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Chapter 1

Major Depressive Disorder: prevalent, heterogeneous, and disabling

The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV and DSM-5)
classifies major depressive disorder (MDD) in individuals with depressive
symptoms for at least two weeks nearly every day, which consist of at least one
of the two core symptoms of depressed mood or decreased interest (anhedonia),
added to a total of five symptoms when also considering the seven secondary
symptoms of weight or appetite change, change in sleep, psychomotoric change,
fatigue or loss of energy, feelings of guilt or worthlessness, decreased ability to
concentrate, and thoughts of dead or suicide. MDD is considered a common
disorder as it affects around 15% of people sometime in life,%? a number far
exceeding the approximate 1% of people diagnosed with psychiatric disorders
such as schizophrenia (SCZ), bipolar disorder (BIP) or autism (ASD).> The first
onset of MDD can occur at all stages in life, but most often MDD presents
between the age of 20 and 40 to have a chronic course of more than 24 months
in approximately 20% of patients.>* Notably, MDD affects women twice as often
as men.>® As a consequence of the wide diagnostic criteria requiring only five of a
total of nine symptoms, the clinical presentation of MDD varies considerable
from one patient to the other. The DSM IV and DSM 5 acknowledges this
heterogeneity by defining subtypes of MDD, such as: melancholic depression
characterized by i.a. loss of pleasure in all activities (severe anhedonia), lack of
response to positive stimuli, excessive weight loss, early-morning waking and a
clear day-pattern of symptoms; atypical depression characterized by i.a. weight
gain and increased sleep; catatonic depression characterized by i.a. almost full
inability to speak or move; and a depression with psychotic features with
delusions concerning guilt, punishment, disease or financial debt possibly
accompanied by auditory hallucinations from a devaluating nature. Some milder
forms of MDD are self-limiting and require no other interventions than psycho-
education about symptoms and lifestyle advice, whereas more severe forms of
MDD requires therapies ranging from cognitive behavioral therapy or
antidepressant therapy for moderate episodes, tricyclic antidepressants with
lithium for severe episodes, up to electroconvulsive therapy for episodes with
severe motoric and psychotic features as well as for therapy resistant severe
episodes.” Despite the range of therapeutic strategies available, not all MDD can
be treated, leading to live long symptoms in some. Indeed, the suicide rate
amongst MDD patients in the USA has been estimated at approximately 3.4%
more often in male (7%) than in female (1%) patients.® People suffering from
MDD are often unable to participate in working and social life, and the World
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Health Organization has predicted that by 2030 MDD will be globally leading in
disease burden.’

The etiology of Major Depressive Disorder remains largely unknown

The etiology and pathophysiology of MDD is largely unknown, in particular when
compared to other medical conditions such as, for example, diabetes mellitus,
which pathophysiology has been pinpointed to failure of the islets of Langerhans
in the pancreas to produce insulin (type I) or by peripheral insulin resistance (type
I1). Nevertheless, despite the largely unknown etiology of MDD, many associates
have been identified leading to hypotheses about MDD’s pathophysiology. For
example, MDD is known to be associated to lower educational attainment,'®
stressful life-events, childhood trauma,'? and personality characteristics, but
also to medical conditions such as diabetes mellitus’® and cardiovascular

disease,*

and neurobiological measurements such as hypothalamic-pituitary-
adrenal axis indicators,’> hippocampal volume loss,'® and inflammation.'”8
Childhood trauma, often defined as trauma before the age of 16, is one of the
most notable risk factors, with an OR for MDD between 2 and 3, that also
increases risk amongst MDD patients to suffer from psychotic features, to
attempt suicide and to achieve poorer treatment outcome.? In a step towards
understanding MDD’s etiology, Kendler et al. have suggested a developmental
model where three broad pathways interact; internalizing factors (genetic risk
factors, neuroticism, low self-esteem, early-onset anxiety, and past history of
major depression), externalizing factors (genetic risk factors, conduct disorder,
and substance misuse) and adversities.!>?° From a purely biological perspective,
MDD has been hypothesized to arise from synaptic deficiency of monoamines
(serotonin, dopamine, noradrenalin) given the effectiveness of synaptic
monoamine increasing medication such as selective serotonin reuptake
inhibitors, but this hypothesis is now considered too simplistic.2%?? It is clear that
MDD is associated to many social, psychological and biological factors, but its
etiology still remains largely unknown, as do the reasons for its association with
these factors. Some associations may be causal, others may be a consequence of
MDD, and yet others may be due to a shared etiology, which may include shared
genetic risk.

Relevance of genetic research

Genetic research might reveal itself as powerful catalyzer of research in MDD’s
etiology in the years to come. Firstly, the nature of the association between MDD
risk and genetic variants is unique, because the direction of causality is certain:
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genetic risk variants impact MDD and not visa versa. Notably, this property is
already lost in the next physiological level, because the association between MDD
and the expression of a gene may be attributable to gene-expression impacting
MDD but also to MDD impacting gene-expression via e.g. increased stress.
Secondly, genome-wide association studies (GWAS) provide the opportunity for
hypothesis-free testing of all possible pathophysiological pathways potentially
inspiring novel therapies. Thirdly, genetic research can help to understand why
individuals differ in their vulnerability for MDD by, for example, assessing the
proportion of variation in MDD risk in the population attributable to genetic
effects expressed as the so called heritability (h?). Fourth, theory about the
distribution of genetic variants and mating patterns can help to understand why
psychiatric disorders still exist in the population despite their unfavorable effects
on reproductive fitness, which may be of minor interest for MDD (impacted by
very little natural selection) but can be much more relevant for disorders such as
schizophrenia (SCZ) and autism (ASD) associated with a clear reduced fecundity.??
Fifth, genetic variants that influence multiple traits can potentially help to
understand, at least in part, some of the many comorbidities associated with
MDD. Importantly, the points of relevance described here have not yet been
fulfilled as psychiatric genetic research has met major challenges, but suggest
nevertheless the exciting potential of psychiatric genetic research in general.

Genetic research in MDD

Genetic research in MDD had been quickly evolving in the years up to 2011, when
this PhD project commenced. Until around 2009, genetic research on Major
Depressive Disorder (MDD) had mainly focused on twin and family studies,
linkage studies, and candidate gene studies, but has since increasingly
concentrated on genome-wide association studies (GWAS) with case-control
data. Population based twin and family studies pointed to an heritability for MDD
in the general population of around h? = 0.35 by considering MDD risk in
relation to the expected genetic similarity between family members without
requiring information on genotypes.?*2¢ Notably, increased heritability estimates
have been reported for hospitalized depression (0.48-0.75)?” and for lifetime
diagnosis based on repeated assessments in women (0.66).2 Linkage studies
provided the first attempts to find specific genetic regions associated to MDD in
large pedigrees or sib-pair studies by testing for linkage between genetic loci and
disease status. However, linkage studies can only detect genetic regions with
large effect on MDD risk, and did not lead to consistent findings.?® In candidate
gene studies, a single or couple of genetic variants were being tested based on a

10
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priori hypotheses about gene function by comparing individuals with MDD to
healthy unrelated controls, and although these studies did point to some
potentially associated genes3® these results showed little consistency.3* Around
2005, new hope arose as -following sequencing of the first human genome
costing 3 billion US dollar and published in 2001-3? techniques for genotyping had
progressed to provide the opportunity to genotype at relatively low cost over
500,000 genome-wide single nucleotide polymorphisms (SNP), which resulted in
published MDD GWAS results from 2009 onwards.33313437 Nevertheless, the
largest GWAS up to 2011, comprising 5763 MDD cases and 6901 healthy controls,
found no genome-wide significantly associated SNP, which was disappointing to
many.3!

Datasets used in this thesis

This thesis analyzes both empirical data and simulated data. The empirical data
come from the Netherlands Study of Depression and Anxiety (NESDA),3®
Netherlands Twin Registry (NTR),3® and Psychiatric Genomics Consortium (PGC).*°
NESDA is an ongoing longitudinal cohort study of MDD and anxiety disorders
whose nearly 3,000 subjects were recruited from mental health care settings,
general practitioners, and the general population in the period from 2004 to
2007. NTR has been collecting data on Dutch twin families since 1991 and
comprises data on nearly 90,000 adult individuals. NESDA and NTR collaborate in
their genetic research on MDD where NESDA provides most of the cases and NTR
most of the controls that were all genotyped together.?® The PGC is an ever-
growing international collaboration combining genotype data from cohorts from
multiple countries (the USA, Australia, Germany, Denmark, Sweden, the UK, and
NESDA and NTR from the Netherlands).

Part A: Genetic effects and environment in depression

Why were no genome-wide significant loci for MDD found by 2011?

A sample of 5763 cases and 6901 controls for a GWAS on MDD was considered
very large at the time, and the lack of significantly associated loci in MDD, as well
as the dearth of findings for other traits, inspired development of novel methods
and reconsideration of the expected genetic architecture (number of risk loci,
their frequency, their effect sizes, and the way in which they act together). First,
it should, however, be noted that testing loci in around 1,000,000 independent
genomic regions requires control of false positive findings by setting a stringent

11
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level of significance at5 * 1078 (0.05/1,000,000). Naturally, large sample sizes
are needed to balance this high multiple testing burden. Nevertheless, despite
this stringent significance threshold, the MDD GWAS was still expected to detect
20% of risk loci with an odds ratio (OR) of 1.2 or larger, and having found none
implicated effective loci for MDD would likely have much smaller effects.3!
Because the loci tested were still expected to explain (a large part of) the
heritability estimated at 35% from family studies, it was concluded that MDD is
most likely affected by many loci with small effect pointing to a polygenic genetic
architecture. This polygenic architecture was further confirmed by methods
developed just before 2011 to test for the overall effect of all loci at once.
Polygenic risk scores were constructed in a target sample by counting the number
of risk alleles based on GWAS results from an independent discovery sample, and
significantly predicted a small proportion of variation in MDD.*! These findings
were in line with results from another method, genomic-relatedness-matrix
restricted maximum likelihood (GREML), which compares concordance in disease
status within pairs of individuals to their genetic relatedness based on SNP data,
to find that a considerable proportion of variation in MDD was explained by
genotyped SNPs, referred to as the SNP-heritability.*? In addition, So et al
developed a method to assess the SNP-heritability from z-statistics from GWAS
results,*® which showed similar estimates of a SNP-heritability of around 0.3 for
MDD*? in data from the Netherlands Study of Depression and Anxiety (NESDA)3?
and Netherlands Twin Registry (NTR).3 Following these considerations about the
genetic architecture, it was assumed in 2011 (when this PhD project commenced)
that significantly associated SNPs would be found for MDD with increasing
sample size. These considerations were, notably, not unique for MDD and also
applicable for other traits, such as schizophrenia (SCZ) and height, where
additional significant SNPs were also anticipated with increasing sample size.

Challenges unique for genetic research MDD

In addition to the challenge for most traits introduced by the high polygenicity
and small SNP effect sizes, the GWAS on MDD also met more unique challenges
as it should be noted that other traits had already detected significant loci by
2011, such as the seven loci found for SCZ.** Although the SCZ GWAS contained
more cases (12,945) than the MDD GWAS (5763), the difference in results was
also considered to be attributable to the different disease-characteristics of MDD
compared to SCZ. First of all, family studies pointed to a lower heritability for
MDD (0.35) compared to SCZ (0.8),* which already suggested that loci would be
harder to find for MDD than for SCZ (assuming roughly the same number of
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effective loci for both traits implying smaller average effect sizes for MDD).3?
However, other factors were also considered relevant, such as the high
prevalence of MDD and its diagnostic heterogeneity.

To understand the impact of the high lifetime prevalence of MDD (15%
compared to 1% for SCZ) on the power to detect associated loci, it is helpful to
consider the liability-threshold model, which assumes that MDD and SCZ are
underpinned by an unobserved disease-liability resulting from both genetic and
environmental effects (typically assumed normally distributed), and that
individuals are affected when they exceed a liability threshold (defined by the
population prevalence). Under this model, individuals with MDD have less
extreme MDD-liability values than individuals with SCZ have SCZ-liability values,
because MDD has a lower disease-threshold following from its higher prevalence.
A GWAS on MDD can, thus, be compared to a GWAS on height comparing
individuals with average height of e.g. 170 (controls) to individuals with height of
180 (cases), whereas SCZ can be thought of as comparing individuals with height
of 172 to individuals with height of 210. This illustrates why GWAS on MDD have
less power than GWAS on SCZ, and it has indeed been suggested that GWAS on
MDD would require four times the number of cases than GWAS on SCZ.3%4
Second, it can be seen that the average MDD-liability in MDD controls (individuals
without MDD) is lower than the SCZ-liability in SCZ controls, which suggests that
screening of controls is more important for MDD than for SCZ; a difference
further exaggerated by the later onset of MDD and thus larger uncertainty of
disease-status in controls. The importance of screening controls in relation to the
disease prevalence is addressed in Chapter 6 of this thesis with respect to the
SNP heritability.

Another factor often discussed in relation to the lack of significant GWAS
findings for MDD is its heterogeneity and nosological uncertainty. First of all,
MDD isn’t based on etiology of disease but on clustering of psychological and
physical symptoms, which is in line with the other psychiatric disorders, but not
with somatic disorders such as, for example, diabetes mellitus. Moreover,
compared to other psychiatric disorders, MDD has a relatively wide range of
diagnostic criteria leading to large heterogeneity in symptoms: of the nine MDD
criteria @ minimum of only 5 are required (including at least one of two core
symptoms) resulting in 227 possible combinations of symptoms to meet MDD
diagnosis.*® The number of possible combinations increases even further as some
of the criteria are loosely defined to include two opposing symptoms, such as
either gain or loss in both the weight-criterion and sleep-criterion, and feelings of
either psychomotor agitation or retardation. One could hypothesize that different
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combinations of DSM-IV criteria (leading to a MDD diagnosis) might be
attributable to different pathological pathways, which could partly explain why
GWAS’s on MDD lack power to detect associated loci. It has, furthermore, been
hypothesized that etiology of MDD could differ across different environmental
conditions (irrespective of the combination of diagnostic criteria); a phenomenon
referred to as gene-by-environment interaction.

Gene-by-environment interaction in MDD with candidate genes

Research on gene-by-environment interaction (GxE) tests whether genetic effects
are moderated by environmental conditions resulting in a combined impact of
environmental and genetic effects different from the sum (or product) of their
individual effects. If GxE-effects were to exist in MDD, they would form an
additional challenge for GWAS to detect genetic effects when environmental
conditions are not appropriately accounted for. Studies on GxE-effects in MDD
are, therefore, relevant to inform optimal GWAS design, but also to gain insight in
potential different pathophysiological pathways across environmental strata, or
environmental potentiating of genetic effects. In principal, GxE-studies can be
conducted for all genetic variants across numerous environmental conditions,
and many different genes and environmental factors have indeed been studied in
the candidate-gene era. The most illustrative example in this aspect is the 2003
paper of Caspi and colleagues, in which childhood trauma was found to increase
the impact on MDD of the length polymorphisms in the serotonin-transporter-
linked polymorphic region (5-HTTLPR).#’ This interaction-effect was considered a
scientific break-through at the time that fitted well with the hypothesized
relevance of the serotonin transporter, which is the target of antidepressant
medication inhibiting serotonin reuptake in synapses. However, the initial finding
was followed by numerous conflicting replication efforts, and even meta-analyses

lead to opposing conclusions.->0

It had been argued that the conflicting findings
in replication efforts were attributable to differences in study design,®! but the
2011 study of Fergusson et al followed a very similar design to the original paper
to find no evidence for the interaction-effect reported by Caspi et al.>? Taken all
together, it seems unlikely that the original finding is generalizable to other
cohorts. In addition, a critical review suggested that the GxE-literature from the
candidate-gene era suffered from publication bias, because 96% of novel GXxE-
studies yielded significant results compared to only 27% of replication studies,
and because smaller replication studies reported more significant results than the
larger samples (with the threshold for significance set at 0.05 typical for

candidate gene studies).>® In Chapter 2 of this thesis, a well-described large
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sample containing individuals from NESDA and NTR adds to the discussion by
testing for interaction between childhood trauma and other environmental
conditions with 5-HTTLPR, while also considering the single nucleotide
polymorphism, rs25531, that has been found to moderate the function of 5-
HTTLPR.>*

Gene-by-environment interaction in MDD with genome-wide information
Although research on main genetic effects had evolved from candidate-genes to a
hypothesis-free GWAS approach, research on GxE-effects has not yet followed
this progress. As discussed above, the GWAS on main genetic effects lacked
power with a total of 5763 cases and 6901 controls collected from many
contributing cohorts, and detailed information on environmental conditions was
available for only some of the cohorts contributing to the overall GWAS sample.
As a consequence, power was lacking to test single-SNP GxE-effects for all SNPs
as this would require a genome-wide significance threshold of 5% 1078,
Nevertheless, GWAS samples had also been applied for polygenic risk score (PRS)
analysis to capture the effect of all genotyped SNPs at once by utilizing SNP-effect
estimates from an independent discovery sample. Notably, PRS analyses require a
significance threshold of only approximately 0.05 (because only 1 test in target
set), given the availability of independent discovery results. Furthermore,
contrary to single SNPs (or candidate genes), the PRS had a repeatedly confirmed
effect on MDD making it a more feasible instrument to test for GxE than single
loci (assuming it is unlikely that single loci have completely opposing effects
across different environmental conditions).> The interpretation of GxE results
with PRS (PRSxE) is more complex than the interpretation of GxE for candidate
genes, but the relevance of PRSxE is still found in its potential to point to
environmental conditions with increased genetic effects informing optimal GWAS
design, and in its possible contribution to obtain insight in MDD’s heterogeneity.
In Chapter 4 of this thesis, the impact of PRS on MDD is compared between
individuals exposed and individuals not exposed to childhood trauma in NESDA.
This single-cohort finding is, subsequently, tested in Chapter 5 with data from the
international collaboration of the Psychiatric Genomics Consortium (PGC),*°
which allows combining data of several cohorts to optimize sample size.

MDD and educational attainment

In addition to aiming to detect causal genetic risk variants, genetic research can
also contribute by testing whether shared genetic effects can help to explain
comorbidities or phenotypic association. An association of particular interest is
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the increased risk for MDD in individuals with lower educational attainment (EA),
which has been confirmed in various western countries with a three percent
decrease in MDD risk per additional year of education estimated in a meta-
analysis of 37 studies.!® This association might reflect an impact of lower EA on
increased MDD risk (via e.g. less effective coping strategies), an impact of MDD
on one’s possibilities to obtain his or her full educational potential, or a third
factor impacting both EA and MDD risk. Such a third factor could, for example,
comprise of certain personality characteristics and of shared genetic effects.
Analyses for the causes of the association between MDD risk and lower EA are
relevant to further understand the etiology of MDD, but also as this might inform
future preventions programs to reduce this deleterious link. In Chapter 3 of this
thesis different methods are, therefore, applied to test if the association between
MDD risk and lower EA could be attributable to shared effects of genotyped SNPs.

Part B: Methodological aspects of study design, SNP-heritability, power and
assortative mating

Different types of GWAS design

The GWAS cohorts that contribute to the Psychiatric Genomics Consortium (PGC)
have recruited cases and controls with different strategies, which is likely to
impact results from association testing but also estimates of the SNP heritability
(the proportion of population variance in disorder risk attributable to genome-
wide genotyped SNPs). Some of the MDD cohorts have ascertained cases from
clinical settings and others from population; while most cohorts have carefully
screened controls some do not.>® Nevertheless, all MDD cohorts have recruited
unrelated controls, which contrasts some of the ADHD and autism cohorts that
apply proband-parents trio data. Trio data of affected probands and their parents
is essential to detect de novo mutations, perform imprinting studies, and obtain
accurately phased haplotypes, but also provides pseudocontrols constructed
from the non-transmitted parental alleles for association testing. Pseudocontrols
have regularly been applied in candidate gene studies to protect against
population stratification, but have also been taken forward for GWAS studies
where other methods are also available to protect against stratification with
GWAS data such as genomic principal components®” or mixed model association
analysis.”® In Chapter 6 of this thesis, the GWAS-properties of the trio design and
use of unscreened controls are addressed by deriving the expected SNP-
heritability and power to detect a risk variant, while also considering that some of

16
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the trio cohorts overrepresented multiplex family (with more than one affected
proband), and while taking into account that assortative mating has been found
to occur for most psychiatric traits.>®

Assortative mating

Interestingly, a number of studies have found evidence for assortative mating for
psychiatric traits (a population spouse-correlation in risk for psychiatric disease).
Depending on the mechanisms leading to assortment, there are different
consequences of assortative mating. Under phenotypic assortment, assortative
mating impacts on the genetic architecture of traits and on genetic tests. In
Chapter 6 of this thesis, the consequence are derived of assortative mating for
SNP heritability estimates and power to detect single risk variants, and in Chapter
7 boundaries are defined for the genetic consequences of assortative mating for
psychiatric traits in terms of the population disease prevalence and heritability in
the next generation.

Aims of this thesis

This thesis aims to study the complex link between genetic effects and
environment in depression in real data, and to explore boundaries for some of
the consequences of GWAS study design and assortative mating from a
theoretical perspective. Chapter 2 contributes to the debate on the possible
moderating effect of 5-HTTLPR on the link between childhood trauma and
depression by testing this GxE-effect in NESDA and NTR. Chapter 3 contributes to
the research on the many phenotypic associates of MDD by testing whether the
deleterious link between lower education attainment and increased MDD risk can
be explained by genome-wide genotyped SNPs. Chapter 4 adds a hypothesis to
the literature on heterogeneity of MDD’s genetic effects by testing for interaction
between polygenic risk scores and childhood trauma in depression. Chapter 5
places the findings from Chapter 4 in a broader context by analyzing childhood
trauma and polygenic risk for MDD in the large international Psychiatric
Genomics Consortium. Chapter 6 aims to serve decisions for GWAS study design
by addressing the consequences of the trio design and unscreened controls on
estimates of SNP-heritability and power to detect genetic risk variants. Chapter 7
contributes to the literature on assortative mating by exploring boundaries for
the genetic consequences of assortative mating with respect to population
prevalence and heritability in the next generation.
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Chapter 2

ABSTRACT

Background: There is ongoing interest in the possible interaction of the
serotonin-transporter-linked polymorphic region (5-HTTLPR) with environmental
factors in determining Major Depressive Disorder (MDD). The current study
contributes to this research area by comprehensively examining the interaction-
effects and direct-effects of 5-HTTLPR and four environmental factors on MDD
prevalence and course in a well-characterized longitudinal sample.

Methods: The sample consisted of 1625 patients with a CIDI-confirmed diagnosis
of MDD and 1698 screened controls from the Netherlands. Four MDD outcomes
were studied as dependent variables: one main MDD prevalence-outcome
(lifetime MDD), two more severe MDD prevalence-outcomes (suicidal and chronic
MDD), and one MDD course outcome (chronic versus non-chronic MDD). Because
SNP rs25531 modifies the effect of 5-HTTLPR, haplotypes of 5-HTTLPR and
rs25531 were measured. For the four MDD outcome measures, we examined the
direct effects of 5-HTTLPR/rs25531-haplotypes, four environmental factors
(stressful life-events, sexual abuse, low educational attainment, and childhood
trauma) and their interaction in logistic regression models.

Results: The environmental factors had large and consistent effects on all four
MDD outcomes, including course of MDD. The 5-HTTLPR/rs25531-haplotype had
a suggestive effect on course of MDD, but not on presence of MDD. Gene-by-
environment interaction was significant (<0.05) for one of the sixteen tests
performed, which is not more than expected by chance.

Limitations: Environmental factors were not assessed before the onset of MDD.
Conclusions: Environmental factors had a strong impact on the presence and
course of MDD, but no evidence for gene-by-environment interaction was found.
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INTRODUCTION

Since the first findings of Caspi and colleagues in 2003, there has been ongoing
interest in a possible interaction between the serotonin-transporter-linked
polymorphic region (5-HTTLPR), which contains a repeat length polymorphism,
and environmental factors in Major Depressive Disorder (MDD). Caspi et al.
showed that individuals with at least one short allele of 5-HTTLPR experienced
more depressive symptoms, diagnosable depression and suicidality following a
stressful life-event. Many studies aimed to replicate these findings with
contradictory results, and two meta-analyses published in 2009 by Munafd et al.?
and Risch et al.® combining data of 5 and respectively 14 studies showed no
evidence for this gene-by-environment interaction. However, an ensuing meta-
analysis in 2011 by Karg and colleagues used a different definition of stressful life
events and a meta-analysis method that allowed inclusion of more studies (56
studies containing a total of 40749 subjects).* This meta-analysis supported
Caspi’s finding.

A major cause proposed for the conflicting results in studies on gene-by-
environment interaction involving 5-HTTLPR lays in the different nature and
measurement of the environmental factors that are considered.> Studies are not
always comparable, because environmental factor-measurements differ both in
content and in timing to the onset of MDD. For example, Karg et al. studied
several environmental factors in their meta-analysis and found stronger gene-by-
environment interaction for childhood trauma than for stressful life-events.* Low
educational attainment is another environmental factor that is strongly
associated with MDD,® but also to socioeconomic status,” for which some studies
found interaction effects involving 5-HTTLPR®® and some did not.'®

Another possible explanation for the inconsistent findings in studies on
gene-by-environment interaction involves differences in the depression measures
used. Although some studies used DSM- based diagnosis of MDD, others
employed continuous scales of self-reported (often milder) depression symptoms.
In the meta-analysis of Karg et al., studies with self-reported depression showed
less evidence for gene-by-environment interaction than studies with interview
assessed depression.* Possibly, this was because self-reported depression
measures are often state-measures neglecting remitted depression symptomes,
whereas DSM-based depression measures might mark the more severe and
clinically relevant depressed patients.

A final explanation for the inconsistent findings in studies on gene-by-
environment interaction with 5-HTTLPR may be the measurement of the
functional variants in the 5-HTTLPR. Functional characterisation of the 5-HTTLPR
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has evolved and it has been shown that long alleles of 5-HTTLPR that form a
haplotype with the G allele of rs25531 are functionally equivalent to short alleles,
which are less expressed.'*? Risch et al. and Karg et al. made no mention of
rs25531 in their meta-analysis and few studies took rs25531 into account.
However, 5-HTTLPR-L/rs25531-G haplotypes have a frequency of 6.5% and,?
therefore, it seems crucial to take rs25531 into account when aiming to study the
functional length of 5-HTTLPR.

The present study contributes to the ongoing debate by comprehensively
examining four environmental factors (stressful life-events, sexual abuse,
educational attainment and childhood trauma) and their interaction-effects with
the functional length of 5-HTTLPR in a large and well-characterized study from the
Netherlands. We studied patients with an interview-assessed and DSM-IV based
diagnosis of MDD compared to carefully screened controls and, in addition to two
more severe prevalence-outcomes (chronic MDD and suicidal MDD) to further
increase the contrast between patients and controls. Since the 5-HTTLPR
polymorphism has not only been linked to the onset of depression, but also to its
chronicity,’®> we additionally examined gene-by-environment interaction in the
course of MDD.

METHODS

Subjects

Data from 1727 unrelated MDD patients and 1792 healthy controls from the
Netherlands Study of Depression and Anxiety (NESDA) and the Netherlands Twin
Registry (NTR) were analyzed. The NESDA study is an ongoing longitudinal cohort
study of MDD and anxiety disorders and its subjects were recruited from mental
health care settings, general practitioners, and the general population in the
period from 2004 to 2007.1* The NTR study has been collecting data on Dutch
twin families since 1991 and comprises data on nearly 22,000 subjects who have
been assessed longitudinally for depressive symptoms (multiple instruments),
anxiety and neuroticism.® Subjects from the NTR were included in this study
based on longitudinal data up to 2005. Both studies (NESDA and NTR) were
approved by the institutional Review Board and all their participants provided
written informed consent. Most patients were from NESDA (1598 versus 129 from
NTR) and patients were included in the current study when they were between 18
and 77 years of age and had a lifetime DSM-IV diagnosis of MDD. MDD diagnosis
was assessed by specially trained clinical staff in a face-to-face interview using the
Composite International Diagnostic Interview (CIDI, version 2.1). Persons who
were not fluent in Dutch and those with a primary diagnosis of a psychotic
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disorder, obsessive compulsive disorder, bipolar disorder, or severe substance use
dependence were excluded at NESDA study baseline. Most controls were from
the NTR (1640 versus 152 from NESDA) and were included when they had no
lifetime diagnosis of MDD, did not take any medication that may have been
prescribed to treat MDD, had no known first-degree relatives with MDD and a low
factor score based on a multivariate analysis of depressive complaints, anxiety,
neuroticism, and somatic anxiety.*® The 152 controls from NESDA had no lifetime
diagnosis of MDD or anxiety disorder, as assessed by CIDI, no other major
psychiatric disorder and scored low (<4) on the Inventory of Depressive
Symptoms scale.’® MDD patients and controls that were included had North-
European ancestry, were matched for age and gender and were unrelated.

Assessment of environmental factors

Lifetime and recent stressful life-events. The number of various stressful life-
events encountered in lifetime and those encountered in past year (recent
stressful life-events) were assessed rather comparably in both studies. In NESDA,
stressful life-events were assessed with the Brugha List of Threatening
Experiences.!” This assessment took place at the same day as the CIDI interview.
Questionnaires from the NTR'*?° were matched resulting in the following six
stressful life-events encountered during lifetime up to assessment (combined
prevalence in patients and controls between brackets): severe disease or victim of
physical violence of self (35.2%); severe disease or victim of physical violence of
close relative (68.9%); death of close relative (85.7%); forced dismissal from job
(20.7%); ending of enduring intimate relationship (39.9%); and being robbed
(33.8%). The number of different life-events encountered in this study ranged
from 0 to 6.

Sexual abuse. The occurrence of lifetime sexual abuse was assessed in a
slightly different way across studies. NESDA-subjects were asked if they were ever
touched or forced to touch someone in a sexual way against their will. NTR-
subjects were asked if they had ever been victim of a sexual misdeed, which was
specified as being raped or assaulted. Because different wording across studies
could have resulted in different prevalences, cohort-status (NESDA or NTR) was
added as an additional covariate to all analyses focusing on sexual abuse.
Although results in cohort-status unadjusted and cohort-status adjusted analyses
differed slightly in estimated effect sizes, overall conclusions on the importance of
sexual abuse and their interaction with 5SHTTLR-gene were very comparable in
unadjusted and adjusted analyses.

29



Chapter 2

Educational attainment. Educational attainment was defined as the years
required to obtain the highest diploma attained.

Childhood trauma. Childhood trauma was measured in NESDA with the
instrument of the Netherlands Mental health Survey and Incidence Study.??
Subjects were asked for emotional neglect, psychological abuse, physical abuse
and sexual abuse. The definition of emotional neglect included lack of parental
attention or support and ignorance of one’s problems and experiences.
Psychological abuse was defined as being verbally abused, undeserved
punishment, subordinated to siblings and being blackmailed. Physical abuse was
defined as being kicked or hit with hands or an object, beaten up or physical
abuse in any other way. Sexual abuse was defined as being sexually approached
against your will, meaning being touched or having to touch someone in a sexual
way. Participants answered ‘yes’ or ‘no’ to each of the four forms of childhood
trauma and were asked to give an indication about the frequency on a five-point
scale, ‘1’ once, ‘2’ sometimes, ‘3’ regular, ‘4’ often and ‘5’ very often. In the
analyses, the frequencies were categorized into three groups (0: absent, 1: once
or sometimes, 2: regular, often and very often). The number of different traumas
encountered were combined with their frequencies, resulting in a sum score

ranging from 0 to 8, as has been defined before.??%*

MDD outcomes

Three MDD prevalence outcomes and one MDD course outcome were examined
as dependent variables. The first MDD prevalence-outcome compared all MDD
patients (defined by a lifetime DSM-IV based diagnosis) to healthy controls. Two
additional MDD prevalence-outcomes were examined to further increase the
contrast between patients and controls and compared suicidal MDD patients to
healthy controls and chronic MDD patients to healthy controls. Suicidal MDD was
defined as having ever attempted to commit suicide as assessed in the CIDI
interview. Chronic MDD was defined as having a MDD diagnosis and symptom
duration of more than two years. Symptom duration was obtained for NESDA only
using baseline and 2-year follow-up data of those individuals with an MDD
diagnosis one year prior to baseline (n = 997). Symptom duration was assessed
using the Life Chart Interview (LCl), which uses a calendar approach to assess the
percentage of time that symptoms were present during the four years prior to
and the two years following baseline. Computations with LCl data were described
in more detail by Penninx et al.? In the analyses on recent stressful life-events
MDD patients with a past year diagnosis of MDD were included only, changing the
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main MDD and suicidal MDD measure, but not the chronic MDD measure, as
chronicity could only be assessed for subjects with past year MDD.

In addition to comparing patients to healthy controls, chronic MDD
patients were also compared to non-chronic MDD patients. This case-only
analysis yielded the opportunity to examine gene-by-environment interaction on
the course of MDD.

5-HTTLPR and rs25531

Sample collection procedures and DNA isolation were harmonized between
NESDA and NTR as previously described.?® The 5-HTTLPR/rs25531 haplotypes
were assessed by the PCR protocol described by Wendland et al.??2 at the
Karolinska Institute in Stockholm (Sweden). In short, genomic DNA amounting to
at least 10 ng was used for PCR amplification of the long (L) and short (S)
promoter repeats (forward primer: 5-TCCTCCGCTTTGGCGCCTCTTCC-3’, reverse
primer: 5'-TGGGGGTTGCAGGGGAGATCCTG-3’). Half of the reaction product was
digested with Hpall FastDigest (FDO514, Fermentas) at 37°C for 10 minutes
whereas half was left undigested. Hpall digests amplicons carrying the rs25531-G
genotype, but leaves rs25531-A undigested. The digested and undigested
amplicons were separated on a 3 % Ultrapure agarose (Invitrogen) gel at 160 V for
approximately 1 hour. Due to the methylation sensitivity of Hpall, 160 samples
were also digested using the methylation-insensitive Mspl FastDigest (FD0544,
Fermentas) and no discrepancies regarding digestion and interpretation of
genotypes were discovered. Based on the length difference between the S and L
amplicons, and the resulting digested amplicons caused by the presence of
rs25531-G, the 5-HTTPR/rs25531 haplotypes could be resolved.

Quality control of genotypes was performed with additionally genotyped
trios (30 trios) and duplicates (18 duplicates) . There were no Mendelian errors or
mismatches of duplicates. In addition, the 5-HTTLPR/rs25531 haplotypes were in
Hardy Weinberg Equilibrium (p = 0.9). The 5-HTTLPR/rs25531 haplotypes were
used to define the functionality of the length polymorphism, with the 5-HTTLPR-
long/rs25531-G haplotypes classified as short 5-HTTLPR alleles. The number of
functional short alleles (0, 1 or 2) from all unrelated subjects were used to test for
direct gene effects, and gene-by-environment interaction on the presence and
course of MDD.

Statistical Analyses

MDD patients were compared to healthy controls with respect to age, gender,
and the four environmental factors using t-test and chi-square statistics.
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Associations between the number of functional short 5-HTTLPR alleles and
environmental factors were examined using linear regression and linear-by-linear
chi-square statistics to test for gene-environment correlation as this can influence
tests of gene-by-environment interaction and lead to spurious results.?’

The impact of the number of functional short 5-HTTLPR alleles (0, 1, or 2),
environmental factors and gene-by-environment interaction was examined for
the three MDD prevalence-outcomes and MDD course-outcome. First, the direct
effects of the number of functional short 5-HTTLPR alleles and the direct effects
of the four environmental factors were assessed and, subsequently, their
interaction effects were assessed. In the analyses of interaction effects, the main
effects of the number of functional short 5-HTTLPR alleles and the concerning
environmental factor were included. All analyses were conducted using logistic
regression with age and gender as covariates. Analyses focusing on sexual abuse
additionally included the subject’s cohort-status (NESDA or NTR). All together
sixteen interaction effects (four environmental factors times four MDD outcomes)
were examined and we, therefore, had to correct for multiple comparison.
However, the MDD prevalence outcomes were correlated and Bonferroni-
correction would have been too stringent. Therefore, the threshold for
significance was set at 0.05 with the number of tests taken into account in the
interpretation of the results.

Although the interaction model (MDD outcome = bg + b1:5-HTTLPR + b2-E +
b3:5-HTTLPR x E + bs-gender + bs-age) provides tests for 5-HTTLPR (b1) and the
environmental factor (b,), these coefficients do not represent the direct effects
on the MDD outcome, but rather the effect of 5-HTTLPR when E = 0 and the effect
of E when 5-HTTLPR = 0 respectively.?® Therefore, we examined the direct effects
of 5-HTTLPR, the direct effects of the environmental factors and their interaction-
effects in separate models as described above.

In addition to the straightforward test for multiplicative interaction,
additional tests were performed for interaction as a departure from additivity
using the procedure described by Knol et al.?® In this procedure we used the
outcome of a logistic regression model to estimate the Relative Excess Risk due to
Interaction (RERI). A RERI smaller than or bigger than zero indicates evidence for
additive interaction. The 95 percent confidence intervals of the RERI were
estimated using bootstrap simulations. In this way we tested for additive
interaction for the five main environmental factors (lifetime stressful life-events,
recent stressful life-events, sexual abuse, educational attainment and childhood
trauma) with 5-HTTLPR for the four main outcome measures (all MDD, suicidal
MDD, chronic MDD and chronic versus non-chronic MDD).
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Finally, in order to compare the impact of different environmental factors
on MDD prevalence and course, the variation explained by the four
environmental with age and gender as covariates, as estimated by Nagelkerke
pseudo R-Squares, were compared. Nagelkerke R-Squares are used in logistic
regression to approximate the R-Square known from linear regression. Analyses
were conducted in SPSS and R.3°

Table 1. Sample characteristics by MDD status

Healthy
MDD patients  controls
N = 1625 N=1698 p-value*
Sociodemographic variables
Age, mean years + SD 42.62 +12.56 4391 +14.45 0.006
Women, % 69.66 61.66 <0.001

Environmental factors
Lifetime stressful life-event, number +SD  3.30+ 1.24 2.29+1.19 <0.001

N with data available 1593 1411

Recent stressful life-event, number + SD 0.60 £0.83 0.45+0.68 <0.001
N with data available? 929 1411

Lifetime sexual abuse, % 33.27 6.06 <0.001
N with data available 1596 1419

Educational attainment, years + SD 1198 £3.25 12.62+3.30 <0.001
N with data available 1597 1467

Childhood trauma, number + SD 2.00+2.24 0.35+1.00 <0.001
N with data available 1502 143

Types of MDD

Number suicidal MDD, N (%) 123 (75.69%)

Number chronic MDD, N (%)? 396 (24.37%)

*p-values based on t-test (continuous or > 5 ordered categories) and chi-square statistics
(dichotomous variables).

!patients are subjects with recent MDD only

2out of 837 MDD patients with a recent MDD diagnosis and data on chronicity.
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RESULTS

Sample characteristics

A total of 1625 MDD patients and 1698 healthy controls had valid data on their
number of functional short 5-HTTLPR alleles, i.e. 5-HTTLPR/rs25531 haplotypes.
Data on environmental factors were missing for 319 (stressful life-events), 308
(sexual abuse), 259 subjects (educational attainment). Data on childhood trauma
were only available for NESDA participants, leaving 1502 patients and 143
controls for these analyses.

The demographics of healthy controls (n = 1698) and MDD patients ( n

1625) are given in Table 1. Controls were slightly older (43.9 versus 42.6 years, p
0.006) and less often female (61.7% versus 69.7%, p <0.001). Stressful life-events,
sexual abuse, and childhood trauma were significantly more frequent and
educational attainment was significantly lower in MDD patients compared to
healthy controls . Out of all 1625 MDD patients, 123 (7.6%) had suicidal MDD. Out
of all 837 patients with a current diagnosis of MDD one year prior to NESDA
baseline and sufficient LCI data, 396 (47%) fulfilled criteria for chronic MDD.

Table 2 reports the associations between environmental factors with
number of functional short 5-HTTLPR alleles. The occurrence of environmental
factors was not significantly associated with the number of functional short 5-
HTTLPR alleles, indicating the absence of gene-environment correlation.

Effects of 5-HTTLPR, environmental factors and their interaction on MDD
prevalence measures
Table 3 displays the number of patients and controls and the effect of the number
of functional short 5-HTTLPR alleles on the three MDD prevalence-outcomes
(MDD, suicidal MDD and chronic MDD). In none of the analyses, the number of
functional short 5-HTTLPR alleles had any effect on MDD outcome measures.
Effects of environmental factors on the three MDD prevalence-outcomes
were strong. The effects of the number of lifetime stressful life-events (with ORs
of 2.01, 2.59 and 2.11 per stressful life event; all p < 0.001) , recent stressful life-
events (with ORs of 1.29, 1.36 and 1.29 per stressful life event; all p < 0.001) and
childhood trauma (with ORs of 1.98 , 2.47 and 2.15 per increased score on the
overall index; all p < 0.001) were strong and rather comparable across the MDD
prevalence outcomes. In contrast, high educational attainment was protective for
the three MDD outcomes with ORs of 0.94 , 0.84 and 0.86 respectively (all p <
0.001). For sexual abuse, the OR was smallest for MDD versus controls (OR = 2.79
), higher for chronic MDD (OR = 3.17 ), and very high for suicidal MDD (OR = 6.46 )
(all p < 0.001). When we examined the effect of sexual abuse separately within
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Chapter 2

NESDA and NTR — to prevent a potential impact of measurement differences
across studies — strongly significant effects of sexual abuse on the prevalence of
MDD were confirmed (in NESDA: OR = 2.23 with 95% Cl = 1.41-3.52; and in NTR:
OR = 4.01 with 95% Cl = 2.20-7.33) indicating that measurement differences are
not responsible for the described association.

The impact of the environmental factors on MDD versus controls were
compared to each other in two steps. First, Nagelkerke R-Squares were compared
in the sample who had data on lifetime stressful life-events, sexual abuse and
educational attainment available (1587 MDD patients and 1370 controls).
Lifetime stressful life-events explained more variation (R* = 0.210) than sexual
abuse (R? = 0.158), and both explained more variation than educational
attainment (R? = 0.026). In addition, including all these three environmental
factors in one model, all effects remained significant with p < 0.001, which
indicates that they had independent effects on MDD. Second, to compare
childhood trauma to the three other environmental factors, the Nagelkerke R-
Squares were also computed on subjects with data on all four environmental
factors available (NESDA only with 1501 MDD patients and 143 controls). In this
comparison, childhood trauma explained more variation (R?> = 0.145) than the
other three environmental factors (R> = 0.046. R? = 0.029 and R?> = 0.054
respectively). When all four environmental factors were examined in one model,
sexual abuse had no significant effect, but the other three environmental factors
did. Including sexual abuse subsequently into a model with one of the three other
environmental factors, indicated that the original impact of sexual abuse was
included in the effect of childhood trauma. This seems logical, because the
childhood trauma measure included sexual abuse before the age of sixteen, which
is also included in lifetime sexual abuse variable.

Gene-by-environment interaction with the number of functional short 5-
HTTLPR alleles was tested for 5 environmental factors and 3 outcomes. Of these
15 tests, one interaction-effect had a p-value smaller than 0.05, namely, the
interaction-effect with lifetime stressful life-event on suicidal MDD versus healthy
controls (OR =1.32, p = 0.03). The direction of this interaction effect is in line with
the finding of Caspi: extra copies of the short allele and a higher number of
stressful life-events contributing more to the risk on MDD than their additional
risk. In the tests for interaction as departure from additivity, all 95% confidence
intervals included 0, indicating no evidence for additive interaction.
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Chapter 2

Effects of 5-HTTLPR, environmental factors and their interaction on the course
of MDD

Within patients, impact of environmental factors on the course of MDD was
evaluated (Table 4). The effect of the number of functional short 5-HTTLPR alleles
on the course of MDD was 1.24 (p = 0.03) indicating that the functional short
allele increases the risk of a chronic course of MDD. The environmental factors
had direct effects on the course of MDD: number of lifetime stressful life-events
(OR =1.12, p = 0.04), sexual abuse (OR = 1.69, p < 0.001) and childhood trauma
(OR =1.15, p < 0.001) increased the risk of chronic MDD versus non-chronic MDD
and educational attainment was protective (OR = 0.91, p < 0.001). Only the recent
stressful life-events had no significant effect on the course of MDD (OR = 1.01, p=
0.87). Most variation was explained by childhood trauma and educational
attainment, with Nagelkerke R-Squares of 0.046 and 0.049 respectively, and
variation explained by lifetime stressful life-events (0.022) and sexual abuse
(0.033) was considerably less. When these four environmental factors were
included in a model together a Nagelkerke R-Square of 0.081 was found. No
significant gene-by-environment interaction-effect on the course of MDD was
found for any of the five environmental factors. In the tests for interaction as
departure from additivity, no evidence was found for additive interaction.

As suicidality also selects a more severe subgroup of MDD patients,
suicidal MDD patients were compared to non-suicidal MDD patients in post-hoc
analyses, analogous to comparing chronic versus non-chronic MDD patients.
These analyses showed that all environmental factors had a significant effect on
the risk of suicide attempt for MDD patients in the expected direction: lifetime
life-events (OR = 1.41; 95%Cl 1.21-1.65; p < 0.001), sexual abuse (OR = 2.69;
95%Cl 1.82-4.00; p < 0.001) and childhood trauma (OR = 1.34; 95%CI 1.24-1.45; p
< 0.001) increased the risk on suicide attempts, whereas higher educational
attainment reduced this risk (OR = 0.90; 95%Cl 0.85-0.96; p < 0.001). The
functional length of 5-HTTLPR had no effect on the risk of suicide attempts in
MDD patients. Of the four environmental factors tested, only lifetime life-events
showed significant interaction with 5-HTTLPR (OR = 1.41; 95%Cl 1.12-1.76; p =
0.002).

Imputation of 5-HTTLPR

We checked whether it was possible to increase sample size by imputing 5-
HTTLPR using the haplotype proxy of surrounding SNPs from Vinkhuyzen et al.3!
This haplotype proxy consists of rs2129785-T and rs11867581-A and tags the
short allele of 5-HTTLPR with an r? of 0.775. The frequencies of 5-
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HTTLPR/rs2129785/rs11867581-haplotypes given by Vinkhuyzen et al. were used
to simulate a reference sample of 2823 subjects (the number of subjects in the
discovery set of Vinkhuyzen et al). With this simulated reference sample and the
available SNP data, Beagle- software was used to impute 5-HTTLPR.32 5-HTTLPR
was imputed with an r? of 0.72 and comparison of imputed to genotyped values
of 5-HTTLPR showed an rather low accuracy of 87%. This limited accuracy does
not justify imputation of 5-HTTLPR on an extended sample of NESDA and NTR.
Moreover, Vinkhuyzen et al found that rs25531 could not be tagged by SNPs
giving rise to an even greater inaccuracy of imputation with respect to the
functional length of 5-HTTLPR.

DISCUSSION

Since first reported by Caspi and colleagues in 2003,* there has been a fierce
controversy about the reproducibility of the interaction between 5-HTTLPR and
environmental factors in MDD. This controversy can only be resolved by empirical
data. To that aim, we tested the effects of four environmental factors (stressful
life-events, sexual abuse, educational attainment, and childhood trauma), the
number of functional short 5-HTTLPR alleles and their interaction on MDD
prevalence and course in a large sample from the Netherlands. We found that the
environmental factors had large and consistent direct effects on both prevalence
and course of MDD. Additionally, our results suggested that the environmental
impact is stronger for the more severe outcomes (suicidal MDD patients versus
controls and chronic MDD patients versus controls) than for the main outcome
(all MDD patients versus controls). Comparison of Nagelkerke R-Squares showed
that of all environmental factors, childhood trauma explained most variation in
both the prevalence and course of MDD. We did not find a direct gene-effect of
the number of functional short 5-HTTLPR alleles on the prevalence of MDD, but
we did find some effect (p=0.03) on course of MDD, with short alleles
contributing to chronic course. MDD course is a very different concept and
outcome than the MDD prevalence outcome. Consequently, it may be too
conservative to further adjust the course analyses for the number of associations
tested for the prevalence outcomes. Nevertheless, it is clear that our finding for a
direct effect on course of MDD deserves confirmation in future longitudinal
studies. Out of all 16 tests conducted, we found one gene-by-environment
interaction-effect with an uncorrected p-value smaller than 0.05, namely, in the
test with stressful life-events for the suicidal MDD outcome (p = 0.03). We argued
the Bonferroni-correction to be too stringent, because the different MDD
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outcomes are correlated, but this single p-value of 0.03 is not more than expected
by chance.

Our finding that the environmental factors have a large impact on MDD is
in line with previous literature.»® The absence of a direct effect of 5-HTTLPR on
MDD prevalence-outcomes in our study is in line with the meta-analysis by Risch
et al.,® but not with the meta-analysis by Clarke et al.,>® where a direct effect of 5-
HTTLPR on MDD was found. Because the direct gene-effect found by Clarke et al.
was very small, the lack of a gene-effect in our study could also be caused by the
limited sample size. The effect of environmental factors on course of MDD, and
childhood trauma in particular, is in line with a recent meta-analysis.3* The
suggestive effect of 5-HTTLPR on course of MDD found in our study is interesting,
but more studies are needed, as the effect of 5-HTTLPR on course of MDD has not
been examined in many studies. One other study found no such effect,'® whereas
another study did find an effect of 5-HTTLPR on the course of MDD, but in the
opposite direction with long alleles contributing to chronic course. We found no
evidence for gene-by-environment interaction, which is in line with the meta-
analysis of Risch et al. and Munafo et al.,>* but it is not in line with the meta-
analysis of Karg et al.*

Some studies found significant interaction-effects in tests different to the
one published by Caspi et al.! For example, Uddin et al. reported gene-by-
environment interaction for males only® and Brummett et al. reported gene-by-
environment-by-gender interaction.® We performed these tests on our sample to
be comprehensive, but none of the interaction effects in male-only and female-
only analyses nor results for gene-by-environment-by-gender interaction were
significant, indicating that sex-specific results are not further providing evidence
for the presence of gene-by-environment interaction. Uher et al. found that gene-
by-environment interaction is stronger for childhood trauma in persistent
depression,3® but in our study we found no interaction effect for childhood
trauma in chronic MDD. Some have argued that biological interaction should
better be tested as departure from additivity than as departure from
multiplicativity, as in biological interaction both causes are needed for a disease
to develop.?®3® Therefore, we additionally tested for interaction as departure
from additivity, but these analyses also showed no evidence for interaction.

Our study is well sized with around 1600 patients and 1400 controls for
the main MDD prevalence outcome. For comparison, only three of the 56 studies
included in the meta-analysis of Karg et al. had larger sample sizes.* Nevertheless,
only interaction-effect sizes smaller than 0.87 and larger than 1.17 could be
detected with a power of 0.8 for stressful life-events in our study, as computed
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with Quanto-software.?” Thus, our study lacked power for possible smaller
interaction effects. Therefore, and because we had additional subjects with
genome-wide SNP data but without measurements of 5-HTLLPR, we checked
whether it was possible to increase sample size by imputing 5-HTTLPR using the
haplotype proxy of surrounding SNPs from Vinkhuyzen et al.3! However, limited
accuracy of this imputation in our sample was found. Moreover, Vinkhuyzen et al.
found that rs25531 could not be tagged by SNPs giving rise to an even greater
inaccuracy of imputation with respect to the functional length of 5-HTTLPR.
Therefore, we restricted our analyses to the subjects for which 5-
HTTLPR/rs25531-haplotypes were genotyped.

The question remains whether we would have been able to detect
interaction-effects when we would have had a larger sample size. However, of the
56 studies included in the meta-analysis of Karg et al.,* eight contained more than
1000 subjects and of these only two found positive results for gene-by-
environment interaction. This phenomenon, that larger studies produce more
negative findings than smaller studies, was explained by Duncan et al. as an
indication of publication bias amongst smaller studies.®

In our study we performed analyses with 5-HTTLPR/rs25531-haplotypes
(denoted as functional 5-HTTLPR alleles) instead of plain 5-HTTLPR alleles,
because long alleles of 5-HTTLPR are functionally equivalent to short alleles when
they form a haplotype with the G-allele of rs25531.38 However, only few studies
took rs25531 into account and, therefore, we also conducted the interaction
analysis for the number of plain short 5-HTTLPR alleles. These analyses showed
two interaction effects with uncorrected p-values smaller that 0.05 out of the
sixteen tests performed: for sexual abuse in the main MDD prevalence outcome
and for educational attainment in the MDD course outcome. Thus, analyses with
plain 5-HTTLPR yielded one more interaction-effect with a p-values smaller than
0.05 than the analyses with functional 5-HTTLPR. However, because two tests out
of sixteen with a p-value smaller than 0.05 is still not very convincing, we suspect
this finding to be due to chance.

The role of genetic factors in the relation between educational
attainment and MDD has been studied by Lopez-Leon et al.,** who found that
shared genetic factors play a role in the co-occurrence of lower socioeconomic
status and symptoms of depression. Educational attainment is an easy measure to
test, has a strong direct effect on MDD,® and has often been used as proxy for
socioeconomic status, for which some evidence of gene-by-environment
interaction was found.®® To the best of our knowledge we were the first to test
educational attainment (as measurement for environmental stress) for gene-by-

43



Chapter 2

environment interaction with 5-HTTLPR. We found no correlation between 5-
HTTLPR and educational attainment, suggesting that the gene does not contribute
to the gene-by-environment correlation reported by Lopez-Leon et al. and that
the interaction could be meaningfully tested. Nevertheless, low educational
attainment, like the other sources of stressful life events did not support a gene-
by-environment interaction for 5-HTTLPR.

Our study has several strengths. First, we analyzed a large sample of MDD
patients and controls. As stated before, only three of the 56 studies included in
the meta-analysis of Karg et al. had larger sample sizes.* Second, we used DSM-IV
based diagnoses of MDD which ensured we studied the clinically relevant MDD
patients. Moreover, our controls were screened for lifetime MDD diagnosis and a
low probability of developing MDD later on in life. Third, we studied four different
environmental factors making it less likely that we missed any gene-by-
environment interaction in our sample. Fourth, we not only studied MDD patients
compared to controls, but also two subgroups of more severe MDD patients in
order to increase the contrast. Finally, we studied 5-HTTLPR/rs25531-haplotypes
instead of plain 5-HTTLPR which is in line with the latest insights into the function
of 5-HTTLPR.

There also are some limitations, including the assessment of stressful life-
events only after the onset of MDD. In addition, some MDD patients had a
lifetime, but no current diagnosis of MDD and because we assessed the lifetime
occurrence of stressful life-events and sexual abuse, some reciprocal causation
may have occurred. Reciprocal causation for life-events and MDD was reported by
Middeldorp et al. and describes the phenomenon that life-events do not only
increases the chance of developing MDD, but that MDD also increases the chance
of encountering stressful life-events.*® This reciprocal causation might have
influenced the results for stressful life-events and sexual abuse, but not for
childhood trauma and educational attainment and we found no gene-by
environment interaction for these environmental factors either. We used two
different studies with not entirely equal time and measurement phrames, and the
controls in both studies were not screened for other psychiatric disorders (NTR)
or for family history of MDD (NESDA), which all may have had a potential
influence on our results. However, as we used stringent other selection criteria as
described and only used the most comparable environment instruments in
analyses, it seems unlikely that this has had a significant impact. An additional
limitation is that a current depressive mood could influence the recall of
environmental factors.
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Our study has several potential clinical implications. It shows that
environmental factors increase the risk on MDD, as well as the risk on chronic
MDD for already depressed patients. In addition, our study suggests that
childhood trauma contributes more to the risk on MDD than stressful life-events,
sexual abuse or education attainment. For the course of MDD, childhood trauma
and educational attainment contribute comparable risks on developing a chronic
course of MDD and more than stressful life-events or sexual abuse. In sum, our
study shows the strong effects of environmental factors on both the prevalence
and course of MDD. It also shows the larger impact of childhood trauma
compared to stressful life-events, sexual abuse and educational attainment.
However, no evidence for gene-by-environment interaction effects for the 5-
HTTLPR gene was found.
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Chapter 3

ABSTRACT

An association between lower educational attainment (EA) and an increased risk
for depression has been confirmed in various western countries. This study
examines whether pleiotropic genetic effects contribute to this association.
Therefore, data were analyzed from a total of 9,662 Major Depressive Disorder
(MDD) cases and 14,949 controls (with no lifetime MDD diagnosis) from the
Psychiatric Genomics Consortium with additional Dutch and Estonian data. The
association of EA and MDD was assessed with logistic regression in 15,138
individuals indicating a significantly negative association in our sample with an
odds ratio for MDD 0.78 [0.75-0.82] per standard deviation increase in EA. With
data of 884,105 autosomal common SNPs, three methods were applied to test for
pleiotropy between MDD and EA: (i) genetic profile risk scores (GPRS) derived
from training data for EA (independent meta-analysis on 120,000 subjects) and
MDD (using a ten-fold leave-one-out procedure in the current sample) (ii)
bivariate Genomic-Relationship-Matrix Restricted Maximum Likelihood (GREML),
and (iii) SNP effect concordance analysis (SECA). With these methods we found (i)
that the EA-GPRS did not predict MDD status, and MDD-GPRS did not predict EA,
(ii) a weak negative genetic correlation with bivariate GREML analyses, but this
correlation was not consistently significant, (iii) no evidence for concordance of
MDD and EA SNP effects with SECA analysis. To conclude, our study confirms an
association of lower EA and MDD risk, but this association was not due to
measurable pleiotropic genetic effects, which suggests that environmental factors
could be involved such as, for example, socioeconomic status.
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INTRODUCTION

An association between lower educational attainment (EA) and increased risk for
Major Depressive Disorder (MDD) has been confirmed in various Western
countries. A meta-analysis of 37 studies from mainly western countries found a 3
per cent decrease in log odds ratio for depression per additional year of
education.! Research of the World Mental Health Survey Initiative also found that
those with high educational levels are generally at lower risk for depression in
high-income countries, although Japan showed an inverted association.? The
international Consortium of Psychiatric Epidemiology found a negative
correlation in the United States and the Netherlands,? which was confirmed in a
recent study in the Netherlands.*

The association of lower EA and increased MDD risk could result from
multiple, not necessarily independent, effects; including causal, environmental or
pleiotropic genetic effects. Lower EA could lead to an increased MDD risk (social
causation), for example via stress associated with lower socioeconomic status, or
via less effective coping strategies or unhealthier lifestyles among those with
lower EA.>® However, lower EA could also be the result of MDD vulnerability, for
example when the onset of MDD is at an early age before educational goals
would have been achieved. Alternatively, a third factor could be in play impacting
on both, such as personality characteristics or less developed cognitive abilities,
causing lower EA and increased risk for MDD. Such a third factor could also
consist of pleotropic genetic effects (or linkage disequilibrium between effective
variants) resulting in genetic correlation (the part of the phenotypic correlation
caused by shared additive genetic effects), because EA” and MDD?®° both have a
confirmed genetic basis.

It is relevant to understand the mechanisms of the association between
lower EA and MDD, because this can have important implications for prevention
strategies of MDD and its consequences. When lower EA would increase MDD
risk, the responsible mechanisms should be studied and subsequently addressed,
for example by providing psycho-education about these mechanisms to those
with lower EA. However, when shared genetic effects would link EA and MDD no
responsible mechanisms can be addressed, and prevention would be restricted to
general advice to prevent MDD.

The possible impact of pleiotropic genetic effects on lower EA and
increased MDD risk has not received much study. We are aware of three such
studies, of which two find a substantial negative genetic correlation between EA
and cross-sectional measures of depressive symptoms obtained via self-report
questionnaires.'>? One study used DSM-IV based diagnosis of MDD with a twin
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design and generally supported the social causation model and found only a small
genetic correlation.® To the best of our knowledge, no study combined DSM-IV
based diagnosis and genome-wide SNP data to test for pleiotropic genetic effects
between lower EA and MDD risk.

The current study was conducted to test for pleiotropic genetic effects
between lower EA and MDD diagnoses in a large sample of ~25,000 subjects from
the Psychiatric Genomics Consortium®? with additional Estonian and Dutch data.
We applied the following SNP-based methods: genetic profile risk score (GPRS)
analyses, bivariate Genomic-Relationship-Matrix Restricted Maximum Likelihood
(GREML) analysis, and SNP effect concordance analysis (SECA).

METHODS

Subjects

Genotype and phenotype data of ten cohort studies were combined: eight
cohorts!*?! included in the Psychiatric Genomics Consortium (PGC)* plus two
additional cohorts. The first additional cohort was from the Netherlands and
combined additional independent data from the Netherlands Study of Depression
and Anxiety?? and the Netherlands Twin Registry?®> (NESDA/NTR-2). The second
additional cohort was a population-based sample from Estonia (EGCUT).2* The
numbers of cases and controls per cohort are displayed in Table 1.

MDD cases and controls

All cases (N=9,662) had a DSM-IV or ICD-10 based diagnosis of MDD in lifetime
according to a structured diagnostic instrument. Most controls (N=14,949) were
randomly selected from the population and screened for a lifetime history of
MDD. A more detailed description of the PGC-cohorts was given previously'® and
is summarized in Table S1. For the NESDA/NTR-2 cohort, MDD-cases were
diagnosed with the DSM-IV based CIDI interview (CIDI, version 2.1), and controls
scored low on various mental health screening questionnaires (NTR)? or had no
diagnosis of a psychiatric disorder in their lifetime (NESDA). For the EGCUT
cohort, MDD-cases were identified using International Classification of Diseases
(ICD-10) codes F32 (depressive disorder) and/or F33 (recurrent depressive
disorder), and MDD-controls excluded all subjects with a lifetime ICD10

psychiatric diagnosis (category F).?*

Educational attainment

Educational attainment (EA) was assessed in seven of the ten contributing
cohorts (EGCUT, GenRED, GSK, NESDA/NTR-1, NESDA/NTR-2, QIMR, and STAR-D).
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For NESDA/NTR-1 and NESDA/NTR-2, EA was defined as the years of education
required for the highest diploma attained following the Dutch educational
system. For QIMR and EGCUT, EA was defined as the US years of education
required for the highest diploma attained following the international ISCED
classification.” For GSK, EA was defined as the number of years that school was
attended. For STAR*D, EA was expressed in years of education. For GenRED, EA
was assessed in controls only as the highest diploma attained and ranged from 1
to 5 labeling the following educational levels: lower than high school (1), high
school (2), some college (3), bachelor degree (4), higher than bachelor degree (5).

The EA measure was corrected per cohort for year of birth and sex, in line
with the recent meta-analysis from the Social Science Genetic Association
Consortium.” Thereby, the standardized residuals were obtained after regression
of EA on sex, year of birth (YOB), YOB?, YOB?, and the interaction of sex with YOB,
YOB?, and YOB3. For STAR*D and GSK, YOB was not available and substituted with
age. In all cohorts, EA was defined in individuals over 25 years of age only, so that
they had time to achieve their educational potential. The distribution of EA z-
scores is displayed in Figure S1.

Genotyping, quality control, and imputation

Genotyping, quality control, and imputation were performed in line with previous
publications and are described in detail in the Supplemental Materials. In short,
quality controlled SNPs with a MAF > 0.01 from the HapMap3 reference panel®®
were imputed and yielded information on 884,105. With these SNPs the
Genomic-Relationship-Matrix was estimated and unrelated subjects selected
(with maximum pairwise genetic relationships 0.05, which is approximately
equivalent to second cousins), using the GCTA software.?” All of the subsequent
genetic analyses were corrected for possible confounding cohort- and genotyping
effects by including a categorical covariate labeling the ten cohorts, and within
cohorts the different genotyping batches, where applicable (i.e. three batches
within NESDA/NTR-2, two batches within EGCUT, and two batches within QIMR).
Ancestry-informative principal components were based on the Genomic-
Relationship-Matrix and estimated with the GCTA software.?’

Genetic Profile Risk Scores (GPRS)

Preparation of the genetic profile risk scores based on EA discovery results (EA-
GPRS) and MDD discovery results (MDD-GPRS) is described in detail in the
Supplemental Materials. In short, the procedure from Purcell et al?® implemented
in Plink?® was applied. The independent EA discovery results were from the recent
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meta-analyses on US years of schooling from the Social Science Genetics
Association Consortium (SSGAC)’ containing around 120,000 subjects. EA-GPRS
analyses were not conducted for BMH, GenRED, and STAR*D, because no
independent discovery results were available. To obtain the MDD discovery
results was slightly more elaborate, because no large MDD cohort exists that is
independent from PGC. Therefore, a ten-fold leave-one-cohort-out approach was
followed, and the discovery results were thus based on around 8,000 cases and
12,000 controls.

The GPRS were based on the same set of independent SNPs. First, the SNPs
were selected with results available for all of the discovery sets. Second, this set
of SNPs was pruned to a set of 76,516 independent SNPs with a maximum
pairwise r? of 0.25 based on a sliding window of 200 SNPs with steps of 5 SNPs.?°
The EA-GPRS and MDD-GPRS were then estimated based on all SNPs up to p-
value thresholds (Pr) in the respective discovery results of 0.001, 0.01, 0.1, and 1
respectively. Consequently, all GPRS with Pt = 1 were based on the exact same
SNPs, but GPRS with different Pr were based on different sets of SNPs depending
on the respective discovery results (see Table S2). The GPRS were standardized
per cohort to a mean of 0 and standard deviation of 1 to aid interpretability of
results.

Statistical analyses

The association of EA to MDD risk (phenotypic correlation) was assessed with
logistic regression within EGCUT, GSK, NESDA/NTR-1 and 2, QIMR, and STAR*D
separately, and in the combined sample correcting for covariates labeling the
cohorts.

Genetic Profile Risk Score analyses

In the first method to test for pleiotropic genetic effects we estimated the across-
trait effects of EA-GPRS on MDD and, vice versa, the effects of MDD-GPRS on EA.
For comparison, we also estimated the within-trait effects of EA-GPRS on EA and
MDD-GPRS on MDD. The effects of GPRS on EA and MDD were assessed with
linear and logistic regression respectively. For the full sample, the effects were
assessed for the GPRS based on Pr of 0.001, 0.01, 0.1, and 1; for the individual
cohorts, the effects were only assessed for the GPRS based on Pr=1.

The proportions of variation explained in EA and MDD were estimated as
additional measures of the impact of GPRS. For EA, this proportion was derived as
the R? of the linear regression model including the covariates and the polygenic
risk score, minus the R? of the model including the covariates only. For MDD,
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Nagelkerke’s pseudo R? were derived and corrected for the covariates by
substituting the null (or intercept) model in Nagelkerke’s equation for the model
including the covariates (adjusted equation in Supplemental Materials). Lee at al
indicated that Nagelkerke’s pseudo R? can be biased by ascertainment, when the
proportion of cases in the study sample differs from the population disease
frequency.?® Therefore, they proposed an R? measure that is robust against
ascertainment bias and interpretable on the liability scale. This liability R* was
obtained by rescaling Nagelkerke’s R? for an MDD population prevalence of K=0.2
(see Supplemental Materials).3°

Bivariate Genomic-Relationship-Matrix Restricted Maximum Likelihood (GREMIL)
The GREML mixed linear model method was used (i) to assess the proportion of
variation in EA and MDD explained by genome-wide common SNPs (SNP-h?) and
(ii) to assess the pleiotropic genetic effects between MDD and EA (genetic
correlation), as implemented in GCTA.?”3%32 The MDD SNP-h? was expressed on
the liability scale for a population prevalence of K=0.2 by converting the SNP-h?
on the observed scale (controls 0; cases 1) with equation (23) from Lee et al.3®
Bivariate GREML estimates of the genetic correlation are approximately the same
on the liability scale as on the observed scale,3 which implies that (i) its value
does not depend on population disease prevalence K and (ii) that the genetic
correlation between the binary MDD status and continuous EA measure could be
estimated. The genetic correlation was, first, estimated with EA information from
both cases and controls. This estimate could, however, potentially be confounded
by case ascertainment (which may not be education independent). Therefore, the
genetic correlation was estimated a second time with EA information from
controls only and MDD status from both cases and controls. The GPRS- and
GREML-analyses were corrected for sex, the first 10 (GPRS) or 20 (GREML)
principal components and covariates labeling the cohorts and genotype batches.
The necessity to correct for the principal components is indicated by a significant
correlation between some of the GPRS with some of the principal components
(Table S3).

SNP effect concordance analysis (SECA)

In SNP effect concordance analysis (SECA;
http://neurogenetics.qimrberghofer.edu.au/SECA)3*  association results are
analyzed, rather than individual genotyped data, to test for concordance between
two traits with respect to the SNP effects significance as well as their directions.
We applied SECA on the EA meta-analyses results from the Social Science
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Genetics Association Consortium (SSGAC)” and MDD association results on our
own sample.

RESULTS

The overall sample consisted of 9,662 patients with MDD in lifetime and 14,949
controls with a mean age of 46.2 (SD 15.6) and 59.4% female; information on EA
was available for 5,373 cases and 9,765 controls (Table 1). In all cohorts with EA
information available for both cases and controls, the phenotypic associations
between EA and MDD was negative, with an overall odds ratio of 0.78 (95%Cl:
0.75-0.82, p=2.2e-31) per standard deviation increase in EA (Figure 1). This
negative association was consistent for MDD cases with known age of onset > 30.
The strongest association was found in GSK with an OR of 0.45 (95%Cl: 0.40-0.50).
When GSK was left out of the analyses, the overall association remained
significant with an OR of 0.88 (95%Cl: 0.84-0.92). The association was comparable
in male and female (Figure S2).

GPRS analyses

The GPRS had within-trait predictive effects as expected. The MDD-GPRS
predicted MDD with most predictive power for the polygenic risk score including
all SNPs (Pr=1), with an odds ratio of 1.13 (p=1.7e-16) and an R? of 0.4% on the
liability scale (Table 2A). The EA-GPRS predicted EA also in the expected direction,
again with most predictive power for GPRS including all SNPs, with a beta of 0.11
(p=2.7e-37) and an R? of 1.2% (Table 2A). However, we found no significant
across-trait prediction: the MDD-GPRS did not predict EA (beta=-0.01 p=6.7e-2)
and the EA-GPRS did not predict MDD (OR=0.99 p=5.9e-1, Table 2A). Secondary
analyses, performed within all cohorts separately, indicated that the within-trait
predictive effects were consistent in all cohorts, and that the lack of across-trait
predictive power was also consistent for all cohorts (Table 2B). In addition, no
correlation was found between the MDD-GPRS and the EA-GPRS themselves
(Pr=1; correlation coefficient of 0.006, p=0.413). In additional analyses, across-
trait predictive effects on MDD were tested for GPRS based on the SSGAC EA
outcome tagging College completion (College-GPRS).” College completion
distinguishes more in the extreme end of the EA distribution, and has a confirmed
genetic basis.” However, no predictive effects of the College-GPRS on MDD were
found (OR=0.99, p=0.74 for Pr=1; Table S4).
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GREML analyses

GREML analyses in the overall study sample generated an estimate of MDD SNP-
h? of 0.173 (SE=0.017, p<le-16) on the liability scale (K=0.2); this finding was not
solely driven by one of the individual cohorts, because the MDD SNP-h? was
estimated at consistent values when one cohort was left out at the time (Table 3).
The MDD SNP-h? was larger when expressed on the liability scale (0.173) than on
the observed scale (0.126), with a larger SNP-h? for larger values of disease
frequency (as expected from equation (23) from Lee et al®3; Table S5). The EA
SNP-h? was estimated at 0.124 (SE=0.019, p=2.8e-11) when EA information in
both cases and controls was taken into account (Table 3A), and at 0.144
(SE=0.030, p=1.5e-6) when EA information of controls only was utilized (Table
3B). Again, these estimates were not solely driven by one of the individual
cohorts (Table 3). The genetic correlation between MDD and EA was estimated at
-0.253 (SE=0.087, p=0.004) when EA information of both cases and controls was
taken into account (Table 3A). Since a correlation between genetic and
environmental factors is likely to be partitioned into the genetic variance and
covariance components, we explored the robustness of this estimate by limiting
EA to be measured only in controls. When taking into account EA of controls only
and MDD status from cases and controls, the genetic correlation dropped
considerably and was no longer significantly different from 0 with an estimate of -
0.110 (SE=0.105, p=0.298; Table 3B). In post-hoc analyses we tested if EA
moderated the polygenic effects on MDD, but found no such evidence with
neither GPRS- nor GREML-analyses (Supplemental Materials).

SNP effect concordance analysis

SECA showed no evidence for genetic correlation. The primary SECA test divided
the SNPs in 144 subsets based on significance of association with MDD and EA
smaller than respectively 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
1.0. Not a single of these subsets contained a larger number of SNPs than
expected by chance, i.e. no concordance was found with respect to the MDD and
EA SNP effect significances. When comparing the directions of SNP effects, only
four of the 144 subsets showed nominally correlated directions of effect, which is
not more than expected by chance (permuted empirical p-value 0.244), indicating
no concordance with respect to the MDD and EA SNP effect directions.

DISCUSSION

This study tested the existence of pleiotropic genetic effects (genetic correlation)
between major depressive disorder (MDD) and lower educational attainment (EA)
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on individual genotype data from a large sample of approximately 25,000
subjects from Western countries. To start, a strong negative phenotypic
association was found with an OR for MDD of 0.78 per SD increase in EA, which is
in line with findings from a meta-analysis of 37 studies from mainly western
countries by Lorant et al.! Our first test for genetic correlation was negative with
no across- trait predictive power of the GPRS: EA-GPRS did not predict MDD, and
MDD-GPRS did not predict EA. In the second test for genetic correlation, GREML
analyses did not show consistent evidence for genetic correlation. The third test,
SNP effect concordance analysis (SECA), also showed no evidence for
concordance of EA and MDD SNP effects with respect to their significance or
direction.

The GPRS in our study had within-trait predictive power in line with
previous findings,”** and were based on an independent EA discovery sample
from the SSGAC’ of approximately 120,000 subjects and independent MDD leave-
one-cohort-out discovery samples of approximately 8,000 cases and 12,000
controls. These numbers seem adequate, but the discovery sets would ideally
have been even larger, because most predictive power was still found for the
GPRS including all SNPs (Pr=1) indicating that true effect SNPs were associated in
the discovery sample with p-values close to 1.2 Nevertheless, Dudbridge power
calculations suggested that the EA-GPRS were well powered to predict MDD
when the genetic correlation would have been around -0.2 (Figure S3).3° Our
GPRS results, therefore, indicate that a large genetic correlation between EA and
MDD is unlikely, but could not exclude a small genetic correlation of around -0.1.

Cohort OR (95%Cl)
EGCUT 0.94 (0.85-1.03) =
GSK 0.45 (0.40-0.50) W

NESDA/NTR1 0.82 (0.75-0.89) ]
NESDA/NTR2 0.67 (0.57-0.79) .

QIMR 0.97 (0.90-1.05) |
STAR*D 0.72 (0.60-0.87) .

Overall 0.78 (0.75-0.82) <&

T T T T T T T 1
04 0.5 0.6 0.7 08 0.9 1 1.1

OR for MDD per SD increase in EA

Figure 1. Forest plot of the phenotypic association between EA and MDD. The OR for
MDD per SD increase in EA is displayed for the individual cohorts, as well as for the
overall sample. The ORs were estimated with logistic regression of MDD on the
corrected EA z-scores, which were defined as the standardized residuals of the
regression of EA on sex, year of birth (YOB), YOB?, YOB? and their interaction with sex.
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Chapter 3

We performed GREML analyses to estimate the MDD SNP-h?, EA SNP-h?
and genetic correlation. The MDD SNP-h? found (0.17) was considerably smaller
than the one previously found by Lubke et al (0.32),'° which could well be due to
the actual differences in SNP-h? across cohorts; the sample of Lubke was included
in the current study as NESDA/NTR-1 and indeed had the largest contribution to
the overall SNP-h? of all cohorts (Table 3). The EA SNP-h? (0.14 in controls only)
was of the same magnitude (less than 2 SE difference) as the SNP-h? found by
Rietveld et al (0.2).” The GREML estimate of the genetic correlation was
somewhat complicated to interpret. A significant negative genetic correlation was
found (-0.25, p=0.004) when EA information of both cases and controls was taken
into account, but we fear this finding could be biased particularly in the context of
genotype and environment correlation. In fact, when taking EA information of
only controls into account, the estimate of genetic correlation dropped
considerably and was no longer significant (-0.11, p=0.30). However, we note that
this estimate was conservative as it reduced variation in EA, and we note the
negative point estimate and high standard error showing that this analyses was
underpowered to draw definitive inference. Taken all together, the GREML
analyses could be in line with a small genetic correlation of around -0.1. In
addition to the two methods based on individual level genotype data, we also
performed analyses on GWAS summary statistics with the recently published
SECA method3* and found no evidence for genetic correlation.

To the best of our knowledge only three previous studies tested for a
genetic correlation between MDD and EA. Lopez-Ledn et al used a family based
approach in 2,383 subjects to find a negative genetic correlation of -0.65 and -
0.50 between EA and self-reports of depressive symptoms based on respectively
the Center for Epidemiologic Studies Depression Scale (CES-D) and the Hospital
Anxiety and Depression Scale (HADS-D).!' Boardman et al also used cross-
sectional CES-D assessments and found a genetic correlation of -0.7 with GREML-
analyses.’> Mezuk et al used a twin design with depression assessed with the
DSM-IV based Structured Clinical Interview for Diagnostic and Statistical Manual
of Mental Disorders (SCID-I), and their study generally supported social causation
as cause for the link between lower EA and increased MDD risk, and found only a
small genetic correlation of -0.22.> The studies of Lopez-Ledn et al and Boardman
et al contrast our finding of no, or at most a small, genetic correlation, but this
could be because they tested symptom reports of depressive state at a specific
point in time, whereas our study tested the presence of a more clinical construct:
DSM-IV or ICD-10 based lifetime diagnosis of MDD. Indeed, our results appear in
line with the findings from Mezuk et al who also used DSM-IV based diagnoses of
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MDD. Furthermore, we found that the association between lower EA and MDD
remained when cases with an age of first MDD onset > 30 were taken into
account exclusively. This indicates it is unlikely that MDD directly causes a
lowering of EA, as it can be assumed that one reaches his or her education
potential before the age of 30, which is in line with the suggested social causation
by Mezuk et al.’

The finding that there is no, or at most a small, genetic correlation
between lower EA and MDD is relevant, because this implies that non-genetic
factors play an important role, and that underlying mechanisms may possibly be
accessible to interventions. For example, when the social causation model would
be studied in more detail, this could potentially lead to underlying clues on how
lower socioeconomic status could contribute to vulnerability for MDD, or
alternatively how higher socioeconomic status may buffer against vulnerability
for MDD. For instance, lower socioeconomic status has shown to be associated to
less healthy life styles (less physical exercise, more smoking, higher BMI, and
more use of alcohol),?®3” less adequate medical treatment seeking behavior,3®
less knowledge about MDD,* and higher vulnerability to experience stressful life
events.*® These factors could all contribute to increased MDD risk. However,
future research should be conducted to elucidate the most important underlying
mechanism as these may hint to either public or personal actions to best prevent
MDD amongst individuals with lower EA. Yet another mechanism underlying the
link between lower EA and MDD could possibly be found in a third factor other
than genetic effects, such as a certain personality characteristic or less developed
cognitive abilities, that causes both lower EA and increased MDD risk.

Our study has several strengths, but also some limitations. First, our study
is one of the first and largest studies to test for pleiotropy between lower EA and
MDD, and we used individual level genotype data. In addition, we used clinically
relevant DSM-IV and ICD-10 based diagnoses of MDD. Furthermore, we applied
three distinct methods that essentially lead to the same conclusion. A limitation
of our study is that the discovery samples of the polygenic risk score analyses
were not optimally sized with maximum predictive power of the GPRS including
all SNPs (Pr=1). However, this is a limitation of most current genetic studies, and
we feel our discovery samples were adequately powered given the availability of
relevant genetic cohorts up to date. Furthermore, the genetic basis of MDD is
strong enough to study pleiotropy, as has been indicated in previous work from
the Psychiatric Genomics Consortium that indicate a genetic correlation between
MDD-schizophrenia (0.43+0.06), and MDD-bipolar disorder (0.47+0.06) with both
GREML-*! and GPRS-analyses.*? Another limitation is that we could have missed
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pleiotropic effects amongst rare SNPs with a MAF < 0.01. This limitation could be
addressed with a family or twin study, but it would be surprising when SNPs with
MAF < 0.01 would have large pleiotropic effects while SNPs with MAF > 0.01 show
no such evidence.

To conclude, we did confirm a negative phenotypic association between
MDD and EA, but found no evidence that this association is due to genetic
factors, which indicates that a large genetic correlation between lower EA and
MDD is unlikely, but does not exclude a small genetic correlation of around -0.1.
Understanding of the possible pathways between lower EA and MDD risk requires
further research including twin analyses for an additional estimate of the upper
bound of the genetic correlation. Nevertheless, we believe that the finding of the
absence of large pleiotropic genetic effects underlying the established correlation
of lower EA with increased MDD risk may be relevant, as it points to non-genetic
mechanisms that may be accessible to interventions aimed at breaking this
deleterious link.
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Supplement of Chapter 3. Association between depression and lower
educational attainment not explained by shared genetic effects in ~25,000
individuals

Genotyping, quality control, and imputation

Genotyping, quality control, and imputation of the PGC-cohorts have been
described in detail previously.! In short, the PGC-cohorts were all genotyped
following their own protocol and on separate platforms (Supplementary Table 1).
During quality control SNPs were removed with missingness > 0.02, case-control
difference in SNP missingness 2 0.02, difference in allele frequency to HapMap3 >
0.15, or Hardy-Weinberg equilibrium (HWE) p-value < 1e-6; subjects were
removed with missingness > 0.02 or diverging ancestry. The PGC-cohorts were
then imputed against the CEU+TSI HapMap3 reference panel,> and post-
imputation QC selected SNPs with imputation r? > 0.6 and MAF > 0.01.

The NESDA/NTR-2 cohort was genotyped on the Affymetrix 6.0 Human
Genome-Wide SNP Array in three separate batches. SNPs with a significant
different allele frequency between any two of the three batches (Chi-square p-
value < 0.01) were excluded to correct for batch effects. Subsequent quality
control was performed four times and based on information from the separate
batches and the combined NESDA/NTR-2 sample and removed SNPs with MAF <
0.1, missingness > 0.05, HWE p-value < 0.05, Mendelian error rate > 0.01. Based
on the combined sample only, additional SNPs were removed with a significant
difference in missingness between cases and controls (p < 0.05), and with a
difference in allele frequency to HapMap3 > 0.15. Subjects were removed, based
on information of the combined sample, with SNP missingness > 0.01 or
Mendelian error rate > 0.01. The NESDA/NTR-2 cohort was then imputed against
the CEU+TSI HapMap3 reference panel, and with post-imputation QC SNPs were
selected with imputation INFO > 0.8 and MAF > 0.01.

The EGCUT- cohort was genotyped partly on Illumina Human 370 CNV-duo
chip (unrelated N=1514)3 and partly on lllumina Human Omni Express (unrelated
N=5188).% Both of these parts of the EGCUT-cohort were processed separately.
With quality control SNPs were removed with MAF < 0.01 or HWE p-value < le-6.
The SNPs were then imputed against the 1000 Genomes reference panel, and
with post-imputation QC SNPs were selected with imputation INFO > 0.8 and MAF
> 0.01. The HapMap3 SNPs were selected and lifted from hgl9 to hgl8 in order to
align with the other cohorts.

The genotype data of the PGC-cohorts, NESDA/NTR-2 cohort, and EGCUT
cohort were merged and yielded information on 884,105 overlapping SNPs.
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Genetic Profile Risk Scores (GPRS)

The GPRS were based on EA discovery results (EA-GPRS) and MDD discovery
results (MDD-GPRS) following the procedure described by Purcell et al® and
implemented in Plink.® In order to test GPRS in a target cohort, it is essential for
the target cohort to be independent from the discovery cohort.® The EA discovery
results were from the recent meta-analyses on US years of schooling from the
Social Science Genetics Association Consortium (SSGAC),” which contains
overlapping individuals with BMH, EGCUT, GenRED, NESDA/NTR-1, NESDA/NTR-
2, QIMR, and STAR-D. We had available the SSGAC results separately excluding (i)
EGCUT, (ii) NESDA/NTR-1 and 2, and (iii) QIMR. These three sets of EA discovery
results were based on around 120,000 subjects, and applied to estimate the EA-
GPRS in the respective cohorts. The EA discovery results excluding NESDA/NTR-1
and 2 were in addition applied to estimate risk scores in GSK, MPIP, and
RADIANT. EA-GPRS were not estimated for BMH, GenRED, and STAR*D, because
no independent discovery results were available.

To obtain the MDD discovery results was slightly more elaborate, because
no large MDD cohort exists that is independent from PGC. Therefore, a ten-fold
leave-one-cohort-out approach was followed, in which every cohort was once left
out as target cohort, while the nine other cohorts would serve as MDD discovery
set. In these discovery sets genome wide association studies were performed
correcting for sex, covariates labelling the cohorts and genotype batches, and ten
principal components. In this manner, independent MDD discovery results were
obtained for all of the ten cohorts, and the discovery results were thus bases on
around 8,000 cases and 12,000 controls depending on the size of the cohort left
out (see Table 1 of main manuscript).

Nagelkerke’s and the liability R?

For MDD, Nagelkerke’s R? were derived and corrected for the covariates by
substituting the null (or intercept) model in Nagelkerke’s equation for the model
including the covariates. The corrected Nagelkerke’s R? were thus estimated as

R2 _ (Likelihood model covariates only)Z/N
NK- Likelyhood full model
/{1 — (Likelihood model covariates only)?/N}

Lee at all indicated that Nagelkerke’s R? can be biased by ascertainment, when
the proportion of cases in the study sample differs from the population disease
frequency.® Therefore, they proposed a R? measure that is robust against
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ascertainment bias and interpretable on the liability scale. This R* was obtained
by rescaling Nagelkerke’s R? for a MDD population prevalence of K=0.2 following
equation (15) from Lee et al.? Suppose that Nagelkerke’s RZ, has been estimated
on a sample with a proportion of cases P for a disease with population frequency
K. From Table 1 from Lee et al it follows that RZ,, g sneit =€ Rk, With €= 1 —
P2P(1 — P)?(=P), On page 216 Lee et al show that RZ,, g snens IS @pproximately
equal to the RE,CC on the observed scale in a linear model. Subsequently, equation
(15) from Lee et al can be applied

REiapiicy = CR3../(1+ COR3_ ), where

e {1
z2  P(1-P) 1-K 1-K

t: the threshold of the standard normal distribution above which a proportion of

— t), with

P is found, and
m: the selection intensity, which equals z/K where z equals the height of the
standard normal distribution at t

Gene-by-environment interaction

In post-hoc analyses we tested if the polygenic effects on MDD were moderated
by EA. First, we tested if the effect of MDD-GPRS (Pt=1) on MDD was moderated
by EA (continuous measure), but found no such evidence with an interaction
effect of OR=1.02 (p=0.26). Second, we applied GREML analyses. Therefore, EA
was partitioned in two equal parts per study: low EA and high EA. Subsequently,
the MDD SNP-h? on the observed scale was estimated at 0.11 (SE=0.04; p=0.008)
in low EA and 0.08 (SE=0.04; p=0.047) in high EA. The genetic correlation
between MDD in low EA and MDD in high EA was estimated at 0.87 (SE=0.40;
p=0.755 for Ho: re=1), showing no evidence for a difference of the genetic effects
on MDD in low and in high EA.

75



Supplement of Chapter 3

Table S1. Brief summary of contributing cohort studies

Genotyping
Cohort Cases Controls platform
Psychiatric Genomics Consortium (PGC MDD1) - cohorts
Bonn/Mannheim Inpatients Population-based, Illumina 610K
(BMH) non-screened
GenRED (GE) Volunteers with early Population-based,  Affymetrix 6.0
onset/ recurrent MDD screened
GSK (GS) Recurrent MDD from Population-based Illumina 550K
clincal centre and clinical, screened
MPIP (M) Inpatients Population-based, Illumina 317K
screened
NESDA/NTR-1  Outpatients & population- Population-based, Perligen 600K
(N1) based screened
QIMR (Q) Population-based from Population-based, Ilumina 317 &
Australia screened Illumina 610
RADIANT (R) Cases with MDD from Population-based Illumina 610K
clincal centres and volunteer,
screened
STAR*D (S) Cases from clinical trial Population-based,  Affymetrix
screened 500K/5.0
Other cohorts
NESDA/NTR-2  Outpatients & population- Population-based,  Affymetrix 6.0
(N2) based screened
EGCUT (E) Population-based Population-based Illumina 370 &
volunteers volunteers, screened lllumina HOE

Information of the eight PGC cohorts is displayed. This Table closely resembles Supplementary
Table 2 from the Psychiatric Genomics Consortium; see the publication from the Psychiatric
Genomics Consortium for more details.
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Table S2. Number of SNPs included in polygenic risk scores

B N2 E N1 GE GS M Q R S
Discovery MDD with threshold
p <0.001 91 96 88 94 104 104 104 93 92 106
p<0.01 902 894 878 843 908 918 904 922 870 892
p<0.1 8225 8292 8273 8103 8369 8345 8401 8321 8118 8303
p<1 76516 76516 76516 76516 76516 76516 76516 76516 76516 76516
Discovery EA years with threshold
p <0.001 - 179 203 179 - 179 179 213 179 -
p<0.01 - 1290 1304 1290 - 1290 1290 1359 1290 -
p<0.1 - 9327 9538 9327 - 9327 9327 9578 9327 -
p<1 - 76516 76516 76516 - 76516 76516 76516 76516 -

The Genetic Profile Risk Scores (GPRS) were based on a set of 76,516 independent SNPs
with results available from all discovery sets. The GPRS based on all SNPs (threshold of
discovery p- value <1) are thus based on the exact same SNPs. The GPRS based on the lower
thresholds (0.001, 0.01, and 0.1) are based on different set of SNPs based on significance in
the respective discovery results. EA-GPRS could not be estimated for B, GE and S, because
we had no independent discovery results available for these cohorts. B=Bonn/Mannheim;
E=EGCUT; GE=GenRED; GS=GSK; M=MPIP; N1=NESDA/NTR-1; N2=NESDA/NTR-2; Q=QIMR;

R=RADIANT; S=STAR*D
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Table S4. The effect of genomic risk profile scores based on College-completion
discovery results (College-GRPS) on MDD and EA (in years of education in the overall
sample.

Effect on MDD
N Effect R-squared (%) Effect on EA
Case Control OR P-value NK Liability N Beta P-value R%(%)

Effect of College-GRPS

p <0.001 6544 12324 0.99 0.683 0.00 0.00 13477 0.05 6.2e-10 0.28
p<0.01 6544 12324 0.99 0.609 0.00 0.00 13477 0.07 4.6e-16 0.49
p<0.1 6544 12324 0.99 0.564 0.00 0.00 13477 0.08 3.1e-20 0.63
p<l 6544 12324 0.99 0.737 0.00 0.00 13477 0.10 1.7e-29 0.94

The main EA-GPRS analyses were based on discovery results from years of education. The SSGAC,
however, also conducted a meta-analyses on the binary measure of College completion.7 This
measure is also of interest, because it distinguishes in the extreme end of the EA-distribution.
Therefore, additional analyses were performed with GPRS based on College completion discovery
results (College-GPRS). The College-GPRS had a slightly smaller impact on EA than main EA-GPRS
(main Table 2), and had no impact on MDD.
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Figure S2. Association between EA and MDD in male and female
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Figure S3. Dudbridge power calculations for GPRS-analyses. Dudbridge’s method
(available at https://sites.google.com/site/fdudbridge/software/) was applied to
estimate the power to detect genetic correlation with GPRS- analyses for @ = 0.05.° This
power can be derived from to the SNP-h2 estimated with Dudbridge’s method, as well
as with the SNP-h2 following from GREML analyses.'? Based on our results in main Table
2, Dudbridge’s method estimated the MDD SNP-h2 at 0.13 and the EA SNP-h2 at 0.09
(applying the R function “estimateVg2FromP”), which estimates used to calculate the
power as displayed (applying the R function “polygenescore”). The power to detect
genetic correlation was larger for the EA-GPRS predicting MDD than for the MDD-GPRS
predicting EA, because of the difference in discovery sample size (~120,000 and ~20,000
respectively). Furthermore, our GPRS- analyses seemed well powered to detect a
genetic correlation of -0.2, but could not exclude a smaller genetic correlation of around
-0.1. Note that Dudbridge estimates of the SNP-h?s were lower than the GREML-
estimates from this study (main Table 3) and previous studies;”!! these power analyses
will therefore likely represent a lower bound of the power to detect genetic correlation
with GPRS-analyses.
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Chapter 4

ABSTRACT

Background: Research on gene-by-environment interaction in major depressive
disorder (MDD) has thus far primarily focused on candidate genes, while genetic
effects are known to be polygenic.

Aims: To test whether the effect of polygenic risk scores on MDD is moderated by
childhood trauma.

Methods: The study sample consisted of 1645 participants with a DSM-IV based
diagnosis of MDD and 340 screened controls from the Netherlands. Chronic or
remitted episodes (severe MDD) were present in 956 participants. The
occurrence of childhood trauma was assessed with the Childhood Trauma
Interview and the polygenic risk scores were based on genome-wide meta-
analysis results from the Psychiatric Genomics Consortium.

Results: The polygenic risk scores and childhood trauma independently affected
MDD risk, and evidence was found for interaction as departure from both
multiplicativity and additivity, indicating that the effect of polygenic risk scores on
depression is increased in the presence of childhood trauma. The interaction
effects were similar in predicting all MDD risk and severe MDD risk and explained
a comparable proportion of variation in MDD risk as the polygenic risk scores
themselves.

Conclusions: The interaction effect found between polygenic risk scores and
childhood trauma implies that (1) studies on direct genetic effect on MDD gain
power by focusing on individuals exposed to childhood trauma, and that (2)
individuals with both high polygenic risk scores and exposure to childhood trauma
are particularly at risk for developing MDD.
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INTRODUCTION

Research on gene-by-environment (GxE) interaction in major depressive disorder
(MDD) aims to understand the heterogeneity of environmental and genetic risk
factors, but has thus far primarily focused on candidate genes with inconclusive
findings.»> On the one hand, research on GxE could select individuals with
increased vulnerability for environmental factors based on their genetic make-up.
Alternatively, research on GxE could select environmental conditions that lead to
increased expression of genetic effects. Insights into GxE interaction is therefore
of general importance for psychiatric research and contributes to the
understanding of MDD's complex etiology.

Thus far, GxE interaction has primarily been tested for candidate genes
such as the serotonin transporter gene (5-HTTLPR), for which opposing results
were found in very similar single studies,>* as well as in meta-analyses.>® Several
environmental factors have been analyzed in this respect, and among the most
important factors is childhood trauma, which has a strong impact on MDD risk.”°
Nevertheless, although some consistent evidence for interaction between
childhood trauma and 5-HTTLPR was found, these GxE findings remain
controversial.! The progress from a candidate-gene to a hypothesis-free genome-
wide approach is hampered by lack of statistical power and inconsistent
assessment of environmental stressors across GWAS cohorts.

Research on main genetic effects, on the other hand, has indicated that
the risk of MDD is not merely increased by the effect of one or a few single
nucleotide polymorphisms (SNPs), but by polygenic variation.'*'?> One of the
methods applied to point at these polygenic effects, first introduced for
schizophrenia,® uses polygenic risk scores and was later applied to MDD.! The
polygenic risk scores are obtained after carrying out a genome-wide association
study in a discovery sample and then taking SNPs up to a certain threshold of
significance, or even all SNPs, to predict MDD in an independent target sample.
The contributions of these large numbers of SNPs are weighted by their effect
size in a GWA or meta-analysis. The effect of polygenic risk scores on MDD was
repeatedly confirmed and explains up to 1-2 percent of variation. 11415

Even though this has not yet been studied for MDD, it is likely that causal
genetic variants for MDD are located throughout all of the genome, as has been
found for other complex traits such as height and body mass index.*® Also, SNPs
contributing to pleiotropy between schizophrenia and bipolar disorder are found
dispersed throughout the genome.'” The finding that the risk of MDD is increased
by polygenic variation suggests that research of interaction effects should also
focus on polygenic information. With an expected abundance of causal variants
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for MDD, environmental conditions that increase genetic effects are more likely
to be found when polygenic information is taken into account. When
environmental conditions that increase genetic effects are found, individuals
exposed to these conditions can be selected for future research to study the
impact of single loci on MDD with increased power. Nevertheless, to the best of
our knowledge, no research on GxE interaction in MDD has focused on polygenic
information thus far.

The current study focused on polygenic information to test for gene-by-
environment interaction in MDD, and examined whether polygenic risk scores
interact with the presence of childhood trauma in a large and well-characterized
sample from the Netherlands. This sample consists of participants with DSM-IV
based diagnosis of MDD and screened controls, with the presence of childhood
trauma assessed in face-to-face interviews. The meta-analysis from the
Psychiatric Genomics Consortium (PGC)* excluding our sample (leaving 7544
cases and 7754 controls) was used as discovery sample to construct the polygenic
risk scores.

METHODS

Subjects

The sample consisted of participants from the Netherlands Study of Depression
and Anxiety (NESDA), which is an ongoing longitudinal cohort study of depressive
and anxiety disorders, with participants recruited from mental health care
settings, general practices and the general population in the period from 2004 to
2007.%8 Participants with MDD in their lifetime (N=1645) were diagnosed in a
face-to-face interview with a trained clinical staff-member following the DSM-IV
based Composite International Diagnostic Interview (CIDI, version 2.1). Over half
of these participants (N=956) suffered from severe MDD with remitted (more
than one) episodes and/or chronic (longer than two years of) complaints, as
assessed with the life-chart, a calendar-approach to calculate the percentage of
time symptoms were present during four years prior to baseline and two years
following baseline.’® Controls (N=340) were screened in a similar face-to-face CIDI
interview and had no diagnosis of a depressive, dysthymic, anxiety, or other
psychiatric disorder in lifetime. Participants were from North-European ancestry
and were excluded when they were not fluent in speaking Dutch or when they
suffered from another primary diagnosis, such as a psychotic, obsessive
compulsive, bipolar or severe substance use disorder. The NESDA study was
approved by the institutional Review Board and all participants provided written
informed consent.
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Childhood Trauma

Childhood trauma was assessed in a face-to-face interview with a trained clinical
staff-member following the Childhood Trauma Interview (CTl) from the
Netherlands Mental Health Survey and Incidence Study.” The CTI assesses the
domains of emotional neglect, psychological abuse, physical abuse and sexual
abuse before the age of sixteen, and yields a score ranging from 0 to 8 by adding
the frequencies of occurrence (0- absent ; 1- once or sometimes; 2- regularly,
often or very often). In the CTI the four domains are assessed by a first question
asking whether the traumatic event occurred (yes or no), and a subsequent
second question asking how often the event occurred. In the first question the
traumatic events were specified as follows: emotional neglect as the lack of
parental attention or support and ignorance of one’s problems and experiences;
psychological abuse as being verbally abused, undeserved punishment,
subordinated to siblings and being blackmailed; physical abuse as being kicked or
hit with hands or an object, beaten up or physical abuse in any other way; and
sexual abuse as being sexually approached against one's will, meaning being
touched or having to touch someone in a sexual way. The CTl is a well-established
instrument, which measurements of childhood trauma show a strong impact on
depressive and anxiety disorders”?° as well as on structural and functional brain
abnormalities.?!?2 The CTI also shows strong content validity when compared to
the Childhood Trauma Questionnaire (CTQ),?* with Spearman's rho correlation of
0.69 (p<0.001) in a subset of NESDA with both the CTI and CTQ assessed at
different time points.

Genotyping and Quality Control

Methods for blood sampling and DNA extraction were described previously.?* The
manufacturer’s protocol was followed to genotype the autosomal SNPs on the
Affymetrix 6.0 Human Genome-Wide SNP Array. With quality control, SNPs were
excluded that: had probes that mapped badly against NCBI Build 37/UCSC hg19;
had a minor allele frequency smaller than 1%; had a missing rate greater than 5%;
deviated from Hardy-Weinberg equilibrium with a p-value smaller than 0.001,
thus leaving 498,592 SNPs to analyze. Participants were excluded when: they
showed a Contrast QC < 0.4 (CQC, a quality metric from Affymetrix representing
how well allele intensities separate into clusters); fell outside of the main cluster
of a PCs reflecting a batch effect;?> had a missing rate greater than 5%; had excess
genome-wide heterozygosity or inbreeding levels (F < -0.10 or > 0.10); had
genotypes with inconsistencies regarding reported gender; or had non-
European/non-Dutch ancestry as indicated with principal component analysis.?
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Polygenic Risk Scores

The polygenic risk scores were created based on the results from a large meta-
analysis from the Psychiatric Genomics Consortium (PGC)* excluding participants
from the Dutch GWAS cohort?® that included NESDA participants (thus yielding
7544 cases and 7754 controls in the discovery set). Risk scores were obtained
following the method described by Purcell and colleagues'® with the PLINK-
software.?’” From the meta-analysis, SNPs were selected that had an imputation
INFO score > 0.9 and MAF > 0.02, and low linkage disequilibrium (LD) to each
other (r?< 0.25 within 500kb window, filtering for significance; PLINK-command --
clump--p1 1 --clump-p2 1 --clump-r2 0.25 --clump-kb 500). The meta-analysis
results of SNPs up to eight p-value thresholds (0.001; 0.01; 0.05; 0.1; 0.2; 0.3; 0.4,
and 0.5) were selected to compute the polygenic risk scores in our sample; the
numbers of SNPs thus included were 150, 1209, 5028, 8905, 16081, 22355,
28018, and 32870 respectively. The polygenic risk scores were standardized to a
mean of zero and standard deviation of one to aid interpretation of results.

Statistical analyses

Participants with MDD were compared to controls with respect to age, gender,
and their childhood trauma score (range 0-8) with t-tests for continuous and chi-
square-tests for binary variables. The effect of polygenic risk scores on the
childhood trauma score, i.e. gene-environment correlation, was tested with linear
regression, because such an effect could potentially bias tests for interaction.?®
Two binary MDD outcomes were analyzed as dependent variables: all participants
with MDD versus controls (all MDD risk), and participants with severe MDD
versus controls (severe MDD risk). The direct effects of polygenic risk scores
(model 1) and the childhood trauma score (model 2) on MDD risks were assessed
in separate logistic regression models. Subsequently, tests for interaction were
performed with logistic regression to test for interaction as departure from
multiplicativity (model 3) and, secondly, with analyses of relative excess risks due
to interaction (RERI, model 4) to test for interaction as departure from additivity.
The RERIs were computed with the method described by Knol and colleagues, as
RERI=ePCT+BPRS+BPRSXCT_aBCT_aBPRS4 1 23 The RERI's 95% confidence intervals were
computed with bootstrapping with 10,000 iterations. The difference between
interaction as departure from additivity and interaction as departure of
multiplicativity is that the first represents a situation where the combined effect
is larger than the sum of the individual effects of the polygenic risk score and
childhood trauma, whereas the latter represents a situation where the combined
effect is larger than the product of the individual effects. It has been argued that
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interaction as departure from additivity is more in line with biological
interaction.?®

Nagelkerke's R? were estimated to assess what proportion of variation in
all MDD risk was explained by the polygenic risk scores (PRS) and childhood
trauma (CT) independently, as well as their interaction CTxPRS. Therefore, several
R? estimates were compared: between the model with only covariates and the
model additionally including CT (R? of CT); between the model with covariates
and CT and the model additionally including PRS (R? of PRS); and between the
model with covariates, CT and PRS and the model additionally including PRSxCT
(R? of CTxPRS). Nagelkerke's R*> may, however, be biased by a sample's
ascertainment when a disproportional number of cases is selected from the
population.®® Therefore, we also computed an alternative R? measure for the
PRSs, which was recently proposed by Lee and colleagues. This R? measure is
based on the liability scale, directly comparable to the heritability, and robust
against ascertainment bias. 3 Lee's R? estimates in our sample were based on a
Dutch lifetime prevalence of MDD of 18.7%.3!

All analyses were corrected for age, gender, and three ancestry-
informative principal components to take possible population stratification into
account, and the tests for interaction (models 3 and 4) included polygenic risk
scores and the childhood trauma score as additional covariates. Effects were
considered significant when p-values were <0.05 or when RERIs 95% confidence
intervals did not contain zero. All analyses were performed in R.3?

Table 1. Effect of polygenic risk scores (PRS) on childhood trauma

PRS thresholds Beta P-value
p<0.001 <0.01 0.991
p<0.01 -0.01 0.769
p<0.05 0.02 0.733
p<0.1 0.01 0.847
p<0.2 -0.01 0.883
p<0.3 -0.02 0.754
p<0.4 -0.01 0.904
p<0.5 0.01 0.907

Effects of polygenic risk scores on childhood trauma (i.e. gene-environment correlation)
were estimated with linear regression including three principal components, age and
gender as covariates.
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Figure 1. Interaction between childhood trauma (CT) and the polygenic risk score (PRS).
The interaction-effects as departure of multiplicativity in predicting risk on all MDD and
risk on severe MDD are visualized by displaying the direct effects of the polygenic risk
scores (PRS) based on threshold p<0.1 and p<0.3 respectively for three childhood
trauma levels, with childhood trauma (CT)-scores of 0-1; 2-3; and 4-8 respectively.

RESULTS

Participants with MDD (N=1645) had a mean age comparable to that of the 340
healthy controls (42.2 [SD 12.5] and 43.3 [SD 14.5] respectively, p=0.172), and
were slightly more often female (68% and 57% respectively, p<0.001). The mean
childhood trauma score was 1.75 (SD 2.17, range 0-8), and mean scores of the
four childhood trauma domains (range 0-2) were 0.76 (0.95) for emotional
neglect (EN), 0.50 (0.84) for psychological abuse (PsA), 0.22 (0.57) for physical
abuse (PhA), and 0.24 (0.52) for sexual abuse (SA). The scores of the domains
were all correlated with each other with Pearson correlation coefficients of 0.61
for EN-PsA, 0.40 for EN-PhA, 0.24 for EN-SA, 0.55 for PsA-PhA, 0.23 for PsA-SA,
and 0.26 for PhA-SA (all p<0.001). Childhood trauma occurred more often in
participants with MDD than in healthy controls with mean childhood trauma main
scores of 1.99 (SD 2.24) and 0.56 (SD 1.29) respectively (p<0.001). None of the
polygenic risk scores had an effect on childhood trauma with beta-estimates
around zero and all p-values well over 0.05, thus excluding gene-environment
correlation and its potential bias on interaction tests (Table 1). The polygenic risk
scores significantly predicted MDD risk (model 1), with slightly larger but
comparable effects in predicting severe MDD risk compared to predicting all MDD
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risk (Table 2). The polygenic risk scores based on five of the eight studied
thresholds were predictive in all MDD risk (thresholds 0.05; 0.1; 0.2; 0.3; 0.4) and
the polygenic risk scores based on six thresholds were predictive in severe MDD
risk (thresholds 0.05; 0.1; 0.2; 0.3; 0.4; 0.5). The polygenic risk scores based on
threshold p<0.05 had the largest effect on all MDD risk, with an OR of 1.22 per
standard deviation increase of the polygenic risk score (p=0.001). The presence of
childhood trauma also predicted MDD risk (model 2), again with slightly larger but
comparable effects in predicting severe MDD risk compared to all MDD risk (with
ORs of 1.64 [p<0.001] and 1.69 [p<0.001] respectively, per childhood trauma
score unit increase [range 0-8], Table 2). Evidence was then found for interaction
as departure from both multiplicativity (model 3, odds ratios >1) and additivity
(model 4, RERIs>0), indicating that the effect of polygenic risk scores on MDD is
increased in the presence of childhood trauma (Table 2). The largest interaction
effect in predicting all MDD was found for the polygenic risk score based on
threshold p<0.1 with an OR of 1.15 (p=0.005); the largest interaction effect in
predicting severe MDD was found for the polygenic risk score based on threshold
p<0.3 with an OR of 1.16 (p=0.005). These two interaction-effects were visualized
for their departure of multiplicativity by displaying the direct effects of the
polygenic risk scores for three childhood trauma levels, with childhood trauma
scores of 0-1; 2-3 and 4-8 respectively (Figure 1). Figure 1 shows that the
polygenic risk scores have limited impact in predicting MDD risk in individuals
with no/low exposure to childhood trauma, but large impact in individuals with
high exposure to childhood trauma. The impact of the four separate childhood
trauma domains on the interaction effects were compared by conducting
analyses of each domain separately in predicting all MDD risk. The estimates of
interaction thus found were in the same direction for all domains (OR>1), but
appeared more significant for the domains of emotional neglect and
psychological abuse, than for the domains of physical abuse and sexual abuse
(Table 3). This difference in significance is possibly due to the lower frequency of
occurrence of physical abuse and sexual abuse. Most variation in all MDD risk was
explained by childhood trauma (~13%), but the proportions explained by the
polygenic risk scores (in addition to the variation explained by childhood trauma)
and their interaction-effects (in addition to the variation explained by childhood
trauma and the polygenic risk score) were of comparable magnitude (~0.5%,
Table 4). Note that Lee's R? estimates were comparable to Nagelkerke's R?
estimates for the polygenic risk scores, which indicates that ascertainment bias
did not largely impact our results (Table 4).
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Table 2. Interaction between polygenic risk scores (PRS) and childhood trauma
(CT) in predicting MDD risk and direct effects of PRSs and CT

Direct effects

PRS-by-CT interaction

Multiplicative Additive
PRS (model 1) CT (model2) (model 3) (model 4)

PRS thresholds OR P-value OR P-value OR P-value RERI 95% Cl
All MDD (1645 cases and 340 controls)

p<0.001 1.01 0.808 1.64 <0.001 1.06 0.288 0.08 -0.08:0.25
p<0.01 1.12 0.059 1.64 <0.001 1.09 0.080 0.21 0.04:0.47
p<0.05 1.22 0.001 1.64 <0.001 1.14 0.008 0.37 0.14:.0.71
p<0.1 1.18 0.005 1.64 <0.001 1.15 0.005 0.34 0.13:.0.64
p<0.2 1.15 0.021 1.64 <0.001 1.12 0.014 0.29 0.10:0.56
p<0.3 1.13 0.037 1.64 <0.001 1.14 0.005 0.30 0.11:0.56
p<0.4 1.13 0.035 1.64 <0.001 1.13 0.010 0.28 0.08:0.55
p<0.5 1.11 0.081 1.64 <0.001 1.12 0.018 0.24 0.04:0.50
Severe MDD (956 cases and 340 controls)

p<0.001 1.02 0.805 1.69 <0.001 1.07 0.185 0.09 -0.08:0.28
p<0.01 1.11 0.116 1.69 <0.001 1.11 0.054 0.21 0.02:0.46
p<0.05 1.22 0.002 1.69 <0.001 1.14 0.013 0.37 0.14:.0.72
p<0.1 1.2 0.005 1.69 <0.001 1.14 0.008 0.36 0.13:0.69
p<0.2 1.17 0.016 1.69 <0.001 1.13 0.017 0.33 0.10:0.67
p<0.3 1.17 0.017 1.69 <0.001 1.16 0.005 0.36 0.13:0.69
p<0.4 1.17 0.016 1.69 <0.001 1.14 0.009 0.34 0.11:0.70
p<0.5 1.15 0.032 1.69 <0.001 1.14 0.014 0.30 0.07:0.63

Direct effects of the polygenic risk scores (PRS), childhood trauma (CT) and their interaction-
effects were estimated in four separate logistic regression models. The effects of the PRS
(model 1) and CT (model 2) were estimated in models with age, gender and three principal
components as covariates. The interaction effects were estimated in a model additionally
including PRS and CT as covariates (model 3 and model 4). The RERI’s represent tests for
interaction as departure from additivity and were computed by ePCT+BPRS+BPRSXCT_aBCT_gBPRSL]
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Table 3. Interaction between polygenic risk scores (PRS) and four childhood
trauma (CT) domains in predicting all MDD risk and direct effects of the four CT
domains (1645 cases and 340 controls).

Emotional neglect (EN) Psychological abuse (PsA)
EN PRS x EN PsA PRS x PsA
PRS thresholds OR P-value OR P-value OR P-value OR P-value

p<0.001 2.57 <0.001 1.10 0.307 240 <0.001 1.03 0.809
p<0.01 2,57 <0.001 1.15 0.130 2.40 <0.001 1.16 0.216
p<0.05 2,57 <0.001 1.15 0.128 2.40 <0.001 1.37 0.006
p<0.1 2,57 <0.001 1.18 0.069 2.40 <0.001 1.36 0.007
p<0.2 2,57 <0.001 1.21 0.032 240 <0.001 1.29 0.025
p<0.3 2.57 <0.001 1.22 0.027 240 <0.001 1.36 0.007
p<0.4 2,57 <0.001 1.21 0.035 240 <0.001 1.32 0.016
p<0.5 2,57 <0.001 1.19 0.056 2.40 <0.001 1.31 0.018
Physical abuse (PhA) Sexual abuse (SA)
PhA PRS x PhA SA PRS x SA
PRS thresholds OR P-value OR P-value OR P-value OR P-value
p<0.001 290 <0.001 1.24 0.297 2.19 <0.001 1.12 0.503
p<0.01 290 <0.001 1.30 0.215 2.19 <0.001 1.05 0.785
p<0.05 290 <0.001 1.42 o0.081 219 <0.001 1.08 0.653
p<0.1 290 <0.001 1.36 0.137 2.19 <0.001 1.11 0.508
p<0.2 290 <0.001 1.23 0.288 2.19 <0.001 1.10 0.561
p<0.3 290 <0.001 1.18 0.381 2.19 <0.001 1.12 0.460
p<0.4 290 <0.001 1.11 0.577 219 <0.001 1.14 0.393
p<0.5 290 <0.001 1.10 0.609 2.19 <0.001 1.16 0.356

Four childhood trauma domains (ranging from 0 to 2) were tested for their direct-effects
and interaction-effects with polygenic risk scores on all MDD risk, using logistic regression
analyses adjusted for age, gender and three principal components. The main effect of
the polygenic risk scores is displayed in Table 2 (model 1).
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Table 4. Proportion of variation in risk on all MDD explained by childhood trauma
(CT), polygenic risk scores (PRS) and their interaction effect.

Nagelkerke’s R? (in percentages) Lee’s R?
PRS thresholds CT PRS CTxPRS PRS
p<0.001 12.68 <0.00 0.09 0.02
p<0.01 12.68 0.30 0.24 0.41
p<0.05 12.68 0.90 0.53 1.26
p<0.1 12.68 0.66 0.60 0.94
p<0.2 12.68 0.49 0.46 0.64
p<0.3 12.68 0.40 0.59 0.54
p<0.4 12.68 0.40 0.49 0.56
p<0.5 12.68 0.26 0.42 0.39

To estimate proportions of variation in risk on all MDD explained by childhood trauma (CT),
polygenic risk scores (PRS) and their interaction (CTXPRS), Nagelkerke’s R were compared: between
the model with only covariates and the model additionally including CT (R? of CT); between
the model with covariates and CT and the model additionally including PRS (R? of PRS); and between
the model with covariates, CT and PRS and the model additionally inclu-ding PRSXCT (R? of CTxPRS).
Age, gender and three principal components were included as covariates. Lee’s proposed estimate
of R? was computed®® using a Dutch lifetime prevalence of MDD of 18.7%.%*

DISCUSSION

This is the first study that focuses on polygenic risk scores to test for gene-by-
environment interaction in major depressive disorder (MDD). Within our sample
we found increased effects of polygenic risk scores on MDD in the presence of
childhood trauma, with evidence for interaction as departure from both
multiplicativity and additivity. These interaction-effects were comparable in
predicting all MDD risk and severe (chronic or recurrent) MDD risk, although
effects were slightly larger in the latter. The interaction-effects were driven by all
of the four domains included in the childhood trauma measure (emotional
neglect, psychological abuse, physical abuse and sexual abuse). We found that
the proportion of variation in all MDD risk explained by the interaction effects
was comparable to the proportion explained by the polygenic risk scores (both
~0.5%).

Thus far, polygenic information has not been taken into account in
research on gene-by-environment interaction in MDD, but there has been
ongoing research for interaction with candidate genes. The motivation for
research on gene-by-environment interaction in MDD is found in its contribution
to understanding the complex etiology of MDD,** and its possibility to select
environmental conditions with increased genetic effects. Nevertheless, research
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on candidate genes has led to rather contradictory results: in research on the
well-known serotonin transporter gene (5-HTTLPR) even meta-analyses differ in
their conclusions>®3* with concerns about publications bias.! However, because
genetic effects on MDD are polygenic in nature,''2 we argued that gene-by-
environment interaction should be tested with polygenic information.

The interaction effect thus found within our sample between polygenic
risk scores and childhood trauma in MDD has two implications. The first
implication is that polygenic risk scores have increased effects in the presence of
childhood trauma, as illustrated in Figure 1, which indicates that research on
direct genetic effects potentially gains power by focusing on individuals exposed
to childhood trauma. Therefore, if numbers would allow it would be very useful
to perform a genome-wide association study within, for example, the
collaborative Psychiatric Genomics Consortium?®® in individuals who experienced
childhood trauma. Because interaction-effects are symmetrical, we could,
however, also have illustrated that childhood trauma has more impact in
individuals with high polygenic risk scores. Thus, the second implication is that
individuals with high polygenic risk scores are more vulnerable for the effects of
childhood trauma, which has potential clinical relevance, for example in profiling
of MDD, but also in possible future prevention programs. When replicated in
independent samples, the interaction effect found might add a modest but
important piece to the complex puzzle of MDD's etiology.

The direct effects of the polygenic risk scores and childhood trauma in
predicting MDD risk in our sample are in line with previous findings. The
proportion of variation in MDD explained by the polygenic risk scores (R ~0.5%)
was in line with previous findings of Demirkan and colleagues!! and the
Psychiatric GWAS Consortium.* Although Nagelkerke's R? could have suffered
from ascertainment bias because of the large proportion of participants with
MDD in our sample, its estimates were of the same magnitude as Lee's estimates
of R?, indicating that ascertainment did not largely affect our results.3® The choice
of the SNP p-value cut-off in the discovery sample tends to be arbitrary, which is
why we presented results for eight different cut-offs in this study, and results
were comparable for cut-offs larger than 0.05. In general, we anticipate that
lower cut-offs are preferable over higher cut-offs when the discovery sample size
increases and SNP effects can be found with more certainty. The impact of
childhood trauma in predicting MDD risk in our sample is also in line with
previous findings, for example those of MacMillan® and De Graaf.” Furthermore,
evidence for interaction was found as departure from both multiplicativity and
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additivity, the latter of which has been argued to be more in line with biological
interaction.?®%

The impact of polygenic risk scores on MDD could have been studied in
several environmental conditions, but we hypothesized that the presence of
childhood trauma is a likely candidate. The presence of childhood trauma showed
most consistent results in previous research on interaction with candidate genes,’
and it is a severe form of stress with a large and life-long impact, resulting in a
large main effect on MDD prevalence.®® Furthermore, childhood trauma
generally occurs before the onset of MDD (in our sample 84.7% of the MDD
subjects had their first episode after age 16), thereby largely excluding the
potential source of bias from reciprocal causation, i.e. when MDD results in
environmental stress.3® In our study, childhood trauma was assessed with the
Childhood Trauma Interview (CTl), which is a well-established instrument that has
shown to predict onset of depressive and anxiety disorders”?° as well as an
enduring impact on structural and functional brain abnormalities.?>?? Our finding
that childhood trauma increases the effects of polygenic risk scores on MDD fits
with a recent review of Teicher and Samson, which indicates that MDD patients
with childhood trauma have more severe mood, neurovegetative and
endogenous symptoms, and more comorbidities and psychotic features than
MDD patients without childhood trauma.®

The approach applied in this study, to test for gene-by-environment
interaction with polygenic risk scores, has both advantages and disadvantages.
This is the first study to apply this approach to MDD, but Meyers and colleagues
have applied it to smoking behaviour before. They observed interaction effects on
smoking behaviour between polygenic risk scores for smoking and the number of
traumatic events experienced as well as for polygenic risk scores and
neighborhood social cohesion (effective n=399).3” An advantage of the polygenic
risk scores -approach is that polygenic risk scores are based on genome-wide SNP
data, but result in a one-dimensional summary measure, with corresponding
requirements of significance (p<0.05). Consequently, the sample size of the target
sample can be much smaller than in GWAS studies testing SNPs independently. A
disadvantage is, however, that particular aspects of the multi-dimensional
polygenic information is lost, which could lead to biased results, for example
when certain SNPs show increased effects on MDD in the presence of childhood
trauma while other SNPs show decreased effects on MDD in the presence of
childhood trauma. If this hypothetical situation would occur, both interaction-
effects would be leveled out in tests with the one-dimensional polygenic risk
scores summary measure. Nevertheless, at the present time sample sizes are
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insufficient to examine the impact of many SNPs in GxE studies and, therefore,
studying polygenic risk scores seems an elegant approach for testing the general
hypothesis of the existence of gene-by-environment interaction.

Our study has several strengths. First, it was based on DSM-IV based
diagnoses of MDD, which ensures we studied participants with clinically relevant
MDD. Second, controls were carefully screened for any lifetime psychiatric
diagnosis. Third, childhood trauma was assessed in a face-to-face interview by
specially trained clinical staff. Fourth, polygenic risk scores were based on a large
and independent discovery sample, which adds to the accuracy of the polygenic
risk scores. However, there are also some limitations, including potential recall
bias of childhood trauma by the mood of participants with MDD. The number of
controls in our sample was rather limited, but we carefully checked for
ascertainment bias and found none. Even though controls were carefully
screened for MDD, they could potentially develop MDD later in life, especially
because MDD has a high prevalence of approximately 20 percent.

To conclude, we show that the effect of polygenic risk scores on MDD is
increased in the presence of childhood trauma in our sample. Our finding
implicates that power in research on direct genetic effects is larger in the
presence of childhood trauma, but it also implicates that subjects with high
polygenic risk scores form a potential group for MDD prevention, because of their
increased vulnerability for childhood trauma. Future research should be
conducted to replicate our finding, especially in the light of the inconclusive
findings in research on interaction in MDD thus far. In addition, future research
could also be designed to test interaction with polygenic information applying
different techniques. A possible technique to apply could be genome-wide
complex trait analyses (GCTA) to test for interaction with the genetic relationship
matrix.3® The present study was underpowered to conduct such analyses,3 but
future efforts combining data from several independent GWAS cohorts could
potentially reach power to test for interaction with GCTA. Further research is
required, but our results suggest that gene-by-environment interaction plays a
considerable role in the polygenic effects on MDD.
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Chapter 6

ABSTRACT

Genome-wide association studies (GWAS) are an optimal design for discovery of
disease risk loci for diseases whose underlying genetic architecture includes many
common causal loci of small effect (a polygenic architecture). We consider two
designs, which deserve careful consideration if the true underlying genetic
architecture of the trait is polygenic: parent-offspring trios and unscreened
controls. We assess these designs in terms of quantification of the total
contribution of genome-wide genetic markers to disease risk (SNP-heritability)
and power to detect an associated risk allele. First, we show that trio-designs
should be avoided when: i) the disease has a lifetime risk > 1%; ii) trio probands
are ascertained from families with more than one affected sibling under which
scenario the SNP-heritability can drop by over 50%, and power can drop as much
as from 0.9 to 0.15 for a sample of 20,000 subjects; iii) assortative mating occurs
(spouse correlation of the underlying liability to the disorder) which decreases
the SNP-heritability but not the power to detect a single locus in the trio design.
Some studies use unscreened rather than screened controls as these can be
easier to collect; we show that the estimated SNP heritability should then be
scaled by dividing by (1 — K * u)? for disorders with population prevalence K and
proportion of unscreened controls u. When omitting to scale appropriately, the
SNP-heritability of, for example, major depressive disorder (K = 0.15) would be
underestimated by 28% when none of the controls are screened.
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INTRODUCTION

Optimal experimental design of genetic studies of disease for discovery of
associated loci depends on the underlying genetic architecture of the trait.
Although the true genetic architecture of the trait is usually not known, different
experimental designs aim at exposing causal loci of differing population
frequencies. For example, the optimal experimental design to detect de novo
mutations is a trio design in which affected probands and their parents are
genotyped.! In contrast, genome-wide association studies (GWAS) are an optimal
design for a genetic architecture that includes many common causal loci of small
effect (a polygenic architecture). Here, we consider two designs of GWAS, which
we show deserve careful consideration: designs based on parent-offspring trios
and on unscreened controls. We assess these designs in terms of quantification of
the total contribution to disease risk of genome-wide genetic markers, via
estimation of so-called SNP-heritability,? and the power to detect an associated
risk allele.

Our study is motivated by experiences with GWAS designs for psychiatric
disorders, but our results are parameterized based on baseline disease risk and
heritability, and are, therefore, applicable to the full range of diseases and
disorders with a polygenic genetic architecture of underlying risk. For psychiatric
disorders, GWAS have had variable success in detecting genome-wide significant
common single nucleotide polymorphisms (SNPs). On the one hand, 108
significant loci were recently found for schizophrenia (SCZ [MIM 181500]) in a
sample comprising 36,989 cases,® whereas only 2 loci were found in one study on
Major Depressive Disorder (MDD [MIM 608516])* but none in another,® no loci
for attention-deficit/ hyperactivity disorder (ADHD [MIM 143465]),® and only
single-study genome-wide significant loci for autism spectrum disorder (ASD
[MIM 209850]).”° Sample size is pivotal in explaining this discrepancy, since
much smaller numbers of cases were included for MDD (5303 and 9240
respectively), ADHD (2960), and ASD (2705, 1984, and 1553 respectively) than for
SCZ. Other contributing factors have, nevertheless, been proposed, such as the
impact of de novo mutations in ASD%!! (although these are only expected to
explain a small proportion variation),*? lower family-based heritability of MDD
(~0.4 versus ~0.8 for SCZ, ASD and ADHD, assuming a similar genetic architecture
between disorders)®3, higher prevalence and greater heterogeneity of MDD.
Here, we show that the trio design, which is regularly applied in ASD and ADHD,
and use of unscreened controls deserves careful consideration in the context of
an underlying polygenic architecture, which is an important consideration for
design of future studies which strive to increase sample size.'®
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The impact of trio-design and the use of unscreened controls on the SNP-
heritability have, to the best of our knowledge, not yet been described, probably
because the methods for estimation of SNP-heritability were only developed in
recent years.'®'” The impact on the power to detect a single locus has, on the
other hand, been studied in the pre-GWAS era of candidate genes,'®?! but we
could find no clear-cut comparison of the power to detect an associated risk allele
with trio-studies versus screened control studies, and we will therefore also give
an overview of these differences. We investigate the trio-design and the use of
unscreened controls by analytical derivation followed by simulation studies to
validate theory. Assortative mating (correlation in liability between spouses) is
included in our trio design analyses, because this has been reported for a range of
psychiatric disorders.?22> For example, a spouse-correlation on the Social
Responsiveness Scale (a quantitative measure of autistic traits) of 0.29 has been
reported in a population sample?® and of 0.26 in parents of ASD probands.?? For
ADHD a spouse correlation of 0.11 on the ADHD-index in population samples has
been reported.?® In trio designs genotypes of proband cases are compared to
genotypes of pseudocontrols (the non-transmitted parental alleles).

SNP-HERITABILITY CALCULATIONS

The SNP-heritability estimates the total proportion of variance tagged by
common SNPs from genome-wide association study.?'® If samples with GWAS
data are population samples, then the variance estimated on the observed scale
(h2) is expressed with the Robertson’s transformation on the liability scale (h?)

aSZG

[Equation 1]

Quantification on the liability scale is most interpretable as it allows direct
comparisons to estimates of heritability from family data that are reported on
this scale, and to estimates of variance explained by individual genome-wide
significant loci. However, usually GWAS samples are oversampled for cases
compared to population samples and the transformation of proportion of
variance attributable to SNPs estimated from case-control data (fl?,ec) must also

account for the proportion of cases in the sample P by%?’

h? = p2,, 00"

e o [Equation 2]
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which reduces to Equation 1 when the sample is a population sample and P = K.
However, these transformations assume that controls are screened. To account
for controls being unscreened, we define F as the proportion of falsely classified

Nral trol Nrai trol
controls, F = false controls = Jabecontiols \ye closely followed the

Nfalse controlstNtrue controls Ncontrols

derivations of Golan at al (paragraphs 1.2 and 1.3 of their Supplemental

Materials)?’ to derive an updated equation (Table S1) validated by simulation
(Table S2)

22 7o K2(1-K)?
hi' = hoce P(1-P)(1-F)2z2’

[Equation 3]

which reduces to Equation 2 when F = 0 and controls are screened. If a
proportion u of the controls are a random sample from the population then one
can assume that F =~ Ku. Therefore, if it is unknown if controls are screened or
not, the potential underestimation when all controls are unscreened (u = 1) of
the SNP-heritability fllz estimated from the standard Equation 2 can be assessed
as h?(1 — K)? and thus depends on baseline risk K. In trio designs where
probands are ascertained randomly, the pseudocontrols are equivalent to
unscreened controls under a polygenic model (Figure S1).

For the trio-design, the SNP-heritability was derived for a disease
parameterized with normally distributed phenotypic (I) and genetic (G) liabilities
with means E(l) = E(G) =0 and variances V, =1 and V; = h?, the true
heritability on the liability scale in the parental generation.?® Under the liability-
threshold model, individuals are deemed affected when their liability [ is larger
than threshold T such that P(I > T|l~N(0,1)) = K. Parental assortative mating
was taken into account by parameterizing a spouse liability correlation of p; and
genetic correlation of p; = h?p, »* The E(G) of proband cases and
pseudocontrols were derived by considering the variance-covariance matrix of
[ and G of individuals that could contribute to a trio design (proband, sibling,
mother, father, pseudocontrol). To account for the affected proband, the
variance-covariance matrix of random families was conditioned on the proband
being affected by accounting for the reduction in variance as result of the Bulmer
effect?® in related individuals described by Tallis.3® To account for a second
affected sibling, the variance-covariance matrix was further conditioned on the
sibling also being affected. Details of these derivations are provided in the
Supplemental Methods, and were validated with a simulation study in R (Table S3
& Table 54).3!
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Figure 1 Panel A displays the SNP-heritability assessed from unscreened
controls, which is equivalent to estimates from pseudocontrols from random
families with at least one affected proband (dotted line Figure 1 Panel A), and
screened controls (solid lines Figure 1). While the standard transformation
(Equation 2) applied to derive estimates of SNP-heritability on the liability scale
(ﬁlz) is expected to give unbiased estimates of the true SNP-heritability when
cases are randomly ascertained and controls are screened (Figure 1, Panel A solid
line), the transformation underestimates h? by a factor (1 — K)? when diseases
are common (high K) and controls are unscreened or are pseudocontrols (Figure
1 Panel A dashed line). The estimated heritability from the Equation 2
transformation h? severely underestimates h? when data result from a trio
design with probands ascertained from multiplex families (Figure 1 Panel B
dotted line), for example, h? = 0.31 for K = 0.05 and h? = 0.5, since the mean
liability of pseudocontrols is greater than the average in the population and so
the contrast in genetic values between cases and pseudocontrols is less than
between cases and screened controls (Table 1 Panel B), which is not fully
compensated by the fact that cases from multiplex families have higher mean
liability than randomly selected cases (Table 1 Panel A). In contrast, when cases
are selected from multiplex families and controls are screened controls the
estimated SNP-heritability based on the standard transformation is an
overestimate of h? (for example, h? = 0.75 for K = 0.05 and h? = 0.5). When
controls are unscreened, the SNP-heritability is found in between the SNP-
heritability from screened and pseudocontrols (dashed lines Figure 1), when SNP-
heritabilities are estimated using equation 2. In the context of assortative mating,
a trio design comparison of probands to pseudocontrols yield decreased ﬁlz
(Figure 1 Panel C; Table 1 Panel C, spouse correlation p; = 0.3). Again, comparing
the probands to screened controls (from the offspring generation) does in fact
overestimate the heritability in the parent generation h?; this is, however, a well-
known consequence of assortative mating and is not restricted to the trio-design

( Veorfspring = VG,parents+%pG,parentSVG,parentS ).?> The most pronounced
difference between screened controls and pseudocontrols is found for probands
with an additional affected sibling in the context of parental assortative mating
(Figure 1 Panel D; Table 1 Panel D).
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Parental assortative mating Additional sibling affected Random proband families

Assort. mat. & add. sib. aff.

1.1

K =0.01

K =0.05

—— Screened control
- = - Unscreened control
= = Pseudocontrol

1.1

1.1

K=0.15

Figure 1. Relationship between the True SNP Heritability and Its Estimates Based on
the Standard Transformation with Equation 2 from Trio Data, Screened Controls, and
Unscreened Controls. The SNP-heritability A7 that would be estimated based on the
standard liability transformation equation (Equation 2) for GWAS studies using
pseudocontrols (dotted lines), unscreened controls (dashed lines) and screened controls
(solid lines) compared to the true parental SNP-heritability hlz for designs based on
randomly ascertained proband families (Panel A), families with an additional affected
sibling (Panel B), in the context of parental assortative mating with a correlation on the
liability scale of p; = 0.3 (Panel C), and families with an additional affected sibling in the
context of parental assortative mating (Panel D) for disorders with lifetime risk K =

149



Chapter 6

0.01, K = 0.05and K = 0.15. The pseudocontrols of random proband families are
equivalent to unscreened controls (dashed and dotted lines Panel A overlap), and the
slope of these lines are defined by (1 — K)?, i.e. the underestimation of 2? when
mistakenly applying Equation 2 rather than Equation 3 to transform the heritability on
the observed scale to the liability scale when none of the controls are screened.

Table 1. Mean genetic liabilities and SNP-heritability estimated from the standard transformation
with Equation 2 from GWAS using trio-design, screened controls, or unscreened controls for actual
parental heritability 0.5

Mean genetic liability (E(G))

h? Control hAzl assessed from proband
1

K  parents Case Screened Unscreened Pseudo Screened Unscreened Pseudo

A. Random proband families

0.01 0.5 1.333 -0.013 0.000 0.000 0.500 0.490 0.490
0.05 0.5 1.031 -0.054 0.000 0.000 0.500 0.451 0.451
015 0.5 0.777 -0.137 0.000 0.000 0.500 0.361 0.361

B. Additional sibling affected

0.01 0.5 1.634 -0.013 0.000 0.543 0.749 0.736 0.328
0.05 0.5 1.275 -0.054 0.000 0.424 0.750 0.690 0.307
015 0.5 0972 -0.137 0.000 0.323 0.735 0.565 0.251

C. Parental assortative mating
0.01 0.5 1.386 -0.016 0.000 0.097 0.542 0.530 0.459

0.05 0.5 1.075 -0.060 0.000 0.075 0.547 0.490 0.424
0.15 0.5 0.812 -0.148 0.000 0.057 0.552 0.395 0.341

D. Additional sibling affected and parental assortative mating

0.01 0.5 1706 -0.016 0.000 0.670 0.818 0.803 0.296
0.05 0.5 1.335 -0.060 0.000 0.525 0.826 0.756 0.278
0.15 0.5 1.021 -0.148 0.000 0.402 0.818 0.624 0.230

The mean genetic liabilities £(G) are displayed for proband cases, unrelated screened controlsﬂ,
unrelated unscreened controls, and their pseudocontrols as well as the SNP-heritability hf
estimated from Equation 2 from comparing cases to these three sets of controls, for different
parameterization of baseline disease risk K and a fixed underlying heritability of h2,=0.5.
The proband cases are parameterized in line with Figure 1 to be selected from random
proband families (Panel A), families with an additional affected sibling (Panel B), families in
the context of parental assortative mating (Panel C), and families with an additional affected
sibling in the context of assortative mating (Panel D) respectively.
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POWER CALCULATIONS

The power to detect an associated risk allele in a case-control association test
follows from the non-centrality parameter NCP of the X? test-statistic. This NCP
is expressed in terms of sample size N, proportion of cases in the study v, the
allele frequency in cases p.,s., the allele frequency in controls p.ontror, @and the
mean allele frequency in the sample p = vpcgse + (1 — V)Peontror S

_ 2
NCP = (Pcase pcontroll) ) [Equation 4]

_ _. 1
p(l_p)(zNw *oNa—n

and the power as P (x >/NCP + x7 | z~N(0,1)), where x; is the z-value

quantile-function of the standard normal distribution for the desired significance
threshold, here set ata =5=x 1078 (x; = —5.45). The power of different
experimental designs is reflected in the appropriate expressions of p.qs and
Deontror- We parameterize a disease with a baseline lifetime disease risk K, a di-
allelic locus with risk allele frequency P(B) = p, non-risk allele frequency P(b) =
q=1—p , relative risk of heterozygotes RRy, = P(Disease|Bb)/
P(Disease|bb), and relative risk of the homozygotes RRzz = P(Disease|BB)/
P(Disease|bb).3*3 When controls are screened, power follows from p g, =
kypyRRgpp (1 +p(RRg, —1))/K ,  where ky, = P(Disease|bb) =
K/(q® + 2pqRRp, + P*RRpp) , and  DPeonror = ((1 — kppRRpp)p(1 — p) +
(1 — kppRR5)P%) /(1 — K),* which agrees with the Genetic Power Calculator of
Purcell et al.3* When controls are unscreened, the power of an association study
is expressed by Equation 4 with p.oniroir = p- For the trio-design, power was
assessed by substituting in Equation 4 the allele frequency in proband cases and
pseudocontrols (the non-transmitted alleles of the parents). When trios are
ascertained from families with an additional affected sibling or when there is
assortative mating, the risk allele frequency in controls can be derived from
combined and conditional genotype frequencies of an individual, its affected
sibling and its parents. Under assortative mating expressions are dependent on
spouse liability correlation py;gpiiiry, Which results in the correlation between the
parental genotypes as pjocus = pliabilityhlzocus-zs It follows that assortative mating
(for e.g. Priabitiy = 0.3) has no impact on the power to detect a single locus for
loci typical of polygenic architecture that explain less than one percent of
variation (p;pcus = 0.3 * 0.01 = 0.003).2 When assuming a small RRy,, typical of
complex genetic disease and a multiplicative model on the disease scale (RRgg =
RR%,, implying additively on the underlying risk scale), the variance attributable
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to risk locus can be approximated by h ..« & 2pq(RRg, — 1)?/i? with i = z/K
the mean liability of cases, and z the height of the standard normal density
function at the threshold corresponding to a baseline disease risk K.3® The
expressions to derive allele frequencies in trios are closed but complex
(Supplemental Methods) and were validated by simulation (Table S5).

Figure 2 displays the power to detect an associated risk allele for proband
cases from (A) random trios with an affected proband, and (B) multiplex trios
with an additional affected sibling, when the risk allele has a frequency of P(B) =
p = 0.2 for disorders with baseline risk K = 0.01, 0.05 and 0.15 in a sample of
N = 10,000 trios (proband cases vs pseudo-controls) against RRg;, given an
underlying additive effect (RRzz = RR3,) (dotted line). Note that pseudocontrols
from random families are equivalent to unscreened controls displayed in Figure 2
for a number of 10,000 unscreened controls (dashed line) and 20,000 unscreened
controls (dot-dashed line). The solid line on each graph is the power for 10,000
proband cases compared to 10,000 unrelated screened controls. Figure 2A shows
that there is little to be gained in screening controls for diseases of lifetime
morbid risk < 1%, but for more common disorders (such as ADHD and MDD) there
is an important gain in power, which can also be gained by increasing the number
of unscreened controls. When trios come from families with an additional
affected sibling, the cases have an increased probability of carrying the risk allele
and so when matched with screened controls, there is a gain in power compared
to random ascertainment of cases (solid line 2B vs solid line 2A). For example,
when p = 0.2, RRp, = 1.2, then pyropanas = 0.248 and ppropana 4 = 0.231
respectively (these frequencies do not depend on K). However, when the
association study is of cases from multiplex families compared to pseudocontrols
there is little gain in power compared to trios based on randomly selected cases
(dotted line 2B vs dotted line 2A), because the pseudocontrols also have
increased probability of carrying the risk allele (Ppseudocontror s = 0.215 and
Ppseudocontrot 4 = 0.2). The maximum power difference between using screened
and pseudocontrols depends on RRp,,, K, sample size, and whether probands are
ascertained randomly (Table 2 Panel A) or from families with an additional
affected sibling (Table 2 Panel B), but is found for a sample comprising 20,000
subjects at RRg, = 1.11 and K = 0.15 for probands with additional affected
siblings, under which scenario a total sample size of N = 15,945 is needed when
controls are screened vs N = 44,574 for the pseudocontrol trio design
respectively to obtain a power of 0.8. For unscreened controls (equivalent to
pseudocontrols from random families), the most pronounced decrease in power
in a sample of 20,000 subjects is found for a locus with RRp, = 1.14 in disease
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with K = 0.15 where unscreened controls yield a power of 0.39 and screened
controls of 0.74. As expected, the impact of using screened controls is higher for
more common disorders. Allele frequencies in probands, pseudocontrols, and
screened controls for all Figure 2 scenarios are presented in Figure S2.
Furthermore, the power-differences between pseudocontrol and screened
control studies are consistent for other risk allele frequencies e.g., p = 0.6
(Figure S3), underlying actual recessive (RRg,=1; Figure S4) and dominant effects
(RRg, = RRyp; Figure S5). In addition, to select only trios with unaffected
parents has no impact on power of pseudo-control studies, since although the
risk allele frequency in pseudocontrols decreases, the frequency in cases
decreases proportionally (Figure S6). When unscreened controls are much easier
to obtain then screened controls, the loss of power due to not screening can be
balanced by increasing the number of unscreened controls, which is illustrated
for different numbers of unscreened controls in Figure S7. Note that Equation 4
defines a limit to the power-gain from increasing the number of unscreened
controls, but that when increasing number of unscreened controls from 10,000 to
20,000 the loss of power due to not screening is balanced for all scenarios under
consideration here. In Figure 2, the additional x-axis is variance explained by the
locus, hence the results generalize to many combinations of p and RRg,, that
together explain the same locus variance.3? While association studies have similar
power to detect a locus based on RRp, regardless of baseline disease risk K, the
variance explained by a locus is much larger for high K. Therefore, to detect a risk
allele that explains the same proportion of genetic variance, a much larger
sample size is needed for larger K (Figure 3).

153



Chapter 6

K =0.01 K =0.05 K=0.15
(2]
(0] o o o
= +— ~| Number and type controls: Lot — —
€ © —— 10,000 screened ,', © ©
w@ o | - - 10,000 unscreened ,’ o o
© = ==- 20,000 unscreened
c » © _|-- 10000pseudo - © ©
© o o ’ [=] o
Q 3 ’
o £ = | < <
o} o [S) [S)
IS N N N
o (=} (=} (=)
©
% < < <
& ) T T T [S) [S)
1.01 1.10 1.18

o
Q =] o o
9 2 d d
3] - - -~
]
= © 4 @ ®
© S} S} (=}
D

© © ©
£ 53 S S
o 2
B & = =
— o (<) [}
©
c o (\I o
k] o 7 S [S)
=
g < < <
2 ) [S) [S)

1.01 1.10 1.18 1.01 1.10 1.18 1.01 1.10 1.18
RRgp RRgyp RRap
I T 1 I T 1 I T 1
0 0.05 0.15 0 0.08 0.25 0 0.13 0.44
hﬁ)cus (%) hicus (%) hicus (%)

Figure 2. Power to detect a single risk variant in association studies of 10,000 cases
that use a trio-design, screened controls, or unscreened controls. Power of association
analysis comparing 10,000 probands to 10,000 screened controls (solid line), 10,000
unscreened controls (dashed), 20,000 unscreened controls (dot-dashed), and 10,000
pseudocontrols (dotted) to detect a single associated risk variant for a risk allele with
frequency p = 0.2, for a baseline disease risk K = 0.01, K = 0.05 and K = 0.15.
Power was estimated for risk variants with underlying additive effect (RRgz = RR3,) for
random ascertainment of probands (Panel A), and probands from families with an
additional affected sibling (Panel B). Note that pseudocontrols from random families are
equivalent to unscreened controls and that the dotted and dashed line in Panel A
overlap. The variation explained on the liability scale was approximated by h,zocus ~
2p(1 — p)(RRp, — 1)%/i?, where i equals z/K the mean liability of probands, and z the
height of the standard normal density function at the threshold corresponding with
disease of lifetime risk K.
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Table 2. Maximum power difference between trio-design and screened controls
studies with 20,000 subjects

Allele frequencies Power (N=20,000) N (power=0.8)

K RR,, Proband Pseudo Screened Pseudo Screened Pseudo Screened

A. Proband from random proband families

0.01 1.147 0.223 0.200  0.200 0.56 0.58 25226 24714
0.05 1.144 0.222 0.200 0.199 0.51 0.63 26327 23712
0.15 1.135 0.221  0.200 0.196 0.39 0.74 29670 21297

B. Proband from families with an additional affected sibling

0.01 1115 0.228 0.209 0.200 0.17 0.91 39201 17307
0.05 1.113 0.227  0.209 0.199 0.15 0.92 40533 16923
0.15 1.108 0.226  0.208 0.197 0.11 0.94 44574 15945

The loci with allele frequency p=0.2 from Figure 2 that result in most pronounced decrease in power
for pseudocontrol compared to screened control studies for a sample of 10,000 cases and 10,000
controls are displayed in detail. The power difference depends on the baseline disease risk K, its
effect size RR,,,
with an additional affected sibling (B) (compare to respectively solid and dotted lines in Figure 2).
For these loci, the allele frequencies in proband cases, pseudocontrols and screened controls is
displayed, as well as the power given a sample size of N=20,000 (50% cases), and the required sample
size to obtain a power of 0.8. Note that pseudo-controls from random families are equivalent to
unscreened population controls (A).

and whether the proband cases are from random proband families (A) or families

DISCUSSION

To summarize our findings, our results generate two important conclusions that
trio based samples and unscreened controls for common diseases deserve careful
consideration when the underlying genetic architecture is highly polygenic. We
have quantified this in two ways, firstly by the underestimation of SNP-heritability
through application of the inappropriate transformation equation, and secondly
by power calculations of association analysis. We derived a transformation
equation for the SNP-heritability that is appropriate for unscreened control
samples (Equation 3).

The use of trio designs most commonly occurs for pediatric diseases and
disorders in which it is relatively easy to obtain blood samples from parents. Trio
designs are needed to detect de novo causal mutations,? to determine accurately
phased haplotypes® or to undertake parent-of-origin analyses implied by a
hypothesis of parental imprinting.3® Trio designs have also been considered for
detection of gene-environment interaction.3”% In the pre-GWAS era trio designs
were recommended to protect against potential bias from population
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stratification,! and although this quality is also sometimes promoted for trio
GWAS, with genome-wide SNP data other strategies, such as genomic principal
components® or mixed model association analysis,*® appropriately account for
population stratification without the need to incur 50% higher costs by
genotyping three samples to generate two genomes. While acknowledging the
benefits of parent-offspring trios under some experimental paradigms, trio design
GWAS have been undertaken without full regard of the implications to power
under the genetic architecture implicated by the GWAS paradigm. We draw the
following conclusions:

1) |If the case probands of trios are ascertained randomly, then the resulting
case-pseudocontrol study is equivalent to a case-unscreened control design
under a polygenic genetic architecture, and has little impact on the SNP-
heritability and power for disorders that are less common, but for more
common disorders there is important decrease in SNP-heritability (Figure 1
Panel A) and loss of power (Figure 2 Panel A), inadvertently contributing to
the missing heritability problem. For example, in a study on MDD (lifetime
risk K~0.15)'3*! where all controls are unscreened, the SNP- heritability (say
0.3) would reduce by a factor of 0.72 (0.72*0.3=0.22) (hence underestimated
by 28%) when not accounting for the unscreened controls (i.e. applying
Equation 2 rather than Equation 3). For disorders such as MDD, even when
controls have been screened it is likely that some controls remain
misclassified, as onset can occur throughout the lifetime. Naturally, it should
also be noted that when super-controls are used (controls screened to be at
the lower end of the liability distribution, for example based on low scores for
the personality trait neuroticism in the context of MDD) then SNP-heritability
estimates based on the standard transformation equation would be biased
upwards. The loss of power due to including unscreened controls can be
compensated by increasing the number of controls (Figure 2 & Figure S7), in
particular in the context of the continuously decreasing costs for genotyping,
but this requires caution when estimating the SNP-heritability, because
Equation 3 should then be applied rather than the standard Equation 2.

2) If case probands are ascertained from multiplex families, then the SNP-
heritability and power of GWAS are substantially reduced when using
pseudocontrols even for less common disorders (see Figure 1 Panel B, and
Figure 2 Panel B respectively; modeled on families with two affected siblings).
Even in the absence of deliberate ascertainment of multiplex families, studies
are likely to be biased by self-ascertainment as parents from multiplex
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families may be more concerned with the genetic origins of the disorder. In
fact, 43.6% of the 1369 families included in the Autism Genome Project (AGP)
had two or more children affected with ASD while counting up to third-
degree relatives.” However, the proportion of multiplex families is often not
reported, as is the case for the family-based studies**=** contributing to the
last ADHD meta-analysis,® which leaves the loss in power due to included
multiplex families unknown, but likely. In addition, in a number of families
with a first affected child parents will stop to reproduce, so that a second
affected child is never observed. Our results are consistent with the simplex
versus multiplex and simulation results of Klei et al in analyses of ASD
samples.*®

3) Assortative mating considerably decreases the SNP-heritability assessed from
trio-design compared to screened controls also for small K (Figure 1 Panel C),
but it does not impact the power to detect a single locus under a polygenic
model, because of the small proportions of variation explained by single loci
(<1%). Assortative mating is possibly common for psychiatric disorders,?>=%°
and needs to be considered when interpreting SNP-heritability in general, and
for trio-design in particular. These results and point 2) could explain why
lower SNP-based heritabilities were found in the ADHD pseudocontrol
samples from the Psychiatric Genomics Consortium compared to case-control
samples (see Supplementary Table 5 of Lee et al).'*

We also take the opportunity to re-emphasize that parameterization of power in
terms of genotype relative risk can be misleading since the same RRj,, operating
in common disease implies a much higher proportion of variance explained by the
locus compared to a locus operating in a less common disease. For example,
when the risk allele has frequency p = 0.2 and effect size RRp,= 1.1, the locus
explains 0.05%, 0.08% and 0.13% of the variance in phenotypic liability for
disorder of frequency K = 0.01, 0.05, and 0.15 respectively. Hence, to detect a
locus that explains the same proportion of variance in liability, much larger
samples are needed for common disorders (Figure 3). For example, samples of
N=4,059 (50% cases 50% screened controls) are needed to detect a locus that
explains 0.5% of the variance in liability for a disorder lifetime risk K = 0.01
(RRgp = 1.39), compared to samples of N=9,181 when the disorder risk is K =
0.15 (RRp, = 1.21). Similar arguments have been used to explain that much
larger GWAS samples are needed for MDD compared to schizophrenia.*®

To the best of our knowledge, the impact of the trio design and use of
unscreened controls on the SNP-heritability has not yet been addressed, but our
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power analyses build upon a rich literature exploring the characteristics of family-
based association studies in the pre-GWAS era. Ferreira et al showed that the
trio-based transmission disequilibrium test (TDT) has less power when an
additional (non-genotyped) sibling is affected compared to random families with
one affected sibling.'® Li et al,'® Risch and Teng,*” and Risch*® showed that case-
control studies are generally more powerful when cases are from families with an
additional affected sibling, which is in line with our results (Figure 2 Panel B
compared to Panel A). Teng and Risch found that family-based approaches have
less power than case-unrelated control strategies for families with multiple
affected siblings.?® Of note, our paper focuses on the pseudocontrol trio design,
because this is how the trio design is typically applied in GWAS studies, however
the TDT has often been applied for candidate genes and could yield more power
for rare disorders as has been indicated by Laird et al.?! The power to detect a
locus with the use of unscreened controls can readily be calculated with the
online power calculator of Purcell et al,** or the Quanto software from
Gauderman.* Nevertheless, our study adds also to the current literature on the
power to detect a single locus, because we directly compare pseudocontrol-
studies to screened control-studies for multiplex families and assortative mating.
As expected, there is overall similarity between consequences of design for the
power to detect a single risk variant and expected SNP-heritability, but in this
study we have formalized these expectations, and also shown that such similarity
does not hold when considering assortative mating which impacts on the
estimated SNP-heritability but not in power to detect a single risk variant.

To conclude, we advise against the use of trio designs for disorders with a
polygenic genetic architecture, such as psychiatric disorders, and we advise
careful consideration when using unscreened controls for prevalent disorders,
because these designs can results in an underestimated SNP-heritability and
decreased power to detect an associated risk allele.
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Figure 3. Power to detect an associated locus by the proportion of variation it explains.
The power to detect an associated locus depends on the proportion of variation it
explains on the liability scale h? ., the baseline disease risk K, and is displayed for
random case vs screened control. For a locus with the same h2 ., larger sample sizes
are required for larger K. h?,.,s can be approximated by 2p(1 — p)(RRg, — 1)%/i?,
where i equals z/K the mean liability of probands, and z the height of the standard
normal density function at the threshold corresponding with disease of lifetime risk K.
The (complex) relation between allele frequency p, RRg,, and the non-centrality
parameter NCP given h? . results in an identical relation between power and hZ, .,
for varying p.
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Supplement of Chapter 6. Disease and polygenic architecture: avoid trio-design

and appropriately account for unscreened controls for common disease
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Figure S1. Pseudocontrols of random families with at least one affected proband case
are equal to unscreened controls. Pseudocontrols of random families with at least one
affected proband case are equal to unscreened controls (i.e. population mean) as
displayed for the allele frequency of single loci of different effect-size (first two rows)
and the mean genetic liability E(G) (population mean equals 0) for variable heritability
h,z(bottom row) and different baseline population risk K. The equivalence is exact and
follows from the closed formulas provided in the R scripts, but is non-trivial to display in
equations, because multiple sequential probabilities were needed to derive at the allele
frequency and mean genetic liability in pseudocontrols. The equivalence can be
understood intuitively by realizing that the non-transmitted alleles of random proband
family are, in fact, part of the population background.
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Figure S2. Power to detect a single SNP in trio-design and unscreened control studies,
p=0.2. Power to detect a single SNP with risk allele frequency p = 0.2 for case vs
screened controls (solid grey line) and case vs pseudocontrol (dotted grey line). The
allele frequencies of proband cases are displayed as the red solid line, the allele
frequency of screened controls as the solid blue line, and the allele frequency of
pseudocontrols in the dotted blue line. The allele frequencies of pseudocontrols from
proband random families equal unscreened population controls, which is reflected by
the horizontal blue dotted lines at 0.2 in Panel A. Note that the grey lines equal the solid
and dotted lines in Main Figure 2; the unscreened controls are not displayed in the
Supplemental Figures, because they will always have an allele frequency equal to the

population frequency.
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Figure S3. Power to detect a single SNP in trio-design and unscreened control studies,
p=0.6. The power is displayed for a risk allele with frequency p=0.6, and results indicate
that the conclusions do not depend on the allele frequency (noting that in Figure S2 a
locus with p=0.2 was displayed). See the legend of Figure S2 for details.
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Figure S4. Power in trio design to detect SNP with underlying recessive effect. Power
to detect the additive effect a single SNP with risk allele frequency p = 0.2 with an
underlying recessive effect for case vs screened controls (solid grey line) and case vs
pseudocontrol (dotted grey line). The allele frequency of cases is displayed as the red
solid line, the allele frequency of screened controls as the solid blue line, and the allele

frequency of pseudocontrols in the dotted blue line.

Note that the RRgp are being

displayed for a larger range than in Figure S2 (1.9 > 1.182 = 1.39), i.e. an actual
recessive allele results in less power given RRpp.
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Power in trio design to detect SNP with underlying dominant effect. Power

to detect the additive effect a single SNP with risk allele frequency p = 0.2 with an
actual dominant effect for case vs screened controls (solid grey line) and case vs
pseudocontrol (dotted grey line). The allele frequency of cases is displayed as the red
solid line, the allele frequency of screened controls as the solid blue line, and the allele
frequency of pseudocontrols in the dotted blue line. Note that the RRyp are being
displayed for a smaller range than in Figure S2 (1.3 < 1.182 = 1.39), i.e. a dominant
allele results in more power given RRyp.
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Figure S6. Power to detect SNP in trios with unaffected parents. Power to detect a
single SNP with risk allele frequency p = 0.2 for cases vs pseudocontrols without
conditioning on parents (solid grey line) and case vs pseudocontrol restricted to trios
with unaffected parents (dotted grey line). The allele frequency of cases from trios
without conditioning on parents is displayed as the red solid line, and the allele
frequency of their pseudocontrols as the solid blue line. The allele frequency in cases
from trios with unaffected parents is displayed as the red dotted line, and the allele
frequency in their pseudocontrols as the dotted blue line. To summarize: solid=no
selection on parents; dotted=unaffected parents; grey=power; red=allele frequency
case; blue=allele frequency pseudocontrol. Note that the grey lines overlap, i.e. selecting
trios with unaffected parents does not increase power in pseudocontrol studies.
Furthermore, note that for K = 0.1 and K = 0.5 the allele frequencies are lower in trios
from unaffected parents, but this difference is proportional for cases and pseudocontrol
resulting in no power-difference.
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Figure S7. Power to detect a risk variant from screened vs. unscreened controls
studies. Power to detect a risk variant with risk allele frequency p = 0.2 for 10,000
proband cases vs 10,000 screened controls (solid red line) and 10,000 proband cases vs
respectively 10,000 unscreened controls (dotted line), 15,000 unscreened controls
(short dashed), 20,000 unscreened controls (long dashed), and 50,000 unscreened

controls (dot-dashed).
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Table S1. Values of the Haseman Elston cross-product accounting for falsely
classified controls

Viruei Yirues Yassumed, Yassumed, i Z;
toro 00 ((1-Passumedl PP  Possumed
1-Passumed

1 1 1 1 (1-Passumed) FPassumed -1
1 1 0 0 Passumed(1-Passumea) F -1
oot Pl Pounes
Passumed

0 Passumed(1-Passumea)(1-F) -1

1 0 0 0 (1-Passumed) F(1-Passumed)(1-F) Passumed
1-Possumed

1 1 1 (1-Passumea) (1-F)Passumed -1

1 0 0 (1-Passumea)(1-F)(1-Passumed) F Passumed
1-Passumed

°c 0o o 0 ((2-Posumee)(1-F)F  Pessmen
1-Passumed

To adjust the transformation from the heritability on the observed scale Eg to the
liability scale h? for a proportion F = Ntaise controts/ Nait controts of falsely classified
controls, we closely followed the derivations of Golan et al, which we recommend for
further reading (paragraphs 1.2 and 1.3 of their Supplemental Materials).* The adjusted
expected values of the cross-product Z;; used for Haseman Elston-regression follow
from considering the true disease status y;,,. and assumed disease status Y ssumed
with probabilities

Pirue = 1 & Yassumea = 1) = Passumea
Pirue = 1 & Yassumea = 0) = (1 — Pussumea) F

PYtrue = 0 & Yassumea = 0) = (1 — Passumed)(l -F)

The 9 possible pairs, their probabilities IP;; and values of cross-product Z;; are displayed
in the Table. The expected values of E[Z;;|Virue,is Yirue,j] follow as:

_ D IPU|yt‘rue,i=ytrue,j=1Zij|yt‘rue,i=ytrue,j=1 _

E[Zijb’true,i = Ytrue,j = 1] =

X ]Piﬂyt‘rue,i:ytrue,j:l
Passumed(l_Passumed)(1_F)2
(Passumed"'(1_Passumed)F)2

— Passumed (F—1)
(Passumed*(1—Passumed) F)

lE:[Zij |Ytrue,i * ytrue,j]
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P
IE:[Zijb’true,i = Ytrue,j = 0] = —gssumed

1-Passumed

Given these E[Zij|ytrue‘i,ytrue‘j] the derivation of Golan et al can be followed with
Piotan = Pirue = Passumea + (1 — Passumea)F to derive at the transformation of the
K?(1-K)?

observed to the liability scale as: h? = PP

72 —
hgec, where P = Pygoumea-
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Table S2. Simulation of falsely classified controls

Simulation
parameters Haseman-Elston regression
h"zl ﬁ%cc(assuming F=0) h'% (corrected for F)

K P F Mean SE Mean SE Mean SE
Parameters of Major Depressive Disorder
02 0405 O 0.3048 0.0131 0.3983 0.0171 0.3983 0.0171
0.2 04 05 0.1 0.2467 0.0112 0.3224 0.0146 0.3980 0.0180
0.2 04 05 0.2 0.1834 0.0095 0.2396 0.0124 0.3744 0.0194
02 04025 O 0.2288 0.0062 0.3985 0.0107 0.3985 0.0107
0.2 040.25 01 0.1795 0.0088 0.3127 0.0153 0.3861 0.0189
0.2 04025 0.2 0.1545 0.0055 0.2691 0.0096 0.4204 0.0150
Parameters of Schizophrenia
0.01 0.8 0.5 0 1.4699 0.0130 0.8113 0.0072 0.8113 0.0072
0.01 0.8 0.5 0.005 1.4358 0.0116 0.7924 0.0064 0.8004 0.0065
0.01 0.8 0.5 0.01 1.4096 0.0157 0.7780 0.0087 0.7938 0.0089
0.01 08025 0 1.0927 0.0055 0.8041 0.0040 0.8041 0.0040
0.01 0.8 0.25 0.005 1.0829 0.0078 0.7969 0.0057 0.8049 0.0058
0.01 0.8 0.25 0.01 1.0737 0.0049 0.7901 0.0036 0.8061 0.0037
Additional parameter settings to further validate the derived equation
02 0805 O 0.6282 0.0182 0.8207 0.0238 0.8207 0.0238
0.2 08 0.5 0.1 0.4964 0.0117 0.6485 0.0153 0.8006 0.0189
0.2 08 0.5 0.2 0.4062 0.0076 0.5307 0.0100 0.8293 0.0156
0.2 08025 O 0.4608 0.0077 0.8028 0.0135 0.8028 0.0135
0.2 080.25 01 0.3722 0.0061 0.6484 0.0107 0.8005 0.0132
0.2 080.25 0.2 0.2956 0.0062 0.5150 0.0109 0.8047 0.0170
00104 05 O 0.7287 0.0108 0.4022 0.0059 0.4022 0.0059
0.01 0.4 0.5 0.005 0.6993 0.0148 0.3859 0.0082 0.3898 0.0082
0.01 0.4 0.5 0.01 0.7022 0.0132 0.3876 0.0073 0.3954 0.0074
00104025 O 0.5395 0.0047 0.3970 0.0035 0.3970 0.0035
0.01 0.4 0.25 0.005 0.5393 0.0076 0.3969 0.0056 0.4009 0.0057
0.01 0.4 0.25 0.01 0.5375 0.0064 0.3956 0.0047 0.4036 0.0048

To validate the Equation 3, h? =

K?(1-K)?
P(1-P)(1-F)2z2 0¢¢’

h2

line with Golan et al (Supplemental Materials paragraph 5.3).1
1. MAFs of 10,000 SNPs in full linkage equilibrium were randomly sampled from

U[0.05,0.5], and the effect sizes were randomly sampled from N (0, h?/10,000).

2. Anindividual was generated by

a. Randomly assigning alleles with the probabilities given by the MAFs

by (allele count — 2 * MAF)/

b. Standardizing

the

V2MAF (1 — MAF).

allele

counts

we performed a simulation study in
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c. Assessing the genetic liability G as the product of the standardized allele
counts with the effects
d. Assessing the phenotypic liability [ as G + E with E randomly drawn from
N(0,1— h?)
e. Defining disease status y =1 for those with [ > T with T the liability
threshold corresponding to a proportion of K cases
Step 2 was repeated until we obtained 2,000 cases, an additional F * 2,000
cases which we labeled as controls, and (1 — F) * 2,000 true controls. The cases
and controls were saved in a single ped-file.
Plink was used to transform the ped-file to a bim-file,2 and GCTA? to estimate the
genetic relationship matrix and to perform cross-product Haseman-Elston
regression with the “--HEreg” option yielding ﬁgcc.
Steps 1-4 were repeated 10 times. The mean of these 10 point-estimates of the
SNP-heritability are displays, as well as their standard error (SE) estimated as
their standard deviation divided by v/10.
The mean fzg was, first, transformed to the liability scale assuming F = 0 (i.e.

~ 20112 ~ ~
with Equation 2, h?z%hgcc ), and second, with Equation 3, h? =
K%(1-K)?
P(1-P)(1-F)?%z2
for unscreened controls, because the actual simulated hlz fall within the

E(Z,CC. Simulation illustrates that Equation 3 appropriately accounts

approximate 95% confidence interval of the mean fllz from simulation (mean +
1.96*SE).
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Legend to Table S3.

We validated the analytical estimations (see Supplemental Methods) of the mean
genetic liabilities E(G) with a simulation study. The heritability h?, phenotypic
correlation between parents p;, the population disease frequency K, and corresponding
threshold T were defined as described in the main text. Hereby, the variance-covariance
matrix of the genetic liabilities of the parents was defined as

hf  phihi
G, Gr) =
X 1) <,01h12h12 hi

with V; = h2V, = h%. Subsequently, the genetic liabilities of the mothers and fathers
were randomly drawn from this bivariate normal distribution. The genetic liabilities of

the first and second sibling were independently defined as G; = %Gm + % Gr + Gresiquats
where Gresiquar represent Mendelian variation and was randomly drawn from the
normal distribution with mean 0 and variation%VG.4 The phenotypes [ of the siblings
were than independently defined as [ = Gg + Eg, with E; randomly drawn from
N(0,1— hlz). To conclude, the genetic liability of the complement c1 of the first sibling
s1 was defined as Gy = Gy, + Gf — Ggq. In this manner, Iy, Gy, lgy, Gsp, G, Gr and Gq
were defined for 108 families. We note that the value of 62(G;) thus simulated was in
line with previous theoretical derivations V; + %pGVG A5 The respective variances,
covariances and means were estimated from this simulation study and were in line with
the theoretically derived values (see Table S3). Simulations were performed in R.%
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Table S4. Heuristic prediction of assessed heritability in trios versus simulation

A A
2 2
Simulation h screened control h? pseudocontrol

parameters Simulation Simulation

K h sib aff p, Mean SE  Pred. hﬂi Mean SE Pred. hﬂf

03 08 Y 0 0.9885 0.0225 0.9864 0.2182 0.0196 0.2331
03 08 N 05 09741 0.0155 0.9833 0.3303 0.0139 0.3221
03 08 Y 05 12126 0.0113 1.2214 0.1452 0.0129 0.1736
01 08 Y 0 0.9888 0.0122 0.9957 0.3613 0.0158 0.3682
01 08 N 05 05418 0.0152 0.9447 0.5001 0.0129 0.5114
01 08 Y 05 1.2115 0.0105 1.1839 0.2822 0.0107 0.2638
0.0108 Y 0 0.9899 0.0069 0.9764 0.4249 0.0073  0.4287
0.01 0.8 N 0.5 0.8810 0.0096 0.8945 0.6054 0.0067 0.6022
00108 Y 05 11072 0.0045 1.0987 0.3135 0.0057  0.2985
03 04 Y 0 0.6153 0.0127 0.5913 0.1397 0.0213  0.1491
03 04 N 05 04643 0.0162 0.4640 0.2154 0.0180 0.1860
03 04 Y 05 0.699 0.0210 0.6957 0.1438 0.0132  0.1362
01 04 Y 0 0.6435 0.0140 0.6340 0.2257 0.0118  0.2391
01 04 N 05 04539 0.0086 0.4591 0.3002 0.0104 0.3043
01 04 Y 05 07240 0.0117 0.7379 0.1998 0.0083 0.2154
00104 Y 0 0.6531 0.0056 0.6445 0.2952 0.0059 0.2824
00104 N 05 04507 0.0075 0.4524 0.3573 0.0043  0.3655
00104 Y 05 07451 0.0057 0.7391 0.2604 0.0093  0.2518

To formally get from the E(G) (Table S3) of cases and controls to the SNP-heritability ﬁlz
that would be assessed is non-trivial, because no normal distribution thresholds exist to
define the pseudocontrols or the probands with an additional affected sibling (which
form a non-random subset of all cases not defined by a specific threshold). ﬁlz was
therefore heuristically derived and validated with a simulation study of individual level
SNP-data. In short, for any baseline disease frequency K, a unique set of T, z, and i can
be found such that K equals P(l > T|l~N(0,1)), z the height of the standard normal
distribution at T, and i = z/K the mean [ of cases, which results in a mean G in cases of
ih?. We numerically inverted this equation in R to find an unique equivalent-K matching
the difference between E(Gease) — E(G(pseudoycontror) - The equivalent- K ,
corresponding equivalent-z and Equation 3 yields the heritability that would be assessed
with Haseman-Elston regression (Pred. fllz), and was validated with simulation study:

1. Following Golan et al,* the MAFs of 10,000 SNPs in full linkage disequilibrium
were randomly sampled from U[0.05,0.5], and the effect sizes were randomly
sampled from N (0, h?/10,000).

2. Anindividual was generated by

a. Randomly assigning alleles with the probabilities given by the MAFs
b. Standardizing the allele counts by (allele count— 2% MAF)/
J2MAF (1 — MAF).
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3.

10.

178

c. Assessing the genetic liability G as the product of the standardized allele
counts with the effects

d. Assessing the phenotypic liability [ as G + E with E randomly drawn from
N(0,1— h?)

e. Defining disease status y =1 for those with [ > T with T the liability
threshold corresponding to a proportion of K cases

Assortative mating p; was simulated following

a. The genotypes and phenotypes of 600 men [,,,,,, and 600 women 1,5 men
were simulated

b. A vector V was simulated as V = p;len + N(0,1 —p?) so that

cor (lpen, V) = cov(lpen, V)/(o-lmeno-V) = coV(lmen Pilmen)/(Loy) =
P/ /aﬁﬂmen +1-pf=p
c. Subsequently, the [, omen Were ordered in line with V thereby ensuring
ot (lmens lwomen) = Pu
For the 600 pair of spouses, families were generated as follows
a. Kid-1 got one random allele from the father and one from the mother for
all of the 10,000 loci. Subsequently, [ and disease status y were generates
as described above.
b. The genetic complement of Kid-1 was formed by the non-transmitted
alleles of the parents
c. Kid-2 was generated as Kid-1
Affected proband (Kid-1) were selected as cases. Depending on the type of
families simulated, we additionally conditioned on yy;4_» = 1.
Unaffected Kid-1's were selected as screened controls.
Step 2-6 were repeated until 2,000 cases and 2,000 screened controls were
collected
Cross-product Haseman-Elston regression yielded the h2,, for case vs screened
controls and case vs pseudocontrols, which were than transformed to the

L L 72 12 KP(1-K)?
liability scale with hf = hj., ami?

Steps 1-8 were repeated 10 times for the different setting of K, h?, and p;. The
mean of these 10 point-estimates of the SNP-heritability are displays, as well as
their standard error (SE) estimated as their standard deviation divided by v10.
The heuristically predicted ﬁlz are within or very close to the ballpark 95%
confidence interval of the mean fllz from simulation (mean * 1.96*SE), which
justifies the use of this heuristic approach for Main Figure 1.
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SUPPLEMENTAL METHODS

1. Derivation of genetic liabilities in trio design

The mean genetic liabilities (breeding values) E(G) and their variances were
subsequently derived for random families (Section 1.1), families with one affected
sibling (Section 1.2), and families with two affected siblings (Section 1.3).
Therefore, variance-covariance matrices were derived for these family’s
phenotypic liabilities and genetic liabilities. The mean genetic liability of screened
controls in the offspring generation was derived in Section 1.4. The analytical
estimates of the mean genetic liabilities and their variances were validated with a
simulation study (Table S3). In Table S4, the derived mean genetic liabilities are
used to heuristically predict the SNP-based heritability that would be assessed
with Haseman Elston-regression, which is again validated with a simulation study.

Consider a complex disease with a population frequency K and heritability h? in
the parental population. Define phenotype [ to represent the underlying liability
for disease with variance V;, = 1 (the choice for V; is arbitrary, but conveniently
set to 1). The variance of genetic liabilities G equals V; = V,h? = h?, while the
environmental variance equals Vy =V, —V; =1—h?. Assuming that the
parents have a phenotypic correlation of p; = 0, the genetic correlation follows
as pg = h?p,; (page 175 of Falconer and Mackay)® and the genetic covariance as

PcVe-

1.1 Variances and covariances of genetic liabilities in random families

Consider families with a mother (m), father (f), first sibling (s1), second sibling
(s2) and the pseudocontrol of the first sibling (interchangeably referred to as the
complement of the first sibling, c1). Their genetic liability values are denoted with
Gm, Gf, Gs1, Gy, respectively. The variance of genetic liabilities in the siblings
equals 02(Gsy) = 0%(Gy) = 02(G,) = 02 G G + %Gf) + Vyesiauar » Where
Vyesiauar Y€Presents Mendelian variation. Bulmer (page 175)* proved that
Vyesiauat = 5 Vo, which gives 0%(Gy) = 0 (5 G ) + 0% (367 ) + 20 (5 G5 G ) +

2 2 2 2 2
éVG =V;+ %pGVG. In addition, Bulmer showed that the variation of non-genetic

effects (E) is not effected by assortative mating, which gives the phenotypic
variation of the siblings as 02(ly;) = 02(ly,) = 0%(ly) = 0%(Gs + ES) =
02(Gs) + 0%(E;) = 0%(Gg) + Vg . Keeping in mind that o(G,E) =0 per
definition, gives o(l,G;) = 02(Gs), as well as d(ly,Ggy) = 0(lsy, Gsy) =

7, 62) = 0 (367 +3 3 Gy +36m) = 0 (56r36r) + 0 (367.56n) +
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1 1 1 1 1 1 . .
o (E Gm,EAf) +o (E Gm'EGm) = EVG + ;pGVG . The variance of the genetic

liabilities in the parents equals 6%(G,,) = 0?(Gf) = V;, and the covariance

between fathers and mother equals O'(Gm, Gf) = p;V;. The covariance between

the siblings and their parents subsequently follows as a(G,,, l) = O'(Gf,ls) =
1 1 1 1

(G, Gs) = 0(Gy, ;) = 0 (G, 3 G + 367 ) = 0 (G, 26y ) + 0 (61,3 G ) =

%VG + %pGVG. For the complement of the first sibling, the following covariances

are found:

o 0(Gerls1) = 9(Gey, Gsy) = 0(G+Gy = Ggp, Gs1) = 0(Gy Gs) +
(G, Gs1) = 0%(Gs1) = Vg + peVs — Vi — %pGVG = %pGVGr and

o 0(Gerlsz) = 0(Gey, Gz) = 0(G+Gy — Gg1, Gsz) = (G Gs2) +
0(Gy, Gsz) — 0(Gs1,Gsz) = Vg + peVi — %VG - %PGVG = %VG + éPGVG;
and

o 0(Ge1,Gp) = 0(Gey, Gr) = 0(Gu+Gs — Ggy, Gf) = 0(Gp, Gf) +
62(Gy) = 0(Gix, Gr) = peVs + Ve — 5 Vs — 2 p6Ve = 3 Ve + 3¢, and
finally

o 0%(Ger) = (G 4Gy — Gsy) = 0% (G + G —3 Gy — 2 Gy —

1 1 1
Gresiauat) = 0% (5 Gmi3 Gr ) + (=1)20% Gresiaua) = Vo +3P6Vs

By this, all element were derived of ¥.(Is1, Gs1, Lsz, Gsz) G, Gf, G¢1), the 7x7
variance-covariance  matrix of random families. The means of
ls1, Gs1, Lsz, Gz, Gy, Gr and G4 all equal zero, noting that assortative mating does

not change the mean genetic liability, because E G Gy + %Gf + Gresidual) =

E(36n) +E (367) + E(Gresiauar), also when o (2 Gy, 2 G;) > 0.

1.2 Variances and covariances of genetic liabilities in families with at least one
affected sibling

Assortative mating increases the variances of the phenotype [ from the parental
to the offspring generation with%pGVG. The increase in V; results in a higher

disease frequency in the offspring generation, because the liability threshold T
remains the same. In order to estimate the reduction in variance in the affected
siblings (assume s1 to be affected), the offspring population was first described in
terms of the standard normal distribution, and than transformed back to the

183



Supplement to Chapter 6

parental scale. The new disease frequency K, follows from P(x >

ffspring
T|x~N(0,m)), and gives the mean phenotypic value of the affected
siblings s1 on the standardized liability scale as i,frspring = Zoffspring/
Koffsprings Where Z,eronring is the height of the standard normal distribution
N(0,1) at threshold Tyfspring With Kofrspring = P(x > Topspring | x~N(0,1)).
Bulmer showed (page 153)* that the reduction of variation in affected siblings on
the standardized liability scale equals Kofrspring = loprspring (lofrspring —
Toffspring), @nd the variance reduction on the parental liability scale thus equals
k = koprspring/ 0% (ls). Tallis showed that given normality of G and [ in the family
members, the new variances and covariances are given by
o(X,Y|sl af fected) = a(X,Y) — ka(X,l;)a(Y,ls;), where X and Y represent
all pairwise combinations of ls;, Gy, L5z, Gsz, G, Gy and Gy.° By this, all element
are defined on(lsl,Gsl,lsz,Gsz,Gm, Gr, Gy | sl affected), the 7x7 variance-
covariance matrix of families with one affected sibling. Given these variances and
covariances, the means were derived as follows.

o E(lglslaff) = iorrepringy o2 (ls)

o E(Gulslaff) ={0%(Gs1)/0?(s)} * E(Lsals1 af f)

o Elglstaff) = (00 l)/0?Us)} * Eslst af f)

o E(Galslaff) ={0(Gs1,Gs2)/0%(Gs1)} * E(Ggls1 aff)

o E(Gnlslaff) = E(Gls1 aff) = {GVe +56Ve) /0 (G)} +
E(Gg|s1 aff), noting that %VG + ipGVG is the part of 2(G,) following

from the parents contribution %Gf + %Gm.

o E(Galslaff) = E(Gulslaff) + E(Gf|s1 aff) — E(Gsls1 aff)

1.3 Variances and covariances of genetic liabilities in families with two affected
siblings

To derive variances and covariances within families with two affected siblings, we
take the estimates of families with one affected sibling as starting point.
However, in order to apply Tallis’ method to account of reduction in variance
when selecting for an affected sibling, G and [ need to be normally distributed in
all family members. The distribution of [ in the first sibling s1 is evidentially non-
normal, because he is affected. Nevertheless, the distributions of G and [ in the
other family members are approximately normally distributed, which was
illustrated by simulation (not shown) and can be intuitively understood as
follows. The first sibling is affected when [, exceeds the threshold T. However,
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because [l , is the sum of G, and Eg, and because G, and Eg, are independent,
the violation of normality in Ggqs1 qff is less than in lg 1 of. In addition, the
covariances between Ggy(s1 45 and G and Lin the other family members are
considerably smaller than 1. Hence, the distribution of G and lin all family
members but sibling s1 are approximately normally distributed. Furthermore,
note that the first and second sibling have equal genetic characteristics when
they are both selected to be affected (except for their covariance with the
complement, but this characteristic is not needed for this study). The variances
and covariances are thus given by

o(X,Y |slaffected &s2 affected) = a(X,Y | sl affected) —
k,o0(X,ls,| sl af fected)a(Y,ls,| s1 af fected),

where X and Y take all pairwise combinations of lg,, Gg,, Gy, Gf and Gq. The
variance reduction k, is derived analoguously as k. The disease frequency in the
second siblings K2 | s1affectea follows from P(x >
T | x~N(E (Ls3|s1 aff),/02(ls;|s1 af fected))) , and gives the mean
phenotypic value of the affected siblings s2 on the standardized liability scale as

isZ | s1affected — Zs2 | s1 affected/Ksz | s1affected » where Zs2 | s1affected is the
height of the standard normal distribution N(0,1) at threshold T, | 51 affectea
with Ko |51 affectea = P(x > Ts2 |51 af fected | x~N(0,1)) . The reduction of
variation in affected second siblings on the standardized liability scale equals

ksz | s1affected — isZ | s1affected (isz |staffected — Is2]|s1 affected) ’ and the
variance reduction on the parental liability scale thus equals k, =
ks |51 arfectea/ 0% (sz2|s1 af fected) . This defines
Z(lsz, Gsz, G, Gr, Geq | s1 & s2 af fected), the 5x5 variance-covariance matrix of
families with two affected siblings (leaving out the first sibling s1). Given this
variance-covariance matrix, the means were derived as:

o E(lylsl&s2aff) = E(l,|slaff) +
isZ | s1 affected\/o-z(lszl s1 affeCted)
* E(Gylsl&s2aff) = E(Gs|slaff)+

{isz | s1 affected\/az(lszl s1 affeCted)} *
0?(Gg,| s1 af fected)/o?(ls,| s1 af fected)
o E(Gplsl1&s2aff) =E(Gs|s1&s2aff) = E(Gf|s1laff)+ 6«

L02(Gnls1 aff) +20(Go Grls1 af Y}/ (02(Gerls1 af )3, with 6 =
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E(Gg,| s1&s2 aff) — E(Gg,| slaff), while noting that
1 1 1
EJZ(GmLSl aff) + EO-(Gm; Gf|51 aff) + EVresidual = O-Z(GSZ|51 aff).
o E(G.l|sl&s2aff) =E(Gylsl&s2aff)+E(Gy|s1&s2aff)—
E(Gs1| s1&s2 aff), where E(Gs1| s1 & s2 aff) = E(Gs,| s1 & s2 aff).

1.4 Genetic liabilities of screened controls

Screened controls were selected from the offspring generation, i.e. after one
generation of assortative mating. In order to apply the useful properties of the
standard normal distribution, the liability scale was inverted to regard controls as
‘cases’, and later transformed back to the original scale of lin the parental
generation. The population frequency of screened controls in the offspring
generation is Kscreened controls = 1- Koffspring: which gives iscreened controls and
Kscreened controls @S described previously in Section 1.2. The variation of genetic
liabilities follows as

Uz(Gscreened controls) = 0'2(65) — {Kscreenea controls/az(ls)} * 0 (ls, G) *

U(ls' Gs) ’ and the mean as E(Gscreened controls) =—1x {az(Gsl)/az(lsl)} *
lscreened controisy 02 (ls), where the term is multiplied by —1 to transform the
mean back to the original parental liability scale of [.
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2. Derivation of a single SNP’s risk allele frequency in trio design

First, the risk allele frequencies were analytically derived for screened controls,
cases, and cases with unaffected parents (‘cases’ and ‘probands’ are used
interchangeably) (Section 2.1). Second, risk allele frequencies were derived for
cases with affected siblings by applying the first set of derived frequencies and by
considering IBD-sharing between cases and their siblings (Section 2.2). Third, all
acquired estimates were applied to estimate risk allele frequencies in
pseudocontrols (Section 2.3). Next we consider the impact of assortative mating
(Section 2.4). To conclude, analytical derivations were validated with a simulation
study (Table S5).

2.1 Risk allele frequencies in screened controls, cases, and cases with
unaffected parents

This Section closely follows the work of Witte et al.” Assume the complex disease
of interest has a population frequency P(D) = K, and the locus of interest has
risk allele B with frequency P(B) = p, and non-risk allele b with frequency
P(b) =1—p =gq. Given Hardy-Weinberg Equilibrium (HWE), the genotype
frequencies are P(bb) = g2, P(Bb) =2pq, and P(BB) =p?. Under a
multiplicative risk model with relative risk of the heterozygote 4, the risk of
disease given genotype P(D|G) can be expressed as P(D|bb) = k;,, P(D|Bb) =
kppA, and P(D|BB) = k,,A?, with k,,, the disease risk in subjects with genotype
bb. The probabilities of genotypes in cases is given by P(G|D) = P(D|G)P(G)/
P(D), that is P(bb|D) = k,,q?/K, P(Bb|D) = k,,A2pq/K, and P(BB|D) =
kp,A2p? /K. Affected individuals, thus, have a risk allele frequency of p.gse =
P(BB|D) +§ P(Bb|D). Analogously, the probabilities of genotypes in unaffected

individuals (i.e., screened controls, sc) are given by p(bb|ND) = (1 — k;;,)q?/
(1—K) , P(BbND) = (1 —kypA)2pq/(1—K) , and P(BBIND) = (1 —
kyp,A3)p?/(1 — K), and they have a risk allele frequency of p;. = P(BB|ND) +
% P(BbIND), and non-risk allele frequency g5 =1 —p,.. The offspring of

unaffected parents will have genotype frequencies P(G | parents unaffected) of
P(bb|pu) = g2, P(Bb|pu) = 2p,.qs., and P(BB|pu) = pZ, noting that HWE is
re-established after one generation. Assuming no correlation between genotype
and family environment, the P(D|G) in offspring of screened controls are equal
to P(D|G) in the baseline population. The probabilities of genotypes in cases
(proband) with unaffected parents, therefore, equal P(bb|D,pu) = k;,,q2%./
P(Dlpu) , P(BbID,pu) = kypA2pscqsc/P(DIpu) , and P(BBID,pu) =
kppA*pZ./P(Dlpw), with P(D|pu) = kypqZ; + kppA2pscqsc + kppA*pi.. Note that
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all can be expressed in terms of p,q =1—p,K,and 1 by realizing that K
= Y P(DIG)P(G) = q%kyp, + 2pqkppA + p2kppA? , and  thus  ky, =
K /(g% + 2pqA + p?2%). To take account of dominance effect, substitute A with
RRpg, and A% with RRyp in the above.

2.2 Risk allele frequencies in proband with an affected sibling
To estimate the risk allele frequency in cases (proband) with affected siblings, the
combined probabilities of genotypes in cases and their siblings is required:

P(bb,bb) P(bb,Bb) P(bb,BB)
P(G,ps0, Gsiy) = P(G,,G,) = | P(Bb,bb) P(Bb,Bb) P(Bb,BB)
P(BB,bb) P(BB,Bb) P(BB,BB)

The rows of P(G,, G,) thus correspond to the three possible genotypes of cases
and the columns to the three possible genotypes of their siblings. P(G,, G;) is the
sum of four matrices: P(G.,G|IBD =0) , P(G.,G,|IBD = 1(b)) ,
P(G,,Gg| IBD = 1(B)), and P(G.,Gg|IBD =2), all weighted by 0.25 =
P(IBD =0) =P(IBD =1)/2=P(BD =2). To illustrate, the three row
elements of P(Gg| G, = Bb,IBD = 1(B)) follow from basic Mendelian reasoning
as P(Gs = bb| G, = Bb,IBD = 1(B)) = 0 * qyr|g.=p» (the probability that the
IDB-allele is b equals 0; the probability that the non-IBD allele is b depends on its
frequency in the non-transmitted alleles from the parents given G, = Bb),
P(Gs = Bb| G, = Bb,IBD = 1(B)) = 1*qurig,=p ,» and P(G;=BB|G, =
Bb,IBD = 1(B)) = 1 * pyr|g,=pp» respectively, where pyric. represents the
frequency of B in the non-transmitted alleles from parents given G, and qyr|, =
1 — ppje, the frequency of b. Note that pyr g, equals pparents When the parental
generation is in HWE, however when the parents are unaffected they are not in
HWE and derivation of pyryc, is slightly more elaborate (described in Appendix A).
When IBD=0, the genotypes G, depend on the distribution of the non-transmitted
genotypes, which is also described in Appendix A. In this manner, the four
matrices P(G,| G, IBD) are defined as:

P(G,| G.,IBD = 0) =
P(NT = bb|G, = bb) P(NT = Bb|G, = bb) P(NT = BB|G, = bb)
P(NT = bb|G, = Bb) P(NT = Bb|G. = Bb) P(NT = BB|G, = Bb)
P(NT = bb|G, = BB) P(NT = Bb|G. = BB) P(NT = BB|G, = BB)
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2qNTIG,=bb  2DPNT|G=bb
P(G,| G.,IBD = 1(b)) = 4qNT|G.=BDb DNT|G.=Bb 0
0 0

(o] [e)
N——

0 0 0
P(Gs| G.,IBD =1(B)) =0 anri6.=Bb  PnrT|G.=BD
0 2qnric.=BB 2DnNT|G.=BB

100
PG| G,i1BD=2)=[0 1 0©
00 1

First, the allele frequency in cases with an affected sibling and random parents (in
HWE) was derived, where py; = p irrespective of G.. Furthermore, define the
diagonal matrix with the genotype probabilities in cases, and the diagonal matrix
with the probabilities on an affected sibling given the siblings genotype as follows

P(G,) = diag(P(G|D)) = diag(P(bb|D), P(Bb|D), P(BB|D)), and
P(S = Affected|G,) = diag(P(D|G)) = diag(P(D|bb), P(D|Bb), P(D|BB))

Now estimate the combined genotype probabilities of cases and their sibling

P(Gc: Gs:AffectedIIBD) = P(Gc) * P(Gsl Gc' IBD) * P(S = AffeCteles)' (Eq 1)
and

P(Gc' Gs:Affected) = ZIBDOIZS * P(Gc: Gs:AffectedllBD)

Because of the ascertainment on cases the elements of P(G,, G,) do not add up
to 1. Hence, P(Gcase, Gs=affectealcase,S = Affected) = P(G,,Gs)/
Y. P(G,, Gg). The rows of

P(Geaser Gs=affectealcase,S = Affected) add up to P(G, = bb|case,S =
Affected) , P(G. = Bbjcase,S = Affected) , and P(G, = BBjcase,S =
Af fected) respectively. This defines the risk allele frequency in cases with an
affected sibling as

Decase | s=affectea = P(G. = BB|case,S = Af fected) +% P(G. = Bb|case,S =
Af fected).
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Second, the allele frequency in cases with an affected sibling and unaffected
parents was derived analoguously but with pyr depending on G, (see Appendix A
in Section 2.5), and with P(G.) = diag(p(G|D, parents unaffected)).

2.3 Risk allele frequencies in pseudocontrols

Pseudo-control (pc) genotypes are the genomic complement genotypes from
both parents not transmitted to their offspring. Allele frequencies in
pseudocontrols depend on the genotypes of the cases selected, on the genotypes
and disease statuses of the siblings and their IBD sharing with the cases. The
genotype probabilities in pseudocontrols P(GPC|IBD, G¢, Gg) were estimated as
follows and the sum of these 4 x 3 x 3 = 36 probabilities for a specific Gy,
weighted by the probabilities of the genotypes in cases and controls and their
IBD-sharing, gives P(Gy).

Define the matrices P(GPC|IBD, G, Gg) which has rows defined by genotypes of
the cases and columns defined by the genotypes of the siblings

P(Gyp|IBD, G, = bb, Gs = bb)  P(Gy|IBD, G = bb,Gs = Bb)  P(Gp,|IBD, G, = bb, G5 = BB)
P(Gp¢|1BD, G, = Bb,Ggs = bb)  P(Gp|IBD, G, = Bb,Gs = Bb)  P(Gp|IBD, G, = Bb,Gs = BB)
P(Gp|1BD, Ge = BB, Gs = bb)  P(Gpc|IBD, G, = BB,Gs = Bb) P(Gy|IBD, G, = BB, Gs = BB)

Given the parental genotype frequencies P(G, = bb), P(G, = Bb) and P(G, =
BB), these 3 (Gpc) * 4 (IBD) = 12 matrices follow from basic Mendelian
reasoning and are displayed in Appendix B (Section 2.6). With these matrices the
values of P(Gy. = bb), P(Gpc = Bb), and P(Gp. = BB) are separately estimated
by

P(Gpc|Ge, G, case, S = Af fected)

= Z 0.25 % P(Ge, Gs=agtected|IBD) © P(Gyc|IBD, G, Gy)
IBD

P(Gpc) = Z P(Gp|Ge, G, case,S = Af fected)

Where o represent the Hadamard product of two matrices (i.e., when A = B o C,
than a;; = b;; * ¢;j). The probabilities P(G,c = bb), P(Gp. = Bb), and P(Gp =
BB) do not add up to 1, because they are defined in terms of the full population.
Therefore, P(Gpc | case, S = Affected) equal P(GIDC)/ZGpC P(Gpc). This yields
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the risk allele frequency in pseudocontrols from cases with affected siblings as
1
Ppc|s=Affected = P(Gpc = BB) + EP(GPC = Bb).

The following variations yield the estimation for the other sets of pseudocontrols.
() To estimate p,. (without conditioning on affected siblings), replace
P(Gg, Gg—pffecteq|IBD) by P(Gg, G4|IBD) by substituting the diagonal matrix
P(S = Affected|G,) in the above for the identity matrixI. (ii) To estimate
Ppc|p=unaffected, adjust the parental genotype probabilities accordingly (no
longer in HWE) and set P(G,.) = diag(p(GID,parents unaffected)). (iii) To
estimated ppycis=affected & P=unaffectea, COMbine the substitutions described in (i)
and (ii).

2.4 Assortative mating

The impact of assortative mating on a single locus is expressed as the non-
random mating fraction a of parents with similar genotypes. The next generation
has the following frequencies®

P(G. = bb| assortative mating parents) = (1 — a)q? + a(q* + %pq),
P(G. = Bb| assortative mating parents) = (1 — a)2pq + apq, and
P(G. = BB| assortative mating parents) = (1 — a)p? + a(p? + %pq),

when the parental generation is in HWE, and with p the parental frequency of B
and q of b. The genotype probabilities of affected siblings are given by
P(G|D, a.m.parents) =

P(D|G)P(G|a.m. parents)/P(D) analoguous to Section 2.1. Substituting these
as P(G.) in Eq 1 in Section 2.2

P(G,, G¢|IBD, a.m.parents) = P(G.) * P(G,| G, IBD) =1,

and following the other steps in Sections 2.1 and 2.2 gives the frequencies of
cases and pseudocontrol of parents with assortative mating (not selecting of
disease-status of parents or siblings). Note that assortative mating changes the
probabilities of the combined genotypes of parents, which is described in
Appendix A (Section 2.5).
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2.5 Appendix A: allele and genotype frequencies of non-transmitted alleles
When the parents are unaffected, they are not in HWE, in which case the non-
transmitted allele and genotype frequencies are dependent on the case’s
(proband’s) genotype G.. These non-transmitted allele and genotype frequencies
are needed to derive the combined probabilities of genotypes in cases and their
sibling P(G,,G;) . (Note that these non-transmitted alleles are not the
pseudocontrols of interest.) Suppose the genotypes in the parents have
frequencies P(G, = bb), P(G, = Bb) and P(G, = BB). The distribution of the
genotypes of pairs of parents with a genotype correlation (non-random mating
fraction) «a is given by

P(Gs = bb, G,, = bb)
P(G; = b&b, G,, = BD)
P(G; = b&b,G,, = BB)
P(G; = B&b, G,, = bb)
P(GratherGmotner) = | P(Gr = B&b, G, = Bb)
P(G; = B&b, G, = BB)
P(G; = BB, G,, = bb)
P(G; = BB, G,, = Bb)
P(G; = BB, G,, = BB)

(1 - a)P(G, = bb)P(G, = bb) + aP(G, = bb)
(1 —a)P(G, = bb)P(G, = Bb)
(1 - a)P(G, = bb)P(G, = BB)
(1 - a)P(G, = Bb)P(G, = bb)

=| (@1 - a)P(G, = Bb)P(G, = Bb) + aP(G, = Bb)
(1 - a)P(G, = Bb)P(G, = BB)
(1 - a)P(G, = BB)P(G, = bb)
(1 — &)P(G, = BB)P(G, = Bb)

(1 - a)P(G, = BB)P(G, = BB) + aP(G, = BB)

The distributions of the genotypes of pairs of parents conditional on their
offspring G, are proportional to the pairwise multiplications of the probability of
these parental genotypes times the probability of getting offspring with G, that is
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ij(Gfatheerotherch = bb) =
P(GratherGmother)*(1 0.5 0 0.5 0.25 0 0 0 0)"
ij(Gfatheerotherch = Bb)

= P(GratherGmother) * (0 0.5 1 0.5 0.5 0.5 1 0.5 0)7
ﬁ(Gfatheerotherlcc = BB)

= P(GratherGmotner) * (0 0 0 0 0.25 0.5 0 0.5 1)7

The probabilities of non-transmitted (NT) genotypes are proportional to the sum
of the combined parental genotypes resulting in this NT genotype, that is

P(NT =bb|G, =bb)=(1 0000 00 0 0)*P(GratherGmother|G: = bb)

P(NT =Bb|G,=bb)=(0 101000 0 0)*P(GratnerGmother|G: = bb)

P(NT =BB|G,=bb)=(1 0000 00 0 0)*P(GratnerGmother|Ge = bb)
P(NT =bb|G,=Bb)=(0 101000 0 0)*P(GrarnerGmother|G: = Bb)
P(NT =Bb|G,=Bb)=(001010 10 0)*P(GratnerGmotner|Gc = Bb)
P(NT =BB|G,=Bb)=(0 000010 10)*P(GrarherGmotner|Ge = BD)
P(NT =bb|G,=BB)=(0 00010 00 0)*P(GrarnerGmother|Gc = BB)
P(NT =Bb|G,=BB)=(0 000010 1 0)*P(GranerGmotner|G. = BB)
P(NT =BB|G,=BB)=(0 000000 0 1)*P(GratnerGmother|Gc. = BB)

Scaling gives the exact probabilities of the NT genotypes: P(NT = bb|G,. = bb) =
B(NT = bb|G, = bb)/ (P(NT = bb|G, = bb) + P(NT = Bb|G, = bb) +

P(NT = BB|G, = bb)) etc. The allele frequencies pyr|g, follow directly from the

NT genotype frequencies.

2.6 Appendix B: pseudocontrol genotypes conditional on IBD, G. and G;
Define the matrices P(GpC|IBD, G, Gy) as

P(Gpe|IBD, G. = bb,Gs = bb)  P(Gp|IBD, G, = bb,Gs = Bb)  P(Gp,|IBD, G, = bb, G5 = BB)
P(Gp|1BD, G, = Bb,Ggs = bb)  P(Gp|IBD, G, = Bb,Gs = Bb)  P(Gy|IBD, G, = Bb,Gs = BB)
P(Gpc|IBD, G, = BB, Gs = bb)  P(Gy|IBD,G. = BB,Gs = Bb) P(Gy|IBD, G, = BB,Gs = BB)

Given the parental genotype frequencies P(G, = bb), P(G, = Bb) and P(G, =
BB), these 3 * 4 = 12 matrices follow from basic Mendelian reasoning. Note
that IBD=0 (between cases and their siblings) indicates that the pseudocontrol
shares both alleles with the sibling; IBD=1 indicates that the pseudocontrol shares
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the non-IBD allele with the sibling; and IBD=2 indicates that the pseudocontrol
and sibling share no alleles. Alleles in the pseudocontrols not shared with the
sibling come from the parents with the probabilities derived in Appendix A
(Section 2.5). The P(GpC|IBD) are thus defined as:

100
P(Gpc=bb|IBD=0):<1 0 0)

1 0 O

qntige=bp 0 0
P(G,. = bb|IBD =b) = | dnrige=sr 0 0

dnric=ee 0 0

qntiG.=pb  AnTiGe=bb O
P(Gpc = bb|IBD =B) =| qnri6.=Bp 9nT|G=BD O
AntiG.=B  AnTiG=BB O

P(G,. = bb|IBD = 2)
P(NT = bb|G, = bb) P(NT = bb|G, = bb) P(NT = bb|G, = bb)
=| P(NT = bb|G. = Bb) P(NT = bb|G. = Bb) P(NT = bb|G, = Bb)
P(NT = bb|G, = BB) P(NT = bb|G, = BB) P(NT = bb|G, = BB)

010
P(G,. =Bb[IBD=0)=(0 1 0)
010

PnT|Ge=bb  ANT|G.=bb  4NT|G.=bb
P(Gpc = Bb|IBD =b) = <PNT|G,_.=Bb ANT|G.=Bb qNT|GC=Bb>
PnT|G.=BB  4NT|G.=BB  4NT|G.=BB

DPnT|G,=bb  PNT|G.=bb  4NT|G.=bb
P(Gpc = Bb|IBD =B) = (pNT|GC=Bb DNT|G.=Bb qNT|Gc=Bb>
PNT|G.=BB  PNT|G.=BB  Y4NT|G.=BB

P(G,. = Bb|IBD = 2)
P(NT = Bb|G, = bb) P(NT = Bb|G, = bb) P(NT = Bb|G, = bb)
=| P(NT = Bb|G. = Bb) P(NT = Bb|G, = Bb) P(NT = Bb|G, = Bb)
P(NT = Bb|G, = BB) P(NT = Bb|G, = BB) P(NT = Bb|G, = BB)
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001
P(G,, =BB|IBD=0)={0 0 1
001

0 Pnrig=bb  DNT|Ge=bb

o

P(G,. = BB|IBD =b) =

DNT|G,=Bb  PNT|G.=Bb
0 Dwnri.=BB PNT|G.=BB

o

0 PnriG.=bD
P(G,. =BB|IBD=B)=(0 0 puric.=n»

0 PwnriG=BB

o

P(G,. = BB|IBD = 2)
P(NT = BB|G, = bb) P(NT = BB|G, = bb) P(NT = BB|G, = bb)
=| P(NT = BB|G. = Bb) P(NT = BB|G, = Bb) P(NT = BB|G, = Bb)
P(NT = BB|G, = BB) P(NT =BB|G, =BB) P(NT = BB|G, = BB)
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Chapter 8

SUMMARY OF THESIS FINDINGS

This thesis aimed to study the complex link between genetic effects and
measured environmental risk factors in major depressive disorder (MDD) in
empirical data, and to explore boundaries of the consequences of two Genome-
Wide Association study (GWAS) designs and assortative mating from a theoretical
perspective. Both genes and environment affect MDD risk, but it remains unclear
whether both act independently, whether they interact, or whether
environmental risk might actually reflect shared genetic effects between MDD
risk and e.g. behavioral traits that might increase environmental stress.

The most studied candidate gene in MDD is the serotonin transporter
gene. The length polymorphism in the promoter region of this gene (5-HTTLPR)
has been hypothesized to influence MDD risk, because an important group of
antidepressant drugs acts on the serotonin transporter. A Science paper by Caspi
et al suggested that this gene mainly exerts its influence when persons had been
exposed to childhood trauma.! In Chapter 2, the 5-HTTLPR polymorphism was
analyzed in 1593 cases and 1411 controls from the Netherlands Study of
Depression and Anxiety (NESDA) and the Netherlands Twin Register (NTR). In
these individuals, four different outcome measures were defined: lifetime MDD,
suicidal MDD, chronic MDD, and course of MDD (chronic versus non-chronic). No
evidence was found for either direct effects of 5-HTTLPR on these outcome
measures or interaction effects between 5-HTTLPR and five environmental risk
factors for MDD: lifetime stressful life-events, recent stressful life-events, sexual
abuse, childhood trauma, and educational attainment (as proxy for social
economic status associated with increased stress).

In Chapter 3, the relation between MDD and educational attainment was
investigated in approximately 25,000 individuals from the Psychiatric Genomics
Consortium (PGC wave 1) with additional Dutch and Estonian data. An increased
risk for MDD was confirmed in individuals with lower educational attainment.
Subsequently, the possible contribution of shared genetic effects to this link was
assessed with three different methods applying data of 884,105 autosomal
common single-nucleotide polymorphisms (SNPs). Firstly, polygenic risk scores
(PRS) based on GWAS results on education attainment in ~120,000 individuals
(EA-PRS) did not affect MDD risk, and PRS based on MDD GWAS results in
~20,000 individuals (MDD-PRS) did not affect EA. Secondly, a non-consistent
weak significant negative genetic correlation was found with bivariate genomic-
relationship-matrix restricted maximum likelihood (GREML). Thirdly, no
concordance was found in either significance or direction of SNP effects across
MDD GWAS and EA GWAS results based on SNP effect concordance analysis
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(SECA). To conclude, these findings indicate that it is unlikely that shared genetic
effects explain a large proportion of the link between MDD risk and lower
education attainment, but a small genetic contribution to this deleterious link
could not be excluded.

Up to 2014, research on gene-by-environment (GxE) interaction in MDD
had mainly focused on candidate genes, such as 5-HTTLPR. However, with the
emergence of MDD cohorts with genome wide SNP data, novel methods were
developed that allowed to tag genome-wide genetic MDD risk with polygenic risk
scores (PRS). In Chapter 4, PRS were constructed in 1645 cases and 340 controls
from NESDA based on discovery results from the large Psychiatric Genomics
Consortium (PGC wave 1). These PRS were found to have an increased impact on
MDD risk in individuals exposed to childhood trauma (CT), which suggested gene-
by-environment interaction on a genome-wide scale. This interaction-effect was
found both as departure from multiplicativity (combined impact of PRS and CT
larger than the product of the individual effects) and as departure from additivity
(combined impact larger than the sum of the individual effects), the latter of
which has been hypothesized to be more plausible from a biological perspective.

In Chapter 5, the interaction between polygenic risk scores (PRS) and
childhood trauma (CT) was further tested in seven cohorts from PGC (wave 2)
with CT information available in 3,024 cases and 2,741 controls. CT had consistent
impact across cohorts, with similar impact in males and females. However, the
interaction effects were heterogeneous with a positive interaction effect in
NESDA (as in Chapter 4), negative interaction effect in the Radiant-UK study, and
no interaction in the other contributing five cohorts, resulting in no overall
evidence for interaction between PRS and CT in MDD. The results from Chapter 5
illustrate the heterogeneity of MDD, and suggest that the results of Chapter 4 can
best be interpreted as a single cohort phenomenon.

The focus was switched from analyzing empirical data to theoretic work in
Chapter 6. Two GWAS study designs applied in the Psychiatric Genomics
Consortium (PGC) were considered with respect to their power of SNP association
analysis and SNP-heritability estimates (proportion of population-variance in
disease-risk attributable to genome-wide common SNPs). First, parent-affected-
offspring trio data are regularly applied in the subgroups of the PGC analyzing
autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder
(ADHD). Trio data are essential to detect de novo mutations, but its use may
results in reduced power in association analysis and underestimation of the SNP-
heritability compared to analyses in case screened-control data. This difference is
attributable to (i) potential oversampling of multiplex families (with more than
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one affected offspring) and to (ii) assortative mating, which describes the
correlation between mating partners in vulnerability for ADHD or ASD. Second,
the use of poorly or unscreened controls for common disorders will result in
decreased power in association analysis and decreased SNP-heritability
estimates. In particular, for MDD with a lifetime prevalence of around 15%, the
anticipated underestimation of the SNP-heritability was analytically derived at
28% when none of the controls would be screened. An updated equation was
provided to properly scale the SNP-heritability when including unscreened
controls (Equation 3 in Chapter 6). When aiming to analyze the polygenic effects
in psychiatric disorders, it is advisable not to use trio data and to properly scale
the SNP-heritability when applying data with unscreened controls.

Research has found significant partner-resemblances for psychiatric
disorders, that is, mating partners are more often concordant in psychiatric
disorder-status than expected by chance. This phenomenon is often referred to
as assortative mating. However, the potential consequences of these partner-
resemblances have not been quantified and have been left implicit despite
available theory in the quantitative genetics literature. Therefore, in Chapter 7,
boundaries were quantified for the anticipated consequences for disorder
prevalence and heritability under various inevitable assumptions. The
consequences are most pronounced when partner-resemblance is attributable to
phenotypic assortment (partner-resemblance driven by the psychiatric trait), and
are reflected in increased population prevalence and heritability in the offspring
generation. From the first generation in which assortative mating takes place, the
consequences add generation after generation to reach equilibrium
asymptotically over generations. Because of this equilibrium, assortative mating
is unlikely to balance the impact of reduced fecundity of psychiatric patients in
the long term, as analytically derived in Chapter 7. Modeling suggests that the
heritability of none of the psychiatric disorders considered is likely to increase
with more than 5% from one generation of assortative mating (or 13% over
several generations). The population prevalence will increase most for rare
disorders with high heritability, such as the prevalence of ASD that might
maximally increase 1.5-fold after one generation of assortative mating (or 2.4-
fold over several generations). While emphasizing the limitations inherent to the
inevitable model assumptions, genetic theory suggests that the consequences of
assortative mating are, at most, modest for the heritability, but may be
considerable for the population prevalence.
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DISCUSSION OF THESIS FINDINGS

GXE interaction research with candidate genes

Over a decade of research on gene-by-environment (GxE) interaction with
candidate genes in major depressive disorder (MDD) has led to contradicting
findings from which a pattern of non-replication has emerged. Chapter 2 of this
thesis further strengthens the pattern of non-replication of the interaction effect
between 5-HTTLPR and childhood trauma presented by Caspi et al.! In addition, a
critical review from Duncan et al suggested that the GxE literature from the
candidate-gene era suffered from publication bias, because 96% of novel GxE
studies yielded significant results compared to only 27% of replication studies,
and because smaller replication studies reported more significant results than the
larger samples.? To conclude, it seems unlikely that the Caspi finding is
generalizable to other cohorts, and there doesn’t appear to be much ground to
further study interaction between childhood trauma and 5-HTTLPR in MDD.

GxE with genome-wide information

Chapter 4 of this thesis describes a positive statistical interaction between
polygenic risk scores and childhood trauma in the Netherlands Study of
Depression and Anxiety.? In the context of the critical review of Duncan et al of
the literature on GxE with candidate genes,? was it worth to publish this novel
finding while based on one cohort only? | think it was, as these analyses had
several marked differences with the candidate gene literature. First, polygenic
risk scores have a significant impact on MDD that is consistent across different
cohorts,*® which contrasts the small impact of 5-HTTLPR on MDD that was found
in a large meta-analyses showing considerable variety across individual cohorts.”
Interaction effects can result in only a small main genetic effect, but this requires
that the effects in different environmental strata balance exactly. Testing for
interaction with polygenic risk scores with confirmed consistent main effects
might be more powerful than testing for interaction with candidate genes with
small inconsistent effects or no main effect at all.® Second, although there were
several different polygenic risk scores that could have been tested, for example
based on a discovery GWAS on schizophrenia instead of MDD, | felt there was one
candidate of most interest: the genome-wide set of polygenic risk scores based
on the largest GWAS for MDD at the time.* This apparent choice contrasted the
many independent candidate genes that were tested contributing to multiple
testing and suggested publication bias in the candidate gene literature.?
Nevertheless, there were of course many environmental risk factors that we
could have tested. Exposure to childhood trauma was chosen as environmental
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risk factor, because this is one of the strongest and most consistent risk factors
with a lifelong impact on MDD risk, which has even been hypothesized to
distinguish a neurobiological distinct subtype of MDD.® Taken all together, | think
that testing for interaction between polygenic risk scores and childhood trauma
in MDD was not only novel, but also an obvious step to take at the time, and |
think the NESDA finding was justifiably published as a single cohort result.
Nevertheless, this single cohort finding confirming polygenic GxE interaction was,
subsequently, not replicated by Mullins et al who found evidence for an opposing
interaction effect.’® Analyses combining data of seven cohorts totaling 5,765
individuals showed no overall evidence for interaction in either direction
(Chapter 5 of this thesis).

Interpreting PRSXCT results

How to interpret the positive interaction effect between polygenic risk scores
(PRS) and childhood trauma found in Chapter 4 with NESDA data, contrasting the
negative interaction effect found by Mullins et al with the Radiant-UK data?'°
Most importantly, these contrasting findings seem to illustrate the genetic
heterogeneity in MDD, which had already been indicated by Lee et al who found
that the genetic coheritability between different MDD cohorts showed more
variety than between e.g. different schizophrenia cohorts.’! In Chapter 5, an
attempt was made to aid further interpretation with a simulation study.
Therefore, several different scenarios of underlying genetic architecture of MDD
and childhood trauma were simulated, followed by comparison of interaction-
effect estimates with results from empirical data, and by comparison of the
patterns of mean PRS in exposed controls, unexposed controls, exposed cases
and unexposed cases. From simulation, the typical pattern seemed that exposed
cases had lower PRS than unexposed cases, and exposed controls had lower PRS
than unexposed controls, explained by the fact that those exposed to childhood
trauma require less polygenic risk to become affected. Notably, this pattern does
not reflect GE-correlation. In the full population, exposed controls are relatively
rare as are unexposed cases. Thus, the mean PRS in all unexposed individuals
shifts towards the mean in controls and the mean PRS in exposed individuals
shifts towards the mean in cases, overall resulting in equal mean PRS in exposed
and unexposed individuals in the full population.

It appeared that the NESDA-findings were unlikely to primarily represent
different directions of SNP effects in exposed and unexposed individuals, because
this would have resulted in a negative interaction-effect attributable to the
discovery GWAS that would have primarily tagged effects in unexposed
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individuals (the prevalence of CT is approximately 0.25). Rather, the NESDA-
findings seemed to best fit the simulated scenario with either decreased
environmental variance or increased genetic variance in exposed individuals,
explaining the increased effect of PRS in exposed individuals. At first sight, the
negative interaction effect in the Radiant-UK study appeared consistent with a
different direction of genetic effects in exposed compared to unexposed
individuals as just discussed. However, the mean PRS in Radiant showed a distinct
pattern with larger PRS in exposed cases than unexposed cases, and larger PRS in
exposed controls than in unexposed controls. This pattern seemed to fit
simulated data with genetic effects impacting on CT (not ruling out difference of
genetic effects, of course). However, this comparison between simulated and
empirical data only provides a rough feeling for the genetic architectures that the
NESDA-findings and Radiant-findings might be compatible with, because
simulation didn’t allow for different genetic architectures between discovery and
target set, and because simulation was based on several inevitable and partly
arbitrary assumptions. In addition, we have to keep in mind that, although
interesting from a theoretical perspective, the heterogeneity across the six
cohorts studied in Chapter 5 does not justify too detailed interpretation.
Nevertheless, | think more insight is obtained by attempting to understand
patterns from PRS interaction-analyses with simulation, than when not
attempting at all. Importantly, non-consistent findings in PRSXCT interaction in
MDD do not suggest that no SNPxCT interaction effects exist in MDD. For
example, if a proportion of 10% of MDD SNPs would be moderated by childhood
trauma, their interaction-effects would likely be diluted in PRS-analyses, while
interaction in 10% of affective SNPs would be a relevant phenomenon to study.

Methodological challenges in GxE interaction analyses

Several papers have described methodological challenges of GXE analyses in twin
studies and candidate gene studies, and these challenges may also apply to tests
for GxE analyses with polygenic risk scores. Purcell discussed gene-environment
(GE) correlation, which describes the impact of genetic variants on environmental
exposure via e.g. personality characteristics, or when considering childhood
trauma, via a link of transmitted genetic variants with personality characteristics
in the parents.’? Purcell explained that increased genetic effects in an
environmental condition could result from moderated genetic effects (GxE), but
also from risk variants being more likely to be present in that environmental
condition as a consequence of GE-correlation. Notably, within NESDA and the
Radiant-UK study, the PRS based on MDD discovery results were correlated to CT.
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Therefore, a simulation study was performed in Chapter 5 to assess the potential
impact of GE-correlation. These simulations indeed confirmed an inflated type |
error rate in the context of GE-correlation, but to a modest extent of 0.075 (with
alpha set at 0.05) for a strong correlation of 0.3 between G and E. This indicates
that the NESDA and Radiant-UK findings are most likely to represent non-spurious
single cohort phenomena.

Apart from GE-correlation, Eaves (2005) showed with simulation that even
when ruling out gene-environment correlation, spurious GxE results can still be
found when e.g. the disorder liability would be non-normally distributed, thereby
reemphasizing the fragile nature of tests for interaction.’ In his work, Eaves did
not provide means to disentangle spurious results from true interaction effects,
but he predicted that interaction effects would be common rather than specific
when they would be attributable to a non-normally distributed disorder liability.
This pattern was not found in the years following 2005, although a considerable
number of GxE studies were conducted.? In 2014, Keller showed that many GxE
studies might have overestimated or underestimated interaction effects by
improperly correcting for covariates. That is, covariates were typically included
only for their main effects whereas their interaction effects ought to also be
included (covariates times G and covariates times E).1* The analyses in Chapter 4
did not comply with these recommendations, but in Chapter 5 the analyses were
corrected also for the interaction effects of the covariates and showed a similar
positive interaction effect within NESDA.

Future perspective on GxE interaction research in MDD

The non-consistent findings in PRSXCT interaction in MDD do not suggest that no
SNPxXCT interaction effects may exist in MDD. However, the question is how to
best test for SNPxCT effects in MDD. The risk for publication bias with candidate
genes (or SNPs) underlines the importance of a hypothesis free approach.?
Assuming that interaction effects, if existing, will be of the same magnitude as
main SNP effects, GWAS samples with CT information of tens of thousands of
cases and controls will likely be needed to reach genome-wide significance.
Alternatively, a two-step approach could be applied to increase power by first
selecting SNPs with e.g. a correlation with CT in the combined case-control
sample and second testing these SNPs for interaction with CT in predicting
MDD.* The increase in power from a two-step approach can be considerably,*
and | think these analyses should be conducted within the context of MDD,
although | wouldn’t be surprised if no consistent interaction effects would be
detected given the large genetic heterogeneity of MDD.!!
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Assessing CT information in additional numbers of MDD cases and controls
will assist SNPXCT research, but also PRSxCT analyses. Notably, the PRS applied in
Chapter 4 and Chapter 5 were based on discovery GWAS results from samples
with unknown mixtures of individuals exposed and unexposed to CT. This
complicates interpretation of results and reduces power of interaction analyses.
It would be preferable to have two distinct discovery GWASs, one exclusively
based on unexposed individual and one exclusively based on exposed individuals.
Unfortunately, current sample sizes did not allow for this approach, but these
analyses might be of particular interest. There is a third possible advantage of
assessing CT information in large numbers of cases and controls: a GWAS in
unexposed individuals (approximately 75% of the original sample depending on
the definition of CT) may provide increased power to detect SNPs associated to
MDD, because unexposed individuals require more genetic risk on average to
become affected.

An important challenge will come from the choice of the environmental
factor to test, a choice for which no hypothesis-free work-around is available. |
have argued that CT is a plausible candidate, because of its strong and lifelong
impact on MDD risk, and because exposure to CT has been hypothesized to
distinguish a neurobiological distinct subgroup of MDD.® However, many other
environmental conditions can also be tested, such as stressful life-events later in
life, socioeconomic status or air pollution, inevitably introducing (hidden)
multiple-testing burden risking false-positive findings. One might argue to adjust
the level of significance according to the number of environmental factors tested,
but this seems an unfeasible approach, in particular when tests for different
environmental factors are presented in different papers. Indeed, a more plausible
approach would be to emphasize the importance of independent replication, and
to regard single-study results as no more than hypothesis forming.

In addition to the challenges with respect to power and choice of
environmental risk factor, research on GxE interaction in MDD is further
complicated and confused by the methodological challenges intrinsic to GxE
testing. A choice needs to be made whether to test for interaction as departure
from multiplicativity or as departure from additivity. Although the latter has been
hypothesized to be more in line with meaningful biological interpretation, most
interaction analyses test for interaction as departure from multiplicativity as
these readily follow from logistic regression. The challenges and potential
methodological pitfalls do not create optimism to test for GxE-interaction in
MDD. However, when a well-replicated GxE interaction effect would be found,
with well-understood biological interpretation with respect to e.g. gene-
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inactivation by methylation, this would be of major importance for understanding
the complex pathophysiology of MDD. Taken all together, | think two-step SNPxE
analyses should be conducted in the short term,*> but | fear that the current MDD
data may present too many challenges to properly test for SNPxE interaction.
Therefore, | recommend that researches who collect samples for GWAS studies
consider to collect environmental information in a uniform manner to prepare for
solid SNPxE testing on a large scale in the years to come. Alternatively, | would
advice researcher to at least facilitate follow-up of study participants and obtain
permission for record linkage.

Depression, educational attainment, and genetic correlation

In Chapter 3, data of approximately 25,000 individuals were applied to test
whether the phenotypic link between lower educational attainment (EA) and
increased MDD risk could be partly attributable to shared genetic effects (or LD
between effective loci on MDD and EA). Therefore, three methods were applied:
bivariate genomic relatedness matrix restricted maximum likelihood (GREML)
analyses, EA polygenic risk scores predicting MDD, MDD polygenic risk score
predicting EA, and SNP effect concordance analysis (SECA). None of these
methods showed consistent evidence for genetic correlation between MDD and
EA, indicating that genetic effects are not expected to explain much of the
phenotypic link between MDD and EA. Notably, these analyses required
considerable computational time, in particular the GREML analyses on the
genomic relatedness matrix including 312,512,500 elements. Since then, a new
method, LD score regression, has been developed illustrating the great progress
in genetic research, because tests for genetic correlation can now be conducted
within one minute with LD score regression based on GWAS summary statistics
only.® Indeed, although the analyses described in Chapter 3 resulted in a paper
on itself in 2014,° the first LD score regression paper in 2015 presented the
genetic correlations between 24 traits, i.e. 276 times the number of genetic
correlation estimates. This study also found no evidence for genetic correlation
between years of education and MDD risk.'® Interestingly, the Social Science
Genetics Consortium recently found a negative genetic correlation between
neuroticism and educational attainment of -0.42 (SE=0.07, p=2.8e-8),'” which
may seem to contrast the finding of Chapter 3. This difference could be
attributable to the more accurate estimation of genetic effects on educational
attainment as sample size has increased from approximately 125,000%8 to
approximately 300,000, and because MDD and neuroticism are closely linked
but not quite the same with genetic correlation estimated at 0.66 (SE=0.09,
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p=2.8e-14)* and at 0.75 (SE=0.027) between depressive symptoms and
neuroticism.?

LD score regression has considerably narrowed the need for bivariate
GREML and PRS analyses when aiming to test for the genetic correlation between
two traits. LD score regression has slightly less power than GREML analyses and is
not feasible when GWAS results are based on a small sample with less than
around 5,000 individuals.'®?* For samples including less than 5,000 individuals,
bivariate GREML and PRS analyses can be considered, given that individual level
genotype data are available. For samples with less than around 3,000 to 4,000
individuals, bivariate GREML may be underpowered,?® and tests for genetic
correlation can then be performed with PRS-analysis, given that adequately
powered discovery GWAS results are available for one of the traits. Notably, in
Chapter 3, the phenotypic link between lower EA and MDD risk was confirmed
with phenotypic data, the analyses of which cannot be replaced with LD score
regression.

Caution is required when testing for genetic correlation with bivariate
GREML for disease-traits, because of concerns raised by Golan et al about
univariate GREML in estimating SNP-heritability in cases-control data.”® In case-
control data, oversampling of cases introduces correlation between genetic and
environmental effects, which violates the assumptions underlying GREML analysis
and results in underestimation of the SNP-heritability. Golan et al advised
applying cross-product Haseman-Elston (HE) regression, which is anticipated to
yield unbiased estimates of the SNP-heritability. Unfortunately, Golan et al did
not address bivariate GREML analyses in the context of case-control data, and |
am not aware of any clear advice in this aspect. However, | would advice caution,
as it seems plausible that case-control data may also result in biased estimates
from bivariate GREML analyses. The proposed method of Golan et al to correct
for covariates does not naturally extend to bivariate analysis. Here, | would advice
a pragmatic approach, which is to present results from both bivariate GREML
analyses and bivariate HE-regression with the residuals of regression of the two
traits of interest on the relevant covariates.

SNP heritability of psychiatric traits

The proportion of variance in disease risk attributable to genotyped SNPs (SNP
heritability) can be assessed with a variety of methods on different types of case-
control data. The methods most often applied are genomic relatedness matrix
restricted maximum likelihood (GREML),?* Haseman-Elston (HE) regression,?®> LD
score regression,?! and, less frequently, the method from So et al.?® SNP

251



Chapter 8

heritability estimates are typically lower than family-study based heritability
estimates,!* a phenomenon referred to as the missing heritability,?” which has
been hypothesized to be attributable to, for example, non-genotyped genetic risk
variants.?® Indeed recently, Yang et al. found negligible missing heritability for
height and BMI when imputing rare genetic variants and applying GREML
stratified for minor allele frequency and linkage disequilibrium.?® For case-control
data, a different method has been proposed that constructs haplotypes from
common SNPs to tag rare variants followed by HE-regression stratified by minor
allele frequency. With this method a haplotype heritably of 0.64 for schizophrenia
was found compared to SNP heritability of 0.32.3° In particular, SNP heritability
estimates from case-control data also depend on the method applied as Golan et
al found that GREML likely underestimates the SNP heritability, because of
correlation between genetic and environmental effects introduced by
oversampling of cases typical in case-control studies.?® Golan et al found that HE
regression is robust against oversampling of cases, and it can be assumed that the
same holds for LD score regression, which provides similar SNP heritability
estimates as HE regression.3!

In Chapter 6, the consequences of study design on SNP heritability
estimates were explored, with a specific focus on the designs applied in the
Psychiatric Genomics Consortium.32 As shown, the SNP heritability is likely
underestimated when analyzing parent-offspring trio data, that is regularly
applied in childhood onset disorders such as autism (ASD) and attention deficit/
hyperactivity disorders (ADHD). In addition, the SNP heritability will be
underestimated when analyzing data of unscreened or poorly screened controls
for common disorders, such as major depressive disorder. An updated equation is
provided for estimating SNP heritability from data with unscreened controls
(Equation 3 in Chapter 6). This equation corrects the expected underestimation
of (1 — Ku)? for a disorder with a population prevalence K, that is studied in a
sample with a proportion of unscreened controls u. Ideally, the SNP heritability
underestimation from trio data would have also been captured in an equation,
but this was considerably more complex theoretically, and found to depend on
(the often unknown) proportion of multiplex families in the study, and the
amount of assortative mating for the disorder under consideration. Nevertheless,
a considerable underestimation of the SNP heritability is expected from trio data
when oversampling multiplex families, or under assortative mating that has been
confirmed for both ADHD and ASD (Chapter 6 Figure 1).23 Thus, | advise against
the use of trio data for SNP heritability estimation, and advice to appropriately
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scale the SNP heritability when applying data with unscreened controls for
common disorders.

Assortative mating

Recently, Nordsletten et al published a comprehensive study indicating a clear
pattern of nonrandom mating within and across eleven major psychiatric
disorders based on over 700,000 psychiatric patients from the Swedish
population.3 Although the partner-resemblances found were pronounced (e.g. a
partner-correlation of 0.47 for autism), Nordsletten et al did not discuss the
expected consequences for disorder prevalence and heritability in the offspring
generation, despite available theory in the quantitative genetics literature. In
Chapter 7, upper boundaries were explored of the consequences of assortative
mating for psychiatric traits by applying quantitative genetic models. First of all,
the correlation estimates of Nordsletten et al were found to likely overestimate
the correlations in the full population, because they analyzed a study sample with
oversampling of cases. For example, the partner-correlation in the full population
for autism was approximated at around 0.28 rather than the 0.47 presented by
Nordsletten et al. Based on several inevitable assumptions discussed in detail in
Chapter 7, the heritability is likely to increase as a consequence of assortative
mating with an upper boundary of around 5% for one generation of assortative
mating and 13% for multiple generations. In addition, the population prevalence
is expected to increase, with a more pronounced impact for strong assortative
mating (p), for disorders with a low population prevalence (K), and high
heritability (h?). For example, a relative increase in population prevalence of
around 50% would be expected for autism (p = 0.28, K = 0.0015, h? = 0.8)
compared to only 0.6% for MDD (p = 0.12, K = 0.15, h? = 0.35) from one
generation of assortative mating. | note that these numbers provide upper
boundaries; when partner-resemblance would, for example, be partly
attributable to social homogamy (partner-resemblance driven by shared
environmental factors) rather than phenotypic assortment (partner-resemblance
driven by the psychiatric trait), the consequences would be considerably less
pronounced. Notably, assortative mating is not expected to affect GWAS results,
because of the small proportion of variance explained by individual loci, as
discussed in Chapter 6.

How can these modeled consequences be interpreted in the context of
empirical data? First, it should be noted that the increase in prevalence is most
pronounced for rare disorders, and a prevalence increase from parental to
offspring generation of e.g. 1.0% to 1.5% would be hard to detect in empirical
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data given the standard errors around these estimates. Second, the presented
consequence provide upper boundaries; when the partner-resemblance found by
Nordsletten et al would e.g. be partly attributable to social homogamy, the
consequences would be considerable less. Third, other factors also affect the
population prevalence, such as reduced fecundity in psychiatric patients, which
might reduce the consequences of assortative mating to some extent. Notably
however, assortative mating and reduced fecundity are not expected to balance
each other in the long term: the consequences of assortative mating
asymptotically reach equilibrium after several generations, whether the
consequences of the reduced fecundity do not. As a general limitation, it should
further be noted that modeling was based on several inevitable assumptions
discussed in detail in Chapter 7. To conclude, the modeled consequences of
assortative mating are difficult to test in empirical data, but suggest that the
consequences of assortative mating are at most modest for the heritability but
may be considerable for the population prevalence of rare psychiatric disorders.
A challenge for future research will be to test what proportion of partner
resemblance can be attributed to phenotypic assortment, secondary assortment,
social homogamy and marital interaction. With the emergence of large-scale
population based samples including genotyped spouse-data, opportunities may
present to address this question.

Next to within disorder partner-resemblance, Nordsletten et al also found
evidence for across-disorder partner-resemblance.®® Phillips et al explained that
such across-disorder partner-resemblance may be attributable to across-disorder
assortment, or to within-disorder assortment in addition to within-person
correlation between both disorders.3* Nordsletten et al did not distinguish
between these two scenarios, but Van Grootheest et al and found that across-
trait partner-resemblance with respect to obsessive-compulsive, anxious and
depressive symptoms was attributable to both across-trait assortment and
within-person correlation.>> Notably, Wesseldijk et al found that across-trait
partner-resemblance was more pronounced in parents of individuals affected
with a psychiatric disorder.3® To model the genetic consequences of across-
disorder partner-resemblance is complex, but it could be hypothesized that this
phenomenon relates to the genetic correlation between different psychiatric
disorders in one way or the other. First, the genetic correlation between
psychiatric disorders can be hypothesized to reflect a general underlying liability
for all (or several) psychiatric disorders,! and individuals might get affected with
e.g. either schizophrenia (SCZ) or bipolar disorder (BIP) based on environmental
effects or disorder-specific genetic effects. When partners would assort based on
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this general psychiatric liability, they might present as affected with different
disorders assessed as across-disorder assortative mating. In other words, this first
hypothesis could be thought of as “across-disorder partner-resemblance as
consequence of assortment based on general psychiatric liability (detected as
genetic correlation).” Nevertheless, another hypothesis might be in line with the
opposite. Suppose that individuals would, indeed, mate based on distinct
liabilities for actual different disorders, such as e.g. SCZ and BIP (now
hypothesized entirely distinct disorders). Under this scenario, the risk alleles of
those with high liability for SCZ would get together with the risk alleles for those
with high liability for BIP, which would result in a correlation in the offspring
generation between the effective loci on SCZ and the effective loci on BIP. This
correlation between effective loci would be detected as genetic correlation
between SCZ and BIP: in other words, the “genetic correlation would be
attributable to across-disorder assortative mating.” | am not aware of methods
suitable to distinguish between these two and other hypotheses, but this might
be a challenge for future research.

Recent successes in psychiatric genetics
Since my PhD trajectory commenced in 2011, research on psychiatric genetics has
made great progress. In 2015, the CONVERGE consortium identified and
replicated two loci associated to MDD in a Chinese female sample comprising
5,337 screened controls and 5,303 cases with recurrent episodes of MDD.%” The
success in this relatively small sample has been hypothesized to be attributable to
the homogeneous cases, inclusion of female only and use of the same genotyping
platform for the whole sample. This approach contrasts the more heterogeneous
PGC sample including 9240 cases and 9519 controls that found no loci.* Another
recent success was obtained with a very different strategy: in a total of 180,281
individuals from European ancestry two loci were linked to depressive symptoms,
which were heterogeneously assessed across contributing cohorts.?® The
relevance of these latter findings for clinical diagnosis of MDD is not certain yet,
but these findings may suggest that including enough individuals balances
phenotypic heterogeneity. More interestingly, at the print of this thesis, the
unpublished PGC-MDD meta-analysis comprising tens of thousands of cases from
European ancestry also detected several of loci associated to MDD.38

The recent successes in genetic research on SCZ might hint to the
successes to be expected in MDD, as research on SCZ seems to be a couple of
years ahead of MDD (possibly owing to SCZ larger heritability,3® more
homogeneous nature,** and smaller population prevalence).*° In 2011, seven loci
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had been detected for SCZ*' (which can roughly be compared to the current stage
of genetic research in MDD), increasing to 108 loci identified in 2014 in a sample
including 36,989 cases.*? Moreover, in 2016 Sekar et al found that the top finding
for SCZ is likely to reflect different levels of complement component 4 (C4) in
individuals with SCZ, while in mice C4 was found to mediate synaptic pruning in
postnatal development.”® The finding of Sekar et al has been considered the first
‘inroad into the molecular etiology of SCZ' that might potentially lead to new
therapies in the future.*

From a more skeptical point of view, one might wonder how much clinical
relevance can be expected from genetic loci individually explaining typically less
than 1% of variance in disease risk. Professor Lander, first author of the Human
Genome Project,* replied to this in a masterclass that | attended in November
2015, and noted that statins are important drugs in preventing cardiovascular
disease that also link to a SNP explaining very little variance; rs12916 in the HMG-
CoA reductase gene explains only 1.6% of variance in cholesterol levels.*® So,
although SNPs that have been (and will be) identified for MDD explain only a very
small proportion of variance in disease risk, they may still point to relevant
biologically pathways that could possibly initiate novel pharmacotherapeutic
development in the coming decades.

Past challenges and the road to the future

At the time of commencement of my PhD, research on genetic effects on MDD
and other psychiatric disorders had been characterized by single study findings
that were not replicated. Findings from linkage studies and candidate gene
studies were inconsistent,*”*® and research on GxE with candidate genes has led
to publication bias without any robust findings.? Naturally, until recently large
scale GWAS studies were not achievable, and in the candidate gene era it was like
seeking a needle in a haystack without the appropriate instrument. This
metaphor is further strengthened by the current knowledge about the small
effect sizes of individual loci, that typically explain less than 1% of variance in
disease risk. The interaction between polygenic MDD risk and childhood trauma
found in Chapter 4 can best be viewed as a single cohort phenomenon given the
non-replication in Chapter 5. Personally, | do not think research on GxE analyses
will be the best way forward for genetic research in MDD in the near future.
Nevertheless, | would advise for GWAS cohorts to collect uniformly
environmental information as much as possible to prepare for solid GxE testing in
the further future.
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Rather, for the next couple of years, | think progress can be expected from
collaboration in the Psychiatric Genomics Consortium, and from the large-scale
population samples, such as UK Biobank?*® and iPSYCH. These population samples
include many MDD cases based on MDD’s high prevalence of around 15%, but are
less suitable for rarer disorders such as schizophrenia with a prevalence of around
1%. The overall motto to me seems to regard single-study findings as hypothesis
forming, and to aim for the largest possible sample size with subsequent
independent replication. For the future, when sufficient causal loci have been
identified, | think attempts can be made to integrate gene-findings with gene-
expression and epigenetic information. This approach may help to improve
classification of MDD and other psychiatric disorders from a more biologically
informed point of view than the current DSM classification. | further anticipate
that the rapidly increasing number of genetic correlation estimates will help to
elucidate the relation between MDD, other disorders, and non-disease traits.

| think these are exciting times for genetic research in MDD. The GWAS
sample size has increased drastically from 5763 cases by 2011*7 to tens of
thousands of cases in 2016, the exciting results of which are anticipated to be
published shortly.3® In parallel, statistical methods were developed to effectively
analyze this vast amount of data. An important method is LD score regression,
which allows analyses of summary statistics to assess the variance explained by
genotyped SNPs,?! and the genetic correlation between any two traits.!® It seems
to me that the skepticism from a couple of years ago about the lack of GWAS
findings,*® which had followed the initial excitement following completion of the
Human Genome Project in 2001,*> has now been replaced again with more
realistic optimism. |, for one, am looking forward to the years to come.
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NEDERLANDSE SAMENVATTING

In het eerste deel van dit proefschrift wordt de complexe relatie tussen
genetische effecten en omgevingsfactoren bij het ontstaan van depressie
onderzocht met behulp van empirische data van proefpersonen. Het is bekend
dat zowel genen als bepaalde omgevingsinviloeden het risico op depressie
verhogen. Het is echter onduidelijk of beide een onafhankelijk effect hebben, of
er sprake is van interactie (een synergistisch effect van genen en omgeving), of
dat de gemeten omgevingsinvloeden mogelijk een genetische basis delen met
depressie (stress uit de omgeving kan samenhangen met
persoonlijkheidskenmerken die genetisch bepaald kunnen zijn). In het tweede
deel van dit proefschrift wordt een meer theoretische benadering gevolgd. De
meeste genetische studies vergelijken mensen met een psychiatrische stoornis
met mensen waarbij de stoornis expliciet is uitgesloten (zogeheten controles).
Sommige studies volgen echter een andere strategie met bijvoorbeeld vader-
moeder-kind trio data, of met data waarbij niet bij iedereen de aan- of
afwezigheid van de psychiatrische stoornis is nagegaan. Deze genetische studies
zullen andere resultaten opleveren, zoals in dit proefschrift wordt onderzocht.
Het is bekend dat partners die samen een kind krijgen op elkaar lijken wat
psychische kwetsbaarheid betreft (in het Engels aangeduide als assortative
mating). In dit proefschrift worden de consequenties hiervan onderzocht op de
erfelijkheid en prevalentie van psychiatrische stoornissen in de generatie van de
kinderen met genetische modellen.

Het serotonine transporter gen is het meest onderzochte kandidaat-gen bij
depressie (kandidaat wil zeggen gebaseerd op een a priori hypothese). Het lijkt
voor de hand te liggen dat het onderscheid tussen de lange en korte variant van
het lengte polymorfisme van dit gen (5-HTTLPR) van belang zou kunnen zijn voor
depressie, omdat een belangrijke groep van antidepressieve medicatie aangrijpt
op de serotonine transporter. Een befaamde studie van Caspi e.a. vond dat 5-
HTTLPR meer effect had op het risico op depressie in personen die jeugdtrauma
hadden doorgemaakt, of, met andere woorden, dat 5-HTTLPR en jeugdtrauma
een synergistisch effect op depressie hadden waarbij hun gecombineerde effect
groter was dan de som van de individuele effecten (gen-omgevingsinteractie).
Het 5-HTTLPR polymorfisme werd onderzocht in Hoofdstuk 2 in 1593 mensen
met depressie en 1411 gezonde controles van de Nederlandse Studie naar
Depressie en Angst (NESDA) en het Nederlands Tweelingen Register (NTR). Vier
uitkomstmaten werden gedefinieerd: depressie, depressie met suicidaliteit,
chronische depressie, en het beloop van depressie (chronisch tegenover niet-
chronisch). Ten aanzien van deze vier uitkomstmaten werden geen aanwijzingen
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gevonden voor een interactie-effect van 5-HTTLPR met jeugdtrauma, maar ook
niet met levenslange stressvolle levensgebeurtenissen, recente stressvolle
levensgebeurtenissen, seksueel misbruik, of opleidingsniveau. Het gen-
omgevingsinteractie effect dat Caspi beschreef werd dus niet gevonden in dit
Nederlandse cohort.

De bekende relatie tussen een verhoogd risico op depressie en lager
opleidingsniveau werd onderzocht in Hoofstuk 3 in data van ongeveer 25.000
deelnemers aan de internationale samenwerking in het Psychiatric Genomics
Consortium, een samenwerking tussen verschillende instituten uit 6 landen (PGC
wave 1). Een verhoogd risico op depressie werd bevestigd in deelnemers met een
lager opleidingsniveau, zoals uit eerder onderzoek al bekend was. Vervolgens
werd onderzocht of deze relatie verklaard kon worden door overeenkomsten
tussen de genetische effecten op depressie en de genetische effecten op lager
opleidingsniveau. Hiervoor werden drie methoden toegepast op informatie over
884.105 'single nucleotide polymorphisms’, zogenaamde SNPs: kleine stukjes DNA
die de genetische verschillen tussen mensen representeren. De eerste methode
maakte gebruik van polygenetische risico scores die het aantal risico SNPs dat
iemand bij zich draagt samenvatten, waarbij in een onafhankelijke data set is
getest wat de risico SNPs zijn. Depressie werd niet voorspeld door de
polygenetische risico scores voor opleidingsniveau (het aantal 'risico' SNPs voor
lager opleidingsniveau), en opleidingsniveau werd niet voorspeld door
polygenetische risico scores voor depressie (het aantal risico SNPs voor
depressie). Met de tweede methode, bivariate genomic-relationship-matrix
restricted maximum likelihood (GREML), werd een inconsistente zwakke
negatieve genetische correlatie gevonden. Met de derde methode, SNP effect
concordance analysis (SECA), werden geen overeenkomsten gevonden tussen
SNP effecten op depressie en SNP effecten op opleidingsniveau. Al met al laten
deze resultaten zien dat het onwaarschijnlijk is dat de relatie tussen depressie en
lager opleidingsniveau verklaard wordt door gedeelde genetische effecten,
alhoewel een kleine gedeelde genetische basis niet kon worden uitgesloten. Dit
betekent dat de relatie tussen lager opleidingsniveau en depressie waarschijnlijk
verklaard wordt doordat een lager opleidingsniveau het risico op depressie
verhoogt, doordat depressie een effect heeft op het behaalde opleidingsniveau,
of doordat een derde factor een invloed heeft op beide.

Tot 2014 had het onderzoek naar gen-omgevingsinteractie in depressie
zich met name gericht op kandidaat-genen, zoals 5-HTTLPR. Maar recent
genetisch onderzoek heeft ons geleerd dat het risico van depressie niet
simpelweg te verklaren is door slechts een paar genen, maar waarschijnlijk door
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kleine effecten van duizenden SNPs. Het ligt daarom voor de hand om gen-
omgevingsinteracties te testen met het gezamenlijke effect van alle gemeten
SNPs tegelijkertijd. In Hoofdstuk 4 werden daarom polygenetische risico scores
geconstrueerd voor 1645 mensen met een depressie en 340 gezonde controles
uit NESDA gebaseerd op de SNP effecten van de Psychiatric Genomics Consortium
(PGC wave 1). Deze polygenetische risico scores hadden een groter effect op
depressie in die individuen die jeugdtrauma hadden meegemaakt. Dit
suggereerde dat gen-omgevingsinteractie optreedt bij veel SNPs. De resultaten
wezen op een multiplicatief interactie-effect (gecombineerde effect groter dan
het product van de afzonderlijke effecten) en ook op een additief interactie-effect
(gecombineerde effect groter dan de som van de afzonderlijke effecten).

Het interactie-effect tussen polygenetische risico scores en jeugdtrauma
werd vervolgens onderzocht in Hoofdstuk 5 met data van 3024 mensen met een
depressie en 2741 gezonde controles uit zeven cohorten van het Psychiatric
Genomics Consortium (PGC wave 2). Jeugdtrauma had een vergelijkbaar en groot
effect op depressie in alle zeven cohorten, en dit effect was vergelijkbaar in
mannen en vrouwen. De gen-omgevingsinteractie effecten waren echter
verschillend in de zeven cohorten: in een cohort (NESDA) werd een positief
interactie-effect gevonden (zoals in Hoofdstuk 4), in een ander cohort een
negatief interactie-effect, en in de overige vijf cohorten werden geen interactie-
effecten gevonden. In zijn geheel genomen is er daarom geen wetenschappelijk
bewijs voor interactie tussen polygenetische risico scores en jeugdtrauma. De
resultaten van Hoofdstuk 5 illustreren de grote verscheidenheid tussen de
verschillende depressie-cohorten, en suggereren dat de bevinding van Hoofdstuk
4 het best geinterpreteerd kan worden als een uniek fenomeen in NESDA.

In het tweede deel van dit proefschrift werd een meer theoretische
benadering gevolgd om methodologische aspecten van genetisch onderzoek te
belichten. Genetisch onderzoek naar psychiatrische stoornissen wordt over het
algemeen gedaan door het vergelijken van mensen met een psychiatrische
stoornis (bijvoorbeeld depressie) met controles die de stoornis in principe niet
hebben. De eigenschappen van de controles verschillen van studie tot studie. In
Hoofdstuk 6 werden twee soorten controles onderzocht met betrekking tot (1)
hun vermogen (power) om een geassocieerde SNP te detecteren en (2) hun
schattingen van de SNP-erfelijkheid (dat deel van variatie in het ziekte risico dat
toe te schrijven is aan genoomwijd gemeten SNPs). Ten eerste, vader-moeder-
kind trio data worden regelmatig gebruikt in de cohorten die bijdragen aan het
onderzoek naar aandachtstekort-hyperactiviteitstoornis (ADHD) en autisme
binnen het Psychiatric Genomics Consortium. Met trio data worden de SNPs van
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een kind met ADHD of autisme vergeleken met de SNPs van zijn of haar ouders.
Trio data zijn noodzakelijk om nieuwe mutaties te vinden (SNPs bij het kind die
niet bij de ouders voorkomen), maar kunnen leiden tot verminderde power en
lagere schattingen van de SNP-erfelijkheid in vergelijking met datasets waarin
mensen met ADHD (of autisme) vergeleken worden met gezonde controles die
geen familie zijn. Deze verminderde power en lagere SNP-erfelijkheid schattingen
zijn toe te schrijven aan (i) de potentiéle over-representatie van families met
meer dan één aangedaan familielid, en (ii) assortative mating (gelijkenis in
psychiatrische kwetsbaarheid tussen partners die samen een kind krijgen). De
tweede onderzochte studieopzet, waarbij een verminderde power en lagere
schatting van de SNP-erfelijkheid verwacht wordt, is die waarbij gebruik gemaakt
wordt van controles waarbij het voorkomen van de psychiatrische aandoening
niet consequent is uitgesloten (niet-gescreende controles). Dit is in het bijzonder
relevant voor studies naar psychiatrische aandoeningen die vaak voorkomen,
omdat die meer mensen met de aandoening onder de controles zullen hebben.
Ter illustratie, voor depressie (wat voorkomt in ongeveer 15% van de populatie)
zal de SNP-erfelijkheid onderschat worden met 28% als bij geen van de controles
depressie is uitgesloten. Dit leidde tot een formule om de schatting van de SNP-
erfelijkheid aan te passen voor het gebruik van niet-gescreende controles
(Formule 3 in Hoofdstuk 6). Als het doel is de polygenetische effecten op een
psychiatrische stoornis te onderzoeken, dan is het advies om geen gebruik te
maken van trio data en om de schatting van de SNP-erfelijkheid aan te passen als
niet-gescreende controles worden gebruikt.

Onderzoek heeft herhaaldelijk laten zien dat partners die samen een kind
krijgen op elkaar lijken wat betreft psychiatrische kwetsbaarheid; dat wil zeggen,
partners van mensen met een psychiatrische stoornis hebben een grotere kans
die aandoening te hebben dan partners van gezonde controles. In het Engels
wordt dit fenomeen vaak aangeduid als assortative mating. De verwachte
consequenties van deze partner-gelijkenis zijn niet berekend, terwijl hier theorie
voor beschikbaar is. In Hoofdstuk 7 werden daarom grenzen berekend voor de
verwachte genetische consequenties van partner-gelijkenis met betrekking tot
psychiatrische kwetsbaarheid. Het is niet bekend hoe het komt dat partners op
elkaar lijken: mogelijk dat mensen het prettig vinden om samen te zijn met
iemand die hen begrijpt en dat daardoor psychiatrische kwetsbaarheid gedeeld
wordt, maar het zou bijvoorbeeld ook zo kunnen zijn dat partners elkaar tegen
komen in de buurt waar ze beide wonen met dezelfde risicofactoren voor het
ontwikkelen van een psychiatrische stoornis. De verwachte consequenties van
partner-gelijkenis hangen af van de oorzaak van deze gelijkenis, en zijn het meest
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uitgesproken als partners elkaar (onbewust) kiezen op basis van een gedeelde
psychiatrische kwetsbaarheid. De verwachte consequenties bestaan uit een
verhoogde erfelijkheid en verhoogde populatie-prevalentie in de generatie van
de kinderen, dat wil zeggen dat er in de generatie van de kinderen meer mensen
met de psychiatrische stoornis verwacht worden. In het bijzonder wordt voor
geen van de psychiatrische aandoeningen verwacht dat de erfelijkheid met meer
dan 5% zal toenemen als gevolg van één generatie met assortative mating (of
13% over meerdere generaties). De populatie-prevalentie zal het meest stijgen
voor aandoeningen die zeldzaam zijn en een hoge erfelijkheid hebben: de
prevalentie van autisme zou bijvoorbeeld tot 1.5 keer kunnen toenemen door
één generatie met assortative mating (of 2.4 keer na meerdere generaties). Een
ander fenomeen van psychiatrische aandoeningen is dat is gebleken dat mensen
met psychiatrische aandoeningen over het algemeen genomen minder kinderen
krijgen dan mensen zonder een psychiatrische aandoeningen: dit fenomeen
wordt selectie genoemd. Selectie verlaagt de populatie-prevalentie in de
generatie van de kinderen, terwijl assortative mating deze verhoogd. In
Hoofdstuk 7 werd berekend dat de gecombineerde effecten van selectie en
assortative mating elkaar gedurende een paar generaties min of meer in
evenwicht kunnen houden, maar dat het effect van selectie op de langere termijn
belangrijker is. Andere theorieén zijn daarom beter toegerust om te verklaren
waarom psychiatrische stoornissen blijven bestaan ondanks selectie (deze
theorieén zijn geen onderwerp van dit proefschrift). Het is belangrijk te
benadrukken dat de beschreven modellen berusten op meerdere onvermijdelijke
aannames. Met deze belangrijke beperking in het achterhoofd, lijken de modellen
uit Hoofdstuk 7 te suggereren dat de consequenties van assortative mating voor
de generatie van de kinderen beperkt zijn met betrekking tot de erfelijkheid,
maar dat de consequenties voor de populatie-prevalentie aanzienlijk kunnen zijn,
in het bijzonder voor zeldzame aandoeningen met een hoge erfelijkheid.

In Hoofdstuk 8 worden de implicaties van dit proefschrift besproken. In
Hoofdstuk 2 werd geen gen-omgevingsinteractie gevonden tussen 5-HTTLPR en
jeugdtrauma in depressie. In combinatie met andere onafhankelijke onderzoeken
lijkt het daarom zeer onwaarschijnlijk dat de befaamde resultaten van Caspi en
collegae te extrapoleren zijn naar anderen cohorten. In Hoofdstuk 3 werd geen
overeenkomst gevonden tussen de genetische effecten op depressie en lager
opleidingsniveau. In  meer recente onafhankelijk onderzoeken wordt
gesuggereerd dat er wel een kleine genetische overeenkomst zou kunnen zijn,
maar de belangrijkste conclusie blijft dat de relatie tussen depressie en lager
opleidingsniveau voor het grootste deel niet bepaald wordt door gedeelde
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genetische effecten. Het meest waarschijnlijk is dat de relatie verklaard wordt
doordat een lager opleidingsniveau het risico op depressie verhoogd, of doordat
een derde factor een invloed heeft op beide. In Hoofdstuk 4 werd gen-
omgevingsinteractie gevonden tussen jeugdtrauma en alle risico SNPs
gezamenlijk (samengevat in polygenetische risico scores), maar dit interactie
effect werd niet gevonden in zes onafhankelijke cohorten (Hoofdstuk 5). De
discrepantie tussen de bevindingen uit Hoofdstuk 4 en de bevindingen uit
Hoofdstuk 5 illustreren het belang van onafhankelijke replicatie van genetische
resultaten, maar illustreren eveneens de kwetsbaarheid van statistische analyses
van interactie effecten. In Hoofdstuk 6 worden aanbevelingen gedaan voor
genetische studies die gestart zullen worden, en worden handvatten gegeven om
resultaten van genetisch onderzoek te interpreteren. In het bijzonder werd een
formule afgeleid om de SNP erfelijkheid te corrigeren als de controles niet
gecontroleerd zijn op de onderzochte stoornis. In Hoofdstuk 7 werden de
verwachte consequenties van partner-gelijkenis (assortative mating) met
betrekking tot psychiatrische kwetsbaarheid op de erfelijkheid en prevalentie van
psychiatrische stoornissen in de generatie van de kinderen onderzocht. Een
uitdaging voor toekomstig onderzoek zal zijn om de oorzaken van deze partner-
gelijkenis te ontrafelen, omdat de verwachte consequenties hier in hoge mate
van afhankelijk zijn. In grote lijnen kan echter verwacht worden dat de
consequenties het meest uitgesproken zullen zijn voor zeldzame aandoeningen
met een hoge erfelijkheid.
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Chapter 8

SUMMARY OF THESIS FINDINGS

This thesis aimed to study the complex link between genetic effects and
measured environmental risk factors in major depressive disorder (MDD) in
empirical data, and to explore boundaries of the consequences of two Genome-
Wide Association study (GWAS) designs and assortative mating from a theoretical
perspective. Both genes and environment affect MDD risk, but it remains unclear
whether both act independently, whether they interact, or whether
environmental risk might actually reflect shared genetic effects between MDD
risk and e.g. behavioral traits that might increase environmental stress.

The most studied candidate gene in MDD is the serotonin transporter
gene. The length polymorphism in the promoter region of this gene (5-HTTLPR)
has been hypothesized to influence MDD risk, because an important group of
antidepressant drugs acts on the serotonin transporter. A Science paper by Caspi
et al suggested that this gene mainly exerts its influence when persons had been
exposed to childhood trauma.! In Chapter 2, the 5-HTTLPR polymorphism was
analyzed in 1593 cases and 1411 controls from the Netherlands Study of
Depression and Anxiety (NESDA) and the Netherlands Twin Register (NTR). In
these individuals, four different outcome measures were defined: lifetime MDD,
suicidal MDD, chronic MDD, and course of MDD (chronic versus non-chronic). No
evidence was found for either direct effects of 5-HTTLPR on these outcome
measures or interaction effects between 5-HTTLPR and five environmental risk
factors for MDD: lifetime stressful life-events, recent stressful life-events, sexual
abuse, childhood trauma, and educational attainment (as proxy for social
economic status associated with increased stress).

In Chapter 3, the relation between MDD and educational attainment was
investigated in approximately 25,000 individuals from the Psychiatric Genomics
Consortium (PGC wave 1) with additional Dutch and Estonian data. An increased
risk for MDD was confirmed in individuals with lower educational attainment.
Subsequently, the possible contribution of shared genetic effects to this link was
assessed with three different methods applying data of 884,105 autosomal
common single-nucleotide polymorphisms (SNPs). Firstly, polygenic risk scores
(PRS) based on GWAS results on education attainment in ~120,000 individuals
(EA-PRS) did not affect MDD risk, and PRS based on MDD GWAS results in
~20,000 individuals (MDD-PRS) did not affect EA. Secondly, a non-consistent
weak significant negative genetic correlation was found with bivariate genomic-
relationship-matrix restricted maximum likelihood (GREML). Thirdly, no
concordance was found in either significance or direction of SNP effects across
MDD GWAS and EA GWAS results based on SNP effect concordance analysis
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(SECA). To conclude, these findings indicate that it is unlikely that shared genetic
effects explain a large proportion of the link between MDD risk and lower
education attainment, but a small genetic contribution to this deleterious link
could not be excluded.

Up to 2014, research on gene-by-environment (GxE) interaction in MDD
had mainly focused on candidate genes, such as 5-HTTLPR. However, with the
emergence of MDD cohorts with genome wide SNP data, novel methods were
developed that allowed to tag genome-wide genetic MDD risk with polygenic risk
scores (PRS). In Chapter 4, PRS were constructed in 1645 cases and 340 controls
from NESDA based on discovery results from the large Psychiatric Genomics
Consortium (PGC wave 1). These PRS were found to have an increased impact on
MDD risk in individuals exposed to childhood trauma (CT), which suggested gene-
by-environment interaction on a genome-wide scale. This interaction-effect was
found both as departure from multiplicativity (combined impact of PRS and CT
larger than the product of the individual effects) and as departure from additivity
(combined impact larger than the sum of the individual effects), the latter of
which has been hypothesized to be more plausible from a biological perspective.

In Chapter 5, the interaction between polygenic risk scores (PRS) and
childhood trauma (CT) was further tested in seven cohorts from PGC (wave 2)
with CT information available in 3,024 cases and 2,741 controls. CT had consistent
impact across cohorts, with similar impact in males and females. However, the
interaction effects were heterogeneous with a positive interaction effect in
NESDA (as in Chapter 4), negative interaction effect in the Radiant-UK study, and
no interaction in the other contributing five cohorts, resulting in no overall
evidence for interaction between PRS and CT in MDD. The results from Chapter 5
illustrate the heterogeneity of MDD, and suggest that the results of Chapter 4 can
best be interpreted as a single cohort phenomenon.

The focus was switched from analyzing empirical data to theoretic work in
Chapter 6. Two GWAS study designs applied in the Psychiatric Genomics
Consortium (PGC) were considered with respect to their power of SNP association
analysis and SNP-heritability estimates (proportion of population-variance in
disease-risk attributable to genome-wide common SNPs). First, parent-affected-
offspring trio data are regularly applied in the subgroups of the PGC analyzing
autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder
(ADHD). Trio data are essential to detect de novo mutations, but its use may
results in reduced power in association analysis and underestimation of the SNP-
heritability compared to analyses in case screened-control data. This difference is
attributable to (i) potential oversampling of multiplex families (with more than
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one affected offspring) and to (ii) assortative mating, which describes the
correlation between mating partners in vulnerability for ADHD or ASD. Second,
the use of poorly or unscreened controls for common disorders will result in
decreased power in association analysis and decreased SNP-heritability
estimates. In particular, for MDD with a lifetime prevalence of around 15%, the
anticipated underestimation of the SNP-heritability was analytically derived at
28% when none of the controls would be screened. An updated equation was
provided to properly scale the SNP-heritability when including unscreened
controls (Equation 3 in Chapter 6). When aiming to analyze the polygenic effects
in psychiatric disorders, it is advisable not to use trio data and to properly scale
the SNP-heritability when applying data with unscreened controls.

Research has found significant partner-resemblances for psychiatric
disorders, that is, mating partners are more often concordant in psychiatric
disorder-status than expected by chance. This phenomenon is often referred to
as assortative mating. However, the potential consequences of these partner-
resemblances have not been quantified and have been left implicit despite
available theory in the quantitative genetics literature. Therefore, in Chapter 7,
boundaries were quantified for the anticipated consequences for disorder
prevalence and heritability under various inevitable assumptions. The
consequences are most pronounced when partner-resemblance is attributable to
phenotypic assortment (partner-resemblance driven by the psychiatric trait), and
are reflected in increased population prevalence and heritability in the offspring
generation. From the first generation in which assortative mating takes place, the
consequences add generation after generation to reach equilibrium
asymptotically over generations. Because of this equilibrium, assortative mating
is unlikely to balance the impact of reduced fecundity of psychiatric patients in
the long term, as analytically derived in Chapter 7. Modeling suggests that the
heritability of none of the psychiatric disorders considered is likely to increase
with more than 5% from one generation of assortative mating (or 13% over
several generations). The population prevalence will increase most for rare
disorders with high heritability, such as the prevalence of ASD that might
maximally increase 1.5-fold after one generation of assortative mating (or 2.4-
fold over several generations). While emphasizing the limitations inherent to the
inevitable model assumptions, genetic theory suggests that the consequences of
assortative mating are, at most, modest for the heritability, but may be
considerable for the population prevalence.
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