thereby excluding phenotypes subject to a major effect of one or at most a 
few genes (e.g., Mendelian or monogenic disease, such as Huntington disease).  

Taking a bird's eye view of the recent history of behavior genetics, we note that 
from the late 1970’s to the late 1990’s, the field was dominated by family, 
adoption and twin studies, in which the contributions of unmeasured (or "latent") 
genetic and environmental variables to phenotypic variation were inferred from 
the phenotypic resemblance among family members.6;7 This work established 
beyond reasonable doubt the importance of genetic and environmental factors in a 
variety of human phenotypes,8; 9 and set the stage for addressing follow-up issues, 
including the identification of the causal genetic variants underlying the 
phenotypic variation. However, family and twin designs continue to be applied, 
and chapter 2 in my thesis shows how longitudinal twin data can inform on genetic 
stability across the lifespan. 

From the late 1990’s onwards, the scope of behavioral genetics was expanded by 
the advent of high throughput genotyping technologies, which enabled researchers 
to measure actual genetic variants at a genome-wide level. Initially, highly 
polymorphic genetic variants (i.e., comprising many alleles; e.g., microsatellite 
markers) were used in linkage analyses of complex behavioral phenotypes (see for 
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example: Wray et al.10 ). These variants were relatively few in number (say, 
hundreds), and served the relatively modest objective of identifying chromosomal 
regions of interest (i.e., loci harboring causal genetic variants). From the early 
2000’s, advances in genotyping technology enabled researchers to measure single 
nucleotide polymorphisms (SNPs; diallelic genetic variants) in the hundreds of 
thousands (presently in the millions), and conduct genome-wide association 
studies (GWAS). An excellent overview of GWAS by Visscher et al.  appeared in 
2012.11  In linkage studies, a within family design is employed and biologically 
related family members are required. In association studies, the measured genetic 
variant is tested directly by regression of the phenotype on the variant in a sample 
of individuals, who can be related or unrelated. Association studies largely 
superseded linkage studies, because they are generally more powerful and do not 
require samples of related individuals, which may be difficult to collect. In addition, 
association studies may identify causal variants, or the regions harboring a causal 
genetic variant, which are appreciably smaller than those identified in linkage 
analysis.  

The availability of vast amounts of measured genetic variants, and their use in 
GWAS, has also given rise to new statistical techniques. These include techniques 
to estimate the contribution of the entire set of measured SNPs to the phenotypic 
variation, without identifying the association of the phenotype with any individual 
SNP.12-15 A second technique to test genetic association of a subset of SNPs and a 
given phenotype is by aggregating a subset of SNPs into a weighted polygenic score 
16-18 In chapter 5 of this thesis, polygenic scores based on the most recent findings 
for schizophrenia19 are analyzed (see: de Zeeuw et al.20 and Groen-Blokhuis et al.21 
for other recent applications of this technique). 

The setup of the present review follows the historical outline above. We first 
discuss twin and family methods, as applied to complex quantitative phenotypes. 
We discuss genetic linkage and genetic association analysis, with the emphasis on 
the latter. Finally, we discuss the use of polygenic scores, and Genomic 
Relationship Matrix Restricted Maximum Likelihood (GREML) as implemented in 
GCTA and its extensions. All throughout this review we consider the different 
methods in terms of a basic regression model. This allows the reader to gain insight 
in the communalities and differences between the methods discussed here and 
used in behavior genetics from the 1970’s up until this day.  
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Family and twin designs 

 

Family and twin designs provide the means to infer, under explicit assumptions, 
the contributions of genetic and environmental influences to phenotypic individual 
differences from the phenotypic resemblance among family members. The 
statistical model employed in family and twin studies invariably involves the 
regression of the phenotype y on unobserved or latent genetic (G) and latent total 
environmental (T) variables: 

 

yij= b0 + g*Gij + t*Tij     (1), 

 

Where i denotes family, j denotes family member, and b0 is an intercept. Equation 
1 represent the linear regression, but given a binary or discrete phenotype, y, 
generalized linear regression is used (notable probit regression see Falconer & 
MacKay2 and Neal & Cardon22). Note that it is assumed that interaction (GxT) is 
absent; we return to this assumption below. The regression coefficient g quantifies 
the contribution of G to the phenotype y. Similarly, we assume T comprises effects 
of many (unknown) environmental factors, and the regression coefficient t 
quantifies their contribution. We assume that the genetic variable G includes the 
effect of a possibly large, but unknown, number of genes, each of small effect. 
Given that genetic variants occupy specific chromosomal locations, the term locus 
is also used in reference to a gene. To contribute to variance in yij , the genes that 
comprise Gij must be polymorphic. Many genetic loci are monomorphic. 
Monomorphic genes may be functional, but they do not vary between individuals 
and therefore do not contribute to  individual differences  in the phenotype. 
Human autosomal chromosomes come in pairs (homologues), so that each locus 
on the 22 autosomal chromosomes is characterized by two alternate alleles, one 
on each member of a homologous pair. A well known example of a polymorphic 
gene is the ABO gene, a locus (on chromosome 9 at 9q34.1-q34.2) with alleles A, B, 
and O, which give rise to 6 distinct genotypes (AA, AB, BB, AO, BO and OO). 
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A diallellic genetic variant with alleles A and B gives rise to three genotypes: BB, AB, 
AA (assuming that BA and AB cannot be distinguished), which we may code 0, 1, 2 
(reflecting the presence of the number of A alleles). The effect of alleles can be 
additive, which means that the effect of the genetic variant on the phenotype is 
purely additive (or in regression terms: purely linear). For instance, this is the case if 
the presence of one A allele increases the phenotype value by a given value a (i.e., 
genotypes coded 0, 1, and 2 correspond to effects 0, 1a, and 2a, respectively). 
Genetic non-additivity implies a deviation from linearity due to intra-locus allelic 
interaction (e.g., 0, 1, 2 correspond to 0, 0, 2a). Such intra-locus polygenic non-
additivity is referred to as genetic dominance. Interaction between alleles at 
different loci is referred to as epistasis. To accommodate additive and non-additive 
genetic effect, the G in the regression model is replaced by A and D, representing 
additive effects and dominance effects. We discard epistatic effects as they are 
hard to distinguish statistically from dominance effects.2 
Effects on the phenotype that are not attributable to genetic variation are referred 
to as environmental effects. Environmental effects are broad in nature as they may 
include prenatal exposures, experiences and exposures during childhood and 
throughout life. Relevant environmental variables are often unidentified and 
therefore not measured. Rather than estimating them directly, their effects are 
inferred from twin and family correlations.  In the context of the twin model two 
classes of environmental influences are distinguished: common environmental 
influences that are shared among twin pairs and or family members,  and unique 
environmental influences that are not shared among family members. When 
studies focus on older participants, whose phenotypes are assessed simultaneously 
with the phenotypes of cohabitants (spouses or other adults with whom they share 
a household), shared environment is sometimes referred to as ‘household effects’. 
Both terms emphasize that resemblance among relatives, whether they are 
biological relatives or not, can arise from sharing an environment, in addition to 
sharing of genes.  

Given the additive (A) and non-additive genetic affects (D) and, shared (C) and 
unshared (E) environmental effects we arrive at the following regression model:  

 

yij= b0 + a*Aij + d*Dij + c*Cij + e*Eij    (2) 
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Where a, d, c and e are regression parameters. By definition A and D are 
uncorrelated2, and C and E are uncorrelated. Under assumptions that there are no 
interactions among the predictors, and A and/or D is uncorrelated with C and/or E, 
this regression model implies the following decomposition of phenotypic variance: 

 

σy
2 = a2σA

2 + d2σD
2 + c2σC

2 + e2σE
2

    (3) 

 
The relative influence of genetic factors on phenotypic variation, common called 
the “heritability”, is defined as the percentage of total phenotypic variance that can 
be attributed to genetic effects. “Broad-sense” heritability includes all sources of 
genetic variance (additive and non-additive; hb

2 = [a2sA
2 + d2sD

2]/ sy
2), “narrow-

sense” heritability is limited to additive genetic variance (hb
2 = [a2sA

2]/ sy
2)). Note 

that large heritability (narrow or broad) implies that genetic differences contribute 
substantially to phenotypic variance, but provides no information concerning the 
number or location of the relevant genes. Measurement error often cannot be 
distinguished from unshared environmental effect, and we therefore assume that 
such error variance is included in e2sE

2. While the variance term e2sE
2 represent 

environmental effects (plus error), it may, in principle, include effects, which are 
not strictly environmental, such as the effects of private genetic mutations, and so-
called "developmental noise".23; 24 
Family and twin designs are used to arrive at estimates of the variance 
components in equation 3. In such designs, the independent variables (A, D, C, E) 
are not actually measured, rather their effects are inferred from the phenotypic 
correlation among individuals, who are in known genetic and environmental 
relationships.25-27  As phenotypic resemblance is summarized in one or more 
phenotypic covariance matrices, the statistical analysis of such family data is 
essentially covariance structure modeling or structural equation modeling, in 
which the predictors A, D, C, and E are treated as latent variables.6; 22 As the 
majority of behavior genetic studies of complex traits employed the classical twin 
design, we base our explanation of genetic covariance structure modeling on this 
design.  
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Let us reconsider equation 2, but now explicitly for monozygotic (MZ) and dizygotic 
(DZ) twin pairs (subscript j is now j=1 or j=2). Given that the predictors are latent, 
we have to impose some scale on them (this is standard in latent variable 
modeling28). We assume that the predictor variables are standardized (i.e., unit 
variance, zero mean). This implies that the intercept b0 equals the mean of the 
phenotype.  

 

yi1 - b0 = a*Ai1 + d*Di1 + c*Ci1 + e*Ei1    (4a) 

yi2 - b0 = a*Ai2 + d*Di2 + c*Ci2 + e*Ei2    (4b) 

 

These equations are associated with an expected 2x2 covariance Σ, with diagonal 
elements σy

2 = a2 + d2 + c2 + e2 (see equation 3, bearing in mind the variances are 
equal to 1). Assuming A, D, C, and E are uncorrelated and display no interaction, 
covariance between twin 1 (yi1) and twin 2 (yi2), σy12, equals σy12 = a2*r(A1,A2) + 
d2*r(D1,D2) + c2*r(C1C2) + e2*r(E1E2), where r() denotes correlation. The twin design 
is based on the fact that we know the values of these correlations given various 
assumptions. In the case of the environmental variables, the fact that C 
environmental effects are shared, and E effects are unshared implies r(C1C2) = 1 
and r(E1E2) = 0. Here we assume that shared environmental influences in the MZ 
twins are the same as in the DZ twins. MZ twins are genetically identical, i.e., they 
share 100% of their genes (barring de novo mutations29). Genetic identicalness 
implies r(A1,A2)=1 and r(D1,D2)=1 in the MZ twins.2 Assuming the genetic 
correlation among their parents is zero (random mating), dizygotic (DZ) twins on 
average 50% of their segregating genes30; 31 ,and so r(A1,A2) = .5. The dominance 
correlation can be shown to equal .25 (see Mather & Jinks31) so that r(D1,D2)=.25 in 
DZ twins. We arrive at the following expected covariance matrices Σ in MZ and DZ 
twins (the ADCE model): 

 

ΣMZ = a2 + d2 + c2 + e2     

 a2 + d2 + c 2  a2 + d2 + c 2 + e2   (5a) 
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ΣD Z= a2 + d2 + c2 + e2  

 ½a2 + ¼d2 + c 2  a2 + d2 + c2 + e2   (5b) 

 

The mean vectors are μMZ = μDZ = [b0 b0]. In this model, we assume no differences 
between e.g. first and second-born twins or between zygosity in means (all equal 
b0) or in variance (σy

2). These assumptions are easy to test. This model, including 
the 4 parameters a, d, c, and e, is not identified. It is common practice to limit the 
models to effects of A, D, and E (an "ADE model") or A, C, and E (an "ACE model"), 
depending on the observed correlations (see Keller et al.32 for a discussion of this 
issue). When D contributes significantly to a phenotype, we expect the correlation 
in MZ pairs to be larger than twice the correlation in DZ pairs. If C contributes 
significantly to a phenotype, we expect the correlation in MZ pairs to be less than 
twice as large as DZ correlations. 

It is instructive to consider an ACE model briefly in terms of the correlations it 
might generate. Supposing the phenotypic variance equals 1 (σy

2 =1), any genetic 
effects are bound to render the MZ phenotypic correlation (rMZ) greater that the 
DZ correlation (rDZ) while shared environmental effects will increase both MZ and 
DZ phenotypic correlations. Given c2>0 (say, c2=.2) and a2=0, the correlations are 
expected to be equal (both .2). As a rule of thumb, if 2*rDZ>rMZ, this is taken to be 
indicative of an ACE model, and a quick estimate of a2 is obtained as 2*(rMZ - rDZ). 
E.g., given rMZ=.6 and rDZ=.4, 2*(.6-.4) = .4, and c2 is 2*rDZ-rMZ (e.g., 2*.4 - .6 = 
.2). The unshared environmental component, which includes measurement error, 
finally, is e2=1-rMZ (1-.6=.4). If 2*rDZ<rMZ, this is indicative of the effects of non-
additive genetic effects (dominance and/or epistasis). The fact that we are limited 
to ACE or ADE is a clear weakness of the twin design, which can be overcome by 
adding data from additional family members, such as half-siblings growing up in 
the same household, or parents of twins. 

 

Genetic covariance structure modeling 

Genetic covariance structure modeling (GCSM) is used to fit a given model (say, 
ACE model; i.e., assuming d=0) to the MZ and DZ twin data simultaneously to 
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obtain estimates of the parameters a, c, and e.6 Typically this is done using 
programs for structural equation modeling with maximum likelihood (ML) 
estimation,33 such as LISREL,34; 35 Mplus,36 Mx,37 and OpenMx.38 Mx and OpenMx 
were written specifically to facilitate twin and family modeling. ML estimation has 
the advantages of providing goodness of fit indices to evaluate overall model fit , 
standard error of parameter estimates, and nested model comparison using the 
likelihood ratio test.28  

Covariance structure models, including twin and family models, can be represented 
graphically in a path diagram. An example of the path model that corresponds to 
the covariance model in equation 5 is shown in figure 1. The variables in squares 
are the observed phenotypes in the separate twins. The latent genetic and 
environmental variables are represented by circles. Their influence on the 
phenotype is given by path coefficients a, c, d and e.  
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Figure 1: Path diagram corresponding to the ACDE covariance model described in equation 5. As the 
complete ACDE model is not identified either parameter  d is set to 0 resulting in an ACE model or 
parameter c is set to 0 resulting in an ADE model. 
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Path diagrams provide highly insightful and intuitive representations, which are 
mathematically complete.39; 40 This means that the covariance structure implied 
from the diagram can be inferred using path tracing rules,22 Keller et al.41 discussed 
the application of the tracing rules in some detail.  

So far, we have considered the linear regression model, in which the phenotype is 
continuously and (conditional on fixed covariates such as sex and age) 
approximately normally distributed. Non-normality can be handled by 
transforming the data to approximate normality, or by adopting a robust 
estimator. Often traits of phenotypes of interest, such as for example the presence 
and or absence of disease, are measured on a discrete scale. Other phenotypes of 
interest are measured on an ordinal discrete scale.  Fitting models to discrete data 
can be done by applying a suitable least squares estimator,28; 42 or by full 
information maximum likelihood estimations, which is the main method in 
OpenMx. Regardless of the estimator, the approach is closely related to probit 
regression analysis43; 44 where a binary phenotype is regressed on predictors. 
Models for discrete phenotypes assume a latent normally distributed variable, 
usually called the liability. The frequencies (or prevalences) of the observed 
discrete values (say 0,1) determine the position of thresholds (specific points) on 
the liability. The frequency of a given response  (say the frequency of the response 
0 is .5) can be derived from the liability by integration of the liability distribution of 
(say) minus infinity to the threshold value. This approach can be generalized to 
discrete phenotypes comprising more than two values.  In this model (the "liability-
threshold model"), the liability is the variable that is subject to genetic covariance 
structure modeling using twin data, where it is assumed that the a bivariate normal 
distribution underlies the bivariate discrete twin data.    

Multivariate and Longitudinal Genetic Analyses 

 

Above, we considered a single phenotype, measured in twins. As twin pair (rather 
than individual twin) is the sampling unit, the data are by definition bivariate, as is 
the covariance structure model. Genetic covariance structure modeling can also be 
applied to multivariate data. Multivariate data arise when two or more phenotypes 
are analyzed simultaneously.6; 26; 34; 45 Here we consider the multivariate genetic 
model. We again start with the multivariate regression: 
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yij- b0 = a*Aij + d*Dij + c*Cij + e*Eij    (6) 

 

Letting p denote the number of phenotypes, yij is the p dimensional phenotypic 
vector in twin j of family i, with p dimensional mean vector b0. The p dimensional 
vector A represents the p additive genetic variables (zero-mean, unit variance), 
associated with the p phenotypes (D, C, and E are defined analogously). The pxp 
matrices a, d, c, and e are diagonal matrices containing the regression coefficients 
(or path coefficients) as they express the change in the phenotype as a function of 
a change in the predictors (A, D, C and E). The within twin expected covariance 
structure is:  

 

Σy = aRAat + dRDdt + cRCct + eREet = ΣA + ΣD
 + ΣC

 + ΣE  (7) 

 

Where RA is the pxp correlation matrix of the additive genetic effects A, and aRAat is 
the pxp genetic covariance matrix, i.e., ΣA = aRAat (ΣD =dRDdt, ΣC =cRCct, and ΣE = 
eREet are defined analogously). Note that the covariance matrices ΣA , ΣD, ΣC and ΣE 
are not modeled or constrained in anyway. We assume only that they are positive 
(semi-) definite covariance matrices, and that Σy is positive definitea. The 
covariance matrix equals the 2p x 2p covariance matrices: 

 

 

ΣMZy = ΣA + ΣD
 + ΣC

 + ΣE ΣA + ΣD
 + ΣC   (8a) 

 ΣA + ΣD
 + ΣC

  ΣA + ΣD
 + ΣC

 + ΣE 

                                                            
a Positive definite implies that the eigenvalues are positive. This is a characteristic of a 
valid covariance matrix. Positive (semi-) definite implies that the eigenvalues are zero or 
greater than zero. Note that the phenotypic covariance matrix is required to be positive 
definite, but the underlying covariance matrices may be positive semi definite.  
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ΣDZy = ΣA + ΣD
 + ΣC

 + ΣE ½ΣA + ¼ΣD
 + ΣC   (8b) 

 ½ΣA + ¼ΣD
 + ΣC

  ΣA + ΣD
 + ΣC

 + ΣE 

 

Often this model is estimated by subjecting the covariance matrices to a triangular 
or Cholesky decomposition (e.g., ΣA = ΚAΚA

t, where ΚA is a lower triangular 
matrix22; 46).  This particular parameterization of the covariance matrices is 
convenient as it guarantees that these matrices are positive (semi-) definite. As in 
the case of a univariate model, the full model, as presented in Eq 8a-8b, is not 
identified. Again it is standard practice to consider models including either ACE or 
ADE (or submodels thereof). Figure 2 shows the path diagram that corresponds to 
the Choleski decomposition of the covariance between 2 traits. 

The multivariate twin model can be used to determine the contributions of genetic 
and environmental effects to the phenotypic variances and covariances. In 
addition, each covariance matrix (in the ACE model: ΣA, ΣC, and ΣE) can be 
subjected to its own covariance structure model, allowing one to determine the 
covariance structure of the genetic and environmental effects. In this connection, 
it is interesting to note that any phenotypic covariance structure is the sum of the 
genetic and environmental structures (eq. 7). One may ask what the relationship is 
between the phenotypic covariance structure and the latent genetic and 
environmental structure. For instance, is the phenotypic  5 factor structure of 
personality47; 48  a reflection of, say, 5 factor structures of the underlying ΣA and ΣE 
covariance matrices.49; 50 

Multivariate data arise naturally in longitudinal studies, where the same 
phenotype(s) is (are) measured repeatedly. The longitudinal twin model again can 
reveal contributions of genetic and environmental effects to the stability over time. 
The genetic and environmental covariance structures can be modeled using well 
established models for repeated measures, such as the simplex model ,45; 51; 52 
which emphasizes genetic and environmental contributions to stability and change, 
and growth curve models, which emphasize the contributions to growth.53 Chapter 
2 of this dissertation includes an application of the simplex model to a cohort 
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sequential classical twin design to study the stability of anxious depression from 3 
to 63 years. 
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Figure 2: The path model corresponding to a Choleski decomposition  of A, C D and E for two 
phenotypes measured in a single individual. Parameters a11, a12 and a22 correspond to the values in 
the lower triangular matrix Ka the genetic covariance matrix is the product of the matrix Ka and its 
transpose. (i.e. ΣA = ΚAΚA

t ). The  4 covariance matrices in the full ACDE model (Ka, Kd, Kc and Ke) 
cannot be estimated simultaneous. It is therefore customary to restrict d11, d12 and d22 to 0 resulting 
in an ACE model or to restrict c11, c12 and c22 to 0 resulting in an ADE model. 
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The classical twin model, as presented, is based on various explicit assumptions.2 
These include random mating, absence of any interaction among the latent 
variables, the latent variables A and D being uncorrelated with C and E, and the 
assumption of equal environmental (including prenatal intra-uterine environment) 
effects in MZ and DZ twins.2  A lot of work has been devoted to extending the 
classical twin model to arrive at a design, which is less dependent on these 
assumptions. For instance, assortative mating (a positive phenotypic correlation 
among spouses) can result in a spurious c2 component in the classical twin design. 
By extending the twin design to include the parents, assortative mating can be 
included in the model, and its effects accounted for.41; 54 Below, we discuss in some 
detail the assumption of additivity of effects, i.e., the absence of any form of gene-
by-environment (GxE) interaction, and the assumption that A and D are 
uncorrelated with C and E.  

 

Interaction: Moderation of genetic and environmental effects 

GxE interaction (or in notation consistent with equation 1 GxT) is classically 
conceptualized in terms of genetic control of sensitivity to the environment, i.e., 
the effect of an environmental risk factor on an individual depends on the genetic 
make-up of the individual.25; 55 We cast this in terms of moderation, i.e., the 
moderation of any effect estimated in the twin of family design (environmental or 
genetic) by any measure of latent variable (genetic or environmental). As such, we 
can consider AxE interaction in the twin model, where the moderation of 
environmental effects (E) by additive genetic effects (A) is detectable as 
heteroskedasticity: the variance of E, summarizing the effects of E, varies as a 
function of the level of A. This is complicated by the fact that A is a latent variable, 
but various approaches have been developed that can detect such 
heteroskedasticity.25; 56-59 Alternatively we can consider interaction in terms of the 
effects of a measured moderator on both genetic and environmental effects.60; 61 In 
this case the moderator can be any variable, and may itself be subject to genetic 
and environmental effects.  
The exact model used to test moderation depends on the nature of the moderator. 
The simplest case is a moderator that has the same value in both twins, such as age 
,52; 62 religious upbringing,63 or social economic status. In this case, one can 
estimate the effects of genotype and environment on the phenotype of interest 
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conditional on the moderator.25; 55; 64-66 In the absence of any moderation, the 
genetic and environmental effects, as expressed in terms of variance components 
(a2, c2 or d2, and e2), are the same regardless of the value of the moderator. Note 
that the absence of moderation does not imply the absence of a main effect. For 
instance, if the genetic and environmental effects on height are the same in 12 and 
18 year olds, this means that the size of the variance components are identical, but 
it does not rule out a main effect of age on height. Clearly, on average, 12y olds 
and 18y olds are likely to differ in height.  
Sex is another example of a relatively simple moderator, as conditioning on sex and 
testing whether the variance components are equal is straightforward. Introducing 
a subscript for sex (f for female; m for male), in the univariate model we test af

2 = 
am

2, etc. However, the presence of DZ opposite-sex twins (DZOS) offers the unique 
possibility of further investigating the nature of sex differences in a2 (af

2 ≠ am
2) or c2 

(cf
2 ≠cm

2). Given af
2 ≠ am

2 there are two possibilities concerning the nature of the 
difference in variance, which can be distinguished by testing the DZOS genetic 
correlation. Either the same genes are active in males and females, but the effect 
of the genes is moderated by sex (a quantitative sex difference), or different genes 
are active in males and females (a qualitative sex difference). The DZOS additive 
genetic correlation is expected to be .5 in the former case, but less than .5 in the 
latter.67 The presence of DZOS twins, in combination with male and female MZ and 
DZ twins allows one to test this. The qualitative sex differences model can also be 
applied in the context of an environmental hypothesis: instead of fixing the 
correlation between C factors at 1 in DZOS twins, it can be estimated as a free 
parameter. If it is judged to be significantly lower than 1.0, this indicates that the 
influence of the shared environment differs in the two sexes. However, note that, 
as there is only one group of opposite-sex twins (there are no MZ twins of opposite 
sex) this analysis is limited to either the genetic or the common environment 
correlation, as they cannot be estimated simultaneously. 
Purcell 60; 61 developed a general model to investigate moderation by a 
continuously distributed moderator, which is itself possibly subject to genetic and 
environmental effects. This model is based on a bivariate model, which includes 
the simultaneous ACE (ADE) decomposition of the moderator and the phenotype 
using a Cholesky decomposition. This model accommodates any phenotype 
covariance between these variables stemming from shared genetic or 
environmental influences. In addition, the paths specific to the phenotype and the 
paths accounting for the phenotype-moderators covariance are subject to 
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moderation. Various simplifications of the Purcell model are possible, but if the full 
model holds (i.e., full moderation of ACE effect on the phenotype and of the ACE 
effect shared by the moderator and the phenotype), more simplified models may 
produce spurious moderation results.68 

The Purcell model is often presented as a model for GxE interaction in the 
presence of gene-environment correlation. This interpretation is based on the 
conceptualization of the moderator as an "environmental" variable, which may be 
subject to genetic influence. For instance, general parental support 
(encouragement, taking an active interest, helping with homework, etc.) may 
moderate genetic and environmental influences on twins' intelligence. But 
parental support, while contributing to the environment of the twins, is itself likely 
to be subject to genetic influences. Gene-environmental correlation could arise if 
the amount of support was a function of parental intelligence. We return to this 
subject below.  

 
Gene-environment correlation  
The possibility that the genetic latent variables (A and D) are correlated with the 
environment variables (C and E) has been discussed extensively.25; 55; 69 Various 
plausible processes are expected to give rise to gene-environment correlation. For 
instance, the contributions of a parent to the home environment, as experienced 
by the offspring, may depend on the parent's genotype.70 This process can be 
investigated in models including parents and twins, by including the regression of 
the twin environment on the parental.41; 70 Similarly, siblings (including twins) that 
grow up together may contribute (negative or positively) to each other's 
environment.71 If the phenotypes involved in such contribution are subject to 
genetic effects (e.g., rowdiness, aggression), this will give rise to gene-environment 
correlation. This process can be studied by including the regression of the twins 
phenotypes on each other in a cross-sectional 71 or longitudinal twin study.72; 73; 73  
 
The classical twin design can be used to estimate the genetic and environmental 
influences to individual differences in a given "environmental" variable, such as 
marital status. For example, the individual differences in the tendency to marry is 
subject to genetic influences , 74; 75 as is the tendency to divorce.76 To determine 
whether the association between a specific environment and a trait is due to gene-
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environment correlation, the bivariate twin design (Figure 2) can be applied, as 
mentioned above.60 
 
This issue can also be addressed using the co-twin control design.77; 78 In this design 
MZ and DZ twins, who are discordant for a given condition, are studied along with 
unrelated individuals. In addition to the condition (e.g., disease status; say long 
cancer), a risk factor is measured (say, smoking), which is related to the condition. 
Assuming genetic and environmental influences are uncorrelated, and assuming a 
direct causal effect of the risk factor on the condition, the strength of the 
association will be the same in the MZs, DZs, and unrelateds. If the phenotypic 
association between the risk factor and the condition is due to pleiotropic genetic 
effects (genes affect both phenotypes, in the absence of any direct relationship), 
the strength of the association will be greatest in the unrelateds, but smaller in the 
DZs, and zero in the MZs (as the MZs are completely matched for genetic 
influences).  

An example of this is the study by Kendler et al.78 of the relationship between 
smoking and depression in women. They concluded that the relationship between 
depression and smoking in women is due to familial (probably genetic) factors that 
predispose to smoking and depression, and not a direct effect of depression on 
smoking. Groen- Blokhuis et al.79 investigated the association between low birth 
weight and attention problems. As in MZ pairs, DZ pairs and unrelated pairs of 
children, the child with the lowest birth weight scored higher on attention 
problems at age 3, 7, 10 and 12, the association is not a function of environmental 
or genetic correlation, but causal: that is, a lower birth weight directly causes 
increased attention problems.  

 

Linkage analysis 

 

Since the late 1990’s, the advent of high throughput genotyping technologies 
enabled researchers to measure actual genetic variants in unprecedented 
volumes. These data can be exploited in the hunt for the causal genetic variants 
contributing to the variance of complex phenotypes. Initially, the focus was on 
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highly polymorphic genetic markers (i.e., microsatellites, comprising many alleles), 
which were exploited in linkage analysis to locate chromosomal regions 
associated with a phenotype. Such regions included multiple genes, and were 
likely to harbor the gene that represented the variants causally linked to the 
phenotype. Linkage analysis relies on the fact that genes in close chromosomal 
proximity are transmitted together (linked). Such linkage is disrupted by 
recombination. That is, when gametes (sperm and egg cells) are produced 
during meiosis, the paired homologous chromosomes separate so that each 
gamete contains only one of the pair of alleles for each trait. During the first 
division of meiosis, sections near the ends of chromosomes commonly exchange 
parts of their chromatids with the other chromosome of their homologous pair. 
The probability of the linkage between two loci being disrupted, i.e., 
recombination occurring, depends on the distance between the loci. Highly 
polymorphic markers have been used in parametric and non-parametric linkage 
analysis. Here we only consider non-parametric linkage. 

In non-parametric linkage analysis, variation in the proportion of alleles that 
family members share identically by descent (IBD, i.e. from the same ancestor) at 
a given marker locus (see below) is exploited to identify the contribution of the 
marker to the phenotypic differences. A wide range of software packages is 
available to perform linkage analysis.80; 81 We introduce this type of analyses 
within the context of genetic structural equation modeling (GCSM), as used in the 
classical twin model. The model employed in linkage can be written in terms of 
regression of the phenotype on the (latent) genetic effect of a given quantitative 
trait locus (QTL) (Q) the latent genetic variance (G) ant the total environmental 
variance (T).  

 

yij= b0 + q *Qij + g*Gij + t*Tij  `    (9) 

 

As applied to full sibs, the model is often limited to the QTL, and additive genetic 
variable (A) and unshared environmental effects (E), i.e., yij= b0 + q *Qij + a*Aij + 
e*Eij . This regression model implies the following decomposition of phenotypic 
variance: 
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σy
2 = q2σQ

2 + a2σA
2 + e2σE

2 = q2 + a2 + e2,    (10) 

 

as scaling of the latent variables (Q, A, and E) implies that their variances equal 
one. We can derive standardized variance components in the model, i.e., the total 
heritability equals (q2 + a2 )/ (q2 + a2 + e2), and the variance explained by the QTL is 
q2/ (q2 + a2 + e2).  

Linkage analysis can be performed in complex pedigrees, but we consider linkage 
performed in DZ twins or full sib pairs, where again we consider the implied 
phenotypic covariance matrix. This implied variances are given in eq 10. The 
covariance between sibs is σy12 = q2*r(Q1,Q2) + a2*r(A1A2) + e2*r(E1E2), where, as 
mentioned above, r(A1,A2)=.5 and r(E1E2)=0. The correlation between QTL factors 
of DZ twins or siblings r(Q1,Q2), which is often denoted pi-hat (ߨො), is obtained from 
measured genotypic (marker) data. IBD status for the marker data determines this 
correlation. IBD status at a given locus equals 0, 1, or 2 in sibs, depending on the 
exact configuration of parental alleles that the sibs have inherited. To illustrate 
this in the simplest case, suppose that the parental genotypes at the locus of 
interest are A1A2 and A3A4, in mother and father, respectively. If the sibs are 
have identical genotypes (e.g., both A1A3), they share two alleles IBD (namely A1 
and A3). If the sibs have no alleles in common (e.g., A1A3 and A2A4), they share 
zero alleles IBD. Finally if they share one and the same allele from a given parent 
(e.g., A1A3 and A1A4), they share one allele IBD (namely A1). Often IBD status 
cannot be established with certainty (suppose the parental genotypes are A1A1 
and A1A2, sibs with genotypes A1A2 and A1A2 may be IBD2 or IBD1 depending on 
whether they inherited the same A1 allele from the mother). Ii is however always 
possible to assign IBD probabilities. The value of pi-hat is then obtained by 
calculating the mean of the sib pair specific IBD distribution, where the IBD is 
expressed in terms of the proportion of alleles shared IBD (i.e., the proportions 0, 
.5, and 1 correspond to 0, 1 and 2 alleles IBD). For instance, in the unambiguous 
case that prob(0)=0, prob(.5)=0 and prob(IBD=1)=1, pi-hat equals 0*0+0*.5+1*1 = 
1. If the parents are identical homozygotes (both A1A1), we have prob(0)=.25, 
prob(.5)=.5 and prob(1)=.25, and pi-hat = 0*.25 + .5*.5 + 1*.25 = .5.82; 83 So, we can 
specify the phenotypic covariance between siblings as: 
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σy12i = q2* πi + a2*.5,       (11) 

 

where the covariance bears a sib-pair subscript, as the covariance depends on the 
value of pi-hat.  
Note that pi-hat is indicative of genetic resemblance in the region of the marker. 
Suppose that the marker happens to be the QTL (i.e., causal variant). In that 
(exceptional) case, the QTL will contribute to the phenotypic resemblance of the 
sibs as a direct function of pi-hat. E.g., pi-hat equals 1 (or prob(IBD=2) = 1) means 
that the sibs are genetically identical at the QTL and so the QTL contributes fully to 
their phenotypic resemblance (σy12i = q2 + .5*a2). If pi-hat is zero, the sibs are 
essentially genetically unrelated at the QTL, and so the QTL contributes nothing to 
their phenotypic resemblance (σy12i = .5*a2). Of course, the marker is unlikely to be 
the actual QTL, and the further away the marker is from the QTL, the more the IBD 
relationship will be diluted by recombination, i.e., the less indicative the individual 
pi-hat value is of genetic resemblance at the QTL.   
This specification of the within sib pair covariance allows us to construct two 
models for the observed covariance for sib ships and DZ twin pairs. Figure 3 shows 
a path model for DZ twins or siblings that incorporates the effect of a QTL on a 
measured phenotype. 
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Figure 3: path representation of the linkage covariance model between two siblings or dizogotic twins 
as described in equation 12a.   
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The effects of Q, A, and E are not measured directly, they are inferred from family 
members for which the genetic relation is known (here sibs and DZ twin pairs) and 
the genetic correlation (π) at locus Q is estimated. 
 

Σy-qtl =  q2 + a2 + e2     

 πi * q2 + .5 *a2   q2 + a2 + e2   (12a) 

 

Σy-null= a2 + e2     

 .5 *a2    a2 + e2    (12b) 

 
The models in equation 12a and 12b are fitted using maximum likelihood and 
compared based on a likelihood-ratio test which is distributed as χ2. In a linkage 
analysis,  results are summarized in the form of a LOD score.84 There is an easy 
conversion between χ2 and LOD scores: LOD = χ2 / 2ln10.85 Evidence for linkage is 
present when the maximum LOD-score exceeds a pre-defined threshold, This 
threshold is generally based on the size of the genome and the number of 
measured markers.83 A commonly used threshold is a LOD score of 3, this value 
corresponds to  the data being 1000 times more likely given the model including 
the QTL  than given the null model. A LOD score of -2 is generally taken to indicate 
strong evidence against linkage, a value of -2 corresponds to the observed data  
being 100 times more likely given the null model than given the model including 
the QTL. While the usage of linkage has largely been abandoned in favor of 
association analysis, recent papers based on linkage techniques have been used to 
determine the heritability of complex phenotypes without relying on common 
assumptions associated with the twin model.30 Linkage can further be combined 
with association to fine map a specific region of the genome, for application see 
van Dongen et al.86. 
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Association analysis 

Candidate gene studies 

In contrast to twin and linkage studies, association studies focus on the direct 
effect of genetic variants on the trait. If the phenotype is continuous and 
conditionally (on the predictor) normally distributed, association can be cast in 
terms of a simple linear regression analysis, which can be conducted in a sample 
of N unrelated individuals: 

 

yj = b0 + bs* SNPj + ej       (13) 

 

where yj is the phenotype, SNPj is a measured genotypic marker (usually coded 0,1, 
2 with the code conferring the number of reference allele’s present in individual j), 
ej is the residual, and j denotes the individual (j=1,..,N). Note that in this model the 
residual includes all effects not attributable to the SNP. These include 
environmental effects, genetic effects (attributable to all other genetic variants) 
and measurement error. Association can tested statistically by testing the null-
hypothesis bs=0 vs. bs≠0. If the phenotype is binary (i.e., disease status in a case-
control design), generalized linear regression is used, but the test is the same. 
Association analysis is statistically more powerful than (sib pair) linkage analysis, 
because the test bs=0 concerns first-order statistics (conditional mean or 
prevalence), whereas the linkage test q2=0, see eq 12a-b concerns second-order 
statistics (covariances). Association analysis was initially targeted at biologically 
plausible candidate loci. Several strategies can be used in selecting candidate 
genes. Genes that are part of physiological systems known to influence the trait 
may be suitable candidates. Genes (or chromosomal regions) that are known to 
influence the trait in animal models can inform the selection of candidate genes (or 
regions) in humans (see Chapter 2). Or, genes can be selected in regions of the 
genome, which were identified as being of interest in linkage analysis. 

In association studies the observed association between a given trait and a given 
genetic variant may be due to population stratification. If a population comprises 
several subpopulations that differ in allele frequencies and in phenotypic values, 
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then the observed association may express mainly these differences, not any true 
relationship between a given genetic variant and the phenotype.  Hamer and 
Sirota87  illustrated this by means of a (fictional) study in which genetic variants 
were related to the use of chopsticks in an sample of American students. The 
students includes both Asian Americans and European americans, who differ in 
the frequency of using chopsticks, and in allele frequencies at various loci. The 
association between any of these loci and chopstick use is spurious, as it is driven 
by subpopulation differences, not by the effect of the loci on chopstick use. If one 
corrects for this type of population stratification, the association disappears. E.g., 
one might consider testing the association separately in the Asian American and 
European American students. To correct for stratification in candidate gene 
studies one may adopt a within family association design. These are not subject to 
the effect of stratification, because they base the test of association on the 
association as observed within families, where the phenotypic differences are not 
subject to stratification, and the family members are match with respect to many 
variables.88 For instance, full sibling pairs do not differ ethnically and racially. The 
association between a genetic variant and a given phenotype therefore is very 
unlikely to be spurious. There are several family based association tests, including 
the Transmission Disequilibrium association Test (TDT) and the Haplotype Relative 
Risk Test (HRR). An approach based on covariance structure modeling involves 
decomposing the effects of a given genetic variant  into between-family and 
within-family components. The true assocation is reflected in the within family 
component, while the between family component may include the effects of 
stratification.89; 90 

Genome wide association studies (GWAS) 

 
Candidate gene association studies are hypothesis driven: i.e., they focus on a 
given gene (possibly encompassing many genetic variants), which is judged to be of 
special interest on prior ground. GWAS, in contrast, are exploratory in that they 
test the association between a given phenotype and many hundreds of thousands 
of genetic variants, usually single nucleotide polymorphisms (SNPs). SNPs, which 
are diallelic loci, and so give rise to three genotypes, are chosen to broadly cover 
the whole genome. In this exploratory approach, a significant association may 
concern a causal genetic variants (with a biological interpretation), but is more 
likely to be a genetic variant that is in linkage disequilibrium with this causal 
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variant. Linkage disequilibrium (LD) refers to the fact that genetic variants that are 
located so closely on a given chromosome, that recombination between them is a 
rare event. As a consequence, the loci co-segregate in the population over many 
generations.  
Before performing a GWAS, quality control (QC) and data cleaning need to be 
applied to the genetic data.91; 92 SNPs that do not meet quality control criteria 
should be excluded from further analysis. GWAS are identical to candidate 
association studies with respect to the statistical test (see equation 13). Both 
GWAS and candidate locus association studies require a correction of the alpha 
(significance threshold) for multiple testing. In a GWAS, comprising a large number 
of test (>500K to >7000K), the corrected alpha level is usually set at 5*10-8; which 
corresponds to a testing burden of one million independent tests . 93-95 
Both GWAS and candidate gene studies have to control for population 
stratification. The presence of many measured genetic variants in a GWAS, allows 
one to control for population stratification by means of a principal component (PC) 
analysis of the genetic data.96 Let the (KxN) matrix X contain the standardized K 
SNPs in N individual. Standardization implies that the genotypic values of each SNP, 
as observed in the N individuals, are centered by subtracting the SNP mean (μk; 
k=1...K), and scaled by dividing by the SNP standard deviation (σk; k=1...K). As the 
SNPs are diallelic, the mean and standard deviation can be expressed as a function 

of the minor allele frequency of SNP k, pk, i.e., μk = 2*pk and σk = ඥ݌௞ ∗	(	1 −  . (௞݌
Let Ψ denote the NxN covariance matrix of the individual, i.e., Ψ = XtX/K. 
Stratification can be controlled using the eigenvectors or principal components 
(PCs) of this matrix. The first PCs of the matrix Ψ reflect the possible ancestry on a 
global scale96 but also on a local scale.29 The global scale concerns people of 
different ethnic background (e.g., Asian vs Europeans). These are identified and 
usually removed, after which the Ψ and the PCs are recalculated. The local scale 
concerns individuals of different ancestry within a continent or nation (e.g., west 
Europeans). A number of PCs which are judged to reflect local differences in 
ancestry, are computed and included in the regression model for association: 
 

yj = b0 + b1 * PC1j + b2 * PC2j +… + bs* SNPj + ej    (14) 

 



34 
 

Software is available for the calculation of these principle components.96 

Note that in equation 13 and 14, we included no family index, i.e., we assumed 
that the sample consists of unrelated individuals. The standard test of the SNP 
effect (i.e., the test of the null-hypothesis bs = 0) in (logistic) linear regression 
assumes that, conditional on the predictors, the residuals (ej) are independent. 
However, the sample may include individuals clustered in families (e.g., MZ and 
DZ twins, their parents, their sibs, etc.). Given a sample including family members, 
we have the following regression model: 

 

yij = b0 + b1 * PC1ij + b2 * PC2ij + … + bs* SNPij + eij    (15) 

 

where i denotes family and j denotes individual. In this model, the residual terms 
eij are expected to be correlated between family members, due to all the 
influences they share, in addition to the predictors in the model. That is, in de 
case of an ACE model (see above), the residuals would be subject to eij = a* Aij + 
c* Cij + e*Eij. To arrive at a correct statistical test of bs=0, one can model the 
background covariance structure (i.e., the covariance structure of eij) correctly 
(equation 16).  

 

 yij = b0 + b1 * PC1ij + b2 * PC2ij + … + bs* SNPij + a* Aij + c* Cij + e*Eij (16) 

 

If the families consist of MZ and DZ twins, this would involve estimating the fixed 
regression coefficients, and fitting a covariance structure model to the residuals 
(to estimate the parameter a2, c2, and e2; see eq 5a, 5b). However, this can be 
computationally too slow, given the large number of SNPs in a GWAS. One 
solution is to estimate the background covariance matrix once (assuming bs=0) 
and retain this matrix in the test of all SNPs (avoiding repeated estimation).97 
Alternatively, one can forgo the modeling of the background covariance, treat eij 
as independent, and correct the standard error of the estimate of bs for this 
misspecification by means of a sandwich correction.98; 99

 The latter is convenient, 
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as it is fast and has been shown to produce accurate type I error rates. However, 
the degree of misspecification has a bearing on the power to detect the SNP 
effect (given bs≠0). Minicâ, et al.100 demonstrated that the robust test based on an 
independence model (as implemented in Plink80), is less powerful that the robust 
test, based on the exchangeable model. In the exchangeable model (in which the 
covariances between the family members are constrained to be equal), the power 
of the latter was almost the same as the power of the test given full correct 
modeling of the background covariance matrix, while being computationally 
faster.  

Recent methodological advances in association studies have seen the 
development of a more integrated approach based on the linear mixed model to 
testing association given population stratification, the presence of known closely 
related individuals, and cryptic relatedness, i.e. relatedness that is unknown to the 
researcher.101; 102 For this model we switch from scalar notation to matrix 
notation. Let y be the Nx1 random vector containing the phenotypic values in the 
sample of N individuals, who may be related. The phenotype is modeled as 
follows:: 

 

y = b0 *J + bs * SNP + …. + Xtu + e    (17a)  

 Ψ = XtX /K          (17b) 

Σ(y) = Ψ⊗σ2
υ + Ι⊗σ2

e       (17c)  

 

In equation 17a, the phenotype y (Nx1) is regressed on the intercept (multiplied 
by a unit vector J of dimensions (Nx1), as y is a multivariate vector) and on the 
vector (SNP) (Nx1) containing the SNP of interest (coded 0,1,2) for each individual  
(other covariates, such as age and sex may be included). The KxN matrix X is the 
matrix of the standardized genotypic values, as defined above. The Kx1 vector u 
contains the random regression coefficients associated with the K genotypes in X. 
The parameters bs are estimated and subject to testing the K parameters in u are 
treated as random values, realizations of the normal distribution with mean 0 and 
variance σ2

u, uk~N(0, σ2
u). Equation 17c shows the expected covariance matrix 
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conditional on the fixed regressors, where Ψ is defined in eq. 17b, and σ2
u and σ2

e 
are the variances of the random regression coefficients u and the residual e, 
respectively. Note that in this model any genetic relatedness conditional on the 
fixed regressors is accommodated in the matrix Ψ, which contains the average 
over the K loci of the allelic correlation estimates for any two individuals. If the 
individuals are closely related their average correlation tends to the expected 
additive genetic correlations (e.g., the r(A1A2), as discussed above in the context of 
MZ and DZ twins). It is possible to reintroduce the variance attributable to shared 
environment, discussed above in the context of twin and family studies, into the 
model. More distantly related individual will have expected values of the average 
correlation, which are consistent with their degree of distant genetic relatedness. 
In essence, all individuals in the sample are treated as related, bearing in mind 
that the degree of relatedness, as expressed in the off-diagonals of Ψ may vary 
from ~1 (MZ twins) to ~.5 (1st degree relatives), to values approaching zero (very 
distant relatedness). Note that the SNP tested with fixed effect bs, should not be 
included in the matrix X, as this will reduce the statistical power to detect bs ≠ 0.102 
One way to prevent this loss of power, is to calculate the matrix Ψ 22 times, 
where in the calculation of Ψ one chromosome is excluded. So in regressing the 
phenotype on any SNP on chromosome c, the matrix Ψ is based on the SNPs on all 
chromosomes barring chromosome c. We denote this matrix Ψ≠c, which equals 
X≠c

tX≠c /K≠c. The standardized genotype matrix now has K≠c rows, and N column, so 
that Ψ≠c, remains NxN. This model is conveyed in equation 18: 

  

y = b0 *J + b1 * SNP + …. + X≠c
tu≠c + e    (18a) 

Ψ≠c   = X≠c
 tX≠c /K≠c      (18b) 

Σ(ψ) = Ψ≠c ⊗σ2
υ ≠c  + Ι⊗σ2

ε      (18c) 

 

As discussed by Yang et al.,102 this approach is becoming the method of choice in 
conducting a GWAS, as it handles distant (including stratification) and closed 
relatedness in a single model, and produces the best estimates of bs in terms of 
precision (i.e., standard error). The precision of the estimate of bs is important in 
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its own right as a test of the SNP effect, but also important in the calculation of 
genetic risk scores, as explained in more detail below. 

 

Meta and mega analysis of genome wide association studies 

Given the potential confounders discussed above, and the large number of tests, 
GWAS require replication in independent samples. The results of multiple studies 
can be used in a meta-analysis to arrive at a single test of association based on all 
available results. However, as different studies often use different genotype 
arrays, and the arrays measure different sets of SNPs, it is possible that only a 
small number of SNPs are genotyped in all replication samples. However, SNPs in 
close proximity on the genome are generally in strong LD (i.e. strongly correlated). 
This information can be leveraged to impute SNPs to arrive a set of SNPs, common 
to all studies. In specific reference samples, all SNPs are measured using whole 
genome sequencing.103; 104 Given that all SNPs in the reference population are 
characterized, and the LD between these SNPs is known, one can impute the SNPs 
in the set that are not directly measured on a given genotyping platform.105-107 
After imputing all SNPs in the reference set for all samples, the association test is 
performed for all SNPs that are imputed with acceptable accuracy. This yields 
effect size estimates for a homogeneous set of SNPs across all cohorts. These 
results can then subsequently be meta-analyzed. Software is available to perform 
such genome wide meta-analysis ( for example: METAL108). 

The need to harmonize phenotypes and the need to impute SNPs in individual 
cohorts to a common reference set before performing primary analysis requires 
close cooperation of many labs and groups in large consortia, involving hundreds 
of collaborators.109  Some consortia go beyond meta analysis and combine the raw 
genotype data to perform mega-analysis.110 This allows across cohort quality 
control before imputation and allows centralized analysis of the complete dataset. 
However, not all cohorts are legally allowed to store genetic data offsite. The use 
of consortium driven meta- and mega- analysis has enabled identification of 
multiple risk loci for phenotypes as diverse as schizophrenia,19 educational 
attainment,111 height,112 and sub-cortical brain volumes.113 
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Estimation of genetic (co)variance based on measured genotypes. 

Genomic Relationship Matrix Restricted Maximum Likelihood (GREML) 

As discussed above, SNPs are measured to economically cover a substantial 
portion of genetic variation in the human genome. Yang et al.12 developed a 
method to estimate the variance in a given phenotype explained by all measured 
SNPs. This model is based on SNPs collected in distantly related individuals. The 
model can be formulated within the linear mixed model. The regression equation 
and variance decomposition of their model can be expressed as:  

 

y = Ab + Xtu + e       (19a)  

Ψ = XtX /K       (19b) 

Σ(y) = Ψ⊗σ2
u + Ι⊗σ2

e        (19c) 

 

where the matrix (NxP) A contains fixed regressors, such as principal components, 
sex and age, X (KxM) contains the standardized measured SNPs, and the off-
diagonals of Ψ contains the average over the K loci of the allelic correlation 
estimates between individual. Given the nature of Ψ, Yang et al.12 name this the 
“Genetic Relatedness Matrix” or GRM, but we refer to it as a genetic covariance 
matrix. The regression model in equation 19a is similar to equation 17a, but 
differs in that the present model excludes any fixed SNP effect. That is, the focus 
is not on an individual SNP effect, but rather on the test of estimate of the 
variance attributable to all SNPs, i.e., σ2

u. Furthermore, to ensure that σ2
u reflects 

the effects of the measured SNPs, the sample is selected to include only distantly 
related individuals, i.e., characterized by off diagonal values in Ψ smaller than 
.025.12 The inclusion of closely related individuals would introduce possible 
sources of bias in the estimate of σ2

u . First, closely related individuals may share 
environmental influences contributing to the phenotypic resemblance. Second, 
closely related individuals will have values in Ψ converging on their expected 
additive genetic correlations (e.g., .5 in DZs, 1 in MZs). Their presence will bias the 
estimate of σ2

u towards the value of σ2
A , the total additive genetic variance. Yang 
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et al.12 used this model to show that genotyped SNPs commonly used in GWAS 
may explain up to half the additive genetic variation in height. Further application 
of this model has shown that the SNPs used in GWAS account appreciable 
proportions of variance in complex phenotypes15; 114-116 . Lee & Chow117 present an 
extensive mathematical account of this model. User friendly software is available 
to fit this model, namely the GCTA software suite.12 

Various extensions of this basic GREML model have been developed, and some 
are included in GCTA. One useful extension is to conduct the analysis for the SNPs 
on the individual chromosomes. Let Xc denote the standardized genotype matrix 
including only the Kc standardized SNPs on chromosome c, and let Ψc  = Xc

 tXc /Kc 
(c=1,...,.22), then the variance decomposition is partitioned by chromosome as 
follows: 

 Σ(y) = Ψ1⊗σ2
u1 +Ψ2⊗σ2

u2  +.....+ Ψ22⊗σ2
u22 +  Ι⊗σ2

e.   (20) 

 

The SNP variance components have been shown to correlate positively with 
chromosome length, as expected if on average a longer chromosomes harbor 
more causal SNPs.  

The method of partitioning of SNP variance, as shown in Eq 20, has also been used 
to partition the SNP variance over different functional categories of SNPs.118 These 
categories include SNPs in the portion of genome that is expressed (i.e. exonic 
SNPs), SNPs that regulate genes (e.g.,, DNaseI hyperactivity sites, gene promoter 
region, un-translated regions) , SNPs that alter gene function (i.e., coding 
variants), SNPs in intergenic regions (intronic regions). Gusev et al.118 partitioned 
the variance in 11 common complex traits in functional categories of SNPs. They 
showed SNPs in regulatory regions explain a relatively large portion of phenotypic 
variance  

A second extension implemented in GCTA generalizes the GREML model to the 
bivariate phenotypic case. In this model, the genetic covariance between traits 
attributable to the SNPs is estimated.119 While such genetic covariance terms can 
be estimated readily in multivariate twin and family studies, the present estimate 
has the virtue of pertaining to the measured SNPs, and of being methodologically 
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independent of family and twin studies (with their many assumptions). Their 
method reduces to the following regression and (co) variance decomposition (see 
also Lee et al.119): 

 

y1 = A1b1 + X1
tu1 + e1      (21a)  

y2 = A2b2 + X2
tu2 + e2    

 

Ψ11 = X 1tX1 /K  Ψ12 = X 1tX2 /K   

Ψ21 = X 2tX1 /K  Ψ22 = X 2tX2 /K     (21b)  

 

 

Σ(y1, y2) = V       (21c)  

V =  Ψ11 ⊗σ2
u1 + Ι⊗σ2

e1,  Ψ12  ⊗σ2
u12

 

Ψ21 ⊗σ2
u12,   Ψ22 ⊗σ2

u2 + Ι⊗σ2
e2   (21d) 

 

The bivariate (co)variance decomposition (Eq 21) is possible if each phenotype is 
measured in a distinct sample, but the precision of the covariance estimate is 
improves if the phenotypes are measured in the same sample. Application of this 
method to data collected by the psychiatric genetics consortium demonstrated a 
SNPs based genetic covariance between schizophrenia, bipolar disorder, and 
depression. A possible multivariate extension to this model, which allows for 
partitioning of the genetic variance of multiple matrices Ψc as in equation 20b is 
discussed in chapter 8 of this dissertation. 

As the primary goal of GREML is to obtain an estimate of the variance explained 
by measured SNPs, closely related individuals are generally excluded, as explained 
above. A recently proposed model allows for the estimation of the variance 
attributable to SNPs in the presence of related individuals.120 It specifically allows 
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for the estimation of both the variance attributable to SNPs and the variance 
attributable to the additive genetic influences. To fit this model we require 
individual who are closely and distantly related. Given data from such as sample, 
we can fit the following model: 

 

Σ(y) = Ψ s⊗σ2
 u  +Ψ res⊗[σ2

 A − σ2
 u] + Ι⊗σ2

e    (22) 

 

 where Ψs = XtX /K is the NxN matrix, as observed in the sample, and Ψres equals 
the NxN matrix Ψs, with all off diagonals <.05 set to equal zero. As above σ2

 u is 
the additive genetic variance attributable to the K measured SNPs , and [σ2

 A − σ2
 

u] is the residual variance (i.e., the total additive genetic variance minus the SNP 
variance). Given we can estimate σ2

 u and [σ2
 A − σ2

 u], we can calculate σ2
A. 

Zaitlen et al.120 applied this model to a large number of phenotypes. Chapter 7 of 
this dissertation includes results obtained with this model pertaining to body mass 
index, height, anxious depression, and attention problems. 

 The GCTA software suit also allows for the assessment of gene-environment 
interaction, given a binary environmental variable, coded 0/1 .12 

 

Σ(y) = Ψ ⊗σ2
 u  +Ψ ge⊗σ2

ge + Ι⊗σ2
e     (23) 

 

Where Ψ is the NxN genetic covariance matrix as describe above, and Ψ ge equal 
the NxN matrix Ψ,where all cells which correspond to the genetic covariance 
between a pair of individuals discordant for the environmental exposure are set 
to zero. The gene -environment model described above is extended in Chapter 7 
of this dissertation. 
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 Polygenic risk scores. 

GCTA can be applied to demonstrate that all measured SNP, or a subset thereof, 
explain an appreciable portion of variance in a trait. Bivariate GCTA can be applied 
to determine whether a shared set of SNPs is associated with two distinct traits. 
GCTA can be applied to find evidence of a genetic effect even if no individual fixed 
effect is significant. However bivariate GCTA requires access to both the measured 
genotypic data and both the phenotypes. An alternative method to demonstrate 
the presence of signal in genetic markers, or pleiotropy between two traits is by 
means of polygenic risk scores. This involves the selection of a subset of SNPs 
which satisfy a given alpha level (not necessarily the genome-wide alpha of 5*10-

8), and the calculation of the weighted linear combination of the SNPs in the set, 
where the weights are set to equal the regression coefficients associated with the 
individual SNPs (i.e., the parameter bs in eq. 14, 15, 17a or 18a above). This linear 
function of the SNPs is called the polygenic risk score.  

There regression coefficients used are derived from a genome wide meta analysis 
of a phenotype of interest (i.e the discovery sample). The polygenic scores are 
then calculated for individuals that are not included in the discovery sample(i.e. 
the target sample). To determine the presence of signal in the genetic markers the 
phenotype, measured in the target sample, is regressed on the polygenic risk 
score derived from the discovery sample. To determine genetic overlap between 
two traits, one can obtain weights form a meta analysis of schizophrenia GWAS 
and use the polygenic scores based on these weights to predict bipolar 
disorder.121 The regression of the phenotype on the risk score is expected to be 
significant (i.e., explained variance, R2 > 0) if the set of SNPs are associated with 
the phenotype of interest. The alpha used for inclusion of SNPs in the polygenic 
score, may be set at varying values to assess the effect on the explained variance 
of progressively less stringent alpha (e.g, α= 0.001, α= 0.01, α= 0.1, and  α=  .2). 
The discovery and target sample need to be independent, dependency may result 
in overestimation and false positives.  

While polygenic risk scores are often found to be predictive, the predictive power, 
even if based on the best available discovery samples, has been found to be too 
low to be clinically relevant.17 For a full discussion of the common pitfalls 
associated with calculation and usage of polygenic risk scores see Wray et al.122 
For application of polygenic risk score in psychology and psychiatry see: 16; 20; 21; 123 
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and chapter 5 of this dissertation. Software packages are available to handle data 
management and computation of polygenic risk scores such as Plink80 or PRSice124.  

 

 

This thesis 

 

In the present chapter I reviewed historical and current practice in behavior 
genetics and  discussed the different techniques used in terms of regression 
models. This regression approach allows the reader to compare the different 
methods used. While procedures and methods used to fit the regression models 
in twin studies, linkage and association can differ, the models are compatible. The 
biggest change in the field of behavior genetics has been to move from latent 
inferred genotypic variables (twin and family studies) via latent genetic variables 
inferred from measured loci (linkage), to directly observed genetic variables 
(association). In the following chapters of this dissertation many of the techniques 
discussed here are applied to population based measured of psychopathology in 
children and in adults. Chapter 2 involves a longitudinal twin study of anxious 
depression, assessing heritability and stability between ages 3 and 60+. Chapter 3 
aims to describe the development of broad measures of internalizing and 
externalizing psychopathology between childhood and adolescence, using growth 
models. Chapter 4 is a genome wide meta-analysis of preschool internalizing 
problems. In Chapter 5 the overlap between polygenic risk scores based on the 
schizophrenia GWA meta-analysis and childhood psychopathology is tested. 
Chapter 6 also studies anxiety, aiming to replicate a gene associated with anxiety 
in rats in humans. In Chapter 7 methods are developed to extend the GREML 
model and GCTA framework to allow for gene -environment interaction. In 
Chapter 8 a method to rapidly estimate genetic covariance in the context of 
GREML/GCTA is developed and tested. Chapters 9 and 10 offer a summary of the 
work and discuss it broader implications. 
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Chapter 2: Stability in symptoms of anxiety and depression as a function of 
genotype and environment: A longitudinal twin study from age 3 to 63 years 
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Abstract  

Background: The influence of genetic factors on major depressive disorder is 
lower than on other psychiatric disorders. Heritability estimates mainly derive 
from cross-sectional studies, and knowledge on the longitudinal etiology of 
symptoms of anxiety and depression (SxAnxDep) across the lifespan is limited. We 
aim to assess phenotypic, genetic and environmental stability in SxAnxDep 
between ages 3 and 63 years. 

Method: Cohort-sequential design combining data from 49,524 twins followed 
from birth to age 20+, and from adolescence into adulthood. SxAnxDep were 
assessed repeatedly with a maximum of 8 assessments over a 25 year period. 
Data were ordered in 30 age groups and analyzed with longitudinal genetic 
models.  

Results: Over age, there was a significant increase during adolescence in mean 
scores with sex differences (women > men) emerging. Heritability was high in 
childhood and decreased to 30-40% during adulthood. This decrease in heritability 
was due to an increase in environmental variance. Phenotypic stability was 
moderate in children (correlations across ages ~ .5) and high in adolescents (r=.6) , 
young adults (r=.7), and adults (r=.8). Longitudinal stability was mostly 
attributable to genetic factors. During childhood and adolescence there was also 
significant genetic innovation, which was absent in adults. Environmental effects 
contributed to short term stability.  

Conclusions: The substantial stability in symptoms of anxiety and depression is 
mainly due to genetic effects. The importance of environmental effects increases 
with age and explains the relatively low heritability of depression in adults. The 
environmental effects are transient, but the contribution to stability becomes 
larger with age. 
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Introduction 
Insight into the course and the etiology of variation in trajectories of 
psychopathology from childhood into adolescence and adulthood is required to 
address questions concerning origins and prognosis of psychopathology. In this 
paper we aim to unravel the causes of variation in trajectories of symptoms of 
anxiety and depression (SxAnxDep) between ages 3 and 63 years, and specifically 
to assess the extent to which such variation is caused by genetic factors. A large 
prospective cohort study would be the optimal design for identifying the 
importance of genetic etiological factors, but would require following the same 
subjects for 50 years or more. Here we made use of the long-term data collection 
in nearly 50,000 twins from the Netherlands Twin Register (NTR) over the past 25 
years, and analyzed data on SxAnxDep reordered according to a cohort-sequential 
design. 
Stability in symptoms and diagnoses of anxiety and depression is evident 
throughout the lifespan; stability is lowest between childhood and adolescence, 
and increases from adolescence into adulthood.1-3 During adolescence, there is a 
rise in the prevalence of anxious and depressive symptoms and diagnoses, 
especially in women (with the exception of separation anxiety disorder and 
specific phobia), and there is a marked continuity of symptoms into adulthood.1;4 
When considering stability in longitudinal studies, outcomes depend in part on 
how anxiety and depression are measured. Greater stability of depression has 
been observed in continuous measures (e.g., symptom counts) than in binary 
measures indicating that individuals, who no longer satisfy the criteria for a 
diagnosis, may still have residual symptoms.5 

A case has been made that studies of the genetic and environmental 
contributions to individual differences in health and disease are important to the 
understanding of illness.6 In addition, such studies inform molecular genetics 
studies.7 Knowledge regarding the contributions of genetic and environmental 
factors to the long-term course of symptoms of anxiety and depression is still 
lacking, as most studies using genetically informative subjects have been limited 
to cross-sectional or short-term follow-up analyses. Moreover, in these short-
term follow-up analyses, the age range of the participants at the start of a 
longitudinal study is often greater than the duration of the follow-up. As a 
consequence, the age ranges of the participants at the different assessments 
overlap and age-specific explanations of variation over time might be missed.  
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 The empirical evidence suggests that between ages 3 and 12 years genetic effects 
are important, and relatively stable, while adolescence is characterized by genetic 
innovations, i.e., the emergence of novel genetic effects. In an overview of cross-
sectional genetic studies of young and adolescent twins, heritability estimates for 
anxiety, depression and internalizing symptoms range from 0% to 74%, but the 
majority is over 30%.8 The great variability over studies is attributed to rater and 
age effects; in most studies heritability is higher for parental reports than for self 
reports, and heritability is higher at adolescence than in.9 Longitudinal studies of 
children in the Netherlands and in the UK showed that stability in SxAnxDep 
between ages 3 to 12 is mainly attributable to stable genetic,10;11 although genetic 
innovation was also evident in this age range. The period of transition from 
childhood to adolescence was investigated in Swedish twins with SxAnxDep, 
assessed repeatedly between ages 8 and 20.12-14 Stability was partly explained by 
genetic factors. However, the influence of genetic innovation was large, and the 
contribution of genetic factors expressed during childhood declined in 
adolescence. Thus, genetic effects on SxAnxDep were developmentally dynamic 
from middle childhood to young adulthood.  

 In adulthood, heritability of anxiety disorders and major depression was 
estimated around 40.15-17 For depression in middle age (50 to 70 years) heritability 
estimates ranged from 20% to 50%.18 In one longitudinal twin study, participants 
aged 20 to 70 rated themselves on SxAnxDep twice or thrice with an interval of 10 
or 20 years. Genetic effects on symptom scores showed a large degree of stability, 
with some evidence in females for new genetic effects on anxiety and depression 
in mid-life and later-life, respectively.19 

The role of environmental effects on stability has been found to be smaller than 
the role of genetic factors. Environmental influences shared by members of the 
same family, often referred to as the common environment, contributed to 
stability in SxAnxDep during, 10;11 but effects were small and waned from around 
15% explained variance in childhood to zero in adolescence and.20 Environmental 
factors that are not shared by family members, referred to as unique 
environment, mainly seemed to have short-term effects on SxAnxDep. The impact 
of life events, for example, on the risk for major depression has been shown to 
last for one to three months.21 However, two twin studies found enduring unique 
environmental effects from adolescence into adulthood and.12;19 This was 
confirmed in a meta-analysis of longitudinally assessed SxAnxDep in eight samples 
of monozygotic twins, spanning an age range of 10 to 66 years.22 Within-pair 
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differences between MZ twins in SxAnxDep increased from childhood into late 
adulthood. By middle adulthood environmental factors contributed substantially 
to stable and predictable individual differences in SxAnxDep. 
The aim of the present study was to gain insight into the genetic architecture of 
symptoms of anxiety and depression (SxAnxDep) across the lifespan by analyzing 
SxAnxDep assessed with a standardized instrument in twins aged 3 to 63 years. 
Data collection spanned a period of 25 years, and entry into the study was at 
different ages, running from birth to old age. The data were reorganized according 
to a cohort sequential longitudinal design, covering the entire age range from age 
3 to age 63 years with a maximum follow-up time of 25 years. 

 
Methods 
Subjects: Longitudinal survey data were collected in twins registered with the 
Netherlands Twin Register (NTR), which includes the Young NTR (YNTR)23 and the 
Adult NTR (ANTR).24 In the YNTR, twins have been registered at birth by their 
parents since 1987.25 Maternal ratings at ages 3, 7, 10, and 12, and self-ratings at 
age 12, 14, 16 and 18 were included in the analysis. When young twins reach age 
18, they are enrolled in the ANTR. The ANTR includes adolescent and adult twins, 
who were recruited through city councils and other means.24 The twins completed 
the SxAnxDep subscale in 1991, 1995, 1997, 2000, 2002, and 2009. All twins 
between the ages of 12 and 63 were included in the current study. The total 
dataset comprised 49,524 twins, including 7,863 monozygotic (MZ) and 15,815 
same-sex and opposite-sex dizygotic (DZ) complete twin pairs. The majority (60%) 
participated in more than one survey; with 10% taking part 5 times or more (see 
appendix I eTable 1). To analyze the data as a function of age, data were 
reordered into age bins spanning two years. For instance, a 21 year old twin in the 
1991 and a 21 year old twin in the 2003 survey were both included in the 20-21 
year group. Up to age 30, all age bins included more than 1000 observations. 
Across the entire dataset, no 2 year age bin included fewer than 130 observations.  
Phenotypes: SxAnxDep scores were obtained from the “anxious-depressed“ 
subscale from the age appropriate questionnaires from the Achenbach System of 
Empirically Based Assessment (ASEBA): the Child Behavior Checklist CBCL/1.5-5 26 
and CBCL/4-18,27 the Youth Self Report/YSR,28 and the Adult Self Report/ASR.29 
The instruments were designed to measure comparable constructs over the ages, 
and are similar in item content. Mothers were asked to rate on a 3-point scale 
("not true", "somewhat or sometimes true", "very or often true") the extent to 
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which a statement described their child. An example item of the mother rating 
SxAnxDep scale is “Unhappy, Sad or Depressed”. In the self-rating scales, used 
from age 12 onward, the item is phrased as “I am Unhappy, Sad or Depressed”, 
and the response format was the same. Similar strong parallels exist for the other 
items for mother rated and self rated SxAnxDep. Full sample questionnaires can 
be found at http://www.aseba.com. At all ages, except age 3, the number of items 
was the same (9 items at age 3, 16 items at all other ages). The instrument has 
been found to be measurement invariant in adolescence across age and sex.30  
While the CBCL, YSR and ASR “anxious depressed’ scale score is a good predictor 
of anxiety disorders and depression diagnosis, a high score is not equivalent to a 
diagnosis.31 Using composite international diagnostic interviews (CIDI), DSM-IV 
anxiety and depressive diagnoses were assessed in 1331 (345 cases, 986 controls) 
adults from the present sample in 1997 and 2007. We compared the SxAnxDep 
scores of these subjects with their CIDI diagnoses using a ROC curve analysis. The 
area under the curve for all anxiety and mood disorders was fair at .76. For major 
depressive disorder, the area under curve was .75, and for generalized anxiety 
disorder .78. The use of a continuous measure is consistent with the dimensional 
view of psychopathology, and with diagnoses based on continuous measures.32 

Statistical model: Structural equation modeling was employed to analyze the 
mean trend across age, sex differences in the mean trend, and the covariance 
structure of SxAnxDep across age. Estimates of the mean trend for men and 
women are further analyzed using weighted least squares (WLS) (see 
Supplementary information). A genetic simplex model33;34 was chosen to analyze 
the longitudinal data and to estimate heritability at each age as well as the 
phenotypic, genetic, and environmental stability across the lifespan. Figure 1 
provides a graphical description of the model, which is further detailed in the 
supplemental material online. In brief, the model allows partitioning the variance 
in the observed data into variance due to additive genetic factors (A), unique 
environment (E, not shared between twins) and a common environment (C, 
shared between twins within a family). The model further allows estimation of the 
stability of the effects of genetic and environmental factors over age, and to 
establish the extent to which new effects, called innovations, come into play.19 
From the longitudinal model we derived heritability estimates at each age and 
calculated genetic and environmental correlations between the ages. For model 
details, and identification, please see the online supplementary information. 



 
 

63 
 

 
 
Figure 1: Path model representing the genetic simplex model. The simplex model describes an 
autoregressive process, in which latent genetic values (A) at age t are regressed (β) on previous 
latent values (t-1). In addition, at each age, novel genetic influences, called innovations (Inno) may 
come into play. Genotypic values thus consist of a part that is transmitted and a part that is 
innovation (except at the first age at which data are observed, where such a distinction cannot be 
made). The residual variance in the phenotype may also be influenced by additive genetic (rA) 
factors. The unique environmental (E) process is not depicted to avoid clutter but is structurally 
identical to the genetic process. The common environment shared between twins is modeled as a 
single factor, loading on observed SxAnxDep scores at ages 7,10,12 (mother) and age 12 (self) 
ratings. 
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Results 

Figure 2 shows means for men and women and the post-hoc fitted mean trends. 
The mean in males for SxAnxDep in childhood was 2.79. Between ages 12 and 28 
the mean SxAnxDep scores significantly increased (b=.19, t=5.568, df=1, p<0.001). 
After age 28, the means in men no longer significantly changed (b=-.06, t=-1.922, 
df=1, p=0.062). In females, the mean SxAnxDep scores in childhood was 2.97. 
Between the ages of 12 and 28 the mean SxAnxDep scores significantly increased 
(b=.68, t=14.35, df=1, p<0.001). Ater age 28 the SxAnxDep scores in women 
significantly declined (b=-.18, t=-5.477, df=1, p<0.001). The sex difference in 
SxAnxDep score in childhood was not significant (b=0.17, df=1, t=0.911, p =0.36), 
while the increase between age 12 and 28 was significantly steeper for females 
than for males (b=.43, t=6.665, p <0.001). In this trends analysis means were 
weighted for sample size (see Appendix I ).  
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Table 1: Parameter estimates and variance components from the best longitudinal model. A: genetic 
factors, E unique environment, C common environment, h2: proportion of variance explained by 
genetic factors = heritability, c2 proportion of variance explained by common environmental factors, 
e2 proportion of variance explained by unique environmental factors. See Figure 1 for an explanation 
of the terms transmission, innovation and residual variance.  

t Age 
Transmission 

(regression) (β) 
Innovation 

(variance) (ζ) 
Residual 

(variance) (r) 
C-Factor 
Loadings 

Variance 
decomposition: 

 A E A E A E C* h2 c2 e2 
1 3 0.35 0.03 6.51 2.87 0 0 0.69 0.31 
2 7 1 0.59 3.15 2.05 0.97 1.01 0.38 0.61 0.02 0.38 
3 10 0.87 0.57 1.26 2.48 0.97 1.01 0.48 0.58 0.02 0.4 
4 12(m) 0.48 0.46 1.22 1.53 0.97 1.01 0.58 0.61 0.03 0.36 
5 12(s) 1.22 0.63 4.17 3.09 0.34 4.28 1.28 0.37 0.11 0.52 
6 14 0.9 0.73 0.25 2.56 0.34 4.28 

 
 
 
 
 
 
 
 
 

0.51 

 
 
 
 
 
 

0.49 
7 16 0.93 0.86 2.58 3.37 0.34 4.28 0.5 0.5 
8 18 1 0.61 2.7 3.58 1.81 3.43 0.53 0.47 
9 20 1 0.85 0 6.68 1.81 3.43 0.49 0.51 

10 22 1 0.83 0 4.71 1.81 3.43 0.46 0.54 
11 24 1 0.76 0 5.11 0.67 4.72 0.39 0.61 
12 26 1 0.78 0 4.87 0.67 4.72 0.4 0.6 
13 28 1 0.97 0 2.93 0.67 4.72 0.43 0.57 
14 30 1 0.87 0 1.76 0 6.55 0.37 0.63 
15 32 1 0.72 0 3.54 0 6.55 0.36 0.64 
16 34 1 0.93 0 4.69 0 6.55 0.38 0.62 
17 36 1 0.94 0 0.07 1.55 3.88 0.48 0.52 
18 38 1 0.81 0 0 1.55 3.88 0.5 0.5 
19 40 1 0.76 0 4.01 1.55 3.88 0.48 0.52 
20 42 1 0.75 0 7.63 0.65 3.8 0.4 0.6 
21 44 1 0.74 0 3.23 0.65 3.8 0.44 0.56 
22 46 1 0.87 0 7.32 0.65 3.8 0.4 0.6 
23 48 1 0.56 0 6.93 0.4 0 0.4 0.6 
24 50 1 1.4 0 0.53 0.4 5.22 0.5 0.5 
25 52 1 0.81 0 0 0.4 5.22 0.4 0.6 
26 54 1 1.26 0 2.98 1.93 3.25 0.48 0.52 
27 56 1 0.57 0 4.36 1.93 3.25 0.35 0.65 
28 58 1 0.52 0 0.86 1.93 3.25 0.54 0.46 
29 60 1 1.38 0 1.2 1.93 3.25 0.66 0.34 
30 62 0 0.44 0 0 0.63 0.37 
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Figure 2: A: Mean trends in SxAnxDep across the lifespan for females (black) and males (grey). Solid 
lines are raw means. Dashed lines are fitted trend lines. B: Univariate heritability estimates across 7 
broad ages (maternal ratings 3-12, selfreport ratings 12-19, 20-27, 28-35, 36-43, 44-53, 54-63) 
separately by sex (m= males, f=females).Figure 2B depicts the heritability estimates by sex and age 
for 7 broad age intervals, with their 99% confidence intervals. The proportion of variance 
attributable to genetic factors (i.e., heritability) in males and females differed little, except in the 36 
to 43 year old groups.  
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The observed MZ and DZ twin correlations (presented in appendix I eTable 2) and 
the cross-twin cross-age correlations (eFigure 1) suggested a genetic simplex 
model as longitudinal correlations decreased over time and MZ correlations were 
higher than DZ correlations. Based on previous analyses in this sample10  we 
expected the presence of common environmental effects in childhood.  

Having fitted the genetic simplex model to the data (model fits Appendix I, table 
3), we obtained heritability estimates for SxAnxDep at each 2 year age bin 
between 3 and 63 years. The estimates are given in Figure 3A, which shows that 
heritability (h2, Figure 3A) declined from childhood (around 60 to 70%) to 
adulthood (around 40 to 50%). This decrease in heritability was due to an increase 
in environmental variance (VE, figure 3B), and not to a decrease in genetic 
variance (VA, Figure 3B), as can be seen in the plot of the absolute variance 
components estimates in Figure 3B. Part of the increase in the unique 
environmental variance is associated with the switch from mother ratings to self 
ratings (see the “jump” in Figure 3B at age 12). However, Figure 3B shows that the 
unique environmental variance continues to rise after the switch from mother to 
self ratings.  
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Figure 3: A: Proportions of variance explained by genetic factors (h2; solid), common environment 
(c2; dashed), and unique environment (e; dots) at each age as  

erived from the model. B: variance components VA, VC and VE at each age as derived from the 
model. 
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At age 12, we looked at the correlations between self ratings and maternal ratings 
and found that the agreement was moderate (phenotypic correlation = .35). The 
genetic and environmental contributions to this correlation were 56% (genetic), 
27% (unique environmental), and 17% (shared environmental).  

Based on the longitudinal model, we derived the phenotypic, genetic, and 
environmental correlations between SxAnxDep across different ages and 
visualized these in heat maps (Figure 4 and Appendix I figure 1). The phenotypic 
correlations (i.e., observed stability) between two successive ages ranged from .29 
to .63 during childhood (up to age 12), from .48 to .70 during adolescence (age 12 
to 18), from .64 to .77 between age 18 and age 32, and from .45 and .86 from age 
32 onwards. Correlations between successive ages did not differ between males 
and females (t=- 0.57, df=814, p=.57). The genetic correlations between 
subsequent ages during childhood (mean r=.71, ranging from .4 to .94) and 
adulthood (mean r=0.92, ranging from .85 to 1) were large (Figure 4). 
Environmental correlations between subsequent ages were clearly lower than 
genetic correlations in childhood (mean r= .31, ranging from .03 to .47), and 
adulthood (mean r= .60, ranging from .47 to .73), although an increase was 
observed with age. The 10-year lag genetic correlations (Appendix I figure 2) were 
large (mean .92, ranging from .89 to .97), while 10-year lag environmental 
correlations were moderate (mean .32, ranging from .18 to .66, eFigure2) due to 
the relatively large proportion of environmental variance attributable to 
innovation All together, stability was largely attributable to genetic effects, while 
the increase in stability from childhood to adulthood was due to an increase in 
environmental correlations with age.  
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Figure 4: Correlation heatmaps to represent A) the observed correlations between ages 3 and 63, B) 
the model implied genetic correlations and C) the model implied unique environmental correlations 
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Discussion 

The aim of this study was to gain insight into the etiology of the variation in 
symptoms of anxiety and depression (SxAnxDep) across the lifespan. Overall, 
genetic effects explained around 40% of the phenotypic variance at each age 
beyond age 7, and contributed greatly to the stability in SxAnxDep across age. We 
observed important differences between childhood and adulthood. Specifically, 
genetic innovation was observed during childhood and adolescence, but not after 
age 18. So after age 18, genetic effects are highly stable. This differs markedly 
from the results obtained for the unique environmental influences, which showed 
innovations at each age, and less stability. Unique environmental factors 
contributed primarily to short-time stability, but with increasing age, the 
contribution to stability of these environmental factors increased. This resulted in 
increasing stability in SxAnxDep with age corroborating pervious findings by 
Kendler et al. (2011).22 This comprehensive picture of the etiology of the course of 
SxAnxDep is in line with previous studies of SxAnxDep in either 
childhood/adolescence or in adulthood.10-13;19  
When analyzing data from children (maternal ratings) and adolescents and adults 
(self ratings), the question arises if the results are influenced by the different 
raters. The availability of self- and maternal reports of SxAnxDep at age 12 
allowed us to address this question. We found a moderate correlation between 
mother and child ratings (.35). Moderate correlations among different raters have 
been observed before.35 In the current dataset, we could establish that the 
correlation was largely attributable to genetic effects (56%), indicating that 
different raters to a large extent seem to agree on the genetically influenced 
SxAnxDep phenotype .  
An important result from the current study is the clear explanation of the decline 
in heritability, which coincides with the switch from maternal to self-ratings. 
Heritability was highest in childhood (70%-50%), and dropped in adulthood (50%-
35%), and remained stable to the age of 63. These heritability estimates are 
largely in line with those found in earlier studies.8,15,17,18,20,36,37 The longitudinal 
data indicate that a decrease in heritability is not due to a decrease in genetic 
variance, but that there is an increase in environmental variance (see Figure 3), 
which leads to a relatively lower influence of genetic factors. Common 
environmental effects were only present at ages 7 to 12 and explained a relatively 
small proportion of the variance (~.2-.11%). Mean sex differences in SxAnxDep 
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 emerged after age 12, around the same time when the increase in environmental 
variance is seen, peaked at age 28, and decreased thereafter. Figure 2B shows 
that there were no large sex differences in the estimates of genetic and 
environmental influences. 
For clinical practice, it is important to note that environmental effects contribute 
to change, but also to short-term stability. This suggests that an improvement in 
SxAnxDep can be accomplished by positive environmental experiences, such as 
beneficial therapy or positive life events, and that increases of SxAnxDep can be 
caused by negative experiences, such as adverse life events. Importantly, these 
effects can endure for several years. An earlier study in part of this sample 
showed that SxAnxDep increase after negative life events, but that higher scores 
on SxAnxDep also precede negative life events.38 Thus, individuals already 
suffering from anxiety or depression are at increased risk of experiencing negative 
events that can exacerbate their symptoms over an extended period of time. 
These results further underline the importance of addressing the environment in 
therapy (e.g., increasing social support or involving significant others). They can 
also suggest a possible interdependency between the individual and the 
environment, which may give rise to genotype-environment covariance39 but it 
was shown that the association between life events and SxAnxDep was not 
explained by a shared genetic background. 38 

The results may have several implications for future research. The stability of 
genetic effects from childhood into adulthood is important as it indicates that 
genetic vulnerability is present from early onwards and remains a risk factor 
throughout life. These results suggest that gene-finding studies may include adults 
between 18 and 63, as we have observed little age-related heterogeneity in 
genetic effects. However, we recognize that high stability in polygenic effects does 
not rule out age effects at the level of a single causal genetic variant.  
Rapee et al.20 have already pointed out that with respect to childhood anxiety 
disorders “current knowledge of the role and mechanisms of environmental 
factors is especially poor…” (Rapee et al.20  page 331). The increase in 
environmental stability over time is an intriguing finding that warrants further 
investigation. The question is whether new environmental effects on SxAnxDep, 
decrease with age, or whether the impact of events lasts longer as people age. 
Our results suggest the latter given that the environmental innovation parameters 
do not decrease with age, while the transmission parameters increase between 
age 3 and age 16 and then remain at a similar level. It is well known that 
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childhood and especially adolescence are characterized by large developmental 
changes in the brain.40 Possibly, the maturation of the brain is accompanied by a 
more enduring effect of the environment. Kendler et al.22 also found that the 
environmental effects on long term stability of SxAnxDep reach a plateau after 
adolescence. 
We have shown that even during childhood and adolescence, part of the genetic 
and unique environmental innovations that appear at each age are transmitted to 
other ages. This signifies that there is a group of children and adolescents with a 
risk of enduring symptoms. Given the high disease burden for these children and 
society it is important to identify risk and protective factors that lead to stability 
over ages.  

Finally, the current results for SxAnxDep are partly different from the results in a 
similar analysis of the etiology of stability in attention problems.41 For attention 
problems, the genetic variance decreases from childhood to adulthood, while for 
SxAnxDep the genetic variance increases. Moreover, the increase in stability due 
to environmental effects that is observed for SxAnxDep after age 18 is not present 
in attention problems till the age of 30. Although it is of note that, for both 
phenotypes, genetic factors are most important in explaining stability, these 
differences indicate that the pattern of genetic and unique environmental factors 
throughout life do not need to be similar across psychiatric phenotypes. Our 
results and those for attention problems41 suggest similar longitudinal genetic 
analysis are warranted for other psychiatric phenotypes. 

Longitudinal results are essential to increase our understanding of the 
development and genetic architecture of psychiatric phenotypes. We made use of 
25 years of data collection in subjects who entered the study at different ages, 
and tried to inform both clinical and molecular genetics research in psychiatry, 
using developmental and etiological informative models.  
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Chapter 3: Joint developmental trajectories of internalizing and externalizing 
disorders between childhood and adolescence.  
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Abstract 

This study aimed to identify trajectories of DSM-IV based internalizing (INT) and 
externalizing (EXT) problem scores across childhood and adolescence, and to 
provide more insight into the co-morbidity by modeling the co-occurrence of 
internalizing and externalizing trajectories. INT and EXT were measured 
repeatedly between age 7 and age 15 years in over 7000 children and analyzed 
using growth mixture models. For both INT and EXT, five trajectories were 
identified including a very low, low, decreasing and increasing trajectory. In 
addition, an adolescent onset trajectory was identified for INT, and a stable high 
trajectory was identified for EXT. Multinomial regression showed that similar EXT 
and INT trajectories were associated. However, the adolescent onset INT 
trajectory was independent of high EXT trajectories, and persisting EXT was 
mainly associated with decreasing INT. Sex and early life environmental risk 
factors predicted EXT and, to a lesser extent, INT trajectories. The association 
between trajectories indicates the need to consider co-morbidity when a child 
presents with internalizing or externalizing disorders particularly when symptoms 
start early. This is less necessary when internalizing symptoms start at 
adolescence. Future studies should investigate the etiology of co-occurring INT 
and EXT, and the specific treatment needs of these severely affected children. 
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Introduction 

Longitudinal epidemiological studies have shown that the prevalence of joint 
internalizing disorders (anxiety and depressive disorders) increases from 
childhood to adolescence into adulthood, whereas the prevalence of externalizing 
disorders (Attention Deficit Hyperactivity Disorder (ADHD), conduct disorder (CD) 
and oppositional defiant disorder(ODD)) decreases (Costello et al., 2011). 1 

Research into the stability observed that symptoms and disorders partly persist 
from childhood into adulthood,2;3 and that internalizing disorder in childhood 
predict externalizing disorder in adulthood and vice versa.2-4 However, these 
studies did not specifically look at individual differences in trends of development. 
Therefore, a next step is to investigate the existence of subgroups (classes) with 
distinct developmental trajectories in internalizing and externalizing problems, 
using growth mixture modeling (GMM). Few studies using GMM have analyzed 
data from population based cohorts and covered the period from childhood to.5-10 

As pointed out by,11 research in population based cohorts is necessary to get 
unbiased estimates of comorbidity and its risk factors.  And since the largest 
changes in prevalence rates are observed in the transition from childhood to 
adolescence, it is critical to investigate this period.   

In the current study we used GMM to model the development of DSM-IV based 
internalizing and externalizing problem scores (INT and EXT) measured at four 
occasions between age 7 and 15 years in a birth cohort of over 7,000 children. INT 
comprised anxiety disorders and depression, and EXT comprised ADHD, ODD and 
conduct disorder. The use of internalizing and externalizing summary scores is 
consistent with the results of several factor analytic studies of these disorders .11-

13 Following an initial separate analysis of internalizing and externalizing 
trajectories, we focused on the co-occurrence of these trajectories in a combined 
model. We further added risk factors such as sex, birth weight and social class to 
the model as predictors of class membership. The results provide insight into the 
trajectories of clinically relevant internalizing and externalizing problems across 
childhood and adolescence as well as into the association between the 
internalizing and externalizing trajectories over this period.  

Based on the results of previous trajectory analyses of internalizing and 
externalizing psychopathology measured during childhood and adolescence in 
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population based samples5-10 we expected for both INT and EXT a class of 
unaffected individuals. In addition, we expected at least a class with increasing 
symptoms for INT and a class with stable high and a class with decreasing 
symptoms for EXT. Although results of previous studies using GMM on 
internalizing symptoms are mixed regarding a class with persisting symptoms over 
time, we expected such a class given that other longitudinal studies suggest 
continuity over age.2-3 

To our best knowledge, this study is the first to investigate the co-occurrence of 
internalizing and externalizing problems across childhood and adolescence. Two 
studies during childhood (till age 12) showed that similar trajectories were 
associated, e.g., children with internalizing problems were more often in the 
classes with moderate or high scores for externalizing problems.14-15 We expected 
that this association continues into adulthood.  

 

Methods 

Subjects 

The Avon Longitudinal Study of Parents and Children (ALSPAC, also known as 
“Children of the 90s”, http://www.bristol.ac.uk/alspac/) is a long-term health 
research project project.16 More than 14,000 mothers from the Avon County in 
the UK were enrolled during pregnancy in 1991 and 1992, and returned at least 
one questionnaire. When the oldest children were approximately 7 years of age, 
an attempt was made to bolster the initial sample with eligible cases who had 
failed to join the study originally. 

The (psychological) health and development of these children has been followed 
in great detail. At ages 7, 10, 13, and 15 years, DSM-IV psychiatric disorders were 
assessed as part of the regular assessments. In total, 7202 children were assessed 
at least once for psychiatric disorders and had data available on risk factors (see 
table 1). Ethical approval for the study was obtained from the ALSPAC Ethics and 
Law Committee and the Local Research Ethics Committees. Please note that the 
study website contains details of all the data available through a fully searchable 
data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-
dictionary).  
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Instruments 

The Development And Wellbeing Assessment (DAWBA) was used to establish 
DSM-IV psychiatric diagnoses.17 We analyzed externalizing disorders, including 
ODD, CD and ADHD, and internalizing disorders, including major depression, 
generalized anxiety disorder, specific phobia, social phobia (at age 7, 10, 13 and 
15), separation anxiety disorder (at age 7, 10 and 13) and panic disorder and 
agoraphobia (at age 15). All disorders were assessed by the child’s mother except 
for self reports of internalizing disorders at age 15. 

The analyses were performed on “DAWBA bands”, with each category indicating 
the probability to suffer from a psychiatric disorder as derived from the DAWBA 
psychiatric interview. Scores of 0, 1, 2, 3, 4, and 5 correspond to probabilities of 
<0.01%, 0.5%, 3%, 15%, 50%, and >70%, respectively, of satisfying diagnostic 
criteria. The DAWBA bands have shown a positive association with clinician-rated 
diagnosis (chance corrected kappa 0.4 to 0.7, sensitivity 0.4 to 0.8, and specificity 
0.98 to 0.99), and a strong relation with indicators of mental health.18 The 
internalizing DAWBA band scores (INT) and externalizing DAWBA band scores 
(EXT) reflect the probability of satisfying the diagnostic criteria of any internalizing 
or any externalizing disorder.18 Since category 0 did not occur in all assessments, 0 
and 1 scores were collapsed into a single category (i.e., <.5%). We used the 
DAWBA band scores as they provide more information than the dichotomous 
affected/unaffected variable.   

We included maternal smoking during pregnancy (no/yes), maternal highest 
education (6 categories), maternal and paternal social class (6 categories), 
maternal age at delivery, birth weight, and sex as predictors of class membership. 
Maternal smoking was assessed at week 18, social class and educational 
attainment at week 32. Maternal age at delivery and birth weight were part of the 
pregnancy and child baseline data.  

Statistical methods  

First, a latent growth curve model was fitted to repeated measures of INT and 
EXT. This model included three factors, an intercept (I), linear slope (S), and 
quadratic slope (Q) factor. The quadratic slope factor allows for curvilinear 
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development. As we estimated the means (fixed effects) and the variances 
(random effects)  of the I, S, and Q factors, this is a random effects model, 
implying that each child was characterized by his or her own unique growth curve. 

Growth mixture models (GMM) extend the standard growth model with a latent 
class variable, featuring a distinct growth model within each latent class. Subjects 
with similar trajectories are grouped into classes in a data-driven fashion, since 
class membership is not known beforehand. Fixing the variances of the I, S, and Q 
factors to zero within each class results in a restrictive GMM (also known as latent 
class growth models, LCGMs), in which only average within class trajectories are 
estimated (i.e., means of I, S, and Q), and all variability within classes is considered 
to be occasion specific .19 We fitted LCGM’s as well as models allowing for within 
class individual differences in the intercepts, i.e., random intercepts.20;21 Models 
with an increasing number of classes were considered. Mixture models with 
random slope or random quadratic terms often failed to converge or converged 
prohibitively slow and were therefore not considered. 

Based on the best fitting separate models, a combined model of INT and EXT 
trajectories between age 7 and 15 was tested, in which the EXT latent categorical 
class variable (CE,) was regressed on the INT latent categorical class variable (CI) 
(see Figure 1). This multinomial regression analysis provided an omnibus test of 
the null hypothesis that INT and EXT classes are unrelated. Note that the direction 
of this regression is arbitrary, and has no effect on the interpretation of the 
results. Reversing the direction of the regression to EXT on INT would result in 
exactly the same model fit and parameter estimates. INT and EXT class variables, 
denoted CI and CE, were also regressed on maternal social class, paternal social 
class, maternal educational level, maternal age at delivery, maternal smoking 
during pregnancy, birth weight of the child, and sex of the child to test whether 
these variables predict trajectories.  
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Figure 1. Path model of the final growth mixture model. Ci and Ce are the class variables indicating 
the distinct growth trajectories between the ages of 7 and 15 years for the internalizing and 
externalizing problem scores respectively. For each growth trajectory, an intercept (i), a linear slope 
(s) and a quadratic slope (q) are estimated. The factor loadings of the intercept (i) are 1. The factor 
loadings of the linear slope (s) are 1, 2 and 3, and of the quadratic slope (q) 1, 4 and 9. The 
association between the classes is modeled as a categorical regression of the externalizing 
trajectories on the internalizing trajectories. 
Subscript i: internalizing disorders, subscript e: externalizing disorders 
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Models were fitted with M-plus 6.1222 using robust full information maximum 
likelihood. If initial settings did not result in replicated minima, the number of 
starts was increased from 500 to 2000 and the number of final optimization from 
50 to 200. If the best likelihood was not replicated with 2000 starts, the model 
was considered to have failed. The choice of the best fitting model was based on 
the sample size adjusted BIC. In case of small differences in fit, the preciseness of 
individual assignment to a specific trajectory (measured using model entropy) and 
the interpretability of the model were also considered.  

Previous analyses showed that missingness in the ALSPAC data is not random, but 
that it only marginally affects parameter estimates in statistical analyses.23 We 
regressed the covariates on the number of missing DAWBA assessments per 
individual. This attrition analysis showed that sex, smoking during pregnancy, 
maternal and paternal social class, maternal highest education and maternal age 
at delivery predicted missingness. As these variables were included in the model, 
data were assumed to be missing at random (MAR). We also reran the models on 
listwise complete data to evaluate the models based on individuals with complete 
data. 

Results 

Descriptives 

Table 1 provides an overview of the prevalences of the observed DAWBA band 
scores and the polychoric correlations between INT and EXT at age 7, 10, 13 and 
15. Polychoric correlations quantify the association between ordinal variables 
(Ekstrom, 2011).24 The estimated prevalence of externalizing disorders in our 
sample was around 5% between ages 7 and 15. The prevalence of internalizing 
disorders was around 4% in childhood, and grew to 5% at age 15. As expected, 
male average EXT scores were greater than female average EXT scores at all ages, 
and female average INT scores were greater than male average INT at ages 13 and 
15. Correlations between EXT and INT were around .20. Longitudinal correlations 
for INT between age 7 and 15 were .15 to .48, whereas correlations for EXT 
between the ages of 7 and 15 were higher (.35 to .61). 
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Table 1: For each age, the number of individuals for each DAWBA band score for externalizing (EXT) 
and internalizing (INT) disorders, prevalences for EXT and INT and total N (upper part), and the 
polychoric correlations between EXT and INT (lower part). 

 
Descriptives 

DAWBA band score Prevalence N 
1 2 3 4 5   

EXT 7 1509 3948 612 160 96 0.058 6325 
EXT 10 1668 3388 520 124 90 0.054 5790 
EXT 13 1848 2682 608 115 79 0.055 5332 
EXT 15 1714 1848 335 88 65 0.05 4050 
INT 7 2749 3063 412 76 45 0.037 6345 
INT 10 2092 3101 470 89 58 0.045 5810 
INT 13 2181 2686 382 68 33 0.038 5350 
INT 15 1506 1885 521 106 15 0.051 4033 
 
Correlations 

EXT 7 EXT 10 EXT 13 EXT 15 INT 7  INT 10 INT 15 
EXT 7 1       
EXT 10 0.63 1      
EXT 13 0.497 0.582 1     
EXT 15 0.387 0.451 0.569 1    
INT 7 0.23 0.161 0.102 0.083 1   
INT 10 0.188 0.257 0.151 0.133 0.485 1  
INT 13 0.162 0.177 0.211 0.173 0.406 0.483  
INT 15 0.081 0.08 0.074 0.11 0.142 0.19 1 
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Internalizing and externalizing trajectories  

First, GMMs were fitted for INT and EXT separately. The single class model with a 
random intercept, slope and quadratic term showed a worse fit than models 
including a latent class variable, which indicates the existence of subgroups with 
different trajectories. Models with 2-6 classes were tested with 1) a fixed 
intercept, slope, and quadratic term, and 2) a random intercept, and a fixed slope 
and quadratic term. Table 2 provides the model fit and entropy. We retained the 
quadratic term as models with the quadratic term generally outperformed models 
without a quadratic term (results available on request from the first author). INT 
data were best described by a model with 5 classes with a fixed intercept, slope 
and quadratic term. However, the 4 class fixed model did not differ much in fit 
and had slightly better entropy then the 5 class model. Visual inspection of the 
trajectories in the 4 and 5 class model showed that the 5 class model contained an 
additional class of individuals who showed low internalizing problems up to age 
13 and then increase at age 15. Given that a group with increasing internalizing 
scores in adolescence is consistent with the literature, we preferred the 5 class 
model to the 4 class model. For EXT, the best fitting model is the 3 class random 
intercept model. However, this model has a very low entropy compared to the 
fixed intercept models. Among the fixed intercept models, the best fitting model 
is the 6 class model, but the 5 class model has a substantially better entropy and 
only a slightly worse fit. Visual inspection of the trajectories showed that the 6 
class model adds a third unaffected class to the very low and low classes, which 
starts out low and progresses to very low EXT scores. As this extra class is not very 
informative, the 5 class fixed intercept model was preferred. Results of the 
analyses of the listwise complete data were similar and  also resulted in the 
selection of a 5 class model for both INT and EXT. Models fitted on listwise 
complete data had a higher entropy reflecting that individuals with more data 
available are easier to categorize. 
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Table 2: Fit indices for the internalizing (INT) and externalizing (EXT) growth mixture models 
containing 1 to 6 classes. On the left, the models with fixed effects for intercept (I), linear (S) and 
quadratic (Q) slopes i.e., with the variances of the intercept and slopes fixed to zero in each class. In 
the middle models with a random I (i.e., with the variance of the intercept estimated in each class) 
and fixed effects for S and Q. And on the right the reference model with random I, S and Q.  

 

 
 

 
 
* best log-likelihood not replicated at 2000 starts and 200 final itterations 
 
 
 
 
 

Models INT 

N 
classes 

Fixed ISQ Random I, Fixed SQ, Random ISQ 

 Entropy AIC Adj-BIC Entropy AIC Adj-BIC AIC Adj-BIC 

1       41748.603 41870.892 

2 0.469 42326.785 42389.782 0.323 41946.080 42016.489 - 
3 0.432 41959.951 42063.711 0.455 41674.774 41789.651 - 

4 0.513 41650.452 41794.975 0.392 41536.956 41696.303 - 

5 0.488 41536.394 41721.680  * - 
6 0.518 41505.755 41731.804  * - 

Models EXT 

N 
classes 

Fixed ISQ Random I, Fixed SQ, Random ISQ 

 Entropy     AIC                   Adj-BIC Entropy     AIC                   Adj-BIC AIC                    Adj-BIC 

1       41273.385 41395.628 

2 0.544 42770.286 42833.259 0.383 41463.420 41533.803 - 

3 0.647 41630.458 41734.179 0.471 41235.535 41350.369 - 

4 0.647 41355.296 41499.765  * - 

5 0.656 41208.013 41393.230  * - 

6 0.569 41136.539 41362.503  * - 
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Combined internalizing/externalizing model. 

 In the combined model, the association between  INT and EXT was analyzed using 
the multinomial logistic regression of the 5 class EXT trajectories on the 5 class INT 
trajectories (Figure 1). The model including the multinomial regression fitted the 
data better than a model that dropped this regression (Likelihood ratio: 477.894, 
df=16, p < 0.0001).  We first describe the INT and EXT trajectories and then discuss 
the association between the EXT and INT trajectory class variables.  
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Figure 2. A) Internalizing trajectories. B) Externalizing trajectories. The y axis indicates the expected 
DAWBA band score for a given class at a given age. 
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For INT, there were two classes with low scores, called the very-low-INT class 
(22.7% of the sample based on most likely class membership) and the low-INT 
class (41.8%) (Figure 2A). A third class contained individuals with decreasing INT 
scores (5.1%). The remaining two classes contained individuals with increasing 
scores. The increasing-INT class (17.8%) showed a steady raise in score from 
childhood on, while in the adolescent-risk-INT class (12.6%) the scores are low 
until age 13 but sharply increase at age 15 years. Girls were significantly more 
likely than boys to be a member of the decreasing (OR= 2.011, p<0.001), 
increasing (OR= 7.800, p<0.001), or adolescent increasing INT classes (OR=3.128, 
p<0.001). Maternal smoking during pregnancy is a significant risk factor for being 
a member of the decreasing INT class (OR= 1.991, p<0.001). None of the other risk 
factors showed a significant effect. 

Four of the five EXT trajectories show similar patterns as the INT trajectories 
(Figure 2B), i.e., the very low-EXT class (28%), the low-EXT class (54%), the 
decreasing-EXT class (7%) and the increasing-EXT class (8.3%). The final high-EXT 
class (2.4%) was different, as it contained individuals with persisting high scores 
from childhood to adolescence. Girls were significantly less likely than boys to be 
a member of the high (OR= 0.074, p< 0.001) , increasing (OR=0.475, p<0.001), and 
decreasing (OR= 0.178, p<0.001) EXT class. Maternal smoking during pregnancy 
predicted high (OR= 2.237, p<0.001), increasing (OR= 2.053, p<0.001), and 
decreasing (OR= 2.765, p<0.001) EXT class membership. A higher social class of 
the father resulted in a significant reduction of the chance of belonging to the 
high (OR= 0.787, p<0.001) or increasing EXT class (OR= 0.818, p<0.001). Higher 
maternal education is a protective factor for belonging to the increasing EXT class 
(OR=0.790, p<0.001). 

Figure 3 displays the conditional probabilities of belonging to the EXT (INT) classes 
given membership of a given INT (EXT) class. These conditional probabilities show 
that similar internalizing and externalizing classes were associated. Focusing on 
the “affected” trajectories reveals that individuals in the decreasing INT class had 
a high probability of belonging to the decreasing EXT class (38%) and children in 
the increasing INT class had a substantial probability (22%) of being member of 
the increasing EXT class (Figure 3A). Vice versa, 27% of the children in the 
decreasing EXT class belonged to the decreasing INT class and children in the 
increasing EXT class had a substantial chance (46%) of belonging to the increasing 
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INT class (Figure 3B). It further becomes apparent that the high EXT class was 
particularly associated with the decreasing INT class and less with the increasing 
INT class, whereas the adolescent onset INT class was independent from EXT 
trajectories.    
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Figure 3: A) Probabilities for EXT class membership and conditional probabilities for EXT class 
membership given INT class membership. B) Probabilities for INT class membership and conditional 
probabilities for INT class membership given EXT class membership 
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Discussion 

Using DSM-IV based internalizing and externalizing problem scores across 
childhood and adolescence, we identified five developmental trajectories for both 
INT and EXT, including trajectories with very low, low, increasing and decreasing 
scores. For INT, the last trajectory was characterized by increased scores from 
adolescence onwards, while for EXT, the last trajectory was characterized by 
individuals with stable high scores. The combined model showed that similar INT 
and EXT trajectories were associated. Only the adolescent onset INT group 
showed no association with affected EXT classes. Further, the high EXT group was 
most associated with the decreasing INT group signifying that in the group of 
children that have both externalizing and internalizing symptoms during 
childhood, in some of the children the externalizing symptoms will persist, 
whereas the  internalizing symptoms attenuate. 

Our findings for the INT and EXT trajectories are largely in line with a priori 
expectations. The most apparent differences are the absence of a class 
characterized by stable high INT and the presence of an increasing EXT class. The 
absence of a stable high INT group may be due to the relatively low prevalence of 
these disorders, especially during childhood. In GMM, it requires very large 
samples to reliably identify classes that include a small proportion of the sample. 
Our finding therefore cannot rule out a small group of children with persisting 
symptoms, as suggested by other studies.2;3 A class with increasing externalizing 
symptoms was also identified by Van Lier et al.8 for conduct disorder, and by 
Larsson et al.10 for the inattentive subtype of ADHD. The increasing externalizing 
class probably comprises these groups.  

Finally, the only two other studies14,15 that looked at the combination of 
internalizing and externalizing trajectories up to age 12 also showed that 
increasing and decreasing internalizing and externalizing trajectories are mutually 
dependent. It will be interesting to see whether future studies modeling the 
trajectories into adolescence will replicate our finding that internalizing disorders 
starting at adolescence are independent of externalizing disorders and that 
persisting high EXT is mainly associated with decreasing INT. Our results indicate 
that the previously reported longitudinal associations between internalizing and 
externalizing disorders are due to the co-morbidity that exists between these 
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disorders at childhood. Thus, the recent finding in ALSPAC that adolescent 
depression is predicted by conduct problems in childhood25 is probably due to the 
persistence of childhood internalizing symptoms.  
 
 Since mixture modeling as employed here is exploratory, results require 
validation.26 However, the agreement between the found trajectories and our 
expectations underlines their importance. Moreover, the association with sex and 
the prenatal risk factors were all in the expected directions. Boys were found to 
be more at risk for externalizing problems and girls more for internalizing 
problems and adverse prenatal risk factors were associated with externalizing, 
and to a lesser extent, with internalizing problems.27 

 

The use of two broad internalizing and externalizing problem scores could be 
considered a limitation. Studies investigating specific internalizing or externalizing 
symptom domains have detected differences in trajectories between the separate 
disorders.8;10;28;29 Given the low prevalence rates of the separate disorders, such 
analyses were not feasible for the clinically based measure used in the current 
study. Moreover, previous studies have also shown that the analyzed disorders 
load on common factors interpretable as our INT and EXT (see11-13). This indicates 
that studies focusing on measures of a general tendency to display internalizing or 
externalizing disorders can also provide important information. Sample size also 
precluded separate analyses in males and females. Therefore, gender was 
included as a covariate predicting class membership. Finally, the correlations 
between internalizing and externalizing disorders (around 0.20) were lower than 
previously reported by Cosgrove et al.13 (0.20 to 0.30). However, these differences 
are relatively small, and might be due to differences in the instrument used.  

The strengths of this study were the use of a large population based sample with 
repeated measures from childhood into adolescence and, importantly, a DSM-IV 
based psychiatric interview instrument. This enables the translation of these 
findings to clinical relevance. The results suggest that if internalizing disorders first 
occur in adolescence, a brief screening for externalizing disorders will suffice. 
However, when confronted with childhood internalizing or externalizing 
problems, the association in course indicates the need to focus on co-morbidity 
from the start of the treatment. Future studies should address the specific 
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treatment needs of children with co-occurring internalizing and externalizing 
disorders, especially since the co-occurrence is related to negative outcomes .15 

An interesting question is whether successful treatment of an externalizing 
disorder also leads to a remission of the internalizing disorder, or vice versa, or 
whether treatment of both disorders is necessary. Moreover, it is important to 
identify the factors associated with the combination of the trajectories of 
decreasing internalizing and externalizing symptoms versus the combination of 
persisting externalizing symptoms and decreasing internalizing symptoms.  

The current study does not address the etiology of comorbidity between 
internalizing and externalizing disorders. Different hypotheses currently exist 
about the causes of comorbidity. It has been suggested that depressive symptoms 
in ADHD are due to demoralization,30 but in line with our finding that a 
combination of trajectories of externalizing symptoms in childhood and later 
increasing internalizing symptoms did not exist,31 concluded that this does not 
explain all comorbidity. The opposite, i.e. internalizing symptoms causing 
externalizing symptoms, has also been hypothesized. Granic32 ,for example, 
proposes three mechanisms explaining how anxiety can cause aggression and 
suggests how future research could investigate  whether these mechanisms play a 
role. Another explanation for comorbidity is that multiple disorders are caused by 
the same underlying mechanism, which agrees with the observed co-occurrence 
of similar trajectories. This is supported by cross-sectional twin studies that 
indicated that co-morbidity between internalizing and externalizing disorders is 
partly explained by shared genetic risk factors (e.g. Cosgrove et al.13). It has 
already been shown that ADHD trajectories are influenced by genetic factors 
(Larsson et al.10).  This could also be the case for co-occurring trajectories, which 
would be interesting for gene-finding studies. Including a genetic variant-by-
course (i.e., decreasing or stable high) interaction term  enables the identification 
of variants associated with a favorable or unfavorable outcome and reveal hints 
about biological differences in etiology between developmental courses.  
 
To summarize, we showed that both internalizing and externalizing disorders can 
have a favorable or unfavorable course in time from childhood into adolescence 
and that trajectories are associated with each other. Future research should focus 
on unraveling the etiology of the co-occurrence, and focus on the development of 
treatment designs for the most seriously affected children
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Chapter 4: A Genome-wide Association Meta-analysis of Preschool Internalizing 
Problems 
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Abstract 

 
Objective: Preschool internalizing problems (INT) are highly heritable and 
moderately genetically stable from childhood into adulthood. Gene-finding 
studies are scarce. In this study, the influence of genome-wide measured Single 
Nucleotide Polymorphisms (SNPs) was investigated in three cohorts (total N = 
4,596 children) in which INT was assessed with the same instrument (Child 
Behavior Checklist).  
Method:  First, genome-wide association (GWA) results were used for density 
estimation and GCTA analyses to calculate the variance explained by all SNPs. 
Next, a fixed effect inverse variance meta-analysis of the three GWA analyses was 
carried out. Finally, the overlap in results with prior GWA studies of childhood and 
adulthood psychiatric disorders and treatment responses was tested by examining 
whether SNPs associated with these traits jointly showed a significant signal for 
INT.  
Results:  Genome-wide SNPs explained 13% to 43% of the total variance. This 
indicates that the genetic architecture of INT mirrors the polygenic model 
underlying adult psychiatric traits. The meta-analysis did not yield a genome-wide 
significant signal, but was suggestive for the PCSK2 gene located on chromosome 
20p12.1. SNPs associated with other psychiatric disorders appeared to be 
enriched for signals with INT (lambda=1.26, p< 0.03).  
Conclusions:  Our study provides evidence that INT is influenced by many 
common genetic variants, each with a very small effect, and that, even as early as 
age 3, genetic variants influencing INT overlap with variants that play a role in 
childhood and adulthood psychiatric disorders. 
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Introduction 

Preschool internalizing problems (INT) are relatively prevalent, often not self-
limited, and associated with significant morbidity. A recent study investigating 
prevalence rates of DSM-IV disorders in a sample of 2,475 Norwegian 4-year olds 
found, for example, that 1.5% of the children fulfilled the criteria for any anxiety 
disorder and 2% for a depressive disorder.1 Preschool INT are persistent into 
childhood, as shown by several longitudinal studies.2-5  
Twin studies have shown a substantial influence of genetic factors on preschool 
INT. Heritability estimates of INT, assessed across a range of instruments, are 
mostly around 40% and 50% (range: 36% - 75%) with study samples varying from 
822 to 6,783 twin pairs.5-9 These heritability estimates are similar to or even 
higher than the estimates found for anxiety and depressive symptoms and 
disorders in adults.10, 11 Moreover, genetic factors influencing INT at age 3 
continue to have an effect later in life, even into adulthood5,12  
There are numerous gene-finding studies for anxiety and depression in adults, but 
gene finding studies on childhood INT are scarce. There has been only one 
genome-wide association (GWA) study that analyzed anxiety-related behaviors in 
2,810 7 year olds.12 None of the effects of the top ten Single Nucleotide 
Polymorphisms (SNPs) (p –values between 8.7x10-7 and 1.2X10-4) were replicated 
in an independent sample of 4,804 children. In addition, a Genome-wide Complex 
Trait Analysis (GCTA) was performed in the discovery sample.14 Such an analysis 
does not focus on the effect of each SNP separately, but calculates the variance 
explained by all genome-wide SNPs. For anxiety-related behaviors, the GCTA 
yielded estimates were between 0.01 (SE=0.11) to 0.19 (SE=0.12). The authors 
concluded that common SNPs do not explain as much of the genetic influence on 
anxiety at age 7 as on other psychiatric phenotypes.  

We present a genome-wide approach to investigate the etiology of preschool INT. 
Genome-wide SNP data were analyzed from three cohorts with a total N of 4,596 
children in which INT was measured with the same instrument. Each cohort 
carried out a GWAS. These results were, first, used to estimate the variance 
attributable to all SNPs in each cohort. A meta-analysis of the results of the three 
GWAS was performed next, aiming to identify genetic variants influencing INT. 
Finally, overlap between our meta-analysis results and results from prior GWA 
(meta-)analysis studies was investigated. We analyzed whether SNPs associated 
with a range of psychiatric disorders jointly yielded a significant signal in the meta-
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analysis results of INT at age 3. We have not restricted these analyses to SNPs 
associated with internalizing disorders (depression), but have also analyzed SNPs 
associated with disorders usually diagnosed in childhood or psychotic disorders . 
There is frequent co-morbidity between childhood internalizing disorders and 
other disorders at childhood and internalizing symptoms predict a range of 
disorders in adulthood, including disruptive disorders and schizophrenia.1, 15-17 This 
could be well due to overlapping genetic risk factors. Further, it has been 
suggested that treatment resistant depression is influenced by specific risk factors 
including early age of onset,17 which may signify that disorders resistant to various 
treatments bear a unique genetic signature.  Although literature does not provide 
a direct link to internalizing problems in children and treatment response in 
adults, we wished to explore whether treatment resistant SNPs were enriched in 
preschool internalizing children.  Therefore, SNPs were also selected from GWAS 
of treatment response in adults.  
 

Methods 

Subjects 

Participants were recruited from 3 large population-based studies (see Table 1). 

Generation R (www.generationr.nl). The Generation R study is a prospective 
population-based cohort of 9745 children born in Rotterdam, the Netherlands, 
whose due dates were between April 2002 and January 2006.19,20 Data from a 
total of 7893 children were available and eligible for follow-up. DNA was extracted 
from cord blood taken at birth. Children of Northern European descent, as 
determined by principal component analyses of GWA data, were selected.21 Of 
5908 children with DNA available, 2,841 children of Northern European descent 
were identified of whom 2037 children (50% girls) had SNP data and the INT score 
available. The Medical Ethical Committee of the Erasmus Medical Centre, 
Rotterdam (MEC 217.595/2002/20) approved the study protocol, and participants 
gave informed consent in writing. 
NTR (www.tweelinGenerationRegister.org). The Netherlands Twin Register (NTR) 
is a prospective study involving twin families. The NTR was established at the VU 
University Amsterdam in 1987 and includes twins born from 1986 and onwards.22 
Data collection is ongoing. Parental ratings of problem behavior are available for 
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ages 2, 3, 5, 7, 10 and 12 years. Subsamples of young twins were invited to 
participate in experimental and laboratory studies and to provide a DNA sample, 
either by whole blood or by buccal swabs.23 Dizygotic twin pairs were included in 
the analyses while correcting for the dependence between their measures. From 
monozygotic twin pairs, one twin was randomly selected. This yielded a sample of 
1475 children (50% girls), belonging to 1031 families, with genotype and 
phenotype data. The study was approved by the Central Ethics Committee on 
Research involving human subjects of the VU University Medical Centre, 
Amsterdam, and an institutional review board certified by the U.S. Office of 
Human Research Protections (IRB number IRB-2991 under Federal-wide 
Assurance-3703; IRB/institute codes, NTR 03-180). 
Raine (www.rainestudy.org.au). The Western Australian Pregnancy (Raine) Cohort 
Study is a prospective cohort representative of those presenting to an antenatal 
tertiary referral center in Western Australia.24, 25 There were 2900 pregnant 
women recruited between 1989 and 1991 as part of a randomized control trial to 
investigate the association of repeated ultrasound measurements during 
pregnancy on birth outcomes. DNA was collected from blood at the fourteen year 
follow-up. There are 1084 children (49% girls) for whom DNA and INT data at 2 to 
3 years of age are available. Participant recruitment and all follow-ups of their 
families were approved by the Human Ethics Committee at King Edward Memorial 
Hospital and/or Princess Margaret Hospital for Children in Perth. 
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Table 1:  Description of cohorts, Internalizing Problem scores and measure (upper part) and the 
estimates of the variance explained by all SNPs obtained with the density estimation method (DE) 
and with Genetic Complex Trait Analysis (GCTA) (lower part). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Generation R NTR Raine 

N (%girls) 2037 (49) 1475 (50) 1084 (49) 

Mean age (sd)  3.0 (0.10) 3.31 (0.26) 2.2 (0.15) 

Mean INT score (sd) 4.0 (3.4) 7.8 (6.0) 7.2 (5.1) 

INT score range 0,23 0,33 0,37 

CBCLa version CBCL 1 ½ - 5 CBCL/2-3 CBCL/2-3 

Website www.generationr.nl www.tweelingenregister.org/en/ www.rainestudy.org.au 

Explained variance in % 
 

DE (p-value) 41 (0.04) 31 (0.41) 43 (0.58) 

GCTA (p-value) 26 (0.07) 18 (0.30) 13 (0.33) 
aCBCL:  Child Behavior Checklist 
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Genotyping, Quality control and Imputation Procedures   

DNA was extracted from blood in Raine and Generation R and from buccal swabs 
(n=1087) and whole blood (n=388) in NTR. Excellent concordance between SNP 
genotyped in buccal and blood samples has been shown in 331 individuals for 
whom both kind of samples were available.6 For Raine and Generation R, 
genotyping was performed on Illumina platforms. For NTR, the affymetrix 6.0 
platform was used. Table S1 provides details of the genotyping centers, platforms, 
calling software, analytic and imputation software, and details of the pre-
imputation and post-imputation filtering criteria per study. Basic quality checks 
for each SNP included call rates and Hardy-Weinberg statistics. For Generation R 
and Raine, each sample was checked for excess heterozygosity, gender accuracy, 
relatedness (identity by descent) and missingness. NTR samples were also 
checked for incorrect Mendelian inheritance patterns, as parents of twins were 
genotyped in 25% of families. After prefiltering, phased genotype data were 
imputed to build 36 (release 22) of the original HapMap CEU reference panel for 
NTR and Raine studies, and the consensus panel for the Generation R study 
resulting in 2.5 to 3 million SNPs for GWA analysis.27  

 

Measurement of Internalizing Problems 

In all cohorts, INT was assessed by the internalizing problem scale of the Child 
Behavior Checklist (CBCL). In the most recent version of the CBCL 1½ - 5, the INT 
scale consists of 36 items. Thirty-four of these items were measured in all three 
cohorts and were, therefore, used to obtain the INT sum score for the analyses. 
Example items are “Acts too young for age”, “Worries a lot” and “Clings to adults 
or too dependent”. For each item, the rater must select a score of 0 (not true), 1 
(somewhat or sometimes true) or 2 (very true or often true) resulting in a 
potential score range of 0 to 68. Table S2 provides a list of the 34 items and their 
corresponding subscales. In Generation R and Raine, the primary caregiver, 
usually the mother, filled out the questionnaire. These studies thus included 
paternal and other caregiver raters, although they were rare (5% in Generation R 
and data not available in Raine). In NTR, only maternal ratings were analyzed. 
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Statistical Analysis 

GWA-based analysis within cohorts. Each cohort modeled the outcome as the 
square root of the sum score, which was chosen based on simulation and 
regression diagnostics (details are provided in the Supplementary Material). The 
significance of the SNPs was tested in the following regression equation: 

√INT = α0 + β1 SNP + β2 PC + β3Sex 

SNP was coded as 0, 1 and 2, reflecting the number of alternate alleles for a given 
individual. To correct for population stratification, ten principal components (PC) 
were included as covariates in the NTR GWA, and two were included in Raine and 
Generation R. The Generation R and NTR studies did not adjust for age, given the 
age restriction at time of data collection to 3 years; the Raine study accepted 
children of 2 to 3 years of age, and adjusted for age. In Generation R and Raine, 
the analyses were performed in mach2qtl software.28,29 In NTR, the analyses were 
performed in PLINK30 using the option “—family” to account for the dependence 
between INT measured in DZ twins from the NTR. 

Variance explained by all SNPs. The joint effect of all SNPs in explaining the 
variance of INT was calculated in each cohort using the density estimation method 
(DE) proposed by So et al 31 and using GCTA. In GCTA, a genetic relationship matrix 
is calculated, based on all SNPs, reflecting the genetic similarity in unrelated 
individuals. Next, the variance explained by these SNPs is estimated in a linear 
mixed model in which the measures of the genetic similarity is included as a 
random effect to predict the phenotype.14 The analyses were corrected for the 
covariates included in the GWA analyses. Moreover, related individuals were 
excluded (threshold = 0.025). 

In contrast to GCTA, DE does not use measured SNPs, but uses the z-transformed 
t-statistics of the regression coefficients as obtained in a GWA analysis to estimate 
the explained variance. As it is more common to provide GWA results to a 
consortium than genotype data, this method is more suitable when using data 
from several cohorts. The basic idea is to compare the distribution of z-
transformed t-statistics of the regression coefficients of genome-wide SNPs to the 
theoretical null distribution of z statistics representing no effects. Deviation of the 
observed statistics from the theoretical null distribution indicates that SNPs 
explain part of the variance. Specifically, the observed z statistics, which contain 
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error due to sampling fluctuation, are first corrected to obtain z statistics 
representing “true” effect sizes. The z statistics can then be combined by 
summing the contributions of all SNPs using sums of squares as in analysis of 
variance. These sums of squares are computed based on the estimated effect 
sizes and the study sample size, as well as the number of included covariates and 
their joint effect size. The resulting sum is an estimate of the total proportion of 
phenotypic variance explained by the SNPs in the analysis. Before applying DE, we 
carried out linkage disequilibrium (LD) pruning as suggested by So et al.31 using 
HapMap CEU genotypes as a reference set which had been used for imputation in 
all three cohorts.  
P-values for the variance explained estimates are calculated using Monte Carlo p-
values. This is necessary because the sampling distribution for the estimates is 
skewed and biased, and standard errors are potentially misleading. Briefly, in each 
of 4000 Monte Carlo replications, variance explained is estimated using simulated 
t statistics for each SNP under the null hypothesis (i.e. zero variance explained). 
Then the estimated p-value for the observed data is the proportion of Monte 
Carlo replications with estimated variance explained greater than or equal to the 
estimate for the observed data. Simulation results showing that this method is 
appropriate for the variance explained estimates are available on request from 
the fourth author. 

Meta-analysis. An inverse variance meta-analysis was performed in METAL.32 
Comparing a fixed effect analysis with a random effect analysis did not show 
different results. Therefore, we report the findings from the fixed effect model. 
Because the genomic control lambdas (the median Χ2 association statistic divided 
by the median expected under the null) within each cohort were close to 1.0 and 
thus indicated no evidence for inflation, we applied a genomic control solely at 
the meta-analysis stage. We only considered SNPs whose minor allele frequency 
was greater than 0.01. We also applied quality filtering, requiring that the 
imputed SNPs had a quality score above 0.30 for the Generation R and Raine 
studies, and a PLINK info score between 0.80-1.1 for the NTR study. We 
considered any SNPs with a p-value below 5x10-8 to achieve genome-wide 
statistical significance. 

Analysis of SNPs associated with psychiatric disorders and treatment response. 
We conducted a search in www.genome.gov/gwastudies in January 2013 for SNPs 
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with a p-value below 1x10-5 in GWAS of psychiatric disorders and treatment 
response performed in children or adults. We first analyzed SNPs associated with 
internalizing disorders (major depression). Next, in three steps, SNPS were added 
that were associated with disorders usually diagnosed in childhood (ADHD, 
conduct disorder and autism) and psychotic disorders (bipolar disorder and 
schizophrenia), that were associated with treatment response for 
antidepressants, lithium and antipsychotics and that were located in candidate 
genes for major depression based on hypotheses regarding the etiology, derived 
from Table 1 in Bosker et al.33   

To determine whether these candidate SNPs were associated beyond expectation 
under the null in our meta-analysis, we calculated the genomic control lambda. 
Next, a null distribution of lambdas is created by sampling 10,000 sets of p-values 
equal in size to the set of SNPs being tested. The observed lambda in each of the 4 
sets is significant when it exceeds the lambdas in the null distribution.  

Results 

Variance explained by all SNPs   
In the Raine and NTR studies, the GWA analysis was performed on 2,543,887 
autosomal SNPs imputed from the HapMap original panel that passed initial 
quality control measures (see Table S1). In Generation R, 3,021,329 autosomal 
SNPs imputed from the HapMap consensus panel passed initial quality control 
measures and were analyzed in the GWA. QQ and Manhattan plots for each 
cohort are provided in Figures S1 and S2. The genomic control lambda was very 
close to 1 (λGC=1.02), indicating there was no evidence for inflated test statistics.  
Next, DE analyses and GCTA were performed (see lower part of Table 1). After 
pruning for LD, 29,588, 29,612 and 42,800 SNPs were used in the DE analyses of 
NTR, Raine, and Generation R, respectively. The variance explained by these 
pruned SNPs varied between 31% and 43%. The variance explained by covariates 
in each analysis was negligible. In GCTA, the variance explained varied between 
13% and 26%. In Generation R, the estimate based on DE was significant (p=0.04) 
and the GCTA estimate approached significance (p=0.07). The findings were not 
significant for NTR and Raine. Given a heritability estimate of 59% for INT at age 
3,6 this signifies that the SNPs capture between 22% and 72% (13%/59% and 
43%/59% respectively) of the genetic variance.   
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Genome-wide association analyses, quality control and meta-analysis    

After applying post-GWA control measures, there were 2,403,520 SNPs present in 
both the consensus and the original HapMap panels included in the meta-analysis. 
At a threshold of P≤5x10-8, no genome-wide significant findings were detected for 
the meta-analyzed results, as shown in the Manhattan plot (Figure 1). Table 2 lists 
the top 30 SNP whose p-values were smaller than 1x10-5, which we considered to 
be potentially suggestive.  Interesting signals that contained multiple suggestive 
SNPs in an independent region from chromosome 9q33.1 and chromosome 
20p12.1 were apparent, and regional plots are shown in supplementary figures 
S3A and S3B. The 9q33.1 region is an intergenic region and is not in LD with the 
nearest gene upstream (DBC1 implicated in bladder cancer) or downstream (CDK5 
genes implicated in rheumatoid arthritis). The current ENCODE annotations do list 
two interesting nearby non-coding RNAs (lincRNAs) in this region: RP11-360A18.2 
and RP11-360A18.1 (Ensembl version ENSG00000261432.1 and 
ENSG00000225960.1,respectively), but the SNPs located near these coordinates 
are also not in strong LD with our region. The 20p12.1 signal, however, appeared 
to be in the PCSK2 gene, as indicated in the regional plots provided in 
supplementary figures S3A and S3B 
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Figure 1.  Manhattan Plot for the genome wide association meta-analysis of preschool Internalizing 
Problems across three cohorts.  Chromosome is displayed on the x-axis and the association statistic, 
expressed as –log10(p-value), is given on the y-axis.  Points that fall within the black (-log10(5x10-8) 
and gray lines (-log10(1x10-5) are signals suggestive for association.  Pink diamonds denote the SNPs 
of interest on chromosome 9 and 20. 
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Table 2. The 30 most strongly associated genetic variants with preschool Internalizing Problems in 
the Genome-Wide Association meta-analysis. A direction is provided for each study in the following 
order: NTR, GenR, and Raine.  A plus indicates that the beta for the association between the SNP and 
square root of the Internalizing Problem score is positive.  A minus indicates a negative association.  
A question mark indicates that the SNP did not survive the post-imputation QC process for that 
study. 

Chr 
Region SNP Position MAF Ref allele Directiona Beta (95%CI) P-value 

1q42.12 
rs360059 224143755 0.3564 a --- -0.11 (-0.15, -0.061) 5.5810-6 

1q42.12 
rs1223245 224149048 0.3578 a +++ 0.11 (0.061, 0.15) 5.4410-6 

3q26.31 
rs4894527 173424920 0.2921 t +++ 0.11 (0.060, 0.16) 9.8210-6 

3q26.31 
rs1878007 174281494 0.1702 a --- -0.12 (-0.18, -0.069) 9.3410-6 

4q35.1 
rs10013166 183714323 0.4416 a +++ 0.11 (0.062, 0.15) 2.3610-6 

5q33.1 
rs1062177 151164894 0.2475 t -?- -0.16 (-0.23, -0.091) 8.2610-6 

6p25.2 
rs2272990 3022140 0.0823 t ?-- -0.39 (-0.55,-0.24) 5.3910-7 

6p25.2 
rs9405191 3031952 0.153 c ?-- -0.29 (-0.42, -0.17) 5.7510-6 

6p25.2 
rs9391981 3032005 0.1526 c ?-- -0.29 (-0.42, -0.17) 5.7510-6 

8p21.3 
rs6557600 22819193 0.2273 a --- -0.13 (-0.18, -0.076) 1.3710-6 

8p21.3 
rs310272 23699434 0.3718 c +++ 0.10 (0.060, 0.15) 5.5210-6 

9p24.3 
rs12000567 779499 0.0165 a ?++ 0.63 (0.35, 0.91) 7.7510-6 

9q21.31 
rs17266958 82455069 0.0756 t --- -0.20 (-0.28, -0.11) 4.2010-6 

9q21.31 
rs17083743 82481285 0.071 a +++ 0.20 (0.11, 0.29) 7.2110-6 

9q33.1 
rs10818415 121811389 0.1769 t --- -0.14 (-0.12, -0.081) 1.7810-6 

9q33.1 
rs10984795 121814167 0.1853 a +++ 0.14 (0.082, 0.20) 1.6110-6 

9q33.1 
rs16909317 121814340 0.1849 t --- -0.14 (-0.19, -0.081) 2.0010-6 

9q33.1 
rs2416740 121817157 0.1842 a --- -0.14 (-0.19, -0.079) 2.5610-6 

9q33.1 
rs2416741 121817280 0.1835 a --- -0.14 (-0.20,-0.081) 1.7510-6 

9q33.1 
rs10984803 121820192 0.1749 a --- -0.14 (-0.20, -0.084) 1.2410-6 

9q33.1 
rs10818418 121820770 0.1841 a +++ 0.14 (0.083, 0.20) 1.3410-6 

9q33.1 
rs2416745 121821075 0.1766 t +++ 0.14 (0.084, 0.20) 9.5110-7 

9q33.1 
rs10984807 121822291 0.188 t +++ 0.14 (0.082, 0.20) 2.5310-6 

10q23.33 
rs640090 95382575 0.0715 c ?++ 0.55 (0.33, 0.76) 5.2410-7 

11q14.1 
rs12270115 79162785 0.1334 a +++ 0.15(0.088, 0.22) 4.6610-6 

11q14.1 
rs12287037 79205014 0.1918 t +++ 0.12 (0.068, 0.17) 8.4610-6 

20p12.1 
rs2281204 17364812 0.3416 a +++ 0.10 (0.056, 0.14) 9.7710-6 
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20p12.1 
rs890609 17365013 0.3411 a --- -0.10 (-0.14, -0.056) 9.9410-6 

20p12.1 
rs2021786 17369978 0.3356 t --- -0.10 (-0.15, -0.058) 6.9510-6 

20p12.1 
rs2021785 17370063 0.3356 t --- -0.10 (-0.15, -0.058) 6.9810-6 

20p12.1 
rs13039651 17371040 0.3359 t --- -0.10 (-0.15, -0.057) 7.6710-6 

20p12.1 rs2269020 17375229 0.3442 c --- -0.10 (-0.15, -0.056) 9.1610-6 
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Analysis of SNPs associated with psychiatric disorders and treatment response     

Table 3 shows the results of the analyses of the joint effect of the four sets of 
SNPs with a p-value below 1x10-5 in GWAS of psychiatric disorders and treatment 
response as found in www.genome.gov/gwastudies. The GWAS of internalizing 
disorders (depression), psychotic disorders (schizophrenia and bipolar disorder) 
and treatment response were performed in adults. For the GWAS of the disorders 
usually diagnosed in childhood both adult and children’s samples were used. The 
SNPs associated with only internalizing disorders did not show a lambda 
significantly greater than 1.0. Adding SNPs associated with disorders usually 
diagnosed at childhood and with psychotic disorders yielded a significant lambda 
of 1.26. The addition of SNPs associated with treatment response for 
antidepressants, lithium and antipsychotics led to a worsening of the signal. 
However, adding SNPs in candidate genes for major depressive disorder (see 
Table 1 provided in Bosker et al.33) made the lambda significant again: 1.20 . 
Figure 2 shows the QQ plot of the 320 SNPs with the largest lambda of 1.26. (A full 
list of the SNPs is available on request from the first author).  

None of the above investigated SNPs were localized in the 20p12.1 or the 9q33.1 
regions that we highlighted from the results in our GWA meta-analysis. The 
minimum p-value from these SNPs was 0.002, and did not meet criteria for a 
suggestive finding. 
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Figure 2.  Quantile-Quantile plot for the joint effect on preschool Internalizing Problems of SNPs with 
p-values < 1x10-5 in prior genome-wide association meta-analyses of childhood and adulthood 
psychiatric disorders and treatment responses.  The gray shaded area represents the 95% 
confidence intervals, and the white line represents equality between observed and expected –
log10(p-values).  The lambda value of 1.26 is significant (p = 0.03).   
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Table 3. Lambda’s of the analysis of the joint effect on preschool Internalizing Problems of genetic 
variants with p-values of 1x10-5 in prior genome-wide association studies for internalizing disorders 
(depression), psychotic disorders (bipolar disorder and schizophrenia), disorders usually diagnosed 
in childhood (ADHD, autism and conduct disorder), treatment response, and genetic variants located 
in candidate genes for major depressive disorder. 

Selected SNPs 
No. SNPs in 

database 

No. SNPs in 
filtered 
meta-

analysis 
results 

Lambda  

Bootstrapped p-
value 

1) Internalizing disorders 61 59 1.18 0.29 

2) Internalizing disorder, psychotic 
disorders and disorders usually 
diagnosed in childhood 368 320 1.26  0.03 

3) Internalizing disorders, psychotic 
disorders, disorders usually diagnosed in 
childhood and treatment response on 
antidepressants, lithium and 
antipsychotics 472 412 1.17  0.08 

4) 3 + SNPs in candidate genes for major 
depressive disorder 594 472 1.20  0.04 
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Discussion 

Genome wide SNP data were used to investigate genetic factors influencing 
preschool internalizing symptoms (INT). First, the analysis of variance explained by 
all SNPs indicated that the common variation as measured with SNPs explain at 
least 22% of the genetic variance. Second, the meta-analysis of the results of the 
GWA analyses in the three cohorts did not yield a genome-wide significant effect, 
but two areas showed suggestive findings. Third, SNPs that were suggestively 
associated with childhood and adult psychiatric disorders in prior GWAS or 
candidate gene studies for MDD, showed a joint significant effect on INT at age 3 
although none of these SNPs individually reached the level of suggestive 
significance (p < 1 *10-5).  

We note regarding our first result that the estimates vary quite widely (between 
13% and 43% of the total phenotypic variance is explained) and that for two of the 
three cohorts, the estimates of the variance explained by all SNPs were not 
significant. The differences in estimates seem mostly due to the method; GCTA 
estimates were consistently lower than DE estimates. The lack of significance in 
Raine and NTR appears to be a matter of sample size, since, within one method, 
the estimates are rather similar for the three cohorts. Focusing on the (nearly) 
significant results for Generation R suggests that between 44% and 69% of the 
genetic variance is explained by common SNPs. Together with the significant joint 
effect of SNPs associated with other psychiatric phenotypes, these outcomes 
point to the conclusion that INT at age 3 is influenced by a large number of 
genetic variants, each with a small effect. Moreover, even INT measured as early 
as age 3 years genetically overlaps with adult psychiatric phenotypes.  

These results add to the picture as painted by Visscher et al (2012)34 reviewing five 
years of GWA studies. Complex phenotypes, psychiatric or somatic, seem to be 
highly polygenic and genetic variants can influence multiple traits, i.e. there is 
pleiotropy. Specifically focusing on psychiatric phenotypes, a polygenic 
architecture has been suggested for adult anxiety disorders, major depression, 
schizophrenia and bipolar disorder, with GCTA estimates of around one third to 
50% of the genetic variance explained by common SNPs.35-39 Pleiotropy has been 
detected for ADHD, autism and schizophrenia, bipolar disorder and major 
depression in studies using genome wide SNP or copy number variant data.40, 41 
Twin studies have also shown substantial genetic overlap within internalizing 



 
 

121 
 

symptoms or disorders42, 43 and between internalizing disorders and mania and 
schizophrenia,44, 45 in addition to stable genetic influences from childhood into 
adulthood for anxious depression and attention problems12,46 

Although the sample had 80% power to detect an effect explaining ~ 0.90% of the 
variance and the INT measure was similar in the three cohorts and assessed at the 
same age, in the meta-analysis, there were no SNPs with a genome wide 
significant effect. Given the DE and GCTA results, this indicates that sample size 
was still insufficient for the, apparently, very small effect sizes. This is in 
agreement with the results for a continuous phenotype such as height in which a 
GWA analysis in over 180,000 individuals detected hundreds of genetic variants 
explaining jointly 10% of the phenotypic variance.47  

In two regions, there were SNPs with a p-value below 1x10-5 in the meta-analysis. 
One is located in an intergenic region at chromosome 9. According to the latest 
results from ENCODE, this is also not a regulatory region of the genome.48-50  The 
other region was at chromosome 20 and included SNPs of the PCSK2 gene. PCSK2 
is an important protein in the processing of proinsulin to insulin51 and PCSK2 
variants have been correlated with insulin resistance,52, 53 myocardial infarction54 
and age at menarche.54 The link between depression and cardiovascular disease 
has long been recognized.  

We compared our results with the results from the GWA analysis of anxiety-
related behaviors in 7-year olds.14 Similar to their own replication effort, we did 
not find significant effects for their reported top SNPs. The lowest p-value in the 
current study was 0.09 for SNP rs2772129, and the effect was in the same 
direction as the discovery sample. All other p-values were above 0.33. The 
estimates for the variance explained by all SNPs using GCTA were somewhat 
higher in our samples than in the sample analyzed by Trzaskowski et al,13 in which 
the GCTA estimates varied between 1% and 19%. They analyzed four anxiety 
dimensions (negative affect, negative cognition, fear and social anxiety) and a 
general anxiety composite score consisting of the sum of the standardized scores 
of the four dimensions. The second highest GCTA estimate (0.16) was for the 
composite score. This could indicate that common SNPs explain more variance in 
a broader defined phenotype, as a narrower phenotype might be influenced by 
less SNPs.  
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To conclude, this study shows that a phenotype such as INT at age 3 is genetically 
similar to adult phenotypes, i.e. it is a polygenic disorder, influenced by a large 
number of SNPs each with a small effect. This signifies that with large enough 
samples it is possible to detect genetic variants influencing preschool INT. This is 
even more important given the overlap in results with GWA studies for other 
psychiatric disorders indicating that these genetic variants also increase the risk 
for later psychiatric disorders.  
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Supplementary Material 

 

The following presents additional methods, tables and figures that are designed to 
provide greater detail into the findings from our genome-wide meta-analysis of 
internalizing problems in children. 

 

METHODS 

Each of the three cohorts participating in this genome-wide association meta-
analysis transformed the internalizing problem (INT) score by taking the square 
root. This was based on model diagnostics and results from data simulation.  The 
INT score was right skewed so that a large density of scores was observed at zero 
to low values, while an increasingly smaller number of scores was observed at the 
more extreme values. We were thus interested in determining the best way to 
handle this non-normal distribution.  

We first simulated data to mimic the INT score, and then compared type I error, 
power and bias for several modeling approaches. A score of 20 items with 
responses of 0, 1 or 2 and probability of 0.925, 0.05 and 0.025, respectively, were 
simulated; the items were correlated and summed to create a simulated score. 
The SNP frequency was set to 0.20 and the association of the summed score with 
the SNP was recorded.  Analyses were repeated 1000 times for different 
combinations of SNP effect size (and thus percent variation explained) and sample 
size. Four different models were tested: 1) a generalized linear model (GLM) 
specifying a gamma distribution, 2) a GLM specifying a Gaussian distribution, 3) a 
GLM specifying a Gaussian distribution on the log transformation of the score, and 
4) a GLM specifying a Gaussian distribution on the square root transformation of 
the score. Simulation results for the 20 items score that was distributed similarly 
to our INT trait are provided in Supplementary Table 3. Across a range of effect 
sizes and sample sizes, the square root transformation of the score generally 
resulted in the highest power.   
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Additionally, model diagnostics were carried out in the Raine cohort among 1737 
participants with complete phenotype data, regardless of whether GWA data was 
available or not, and plots of the residuals by fitted values were examined, as well 
as normal plots of the residuals. Model diagnostics suggested a considerably 
improved fit by transforming the INT score, particularly for the normalized plots of 
the residuals (data not shown). Between the natural log, log based 10 and square 
root transformations, the square root was judged to be the best fit in the Raine 
data. Along with the results from the simulation above, these findings justified our 
decision to perform the GWA using a square root transformation of the INT score. 

To perform the phasing and imputation steps, Generation R and Raine studies 
used MaCH1, 2 and NTR used Beagle.3 All positions reflect build 36 locations.   
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Table S1.  Genotyping and Quality Control in each Cohort 

  
Generation R NTR Raine 

Genotyping Center 

Genetic Laboratory-Dept 
Internal Medicine - 

Erasmus MC The 
Netherlands 

Avera Institute for 
Human Genetics, 
Sioux Falls, South 

Dakota, USA 

Centre for Applied 
Genomics, University of 

Toronto, Toronto, Canada 

Genotyping Platform Illumina 610K Quad Affymetrix 6.0 Illumina 660 Quad 

Calling Algorithm Genomestudio 2009 V.1.1.9 Beadstudio 

Imputation Software MACHqtl BEAGLE MACHqtl 

Association Software MACH PLINK MACH 

Reference panel  HapMap CEU r22 b36 HapMap CEU r22 b36 HapMap CEU r22 b36 

Population 
 Stratification 
Adjustments 

2 principal components 
used as covariates 

10 principal 
components used as 

covariates 

2 principal components 
used as covariates 

Filtering Criteria: 
 

 Pre-Imputation 
 

   SNP level 
 

      Callrate 95% 95% 95% 

      HWE <1x10-6 <0.00001 <5.7x10-7 

   Sample level 
 

      % missing >2.5% >1% >3% 

      IBD π>0.1875 NA 
>3sd from HapMap  

CEU sample 

      heterozygosity % PLINK h<0.30 0.10< F > -0.10 < 4 sd from mean 

      Mendelian  
inhertance check 

na yes na 

      Gender check yes no yes 

 Post-Imputation 
 

      Quality metric (cutoff) r2hat info r2hat 

      GC lambda 1.030319 1.028017 1.004965 

      MAF 0.01 0.01 0.01 
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Table S2.  Items of the Child Behavior Check List Internalizing Problem Behavior Scale  

Item Subscale Item Subscale 

Avoids looking others in the eye Withdrawn Self-conscious or 
easily 

embarrassed 

Anxious/Depressed 

Acts too young for age Withdrawn Too fearful or 
anxious 

Anxious/Depressed 

Doesn't answer when people 
talk to him/her 

Withdrawn Looks unhappy 
without good 

reason 

Anxious/Depressed 

Seems unresponsive to 
affection 

Withdrawn Unhappy, sad or 
depressed 

Anxious/Depressed 

Shows little affection toward 
people 

Withdrawn Feelings hurt Anxious/Depressed 

Shows little interest in things 
around him/her 

Withdrawn Nervous Anxious/Depressed 

Refuses active games Withdrawn Doesn't eat well Somatic 
Complaints 

Withdrawn Withdrawn Aches Somatic 
Complaints 

Disturbed by any change in 
routine 

Emotionally reactive Can't stand things 
out of order 

Somatic 
Complaints 

Upset by new people or 
situations 

Emotionally reactive Constipated Somatic 
Complaints 

Sulks Emotionally reactive Diarrhea Somatic 
Complaints 

Worrying Emotionally reactive Headaches Somatic 
Complaints 

Twitches Emotionally reactive Nausea Somatic 
Complaints 

Moody Emotionally reactive painful bowel 
movements 

Somatic 
Complaints 

Whining Emotionally reactive Stomach aches Somatic 
Complaints 

Clings to adults or too 
dependent 

Anxious/Depressed too concerned 
with neat/clean 

Somatic 
Complaints 

Gets too upset when separated 
from parents 

Anxious/Depressed Vomits Somatic 
Complaints 
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Table S3. Power for Simulated Trait 

N Effect 
No       Transform, 

Gaussian 
No     Transform, 

Gamma 
Log Transform, 

Gaussian 

Square Root 
Tranform, 
Gaussian 

1000 0.001 0.092 0.093 0.104 0.118 

1000 0.0025 0.186 0.187 0.181 0.217 

1000 0.01 0.618 0.617 0.505 0.642 

1000 0.05 0.999 0.999 0.976 0.999 

1500 0.001 0.137 0.137 0.143 0.176 

1500 0.0025 0.262 0.262 0.239 0.306 

1500 0.01 0.793 0.791 0.662 0.812 

1500 0.05 1 1 0.999 1 

2500 0.001 0.182 0.182 0.166 0.216 

2500 0.0025 0.407 0.407 0.348 0.452 

2500 0.01 0.933 0.933 0.877 0.971 

2500 0.05 1 1 1 1 

5000 0.001 0.36 0.36 0.304 0.371 

5000 0.0025 0.716 0.715 0.566 0.712 

5000 0.01 0.998 0.998 0.991 1 

5000 0.05 1 1 1 1 
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Figure S1.  Quantile-Quantile plots for the association of genetic variants with Internalizing 
Problems.  Plots are shown for each cohort separately, and for the results from the meta-analysis of 
all cohorts combined.  Gray shaded areas represent the 95% confidence intervals and the white lines 
represent equality between observed and expected -log10(pvalues). 
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Figure S2.  Manhattan plots for the genome-wide association analyses with Internalizing Problems.  
Plots are shown for each cohort separately.  Chromosome is displayed on the x axis and the 
association statistic, expressed as –log10(pvalue), is given on the y axis.  Points that fall within the 
black (-log10(5x10-8) and gray lines (log10(1x10-5) are suggestive, but do not reach genome-wide 
significance.  Pink points denote the chr9 and chr20 SNPs that were of interest after meta-analysis. 
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Figure S3A-B.  Regional plots for the two regions that show suggestive signals. P-values reflect the 
meta-analysis results across the Netherlands Twin Registry (NTR), Generation R and Raine cohorts. 
Panel A shows the findings from chr9q33.1, an intergenic region that is not correlated with nearby 
genes. Panel B shows the findings from chr20p12.1, which is in the PCSK2 gene.  Plots were made 
using LocusZoom (https://statgen.sph.umich.edu/loc)
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Chapter 5: The genetic overlap between schizophrenia and childhood 
psychopathology. 
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Abstract 
Objective: 
The onset of schizophrenia is often preceded by a broad range of psychiatric 
disorders and symptoms, not only during adolescence but also during childhood. 
We investigated whether this association is explained by pleiotropy, i.e., genetic 
effects that influence both schizophrenia and childhood and adolescent 
psychiatric symptoms.   
Methods 
Polygenic risk scores (PRS), reflecting an individual’s genetic risk for schizophrenia, 
were constructed for 1953 children from the Netherlands Twin Register (NTR) and 
5665 children from the Avon Longitudinal Study of Parents And Children (ALSPAC). 
The association between the polygenic risk scores and DSM-IV based measures of 
anxiety, depression, Attention Deficit Hyperactivity Disorder (ADHD), Oppositional 
Defiant Disorder/Conduct Disorder (ODD/CD) was analyzed at age 7, 10, 12 and 15 
years. The results were meta- analyzed across cohorts. 
Results 
The results revealed an FDR-corrected significant association between the PRS 
and anxiety at age 10 and nominal significant associations for anxiety at age 7and 
and depression at age 7 and 10. A post hoc analysis revealed stronger associations 
between the PRS and internalizing disorders than between the PRS and 
externalizing disorders.  
Conclusion 
In line with the earlier reported significant association between adult major 
depression and schizophrenia, these results  suggest a common genetic etiology 
for schizophrenia and internalizing disorders. In contrast, genetic factors do not 
explain the association between externalizing disorders at childhood and the 
onset of schizophrenia later in life.  
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Introduction 

The onset of schizophrenia generally occurs during adolescence or early 
adulthood1, but it is well established that non-psychotic psychiatric symptoms can 
already be present in the period before the first psychotic episode. The  
prodromal phase is characterized by neurodevelopmental deficits,2-4 cognitive 
learning and memory problems5, and elevated psychiatric symptoms.6  And even 
well before the prodromal phase, psychiatric symptoms or disorders are more 
prevalent in individuals who later develop schizophrenia. This has been 
demonstrated in population based cohorts that have been followed 
longitudinally,7; 8 in retrospective assesment of schizophrenia cases,9 as well as in 
people at risk for developing schizophrenia.10  Both externalizing symptoms or 
disorders, including attention deficit hyperactivity disorder, conduct disorder, 
aggression, and anti-social behavior,11; 12 and  internalizing symptoms or disorders, 
including anxiety and depression, are associated with a higher risk of 
schizophrenia.7; 8; 11; 13-15 These diverse findings indicate that an increase in non-
specific (rather than specific) psychiatric symptoms precedes the onset of 
schizophrenia.  
The early detection of schizophrenia can improve outcomes8, and preventive 
treatment for individuals at risk for schizophrenia can reduce the risk of 
psychosis.16; 17 Insight into the risk factors associated with the predictors of 
schizophrenia may facilitate early detection. Since schizophrenia is highly 
heritable with genetic factors explaining around 80% of the variance18-20,  we 
focused on the role of genetic risk factors, and investigate whether genetic factors 
that increase the risk of schizophrenia are also associated with psychiatric 
symptoms in childhood and adolescence.  

A potential source of pleiotropy, i.e., a shared genetic etiology between childhood 
psychiatric symptoms and schizophrenia, is that a small portion of individuals 
suffering from childhood or adolescent psychiatric symptoms are  in the process 
of developing schizophrenia, and, consequently, carry an increased  genetic risk 
for schizophrenia. Another source is that distinct psychiatric disorders are 
genetically correlated. Pleiotropy has been observed between schizophrenia and 
major depressive disorder, bipolar disorder, and autism spectrum disorder, but 
not between schizophrenia and attention deficit hyperactivity disorder.21; 22 This 
genetic correlation could extend to various childhood and adolescent disorders. 
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Other molecular genetic and twin studies have already suggested genetic overlap 
between childhood and adult psychopathology.23-25  

We hypothesized that genetic risk factors for schizophrenia are associated with 
elevated childhood and adolescent psychopathology scores. Given that the 
incidence of the prodromal phase and of psychiatric disorders genetically 
correlated to schizophrenia (i.e., major depression  and bipolar disorder)26 show a 
marked increase during adolescence, we expected the association between 
genetic risk for schizophrenia and internalizing and externalizing psychopathology 
to be higher in adolescence compared to childhood.  

We studied the genetic overlap between schizophrenia and childhood 
psychopathology using polygenic risk score analyses. For a review of the method 
see27-29. In brief, the results from a genome-wide association (GWA) (meta-) 
analysis, in this case for schizophrenia, are used to calculate polygenic risk scores 
(PRS) in individuals in an independent target sample.These PRS are obtained by 
taking a set of top single nucleotide polymorphisms (SNPs), e.g. all SNPs with p-
values below 0.1, 0.2 and so on, and multiplying the individual’s genotypic score 
(0, 1 or 2) by the effect of the SNP. If the PRS are significantly related to a second 
trait in the target sample, in this case childhood psychopathology, this indicates 
that the two traits are influenced by overlapping genetic risk factors. In the 
current study, the PRS are based on the recent schizophrenia GWA meta-analysis 
for schizophrenia that comprised 36,989 cases and 113,075 controls and yielded 
108 significantly associated loci.19  Since the  statistical power of polygenic risk 
score analyses depends to a large extend on the sample size of the discovery set, 
these meta-analysis results provide an excellent starting point to investigate the 
genetic overlap between schizophrenia and other traits.   

PRS for schizophrenia, based on earlier smaller GWA meta-analyses, have 
previously been associated with cannabis use,30 cognitive decline,31 immune 
disorders32 , and quantitative measures of psychosis.33 These results show that 
this method is suitable for testing genetic relationships between different traits 
and schizophrenia that have long been implied or suspected.  

Data on childhood psychopathology were available from two large longitudinal 
population based cohorts as target samples. We tested the association between 
the schizophrenia PRS and DSM-IV34 based assessments of anxiety, depression, 
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attention deficit hyperactivity disorder (ADHD) ,and oppositional deviant disorder 
and conduct disorder (ODD/CD).  

Methods 

Subjects  

The Netherlands Twin Register (NTR) follows young and adult twins (YNTR and 
ANTR). In the YNTR, twins are registered by their parents and followed from birth 
onwards. Until age 12, parents complete surveys to report on their twins. From 
age 14 onwards, information is collected by means of self-report.35 The ANTR was 
established in 1987. Adolescent and adult twins were recruited through city-
councils. The minimum age to participate was age 12, surveys were sent around 
every two to three years and data collection is ongoing. 36 In the current study, 
the maternal ratings of childhood psychopathology at age 7, 10, and 12 collected 
in the YNTR were analyzed. For the adolescent period, self-report data collected in 
the YNTR and the ANTR at age 14, 15, or 16 years were combined.  The number of 
genotyped children at each age group varied between 1758 and 1956 (Table 1).  
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Table 1: Sample sizes per age group for the NTR, ALSPAC and combined 
 NTR ALSPAC total

Age 7 1953 5665 7618

Age 10  1865 5506 7371

Age 12 1744 5111 6855

Age 15 1758 4131 5889
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The ALSPAC birth cohort consists of mothers and their children, born between 
1990 and 1991 in the Avon area in the UK.37 The ALSPAC cohort includes ratings of 
psychopathology at age 7, 10, 13, and 15.  The number of genotyped children at 
each age group varied between 4131 and 5665 (Table 1). Ethics approval for the 
study was obtained from the ALSPAC Ethics and Law Committee and the Local 
Research Ethics Committees. The  study website contains details of all the data 
available through a fully searchable data dictionary 
(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary).  

Measures 

In the NTR, psychopathology was measured using the age appropriate versions of 
the Achenbach System of Empirically Based Assessment (ASEBA). These 
assessments include DSM-IV based symptom scales. For age 7 to 12, maternal 
Child Behavior CheckList (CBCL) ratings were analyzed on the anxiety disorder 
scale (anxiety), the affective disorder scale (depression), the attention deficit 
hyperactivity disorder scale (ADHD), the oppositional deviant disorder scale and 
the conduct disorder scale. The last two were combined into an externalizing scale 
(ODD/CD).38 From age 14 onwards, self-ratings were analyzed .38 As the self-report 
item set varied slightly across surveys conducted between 1991 and 2012, the 
mean item scores per subscale were calculated.  

In ALSPAC, psychopathology was assessed using the development and wellbeing 
assessment (DAWBA), which measures the presence of symptoms required for a 
DSM-IV diagnosis.41 Based on the scales available in the NTR, the following 
disorders were included in the analyses: any anxiety disorder (anxiety), major 
depression (depression), attention deficit hyperactivity disorder(ADHD), and 
combined oppositional deviant disorder and conduct disorder(ODD/CD).42 Any 
anxiety disorder included generalized anxiety disorder, specific phobia, social 
phobia (at age 7, 10, 13, and 15), separation anxiety disorder (at age 7, 10, and 
13), and panic disorder and agoraphobia (at age 15).As well as generating a 
dichotomous outcome of being affected or not, the DAWBA can generate ordered 
categorical measures. These DAWBA band scores, which range from 0 to 5, 
correspond to probabilities of <0.01%, 0.5%, 3%, 15%, 50%, and >70% of satisfying 
diagnostic criteria. At ages 7, 10, and 13 all ratings were maternal ratings. At age 
15, ADHD and CD/ODD were rated by the mother while anxiety and depression 
were self-rated.   
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Genotyping  

The NTR participants were genotyped on Affymetrix 6.0, Affymetrix-perlegen 5.0, 
Illumina 370 and 660. Omni express (1M) array specific calls and cleaning were 
performed. SNPS were removed if The allele frequency difference with the 
reference set was above .20, the MAF was < 1%, if the HWE p-value was < 0.00001 
or if the call rate was <95%. Data from the different platforms were subsequently 
imputed to a single reference genome (1000 genomes build 37 HG19) using MACH 
and miniMACH. For a more extensive overview of the QC procedure and 
imputation steps performed  procedure see elsewhere.43  

In ALSPAC, children were genotyped using the Illumina HumanHap550 quad chip 
genotyping platforms. The resulting raw genome-wide data were subjected to 
standard quality control methods. Individuals were excluded on the basis of 
gender mismatches, minimal or excessive heterozygosity, disproportionate levels 
of individual missingness (>3%), and insufficient sample replication (IBD < 0.8). 
Population stratification was assessed by multidimensional scaling analysis, and 
compared with Hapmap II (release 22); all individuals of non-European ancestry 
were removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95%, or 
evidence for violations of Hardy-Weinberg equilibrium (P < 5E-7) were removed. 
Cryptic relatedness was measured as proportion of identity by descent (IBD > 0.1). 
Related subjects that passed all other quality control thresholds were retained 
during subsequent phasing and imputation. Imputation of the target data was 
performed using Impute V2.2.2 against the 1000 genomes phase 1 version 3 
reference panel, using all 2186 reference haplotypes (including non-Europeans). 

Polygenic risk scores  

The polygenic risk scores (PRS) indicating an individual’s genetic risk of 
schizophrenia were based on the results obtained in the most recent genome 
wide association meta-analysis for schizophrenia19. The scores were based on 
102,636 SNPs included in the polygenic risk training set created by the authors of 
the original study (available online: http://www.med.unc.edu/pgc/downloads). 
Following the supplemental material of the schizophrenia GWAS19, the inclusion 
criteria for these SNPs are: “... minor allele frequency above 10%, high imputation 
quality (INFO >  .9). Data were then LD pruned and clumped removing variants 
within 500kb and associated above r2 > .1 of another variant of bigger effect.”   
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For each NTR and ALSPAC participant, we calculated 5 PRS based on 5 sets of 
SNPs. Inclusion was based on the significance of the effect in the schizophrenia 
meta-analysis with p-value cutoffs of  < .001, < .01, < .1, <.3, < .5. For all included 
SNPs, the log odds are multiplied by the dosage score and summed per individual. 

Statistical analyses 

Regression analyses were performed to test whether the schizophrenia PRS 
predicted the childhood and adolescent measures of anxiety, depression, ADHD, 
and ODD/CD. In the NTR sample, six principal components correcting for genotype 
platform, a second set of 3 principal components correcting for ancestry, and sex 
were included as covariates. As the NTR contained related individuals, the 
regression was performed using a generalized estimation equation with 
exchangeable background correlations within family, and robust standard errors. 
This procedure adequately corrects for the presence of related individuals in the 
sample44. As the ALSPAC sample is genetically homogeneous, no principal 
components were added,  and only sex was included as covariate.  An ordered 
logistic regression was performed since the DAWBA bands are ordered categorical 
variables.   

For both NTR and ALSPAC, the variance of the traits and the PRS were 
standardized (i.e., unit variance). The regression coefficients (beta’s) from the two 
samples were combined using inverse variance weighting. Our null hypothesis was 
that all inverse variance weighted beta’s equal zero. Our alternative hypothesis 
was that childhood psychopathology measures are positively associated with the 
schizophrenia PRS, which implies a one-sided hypothesis test. The associations in 
the meta- analysis were tested at a False Discovery Rate corrected alpha < 0.05 
(pfdr) 45 and an uncorrected significant alpha  < 0.05 (pn < .05). The pfdr was 
calculated following the procedure of Benjamini & Hochberg45. This procedure  
adjusts the p-values in such a way that the proportion of false discoveries is 
controlled for. FDR is less strict then Bonferroni correction, and thus provides 
better power to detect an effect.  The uncorrected p-values are  informative to 
observe patterns in the results, such as consistent, but not FDR corrected 
significant, signals over the ages, and can be informative for post hoc tests. 
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Results 

Descriptives 

Table 2 shows the mean scores on the DSM based scales of anxiety, depression, 
ADHD, ODD/CD for males and females in the NTR at the four ages. Table 3 
provides the percentages of male and female ALSPAC participants with these 
diagnoses, defined as a score of 4 or 5 on the DAWBA. As previously reported, the 
prevalences of DAWBA diagnoses tend to be lower than in other general 
population studies. The 6 category DAWBA band was used as outcome variable 
since this is a more informative measure than the dichotomous DAWBA diagnosis.  

As expected, at age 15, girls scored substantially higher on internalizing measures 
(anxiety & depression). Boys scored higher on the externalizing measures (ADHD, 
ODD/CD) at all ages, except for the NTR at age 15. Sex was included as a covariate 
in the final analysis to account for this difference. 
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Table 2 Descriptives (mean and SD) per age for the NTR standardized scales for females and males. 
Female mean SD Male mean SD

ODD/CD 7 -0.12 0.89 0.13 1.10

OOD/CD 10 -0.13 0.86 0.15 1.13

ODD/CD 12 -0.09 0.92 0.10 1.07

OOD/CD 15 0.01 0.96 -0.01 1.06

ADHD 7 -0.10 0.96 0.11 1.03

ADHD 10 -0.12 0.96 0.14 1.03

ADHD 12 -0.10 0.95 0.12 1.05

ADHD 15 0.06 1.00 -0.09 0.99

Depression 7 0.08 1.07 -0.09 0.90

Depression 10 0.03 1.05 -0.04 0.94

Depression 12 0.07 1.07 -0.08 0.90

Depression 15 0.14 1.08 -0.21 0.82

Anxiety 7 0.01 0.98 -0.01 1.03

Anxiety10 0.02 0.99 -0.02 1.01

Anxiety 12 0.04 0.97 -0.05 1.03

Anxiety 15 0.23 1.03 -0.34 0.85

 
 
 
 
 
 
Table 3: Per age, the percentage of ALSPAC female and male participants affected with a psychiatric 

disorder based on a score of 4 or 5 on the DAWBA bands. 
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Female  Male  

ODD/CD 7 1.71 5.42 

OOD/CD 10 1.73 4.51 

ODD/CD 12 2.99 3.95 

OOD/CD 15 3.37 4.02 

ADHD 7 0.69 3.12 

ADHD 10 0.55 2.43 

ADHD 12 0.55 2.01 

ADHD 15 0.42 1.25 

Depression 7 0.44 0.74 

Depression 10 0.85 0.85 

Depression 12 0.71 0.89 

Depression 15 2.27 0.98 

Anxiety 7 1.34 1.86 

Anxiety10 1.76 1.95 

Anxiety 12 1.17 1.22 

Anxiety 15 3.06 0.77 

 
 

 
 

 

 

 

 

 

 

In the meta-analysis, based on the betas and their standard errors, an inverse 
variance weighted mean on the beta’s across cohorts and a fixed effect p-value 
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were computed (Figure 1). The association between schizophrenia PRS and 
childhood and adolescent psychopathology was  FDR corrected significant for 
anxiety at age 10 for PRS with inclusion cutoffs of p < 0.01 (beta= 0.064, pfdr = 
0.02) , p < 0.1 (beta= 0.057, pfdr = 0.03), p < 0.3 (beta=0.063, pfdr = 0.02), and p < 
0.5 (beta=0.059, pfdr = 0.03). There were also rather consistent patterns of 
uncorrected significant (pn < 0.05) associations with anxiety at age 7, and with 
depression at age 7 and 10. Some uncorrected significant results were observed 
for anxiety and depression at age 12/13, tough in both cases only for a single risk 
score. The weighted mean standardized beta is equivalent to a semi partial 
correlation between PRS and the psychopathology score. Squaring of the 
weighted mean standardized beta’s reflect the R2, i.e., a measure of the 
proportion of variance explained.  For the nominally and FDR corrected significant 
results, the proportion of variance explained varied between 0.11% and 0.41%.  

The anxiety results were mainly driven by a stronger effect in the NTR sample, 
while the depression results appeared stronger in ALSPAC (See supplemental 
figures S1, S2 and S3).  
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Figure 1: The standardized beta’s indicating the effects of the 5 polygenic scores on the 4 DSM scales 

at age 7, 10, 12/13 and 15 in the meta-analysis.  
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As we observed larger beta’s  (mean = 0.030) for the regression of internalizing 
disorders (anxiety and depression,) on the schizophrenia PRS, than for the 
regression of externalizing disorders (ADHD and ODD/CD) on PRS (mean =  
0.0035), a post-hoc test was performed to examine mean differences between 
the beta’s for internalizing disorders and the beta’s for externalizing disorders. We 
performed a two-way ANOVA with the meta-analyses beta’s as the dependent 
variable. The independent variables were: a categorical variable coding 
internalizing versus externalizing disorders, a categorical variable coding any 
disorder versus anxiety disorders, and a categorical variable coding age (4 Bins: 7, 
10 ,12/13 and 15). This test revealed that the inverse variance weighted beta’s 
were higher for internalizing disorders than for externalizing disorders (F = 21,148, 
df= 1, p < 0.0001). The second fixed effect revealed that the means of the anxiety 
related effect sizes were even higher than the means of the depression related 
effect sizes (F= 10.027, df=1, p = 0.002). A significant age effect  was observed 
(F=7.706, df=3,  p< 0.001). However, the effect was not the expected monotonic 
increase of effect sizes with increasing age. In Figure 2, the p-values for 
internalizing and externalizing disorders are plotted in seperate histograms. The 
expected distribution of p- values under the null hypothesis of a uniform 
distribution is indicated with a red line. 
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Figure 2a and 2b: The frequency of p-values of the regression of internalizing and externalizing 
disorders on the polygenic risk scores. The red line indicates the expected distribution of p-values 
under the null hypothesis. 
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Figure 2 shows that the p-values derived from the regression analyses of the 
externalizing phenotypes do not depart from the expectation under the null. The 
distribution of the 40 p-values associated with the regression of internalizing 
disorder scores on PRS  show a steep over representation of low p-values when 
compared to the expected distribution of p-values under de null hypothesis .  

Discussion 

We investigated whether the phenotypic associations between schizophrenia and 
childhood psychopathology, as established in longitudinal, retrospective, and high 
risk studies7-10, are explained by shared genetic risk factors. Our analyses yielded 
FDR corrected significant associations between anxiety at age 10 and 
schizophrenia PRS. Our analyses further revealed a pattern of uncorrected  
significant results for anxiety at age 7 and depression at age 7 and 10, but not at 
age 12/13 and 15. Post-hoc analyses revealed higher mean effect sizes for the 
internalizing phenotypes than for the externalizing phenotypes.  

Therefore, we conclude that our results are suggestive of a genetic correlation 
between childhood internalizing psychopathology and schizophrenia.  Since there 
was no evidence for genetic overlap between schizophrenia and externalizing 
childhood psychopathology, including ADHD and ODD/CD, we reject our 
hypothesis of a broad effect of schizophrenia risk on  all childhood 
psychopathology measures. Our hypothesis of an increase in effect with age was 
also not supported.    

The results presented here are partly consistent with previous findings from the 
psychiatric genomics consortium (PGC) cross disorder working group.21 The PGC 
reported genetic correlations between schizophrenia and lifetime depression, but 
not between schizophrenia and ADHD.22  This suggests that the association 
between externalizing psychopathology in childhood and the risk of 
schizophrenia, as found in previous studies9; 11; 12 , is not explained by an overlap in 
genetic risk factors. Possibly, the externalizing symptoms preceding schizophrenia 
are influenced by other genetic variants than externalizing symptoms not 
associated with schizophrenia. This would amount to  genetic heterogeneity, i.e., 
different genetic factors resulting in similar phenotypes.  
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We do not have a clear explanation for the absence of an effect at age 12/13 and 
15, which would be expected based on the observed association with lifetime 
depression. For internalizing psychopathology, self-ratings were used at age 15, 
while at the other ages maternal ratings were used. But as the 12/13 year old 
ratings also did not show an association with the schizophrenia PRS, the 
difference in rater cannot (fully) explain the lack of significant results after age 10. 
The absence of signal for self-ratings at age 15 could be related to poor disease 
insight in people at risk for schizophrenia. However, poor insight is only related 
with actual schizophrenia in patients and not in people at risk. Furthermore, a 
small study found self-rating instruments to be valid, even in schizophrenia 
patient with poor disease insight46. Phenotypic heterogeneity could of course be 
an explanation with symptoms of anxiety and depression in early adolescence 
being a broader phenotype than lifetime depression in adults. However, it 
remains a question why this is different in childhood.  

One strength of our study were the substantial sample sizes of the discovery and 
target samples. The schizophrenia PRS were based on a large discovery set and 
the GWA study had revealed more than 108 significant loci. The target sample 
varied between  6416 and  7610 for the different disorders at different ages, 
which is higher than the required number of ~2,000 subjects generally indicated 
as sufficient for PRS analysis27. The use of different measures of psychopathology 
in ALSPAC and NTR may be considered a limitation. However, these measures 
have both been successfully related to DSM-IV diagnoses39-41. Thus, it is 
reasonable to assume that they are associated to the same underlying construct. 
Associations between the schizophrenia PRS and childhood and adolescent 
psychopathology should therefore be consistent over these measures.  

To conclude, we observed suggestive evidence for a genetic association between 
schizophrenia and internalizing psychopathology in childhood. This was in 
contrast with the results for externalizing psychopathology for which no genetic 
overlap with schizophrenia was detected. Future research is warranted to confirm 
our results, and further characterize the possible genetic association between 
internalizing disorders and schizophrenia. 
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Chapter 5 Supplemental figures. 
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Figure S1: The p-values obtained in the regression analyses in NTR and ALSPAC predicting internalizing and 
externalizing scores by schizophrenia PRS. Expected (uniform) distribution is indicated by the red line. In the NTR 
sample there is a clear indication of an abundance of low p-values for the regression of internalizing scores on 
PRS. The results in ALSPAC show the same pattern. 
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Figure S2: Effect sizes (Beta’s) of the ordinal logistic regression of DAWBA band scores on the 5 schizophrenia PRS 
in the ALSPAC sample for age 7, 10, 13 and 15. Red bars are  p < 0.05 in a one sided test.  
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Figure S3: Effect sizes (Beta’s) of the GEE regression of CBCL/YSR scores on the 5 schizophrenia PRS in the NTR 
sample for age 7, 10, 12 and 15. Red bars are  p < 0.05 in a one sided test.  
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Chapter 6: Further confirmation of the association between anxiety and 
CTNND2 : replication in humans* 
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Abstract 

 
The rat genome sequencing and mapping consortium found evidence for an 
association between the catenin-δ2 gene (CTNND2) and anxious behaviour. We 
replicated these results in humans  by carrying out a genetic association test in 
patients with panic-disorder, social phobia, generalized anxiety disorder and/or 
agoraphobia (N=1714) and  controls (N= 4125). We further explored the 
association between CTNND2 and other psychiatric disorders based on publicly 
available genome-wide association results. A  gene-based test  showed  that 
SNPs in CTNND2 have a significantly increased signal ( p<1e-5) and decreased p-
values. SNP  rs1012176 showed the strongest association with any anxiety 
disorder (Odds ratio: 0.8128, SE =  0.063, p =.00099), but this effect was not 
significant after correction for multiple testing. In available genome -wide 
association results from the Psychiatric Genomics  Consortium we found that 
SNPs in CTNND2 collectively showed an increased signal for Schizophrenia (p  < 
1e-5)  and Major Depressive Disorder (p < 1e-5), but not  for Bipolar Disorder.  
These signals remained significant after correction for potential confounders. 
The association between CTNND2 and anxiety was not strong enough to be 
picked up in the current generation of  human genome-wide analyses, indicating 
the usefulness of and need for animal genetic studies to identify candidate 
genes for further study in human samples. 
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Introduction 
 
The rat genome sequencing and mapping consortium recently  published an 
extensive sequence based analysis of 160 complex phenotypes, including 
disease models for anxiety, diabetes, hypertension, aortic elastic lamina 
ruptures, multiple sclerosis and osteoporosis and measures of risk factors for 
common diseases such as lipid and cholesterol levels in outbred rats (Rat 
Genome Sequencing Consortium, 2013).1 The Rat Genome Consortium paper 
reported 28 QTLs at which only a single gene contained candidate variants. At 
one QTL, a new gene for an anxiety-related phenotype was implicated. The 
catenin δ2 gene (CTNND2, encoding catenin δ2) was associated with anxiety 
related traits in rats. This QTL explained 5% of the variance (see their online 
supplementary Table 3). CTNND2 has also been found to be related to reduced 
hippocampal volume and synaptic dysfunction but not to anxiety related traits in 
knockout mice (Israely et al. 2004).2 CTNND2 is highly expressed in the human 
and fetal brain, and has been implicated in neuronal functioning, adhesion, and 
migration (Lu et al. 1999).3 The gene has not yet been studied as a candidate for 
anxiety disorders in humans. 
We explored the effects of CTNND2 on anxiety disorders in 1714 patients with 
an anxiety disorder and 4125 screened controls who take part in the 
Netherlands Study of Depression and Anxiety (NESDA) (Penninx et al. 2008)4 and 
the Netherlands Twin Register (NTR) (Lubke et al. 2012; Willemsen et al. 2010; 
Willemsen et al. 2013).5-7 Firstly, we tested in a gene-based test whether all SNPs 
collectively obtained significantly lower p-values than expected, indicating an 
association between the gene and the phenotype.  Next, individual SNPs within 
CTNND2 were regressed on anxiety status using logistic regression. 
Secondly,  the association between CTNND2 and major depressive disorder 
(MDD) (Ripke et al. 2012),8 Schizophrenia (SCZ)9 (Ripke et al. 2011) and Bipolar 
Disorder (BIP)10 (Sklar et al. 2011) was explored in published results based on the 
mega-analyses of these disorders by the Psychiatric Genomics Consortium 
(PGC). All three PGC genome-wide association (GWA) studies use a dichotomous 
case/control phenotype and logistic regression to determine the association of 
SNPs with each disorder. The PGC results were inspected for inflation in p-values 
for all SNPs in the CTNND2 gene to test for an association between the gene and 
the phenotype and we again looked at the best individual SNP corrected for 
multiple testing. 
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Methods 
 
Subjects 
 Anxiety disorder cases were derived from the Netherlands Study of Depression 
and Anxiety (NESDA) and from the Netherlands Twin Register (NTR). There were 
1747 patients who met diagnostic criteria for a DSM-IV defined anxiety disorder 
(panic disorder, agoraphobia, social phobia and/or generalized anxiety disorder) 
as assessed with the Composite Interview Diagnostic Instrument (CIDI) (Ter 
Smitten, Smeets, & Van den Brink 1998).11 Controls came from the NESDA and 
NTR studies . In NESDA, the absence of any lifetime depressive and anxiety 
disorder was assessed by the CIDI (lifetime version 2.1). In NTR, controls were 
selected in a similar way as described in Boomsma et al. (2008).12 The selection 
was based on low scores on depression, anxiety or neuroticism  scales in 
longitudinal surveys. These surveys contained the neuroticism and somatic 
anxiety scales of the Amsterdamse Biografische Vragenlijst (Wilde 1970),13 the 
Beck Depression Inventory (Beck, Rial, & Rickels 1974),14 the anxious depression 
scale of the Adult Self Report (Achenbach & Rescorla 2003)15 and the State Trait 
Anxiety Inventory – Trait version (Van der Ploeg, Defares & Spielberger  1979).16  
In total, 4125 controls met the selection criteria. 
 
Genotyping and imputation 
Whole blood and /or buccal DNA samples were collected for various projects 
done by the NTR and NESDA studies (see: Boomsma et al. 2008;Scheet et al. 
2012;Sullivan et al. 2009;Willemsen et al. 2010).6,12,17,18 DNA extraction and 
purification of these samples have been performed at various stages in time, 
following several manufacturer specific protocols in order to obtain the best 
quality and concentration prior to SNP platform genotyping. Genotyping 
subsequently has been done on multiple chip platforms, for several partly 
overlapping subsets of the total sample collection. Chronologically the following 
platforms have been used Affymetrix Perlegen 5.0 (N=3840), Illumina 370 
(N=290), Illumina 660 (N=1501), Illumina Omni Express 1M (N=445) and 
Affymetrix 6.0 (N=10412, 5 subsets). After array specific data analysis, genotype 
calls were made with the platform specific software (Genotyper, Beadstudio, 
Birdseed). 
Quality control was done within and between chip platforms. For each platform 
the individual SNP markers were lifted over to build 37 (HG19) of the Human 
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reference genome, using the LiftOver tool (Kuhn et al. 2009).19 SNPs that were 
not mapped at all, SNPs that had ambiguous locations, and SNPs that did not 
have matching - or strand opposite alleles were removed. Subsequently, the data 
were strand aligned with the 1000 Genomes phase 1 Integrated release version 3 
ALL panel of March 2012 (McVean et al. 2012).20 SNPs from each platform were 
removed if they still had mismatching alleles with this imputation reference set, 
if the allele frequencies differed more than 0.20 with the reference set, if the 
MAF was < 1%, if the HWE p-value was < 0.00001 or if the call rate was <95%. All 
samples were excluded from the data if their expected sex did not match their 
genotyped sex, if the genotype missing rate was above 10% or if the Plink F 
inbreeding value was either > 0.10 or < -0.10. After these steps the data of the 
individual chips were merged into a single dataset using the Plink 1.07 
software(Purcell et al. 2007).21 

Within the merged set IBD was calculated between all possible pairs of 
individuals and compared to the expected family structure of the NTR and 
NESDA studies. Samples were removed if the data did not match the expected 
IBD sharing, or if potentially consistent with biographic data, corrections were 
made to the family structure. DNA samples that were typed on multiple 
platforms were tested if the overlapping SNPs had a concordance rate above 
99.0%. If  this was not true, all data of these samples were removed. On the 
merged data, HWE and MAF SNP filters were re-applied, and the reference allele 
frequency difference <0.20 checks. As a final prior step to imputation SNPs with 
C/G and A/T allele combinations were removed if the MAF was between 0.35 
and 0.50 to avoid wrong strand alignment.  
Imputation was done using the two stage approach. Pre-imputation phasing and 
imputation of genotype platform specific SNPs was done using the MACH 
software(Li et al. 2010).22 Subsequently, imputation of the reference set was 
done with Minimach. To avoid issues with monozygotic (MZ) twin pairs, prior to 
imputation a single person of a monozygotic twin with the highest SNP call rate 
of a pair was selected. Post imputation, the resulting imputed genotypes were 
duplicated back to the co-twin in the data. Based on phenotype, a single MZ twin 
was then selected for analysis in this study. From the imputed genotype data, for 
the cases and controls of this particular study all SNPS between the CTNND2 
gene borders as reported on genecards.org (Safran et al. 2010)22 were included 
for analysis. In total 1349 SNPs in the CTNND2 gene met the post imputation QC 
standards (MAF >.05, INFO>.8, INFO < 1.1 &  HWE <1e-3). Of these 1349 SNPs 
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475 were directly genotyped, and 874 are imputed. 
 
Lookup in Psychiatric Genomics Consortium (PGC) 
We retrieved results from the mega-analyses of genome-wide association 
studies by PGC on MDD, Bipolar Disorder and Schizophrenia. These data are 
available at https://pgc.unc.edu/Sharing.php#SharingOpp and more 
conveniently and completely at http://www.broadinstitute.org/mpg/ricopili/. 
Using the PGC summary statistics, the association between CTNND2 and these 
psychiatric phenotypes was explored further. We applied the same QC standards 
to the SNPs reported by PGC as to the SNPs tested in the NTR/NESDA 
sample(MAF >.05, INFO>.8 and <1.1). We then retrieved the PGC p-values for 
SNPs in the CTNND2 gene plus a 200kb area around the gene.   
Statistical analyses. 
For various significance tests, a correction for the number of individual signals in 
CTNND2 was needed. To determine the number of independent signals,  a PCA 
(Principal Component  Analysis) was carried out on the pair-wise correlation 
matrix between all SNPs in the gene. The number of independent signals was 
determined to be the number of components needed to  explain 95% of variance 
in the SNPs in CTNND2. Pair-wise LD was retrieved using the SNAP (SNP 
Annotation and Proxy Search) online tool (Johnson et al. 2008).24 This tool can be 
used for SNPs to identify and to annotate nearby SNPs in linkage disequilibrium 
based on HapMap or 1000 genomes. 
The  anxiety disorder phenotype was regressed on the SNPs in CTNND2  using 
logistic regression. Regression analyses were controlled for sex, study of origin 
within NTR/NESDA, genotyping platform and 3 principle components to control 
for population stratification (Abdellaoui et al. 2013).25 A sandwich estimator was 
used to control for the presence of related individuals in the sample(Purcell et al. 
2007).21 

To determine if significant signals exist within the entire gene, we tested 
whether the p-values off SNPs in the CTNND2 gene as found in the anxiety 
disorder results, or reported  by the PGC, were significantly lower than 
expected.  The effect size for this test is λ (lambda), the inflation of p-values over 
the expected distribution of p-values. The significance of λ was tested against  
different null hypotheses using three different approaches (see table 1). 
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Table 1: Models used to test the significance of λ 

 
Method p-values sampled 

from: 
Null hypothesis

1: Uniform  Uniform distribution 
between 0 and 1 

Observed λ is equal to the statistical expectation of λ 
(λ = 1) 

2: Uniform controlled 
for population 
structure  

Uniform distribition 
betweeen 0 and 1.  λ  
then multiplied by the 
genome-wide  λ  

Observed λ is equal to the statistical expectation of λ 
in the case of no effect in the presence of population 
stratification (λ = genome wide λ) 

3 Uniform 
independent signals 
and population 
structure 

Sample from a uniform 
distribution the size of  
the number of 
independent signals in 
CTNND2. λ  then 
multiplied by the 
genome-wide  λ 

Observed λ is equal to the expected λ for a set of p-
values based on the number of independent signals 
in CTNND2, thereby taking into account LD, and pop 
stratification as in method 2 (λ for 1366 SNPs = λ 261 
for signals) 
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We bootstrapped 10,000 distributions of p-values under these 3 null distributions. 
This yielded a mean λ and the variance of λ that reflects the distribution under the 
null distribution for each of these 10,000 bootstrapped sets of p-values . Next, the 
significance of λ observed in any anxiety disorder, MDD, Bipolar Disorder and 
Schizophrenia was tested against the expected  λ  obtained in each null 
distribution.  To be certain the reported λ reflects actual effects, we step by step 
excluded other common causes of an inflated λ.  First, we adapted the null 
hypothesis to reflect the fact that some inflation of  λ  is expected to be caused by 
population stratification and sample size. To counteract the effects of population 
stratification and sample size, the bootstrapped λ were drawn from samples that 
showed inflation by population stratification or sample size at the level of the 
genome wide λ for each trade (method 2  in table 1).The variance of the 
bootstrapped  λ distribution is influenced by LD between the SNPs in CTNND2. 
Higher LD between the SNPs would result in fewer independent signals, if we base 
λ on sets of p-values representing a smaller number of signals the variance of 
these λ would increase. To take into account the LD observed between SNPs we 
created a null distribution in which the  λ was based on the number of 
independent signals in CTNND2 (method 3 table 1). 

We also determined the significance of the best SNP in the gene for anxiety 
disorders as well as for  SCZ, MDD and BIP based on the PGC results. To be clear 
about the significance of our results, we report p-values per best SNP which are 
uncorrected for multiple testing, and  corrected for the number of independent 
signals  in CTNND2. 
 
 
Results 
 
Test for the number of independent signals in CTNND2. 
From the 1349 SNPs in CTNND2 that met QC standards,  1256 were also found in 
the SNAP pair-wise LD tool. The pair-wise LD between these SNPs was entered 
into a PCA in R. The eigenvalues derived from this PCA suggested that 261 
components are needed to explain 95% of variance and 446 components are 
needed to explain 99% of variance in the 1256 SNPs found in SNAP. The Kaiser 
criterion suggested 180 independent signals. Pairwise correlations between all 
1349 snps in the CTNND2 gene were also calculated in the NTR/NESDA sample 
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using a minimal cutoff of r=.10 (r2=0.01). Principle component analysis was 
performed on the resulting pairwise correlation matrix. The Kaiser criterion 
indicated 124 independent components existed, the PCA suggested 254 
components are needed to explain 95% of variance and 563 components are 
needed to explain 99% of variance. These results are similar to the ones obtained 
using SNAP suggesting the LD structures are similar, at least in dimensionality. The 
3 criteria described did vary fairly widely in their conclusion on the number of 
independent signals, though they were in the same order of magnitude (i.e. 
hundreds of signals) and very similar in the 1000 genomes reference panel and 
the NTR/NESDA set. For all further significance testing we adjusted for 261 
independent  signals as found in SNAP,  as adjusting for the Kaiser criterion would 
be too liberal and adjusting for 446 signals might be too strict.  

 
 
Anxiety disorders in NTR/NESDA 
All SNPs in the gene jointly showed significantly lower p-values than under the  
expected null distribution ( λ  = 1.34, P < 0.0001) using method 1 in table 1. 
Testing the λ using method 2 in table 1, taking into account population 
stratification and sample size, we again found the λ  significantly exceeded the 
null (p < 0.0001). Testing the  λ  using method 3 in Table 1, taking into account 
the  effects  of LD, population stratification and sample size, the λ remained 
significant (p < 0.035). This inflation of p-values indicates that the gene shows a 
significantly stronger association to anxiety disorders than expected under the 
null hypotheses considered (table 1) indicating this gene has a significant 
association with anxiety disorders. 
SNP  rs1012176 in CTNND2 showed the strongest association with anxiety 
disorders (Odds ratio: 0.8128, SE =  0.063, p =.00099) (figure 1). This individual 
SNP is not significant if corrected for the number of independent signals (p = 
.22).  Table 2 provides the RS-numbers and locations for the 10 SNPs showing 
strongest association with Anxiety disorders. Some of these 10 best SNPs are in 
complete or high, but not total, LD with 2 SNPs in the coding region of CTNND2. 
2 SNPs in the coding region,  rs17802557 and rs1566622 are in LD with different 
SNPS from table 2 and are both synonymous mutations in the coding region of 
CTNND2. Complete LD indicates the SNPs associated with anxiety disorder and 
SNP in the coding region of CTNND2 are completely dependent, the lack of total 
LD merely indicates the SNP would not be useful as a proxy for each other. 
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Figure 1: Regional plot for the CTNND2 gene, with recombination rates plotted in blue. The best 

association results in the CTNND2 gene are plotted in red for the GWA for anxiety in 
NESDA/NTR (ANX), and for 3 published GWA meta analyses for major depressive 
disorder (MDD) (Ripke et al. 2012), schizophrenia (SZC)9 (Ripke et al. 2011) and 
schizophrenia and bipolar disorder (SZC&BP) combined (Wang, Liu, & Aragam 2010).26 
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Table 2: top 10 SNPs per disorder and their relation to functional SNPs. 

Schizophrenia RS-number position P Relation to functional SNPs 

rs4524507 11919716 0.0005

rs4702836 11918658 0.0005

rs4379193 11920393 0.0006

rs4571470 11913452 0.0006

rs11741312 11911555 0.0006

rs12652699 11917077 0.0006

rs4330462 11913217 0.0007

rs6873547 11917482 0.0008

rs4257769 11913395 0.0010

rs4701924 11923554 0.0012

MDD RS-number position P 

rs10059890 11199698 0.0002
SNP in complete LD (D'=1) but not total LD  
(r2 =0.087) with SNP rs2285975 

rs1859382 11200672 0.0002
SNP in complete LD (D'=1) but not total LD 
 (r2 =0.087) with SNP rs2285975 

rs6859601 11200414 0.0002
SNP in complete LD (D'=1) but not total LD 
 (r2 =0.087) with SNP rs2285975 

rs886527 11200814 0.0003
SNP in complete LD (D'=1) but not total LD 
 (r2 =0.087) with SNP rs2285975 

rs6885587 11200114 0.0004

rs6880938 11200302 0.0005

rs10041627 11200082 0.0005

rs10073056 11199253 0.0005

rs730610 11192051 0.0007

rs2057795 11207597 0.0008

Bipolar RS-number position P 

rs10044218 11466046 0.0130

rs7722906 11461708 0.0173

rs7728281 11469941 0.0274

rs16901579 11455272 0.0342
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rs4702761 10955733 0.0367

rs7722560 11461527 0.0371

rs1860245 10956537 0.0371

rs2895578 10956553 0.0371

rs6884596 11456540 0.0372

rs1995364 10956781 0.0376

Anxiety RS-number position P 

rs1012176 11320538 0.0009

rs17216753 11484112 0.0017
SNP in complete (D'=1) but not total LD  
(R2=0.015) with SNP rs17802557  

rs17805573 11488568 0.0018
SNP in complete (D'=1) but not total LD  
(R2=0.015) with SNP rs17802557  

rs11747109 11493331 0.0018
SNP in complete (D'=1) but not total LD  
(R2=0.015) with SNP rs17802557  

rs79213734 11495176 0.0019
SNP in complete (D'=1) but not total LD  
(R2=0.015) with SNP rs17802557  

rs10513094 11482045 0.0020
SNP in complete (D'=1) but not total LD  
(R2=0.015) with SNP rs17802557  

rs11948339 11378306 0.0036

rs2012187 11322037 0.0048
Moderate D' (0.681) and low R2 (0.038)  
with coding SNP rs1566622 

rs32128 11343384 0.0051
Moderate D' (0.668) and low R2 (0.096)  
with coding SNP rs1566622 

rs32129 11343200 0.0051
Moderate D' (0.668) and low R2 (0.096) 
with coding SNP rs1566622 
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PGC lookup 
Major depressive disorder (Ripke et al. 2012)8: In total, 632 SNPs were present in 
the PGC MDD results that were in CTNND2, or in a 200kb window around, and 
met QC standards (MAF >.05, INFO>.8 and < 1.1). These SNPS showed inflation (λ 
=1.39, p <1e-5) (figure 2, black ). The λ was significant if tested using method 1 in 
Table 1 (p <0.0002) and remained significant when correcting for potential effects 
of population structure and sample sizes (p < 0.0013) (method 2 in Table 1) and 
after further correction for the effects of LD (p < 0.026) (method 3 in Table 1). 
These results indicate the p-values observed in CTNND2 show a stronger 
association to MDD than expected, even when we took into account the effects of 
population stratification, sample size and LD within the gene.  
The best SNP (rs10059890) in the published results of the mega-analysis of the 
PGC for MDD8 (Ripke et al. 2012) had a nominally significant p-value of  0.00025 
(Figure 1). Corrected for the number of independent tests this result was no 
longer significant (p = 0.06). Table 2 provides the RS-numbers and locations for 
the 10 SNPs showing strongest association with Major depressive disorder. The 
top SNP and several other SNPs present in  table 2 are in complete, but not total, 
LD with  SNP rs2285975. rs2285975 is a synonymous mutation in the coding 
region of CTNND2 
Schizophrenia (Ripke, et al. 2011)8: A total of 614 SNPs in and around CTNND2 
were present in the PGC schizophrenia results and met QC standards (MAF >.05, 
INFO>.8 and < 1.1). These 614 SNPs showed large inflation (λ  = 2.54; Figure 2). 
This inflation was significantly higher than 1 as tested using method 1 in Table 1 (p 
<0.0001). If we correct this test for the effects of population stratification and 
sample size, the observed inflation remained significant (method 2 in Table 1, p 
<0.0001).  It also remained significant after further correction for the LD in 
CTNND2 (method 3 in Table 1) (p <0.0001). These results indicate the p-values 
observed in CTNND2 show a larger effect than expected, even when this 
expectation is corrected for population stratification, sample size and LD within 
the gene.  
Uncorrected results for the single best SNP (rs4524507) showed an association 
(p =  0.00056; figure 1) with the CTNND2 gene. Corrected for the number of 
independent signals the SNP effect is no longer significant (p = 0.13). Table 2 
provides the RS-numbers and locations for the 10 SNPs showing strongest 
association with Schizophrenia. 
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Bipolar Disorder (Sklar et al. 2011)10: In total 1123 SNPs were present in the PGC 
results that are in and around CTNND2 and met QC standards (MAF >.05, INFO>.8 
and < 1.1). None of the individual SNPs were significant if corrected for multiple 
testing. These SNPs did not show an inflation over the expected null (figure 2).  
These results indicate that variants in CTNND2 have no  association to Bipolar 
Disorder. Table 2 provides the RS-numbers and locations for the 10 SNPs showing 
strongest association with Bipolar disorders. 
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Figure 2: qq-plot for the CTNND2 region in the PGC bipolar (dark green), Anxiety (red), Schizophrenia (blue) 
and MDD results (black). Expected qq values (red line) and their 95% confidence interval (black lines) are 
plotted for reference.  
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Discussion 
 
Based on the genetic association results presented here, the association 
between the CTNND2 gene and anxiety  found by the rat sequencing and 
mapping consortium is also present in humans. We confirmed the association in 
a sample of patients with an anxiety disorder and controls from the Netherlands. 
The PGC GWAS results suggest an even broader role of CTNND2 in psychiatric 
disorders, namely for schizophrenia and MDD. Our lookup in PGC results found 
no evidence for a role of CTNND2 in Bipolar Disorder.  The top SNPs for each of 
the 4 disorders are found in different areas of the CTNND2 gene.  The top SNPs 
for MDD and Anxiety have strong LD with different SNPs in the coding regions of 
CTNND2. However, our strongest results are the inflated Lambda’s for all SNPs in 
the gene. Those results currently do not point to a specific SNP within CTNND2 
but show a general association between the gene and psychiatric disorders. 
Further functional studies, for example based on sequence data and fine 
mapping are needed to see how CTNND2 functionally relates to psychiatric 
phenotypes. Beyond the different types of evidence derived from association 
studies, there are additional studies indicating that the CTNND2 gene 
functionally might be a plausible candidate. The gene is a sensor of synaptic 
activity and implements activity-related morphological changes at the synapse 
and cell adherence in adult brains(Kosik et al. 2005).27 In developing brains 
delta-catenin gene expression  is related to both cortical and cerebral 
development(Duparc et al. 2006).28 

In addition to the results described here, there is more evidence for a role of 
CTNND2 in psychiatry. Wang et al.25 (Wang, Liu, & Aragam 2010) have also 
submitted associations between  SNPs, in and near CTNND2, and bipolar 
disorder and schizophrenia (rs2530215, p < 7e-6 and rs17176973, p < 5e-6) (figure 
1) to the catalogue of published GWAS studies (Hindorff et al. 2009).29 The 
samples in this study were later included in the PGC mega-analyses. From the 
website, it cannot be derived whether this association was driven by 
schizophrenia cases and not by bipolar disorder cases, given the absence of an 
effect in the mega-analysis of bipolar disorder in PGC.  Moreover, a rare CNV has 
been found to disrupt CTNND2 in schizophrenia (Vrijenhoek et al. 2008)30 and 
CTNND2 hemizygozity is implicated in mental retardation and behavioral 
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symptoms in cri du chat syndrome (Cornish & Pigram 1996;Medina et al. 
2000).31;32  
The rat genome mapping and sequencing consortium reported little overlap 
between mouse and rat genomes at the gene or pathway level. This was 
attributed to the relatively limited amount of sequence variation segregating 
within the two heterogeneous stock mice populations. As a consequence, the 
inability to detect shared loci may result from sampling. This problem would be 
smaller when comparing rats and human populations as the amount of 
sequence variation within the human population would probably be larger. 
We would like to highlight that the involvement of  CTNND2  without the 
primary result presented by the rat genome sequencing and mapping 
consortium would not have stood out in a GWAS for any of these psychiatric 
disorders. This work can been seen as a successful synthesis between animal 
genetics studies and human genetics studies. Combining the results from the 
animal model with the replication for anxiety in humans and the previous 
findings in the literature provide us with ample reasons to further investigate 
the role of CTNND2 in psychiatry. 
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Chapter 7: Detection of gene –environment interaction in pedigree data using 
genome-wide genotypes 
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Abstract 

We have developed statistical methods to model gene by environment interaction 
(GxE). Genome-wide single-nucleotide polymorphism (SNP)-derived genomic 
relationships are used to estimate the SNP heritability and the dependence of this 
heritability on a moderator. These methods can be applied to complex 
phenotypes assessed in population based samples that also include related 
individuals belonging to nuclear families or larger pedigrees. The method extends 
GxE models as implemented in GCTA, and allows the environmental exposure to 
be continuous, ordinal or appropriately coded categorical. Our method can be 
applied to multiple genetic effects concurrently, i.e. additive genetic effects as 
estimated based on family relations, and SNP effects. However the multiple 
genetic effects can also reflect different sets of SNPs based on biological 
pathways, genes or functional categories. 

We apply these methods to genome-wide SNP data gathered in related 
individuals to explore GxE interaction in attention problems (AP), anxious 
depression (AnxDep), body mass index (BMI), and height. We consider the 
moderation of genetic and environmental variance components as a function of 
age or year of birth. Different GxE interaction models are fitted to the data for AP, 
AnxDep, BMI, and height. Results for all phenotypes except AnxDep reveal 
significant moderations of the variance explained by SNPs or familial influences by 
age or year of birth.  These results show that the model can enhance our 
understanding of the genetic architecture of complex traits. 
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Gene-environment (GxE) interaction is an important issue in genetics, with 
potentially important empirical implications. In psychiatric genetics, the genetic 
contribution to psychiatric disorders, including attention deficit hyperactivity 
disorder (ADHD) and major depressive disorder (MDD), has been modeled as a 
function of environmental risk factors (for reviews see1-5 ).  Further, GxE 
interaction has been show to play a role in the genetics of transcriptomics6 and 
BMI.7  Notwithstanding such results, studies of GxE interaction have been 
criticized for lack of statistical power,8 poor choice of candidate genes, or 
markers,9; 10 and poor replication.11 To judge whether GxE interaction studies can 
inform complex trait genetics, and may play a role in explaining missing 
heritability,4 more knowledge is required about the extent to which GxE 
interaction plays a role in explaining phenotypic variance. In addition to  studies 
that employ genetically informative (twin) designs, 12; 13 studies including genome-
wide genotype data also provide a means to evaluate GxE interaction effects.  

One method involves establishing whether the effect of a polygenic risk score is 
moderated by the environment.14-16 Such risk scores may be based on a weighted 
linear combination of SNPs that are found in a GWAS to satisfy some (not 
necessarily genome wide significant) alpha level.  An alternative approach, which 
we adopted in this paper, is to model the genetic effects of a set of measured 
single nucleotide polymorphisms (SNPs), using genetic relatedness matrix 
restricted maximum likelihood (GREML), as implemented in the GCTA software 
package.17 GCTA was developed to estimate ‘SNP based’ heritability in large 
groups of unrelated individuals, and has been extended to estimate GxE 
interaction, but only given a dichotomous environmental exposure. Vinkhuyzen & 
Wray14 recently discussed the current options in GxE research based on either 
polygenic profile scores or GCTA methods with dichotomous exposures.  

Here, we propose a model that allows the environmental exposure to be 
measured on a continuous, ordinal, or appropriately coded categorical scale. In 
addition, we extend the model to include genetic data of closely related subjects, 
such as twin pairs, or members of extended pedigrees. To this end, we adopted a 
re-parameterization of the model proposed by Zaitlen et al. 18 This allows us to 
evaluate GxE interaction in terms of the moderation by the environmental 
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exposure of the genetic variance attributable to the measured SNPs, the total 
additive genetic variance, and the residual (environmental) variance . We 
illustrate the GxE approach by analyzing the moderating role of age in attention 
problems, anxious depression, and body mass Index (BMI), and the moderating 
role of birth year in body height.  

Methods 

Phenotyping: Phenotypic data were collected from participants in the Netherlands 
Twin Register (NTR; Boomsma et al 2006) by mailed or online surveys, or during 
home visits. Adult participants received surveys in 10 consecutive waves over the 
past 25 years. Adolescent twin and their siblings received self-report 
questionnaires, from the age of 14 onwards. Anxious-depression (AnxDep) and 
attention-problems (AP) scores were obtained from the Youth or Adult Self 
Report19 as part of the Achenbach system for empirical assessment (ASEBA).19 
AnxDep and AP were defined as in appendix II of this thesis, AnxDep as a sum 
score of all items available across multiple surveys, AP as a mean item score of all 
available items per survey.20,21 Height and BMI were assessed during a home visit 
for the NTR biobank projects, adult (age 18 and above) height and BMI are used in 
the current analysis.22 Self-reported height and BMI were analyzed if measured 
height and BMI were unavailable. AnxDep scores were available in 6881, AP 
scores in 6618, BMI in 6585, and height in 6409 individuals. We carried out a 
square root (i.e., normalizing) transformation of the AP and AnxDep scales. 
Subsequently we regressed the four phenotypes on the first 6 principal 
components that reflect the population structure,23 and saved the residuals. 
These residuals were computed to reduce the number of fixed effects in the final 
modal and thus reduce computational burden. Covariates that are closely tied to 
the moderator M are included directly in the final model. Fixed effects covariates 
entered into the GxE analysis of AP, AnxDep and BMI are age, age squared, and 
sex. For height the covariates included were birth year, birth year squared and 
sex. All phenotypes, covariates, and moderators entered into the GxE analysis 
were standardized (zero mean, unit variance). 

Genotypes: DNA samples were obtained in different projects of the Netherlands 
twin register (NTR).22; 24 Genotyping in the different projects was performed on 
the Affymetrix 6.0 chip. SNPs that were genotyped in less than 95% of individuals 
were removed. Individuals with a contrast quality control (CQC) score below 0.40, 
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who had less than 90% of SNPs successfully genotyped, or had excess genome-
wide heterozygosity /inbreeding levels (F < -.10 or F > .10) were removed. Further, 
individuals in whom genotyped sex did not match reported sex,whose IBD 
relationships were anomalous, or who did not match known pedigree structures 
were removed. Finally, individuals of non-European descent were excluded. The 
resulting sample included genotypes of 10,829 individuals. A genetic relatedness 
matrix (GRM) was computed on the basis of all autosomal SNPs with a minor 
allele frequency > 0.01, and Hardy-Weinberg Equilibrium test p-value > 1×10-6  
using GCTA 1.24.2. 17 

Statistical Methods 

Genome-wide genetic similarities given measured SNPs can be used to calculate 
the variance attributable to these measured SNPs (for the derivation, see 17).   We 
convey this model in the equations below. In Equation 1a, let y (nx1) be a 
multivariate random vector of phenotypic scores as observed in n individuals, let X 
(nxm) be the matrix of fixed covariates, and β (mx1) the vector of fixed effects. Let 
matrix W (nxp) be the matrix of p standardized SNPs, u (px1) a zero mean vector 
of random effects, and let e be the nx1 vector of zero mean residuals. The 
phenotype Y is a random multivariate normal vector with mean vector ߤ and 
covariance matrix V.  The GRM is a matrix of pair wise genetic similarities 
computed WW’/p. The parameter σୱ୬୮ଶ  is an estimate of the variance explained by 
the SNPs tagged by, or included in W. ܻ	 = ߚܺ	 ݑܹ+ + ݁	    (1a) ܻ~	ܰ	(ߤ, ܸ)	     (1b) ܸ = ௡∗௡ܯܴܩ ௦௡௣ଶߪ	⊗ ௡∗௡ܫ	+ ߤ ௘ଶ    (1c)ߪ	⊗	 =  (1d)     	ߚܺ	

 

The GCTA software fits the model above, with extensions allowing for 
dichotomous GxE moderation, among other options.17 
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The continuous GxE model. The continuous GxE model presented here allows the 
effect of all SNPs on a trait Y (ߪ௦௡௣ଶ ) to vary with respect to a moderator M. 
Parameter βg quantifies the effect of moderation by M of the genetic effects on Y. 
Parameter ߪ௦௡௣ quantifies the effect of measured SNPs on Y given βg = 0. 
Parameter βe quantifies the effect of moderator M on the residual variance of Y. 
Parameter ߪ௘  quantifies the effect of residual variance given βe = 0.  

(ܯ|ܻ)ܸ  = ܸ = ௡∗௡ܯܴܩ ⊗	൫ߪ௦௡௣ ௚ߚ	+ ∗ 	൯ଶܯ ௡∗௡ܫ	+ ௘ߪ)	⊗	 ௘ߚ	+ ∗  ଶ (2)(ܯ

 

This model includes interaction, i.e., moderation of the genetic and residual 
variances by M.12 Note that we assume that the moderator M is also included in 
the matrix X, i.e., as a fixed covariate with a main effect on the phenotype. We 
have presented the moderator M as continuous, but it may be discrete (interval, 
or appropriately coded nominal, or binary).  

Related individuals in the sample.   

A recent extension of the model as implemented in GCTA, proposed by Zaitlen, et 
al. 18  allows for the estimation of variance explained by SNPs, as well as the total 
additive genetic variance of a trait. This extension allows for in the inclusion in the 
sample of closely related individuals. In Eq 3 below, the matrix GRMIBS  is 
equivalent to the GRM in Eq 1 and 2, but now includes closely related individuals. 
The matrix GRMIBS > 0.05  equals the matrix GRMIBS in which all relatedness 
coefficients below .05 set to zero. Note that the values of these coefficients in 
closely related individuals tend towards the expected proportion of alleles shared 
identically by decent (~IBD; we denote the expected proportion pi-hat) (i.e., full 
siblings are characterized by  pi-hat =  .5 IBD, and ~.5 in the GRM IBS > 0.05). Using an 
IBD matrix or IBS > 0.05 matrix yields very similar results.18 

 ܸ = ௡∗௡ூ஻ௌܯܴܩ ௦௡௣ଶߪ	⊗ + ௡∗௡ூ஻ௌவ଴.଴ହܯܴܩ ⊗ ூ஻஽ଶ~ߪ	) − ௦௡௣ଶߪ	 ) 	+ 	 ௡∗௡ܫ  ௘ଶ (3)ߪ	⊗	
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In Eq 3, parameter ߪ௦௡௣ଶ  reflects the variance explained by SNPs, the 
term	൫	ߪ~ூ஻஽ଶ − ௦௡௣ଶߪ	 ൯	represents the difference between the total additive 
genetic variance ߪ~ூ஻஽ଶ  and the variance explained by SNPs, and ߪ௘ଶ reflects the 
variance attributable to residual effects. Inspection of the parameter correlation 
matrix derived from the Hessian revealed very strong negative parameter 
correlations between 	ߪ௦௡௣ଶ  and	ߪ~ூ஻஽ଶ − ௦௡௣ଶߪ	 , which complicates any moderation 
of these terms. To ensure low parameter correlations, and allow for separate 
moderation of ߪ௦௡௣ଶ  and ߪ~ூ஻஽ଶ , we re-parameterized the Zaitlen model (Equation 
3) as shown in Equation 4.  

 ܸ = ௡∗௡ூ஻ௌழ଴.଴ହܯܴܩ ௦௡௣ଶߪ	⊗ + ௡∗௡ூ஻ௌவ଴.଴ହܯܴܩ ⊗ ூ஻஽ଶ~ߪ ௡∗௡ܫ	+	  ௘ଶ (4)ߪ	⊗	

 

In Equation 4, the first GRM ܯܴܩ௡∗௡ூ஻ௌழ଴.଴ହincludes only values < 0.05 where other 
values including the diagonal elements are set to 0. This provides an estimate of 
variance attributable to SNPs exclusively based on the covariance between 
distantly related individuals. The second GRM,	ܯܴܩ௡∗௡ூ஻ௌவ଴.଴ହ contains only values 
above 0.05, it reflects all genetic variance as a function of approximate IBD. Note 
that this model requires the presence of closely related individuals to reliably 
estimateߪூ஻஽	ଶ . The re-parameterized model (Equation 4) and the Zaitlen model 
(Eq 3) produce the same estimates of 	ߪ~ூ஻஽ଶ , ௦௡௣ଶߪ  , and ߪ௘ଶ. This equivalence 
between the models was established empirically by simulating data for a wide 
range of 	ߪ~ூ஻஽ଶ , ௦௡௣ଶߪ  , and ߪ௘ଶ, under the Zaitlen model, and subsequently fitting 
both models, and obtaining the same -2*log-likelihood and parameter estimates 
(table S1). We note that in the unlikely scenario that ߪ௦௡௣ଶ = 0	or (	ߪ~ூ஻஽ଶ − ௦௡௣ଶߪ	 ) 
= 0, the equivalence does not hold.  However, if ߪ௦௡௣ଶ = 0	or (	ߪ~ூ஻஽ଶ − ௦௡௣ଶߪ	 ) = 0 
is true, separate moderation of ߪ௦௡௣ଶ  or ߪ~ூ஻஽ଶ  is undesirable given the known 
absence of the variance component to be moderated. 

We proceeded to extend Eq 4 to include moderation, as shown in Eq 4a. 
Parameter ߚ~ூ஻஽ in Eq 4a reflects the change in additive genetic variance as a 
function of the moderator M. Parameter ߚ௦௡௣ reflects moderation of genetic 
variance attributable to SNPs as a function of M.  
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(ܯ|ܻ)ܸ  = ௡∗௡ூ஻ௌழ଴.଴ହܯܴܩ 	⊗	൫ߪ௦௡௣ ௦௡௣ߚ	+ ∗ 	൯ଶܯ + ௡∗௡ூ஻ௌவ଴.଴ହܯܴܩ	 ⊗൫ߪ~ூ஻஽	 ூ஻஽~ߚ	+ ∗ ൯ଶܯ ௡∗௡ܫ	+ 	⊗	൫ߪ௘ ௘ߚ	+ ∗  ൯ଶ (4a)ܯ

 

Model 4a requires a sufficient number of related individuals to be in the sample to 
adequately estimate ߪ~ூ஻஽	ଶ . We consider several possible outcomes (assuming for 
convenience ߚ௘ = 0): 

1. Significant ߚ௦௡௣ and  ߚ~ூ஻஽  of same sign and equal magnitude implies the 
variance explained by genes is moderated by M. This implies a change in 
genetic variance in a trait with change in moderator M.  

2. The parameter ߚ௦௡௣ is zero and  ߚ~ூ஻஽ is not zero implies the variance 
explained by additive genetics  changes while the variance explained by SNPs 
remains constant. This could be due to a lack of power to detect moderation 
of the genetic effects attributable to SNPs.  

3. Both ߚ௦௡௣ and   ߚ~ூ஻஽ are zero implies the genetic effects on the phenotype 
are not moderated by M.  

4. Non-zero ߚ௦௡௣but zero ߚ~ூ஻஽ implies that the proportion of genetic variance 
explained by SNP changes with the moderator, but the variance explained by 
genes does not. If the SNPs measured are a random sample of the common 
genetic variance, we consider it unlikely their effect is moderated while the 
total additive genetic variance is not. We do not therefore explicitly test for 
this fourth scenario. 

Finally all outcomes above could be observed in the presence of moderation of 
the residual variance (ߚ௘ ≠ 	0). If moderation is limited to this residual variance, 
this will necessarily result in a decrease or increase in the heritability of a trait.  

Model estimation  

All models were fitted in R25 using full information maximum likelihood (FIML) 
optimization with exact derivatives. The implementation in R includes two 
FORTRAN routines to speed up calculation of the likelihood function and 
derivatives. Optimization using exact derivatives is done using the optim() 
function available in R. Scripts to perform the optimization and the required 
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FORTRAN routines are available online (URL). We tested the significance of 
parameters by means of the likelihood ratio test. We adopted an alpha of .05 for 
each test. 

Standard practice in implementing GCTA is to exclude genetically closely related 
individuals to avoid confounding of the total heritability and the SNP 
heritability.17; 26 Closely related in our analysis is defined as genetic relatedness 
greater than 0.05, as in Zaitlen et al.18 

 

Results 

Heritability and variance explained by SNPs. The total and SNP related genetic 
effects (Eq 3) on AP, AnxDep, BMI and Height are given in Table 1. All estimates 
are significant (p-values <0.05) except the variance explained by SNPs in AnxDep 
(p = 0.078, chisq = 3.11, df = 1). The total heritability is  41.6% (s.e. 2.0%) for AP  
and 40.6% (s.e 2.0%) for AnxDep, the variance explained by all SNPs is and 11.4% 
(s.e.  5.8%)  for AP and  9.8%. (s.e. 5.7%) for AnxDep. In contrast, the total 
heritability of BMI is 75.3% (s.e. =1.3%)  and for height 91.3% (s.e. 0.4%). The 
variance explained by all SNPs for BMI is 41.6% (s.e 6.4%) and for height  
53.8%(s.e. 6.3%). Consequently, for AP and AnxDep SNPs explain 27.5% (s.e. 
14.1%) and 24.3% (s.e. 14.1%) of the genetic variance and for BMI and height  
56.2% (s.e. 8.6%) and 59% (s.e. 6.9%).  

As the genetic variance explained by SNPs for BMI was higher than reported in the 
literature,27 we repeated the analysis for BMI in GCTA, using data of the distantly 
related individuals only. The analysis carried out in GCTA was based on 3119 
nominally unrelated individuals and resulted in a heritability estimate of 49% (s.e. 
11.4%). Analysis carried out in GCTA based on 6395 individuals (closely related 
and nominally unrelated) resulted in a heritability estimate of 75.4% (s.e. 1.3%). 
These results are very close to those obtained with our method. 
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Table 1: estimates of the proportion of variance attributable to SNPs, familial genetic effects and the 
environment for AnxDep, AP, BMI and Height. Significance determined by likelihood ratio testing. 
Standard errors for the different ratios approximated using the delta rule. * P < 0.05, *** P < 0.0001,  

 

 

 

 

 

 

 

 

 

 AnxDep AP BMI Height 

Proportion of phenotypic variance 
explained by SNPs 

9.8%%  n.s.                 
(se = 5.7%) 

11.4%*              
(se  5.8%) 

41.6%***  
(se= 6.4%) 

53.8%***  
(se=6.3%) 

Proportion of genetic variance 
explained by SNPs 

24.3%                         
(se = 14.1%) 

27.5% 
(se = 14.1%) 

56.2%         
(se = 8.6%) 

58.9%        
(se= 6.9%) 

Proportion of phenotypic variance 
explained by additive genetic 
influences 

40.6%***             
(se = 2.0%) 

41.6%*** 
(se = 2.0%) 
 

75.3% *** 
(se = 1.3% ) 

91.3%***   
(se = 0.4%) 

Proportion of phenotypic variance 
explained by residual influences 

59.4%                      
(se = 2.0 %) 

56.8%                  
(se = 2.0%) 

24.8%         
(se = 1.3%) 

9.7%           
(se = 0.4%) 
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Gene by Environment interaction. Next we fitted the model given in eq 4a to all 
four variables with age or birth year as the moderator of the variance components 
௦௡௣ଶߪ) ூ஻஽ଶ~ߪ	,  and	ߪ௘ଶ). Moderation of the variance components attributable to SNP 
effects was not significant for any of the phenotypes (Table 2). For AP, BMI, and 
height, moderation of the residual effects was significant as was moderation of 
the total genetic effects in BMI. In AnxDep, these effects were not significant. 
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Table 2: Parameter estimates, -2 log likelihoods and significance tests for the GxE models fitted for 
AP, AnxDep, BMI and Height. ߪ indicates intercepts , i.e standard error at moderator = 0, ߚ indicate 
magnitude of change given a standard deviation change in the age moderator.  

AP 

௦௡௣ߚ ௦௡௣ߪ  ூ஻஽ߪ ூ஻஽ߚ  ௘ߪ ௘ߚ  -2ll ∆-df Likelihood ratio 

Full-Moderation 
 

.32 .096 .62 -.002 .73 .054 17830.78 - - 

Drop ߚ௦௡௣ 
 

.32 - .61 -.003 .74 .054 17831.78 1 1 

Drop ߚூ஻஽&ߚ௦௡௣ 
 

.32  .61  .74 .053 17831.82 1 0.04 

Dropߚ௦௡௣, ߚூ஻஽& ߚ௘ 
.32  .62  .73  17859.96 1 28.14 

AnxDep 

௦௡௣ߚ ௦௡௣ߪ  ூ஻஽ߪ ூ஻஽ߚ  ௘ߪ ௘ߚ  -2ll ∆-df Likelihood ratio 

Full-Moderation 
 

.27 -0.20 .63 .03 .76 -.005 18977.33 - - 
 

Drop ߚ௦௡௣ 
 

.31  .63 .03 .76 -.004 18978.76 1 1.43 

Drop ߚூ஻஽&ߚ௦௡௣ 
 

.31 - .63 - .76 .012 18981.273 1 2.51 

Dropߚ௦௡௣, ߚூ஻஽& ߚ௘ 
- - .64 - .77 - 18982.684 1 1.39 

BMI 

௦௡௣ߚ ௦௡௣ߪ  ூ஻஽ߪ ூ஻஽ߚ  ௘ߪ ௘ߚ  -2ll ∆-df Likelihood ratio 

Full-Moderation 
 

.62 .048 .80 .045 .48 .124 16480.76   

Drop ߚ௦௡௣ 
 

.61  .80 .043 .50 .125 16482.06 1 1.30 

Drop ߚூ஻஽&ߚ௦௡௣ 
 

.61  .78  .52 .148 16491.55 1 9.50 

Dropߚ௦௡௣, ߚூ஻஽& ߚ௘ 
.61 - .82 - .48  16684.90 1 193.35 

Height 

௦௡௣ߚ ௦௡௣ߪ  ூ஻஽ߪ ூ஻஽ߚ  ௘ߪ ௘ߚ  -2ll ∆-df Likelihood ratio 

Full-Moderation 
 

.53 0.047 .69 0.005 .21 0.02 11132.06 - - 

Drop ߚ௦௡௣ 
 

.53 - .69 0.003 .21 0.02 11134.03 1 1.97 

Drop ߚூ஻஽&ߚ௦௡௣ 
 

.52 - .69 - .21 0.02 11134.29 1 0.26 

Dropߚ௦௡௣, ߚூ஻஽& ߚ௘ 
.53 - .68 - .21 - 11154.57 1 20.28 
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Figure 1: A. σୱ୬୮ଶ , σ~୍୆ୈଶ , and , σଶୣ  in AP as a function of age. B. the heritability( σ~౅ాీమ
σ~౅ాీమ 	ା	σ౛మ ) 

and proportion of phenotypic variance attributable to SNPs (
σ౩౤౦మ

σ~౅ాీమ 	ା	σ౛మ)  in AP as a function 

of age. A histogram visualized the distribution of the standardized moderator age. 

Figure 2: A: σୱ୬୮ଶ ,	σ~୍୆ୈଶ , and	, σଶୣ  in BMI as a function of age. B:  the heritability( σ~౅ాీమ
σ~౅ాీమ 	ା	σ౛మ ) 

and proportion of phenotypic variance attributable to SNPs (
σ౩౤౦మ

σ~౅ాీమ 	ା	σ౛మ) in BMI as a function 

of age. A histogram visualized the distribution of the standardized moderator age. 
Figure 3: A: σୱ୬୮ଶ ,	σ~୍୆ୈଶ , and	, σଶୣ  in height as a function of birthyear. B:  the heritability( 

σ~౅ాీమ
σ~౅ాీమ 	ା	σ౛మ ) and proportion of phenotypic variance attributable to SNPs (

σ౩౤౦మ
σ~౅ాీమ 	ା	σ౛మ) in height 

as a function of birth year. A histogram visualized the distribution of the standardized 
moderator: birth year. 
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Discussion 

We presented a model to estimate the moderation of SNP genetic, total additive 
genetic, and residual effects by (continuous) moderators. The model can be used 
in samples of unrelated individuals to moderate the genetic variance attributable 
to SNPs. In addition, the model can be used in pedigree data to separately 
moderate SNP genetic effects and total additive genetic effects. The GxE 
interaction models fitted in this paper show differences in genetic architecture 
between attention problems, anxious depression, height, and BMI that are not 
limited to differences in	ߪ~ூ஻஽ଶ ௦௡௣ଶߪ ,  and ߪ௘ଶ between traits. Our results indicate 
that for anxious depression, none of the genetic and non-genetic effects are 
moderated by age,while for AP, BMI, and height the residual variance increases 
with age or birth year. For BMI, there is also a positive moderation effect of the 
additive genetic variance by age. We found no evidence of moderation of ߪ௦௡௣ଶ  in 
any of the phenotypes considered.  

The findings for AnxDep and AP are in line with previous findings in longitudinal 
twin studies.20; 21 Note that where we find an increase in ߪ௘ଶ  for AP with time, Kan 
et al.20 do not.  Differences in study design, and estimated parameters between 
Kan et al.20 and the current work could explain the different results. The findings 
for BMI (decreasing heritability with age) are in line with a recent meta-analysis 
into the heritability of BMI.28 Other recent studies into the genetics of BMI have 
found evidence for GxE at the SNP level. Rosenquist et al.7 reported evidence for 
an interaction  between the FTO gene and birth cohort on BMI. 

The results of fitting the Zaitlen model to AP, AnxDep, BMI and height confirmed 
previously observed differential genetic architectures for different disorders. In 
line with previous twin studies, both AP and AnxDep are moderately heritable,20; 21 
while BMI and height are strongly heritable.28; 29 The pattern for the SNP 
heritability estimates also agreed with the picture emerging from other studies 
with lower SNP heritability estimates for quantitative psychiatric traits than for 
other psychiatric and non-psychiatric traits.30 The relatively low SNP heritability 
estimates found for AP and AnxDep are consistent with the presence of disease 
heterogeneity.31 In contrast, a substantial part of phenotypic variance of height 
and BMI is explained by SNPs. For height, our estimate of variance explained by 
SNPs (53.8%) was comparable to the estimate reported by the GIANT consortium 
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(49.8%, Wood, et al 201432). The only unexpected result was the higher estimate 
for BMI (SNP heritability 41.6%), which is higher than those of previous studies 
(17%, Yang et al 201133; 23%, Zaitlen et al. 201318).  We validated our BMI result 
by running GCTA on the maximum number of unrelated in the sample and on all 
data, resulting in comparable estimates. These results suggest the higher SNP 
heritability is not a function of the software but of the sample. A review of the 
heritability of BMI by Elks et al.28 found the type of measurement of BMI 
(measured vs. self report) and age of the participants to influence the heritability. 
As our sample has many young individuals and is almost completely based on 
measured BMI and  these factors are associate with a higher heritibillity by Elks et 
al this could play a role.   
The method presented here has some limitations. Under certain conditions the 
GxE interaction for genetic variance as a function of IBD can result in false 
positives. If the current method is applied in genotype data collected in twins 
and/or families, we recommend the user to determine whether the relationship 
between moderator and phenotype is of the kind van der Sluis et al.34 find to 
inflate the false positive rate.  When carefully considering the relationship 
between moderator and phenotype and making plausible assumptions, this 
model will perform as expected.  Any GxE model is sensitive to scaling35. The GxE 
interaction terms found here are conditional of the scale of the variable; different 
scaling may yield different results. Where BMI and height have a definite scale 
(i.e., kg/m2 and m or cm), the scale of the data based on psychiatric 
questionnaires is generally arbitrary. This problem is however not limited to the 
current model and its solution is beyond the scope of this article (potential 
solutions are discussed elsewhere13; 35). 

Besides the flexibility of this method to include unrelated as well as related 
individuals and the inclusion of a continuous moderator, specific tests that were 
already possible in GCTA can still be applied. Generally the genetic effects 
attributable to SNPs are assumed to be a random subset of all additive genetic 
variance. Moderation of the variance attributable to SNPs in absence of 
moderation of the additive genetic variance is therefore not expected. A result 
suggesting moderation of the variance attributable to SNPs in the absence of 
moderation of the additive genetics variance should be treated as anomalous.  
However, the model does allow for separate testing of the moderation of variance 
attributable to SNPs.  Hypotheses that explicitly formulate the expectation that 
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variance attributable to SNPs is moderated , while the additive genetic variance is 
not, can be tested. This type of hypothesis test can be interesting in the context of 
disease heterogeneity.31 In the presence of disease heterogeneity the explicit 
expectation is that of low  SNP heritability while additive genetic variance remains 
high. 

The addition of multiple genetic effects (GRMs) further allows for the separate 
moderation of different subsets of the genome. One could for example limit the 
SNPs in a GRM to a single biological pathway (i.e. SNPs in genes in the serotonin 
pathway), to a single class of SNPs (i.e. coding variants), or to specific regions of 
the genome (i.e. regulatory elements, the exome, etc.).The moderator can be a 
genetic variant (GxG i.e. a known risk variant), biological (i.e. a gene expression; 
gut microbiota) or environmental (i.e. early childhood trauma experiences).  

The current application of the model revealed differences in genetic architecture 
between attention problems, symptoms of anxiety and depression, BMI and 
height. The model shows promise in being able to reveal biologically informative 
GxE interactions.  
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table S1: Parameter estimates and log likelihood for the Zaitlen model and the model in eq 4 given a 
range of simulated values for σୱ୬୮ଶ ,	σ~୍୆ୈଶ , and	, σଶୣ  . Table reveals the models converge to the same 
-2LL and same estimate of ߪ௦௡௣ଶ . 

 

 

 

 

 

 

 

σୱ୬୮ଶ , σ~୍୆ୈଶ  - σୱ୬୮ଶ , σ~୍୆ୈଶ σଶୣ  Zaitlen LL  Nivard LL 
Simulated 
 h2 snp 

Estimated 
 h2snp Zaitlen 

Estimated 
 h2snp Nivard 

0.1 0.9 1 1 17681.27544 17681.2754 0.05 8.62306E-05 1.42263E-06 
0.2 0.8 1 1 17629.37754 17629.37753 0.1 0.103484528 0.103214272 
0.3 0.7 1 1 17656.17652 17656.17652 0.15 0.233336336 0.23338012 
0.4 0.6 1 1 17570.96095 17570.96095 0.2 0.306630753 0.306637925 
0.5 0.5 1 1 17651.7169 17651.71689 0.25 0.307512002 0.307599153 
0.6 0.4 1 1 17625.01804 17625.01804 0.3 0.334809229 0.334829735 
0.7 0.3 1 1 17603.86846 17603.86846 0.35 0.306268825 0.30627982 
0.8 0.2 1 1 17624.51335 17624.51335 0.4 0.373124729 0.373106123 

0.1 0.9 1 0.5 17145.9007 17145.9007 0.0666667 5.44948E-10 1.6286E-09 
0.2 0.8 1 0.5 17094.9891 17094.9891 0.1333333 0.06232238 0.062400028 
0.3 0.7 1 0.5 17114.8934 17114.8934 0.2 0.211478331 0.211555235 
0.4 0.6 1 0.5 17116.72428 17116.72428 0.26666667 0.419951483 0.419968402 
0.5 0.5 1 0.5 17102.29316 17102.29316 0.33333333 0.293760135 0.293758324 
0.6 0.4 1 0.5 17142.75462 17142.75462 0.4 0.37675785 0.376759459 
0.7 0.3 1 0.5 16996.54725 16996.54725 0.46666667 0.516114696 0.51612226 
0.8 0.2 1 0.5 17128.18242 17128.18241 0.53333333 0.489751374 0.489637655 

0.1 0.9 1 2 17938.80008 17938.80008 0.03333333 1.64593E-09 7.09134E-10 
0.2 0.8 1 2 17911.46342 17911.4635 0.06666667 8.65775E-10 5.13991E-06 
0.3 0.7 1 2 17949.52296 17949.52296 0.1 0.158529894 0.158487064 
0.4 0.6 1 2 17907.82245 17907.82245 0.133333 0.089440064 0.089457644 
0.5 0.5 1 2 17862.7044 17862.7044 0.166666667 0.146489071 0.146528413 
0.6 0.4 1 2 17938.71755 17938.71755 0.2 0.275167092 0.275169226 
0.7 0.3 1 2 17923.36645 17923.36644 0.233333333 0.236952853 0.237019414 
0.8 0.2 1 2 17851.47076 17851.47076 0.266666667 0.320172587 0.320173591 
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Chapter 8: Rapid genetic (co)variance component estimation. 
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Abstract:  

Estimating the genetic (co)variance between traits based on genotyped markers 
can reveal biologically insightful relations. However, procedures used to estimate 
genetic covariance are computationally intensive. As sample sizes and the number 
of traits increase, multivariate analysis becomes progressively less tractable. We 
propose a method that reduces multivariate (co)variance estimation into a series 
of univariate variance estimations. The method is based on the observation that 
the variance of the sum of two random variables equals the sum of their 
variances, plus twice their covariance.  Our procedure drastically reduces the 
dimensions of the matrix that is repeatedly inverted. We show that we can obtain 
unbiased estimates of the genetic covariance between traits on the basis of a 
series of genetic variance decompositions of the individual variables and the sum 
of each pair of variables. 

 Our method allows for the concurrent modeling of multiple genetic covariance 
matrices. Separate covariance matrices can be estimated for different genetic 
pathways, genes, or functional categories of markers. The possibility of modeling 
multiple genetic covariance matrices allows for the estimation of the covariance 
attributable to the effect of genotyped markers in samples containing closely 
related subjects.  

We applied the procedure to item data on extraversion and neuroticism. Sum 
scores for these personality traits tend to have relatively low SNP heritabilities, 
while heritability as estimated from twin data is moderately high, Here, an 
estimate of the genetic covariance matrix of a set of 24 items measuring 
extraversion and neuroticism was obtained. 
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Introduction. 

Genetic relationship matrix restricted maximum likelihood (GREML) is used to 
estimate the variance in traits and diseases that is attributable to, or tagged by, 
common genetic variants1. The method, as implemented in the software Genetic 
Complex Trait Analysis (GCTA), has been extended to allow for estimation of the 
bivariate genetic covariance between two diseases or traits2. The software suit 
GEMMA extends this further and implements multivariate (co)variance estimation 
in the context of linear multivariate  mixed modelling3.  While high dimensional 
multivariate extension of GREML is conceptually easy, it is computationally heavy.  
We propose a method to estimate a high dimensional genetic covariance matrix 
by reducing the multivariate problem to a series of univariate problems. As these 
univariate problems can be executed independently, this method is suitable for 
parallelization.   

Univariate GREML estimates the effects of all measured genotypes as random 
effects in a mixed linear model (equation 1).  ݕ = ܺb +ܹu + ݁  (1)  

In this model: y is an (nx1) multivariate normal vector of observed phenotypes, 
with n being the sample size; X is an (nxm) matrix of random variables, i.e. fixed 
covariates, where m is the number of fixed covariates. b (mx1) is a vector of fixed 
effects.  W is a matrix of (nxp) standardized genetic variants, where p is the 
number of genetic variants. u (px1) is a vector of zero mean random genetic 
effects, e (nx1) is a random normal vector of zero mean residual values. The 
genetic variants are usually single nucleotide polymorphisms (SNP) coded 0, 1, 2. 
If Sik is the value of SNP for individual i then the standardized genetic value Zik 
equals ( ௜ܵ௞ − 	2 ∗ 	(௞ܨ ඥ2ܨ௞ ∗ (1 ⁄(௞ܨ	−  where Fk is the minor allele frequency of 
SNP k. 

Yang et al. (2011) model the covariance matrix (V) of the multivariate normal 
vector y as: ݕ	~	ߤ)ܰ	, ܸ) 

(ܸ୬୶୬)	 = (୬୶୬)	ܣ	 ௚ଶ	ߪ	⊗ (୬୶୬)ܫ	+  ,௘ଶ  (2)	ߪ	⊗
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where A is an nxn matrix of genetic similarities between subjects defined as 
WW’/p, and ߪ	௚ଶ  as the genetic variance explained by all standardized genetic 

variants in W. This operationalization of ߪ	௚ଶ   has been shown to be valid under a 

wide array of conditions4. 

Estimation of σ2
g and σ2

e by means of (restricted) maximum likelihood requires 
repeated inversion of V. As the dimensions of V may be large (e.g.,  > 5000) 
repeated inversion is computationally burdensome. The computational burden is 
further increased if the phenotype of interest is multivariate, including k 
phenotypes. Letting  	ߑ୥	(୩୶୩) denote the genetic covariance matrix and ୣߑ	(୩୶୩) 
the environmental covariance matrix, the dimensions of V increase to (k ∗n)	x	(k ∗ n). 

	ܸ((୩∗୬)	୶	(୩∗୬))	 = (୬୶୬)ܣ	 (୩୶୩)	୥ߑ	⊗ + 	 I(୬୶୬)  (3)  (୩୶୩)	ୣߑ	⊗
 

Multivariate GREML optimization may become intractable with the increase in 
dimension n (subjects) and dimension k (phenotypes).  One solution is to 
diagonalize A using eigenvalue decomposition. This renders the matrix to be 
inverted diagonal, which is computationally simple5; 6. This solution is 
implemented in the GEMMA software suite3. However this solution is limited to 
models in which a single genetic covariance matrix is estimated. Kostem & Eskim7 
proposed a constraint that allows for multiple genetic covariance matrices to be 
estimated subject to a diagonalization algorithm. However, a multivariate version 
of their method would constrain the multiple genetic covariance matrices to be 
proportional. This proportionality renders the diagonalization algorithm feasible, 
but may be substantively undesirable.   

Here we propose a method to reduce the computational burden associated with a 
multivariate analysis by reducing the multivariate problem to multiple (tractable)  
univariate problems.  We exploit the fact that the variance of the sum of 2 
random variables is the sum of their variances plus twice their covariance.  We 
estimate the genetic variance of both variables and the genetic variance for their 
sum. Given these results, we can derive the genetic covariance. We estimate the 
environmental variance for both variables and their sum, allowing us to derive the 
environmental covariance. 
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The method is further capable of estimating separate effects of multiple genetic 
covariance matrices for separate sets of SNPs. We can partition the covariance 
matrix  ܸ of a set of random variables Y into multiple genetic and/or 
environmental effects: 

  

	ܸ	 = ଵܣ	 ௚ଵߑ	⊗ + ଶܣ	 ௚ଶߑ	⊗ (୬୶୬)ܫ	+ ௘ߑ	⊗   (4) 
 

For example,  suppose a genetic relatedness matrix (A1) is estimated using all SNPs 
in genes in the serotonergic pathway, and a second genetic relatedness matrix is 
estimated based on all other SNPs (A2). The SNPs in A1 and A2 can be correlated 
due to LD. The validity of GREML estimates based on specific pathways and 
regulatory categories of SNPs has been studies extensively8. We can partition 
covariance matrix  Σ of a set of k phenotypes Y into covariance matrices,ߑ௚ଵ, ߑ௚ଶ, 
and ߑ௘. This model can, in addition, be applied to estimate separate covariance 
matrices conditioned on separate chromosomes, pathways, or functional 
categories of SNPs. If related individuals are present in the sample, one can 
accommodate this by modelling separate genetic covariance matrices for the 
closely and distantly related subjects separately (see9).  

We simulated data to establish that the method performs as expected, and 
applied the method to an empirical, multivariate dataset of neuroticism and 
extraversion personality items.  A recent genome-wide association study (GWAS) 
of a neuroticism sum score revealed a genome wide significant genetic variant (de 
Moor et al. 2015, in press10), and estimated the variance explained by all SNPs for 
neuroticism to be ~15% . For extraversion, the estimated SNP heritability  is: ~12% 
10; 11.  

Methods. 

Statistical methods 

Let Yi and Yj be two correlated zero mean random variables (phenotype). The 
variance of the sum of two correlated random variables equals: 

Var(Y1 + Y2) = Var(Y1) + Var(Y2)  + 2* Cov(Y1, Y2) (5) 
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We assume that the variances of Y1, Y2, the covariance between Y1 and Y2, and the 
variance of the sum Y1 + Y2 are the sum of a genetic variance component and a 
residual variance component: 

Var(Y1) = σ2
g1 + σ2

e1   (6a) 

Var(Y2) = σ2
g2 + σ2

e2   (6b) 

Var(Y1 + Y2) = σ2
g3 + σ2

e3    (6c) 

where  

Var(Y1 + Y2) = σ2
g1 + σ2

g2 + σ2
e1 + σ2

e2 + 2* (σg(Y1,Y2) + σe(Y1,Y2)) (6d) 

It follows that: 

σ2
g3 = σ2

g1 + σ2
g2 +2* (σg(Y1,Y2))   (6e) 

This gives an unbiased estimate of the genetic and environmental covariance 
between trait Y1 and Y2: 

σg(Y1,Y2) = (σ2
g3 – (σ2

g1 + σ2
g2)) /2   (7a) 

σe(Y1,Y2) = (σ2
e3 – (σ2

e1 + σ2
e2)) /2   (7b) 

  

Estimation of the genetic and environmental variance of Y1, Y2 and of the sum 
(Y1+Y2) using univariate GREML, and applying equation 7 gives the genetic 
covariance matrix ߑ௚ and environmental covariance matrix ߑ௘. The resulting 
covariance matrix is not guaranteed to be positive definite due to sampling 
fluctuation. If the matrix is not positive definite, Higham’s algorithm12 can be 
applied to approximate the nearest positive definite matrix.  From the genetic 
covariance matrix one can readily obtain the genetic en environmental correlation 
matrix (equation 8). ݎ௚ = 	 ఙ೒(೤భ೤మ)	ఙ೒೤భ∗ఙ೒೤మ	 (8a) 

௘ݎ = 	 ఙ೐(೤భ೤మ)	ఙ೐೤భ∗ఙ೐೤మ	 (8b) 
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To expand from the bivariate to the multivariate, we sequentially estimate the 
genetic variance of each random variable and the sum of each pair of random 
variables. Given k phenotypes, this implies k*(k+1)/2 univariate analyses. As the 
genetic variance estimations are executed independently, this procedure can be 
parallelized.  

In the present procedure the genetic correlation is not directly estimated but 
derived from other estimates, therefore no standard error is available.  A Taylor 
approximation of the standard error of rg  was derived by Visscher et al13 and can 
be used if a standard error is required.  Extension of the model to include multiple 
genetic relatedness matrices (Equation 5) requires an adaptation of the functions 
for the genetic correlations and the standard errors (see Appendix A). Standard 
errors for genetic covariance were approximated using an extension of the Taylor 
approximation given in Visscher et al13 . 

Application to simulated data. 

We simulated data to establish that the technique outlined above accurately 
estimates the genetic  and environmental correlations for different true values for 
the genetic and environmental correlations between traits. In the first simulation, 
we retrieved the genetic correlation between two traits given a single GRM 
containing all SNPs. In the second simulation, we divided the genetic effects over 
2 GRM’s, one constructed with 4046 SNPs in the serotonin pathway, and one 
constructed with all other SNPs. The phenotype data were simulated for 4000 
genotyped unrelated individuals in the Netherlands twin register (NTR).  Subjects 
were genotyped on the Affymetrix 6.0 platform (described in chapter 7). Quality 
control selected SNPs with MAF > 0.01 and HWE < 1* 10-5  and all three GRMs 
were calculated in GCTA 1.24.1.  

Application to neuroticism and extraversion data 

The method was applied to neuroticism and extraversion item data collected from 
participants in the Netherlands Twin Register (NTR )14. Data on twelve neuroticism 
items and twelve extraversion items from the NEO PI questionnaire15 were 
available for 5578 individuals in 2790 extended families.  Items are scored by 
participants on a 5 point Likert scale, with categories ranging from “strongly 
disagree” to “strongly agree”.  We estimate the genetic covariance matrix based 
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on measured SNPs of the 24 item scores, the genetic covariance matrix based on 
pedigree data and the environmental covariance matrix. The genetic (co)variance 
structure of the NEO personality inventory items is known from a recent twin 
study16. The neuroticism items are expected to correlate positively, the 
extraversion items are expected to correlate positively, and the correlations 
between neuroticism and extraversion items are expected to be low and negative.  
This pattern of correlations has been confirmed across cultures17. Previous 
analysis of the neuroticism and extraversion sum scores using GCTA has revealed 
a low (15% for neuroticism, lower for extraversion) contribution of genetic effects 
measured by SNPs10; 11. All individuals in the represent study were genotyped on 
the Affymetix 6.0 platform (see chapter 7).  Individuals were of European decent. 
We regressed the items on 3 ancestrally relevant principal components18 and sex. 

The Netherlands Twin Register sample contains a substantial number of twins and 
their extended family, and application of GREML to obtain the SNP heritability 
generally would require removing the closely related subjects. However, as 
mentioned above, our method can estimate multiple variance components, and 
we adopted the methodology suggested by Zaitlen et al.9  to estimate the genetic 
effect attributable to SNPs and the genetic effect attributable to the total additive 
genetic variance.  The first genetic effect is based on the genetic relatedness for 

all pairs of individuals (ܣ௡∗௡௙௨௟௟) The second genetic effect is based on pairs of closely 
related individuals only (ܣ௡∗௡வ	଴.଴ହ, relationships below 0.05 were all set to 0).  

  ܸ = ௡∗௡௙௨௟௟ܣ ௦௡௣ߑ	⊗ + ଴.଴ହ	௡∗௡வܣ ⊗ ௔ߑ) − (௦௡௣ߑ 		+ 	 I୬∗୬ ௘ߑ	⊗	  (9) 

 

For the 24 items, 3 covariance matrices were estimated: ߑ௦௡௣, ߑ௘and (ߑ௔ −  (௦௡௣ߑ
based on the model in equation 9. The sum of ߑ௦௡௣ and (ߑ௔ −  ௦௡௣) results anߑ
estimate of the total additive genetic (co)variance.  

All models were estimate in R using full information maximum likelihood (FIML) 
optimization with exact derivatives in the function optim(). The implementation in 
R includes two FORTRAN routines to speed up essential steps in the likelihood 
function and the parameter derivatives. Scripts to perform the optimization and 
the required FORTRAN routines are available online (URL).   
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Results 

Simulation  

We simulated under the model in equation 4, in which we chose k to equal 2, and 
based A on the realized genetic relatedness matrix of 4000 distantly related 
genotyped individuals from the NTR. We simulated 3 sets of values forߑ௚, and ߑ௘  
(see table 1).  
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Table 1: Simulated rg, mean retrieved rg ,mean standard error for rg and the standard deviation for rg 
over 100 replications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario Simulated 
∑(kxk)g 

Simulated 
∑(kxk)e 

Simulated  
rg 

Estimated 
rg 

rg 

(Visscher 
et al) 

Mean 
SE(rg) 

SD(rg) SD(rg)  
(Visscher 
et al) 

1 1,       .4 
.4,       1 

1,        0 
0,        1 

.4 .391 .391 0.1052 0.1148 0.1140 

2 1,       .8 
.8,       1 

1,        0 
0,        1 

.8 .806 .811 0.0882 0.0871 0.0837 

3 1,      .8 
.8,      1 

1,     . 4 
.4,      1 

.8 .802 .805 0.0623 0.0638 0.0615 
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We generated 100 instances of Y1 and Y2 given the covariance V, and means of 0 
using mvrnorm() in R. We estimated the genetic correlation in 100 replications 
and present the mean of the retrieved correlations in table 1.  As shown, the 
method produces unbiased estimates, in that the mean correlation of 100 
replicates is close to the true population correlation. The standard deviations of 
the estimates of rg are close to the theoretical standard errors. The proposed 
estimator of rg correlates .99, .95 and .98 under scenario 1, 2, and 3, respectively, 
with the estimator of rg as described in Visscher et al supplemental text S213.  

We simulate 2 correlated traits, where the correlation between the traits is a 
function of 2 GRM’s and a residual covariance matrix. We chose the number of 
traits k to equal 2. A1 is the genetic relatedness matrix based on 4046 SNPs in the 
KEGG serotonine pathway19 for 4000 distantly related genotyped individuals from 
the NTR, and A2 is a GRM based on all other SNPs (not in the KEGG serotonine 
pathway) in the same 4000 NTR participants. We chose 2 sets of values for ߑ௚, ߑ௦௘௥௢௧௢௡௜௡௘and ߑ௘	as described in table 2. 
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Table 2: Parameters for two sets of  ∑(kxk)g ∑(kxk)serotonine and ∑(kxk)e, simulating two correlated traits for 
which the genetic correlation is different between SNPs in serotonin and SNPs in the rest of the 
genome. 

 ∑(kxk)g Y1 Y2 ∑(kxk)serotonine Y1 Y2 ∑(kxk)e Y1 Y2 

Set 1 Y1 .9 .23 Y1 .10 .07 Y1 1 .3 

Y2 .23 .9 Y2 .07 .10 Y2 .3 1 

Set 2 Y1 .9 .4 Y1 .10 .10 Y1 1 .6 

Y2 .4 .9 Y2 .08 .08 Y2 .6 1 
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Note that the SNPs in the serotonin pathway were simulated to contribute 5% of 
variance in trait Y1 and Y2, and the correlation between serotonergic effects on Y1 
and Y2  was chosen to equal 0.7.  We generated 100 instances of Y1 and Y2 given 
the covariance V and means of 0 using mvrnorm() in R.  Subsequently we 
estimated the genetic correlations rg and rserotonine and the environmental 
correlation re. 
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Table 3: simulated rserotonine,  rg and re,  mean retrieved rserotonine,  rg and re in 100 simulations, the 
standard deviations of the 100 estimates of  rserotonine,  rg and re  and the approximate standard errors 
of rserotonine,  rg and re. 

 r(Y1 Y2) Simulated r Mean Estimated 
r 

SD(r) Mean SE 
(aproximated) 

Set 1 rserotonine 0.7 0.696 0.134 0.139 
rg 0.2556 0.233 0.138 0.128 
re 0.3 0.312 0.119 0.108 

Set 2 rserotonine 0.8 0.792 0.107 0.101 
rg 0.44444 0.431 0.120 0.111 
re 0.6 0.602 0.091 0.083 
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Figure 1: Loadings on the first principle component of ઱ܘܖܛshow a clear separation between the extraversion(x, 
blue) and neuroticism items(+, red). 
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The covariance matrices ߑ௦௡௣	 , ௘ߑ  ௔, andߑ   were transformed to the nearest 
positive definite covariance matrices using Higham’s algorithm12. The nearest 
positive definite matrix was subsequently standardized to obtain the correlation 
matrix. This procedure resulted in 3 correlation matrices: the correlation matrices 
between 24 items based on the effects of SNPs (rsnp), the correlation matrix based 
on familial genetic effects (ra) and the environmental effect(re). We further 
computed the observed correlation between items (r observed). The 4 correlation 
matrices are plotted in figure 2.  

As Figure 2 clearly shows the item correlation based on measured SNPs follow the 
expected pattern. We found high correlations between neuroticism items, mostly 
positive correlations within extraversion items, negative correlations across the 
two traits. The pattern of correlations is in line with our previously formulated 
expectations. 
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Figure 2: clockwise from top left the four 24x24 correlation matrices rsnp, rtwin, the observed 
correlation and re. 
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Discussion. 

The method proposed here involves reducing a multivariate estimation problem 
to a series of univariate estimation problems.  The method has the benefit of 
rapidly estimating the genetic covariance between traits given genome wide data. 
The (genetic) covariance matrices are estimated in a series of univariate analyses. 
The method can further estimate separate genetic covariance matrices for distinct 
sets of SNPs, or other distinct sources of genetic information (i.e., pedigree and 
SNPs). The estimates of genetic covariance were found to be unbiased. The 
standard errors based on extension of the work of Visscher et al.13 are very close 
to the observed standard deviation of the parameters in our simulations.  

The multivariate analysis of personality data revealed the expected covariance 
structure based on measured genotypic information. The SNP variances of three 
extraversion items were close to zero. The removal of these items from the scale 
followed by the recalculation of the SNP heritability of the scale revealed a higher 
SNP heritability. The present results show that our method is capable of detecting 
a specific genetic covariance structure, even if the power to detect individual 
genetic (co)variance parameters is low. While this particular covariance structure 
is well known and has often been replicated, this type of analysis lends itself well 
for exploration of large -omics datasets. 

 Our method has three limitations. First, the covariance matrices, constructed 
piecemeal from univariate analysis, are not necessarily positive definite. Various 
techniques exist to determine the nearest positive definite matrix should the user 
require a positive definite covariance matrix. Here we employed Hingham’s 
algorithm 12, however given the dimensions of the covariance matrix or specific 
constraints one might want to place on the covariance matrix other solutions 
might be preferred. Second, the method is currently performed on pair wise 
complete data. All parameters (e.g h2 and rg, SE(rg) ) could be estimated in the 
presence of missingness, however their performance in the presence of 
missingness in unknown. Further investigation is needed to extend the current 
method to handle missing data. 

A third limitation is that this method still requires access to raw genotypes, where 
heritability and genetic correlation can be estimated from summary statistics from 
GWAS analysis using “LD score regression”20; 21. LD-score regression is further 
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capable of partitioning the genetic effect into multiple genetic effects, each 
reflecting the effect of a subsets of SNPs22. LD-score regression  is computationally 
less burdensome than GREML. However, GREML is flexible in that it allows for 
random effects not only to reflect the effects of SNPs but can be extended to 
accommodate other effects. These effects include concurrently modelling  SNP 
and additive effects as discussed above,  gene by environment interaction (van 
Dongen et al;  in preparation, Nivard et al. Submitted), and maternal genetic 
effects that influence traits via the environment23.  

The proposed technique allows the estimation of a genetic covariance  matrix for 
a large number of traits of interest, and further allows concurrent estimation of 
multiple genetic covariance matrices  based on distinct genetic effects. The 
technique can therefore be implemented for functional category based, pathway 
based or gene based tests of covariance between traits 
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Appendix A 

If we wish to approximate standard errors for rg in: 

	ܸ(୩୶୩⊗	୬୶୬)	 = (୬୶୬)	ܣ	 (୩୶୩)	୥ߑ	⊗ (୬୶୬)ܫ	+   (୩୶୩)	ୣߑ	⊗
 

Visscher et al. (2014) provide  a  first order Taylor approximation of the sampling 
variance of rg. However, if we wish to approximate standard errors for rga and rgb 
in:  

	ܸ	 = ୟܣ	 ୥ୟߑ	⊗ + ௕ܣ	 ௚௕ߑ	⊗ (୬୶୬)ܫ	+   ୣߑ	⊗
 

we need to extend he approximation provided by Visscher et al. 

Let Y1 and Y2 be two traits of interest with unit variance and  means of 0. Let the 
variance of Y1 and Y2 be a function of 2 genetic factors and a residual. 

Var(Y1) = σ2
ga Y1 + σ2

gb Y1 + σ2
eY1 

Var(Y2) = σ2
ga Y2 + σ2

gb Y2+ σ2
eY2 

Let us then construct trait z1 = y1 + y2 and z2 = y1 – y2  which implies, cov(z1,z2) = 0.  
If we decompose the variance for z1 and z2 as below: 

Var(Z1) = σ2
ga Z1 + σ2

gb Z1 + σ2
e Z1 

Var(Z2) = σ2
ga Z1 + σ2

 gb Z2  + σ2
e Z2 

We can determine rga the correlation between trait Y1 and Y2  given the first 
genetic effect a and rgb the correlation between Y1 and Y2 given the second genetic 
effect b. 

Cov(Y1,Y2)ga = = (σ2
ga Z1 – (σ2

ga Y1 + σ2
ga Y2)) /2  

Cov(Y1,Y2)gb = = (σ2
gb Z1 – (σ2

gb Y1 + σ2
gb Y2)) /2  

rga = Cov(Y1,Y2)ga / (σga Y1 * σga Y2) 

rgb = Cov(Y1,Y2)gb / (σgb Y1 * σgb Y2) 
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We can then determine the variances explained by each of the genetic effects in 
trait Y1 and trait  Y2 

 ݃௔	௒ଵଶ 	= σ2 ga Y1 / var(Y1) ݃௕	௒ଵଶ  = σ2
gb Y1 / var(Y1) ݃௔	௒ଶଶ  = σ2
ga Y2 / var(Y2) ݃௕	௒ଶଶ  = σ2
gb Y2 / var(Y2) 

 

 

We extend this function to obtain the sampling variance for the genetic 
correlation between traits Y1 and Y2 given the SNPs in GRM Aa (rga) and the 
correlation for SNPs in GRM Ab  (rgb). 

 We empirically estimate  var(σ2
ga Z1),  var(σ2

ga Z2), var(σ2
gb Z1),  var(σ2

gb Z2), ݃௔	௒ଵଶ ,	݃௕	௒ଵଶ ,	݃௔	௒ଶଶ , and	݃௕	௒ଶଶ . The empirical estimates of sampling variance 
account for the fact that the parameters ݃௔	௒ଵଶ  and	݃௕	௒ଵଶ ,	and ݃௔	௒ଶଶ  and	݃௕	௒ଶଶ  are 
correlated. Based on these estimates we express the sampling variance for the 
genetic correlation between traits Y1 and Y2  given the SNPs in GRM Aa, var(rga) as: 

 

 Var൫ݎ௚௔൯ = 	ቌ ଵ	ି	௥೒ೌସ∗	ට௚ೌ	ೊభమ ∗௚ೌ	ೊమమ ቍଶ ∗ 	var൫ߪ௚௔	௓ଵଶ ൯ +	ቌ ଵା	௥೒ೌସ∗	ට௚ೌ	ೊభమ 	∗	௚ೌ	ೊమమ 	ቍ
ଶ ∗

		var൫ߪ௚௔	௓ଶଶ ൯	 
 

And the sampling variance for the genetic correlation between traits Y1 and Y2  
given the SNPs in GRM Ab is given by: 
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Var൫ݎ௚௕൯ = ۇۉ	 1 − ௚௕4ݎ ∗ 	ට݃௕	௒ଵଶ ∗ ݃௕	௒ଶଶ ۊی
ଶ ∗ 	var൫ߪ௚௕	௓ଵଶ ൯ ۇۉ	+ 1 + ௚௕4ݎ ∗ 	ට݃௕	௒ଵଶ ∗ ݃௕	௒ଶଶ ۊی	

ଶ

∗ 		var൫ߪ௚௕	௓ଶଶ ൯ 

 

Note that determining the sampling variances for correlations in multiple GRM’s 
requires us to use estimated sampling variances of gz1a ,gz1b ,gz2a  and gz2b. 
Therefore we are required to estimate a univariate model for variable Z1 and Z2. 
Estimation of the genetic correlations only require estimation of the univariate 
model for variable Z1. The estimation of standard errors for multiple genetic 
correlations increases the computational burden of our method. 
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Chapter 9: Summary 
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This thesis focused on the genetics of psychopathology across the lifespan. 
Genetic contributions to measures of psychopathology were estimated based on 
twin and family models, and on measured genotypes (i.e., single nucleotide 
polymorphisms). Chapter 1 broadly outlined the methods used in behavior 
genetics, and genetic epidemiology as applied in this thesis, and discussed how 
measured genetic variants and environmental exposures can be incorporated into 
genetic studies.  
 
In chapter 2, the results were presented of a cohort sequential study of the 
genetic and environmental influences on Symptoms of Anxiety and Depression 
(SxAnxDep) between age 3 and 63. Symptoms of anxiety and depression were 
measured in twins participating in research of the Netherlands twin register 
(NTR).1-3 Young twins were rated by their mother at age 3, 7, 10, and 12.  Self-
report data for these twins was available at age 14, 16 and 18 years, and for 
adolescent and adult twins of 14 years and older, who participated in up to 8 
waves of data collection in the Adult Netherlands Twin Register. SxAnxDep were 
assessed using an age appropriate version of the Anxious-Depression subscale of 
the Child Behavior Check List (CBCL; ages 3 through 12) and the Youth or Adult 
self report (YSR and ASR) inventories (ages 14 through 63).4 The availability of 
twin data allowed us to estimate the proportion of variance in SxAnxDep that was 
explained by genetic and the environment at different ages. The availability of 
repeated measures (up to a maximum of 8 repeated measures on some 
participants) allowed us to estimate to what extent the genetic and 
environmental factors at one age played a role at a later age (transmission), and  
to what extent novel genetic and environmental factors  (innovation) were 
important. Specifically, after organizing the data into 2 year age bins,  we fitted a 
genetic simplex model to obtain this information concerning stability and 
innovation.  
Results showed a decrease in the heritability of SxAnxDep between childhood and 
adulthood. The heritability was around .60 in childhood, and decreased to around 
.40 in adolescents and adults. This decrease was caused by an increase in 
environmental variance that outpaces a simultaneous increase in genetic variance 
between the ages of 3 and 18.  After age 18 the genetic variance in SxAnxDep 
remained very stable, genetic influences are highly correlated between ages 
(around .90), and new genetic variance (innovation) is absent after age 18, except 
for time point specific sources of genetic variance.  The environmental variance in 
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SxAnxDep was also transmitted from age to age in adulthood. However at each 
age in adulthood, environmental innovation was present, as new environmental 
sources of variance (environmental innovation) were present. With increasing 
age, the transmission of environmental effects rose, as the new environmental 
influences on SxAnxDep reduced somewhat.  This process resulted in increasing 
environmental correlations between subsequent SxAnxDep scores with increasing 
age. 
 
Chapter 3 focused on internalizing and externalizing psychopathology. 
Internalizing psychopathology included measures of depressive and anxiety 
disorders, and externalizing psychopathology included measures of attention 
deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD) and 
conduct disorder (CD). The aim of the analyses was to describe the transition 
between childhood and adolescence and the co-morbidity of internalizing and 
externalizing psychopathology over development. 
Data from the Avon Longitudinal study of parents and children (ALSPAC) were 
analyzed in Bristol (UK). Psychopathology was measured at age 7, 10, 13, and 15 
using the DAWBA diagnostic interview.5 The DAWBA provide both a diagnosis and 
an ordered categorical score, with higher scores indicating higher risk to fulfill the 
criteria for the disorders. The ordered categorical scores, denoted DAWBA bands, 
are statistically more informative than the binary diagnosis.5  
Growth mixture models were fitted to identify categorically distinct trajectories 
for both internalizing and externalizing psychopathologies. For both internalizing 
and externalizing disorders, we expected an increasing trajectory, a decreasing 
trajectory, a stable high category and a large and stable low category. Finally, a 
single model was fitted modeling the co-occurrence between trajectories of 
internalizing and externalizing psychopathology. 
The results of the analyses revealed that internalizing psychopathology was best 
captured by a model with 5 distinct trajectories. In addition to two trajectories 
with a consistently low and very low risk for internalizing psychopathology, the 
other 3 trajectories were  a decreasing risk for internalizing psychopathology, an 
increasing risk of internalizing psychopathology, and an adolescent onset risk of 
internalizing psychopathology. Externalizing psychopathology was also 
characterized by 5 distinct trajectories. Four were similar to internalizing 
psychopathology. However, instead of an adolescent onset risk trajectory, a 
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trajectory of stable high risk of externalizing disorders through childhood and 
adolescence was identified.   
Combined analysis of internalizing and externalizing categories revealed that 
increasing internalizing and increasing externalizing trajectories co-occur, as did 
decreasing internalizing and externalizing trajectories.  However, the adolescent 
onset internalizing trajectory was independent of high externalizing trajectories, 
and the persistent high externalizing trajectory was mainly associated with the 
decreasing internalizing trajectories. Sex and early life environmental risk factors 
predicted externalizing and, to a lesser extent, internalizing trajectories. The 
analysis reveals the need to screen for co-morbidity in the case of either early 
onset externalizing or internalizing problems. The only exception seems to be 
adolescent onset internalizing problems, which are not related to a high risk for 
externalizing problems. 
Thus, Chapters 2 and 3 reveal both genetic and phenotypic continuity between 
childhood psychiatric problems and adolescent and adult psychiatric outcomes.  
 
Chapter 4 reports on a genome-wide association study (GWAS) on preschool 
internalizing problems. Results from 3 cohorts, including NTR, were meta-
analyzed, and the variance explained by all measured genetic variants (SNPs) was 
estimated. Three cohorts participated: the NTR, The Western Australian 
Pregnancy Cohort Study (Raine), and the generation R from Rotterdam.  
Internalizing scores in 2-3 year olds, based on the Child Behavior Check List6, were 
harmonized. Genotypes were imputed against HAPMAP 2.7 After post imputation 
quality control, 2.4 million SNPs were available for analysis. A total of 2037 
children had genotype and internalizing scores available in generation R; 1475 
children from 1031 families in the NTR; and 1084 children in the Raine cohort. In 
each cohort, the association between Internalizing and genotypes was tested, 
with the inclusion of principle components to correct for population stratification 
and sex. This was followed by meta-analysis of 4566 children. The variance 
explained by all SNPs for internalizing behavior was estimated using 2 methods, 
Genomic Relationship Matrix Restricted Maximum Likelihood (GREML) as 
implemented in Genomic Complex Trait Analysis (GCTA) and density estimation 
(DE).8; 9 
The SNPs were found to explain between 13 and 43% of the total variance in 
internalizing problems. As the heritability in twin studies was estimated at 59%, 
this implies that the genetic variants analyzed in this study captured between 22 
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and 72% of the genetic variance.  The meta-analysis revealed no SNPs associated 
with Internalizing problems at a genome-wide significant p-value < 1x10-8. In two 
regions, there were SNPs, which reached a p-value below 1x10-5 in the meta-
analysis. One SNP was located in an intergenic region on chromosome 9. The 
other region was on chromosome 20, and included SNPs of the PCSK2 gene. 
PCSK2 is an important protein in the processing of pro-insulin to insulin, and 
PCSK2 variants are correlated with insulin resistance,10; 11 myocardial infarction12 
and age at menarche13. The link between depression and cardiovascular disease 
has long been recognized.  Post hoc analysis of SNPs that were previously 
associated with adult internalizing psychopathology, psychopathology that usually 
presents in childhood (ADHD, conduct disorder), or psychotic disorders, and of 
SNPs  in candidate genes14 did not show a significant association of any of these 
SNPs with internalizing problems in preschool children. Collectively, the SNPs 
previously associated with adult internalizing disorders did not show lower p-
values than expected by chance. However, the SNPs previously associated with 
adult internalizing disorder, adult or childhood psychiatric disorders usually 
diagnosed in childhood or psychotic disorders did collectively show lower p-values 
than expected by chance in the GWAS of preschool internalizing problems. Adding 
SNPs associated with treatment response diminished this signal, while 
subsequently adding SNPs in candidate genes slightly strengthened the signal. The 
analyses performed in chapter 4 show that childhood preschool internalizing 
problems are heritable, and that a substantial part of this heritability can be 
explained by common genetic variation. The results further show that childhood 
internalizing problems are a complex trait, and no single genetic variant explains a 
substantial part of the phenotypic variation. The significant signal of SNPs 
previously associated with adult and other psychiatric disorders was suggestive of 
common genetic causes.  

Chapter 5 looked at polygenic score prediction of childhood psychopathology. The 
most recent schizophrenia GWAS meta-analysis included 36,989 cases and 
113,075 controls and revealed 108 loci significantly associated with schizophrenia. 
15 This study provided the starting point to test for associations between genetic 
risk for schizophrenia and childhood psychopathology directly at the molecular 
genetics level. Polygenic risk scores were calculated based on the schizophrenia 
GWAS to predict childhood psychopathology scores at ages 7, 10, 12, and 15 
years. The analysis was performed in samples from the Netherlands Twin 
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Registrer (NTR) and the Avon longitudinal study of parents and children (ALSPAC). 
In both cohorts, DSM based measures of anxiety, depression, attention deficit 
hyperactivity disorder (ADHD), and oppositional deviant disorder, and conduct 
disorder (ODD & CD) were available. The NTR scores were based on the DSM 
oriented CBCL or YSR scales16 and the scores in ALSPAC on the DAWBA bands.5   
The regression of the psychopathology phenotype on the polygenic risk score 
included as covariates principle components to control for population 
stratification and sex. Meta analysis of the results of both studies revealed an 
false discovery rate (FDR) corrected significant association between schizophrenia 
risk and anxiety at age 10. This result seemed mainly to be driven by results in the 
NTR. The analysis further revealed associations at uncorrected  p < 0.05  between 
schizophrenia polygenic risk scores and anxiety at age 7  and depression at age 7, 
age 10, and age 12 to 13. Based on these results the initial hypothesis of a broad 
positive association with childhood psychopathology was not confirmed. Post hoc 
test revealed a stronger effect on internalizing psychopathology than on 
externalizing psychopathologiy. Note that the results were consistent with the 
PGC cross disorder study17. The PGC cross disorder group found a genetic 
correlation between adult MDD and schizophrenia, but not between 
schizophrenia and ADHD17. 
 
In chapter 6 the aim was to replicate a finding reported by the rat genome 
sequencing and mapping consortium. This consortium obtained evidence for an 
association between the CTNND2 gene and anxiety in rats.18 Replication was 
sought in a sample of adult participants from NTR and from the Netherlands Study 
of Depression and Anxiety (NESDA). The phenotype was based on the CIDI anxiety 
Diagnosis. All individual SNPs in the CTNND2 gene were tested for association 
with anxiety in the NTR/NESDA sample. To test for an association between 
CTNND2 and Major Depressive Disorder (MDD), Bipolar Disorder, and 
Schizophrenia lookups in the results of the PGC mega and meta-analyses of MDD, 
bipolar disorder and schizophrenia were performed. No SNPs reached significance 
for any disorder corrected for the number of SNPs tested. A gene-based test for 
enrichment of all P-values in the gene was performed, and revealed tentative 
evidence for enrichment of the CTNND2 gene in anxiety, MDD, and schizophrenia, 
but not bipolar disorder. This chapter shows that follow up of findings in animal 
studies can reveal potential associations in human data, and may provide a useful 
addition tool to explore genetic associations. 
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The current REML model as implemented in GCTA allows for genotype by 
environment (GxE) moderation in the case that the environmental exposure is 
dichotomous.8 In chapter 7 the model specified in GCTA was extended to include 
continuous moderation of genetic and environmental effects, given a sample of 
closely related and nominally unrelated individuals. This involved a 
reparameterization of the model proposed by Zaitlen et al.19. This resulted in a 
model in which the concurrent moderation of the variance specifically 
attributable to SNPS, and the total additive genetic variance can be tested.  We 
applied this model to symptoms of anxiety and depression (AnxDep), attention 
problems (AP), height, and body mass index (BMI). The analysis revealed that the 
(genetic) variance components for the different phenotypes were differently 
moderated by age (or birth year in the case of height).  
Fitting the Zaitlen model to the four phenotypes revealed moderated additive 
genetic effects (~40%) for AnxDep and A) and strong additive genetic effects for 
Height (90%) and BMI (75%). The portion of variance explained by measured SNPs 
was moderate for AnxDep (~10%) and AP (~11%), but larger for height (~55%) and 
BMI (~40%). 
We proceeded to fit moderation models. The variance explained by SNPs, additive 
variance and residual variance for AnxDep were not moderated.  For BMI the 
additive genetic variance and the residual variance were moderated, but the 
variance explained by SNPs was not. In the analysis of height and AP, the residual 
variance was moderated, but the additive variance or variance explained by SNPs 
was not. The analysis revealed differences in the way age and or birth year 
moderated these 4 phenotypes.  
chapter 8 presented a model that allows for the estimation of genetic 
(co)variance between traits based on measured genotypes. This in itself is not 
new. In bivariate GCTA20 and GEMMA21, it is also possible to estimate the genetic 
covariance between traits given all SNPs. However, increasing the number of 
traits or the number of separate genetic variance components will increase 
computational burden. In this chapter, a method was developed  that breaks the 
multivariate analysis up in to a series of univariate analysis. This method relies on 
the fact that the variance of the sum of two variables equal to the variance of 
each individual variable and twice the covariance between two variables. 
Simulations showed that this method yields unbiased estimates of genetic 
(co)variance. Moreover, approximate standard errors were obtained using a 
Taylor approximation, first used by Visscher et al.22 The model was extended to 
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allow for multiple genetic effects. We simulated data to show that the model 
produced unbiased estimates of separate genetic covariance matrices for each 
genetic relatedness matrix, and that their standard errors are correctly. 
The method  was applied to 24 items derived from the NEO PI personality 
inventory.23; 24  Twelve items indicate the construct of neuroticism, 12 items 
indicate the construct of extraversion. We estimated the genetic correlation 
between the items based on SNPs in a sample containing related individuals. 
Based on previous results25 neuroticism items were expected to correlate 
positively, extraversion items were expected to correlate positively. Negative 
correlations were expected between the neuroticism and extraversion items. Only 
a modest proportion of variance in the individual items was attributable to SNPs 
(0 to 14.8% for extraversion, 5 to 16.7% for neuroticism). Variance explained by 
SNPs in the total scale was 6.3% for extraversion and 22.6% for neuroticism. 
Despite these moderate SNP heritability’s we were able to retrieve the expected 
covariance structure. The first principle component of the genetic covariance 
matrix of the items separated the neuroticism and extraversion items.  A second 
feature of the model is the possibility to estimate a separate genetic (co)variance 
for multiple sets of SNPs. This would allow for estimation of separate co-variances 
between traits for multiple distinct sets of SNP. Each of these sets of SNPs could 
be selected to reflect a set of genes in a biological pathway, a specific 
chromosome or any other biologically interesting subset of all measured SNPs. 
 
In chapter 10 I discuss the developments in the field of behavior genetic in the 
periode that I was writing this dissertation. I discuss how current (methodological) 
developments will allow a deeper understanding of the genetics of complex traits 
in the coming few years.   
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Chapter 10: General discussion. 
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The field of psychiatric genetics, and human genetics more broadly, has 
undergone rapid progress in the last decade. To appreciate this progress, consider 
schizophrenia. In 20091, just before the onset of the work leading to this 
dissertation, 3 regions in the genome were found to be associated with 
schizophrenia. The number of associated  independent risk loci for schizophrenia 
has since grown to 1082. While schizophrenia, for now, remains the biggest 
success story in psychiatric genetics, there is little doubt that sufficiently large 
samples will result in similar success in identifying genetic loci associated with 
other psychiatric disorders. The results from genome-wide association study 
(GWAS)  in psychiatric genetics have confirmed that common psychiatric diseases 
are not Mendelian disorders, i.e. influenced by one or a few major genes, but are 
influenced by many genetic variants, each with a very small effect on risk for 
disease.3 In other words: most common psychiatric diseases are polygenic. The 
GWAS of preschool internalizing problems, as presented in this dissertation, and 
other work in childhood psychiatry (ADHD, ASD, internalizing)4-6 have shown that 
childhood psychiatric disorders are equally polygenic. This signifies that the lack of 
genome-wide significant loci in these GWAS projects is due to a limited sample 
size. 

 

What have GWAS studies told us so far? Findings related to the genetic 
architecture of psychiatric disorders. 

An early criticism of GWAS, which still is heard today, concerns the “missing 
heritability”, i.e., the discrepancy between the heritability as established in twin 
and family studies, and the heritability attributable to measured genetic variants, 
which are associated with the phenotype of interest. Specifically, the genetic 
variants associated with psychiatric disorders, as identified in GWAS, tend to 
explain only a small part of the phenotypic variance, e.g. 7% on the liability scale 
for schizophrenia and 16% for height.2; 7 This applies to psychiatric as well as non-
psychiatric disorders and traits. One of the main causes of “missing heritability” is 
a lack of power to detect all genetic variants related to a trait. The polygenic 
model implies that large sample sizes are required to detect individual genetic 
variants. Also, one has to bear in mind that the significance level in a GWAS is 
typically set at 5*10-8. Given the small individual effects sizes, a few associations 
(or even a substantial number of associations) cannot be expected to explain 
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much variance. From the power perspective, an arguably more realistic question 
is how much of the phenotypic variance the genetic variants collectively explain.  
This question has been addressed by means of a statistical method called genomic 
relationship matrix restricted maximum likelihood, or GREML as implemented in 
the software genome-wide complex trait analysis (GCTA), which was developed by 
Yang et al8. GCTA provides an estimate of the variance explained by the total set 
of genetic variants, without identifying the individual associated variants. GCTA 
has been applied to psychiatric disorders by different groups9; 10  and consortia,11 
and has shown that  a substantial part of the “missing heritability” can be 
accounted for by genetic variants, as genotyped on modern GWAS platforms, i.e., 
common single nucleotide polymorphisms (SNPs). This supports the notion that 
the success of GWAS heavily depends on adequate sample size. While significantly 
associated  SNPs explain only a modest proportion of variance in height and 
schizophrenia, GREML analyses showed that all measured SNPs explain a more 
substantial 23% of variance in schizophrenia and 49.8% of variance in height. 

The substantive proportion of genetic variance accounted for by measured SNPs 
(as estimated using GCTA) does not completely account for the "missing 
heritability", as there remains a substantial discrepancy between the heritability 
estimates of twin and family studies and the genetic variance accounted for by 
SNPs . This accounts for adult and childhood psychiatric traits.12-14 The fact that a 
discrepancy remains, i.e., the part of the heritability remains "missing", is not 
surprising. Genotyping platforms were never designed to capture all variation in 
the genome, but to quickly and cheaply tag a substantial portion of the genetic 
variation.15 By design there is an upper limit to the portion of genetic variation 
SNPs can explain. The remaining “missing heritability” may be attributed to poor 
tagging of common causal variants other than SNPs, for example Variable 
Numbers of Tandem Repeats (VNTRs), the role of genetic rare variants (which are 
invariably poorly tagged), and structural genetic variants (copy number variation). 

11   

Three recent papers discussed additional methodological and phenotypic causes 
of the residual missing heritability. Golan et al. point out that ascertainment bias 
will influence results when applying GCTA to a dichotomous trait.16 Ascertainment 
of cases for GWAS at rates substantially higher than in the population leads to an 
underestimation of the variance explained by all common SNPs. This may have 
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resulted in an underestimation of the variance explained by SNPs for less common 
psychiatric disorders, such as schizophrenia and bipolar disorder, where the 
degree of ascertainment is more severe.  A second potential cause of missing 
heritability is phenotypic or disease heterogeneity.17  Here we define disease 
heterogeneity as  multiple genetically distinct diseases causing the same or similar 
configurations of symptoms. Within a family a single distinct genetic disease 
would likely cause increased symptoms in multiple family members, therefore  
the heritability estimated in family and twin studies may actually be the mean 
heritability of the different genetic diseases observed in the population of twins 
and families in the study. Estimation of the variance explained by all genetic 
variants, using techniques like GCTA, may underestimate the SNP heritability, as 
unrelated cases do not necessarily suffer from the same underlying genetic 
disease. Heterogeneity is also evident at the phenotypic level when considering 
longitudinal data.  As Chapter 3 of this dissertation reveals, there are many 
distinct ways to develop psychopathologies throughout childhood and 
adolescence. It is reasonable to ask whether developmentally distinct trajectories 
of maladaptive behavior display only partial genetic overlap, and thus may 
contribute to missing heritability when clustered as a single disorder or cluster of 
disorders. Lubke et al.10 showed that different subscales of a common borderline 
questionnaire are characterized by substantial differences in the amount of 
variance explained by SNPs.   

Not only can GCTA be applied to estimate the genetic variance attributable to 
measured SNPs (i.e., the SNP heritability) of individual traits. It has been extended 
to bivariate analysis allowing estimation of co-heritability based on measured 
SNPs.11 The psychiatric genomics consortium (PGC) has shown that bipolar 
disorder, major depressive disorder (MDD) and schizophrenia are significantly 
genetically correlated. MDD and Attention Deficit Hyperactivity Disorder (ADHD) 
are also genetically correlated, while ADHD and Bipolar, and ADHD and 
Schizophrenia do not seem to be genetically correlated11. These studies explain 
substantial parts of missing heritability, and provide estimates of genetic 
correlations, independent of those obtained in twin and family studies.  
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The continuing relevance of twin studies in the era of GWA studies 

While computational facilities to model measured genetic variants are quickly 
expanding, twin studies currently remain the most cost effective and 
computationally feasible to capture all genetic variance. Twin studies also allow 
for elaborate phenotypic modeling,  because a wealth of data is available18; 19  and 
computationally complex models can be used. Chapter 2 of this dissertation sheds 
light on the longitudinal genetic etiology of anxious depression symptoms, 
another study similarly shed light on the genetic and environmental etiology of 
attention problems.20 These twin studies identified longitudinal genetic 
covariance in a way that cannot yet be replicated using measured genetic 
variants. Development of increasingly informative twin models is still ongoing.21; 22  

Research performed in genotyped twins can also add a wealth of information to 
studies. Two specific examples show the continued value of twin studies.  Van 
Dongen, Heijmans, Nivard et al. (in preparation) concurrently estimated in a 
genotyped cohort of twins and their families the twin heritability and the SNP 
heritability. This quantifies the ratio of variance tagged by SNPs to the total 
additive genetic variance. Van Dongen et al. went beyond this, and fitted GxE 
models, developed in chapter 7 of this thesis, in which the heritability of over 400 
thousand methylation sites is modeled as a function of age and sex. This type of 
analysis reveals a wealth of information that is of interest to researchers who 
study the link between gene methylation and psychiatric disorders. The study by  
Buil et al.23 is a second study that reveals the continued usefulness of twin studies 
in the genomic era. In a complex twin design, they identify different genetic 
influences on allele specific gene expression. Their model decomposes the genetic 
variance in allele specific gene expression into a part explained by known loci 
(eQTLs), a part explained by cis effects or local genetic effects, a part explained by 
trans or distant genetic effects,  and a part attributable to the interaction 
between cis and trans genetic effects. This study could in principle have been 
executed in a sample of distantly related genotyped individuals. However, this 
would result in an extreme loss in power relative to the twin design. By leveraging 
the twin design, Buil et al.23 managed to thoroughly explore the genetic influences 
on gene expression. Twin research will remain valuable, not only as a way to 
estimate and model all genetic variance, but also to enrich molecular genetics 
research, as discussed above.  



 

258 
 

 

The future use of identified loci: polygenic risk scores.  

Psychiatric genetics has witnessed many successes in the past few years. The 
biggest success in terms of identifying loci has concerned adult psychopathology, 
but few doubt that increased sample sizes will eventually yield loci for childhood 
psychiatric disorders. The SNP heritabilities provide an upper limit of what can be 
extracted from genome-wide genotype data. Work in this dissertation has shed 
light on the link between childhood and adult psychopathology. Evidence from 
twin studies points to genetic causes of continuity of psychiatric problems, and 
other traits between childhood and adulthood.20; 24  Future work will identify risk 
variants that influence childhood and (or) adult psychopathologies. But what is 
the ultimate relevance of these findings? The increased sample sizes of present 
consortia will certainly result in the identification of novel genetic variants 
associated with disease. But how can we utilize these variants?  
One use lies in the computation of polygenic scores, i.e., weighted linear 
combinations of subsets of genetic variants, which are associated with the 
phenotype of interest (but not necessarily at the genome wide alpha level). Using 
polygenic scores, we have explored the link between adult schizophrenia and 
childhood and adolescent psychiatric disorders. As discussed in chapter 5, the 
results of our meta-analysis, obtained in 2 large population based cohorts, 
revealed that the schizophrenia risk score was associated  at nominal significant p-
values ( p < 0.05)  with measures of anxiety or depression and at an FDR corrected 
level  of significance (adjusted p < 0.05) with anxiety at age 10.  We concluded 
that an elevated genetic risk for schizophrenia is not broadly associated with all 
scales measuring the risk of childhood psychiatric disorders.  The results suggest a 
relationship between schizophrenia risk and childhood internalizing problems 
(depression and anxiety) , but this issue requires further study.  Others have 
established the genetic link between schizophrenia and cannabis use,25 , 
schizophrenia  and MDD, bipolar disorder, and autism spectrum disorder5, adult 
educational attainment and childhood school performance, and attention 
problems.26 These studies are a small selection from the broad literature (for 
review see13) that has revealed, using polygenic scores, a genetic overlap between 
psychiatric disorders and many other disorders and traits. Polygenic risk scores 
based on tagging SNPs, or in the future causal SNPs, can also facilitate the search 
for copy number variations (CNV) related to psychiatric disorders. An additive 
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model of genetic effects suggests that low polygenic scores in cases would 
increase the chance of identifying deleterious CNV’s. Specifically targeting cases 
with a low polygenic risk score for the disorder they are suffering from might 
heighten the likelihood of finding deleterious CNV’s.  

Another future use of identified genetic variants, or polygenic risk scores, is in the 
study of environmental risk factors for disease. For example, teenage and early 
adult cannabis use has repeatedly been implicated in the risk of developing 
schizophrenia.27; 28  At the same time risk loci for schizophrenia are associated 
with cannabis use.25 This suggests that the predisposition to cannabis use and the 
predisposition to schizophrenia are genetically linked. This genetic link could 
explain (part of) the association between cannabis use and schizophrenia, without 
the need to infer a causal role for cannabis use in the onset of schizophrenia. To 
fully understand the risk cannabis use poses in the onset of schizophrenia, it is 
important to avoid confounding by controlling for genetic risk for schizophrenia. If 
genetic effects that increase cannabis use, also increase the risk for schizophrenia, 
these genetic effects could be included in the model when estimating the effect of 
cannabis use on later risk to develop schizophrenia. Similar confounding 
relationships possibly exist in adult and childhood psychiatry, and their discovery 
relies in part on identification of risk variants, or sufficiently accurate polygenic 
risk scores.   

An often-mentioned application of genetic risk factors, either polygenic scores or 
identified loci, is prediction of disease status in clinical settings. While accurate 
clinical risk prediction would clearly be greatly useful, it is beyond the possibilities 
offered by currently available genetic data. The best possible genetic risk 
prediction remains the concordance between monozygotic twins. As monozygotic 
twins share all of their genetic variance barring rare de novo mutations,29; 30 MZ 
twin concordance is very near the upper limit of genetic prediction.  GWAS chips 
cover a substantial, but incomplete, part of all genetic variation. Prediction based 
on GWAS platforms will therefore necessarily underperform compared to MZ 
concordance rates.  Clinical genetic risk prediction in psychiatry will for the 
foreseeable future not exceed the predictive value of an exhaustive family history. 
This is all the more true for child and adolescent psychiatry where GWAS samples 
are generally smaller, and thus predictive accuracy is lower.   
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A different downstream application of GWAS results is evident in the 
incorporation of GWAS results pertaining to MDD, bipolar disorder, and 
schizophrenia in an integrated pathway analysis. This analysis suggested specific 
biological pathways in the etiology of  psychiatric disorders.31 Specifically, this 
pathway analysis implicated the neuronal synapse, histone methylation, and 
immune pathways in psychiatric disease.  Targeted investigation of these 
pathways will improve our understanding of the biology and the etiology of 
psychiatric disease. However, the number of distinct biological pathways that 
influence psychiatric illness is likely to be large. Just like there is likely no “gene for 
disorder X”32 there is likely to be no “Pathway for disorder X”.   
 

Future developments in modeling genetic data: systems biology. 

Genetic data have broader application than the identification of risk loci. Above I 
discussed methods for polygenic analyses  and its application to psychiatric 
disorders.  In chapter 7 I further discussed an extension of the model 
implemented in GCTA that allows for the moderation of the genetic effect of all 
SNPs on a trait. These moderating variables can be environmental (family 
environment, trauma exposure), biological (metabolite levels, gene expression 
intensity), or genetic (known risk loci). 

 In chapter 8, I presented a method to estimate genetic variance and covariance in 
the context of GREML. The aims of this method are not new as others have 
estimated genetic covariance in the GREML context.33; 34 However the method I 
employed is amenable to  parallelization, and is computationally lighter than 
bivariate GCTA or GEMMA.34; 35 For example, as demonstrated in chapter 8, the 
estimation of a genetic covariance matrix of 24 items from a personality 
questionnaire does not pose a great computational problem. The results revealed 
that, although the individual items have a very low SNP heritability, one can still 
obtain a good estimate of the genetic covariance structure of these items based 
on measured genotypes. The method allows for the genetic effect to be separated 
into multiple genetic covariance matrices that reflect the effect of a subset of 
genes, pathways or SNPs from different functional categories (i.e. coding, non-
coding in the gene body, in the gene promoter). Recently, a method has  been 
developed to estimate SNP heritability on the basis of GWAS meta analysis 
summary statistics.36 This method, LD score regression, can also be extended to 
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multivariate analysis37 and allows for partitioning of the genome into multiple 
genetic effects based on functional categories.38 The first analysis using LD 
regression has already revealed novel genetic correlations, and biological insights 
into the genetic etiology complex traits. LD regression has the benefit that it is 
computationally less burdensome than GREML and does not require the raw 
genotype data. However, if the genetic data are available GREML has some 
benefits that might well be worth the extra computational burden. For example, 
the model underlying GCTA can be used to improve predictive accuracy of risk loci 
by modeling multiple correlated psychiatric traits concurrently.39 

The linear mixed model underlying the GREML model and our version of the 
model are flexible. Currently relatedness matrices used in these models are based 
on SNPs. However, there is no reason to limit the variables considered to SNPs.  
For example, researchers within the NTR are working on including genome wide 
measures of methylation and of gene expression into the linear mixed model. This 
type of modeling will allow for the integration of genetic and proteomic 
information into a single model, facilitating further understanding of the etiology 
of psychiatric disorders and symptoms.  

Final thoughts. 

The work in this dissertation was conducted in a period of rapid change in the 
field of psychiatric genetics.  For schizophrenia and bipolar disorder the last few 
years have seen identification of large amounts of risk loci. In the next generation 
of GWAS mega- and meta-analysis, other psychiatric disorders will follow. These 
risk variants will help us better understand the genetic relationships between 
traits and disorders.  Progress in genetic linear mixed modeling, and “LD score 
regression” will allow for ever more complex models of behavior to be fitted. 
These techniques will allow analysis of sub-disorder constructs such as symptoms 
and indicators. At the same time further integration of genetic, epigenetic, 
proteomic, and metabolomic data will help our understanding of the mechanisms, 
which relate risk variants to biochemistry, brain chemistry, and ultimately disease.  

What is the ultimate goal of these ever increasingly complex models of psychiatric 
disorders? As our understanding of the pathways between gene and behavior 
grow, genetics might begin to inform our definition of disorders. If a distinct set of 
variants is found to influence a distinct set of pathways and these in turn 
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influence some, but not all symptoms of a disorder, then a disorder definition 
should be changed. This process of improving disorder definitions based on 
rigorous empirical genetic findings and subsequent genetic analysis of the 
improved disorder construct can form an iterative process bringing us closer to 
more homogeneous disorder definitions.40; 41 
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Appendix I: Statistical supplement to chapter 2: Stability in symptoms of anxiety 
and depression as a function of genotype and environment: A longitudinal twin 
study from age 3 to 63 years 
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Stability and change: Genetic simplex 
A genetic simplex model (Boomsma and Molenaar, 1987) formed the basis to 
analyze stability and change in symptoms of anxiety and depression (SxAnxDep). 
Genetic simplex models include latent genetic and environmental factors that 
underlie the observed outcome variables (phenotypes). Applying the genetic 
simplex model results in a linear genetic decomposition of phenotypic variance 
into genetic and non-genetic sources. Such a decomposition is possible in a twin 
design using the fact that monozygotic (MZ) twins are (nearly) 100% genetically 
identical, while dizygotic (DZ) twins share on average 50% of their segregating 
genes (Boomsma et al.  2002; Middeldorp and Boomsma, 2009). The genetic 
simplex makes further use of the information captured by the  MZ and DZ twin  
correlations across age (eTables 1-3), that is the correlation for SxAnxDep of twin 
1 at for example age 3 and SxAnxDep of twin 2 at for example age 7. If these 
correlations are substantial (and positive), and if the twin correlations across ages 
are stronger in MZ twins than in DZ twins (eFigure 2), this suggest that phenotypic 
stability is (at least in part) due to genetic factors, or in other words the genetic 
factors at age t are correlated with the genetic factors at the subsequent age at 
which we measure SxAnxDep (t+1). In a similar vein, environmental factors may 
be correlated across age (the extent to which the MZ correlations across age 
differ from the within person correlations across age is an indication for the 
importance of environmental stability). 

In the genetic simplex model,  correlations among latent genetic and 
environmental factors are specified through an autoregression process (see Figure  
1 chapter 2).  

 
Specifically, SxAnxDep at each age t was modeled as follows: 
SxAnxDept = At + Et + mt + rest + λCt C, 

where At , Et and C denote the (zero-mean) additive genetic, nonshared (unique) 
environmental and shared environmental values, mt the grand mean of SxAnxDep, 
and rest the residual term. Subscript t denotes age t=1,…30, where t=1 is the first 
age bin for which we observed outcome data (age 3-4) and t=30 is the last age bin 
(61-63 years). Here, A and E are modeled as autoregressive processes and C is 
modeled as a common factor (see below). 

The autoregressive patterns were modeled as: 
At = βAt * At-1 + ζAt , 
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Et = βEt * Et-1 + ζEt,   

where coefficient βAt and βEt denote the autoregression coefficients, reflecting 
that genetic and nonshared environmental effects present at the previous age (t-
1)  influence  the next age (t) and are thus carried over. Terms ζAt and ζEt denote 
additive genetic and nonshared effects that arise at age t, and which are called 
innovations. Effects of innovations are thus not present earlier than age t, but are 
carried over to subsequent ages. 

To model the effects of shared environment in childhood at age 7, 10 and 12, we 
extended the AE simplex model by allowing the outcome measures at these ages 
to also load on a common, shared environmental factor: SxAnxDept=λCt C, where 
λCt  represents the factor loading at ages 7, 10 and 12 , and where C is a latent 
factor (see figure 1) with unit variance and SxAnxDept is the phenotype at age t. At 
age 12, C influences maternal and self-ratings of SxAnxDep. 

All genetic and environmental factors are assumed to be independent 
from each other, such that at each age: 

Var(SxAnxDept) = Var(At) +  Var(Ct) + Var(Et)  + Var(rest),  

where 
Var(At) = βAt

2 * Var(At-1) + Var(ζAt), 
Var(Et) = βEt

2 * Var(Et-1) + Var(ζEt), 
Var(Ct) =  λCt

2 * Var(C) = λCt
2 

At each age, the residual variance Var(rest) in the phenotype was 
decomposed into genetic and environmental factors, according to a standard 
behavior genetic model:  

rest = resAt  + resEt, 

such that 

Var(rest) = Var(resAt)  + Var(resEt) 

This reflects the possibility that the age-specific phenotypic residuals include the 
effects of age-specific additive genetic, and nonshared environmental factors, i.e. 
these age-specific effects are not carried over to subsequent ages (and in this 
respect can be distinguished from innovations). Note that the component 
Var(resEt) also includes variance due to measurement error.  
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We allowed for mean differences in SxAnxDep between males and 
females by modeling the observations (mt) as a function of sex:  

mt = b0t + b1t*sex, 

 where b0t denotes the intercept and b1t the effect of dummy coded variable sex (0 
= males, 1= females) at age t. The model, as implemented, did not allow for sex 
differences in heritabilities (Vink et al.  2012). To explore whether this was 
reasonable, the data were divided into 7 larger age bins (3 to 12, 12 to 19, 19 to 
27, 27 to 35, 35 to 43, 43 to 53, and 53 to 63 years of age)  and heritabilities were 
estimated for males and females separately each of the larger age bins. The larger 
bins did not show a difference in heritability between males and females but for 
age 35-43 (see figure 2B). 

The complete model was implemented in Mplus version 6.11 (Muthén 
and Muthén, 1998-2010).  All scripts may be obtained from the first author. 
Analyses were carried out using robust full information maximum likelihood, 
which allows for the presence of missing data and the analysis of non-normally 
distributed continuous outcome variables. Commonly, comparative model fits of 
models as the model above are evaluated using likelihood ratio tests (-2*log-
likelihood difference between two models). However, given the oversensitivity for 
large sample sizes of this test (Tanguma, 2001) and the large sample size in the 
current study, model fit was assessed by Akaike’s information criterion (AIC) and 
Bayesian information criterion (BIC). 

 

Identification, trimming, and evaluation of the genetic simplex model 

At the first age for which we have observed data, At and Et obviously 
cannot be predicted by data from earlier ages, therefore at this age all variance in 
the latent additive genetic and latent environmental factor is due to innovation 
variance: Var(A1) = Var(ζA1), and Var(E1) = Var(ζE1).  

Residual variances at the first and last age at which we have observed 
data are only identified when additional assumptions are made. The following 
constraints were added to the model: Var(resA1)=Var(resA2), Var(resE1)=Var(resE2), 
Var(resA29)=Var(resA30), and Var(resE29)=Var(resE30). To speed up computation and 
to avoid empirical identification problems, the variances of the residuals (both E 
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and A residuals) were constrained to be equal over three subsequent age bins: 
Var(resA1)=Var(resA2)=Var(resA3), Var(resA4)=Var(resA5)=Var(resA6), etc.  

Based on the initial results of fitting the simplex model, and in order to 
arrive at an optimal, parsimonious model, we trimmed the model by allowing for 
further constraints.  The autoregression parameters in the genetic simplex model 
(βAt) between the age of 18 and 63 all approached 1.  Constraining these 
regression parameters to be 1 proved to be acceptable as judged by the AIC and 
BIC. We further observed that the innovations  (ζAt)  of  the genetic variables A 
from age 18 to age 63 were close to zero, and often did not reach significance 
(α=0.05), given their standard error. Restricting these parameters to zero reduced 
the BIC slightly, but increased the AIC (see eTable 2). Effectively, these constraints 
reduced the genetic model equivalent to a single factor model from age 18 
onwards, and rendered the model substantially more parsimonious, the results of 
which are reported in the main text.  

From the final model, standardized coefficients of the contribution of 
genetic (and environmental) effects were derived for each age (t), including 
heritability coefficients (h2). 

ht
2 = (Var(At)+ Var(resAt))/(Var(At) + Var(Et) + Var(Ct) + Var(resAt)+ 

Var(resEt)) 

ct
2 = Var(Ct)/(Var(At) + Var(Et) + Var(Ct) + Var(resAt) + Var(resEt)) 

et
2 = (Var(Et)+ Var(resEt))/(Var(At) + Var(Et) + Var(Ct) + Var(resAt)+  

Var(resEt)) 

 
Additional mean trend analyses. 
Mean trends over age, and sex differences herein were analyzed by post-hoc 
analyses. Age trends were analyzed using weighted least squares (WLS) on the 
means. The trends fitted are visible as dashed lines in figure 2A. Model derived 
means of males and females are vectorized from age 3 to age 63 and added to a 
single variable (MV, mean vector). This mean vector is regressed on a sex dummy 
variable (S), a design variable (D1) that linearly increases between age 12 and 28 
and a design variable that monotonically increases from age 30 to 63(D2). These 
variables are combined in the following regression equation: 
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MV = I + b1*S + b2*D1 + b3*D2 + b4* S*D1 + b5 * S*D2 

The parameter b1 reflects the intercept difference between male and female 
means. This intercept, I, reflects the mean SxAnxDep score between the ages of 3 
and 12. Parameter b2 reflects the change in SxAnxDep between ages 12 and 28 for 
male participants. Parameter b3 reflects the change in SxAnxDep for male 
participants between the ages of 30 and 63. Parameter b4 reflects the change for 
female participants over and above the change of male participants between the 
ages of 12 and 28. Parameter b5 reflects the change for female participants over 
and above the change of male participants between the ages of 30 and 63. The 
regression is weighted to reflect the differences in sample size used for the mean 
estimates at the different age points. 
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eFigure 1: Maximum Likelihood estimates of correlations within and  across age for SxAnxDep. For 

each age, correlations are given with the 3 preceding and 3 subsequent ages. Diagonal: within-

person longitudinal correlations. Above diagonal (right upper corner): MZ correlations. Below 

diagonal (left lower corner): DZ correlations. Within-person across-age correlations are higher than 

MZ twin across-age correlations, indicating a role for unique environment on stability. MZ across-

age correlations are higher than DZ across-age correlations, indicating a role for genetic influences 

on stability.  
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eFigure 2: Pairwise genetic (A, red) and Environmental (E, blue) correlations between observations 2 years 

(dashed) and 10 years (solid) apart. 
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eTable 1:  Number of subjects per number of repeated observations 

 

 

  

Number of 
observations  1 2 3 4 5 6 7 8 

Subjects 20987 9940 6588 7015 2812 1690 405 87 
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eTable 2: Model fitting results based on the longitudinal simplex model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: Parameters BIC AIC ΔBIC vs Full 

Full AE simplex 199 564233.711 562629.486 - 

A-transmission fixed at 
1 in adulthood,  

171 563989.625 562603.059 -244 

A-innovations fixed at 0 
in adulthood 

156 563912.402 562654.819 -77 
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eTable 3: Twin correlations for monozygotic (MZ) and dizygotic  (DZ) pairs at ages 3, 7, … , 62 years. The middle 
row gives the correlation estimate, and the first and third row give the upper and lower bound for 
the 95% confidence intervals.

MZ 
Age 3 7 10 12 12 14 16 18 20 22 24 26 28 30 32 
Upper bound .72 .60 .60 .65 .56 .59 .57 .61 .62 .55 .66 .64 .65 .56 .36 
correlation .70 .58 .58 .62 .48 .55 .53 .57 .57 .48 .60 .55 .56 .44 .20 
lower bound .69 .56 .55 .60 .40 .51 .48 .53 .51 .40 .52 .45 .45 .30 .02 

Age 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 
Upper bound .60 .70 .65 .56 .64 .67 .69 .58 .83 .69 .77 .63 .59 .89 .67 
correlation .47 .58 .51 .34 .44 .52 .55 .37 .71 .51 .59 .36 .32 .76 .35 
lower bound .30 .43 .33 .08 .20 .33 .36 .11 .51 .25 .34 .02 -.02 .49 -.07 

DZ 
Age 3 7 10 12 12 14 16 18 20 22 24 26 28 30 32 
Upper bound .36 .38 .37 .38 .40 .26 .30 .29 .29 .35 .27 .33 .25 .38 .34 
correlation .34 .36 .34 .36 .32 .22 .25 .23 .22 .27 .17 .21 .10 .22 .16 
lower bound .32 .34 .32 .33 .23 .17 .21 .18 .15 .19 .06 .09 -.05 .06 -.02 

Age 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 
Upper bound .36 .48 .39 .34 .54 .62 .56 .69 .83 .58 .40 .59 .87 .70 .64 
correlation .13 .26 .12 .03 .27 .37 .31 .46 .62 .29 .05 .16 .57 .37 .19 
lower bound -.11 .02 -.17 -.29 -.05 .07 .01 .14 .25 -.06 -.31 -.33 -.04 -.08 -.36 
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Appendix II: Twin correlation and sampling strategy for AnxDep and AP  as used 

in Chapter 7 Detection of gene –environment interaction in pedigree data using 

genome-wide genotypes. 
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In Chapter 7 the variance explained by SNPs and the additive genetic variance in 
anxious depression(AD) and Attention Problems(AP) was estimated. This required 
the biggest possible sample, as the technique used (GCTA) requires large samples 
to arrive at a precise estimate (Visscher PloS genetics; 2012). This required 
combining measurements collected in multiple surveys. Before arriving at a final 
phenotype in Chapter 7 we undertook the following exploration of the Anxious 
depressed and AP data available in the Netherlands Twin Register(NTR). 

The Adult Netherlands Twin Registry (ANTR) has collected data in 10 Surveys 
between 1991 and 2013. The youth adult self report (YASR) was added to surveys 
in 1991, 1995, 1997, 2000, 2002, 2009, 2011 and 2013. The Young Netherlands 
Twin Registry(YNTR) has collected data on the YASR scale at age 14,16 and 18. 

 

AP 

Phenotype 

Attention problems were measured using the (A)YSR scale. Different scales across 
surveys contained  a different attention problems scale. The scale different both 
in number of items and item content. To  account for the different number of 
items, we calculated a mean item score for each individual.  AP measures were 
included in ANTR surveys in 1991, 1995,1997,2000,2009 and 2013.  An AP 

Twin correlations 

 We express the twin correlations per survey of the AP mean item score in Table 1 
and Figure 1. The MZ correlations, both male and female consistently higher than 
the male, female and opposite sex pair DZ correlations. This indicates AP is a 
heritable. 
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Table 1 : Twin Correlations for AP mean items scores 

 

Table 2: number of genotyped participants for a given number of repeated observations of AP. 

Number of obs 1 2 3 4 5 6 

N 2362 1989 1338 482 303 144 

 

 

 

 

 

MZM DZM MZF DZF DOS 

Survey 1 1991 cor 0.403 0.119 0.372 0.193 0.198 

N 275 230 371 289 464 

Survey 3 1995 cor 0.444 0.111 0.437 0.23 0.017 

N 276 226 423 267 466 

Survey 4  1997 cor 0.501 0.192 0.395 0.227 0.235 

N 218 145 402 254 319 

Survey 5 2000 cor 0.395 0.079 0.443 0.076 0.19 

N 252 134 653 315 310 

Survey 8 2009 cor 0.471 0.177 0.47 0.188 0.17 

N 337 169 1026 450 404 

Survey 10 2013 cor  0.475 0.118 0.469 0.284 0.198 

N 233 109 665 232 278 

YNTR DHBQ cor 0.457 0.167 0.473 0.185 0.185 

N 928 764 1339 1033 1700 
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Figure 1: Plot of Twin correlation split over the (A)NTR surveys  
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GCTA: random sample versus most recent observation 

Multiple repeated measures of AP are available per individual participant due to 
the longitudinal nature of the NTR. As one of the aim of analysis in Chapter 7 was 
gene by age interaction we sampled the most recently measured phenotype 
available from each participant. This sampling optimizes the variance of the age 
variable  in the final data as observations on younger individuals are more 
abundant. However “Most recent observation”  is not a random sample of the 
available data. We ran speed optimized version the intended model on 50 
samples constructed of a random draw from the data point available for each 
participant. So if a participant has 3 data points available 1 is drawn at random, it 
another participant has 1 data point available, this data point is included. Table 2 
gives the N for the AP data broken down to the number of repeated AP 
measurements available. 

We compared the SNP heritability of the most recently obtained measure of AP 
for each participant  to the SNP heritability of 50 sets where the observation for 
each individuals was randomly drawn from the measures available. The results are 
plotted in figure 2. For AP sampling the most recently available observation per 
participant did not result in dramatically different estimates of SNP heritability 
then randomly sampling an observation for each participant.  
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Figure 2: SNP heritability for AP for 50 randomly drawn univariate samples from the available 
longitudinal data and for the most recently obtained sample (red). 
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AnxDep. 

Phenotype: 

We specifically look at the Anxious Depression subscale of the YASR ,based on 13 
items that are available in all version of the YASR used over the different ages 
across the YNTR and the ANTR. 

Items used: 

I feel lonely 

 I feel confused or in a fog 

I cry a lot 

I am afraid I might think or do something bad 

 I feel that I have to be perfect 

I feel that no one loves me 

I feel worthless or inferior 

I am nervous or tense 

I am too fearful or anxious 

I feel too guilty 

I am self-conscious or easily embarrassed 

I am unhappy, sad or depressed 

I worry a lot 

 

Twin correlations per survey: 

The correlations expressed below were calculated during data selection for the 
analysis in chapter 7. The analysis in chapter 7 does included all genotyped 
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individuals for which the phenotype was available. Chapter 7 therefore also 
includes parents of twins and siblings of twins. Chapter 7 also does not include all 
of the data points that contribute to these correlations as not all twins are 
genotyped. Below in table 3 the twin correlations for AnxDep per survey  Note the 
oldest available measure in the YNTR is used to compute the twin correlations for 
the YNTR. The N here represent complete twin pairs for where for both twins a 
specific list is available.  
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Table 3: twin correlations per survey for AnxDep. 

MZ-males DZ-males MZ-females DZ-females 

Opposite sex 
dyzygotic 
pairs 

Survey 1 cor 0.388 0.093 0.46 0.151 0.205 

1991 N 273 229 370 286 463 

Survey  3 cor 0.445 0.13 0.566 0.25 0.167 

1995 N 273 225 421 265 458 

Survey 4 cor 0.602 0.081 0.494 0.343 0.309 

1997 N 217 144 400 251 318 

Survey 5 cor 0.438 0.23 0.452 0.125 0.267 

2000 N 250 132 642 303 303 

Survey 6 cor 0.336 0.194 0.52 0.247 0.132 

2002 N 232 102 615 295 288 

Survey 8 cor 0.43 0.162 0.439 0.248 0.182 

2009 N 385 203 1141 511 517 

Survey 9 cor 0.387 0.079 0.417 0.262 0.197 

2011 N 288 135 781 307 332 

Survey 10 cor 0.409 0.098 0.425 0.181 0.129 

2013 N 229 109 660 229 269 

YNTR Survey cor 0.408 0.245 0.491 0.22 0.229 
N 866 740 1294 998 1635 
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 Figure 3: AnxDep twin correlations per survey. 
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GCTA random sampling versus most recent observation: 

As the analysis in Chapter 7 requires a single phenotype where for some 
individuals multiple phenotypes are available due to the longitudinal nature of the 
NTR. In Figure 4 a histogram of the estimated SNP heritability in the 50 random 
samples. The  mean of 50 repetitions (blue line) and our preferred sample 
(red)taking the most recent observation available are indicated in figure 2.  For 
AnxDep sampling the most recently available observation per participant did not 
result in dramatically different estimates of SNP heritability then randomly 
sampling an observation for each participant. 
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Figure 2: SNP heritability for Anxious Depression from randomly drawn univariate samples from the 
available repeated measures. 
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Apendix III: Genome wide association analysis of anxiety disorders 
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Background 

NTR and NESDA take part in an international consortium (PI J Hettema) in which a 
meta-analysis will be done on the results of GWA studies focusing on identifying 
genetic variants for anxiety disorders. I performed the genome-wide association 
(GWA) study on “any anxiety disorder” which indicates the lifetime presence of 
generalized anxiety disorder, social phobia, panic disorder and/or agoraphobia. In 
this appendix I describe the analyses and result for the Dutch studies.  The two 
parent projects that supplied information for this GWAS are large-scale 
longitudinal studies, the Netherlands Study of Depression and Anxiety (NESDA) 
and the Netherlands Twin Register (NTR)1-3.  

 

Participant and phenotype information 

Recruitment of participants for NESDA took place from 09/2004-02/2007, and 
ascertainment was from outpatient specialist mental health facilities, primary care 
practices and the general population. Additional cases were from the NTR. 
Inclusion criteria were age 18-65 years, self-reported northwestern European 
ancestry a lifetime diagnosis of the following DSM-IV anxiety disorders as 
diagnosed via the Composite International Diagnostic Interview (CIDI) (version 
2.1) 4 during one of the NESDA or NTR assessments: generalized anxiety disorder, 
social phobia, panic disorder and/or agoraphobia. Persons who were not fluent in 
Dutch and those with a primary diagnosis of a psychotic disorder, obsessive 
compulsive disorder, bipolar disorder, or severe substance use dependence were 
excluded.  

Control subjects were mainly from the NTR. Longitudinal phenotyping includes 
assessment of depressive symptoms (via multiple instruments), anxiety, 
neuroticism, and personality measures. Inclusion for controls required a low score 
on the trait version of the STAI (State-Trait Anxiety Inventory) or on a composite 
measure of neuroticism, anxiety and depression 5-8.  A subsample of  the NTR 
controls were also screened via a CIDI interview. A subset of controls were from 
NESDA and had no lifetime diagnosis of depressive  or anxiety disorder as 
assessed by the CIDI.  
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There were 1521 cases and 2970 controls wit genotype and phenotype 
information. 

NESDA and NTR studies were approved by the Central Ethics Committee on 
Research Involving Human Subjects of the VU University Medical Center, 
Amsterdam, an Institutional Review Board certified by the US Office of Human 
Research Protections (IRB number IRB-2991 under Federal wide Assurance-3703; 
IRB/institute codes, NESDA 03-183; NTR 03-180). All subjects provided written 
informed consent.  

 

Genotyping, Imputation and Genome-Wide Association analysis  

 

Whole blood and/or buccal DNA samples were collected for various projects done 
by the NTR and for the NESDA study (see 1-3;9). Genotyping was performed on 
multiple platforms: Affymetrix 6.0, Affymetrix Perlegen 5.0, Illumina 370, Illumina 
660, Illumina Omni 1M. Genotype calls were made with the platform specific 
software i.e. Birdseed, genotyper and Beadstudio.  

QC was then performed within and between the different platforms and all 
genotypes were lifted over to build HG37 of the human genome. Genotypes that 
did not properly map to HG37 were removed as well as SNPs with a minor allele 
frequency below 1%, and allele frequency difference with the reference set above 
20% , HWE < 0.00001 or a call rate below 95%.  

IBD was calculated for all pairs and was compared to the expected pedigree 
structure. Samples where IBD did not match the expected pedigree were 
removed. Cross-platform concordance was calculated for samples that were 
genotyped on multiple platforms, samples that showed a concordance below 99% 
were removed. 

Imputation was done in a two stage approach. First, the genotype platform 
specific SNPs were imputed using the MaCH software suite. Next, the 1000 
genomes reference set SNPs were imputed using Minimach. 
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The genome-wide association analyses were performed on the dosage genotype 
data that were transformed into a single additive dosage score per SNP and 
imported into R. Subjects from non-Western European ancestry were not included 
in the analyses. Three logistic regression analyses were run, all including 3 
principal components correcting for population stratification within the 
Netherlands and a dichotomous variable coding for study of origin as covariates. 
1) without any additional covariates, 2) with sex and age included as covariates, 3) 
with sex, age and a SNP by sex interaction term as covariate. Minimal QC was 
performed before uploading the GWA results. SNPs were selected with an R2 > 
0.30, a MAF of 0.01 and HWE > 10e-5. 

Results 

No genome wide signals were observed in the NTR sample Below in figure 1 the 
Manhattan plot of the model that includes the effect of the SNP, and the main 
effects of sex and age. The genomic inflation after initial filtering in the 
NTR/NESDA sample is reasonable (Lambda = 1.021) indicating incusion of principal 
components did control for batch effects and stratification. 
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Figure 1: Manhattan plot for the NTR NESDA anxiety disorder case contol GWAS.
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In hoofdstuk 1 van dit proefschrift wordende methoden uiteengezet die ten 
grondslag liggen aan gedragsgenetisch onderzoek. In gedragsgenetisch onderzoek 
toetst met in hoeverre individuele verschillen in fenotypes worden bepaald door 
individuele verschillen in genotypes. Ieder complex menselijk gedrag, of 
aandoening, kan doorgaans worden onderzocht als fenotype. De oudste vorm van 
gedragsgenetisch onderzoek geschiedt door middel van tweelingstudies, die de 
mogelijkheid bieden om te onderzoeken in hoeverre individuele verschillen tussen 
mensen (de populatie variantie) worden verklaard door genetische factoren en 
door de omgeving. Tweelingstudies bieden de mogelijkheid om de erfelijkheid van 
een fenoptype te onderzoeken omdat eeneiige tweelingen hun volledige DNA 
delen, en twee-eiige tweelingen is dit bij benadering de helft van het DNA. Als 
eeneiige tweelingen voor een bepaald fenotype meer op elkaar lijken dan twee-
eiige tweelingen, dan is dit een aanwijzing dat individuele verschillen in dit 
fenotype door individuele verschillen in het genotype worden bepaald. 
Genetische factoren kunnen worden onderscheiden in “additief genetische 
effecten” en “non-additief genetische” of “dominantie effecten”. Bij effecten 
vanuit de omgeving kan een onderscheid worden gemaakt tussen 
omgevingsinvloeden die uniek zijn voor ieder kind binnen een tweelingpaar, en 
gedeelde omgevingsinvloeden, die in hun effecten hetzelfde zijn voor beide 
kinderen van een tweelingpaar. Op het moment dat tweelingonderzoek aantoont 
dat individuele verschillen deels verklaard worden door genetische factoren is 
vervolgens de vraag welke genen van invloed zijn.  

Sinds de jaren ‘70 bestaat de mogelijkheid om door middel van genetische 
“linkage” (koppeling) de invloed van individuele genen of een individueel stuk 
genoom op gedrag te onderzoeken. Over het hele genoom delen twee-eiige 
tweelingen de helft van hun DNA, maar voor een bepaalde locus op het genoom 
zijn ze identiek, ze delen de helft, of ze zijn uniek.  In koppelingsonderzoek wordt 
eerst bepaald of twee-eiige tweelingen, of broers en zussen, voor een bepaald 
stuk DNA identiek zijn, de helft van het DNA delen, of uniek zijn. Vervolgens word 
gekeken of de genetische overeenkomst op een bepaald stuk DNA tussen paren 
samengaat met overeenkomsten in gedrag, d.w.z. of de paren die het stuk 
genoom delen meer op elkaar lijken dan de paren die op dat stuk niets delen. 
Vanaf de jaren ‘90 word in de gedragsgenetica genoombreed 
koppelingsonderzoek uitgevoerd. Hierbij wordt op enkele honderden tot 
duizenden plekken over het hele genoom tegelijk geanalyseerd of verschillen in 
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het genoom samenhangen met verschillen in gedrag. Doordat men voor dit 
onderzoek broers en zussen gebruikt kan men met slechts enkele honderden tot 
duizenden metingen uitspraken doen over het hele genoom. Broers en zussen 
delen immers vaak lange aaneengesloten stukken genoom van een of beide 
ouders. Een eting van een enkel stukje DNA kan worden gegeneraliseerd over een 
langer stuk DNA, waar wel de zekerheid van de generalisatie afneemt naarmate  
de afstand met het gemeten stuk DNA toeneemt. 

 In 2000 werd de volledige sequentie van het menselijke genoom blootgelegd  
door het “Human Genome Project” wat de mogelijkheid bied om op een nog veel 
fijnere schaal genetisch onderzoek uit te voeren.  In een genoombrede 
associatiestudie worden  enkele honderdduizenden tot tientallen miljoenen 
“single nucleotide polymorphisms” (SNPs) onderzocht. De hoge dichtheid van de 
metingen betekent dat men deze associatiestudies ook kan uitvoeren in 
ongerelateerde individuen. Men in voor associatie niet meer afhankelijk van 
directe verwantschap tussen proefpersonen.   

In de eerste genoombrede associatiestudies was het aantal significante associaties 
tussen gen en gedrag beperkt. Dit leidde tot de vraag of de veel voorkomende 
genetische varianten die in een dergelijke studie worden geanalyseerd wel van 
belang zijn bij dit soort fenotypes. Polygenetische analyses, waarbij het effect van 
al  de genetische varianten  gezamenlijk wordt onderzocht, liet zien dat deze SNPs 
wel degelijk een signaal herbergen, maar dat de effecten van de afzonderlijke 
SNPs zeer klein zijn. Dat betekent dat grote steekproeven nodig zijn om deze 
effecten te detecteren. Samenwerking tussen laboratoria over de hele wereld 
heeft inmiddels geleid tot de identificatie van honderden associaties tussen SNPs 
en menselijke fenotypes, zoals terug is te vinden in de GWAS catalogus 
(https://www.genome.gov/26525384). Het betreft bevindingen voor een groot 
aantal fenotypes zoals BMI, lichaamslengte, lipiden, hart- en vaatziekten, 
breinvolumes, maar ook psychiatrische ziekten zoals schizofrenie of bipolaire 
stoornis, en gedragsmaten zoals roken en neuroticisme.  

Hoofdstuk 2 beschrijft een studie waarin met een longitudinaal tweelingmodel 
wordt gekeken hoe de genetische invloeden op symptomen van angst en 
depressie veranderen met leeftijd. Dit wordt ook wel  “gen leeftijd interactie” 
genoemd. Hiervoor is een longitudinaal simplex model gebruikt, waarin de 
variatie op iedere leeftijd wordt gesplitst in genetische variatie en 
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omgevingsvariatie. De genetische en omgevingsvariaties worden verder 
opgedeeld in een component die op een eerdere leeftijd al invloed had op 
symptomen van angst en depressie en een invloed “innovatie” die nieuw is op 
deze leeftijd. Deze studie laat zien dat de genetische invloed op angst en 
depressie gedurende de levensloop toeneemt. Tot de leeftijd van 18 jaar is er dus 
steeds sprake van nieuwe genetisch effecten en deze toename stopt na het 18e 
levensjaar. De omgevingsinvloeden op symptomen van angst en depressie nemen 
ook toe tijdens de jeugd. Deze toename van omgevingsinvloeden is (tijdens de 
jeugd) groter dan die van de genetische invloeden. Dit leidt ertoe dat de 
erfelijkheid, gedefinieerd als de genetische variatie gedeeld door totale variatie, 
afneemt van de vroege jeugd tot de volwassenheid. Er is geen evidentie dat 
nieuwe genetische effecten op volwassen leeftijd invloed uitoefenen op 
symptomen van angst en depressie, terwijl er wel evidentie is voor nieuwe 
omgevingsinvloeden op volwassen leeftijd. 

Hoofdstuk 3 beschrijft een studie waarin op populatieniveau groeicurven worden 
geschat voor de op DSM-IV gebaseerde internaliserende en externaliserende 
stoornissen. Deze groeicurven beschrijven de in deze populatie meest 
voorkomende ontwikkelingstrajecten voor externaliserend gedrag en 
internaliserend gedrag tussen leeftijd 7 en 18. Uiteindelijk beschrijft het model 
waarin er 5 discrete ontwikkelingstrajecten bestaan voor zowel externaliserend 
als internaliserend gedrag deze data het beste.  Voor de internaliserende 
stoornissen is er evidentie voor trajecten met een “blijvend zeer lage symptoom 
score”, een “lage symptoom score”, “stijgende symptoom score”,  “afnemende 
symptoom score” en een “in de adolescentie toenemende symptoom score”. 
Voor externaliserende stoornissen zijn er ook de eerste vier trajecten. In plaats 
van een traject van de “in de adolescentie toenemende scores” is er evidentie 
voor een traject met “blijvend hoge externaliserende scores”. Covariaten gemeten 
rond de zwangerschap, zoals bijvoorbeeld het roken van de moeder, verhogen de 
kans om in een hoge of stijgende externaliserende klasse terecht te komen, ook 
mannen zitten vaker in een stijgende of hoge externaliserende klasse. Vrouwen 
hebben een verhoogde de kans om in een hoog scorende internaliserend traject 
te worden geclassificeerd. Na de internaliserende en externaliserende trajecten te 
hebben vast gesteld, onderzoeken we comorbiditeit tussen internaliserende en 
externaliserende trajecten. Hier kijken we of bepaalde internaliserende trajecten 
vaker dan verwacht samenhangen met bepaalde externaliserende trajecten. 
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Vergelijkbare trajecten komen vaker dan verwacht samen voor: kinderen die in 
toenemnde mate internaliserende problemen hebben gaat vaak samen met 
toenemende externaliserende problemen, hetzelfde geldt voor afnemende 
problemen. Het internaliserende traject voor individuen die in de adolescentie 
een stijgende score laten zien blijkt onafhankelijk van de hoge en stijgende 
externaliserende trajecten. Deze studie laat zien dat eventuele comorbiditeit 
moet worden overwogen als een kind of adolescent wordt gediagnosticeerd met 
een externaliserende of internaliserende stoornis, niet alleen ten tijde van het 
stellen van de diagnose, maar ook later in het traject.  

Hoofdstuk 4 beschrijft een genoombrede associatie (genome wide association: 
GWA) studie naar internaliserende problemen op 3 jarige leeftijd, uitgevoerd in 
4596 kinderen. De meta-analyse is gebaseerd op analyses in drie cohorten: het 
Nederlandse Tweeling Register, “generation R” (een Rotterdamse 
populatiestudie) en “The Western Australian Pregnancy Cohort” (RAINE, 
eenAustralische populatiestudie). Zoals op grond van het aantal proefpersonen 
verwacht kan worden laat de meta-analyse geen genoombrede significante 
associaties zien. Wel zijn er suggestieve signalen in het PCSK2 gen dat zich bevindt 
op chromosoom 20p12.1. Overige analyses laten zien dat alle SNPs gezamenlijk 
tussen de 13% en 43% van de individuele verschillen in internaliserend gedrag van 
3 jarigen verklaren. Verder blijken SNPs die in eerdere studies zijn geassocieerd 
met psychiatrische fenotypes in kinderen en volwassenen ook een collectief effect 
te hebben op internaliserend gedrag in 3 jarigen. Hoewel deze studie geen 
individuele varianten identificeert, is wel evidentie vergaard dat de genetische 
invloeden op internaliserende problemen bij 3 jarigen zeer poly-genetisch zijn, dat 
wil zeggen dat er veel genen zijn met ieder een zeer klein effect. Dit is in lijn met 
bevindingen uit grotere meta-analyses van psychiatrische fenotypes bij 
volwassenen. 

In Hoofdstuk 5 is gekeken naar de overlaptussen het genetisch risico op 
schizofrenie en “DSM-IV gebaseerde probleemscores” bij Nederlandse en Britse 
kinderen. Op basis van een genoombrede meta-analyse naar schizofrenie bij meer 
dan 30.000 schizofreniepatiënten en meer dan 40.000 gezonde controle-
individuen werd een lineaire combinatie van SNPs gecreëerd.  Deze combinatie 
van SNP’s  voorspelt schizofrenie in onafhankelijke cohorten (genetisch profiel 
score: polygenic risk score: PRS). Dezelfde PRS wordt gebruikt om symptomen te 
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voorspellen voor DSM-IV depressie, angststoornissen, externaliserende 
stoornissen  en ADHD op leeftijd 7, 10, 13 en 15 in Britse en Nederlandse 
kinderen. Meta-analyse van de resultaten laat zien dat de PRS voor schizofrenie 
samenhangt met angst op leeftijd 10 en in mindere mate met angst op leeftijd 7 
en 13 en depressie op leeftijd 7 en 10. Post-hoc toetsen laten zien dat er een 
sterkere samenhang is tussen PRS en internaliserende problemen in kinderen dan 
tussen PRS en externaliserende problemen in kinderen.  

In Hoofdstuk 6  wordt  een associatie tussen het catenin delta 2 gen (CTNND2) en 
angst die gevonden is in ratten,  gerepliceerd in mensen. Data van het 
internationale “Psychiatric Genetics Consortium”(PGC) en de “Nederlandse studie 
van angst en depressie” (NESDA) zijn hiervoor geanalyseerd. Hieruit blijkt dat de 
varianten in het CTNND2 gen, collectief, meer met schizofrenie en depressie zijn 
geassocieerd dan verwacht op basis van kans. Voor angst en bipolaire stoornissen 
werd geen associatie aangetoond met CTNND2. Deze studie laat zien dat het 
waardevol kan zijnom bevindingen uit proefdierstudies te repliceren. 

In Hoofdstuk 7 wordt een nieuwe statistische techniek beschreven om gen-
omgevingsinteracties te onderzoeken en te kwantificeren. Deze techniek maakt 
gebruik een genetische relatie matrix (GRM). Deze matrix bevat voor een grote 
groep personen hun genetische verwantschap met alle andere personen in de 
studie voor wie SNPs gemeten zijn. Voor ongerelateerde personen is de 
verwachte verwantschap geschaald naar 0, voor broers en zussen is de verwachte 
verwantschap 0.5, maar rondom deze verachtingen is een zekere mate van 
spreiding. Sommige ongerelateerde personen delen meer SNPs dan andere, en de 
vraag is of ze ook fenotypisch meer op elkaar lijken. De verwantschappen in de 
GRM worden bepaald op basis van gemeten SNPs. De GRM matrix wordt 
vervolgens gesplitst. Er is 1 matrix die alle informatie bevat en een tweede die 
slechts de verwantschap informatie bevat voor mensen met een paarsgewijze 
verwantschap boven de 0.05, dus van mensen die aan elkaar gerelateerd zijn. 
Door vervolgens de variantie in het fenotype te modelleren als een functie van 
beide matrices, kan men bepalen welk deel van de variantie in het fenotype 
verklaard wordt door de gemeten SNPs, en welk deel door alle genetische 
effecten. Ik heb vervolgens een methode ontwikkeld, die moderatie van de 
genetische variantie toestaat door een continue verdeelde variabele. Uit de 
analyses van BMI, lichaamslengte, symptomen van angst en depressie en 
attentieproblemen, blijkt dat de erfelijkheid van BMI en attentieproblemen 
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varieert met leeftijd, die van lichaamslengte met geboorte jaar. Bij BMI komt dit 
door veranderingen in de genetische invloeden en de omgevingsinvloeden op het 
fenotype, bij lichaamslengte en attentie problemen komt dit door een 
verandering in de omgevingsvariantie. Er is geen moderatie van de genetische 
effecten van angst en depressie. 

Hoofdstuk 8 van dit proefschrift beschrijft een methode om de genetische 
covariantie tussen meerdere fenotypes vast te stellen op basis van gemeten SNPs 
en verwantschapsinformatie. Hier wordt zoals in hoofdstuk 7 een GRM gebruikt. 
Voor het schatten van de genetische covariantie tussen meerder fenotypen wordt 
de som van twee fenotypen gebruikt. De variantie van de som van 2 variabelen is 
immers de variantie van de eerste variabele plus de variantie van de tweede 
variabele plus twee maal de covariantie tussen de twee variabelen. Door de 
variantie van de som van twee variabelen in genetische en 
omgevingscomponenten te ontbinden en de twee afzonderlijke variabelen in een 
genetische en omgevingscomponent te ontbinden kan men de genetische en 
omgevingscovariantie tussen de twee variabelen bepalen. Met deze methode is 
een computationeel intensieve stap in multivariaat modeleren te voorkomen. De 
hier voorgestelde techniek is toegepast om de genetische covariantie te schatten 
tussen de 12 neuroticisme items en de 12 extraversie items van de NEO 
persoonlijkheidsvragenlijst. Deze analyses laten zien dat de covariantie structuur 
tussen deze items, gebaseerd op gemeten genetische variatie, een duidelijk 
onderscheid maakt tussen de neuroticisme items en de extraversie items. 
Hiermee is de op basis van tweelingstudies voorspelde covariantie structuur 
teruggevonden in moleculaire genetische data.  

Hoofdstuk 9 en Hoofdstuk 10 betreffen de Engelstalige samenvatting, en 
discussie van het proefschrift. In de discussie van dit proefschrift wordt een 
breder kader van de humane genetica geschetst. 

 

 

 

 



 

308 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

309 
 

Acknowledgments 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

310 
 

I would like to thank all participants in the NTR studies, who contributed their 
time to fill out the longitudinal surveys and donated biological samples for 
zygosity assessment and genotyping. I am very grateful to the twins, and their 
extended families without whom this research would not have been possible. I am 
also extremely grateful to all the families who took part in the ALSPAC study, the 
midwives for their help in recruiting them, and the whole ALSPAC team, which 
includes interviewers, computer and laboratory technicians, clerical workers, 
research scientists, volunteers, managers, receptionists and nurses. Finally, I am 
very grateful to the participants in the “Netherlands Study of Anxiety and 
Depression” for their participation, time and effort. 

Funding for this project was provided by the Netherlands Scientific Organization 
(NWO) (912-100-20): “Genetic influences on stability and change in 
psychopathology from childhood to young adulthood”, and the European 
Research Council (ERC-230374): “Genetics of Mental Illness”.  

The work in this thesis relies on data collected in the Netherlands Twin Register 
(NTR). We therefore wish to acknowledge all funding that contributed to the data 
collected in the NTR, including funding by the Netherlands Organization for 
Scientific Research (NWO) and MagW/ZonMW, the CMSB: Center for Medical 
Systems Biology and BBMRI –NL : Biobanking and Biomolecular Resources 
Research Infrastructure;  the VU University Institute for Health and Care Research 
(EMGO+ ) and  Neuroscience Campus Amsterdam (NCA). 

The Avera Institute for Human Genetics, Sioux Falls, South Dakota (USA) and the 
Rutgers University Cell and DNA Repository contributed significantly to the NTR 
zygosity assessment and genotyping  through two Grand Opportunity grants: 
Integration of genomics and transcriptomics in normal twins and major 
depression (NIMH 1RC2MH089951-01) and Developmental trajectories of 
psychopathology (NIMH 1RC2 MH089995). Computing is supported by BiG Grid, 
the Dutch e-Science Grid, which is financially supported by the Netherlands 
Organisation for Scientific Research (NWO). 

The ALSPAC study was funded by: The UK Medical Research Council and the 
Wellcome Trust (Grant ref: 092731) and the University of Bristol provide core 
support for ALSPAC.  

 



 
 

311 
 

Dankwoord 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

312 
 

 

Als onderzoeker binnen de afdeling biologische psychologie ben ik veel dank 
verschuldigd aan de tweelingen en hun familie die jaar in jaar uit deelnemen aan 
het onderzoek van het Nederlandse tweelingen register. Dit proefschrift had niet 
tot stand kunnen komen zonder hun herhaalde deelname aan onderzoek de 
afgelopen 27 jaar. 

Ik zou graag op deze plaats dank betuigen aan een aantal mensen die mij 
gedurende mijn promotie gesteund hebben.  Allereerst wil ik mijn promotor 
Dorret Boomsma en co-promotoren Christel Middeldorp en Conor Dolan 
bedanken. Bedankt, voor de wijze lessen, de vele kansen en de prettige 
samenwerking. Daarnaast bedank ik ze graag voor hun geduld met mijn diselectie.  

Naast mijn directe begeleiders bedank ik graag Gonneke Willemsen en Toos van 
Beijsterveldt voor de uitstekende begeleiding en hulp bij het samenstellen van 
fenotypische datasets, maar ook wat betreft het meedenken over analyses en 
analyse technieken. Ook bedank ik graag Jouke-Jan Hottenga, zonder wie ik niet 
ver was gekomen op het gebied van statistische genetica.  Ik bedank graag Gitta 
Lubke voor de prettige samenwerking, de altijd relevante feedback en voor het 
statistische onderwijs op Notre Dame university dat ik kosteloos  via Skype mocht 
volgen.  Verder wil ik Meike Bartels en Jacqueline Vink bedanken voor de 
excellente begeleiding  en Marleen de Moor die altijd bereid was om mee te 
denken aan statistische modellen. 

I would further like to thank the members of the reading committee; Dale Nyholt, 
Ramon Lindauer, Hein Putter, Jeffrey Glennon,  Denny Borsboom and Marleen de 
Moor who took the time to read and evaluate  my dissertation. 

I would like to thank Marcus Munafo, Beate St. Pourcaine and David Evans for the 
collaboration and the excellent supervision during my stay at the University of 
Bristol. Ghazaleh, John, Dylan, Alex and Bridget thanks for making me feel right at 
home in Bristol. I would further like to thank John Hewitt and the faculty of the 
international twin workshop for letting me tag along as junior faculty during the 
2012 and 2014 workshops.  

Verder wil ik mijn academische kamer genoten Abdel en Dirk bedanken, de 
informele discussies in de kamer hebben tot substantiële verbetering van menig 



 
 

313 
 

paper geleid. Dan wil ik verder Maria bedanken die vooral in het begin van mijn 
promotie traject geduldig iedere vraag beantwoorden, ook als ik tot 5 maal 
binnen en uur met een vraag binnenkwam, of zonder vraag. Verder wil ik Sanja 
bedanken, je stond altijd klaar om me met wat dan ook te helpen, of me terecht 
te wijzen, of meestal beide.  Ik wil Jenny bedanken voor de verrijkende 
samenwerking met betrekking  tot de epi-genetische data, een samenwerking die 
hopelijk in de toekomst kan worden voortgezet. Ik wil Harmen bedanken voor de 
samenwerking in het onderwijs en onderzoek. Ik wil Wouter, Maarten, Kees-Jan, 
Klaas-Jan, Bart, Janneke, Hamdi, Karin, Irina en Camelia bedanken voor het 
meedenken over statistische modellen, artikelen en/of software. Verder bedank ik 
mijn teamgenoot Laura.  

Ik wil verder de (oud) collega’s en gasten van biologische-psychologie en NESDA; 
Anouk, Dennis, Elsje, Lannie, Niels, Rene, Melanie, Charlotte, Nienke, Evelien,  
Jorien,  Suzanne, Fiona, Quinta,  Mike,  Jenny, Rene, Matthijs, Lot, Diane, Ineke, 
Bochao,  Nuno,  Charles,  Raymond, Jouri,  Rik, Dan, Michiel, Michelle, Corina, 
Stephanie, Brenda, Natascha  en Eco de Geus bedanken voor een fantastisch 
(academisch) werk klimaat. 

Dan rest mij nog Renske, en mijn ouders, Rietje en Guillaume Nivard te bedanken 
voor de steun, het geduld en een luisterend oor. 

 

 

 

 

 

 

 

 

 



 

314 
 

 


