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Chapter 1 – Introduction

Background

Psychiatric disorders are burdensome for a significant proportion of children and 

adolescents worldwide, affecting not just them, but also their families and society 

at large. Prevalence rates vary across different disorders like attention deficit 

hyperactivity disorder (ADHD), anxiety and depressive disorders, autism spectrum 

disorders (ASD), conduct disorders among others, but overall rates of up to 13.4% 

have been reported 1, 2. Globally, psychiatric disorders are the leading cause of 

disability in children and youth, accounting for a substantial proportion of all years 

lived with disability (YLDs) and disability-adjusted life years (DALYs), particularly in 

high-income countries 3, 4. 

Course and comorbidity in childhood psychopathology 
Research has shown that a substantial proportion of children and adolescents 

with psychopathology continue to suffer from psychiatric health problems in 

adulthood, and are at increased risk of psychopathology compared to adults 

without a history of psychiatric problems 5-9. This can take the form of homotypic 

continuity, where the same disorder continues across time, or heterotypic 

continuity, where childhood disorders precede other psychopathology 10. 

Longitudinal cohort-based studies have shown that the onset of adult disorders 

including major depressive disorder (MDD), schizophrenia (SCZ) and substance use 

disorders, are often preceded by childhood externalizing problems like attention-

deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) 
11-14 as well as internalizing problems like depression and anxiety 7, 14-16. Further, 

the consequences of psychopathology are not restricted to long-term mental 

health, but appear to extend to socio-economic and physical health outcomes. 

Prospective studies have shown that children with attention problems, obsessive 

compulsive disorder, depression, bipolar and anxiety disorders, went on to have 

reduced educational attainment, increased BMI, and insomnia in later life 5, 6, 8, 17-22. 

Comorbidity, the presence of two or more psychiatric disorders in the same 

individual, is also a common feature of psychopathology in childhood. A common 

example is observed in children with ADHD, who often have comorbid symptoms 

of ODD or conduct disorder (CD). Likewise, internalizing problems like anxiety and 

depression also frequently co-occur with externalizing disorders like ADHD and 

CD, as well as with each other 23. Importantly, individuals with comorbid psychiatric 
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disorders can be at risk of poorer prognosis due to more severe symptoms, as well 

as longer duration of illness, and more functional disability 24. Thus, knowledge 

of the aetiology of childhood psychopathology is crucial in order to understand 

their development and progression across the lifespan, and ultimately to provide 

targets for early intervention.

Childhood psychopathology investigated in this thesis encompasses a range 

of psychiatric disorders and traits that generally manifest across childhood and 

adolescence. Neurodevelopmental disorders like ADHD and ASD, which by 

definition have their onset during the developmental period (infancy, childhood, 

and adolescence), typically start during childhood, while others like depression 

can start anytime across the lifespan including during childhood 25. While most 

disorders can be diagnosed from childhood onwards, it is rare for some, such as 

substance use disorders, bipolar disorders and schizophrenia, to be diagnosed 

before the age of 12. 

Heritability and genetic architecture of childhood psychopathology
Twin-family and adoption studies have shown that psychiatric disorders and traits 

aggregate in families and that this aggregation is mainly due to genetic factors 
26. This also applies to childhood psychiatric traits. The proportion of phenotypic 

variance explained by variation in genetic factors varies by trait, with estimates 

around 40% for anxiety and symptoms of depression, and up to 70% for ADHD 

and ASD 26. The knowledge that psychiatric disorders are heritable has led to new 

questions, including which specific genetic variants are associated with these traits, 

and whether such genetic factors can also explain comorbidity/co-occurrence 

of different traits, as well as stability across development. These are important 

questions to investigate as variation in genetic variants may eventually give rise to 

phenotypic differences between individuals. 

One such variant type are single nucleotide polymorphisms (SNPs) which are the 

result of single base changes in the DNA at specific genomic locations. Genome-

wide association studies (GWAS) allow us to evaluate associations between a 

large number of SNPs and complex traits such as a psychiatric disorders, and have 

been used to show that these disorders are polygenic i.e. they are influenced by 

many genetic variants 27. Importantly, the SNPs investigated in GWAS are typically 

common, i.e. their minor allele is present in more than 1% of the population (minor 
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allele frequency MAF >1%). GWAS have enabled the identification of many genetic 

variants associated with psychiatric traits 27. Moreover, GWAS results also facilitate 

other genetic methodologies that allow further investigation of the aetiology of 

complex traits. These include methods for estimating the proportion of phenotypic 

variance that is explained by measured variants/SNPs (SNP heritability), detecting 

and quantifying to what extent there is genetic overlap across both psychiatric and 

related phenotypes (genetic correlation), as well as testing causal relationships 

between different traits 27-30. These methods can be used to assess and identify the 

contributions of genetic variants to the stability of psychopathology across the 

life span. They have been relatively successful for adult psychiatric traits such as 

schizophrenia and major depression, as well as anthropometric traits like height, 

where hundreds of trait-associated loci have been identified, and numerous 

genetic associations with other traits have been observed 31-33.  

One major finding from GWAS is that effect sizes for common variants associated 

with psychopathology are small, and the amount of variance explained by SNPs, 

i.e. SNP heritability, is substantially lower than what is estimated from twin studies, 

even in very large samples 27. One reason for this is that methods for estimating SNP 

heritability are limited to effects of genetic variants that are captured or measured 

on current DNA genotyping arrays used in GWAS. Commonly used SNP arrays 

contain up to 2,000,000 SNPs, which is substantially less than the 3.2 billion base 

pairs of the human genome. In general, the more SNPs are measured, the more 

variance can be explained 34. This has been shown for traits like schizophrenia where 

along with increasing sample size, an increase in the number of variants tested has 

facilitated the identification of more associated variants 31, 35, 36. Additionally, GWAS 

only study common variants while other types of genetic variants play a role in the 

aetiology of psychiatric disorders and traits as well, including rare variants (SNPs 

with MAF < 0.1%). Rare variants are not measured on genotyping arrays, rather 

whole genome sequence (WGS) or whole exome sequence (WES) data are needed 

to assess their contribution to psychiatric traits 37. Overall, significant advances 

in statistical and molecular genetics methods have enabled attempts to answer 

these questions and facilitate further understanding of the aetiology of psychiatric 

disorders and traits.
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This thesis
On the whole, the genetics of childhood psychopathology is understudied compared 

to adult traits, and many questions remain to be answered. The overarching aim of 

this thesis is to elucidate the role of genetic factors in the occurrence, course, and 

comorbidity of psychiatric symptoms across childhood and adolescence.  The use 

of different methodologies makes it possible to pursue different lines of inquiry 

in order to achieve a well-rounded understanding of the mechanisms underlying 

psychiatric traits and psychopathology across development. As such, I employed 

different statistical genetic methods and approaches with the aim of investigating 

polygenic and environmental contributions to childhood psychopathology, as well 

as gaining insight into their underlying architecture. 

When my PhD began in 2017, the first large GWAS of childhood psychopathology 

(> 55,000 individuals included) had just been published online 38. Since then, more 

studies have been published, with similar aims of identifying genetic variants 

associated with childhood psychiatric traits and the roles they play in aetiology. 

Chapter 2 of this thesis focuses on a timely review of these studies, aimed at a 

clinical readership. Chapters 3 to 5 focus on the role of common genetic factors in 

the continuity of psychopathology and prediction of long-term outcomes. Chapter 

6 compares the effect of common versus rare variants and their underlying 

biological mechanisms in schizophrenia. Finally, chapter 7 contains a discussion of 

findings from the thesis. Each chapter is described further in the chapters outlined 

below.

Chapter 2: Systematic review of molecular genetic studies of child and 
adolescent psychiatric disorders
In this chapter, we performed a systematic review of studies published from 2008 

to 2020 that used statistical genetic methods to evaluate the contribution of 

common genetic variants to psychiatric disorders and traits. We were interested in 

studies that investigated childhood onset or childhood measured psychiatric traits 

with the aim of either 1) identifying common trait-associated genetic variants, 2) 

estimating SNP heritability, 3) investigating genetic overlap between psychiatric 

traits or 4) investigating the contribution of genetic factors to the stability of 

traits across development. Importantly, these studies must have employed one 

or more of four popular techniques including GWAS, polygenic scores (PGS), 

genetic relationship matrix restricted maximum likelihood (GREML), or linkage 
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disequilibrium score regression (LDSC). These methods are described in more 

detail in the chapter.

Chapter 3: Longitudinal analyses of genetic associations between childhood 
psychopathology and adult traits
In this chapter, we investigated genetic associations between repeated measures of 

childhood psychopathology (ADHD symptoms, internalizing problems, and social 

problems), and polygenic scores (PGS) of adult traits including major depression, 

bipolar disorder, subjective wellbeing, neuroticism, insomnia, educational 

attainment, and BMI constructed in almost 43,000 children age 6 to 17 years. We 

performed further analyses to ascertain whether variables including age, type of 

childhood psychopathology, measurement instrument, or rater were moderators 

of the association between the childhood measures and adult trait PGS.

Chapter 4: Multivariate analyses of genetic associations between childhood 
psychopathology and adult traits
We followed up the analyses from chapter 3 by using structural equation modelling 

to investigate the extent to which the genetic associations observed between 

childhood psychopathology and adult traits are explained by correlations between 

the adult trait PGS, as well as correlations between the childhood measures. While 

the analyses in chapter 3 may be described as multivariate due to the analyses of 

multiple traits, the reference to multivariate analyses in this chapter is related to 

the fact that we simultaneously modelled the associations between all phenotypes 

and account for the correlations between them. 

Chapter 5: A genetically informed prediction model for aggression and 
intentional self-harm
In this chapter, we combined genetic, environmental and psychosocial (risk) 

factors to produce a model for the prediction of intentional self-harm, aggression, 

or a combination of both by age 20. In order to determine which factors most 

predict self-harm and aggressive behaviours, we combined genetic predictors 

for aggression, ADHD, ASD, and other psychiatric and anthropometric traits, with 

environmental and behavioural risk factors such as behavioural problem scores, 

social difficulty, substance abuse and measures of family dynamics.
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Chapter 6: Ultra-rare, rare, and common genetic variants implicate negative 
selection and neuronal processes in the aetiology of schizophrenia
In this chapter, we investigated the extent to which common variant and rare variant 

enrichment analyses converge to similar results for schizophrenia. Specifically, we 

assessed the effects of schizophrenia-associated common and (ultra-)rare protein-

truncating variants (PTVs) in multiple gene sets defined for various brain cell types 

and synaptic functions, as well as a gene set of PTV-intolerant (PI) genes. Finally, 

we assessed the extent to which gene sets implicated by (ultra-)rare variants were 

correlated with those implicated by common variants, as this may shed light on 

whether common and rare variants act on these disorders through the same or 

different pathways.

Chapter 7: Summary and general discussion of findings
Here I bring together the findings from the previous chapters, focusing on their 

implications and how they may guide future research in child psychiatric genetics.



2
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Child and Adolescent Psychiatric Disorders. Journal of the American Academy of Child & 

Adolescent Psychiatry.

*Supplementary accessible at https://doi.org/10.1016/j.jaac.2021.03.020 

https://doi.org/10.1016/j.jaac.2021.03.020


18

Chapter 2 – Genetics of early-life psychiatry

ABSTRACT

Objective: We conducted a systematic review of studies using molecular genetics 

and statistical approaches to investigate the role of common genetic variation in 

the development, persistence, and comorbidity of childhood psychiatric traits.

Method: A literature review was performed on the Pubmed database, following 

the Preferred Reporting Items for Meta-Analyses (PRISMA) guidelines. There were 

131 studies meeting inclusion criteria, having investigated at least one type of 

childhood-onset or childhood measured psychiatric disorder or trait with the 

aim of 1) identifying trait-associated common genetic variants, 2) estimating the 

contribution of single nucleotide polymorphisms (SNPs) to the amount of variance 

explained (SNP-heritability), 3) investigating genetic overlap between psychiatric 

traits, or 4) investigating whether stability in traits or the association with adult 

traits is explained by genetic factors. 

Results: The first robustly associated genetic variants have started to be identified 

for childhood psychiatric traits. There were substantial contributions of common 

genetic variants to many traits, with variation in SNP-heritability estimates 

depending on age and raters. Moreover, genetic variants also appeared to explain 

comorbidity as well as stability across a range of psychiatric traits in childhood and 

across the lifespan. 

Conclusion: Common genetic variation plays a substantial role in childhood 

psychiatric traits. Increased sample sizes will lead to increased power to identify 

genetic variants and to understand genetic architecture, which will ultimately 

be beneficial to targeted and prevention strategies. This can be achieved 

by harmonizing phenotype measurements as is already proposed by large 

international consortia and by including the collection of genetic material in every 

study.

Key words: child and adolescent psychiatry, genetic variation, child and adolescent 

genetics, systematic review, molecular genetics
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INTRODUCTION

Over the past decade, the field of psychiatric genetics, including childhood 

psychiatry, has made remarkable progress with many new discoveries. This has 

been facilitated by rapid progress in molecular genetic methods. That psychiatric 

disorders are heritable is well established via twin studies 26, with estimates varying 

from around 70-80% for bipolar disorder and schizophrenia 39, 40, to 40-50% for 

anxiety and depression 41. Estimates for childhood onset and childhood-measured 

phenotypes are equally high. Both attention-deficit/hyperactivity disorder (ADHD) 

and autism spectrum disorder (ASD) have heritability estimates ranging from 60-

90% 42, while estimates for parent-reported childhood anxiety and depressive 

symptoms average around 40% 43, 44. Further, twin studies have been used to show 

that stability and comorbidity among childhood and adolescent psychopathology 

traits are largely genetically mediated 30, 45. 

The most widely applied method to investigate specific genetic variants 

contributing to heritability is genome-wide association (GWA) analysis, in which 

millions of common variants are tested for association with a complex trait 46, 47. 

Initial GWA analyses showed that large sample sizes are required to identify the 

typically small, polygenic effects of trait-associated genetic variants 27, 48. This gave 

rise to extensive collaborations which collated large amounts of data for genetic 

analyses in consortia within the field of genetics, like the EArly Genetics and 

Lifecourse Epidemiology (EAGLE) consortium 49, Psychiatric Genomics Consortium 

(PGC) 50, and The Social Science Genetics Association Consortium (SSGAC). As a 

result, genetic variants have been identified for psychiatric disorders including 

ADHD, ASD, schizophrenia, bipolar disorder, and major depressive disorder (MDD) 
32, 38, 51-54. Furthermore, there has been rapid development of polygenic techniques 
55-57 that investigate the joint effect of genetic variants, in order to assess the 

genetic architecture of traits 27-30. These studies have provided insight into the 

contribution of common genetic variation to heritability estimates, as well as the 

role of genetic factors in the persistence of symptoms over time and in frequently 

occurring comorbidity. 

With increasing sample sizes for childhood phenotypes, it is timely to provide 

an overview of findings on the contribution of common genetic variants to 

child and adolescent psychiatric traits. We were specifically interested in studies 
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that investigate disorders/traits that typically have their onset in childhood 

e.g. neurodevelopmental disorders such as ASD and ADHD, as well as studies 

investigating traits that can be diagnosed across the lifespan, but are measured 

in childhood samples. To this end we systematically reviewed publications using 

genome-wide approaches to identify common genetic variants underlying 

vulnerability to these disorders, and studies using polygenic analyses aiming to 

increase our understanding of factors influencing comorbidity and continuity in 

psychiatric disorders. 

Methods in studies focusing on common genetic variation
Before describing our search strategy and the results of the studies included in 

the review, we provide brief summaries of popular methods applied in molecular 

genetic studies focusing on common genetic variation. Extensive descriptions of 

these methods are provided in recently published reviews, e.g. 27-30. 

Identification of common variants
Genome-wide association studies (GWAS)

GWA analyses test the associations between a trait and genetic markers across the 

genome, usually single base changes in the DNA sequence called single nucleotide 

polymorphisms (SNPs). If a SNP is significantly more common in cases or controls, 

this suggests that the SNP in question is associated with the trait and may play a 

role in its aetiology, conferring risk or protective effects 58, 59. GWAS are not limited 

to dichotomous phenotypes, and quantitatively measured traits such as symptom 

counts can also be investigated using this method. GWAS typically use a significance 

threshold of 5×10−8, based on an approximation of independent markers that are 

tested. This stringent threshold means that large samples are required to identify 

the typically small effects of genetic variants. In order to increase the statistical 

power to detect associated genetic variants for a given trait, multiple independent 

GWA analyses performed across distinct cohorts can be meta-analysed. 

Estimation of SNP heritability
Linkage disequilibrium score regression (LDSC) 

SNP-based heritability indicates what proportion of the variance of a trait is 

explained by measured SNPs, in contrast to broad heritability estimates based 

on twin-family studies. LDSC estimates SNP-based heritability using summary 

data from GWAS 56. As a result of various evolutionary mechanisms, combinations 
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of alleles/SNPs can occur. Linkage disequilibrium (LD) occurs when SNPs are 

non-randomly correlated with other SNPs at different loci i.e. they are more or 

less frequently associated than would be expected at random 60. LDSC uses a 

measure of LD, called LD score, that is estimated for each SNP by taking the sum 

of correlations between that SNP and all nearby SNPs, and is calculated in an 

ancestrally similar reference sample when individual genotype data is unavailable 

for the GWAS sample. The slope from a regression of LD scores on GWAS test 

statistics is proportional to the SNP-based heritability of the trait examined in the 

GWAS. 

Genetic relationship matrix restricted maximum likelihood (GREML)

GREML, as implemented in Genome-wide complex trait analysis (GCTA) software, 

estimates the phenotypic variance explained by all measured SNPs simultaneously 
57. First, a genetic relatedness matrix is built for a sample of unrelated individuals, 

indicating the genetic similarities between all individuals based on their genome-

wide genotypes. Next, using a linear mixed model that includes the genetic 

relatedness matrix, it is calculated to what extent the phenotypic similarity between 

unrelated individuals is due to their genetic similarity 57, 61. 

Because, LD-structure differences between reference and sample data can bias 

LDSC estimates 28, 62, GREML is generally preferred where individual level is 

available. However, in the absence of individual level data, and at very large sample 

sizes, LDSC is more computationally efficient and provides a good alternative 28, 63.

Estimation of shared genetic variance explaining comorbidity or continuity of 
symptoms over time
GREML and LDSC

Both GREML and LDSC can be extended to bivariate analyses that allow the 

estimation of the genetic co-heritability, i.e., the amount of variance shared between 

two traits as a result of genetics, also known as their genetic correlation 64, 65. These 

bivariate analyses can be performed both on non-overlapping samples, as well as on 

traits measured in the same individuals. 

Polygenic risk scores (PRS)

To calculate PRS, a GWAS is conducted in a discovery sample to define risk alleles 

of SNPs and their effect sizes. Next, in an independent target sample, for each 
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individual, a polygenic risk score is calculated by totalling the number of risk alleles 

the individual has (based on the discovery GWAS) and weighting the score by the 

effect sizes of each allele 30. The proportion of risk alleles included in a score are 

generally selected based on thresholds depending on the exact methodology 

used. The PRS represents an individual’s genetic liability for a trait. 

The method was initially developed to test the theory of polygenic inheritance 

when the first GWA studies lacked significant effects. PRS based on a GWAS 

without any or with few significant hits were used to predict the same trait in 

another sample, in this way showing that there was an effect captured in these 

common variants that likely would become significant when sample sizes became 

large enough 55. Presently, they are generally used to assess genetic associations 

between different traits or the same trait measured at different ages. Typically, an 

outcome measure of interest from a target sample (e.g., depression) is regressed 

on their PRS for another trait (e.g., ADHD) to test the association between them. 

A significant result suggests that genetic variants common to both traits underlie 

their association. While LDSC and GREML require tens of thousands of subjects 

for both sets of traits being investigated, PRS work if the discovery sample is 

large but the target sample is small (~2,000 subjects at least). This is particularly 

advantageous when a target trait is rare or expensive to measure. 

METHOD

Search strategy
The literature search was conducted on the PubMed database for studies published 

from 2008 up till the 9th of August 2020, as the most relevant/powerful molecular 

genetic studies are likely to have been published during the last decade. We 

included studies that investigated traits that have their onset in childhood, or that 

investigated traits that can be diagnosed across the lifespan, but were measured 

in childhood or adolescent samples. We followed the Preferred Reporting Items for 

Meta-Analyses (PRISMA) guidelines 66 (Figure 1). Search terms included psychiatry 

and psychopathology outcomes: autis*, depress*, mood, emotion*, affective 

disorder*, internali*, anxi*, worry, fear*, obses*, compul*, OCD, panic, phobi*, inhibit*, 

shy*, withdrawn, behav*, attenti*, inattenti* externalising, externalizing, conduct 

disorder*, ADHD*, hyperactiv*, impuls*, disruptive*, problem*, aggress*, violen*, 
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oppositional, ODD, psychiatr*, and psychopatholog*. Additionally, each search 

included terms that were designed to produce studies using statistical methods to 

analyse molecular genetic data including: GWAS, genome-wide*, association stud*, 

polygenic*, polygenic scores, risk scores, PRS, summary statistics, LD score regress*, LD 

score, GCTA, GREML, LDSR, LDSC. Finally, we included terms designed to limit results 

to childhood and adolescent samples as well as include longitudinal genetic 

studies, using the following terms: child*, adolescen*, teen*, youth, develop*, 

continuity*, stab*, change*. 

Study inclusion criteria

The studies included in this review met the following criteria: published in English 

in a peer-reviewed journal; investigated at least one type of childhood/adolescent-

onset or childhood/adolescent measured psychiatric disorder or trait; aimed to 

1) identify common trait-/disorder-associated genetic variants, 2) estimate the 

contribution of SNPs to the amount of variance explained, 3) investigate whether 

associations between psychiatric traits are explained by genetic factors, or 4) 

investigate whether the stability in traits or the association with adult traits is 

explained by genetic factors. Finally, results published were based on analyses 

using one or more of the following methods: GWAS, LDSC, GREML, and PRS. 
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RESULTS

We identified 131 studies that addressed at least one aim of this review. See Table 

1 for the proportion of them that used each method, address each trait and assess 

each relevant research question.  

Identification of common variants 
Of 50 relevant GWAS studies of childhood psychiatric traits, 15 reported significant 

genetic variants  (Table S1, available online). The most commonly investigated 

phenotypes were ADHD and ASD, and their related continuous measures. Early 

studies were family-based, primarily made up of probands/cases and their unaffected 

parents and/or siblings, with more recent studies additionally including unrelated 

cases and controls. 

Figure 1. PRISMA Flowchart Showing Selection of Studies For Inclusion In Review
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Table 1. Characteristics of Studies Included in Review

Research question addressed Method(s) Number of studies

Variant identification GWAS 50

SNP-heritability estimation GREML, LDSC 34

Genetic contributions to comorbidity
GREML, LDSC 5

PRS 18

Genetic contributions to stability or associations with adult traits 
GREML, LDSC 16

PRS 63

Note: The sum of studies in this table is greater than the total number of studies included in this review due to multiple studies 
addressing multiple aims. This table does not account for studies investigating childhood within-trait analyses as they do 
not strictly fit the aims of the review. GREML = genetic relationship matrix restricted maximum likelihood; GWAS = genome 
wide association study; LDSC = linkage disequilibrium score regression; PRS = polygenic risk score; SNP = single nucleotide 
polymorphisms.

Significant genetic variants were detected for clinical measures of ADHD 38, 67-69, 

ASD 53, 70-72, anorexia nervosa 73, and Tourette syndrome 74, as well as continuous 

measures of ASD-related traits/symptoms such as social communication problems 
75, 76 and restrictive and repetitive behaviours 77, for depressive symptoms 78, and 

for the anhedonia domain of self-reported psychotic-like experiences 79. Only 

results from the recent ASD 53 and ADHD 38 studies were replicated in independent 

samples. The ASD GWAS identified three loci, while the ADHD GWAS identified 

12 loci. The direction of effect for the top loci from both GWAS were replicated in 

five cohorts for ASD, and three for ADHD. Further, all 12 loci from the ADHD GWAS 

were significant in at least one of three replication meta-analyses. It is becoming 

common practice to perform functional annotation analyses of GWAS results in 

order to further clarify the biological basis for genetic associations. Such analyses 

have implicated dopamine regulation and brain development in the aetiology 

of ADHD and ASD respectively 38, 53. It is important to note that the most recent 

findings from the case-control analyses were based on mixed adult and childhood 

samples, likely in a bid to maximise the power to detect significant variants.

SNP heritability
We identified 34 studies that estimated the SNP heritability of childhood 

psychopathology traits using GREML or LDSC (Table S2, available online). Analyses of 

clinically diagnosed traits generally used the same samples in subsequent analyses. 

We thus report estimates from the most recent studies, with estimates from individual 

studies described in Table S2, available online. SNP-based heritability estimates for 
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clinical disorders were based on mixed adult and childhood samples, and were 17%, 

11.8%, and 21% for ADHD 69, ASD 53, and Tourette syndrome 74 respectively, while 

estimates ranged from 11% to 17% for anorexia nervosa depending on the assumed 

lifetime prevalence of the disorder 73 (Figure 2). Age-stratified analyses of childhood 

ADHD 69 and ASD 53 yielded heritability estimates of 19% and 4.9% respectively, 

while sex-stratified ADHD analyses found estimates to be significantly higher in male 

participants (24.7%) than female participants (12.3%) 68.

Figure 2. Comparison of Single Nucleotide Polymorphisms (SNP)- and Twin-based Heritability 

Estimates of Childhood Psychiatric Traits

Note: SNP-based estimates are those reported in the current review, while twin/family-based 
heritability estimates are of similar measures from other studies. Bars represent confidence intervals 
corresponding to α = 0.05, and are plotted for estimates for which they are provided. Twin-based 
heritability estimate sources (specific trait names from publications in brackets): ADHD (hyperkinetic 
disorders) 26, ASD (pervasive developmental disorders) 26, anorexia (eating disorders) 26, externalizing 
problems (conduct disorder) 26, internalizing problems (depression + anxiety + emotional disorder) 
26, overall psychopathology (mental and behavioural disorders) 26, psychotic experiences 80, Tourette 
syndrome (Tic disorders) 26. All twin-based estimates were obtained from Polderman et al 2015 
using the MaTCH tool (http://match.ctglab.nl/#/home), apart from psychotic experiences, which 
was obtained from a recent publication that used similar measures and samples to the SNP-based 
estimates. Abbreviations: ADHD = attention-deficit/hyperactivity disorder;  ASD = autism spectrum 
disorder; SNP = single nucleotide polymorphism.

analyses ranged from 6.48% to 14.5%, and are lower than relevant twin-based heritability estimates 

(Figure 2). 
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Estimates for continuous measures were mostly low and non-significant, likely 

due to a lack of power from individual studies. They also showed more variation 

across age, rater and methodology, compared to clinically measured traits. We 

grouped results from relevant studies according to domains and meta-analysed 

estimates from different traits across these domains, combining estimates 

across age, rater and methods. We identified domains for ADHD symptoms, ASD 

symptoms, externalizing problems, internalizing problems, psychotic experiences, 

and general/overall psychopathology. Meta-analyses results, as well as studies 

and traits included per domain are described in Figures S1-S6, available online. 

Heritability estimates from these meta-analyses ranged from 6.48% to 14.5%, and 

are lower than relevant twin-based heritability estimates (Figure 2).

Aside from directly measured traits, the heritability of latent psychopathology 

factors were also investigated, with estimates of 38% for a general psychopathology 

factor, capturing the correlations between parent, teacher, and self-reported 

measures across multiple domains of internalizing and externalizing problems 81. 

This indicates that it is possible to capture the genetic variation that is related to an 

individual’s broad risk of psychopathology. An estimate of 14% was also reported 

for stable genetic factors affecting emotional problems across childhood and 

adolescence 82, suggesting that while genetic variants may have varying effects 

across development, it is also likely that a set of SNPs exist which have effects 

throughout development. These estimates were meta-analysed in the general 

psychopathology, and internalizing problems domains respectively. 

In summary, estimates for continuous measures showed variation across different 

population-based samples, while estimates for clinical measures were more stable. 

Differences between samples in age, rater, and instrument used to measure the 

continuous outcomes might contribute to the higher variation, although we did 

not detect overall trends of differences between these variables. 

Genetic overlap and stability of traits across time
Genetic factors explaining associations between childhood traits
PRS

Childhood cross-trait analyses were mostly limited to ADHD and ASD (Table S3, 

available online), with studies showing associations between PRS of ADHD and ASD, 

and childhood conduct disorder symptoms, irritability, ADHD symptoms, social 
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communication problems/autistic traits, eating disorder symptoms, anxiety and 

depression, as well as higher symptom levels in latent externalizing, internalizing, 

and general psychopathology factors 67, 83-96 (Table 2). Further, female participants 

with clinical diagnoses of anxiety and depression were found to have higher ADHD 

PRS than male participants 84, while male, but not female participants, with higher 

ADHD PRS had higher autistic trait scores 88. 

GREML/LDSC

As with the PRS analyses, childhood cross-trait analyses using GREML/LDSC 

generally focused on ADHD and ASD, with reported genetic correlations of up to 

0.37 based on clinical samples 53, 97, 98 (Figure 3, Table S4, available online). 

Findings from childhood within-trait analyses do not strictly fit our aims but are 

described in Table S5, available online. Overall, they show associations between 

clinical measures of ADHD and ASD in one sample and clinical or continuous 

measures of the same trait in a different sample, suggesting the same underlying 

construct. Sex-stratified analyses of ADHD also reported a genetic correlation of 

almost 1 between male and female participants, suggesting that the same genetic 

variants underlie ADHD in both sexes 68, while PRS analyses showed higher ADHD 

PRS in female ADHD cases than male cases in some studies 99, 100, but not others 84.

Genetic factors explaining stability in traits, or associations with adult traits
PRS

PRS analyses investigating the role of genetic factors in the continuity of symptoms 

across childhood were limited. Longitudinal analyses of aggression found that PRS 

of aggression were not associated with aggression measured at different ages across 

childhood 101 (Table S6, available online). However this may have been the result of 

a stringent threshold at which SNPs were included in the score, resulting in a lower 

number of SNPs included than usual. We further identified a subset of studies that 

used PRS to investigate developmental trajectories for childhood psychopathology 

(Table S7, available online). They showed that higher ADHD PRS was associated 

with a trajectory of persistent ADHD 102, 103, as well as high-persistent, and increasing 

trajectories for irritability 104. In contrast, aggression PRS was not associated with any 

symptom-defined conduct disorder trajectories, although it moderated the effect of 

interventions on trajectory class membership 105. 
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More studies have focused on the association between adult and childhood traits, 

investigating similar or different symptoms across development, as well as disorder 

trajectories (Table 2, Table S6 and S7, available online). Associations were reported 

between PRS of adult traits including schizophrenia, MDD, OCD, anxiety and 

externalizing disorder, and clinical and continuous measures of the same/similar trait 

in childhood and adolescence 79, 82, 96, 106-117 or in those at high risk 118, 119, although this 

was not always the case 92, 107, 108, 120-126. An exception is bipolar disorder, for which no 

significant associations with similar childhood traits, such as mania were identified 
106. Still, PRS analyses of bipolar disorder performed in relatives of individuals with 

bipolar disorder indicated that, as expected, children and siblings had higher PRS for 

bipolar disorder compared to control participants 127, 128. 

Similarly, there were a myriad of cross-trait associations observed between PRS of 

adult psychiatric traits, and dissimilar childhood traits including ADHD, depression, 

anxiety, OCD, conduct disorder, ASD, internalizing and externalizing problems, 

irritability, psychotic-like experiences, binge eating as well as trajectories for 

increasing, early- and adolescent-onset emotional problems 53, 86, 92, 113, 122, 123, 126, 129-135, 

though significant associations were not observed in all studies for all pairings 67, 

83, 89, 93-95, 102, 108, 115, 123, 132, 136-142 (Table 2, Table S6 and S7, available online). Significant 

findings were generally more common in analyses with schizophrenia PRS, 

compared to other adult traits including bipolar disorder, MDD, anxiety and OCD. 

Given genetic correlations between schizophrenia and bipolar disorder, findings 

that bipolar disorder PRS were not related to the measured childhood phenotypes 

while schizophrenia scores were, may be related to higher statistical power for 

schizophrenia GWAS compared to bipolar disorder. Schizophrenia was the first 

psychiatric disorder for which samples were large enough to obtain sufficient 

statistical power. Longitudinal analyses further showed associations between 

schizophrenia PRS and internalizing and externalizing problems at different 

ages from age 3 to 16 92, 122, 134, with one report of an increase in the strength of 

association with increasing age 134. Similar longitudinal analyses of depression PRS 

found that associations with childhood psychopathology were not moderated by 

age, rater, or the type of childhood psychopathology, suggesting the existence of 

stable genetic factors that affect multiple traits across the life span 115. 

PRS of ADHD and ASD were differentially associated with adult traits including 

MDD, anxiety, adult ADHD, bipolar disorder schizophrenia, as well as high 

decreasing trajectory for externalizing behaviours 69, 133, 143, 144. ADHD PRS was also 



30

Chapter 2 – Genetics of early-life psychiatry

found to distinguish bipolar disorder cases with childhood ADHD from controls 

without bipolar disorder 145. 

Table 2. Genetic Associations Between Childhood Psychiatric Traits and Other Psychiatric Traits 
Using Polygenic risk scores (PRS)

Discovery trait (PRS) Target trait Target sample 
size

Variance 
explained (%)

Study 
references 

Childhood cross-trait
ADHD ASD 1238 0.80 93

ASD symptoms 1921 – 6854 
5653 – 6854 

0.40 – 3.00
0.00 – 0.10

88, 91

91, 100

Eating disorder symptoms 5674 – 5680 
5668

0.10 – 0.13
0.00

87

87

Externalizing problems 394 – 6854 
1902 – 7975

0.41 – 1.99
0.00 – 0.30

91, 92, 94

86, 91, 92

Internalizing problems 6603 – 7975
1843 – 7975

0.20 – 0.42
0.00 – 0.27 

86, 91

86, 91, 92

Irritability 560 – 5584 
4023 – 4960 

0.40 – 1.70
0.01 – 0.20 

83

83

Neurodevelopmental problems 7975
7975

0.90
0.10

86

86

Overall psychopathology 6603 – 7975 0.86 – 1.06 86, 91

ASD ADHD 433 – 1688 0.13 – 0.34 67, 93, 94

ADHD symptoms 1134
394

0.77
0.19

89

94

Childhood onset schizophrenia 233 6.48 96

Externalizing problems 1902 – 7975 0.00 – 0.13 86, 92

Internalizing problems 1843 – 7975 0.00 – 0.05 86, 92

Neurodevelopmental problems 7975 0.00 86

Overall psychopathology 7975 0.00 – 0.10 86

Childhood-adult within

Anxiety disorder Internalizing problems 5703 – 12,220
3755

0.09 – 0.41
0.07

82, 106

106

Bipolar disorder Bipolar disorder symptoms 3808 0.023 106

Depression Internalizing problems 7975 – 42,998 
932 – 7975 

0.17 – 0.30 
0.10 – 0.60 

86, 115

86, 123

Depressive symptoms Depressive symptoms 709 1.50 116

Externalizing disorder Externalizing problems 246 5.00 114
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MDD Depression 466 5.00 112

Depressive symptoms 1450 – 6826 0.20 – 0.73 106, 112

Internalizing problems 5703 – 12,220
1843 – 2202

0.44 – 0.48
0.004 – 0.02 

82, 106

92

OCD OCD symptoms 650 – 3982
650 – 13,400 

0.23 – 2.28
0.01 – 0.85

106, 117

106, 117

Schizophrenia Childhood onset schizophrenia 233 18.52 96

Psychotic symptoms 2096 – 10,098
2133 – 8665

0.08 – 0.70
0.00 – 0.30 

79, 106, 107, 109

79, 107, 121

Tics/Tourette syndrome Tics/Tourette symptoms 1043 – 13,396
4813

0.12 – 0.46
0.16

106, 139

139

Childhood-adult cross-trait

ADHD Anxiety disorder 120,362 0.06 143

Bipolar disorder 120,019 0.04 143

MDD 126,605 0.11 143

Schizophrenia 118,075 0.05 143

ADHD (childhood) ADHD (adult) 22,406 0.41 69

Anorexia nervosa ADHD symptoms 13,451 – 13,455 0.02 – 0.03 87

Anxiety disorder ADHD symptoms 5154 0.02 138

ASD Bipolar disorder 11,810 0.08 133

MDD 16,610 0.12 133

Schizophrenia 17,115 0.04 133

Bipolar disorder ADHD 5422 – 6105 
727 – 6102 

0.18 – 0.88 
0.11 – 0.99 

133, 141

67, 129, 141 

ADHD symptoms 1134 – 42,998 0.00 – 0.16 89, 115, 141

ASD 10,263 0.08 133

ASD symptoms 6128 – 42,998 0.002 – 0.2 115, 141

Borderline personality disorder traits 5246 0.00 141

Externalizing problems 1843 – 6133 0.02 – 4.00 92, 141

Internalizing problems 1843 – 42,998 0.01 – 3.00 92, 115, 141

Overall psychopathology 6111 – 42,998 0.00 – 0.003 115, 141

Prosocial behaviour 6138 0.00 141

Psychotic symptoms 8665
2133 – 10,098 

0.12
0.00 – 0.1 

79

79, 121

Depression ADHD symptoms 42,998 0.25 115

ASD symptoms 42,998 0.16 115

Externalizing problems 932 – 7975 0.00 – 0.40 86, 123

Neurodevelopmental problems 7975 0.00 86

Overall psychopathology 42,998
7975

0.17
0.10 – 0.20

115

86

Depressive symptoms Externalizing problems 709 1.40 116

Table 2: Continued
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Externalizing disorder ADHD symptoms 246 7.00 114

MDD ADHD 1688 0.25 67

ADHD symptoms 1134 0.19 89

Externalizing problems 1843 – 2202 0.01 – 0.08 92

Irritability 560 – 5584 0.01- 0.10 83

Psychotic symptoms 6579 – 10,098
6297 – 8665 

0.08 – 0.11
0.004 – 0.03 

79

79

OCD ADHD symptoms 5154 0.02 138

Tics/Tourette syndrome 461 -1.20 142

OCD+TS OCD 580 1.70 142

Tics/Tourette syndrome 461 0.20 142

Polygenic p factor Overall psychopathology 7026 0.64 – 0.76 146

Schizophrenia ADHD 727
433 – 1688

0.45
0.08 – 0.58 

129

67, 93, 94

ADHD symptoms 394 – 2992 0.00 – 0.83 89, 94, 132

ADHD/ASD 1631 0.30 93

Anxiety disorder 4107 0.50 107

ASD 10,263
1238

0.09
0.2

133

93

ASD symptoms 3978 – 5137 0.10 – 0.43 147

Externalizing problems 1154 – 2202
545 – 7975

0.10 – 1.10
0.00 – 0.15 

92, 123, 132

86, 92, 123, 132

Internalizing problems 1843 – 7975 
932 – 7975 

0.20 – 0.77
0.00 – 0.40 

86, 92, 107

86, 123, 132

Irritability 1358 0.10
0.00

132

132

MDD 4106 0.005 107

Neurodevelopmental problems 7975 0.00 86

OCD 813 3.17 130

Overall psychopathology 7975 0.20 – 0.40 86

Tics/Tourette syndrome ADHD symptoms 6046 0.10 139

ASD symptoms 6019 0.12 139

OCD 580 0.04 142

OCD symptoms 6006 0.11 139

Note: Variance explained from PRS analyses of childhood psychopathology traits, as well as study references for the estimates. 
Estimates are included for studies that reported them. Boldface type indicates estimates from significant association. Similar 
target traits were grouped by domain across different studies and ages (see Table S8, available online, for domain classifications). 
ADHD = attention-deficit/hyperactivity disorder; ASD = autism spectrum disorder; MDD = major depressive disorder; OCD = 
obsessive-compulsive disorder.

Table 2: Continued
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GREML/LDSC

Social communication problems, peer problems and ADHD symptoms showed 

partly stable genetic effects across ages, with correlations between measures 

obtained from age 7 to 17 ranging from 0.1 to 1. Comparable estimates were 

also reported for cross-trait genetic correlations between traits. In all scenarios, 

correlations were highest at adjacent timepoints 76, 85, 148. 

Studies also showed moderate to strong genetic correlations between ADHD, ASD, 

childhood emotional problems, anorexia nervosa, social communication problems, 

and symptoms of psychotic experiences including cognitive disorganization 

and anhedonia, and several adult psychiatric disorders 38, 53, 73, 82, 97, 98, 147, 149-153. The 

largest correlations were observed with depression while correlations with bipolar 

disorder were lower (Figure 3, Table S9, available online).

In summary, although findings regarding genetic overlap were not always 

consistent, they provide evidence of pleiotropic effects in childhood 

psychopathology traits, i.e. the existence of a set of genetic variants influencing 

multiple traits. They also suggest the existence of genetic variants that influence 

psychopathology across development and across multiple psychiatric traits. Non-

significant findings may point to a lack of power in either discovery GWAS, target 

samples, or both, rather than an absence of pleiotropy. It is also important to 

highlight that effect sizes for PRS associations were generally low with variance by 

PRS ranging from 0 to 18%. This is largely a function of the methodology and effect 

sizes are likely to increase with increasing GWAS sample sizes. 

DISCUSSION

In this paper, we review findings from molecular and statistical genetic approaches 

explaining the contribution of common genetic variants to childhood psychiatric 

traits. We highlight recent GWA studies which have identified the first robustly 

associated genetic variants for childhood psychiatric traits. Further, we describe 

results based on genetic techniques including GREML and LDSC, which have 

enabled estimations of the heritability based on measured SNPs, and showed 

substantial contribution of common genetic variants to many childhood psychiatric 

traits. As well as PRS, these methods have been used to study genetic overlap 
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across traits and/or across time, which resulted in abundant genetic associations 

between multiple childhood psychiatric traits, as well as between childhood and 

adult traits, providing evidence for the presence of shared co-heritability. 

On the whole, the identification of trait-associated variants appears to be associated 

with increasing sample sizes (Table S1, available online). Many GWA studies in 

this review that did not identify significant variants were likely underpowered. 

An increase in collaborative efforts and consortia-focused analyses have resulted 

in increasing sample sizes over the last few years, resulting in the identification 

of the first robust genetic risk variants for ASD and ADHD. This suggests similar 

outcomes for other childhood traits in the near future. It is important to highlight 

that large sample sizes for traits including ADHD and ASD were achieved by 

combining childhood and adult samples. This increases the power to detect trait-

associated variants if these disorders are genetically similar/identical in childhood 

and later life. Studies have shown moderate to strong correlations between adult 

depression and anxiety, and childhood emotional problems 82, as well as between 

adult ADHD and childhood ADHD, suggesting similar underlying architecture 69. 

Further, GWAS analyses of ADHD identified significant loci in combined analyses, 

but not in separate analyses of adult, and childhood ADHD. This was despite 

the fact that heritability estimates were slightly higher in the separate samples 

compared to the combined 69, further highlighting the importance of statistical 

power to detect effects. Nevertheless, there is considerable need for well-powered 

childhood-sample GWAS and/or age-stratified analyses as other traits may have 

different architecture across development. Other explanations for the lack of 

significant findings include heterogeneity and measurement error in phenotype 

definitions 154. Heterogeneity may be introduced by the use of different raters and 

instruments to measure the same psychiatric traits. For example, varying degrees of 

concordance have been reported for measures of aggression depending on rater, 

and item content of available measures 155, 156. Rather than combining different 

measurements in order to achieve large sample sizes, more stringent phenotyping 

to obtain more homogeneous phenotypes may contribute to the identification of 

associated variants and SNP-based heritability 154, 155. Results from GWAS can also be 

informative in understanding the underlying genetic architecture and biological 

mechanisms of childhood psychiatric traits and the identification of genome-wide 

significant hits is an important first step this, as observed by the implication of 

dopamine regulation in ADHD 38. Further, ADHD GWAS results have been utilized 



36

Chapter 2 – Genetics of early-life psychiatry

to investigate potential genes and pathways that can be targeted by existing 

drugs 157. This study implicated signal transduction and cell adhesion as potential 

treatment targets, and future studies for other childhood psychiatric disorders may 

provide potential novel avenues for treatment as well. 

For all traits considered in this review, SNP-based heritability estimates from LDSC 

and GREML are substantially lower than estimates from twin studies. This is in part 

because both methods are limited to additive effects of causal variants tagged 

by the common SNPs on current DNA genotyping arrays used in GWAS. Analyses 

on BMI and height suggest that the difference between family- and SNP-based 

heritability estimates may be explained by rare variants 158. It is likely that this also 

holds for other complex traits like childhood psychiatric traits. Indeed, increased 

burden of rare and de novo variants have been associated with disorders including 

ASD, ADHD and OCD 159-161, and children carrying specific pathogenic/disorder-

associated CNVs have increased frequency of psychiatric disorders including ASD 

and ADHD, as well as anxiety disorders and oppositional defiant disorders 162, 163. 

Sample sizes are still generally low for such analyses in childhood traits, but may 

increase in future as the cost of sequencing decreases, providing new opportunities 

to broaden our insight on the genetic architecture of these traits.

A major observation of the current review is a range of within- and cross-trait 

associations in childhood psychopathology using both PRS and GREML/LDSC. 

Childhood psychiatric traits were associated with other childhood traits, as well as 

adult disorders including MDD and schizophrenia. Further, modelling of genome-

wide joint architecture of psychiatric disorders identified a factor comprised of 

childhood-onset disorders including ADHD, ASD and Tourette syndrome, as well 

as MDD 97. There was also evidence of a general psychopathology (p) factor 146, 

which has been shown to explain a substantial amount of phenotypic and genetic 

variance across multiple childhood, and adult psychiatric disorders 164, 165. Combined 

with the observed genetic overlap, these findings demonstrate a contribution 

of pleiotropic genetic effects to the development of psychopathology, and may 

suggest shared biological pathways. The findings of cross-trait associations may be 

informative for the validity of current diagnostic practices which define disorders 

in distinct categories based on the symptoms displayed 166. Commonly occurring 

symptom overlap combined with substantial genetic overlap across disorders 
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suggests a spectrum of psychopathology, and thus the need for a re-evaluation of 

current diagnostic categories as they may not be accurate 167, 168. 

Along with pleiotropic effects, recent studies have also provided evidence of 

specific genetic effects contributing to psychopathology. A recent study has 

shown differential genetic and phenotypic associations between ADHD and 

neurodevelopmental, versus externalising or internalizing disorders, after 

accounting for the p factor in a large sample 169. Another study showed that the p 

factor explained considerable variance in childhood psychopathology measures, 

but inclusion of more specific emotional, behavioural and neurodevelopmental 

factors explained even more variance than just the p factor alone. The amount of 

(phenotypic) variance explained by the different factors differed depending on the 

childhood measure. For instance, for ADHD, most of the variance was explained by 

the p factor while variance in anxiety/mood problems were explained more by the 

emotional factor. The strength of associations between PRS of different psychiatric 

traits and these factors also varied depending on the PRS, and whether the 

associations were tested in univariate or multivariate model which included PRS 

of other traits. For example, depression PRS were not independently associated 

with the p factor but were associated with the emotional problems factor, while 

schizophrenia and ADHD PRS were associated with both the p factor and more 

specific neurodevelopmental and emotional problem factors 86, 91. Combined 

with evidence of pleiotropy described above, these results suggest the existence 

of both general as well as specific genetic factors/variants which are involved in 

psychiatric aetiology. Future studies combining multivariate methodology with 

molecular data should focus on investigating and identifying both shared and 

specific genetic variants across childhood traits. 

Some of the observed PRS associations are present at different ages across childhood 

and adolescence 92, 115, 122, 134. This suggests the presence of genetic variants affecting 

psychopathology across the lifetime, not only explaining homotypic continuity of 

the same disorder across time, but also heterotypic continuity, where one disorder 

precedes/predicts another at a later time 10. This may provide opportunities to 

identify children at risk for chronic course early, and provide targeted treatment. 

Although they currently explain too little variance to be clinically valid for individual 

risk prediction, there is potential for PRS to be combined with other risk factors to 

build a more complete picture of risk profiles and eventually improve disorder risk 
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prediction. Schizophrenia PRS have shown improved predictive value of psychosis 

in individuals at high risk 119. Predictive accuracy will likely increase with increasing 

sample sizes of genetic studies, and the inclusion of PRS of correlated traits in multi-

trait analyses has been shown to improve predictive power for ASD and will likely 

show similar results for other traits 53.

We conducted a further search on the bioRxiv and medRxiv servers for relevant 

studies that were not included with the main results, as they are yet to undergo 

peer-review. We identified 17 additional studies initially published on either 

server from March 2019 to September 2020. In these studies, there were no 

genetic variants detected for aggression 155, internalizing symptoms 170, obsessive 

compulsive traits 171, and total childhood problem scores 172, although 6 loci were 

identified in a cross-disorder meta-analysis of ADHD, ASD, OCD and Tourette 

syndrome 173, and 14 in a cross-disorder analyses of MDD and ADHD 174. Reported 

SNP-heritabilities were similarly low to moderate, ranging from 2 to 21% for traits 

including ADHD, obsessive-compulsive traits, aggression, internalizing problems, 

and psychotic symptoms 155, 170-172, 174-177. Again, there was evidence of both within- 

and cross-trait genetic associations 155, 171, 173-185. 

Overall we identified numerous positive findings regarding the genetics of 

childhood psychopathology, particularly relating to cross-trait genetic overlap. 

However, we would be remiss not to address the important issue of publication 

bias in our reporting. Publication bias occurs when results from research influence 

whether or not it is published, such that published studies are skewed in favour of 

those with positive results. While not formally assessed in this review, we cannot 

rule out the possibility that our findings are affected by this phenomenon. In 

addition, while we did not filter on genetic ancestry, there was a clear Eurocentric 

focus on populations investigated, with a handful of studies also investigating East 

Asian populations. Future studies and data collection plans should include samples 

from more diverse ancestry. The accuracy of methods like genetic risk prediction is 

reduced when discovery and target samples are ancestry divergent 186, 187, which 

may preclude the use of genomic medicine in individuals of other ancestries.

The results of this review show that understanding of the genetic architecture of 

childhood psychiatric traits is increasing. Common trait-associated variants are 

starting to be identified, and studies show abundant genetic overlap between 
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multiple psychiatric traits. There remain many challenges to further increase our 

understanding of the genetic architecture of childhood psychiatric traits. Increasing 

sample sizes in diverse ancestries in order to identify more trait-associated variants 

is crucial and may be achieved in a variety of ways. For instance, by collecting 

genetic data in studies that do not have the identification of genetic variants as a 

primary aim, such as clinical trials and randomised controlled trials; this may also 

lead to better prediction of treatment outcomes. Moreover, the harmonization of 

data across studies and study types is crucial, in order to maximise power to detect 

effect 188, 189. Continuation of large-scale collaborative consortia efforts to collect 

longitudinal data beyond what is currently available is also important. Findings 

from genetic studies have potential to impact disease prediction in children at risk, 

allowing for the possibility of earlier interventions which may enable them to have 

a more favourable course.
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ABSTRACT 

Importance    Adult mood disorders are often preceded by behavioral and 

emotional problems in childhood. It is yet unclear what explains the associations 

between childhood psychopathology and adult traits.

Objective    To investigate whether genetic risk for adult mood disorders and 

associated traits is associated with childhood disorders.

Design, Setting, and Participants    This meta-analysis examined data from 7 

ongoing longitudinal birth and childhood cohorts from the UK, the Netherlands, 

Sweden, Norway, and Finland. Starting points of data collection ranged from 

July 1985 to April 2002. Participants were repeatedly assessed for childhood 

psychopathology from ages 6 to 17 years. Data analysis occurred from September 

2017 to May 2019.

Exposures    Individual polygenic scores (PGS) were constructed in children based 

on genome-wide association studies of adult major depression, bipolar disorder, 

subjective well-being, neuroticism, insomnia, educational attainment, and body 

mass index (BMI).

Main Outcomes and Measures    Regression meta-analyses were used to test 

associations between PGS and attention-deficit/hyperactivity disorder (ADHD) 

symptoms and internalizing and social problems measured repeatedly across 

childhood and adolescence and whether these associations depended on 

childhood phenotype, age, and rater.

Results    The sample included 42 998 participants aged 6 to 17 years. Male 

participants varied from 43.0% (1040 of 2417 participants) to 53.1% (2434 of 4583 

participants) by age and across all cohorts. The PGS of adult major depression, 

neuroticism, BMI, and insomnia were positively associated with childhood 

psychopathology (β estimate range, 0.023-0.042 [95% CI, 0.017–0.049]), while 

associations with PGS of subjective well-being and educational attainment were 

negative (β, −0.026 to −0.046 [95% CI, −0.020 to −0.057]). There was no moderation 

of age, type of childhood phenotype, or rater with the associations. The exceptions 

were stronger associations between educational attainment PGS and ADHD 
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compared with internalizing problems (Δβ, 0.0561 [Δ95% CI, 0.0318-0.0804]; ΔSE, 

0.0124) and social problems (Δβ, 0.0528 [Δ95% CI, 0.0282-0.0775]; ΔSE, 0.0126), and 

between BMI PGS and ADHD and social problems (Δβ, −0.0001 [Δ95% CI, −0.0102 

to 0.0100]; ΔSE, 0.0052), compared with internalizing problems (Δβ, −0.0310 

[Δ95% CI, −0.0456 to −0.0164]; ΔSE, 0.0074). Furthermore, the association between 

educational attainment PGS and ADHD increased with age (Δβ, −0.0032 [Δ 95% CI, 

−0.0048 to −0.0017]; ΔSE, 0.0008).

Conclusions and Relevance    Results from this study suggest the existence 

of a set of genetic factors influencing a range of traits across the life span with 

stable associations present throughout childhood. Knowledge of underlying 

mechanisms may affect treatment and long-term outcomes of individuals with 

psychopathology.
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INTRODUCTION

Longitudinal studies indicate that the onset of mood disorders in adulthood, including 

depression and bipolar disorder (BD), is often preceded by childhood problems. 

These include not only internalizing problems, such as depression and anxiety,190, 

191  but also externalizing traits, such as attention-deficit/hyperactivity disorder 

(ADHD) and aggression.12, 192, 193  Moreover, both in prospective and retrospective 

studies, behavioral and emotional problems during childhood and adolescence have 

been associated with other adult outcomes that are associated with adult mood 

disorders, including educational attainment (EA),5, 17, 194, 195  insomnia,18, 196  subjective 

well-being (SWB),197 personality,198-201 and body mass index (BMI; calculated as weight 

in kilograms divided by height in meters squared).202-204 

Both twin/family and molecular genetic studies have reported heritability26, 98, 205 and 

stability44, 82, 206  of psychopathology over time. Studies of BD in high-risk families 

also show that children of parents with BD are susceptible to psychiatric disorders 

and symptoms in childhood,207  adolescence, and early adulthood.208, 209  These 

results suggest that genetic factors may underlie the persistence of symptoms or 

the transition from one disorder to another between childhood and adulthood. 

Polygenic score (PGS) analyses enable the examination of the genetic association 

between adult traits and childhood symptoms of psychopathology.

Polygenic scores are aggregate scores of an individual’s genetic risk for a trait, 

calculated by summing risk alleles from a discovery genome-wide association study 

(GWAS), weighted by their effect sizes.30 For complex (ie, polygenic) traits influenced by 

many genetic variants, PGS summarize genetic risk across loci that are not individually 

significant in a GWAS. A statistically significant association between measured traits 

and PGS based on another trait suggests a shared genetic etiology. Results of studies 

using PGS to investigate the association of childhood psychopathology with mood 

disorders and associated traits vary. Analyses investigating depression and BD PGS 

have found no evidence of associations with emotional and behavior problems 

during childhood and adolescence, although there is evidence of association between 

depression PGS and emotional problems in adulthood.92, 140, 210 Associations between 

PGS of EA and ADHD or attention problems have been more consistent, with multiple 

studies92, 140, 211, 212  showing strong genetic associations between EA and ADHD or 

attention problems in childhood and adolescence.
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The last 2 years have seen ever-larger GWAS for traits, including major 

depression (MD),32, 51  BD,52  EA,213  and BMI,33  consequently increasing accuracy 

of PGS.214  Combined with the substantial increase in individuals genotyped in 

large longitudinal childhood cohorts that assess psychopathology, this provides 

an opportunity to rigorously investigate whether genetic factors underlie the 

associations between childhood psychopathology and adult mood disorders 

and associated nonpsychiatric traits (EA, insomnia, SWB, neuroticism, and BMI) 

and determine whether this association depends on age. Using 7 childhood 

population-based cohorts, we studied 42 998 individuals with repeated measures 

of ADHD symptoms, internalizing, and social problems. We performed meta-

analyses to test whether PGS of adult traits are associated with childhood and 

adolescent psychopathology and whether this association depends on various 

factors, including age, type of psychopathology, type of scale used to measure 

psychopathology, and the informant.

METHODS

Participants and Measures
We obtained self-rated or maternal-rated measures of ADHD symptoms, 

internalizing, and social problems from 7 population-based cohorts (Table 1). 

Data collection was approved by each cohort’s local institutional review or ethics 

board, waiving the need for informed consent for this study. The starting points 

of data collection varied, ranging from July 1985 to April 2002. Data analysis was 

performed from September 2017 to May 2019. Cohort descriptions can be found in 

the eAppendix 2 in the Supplement.

Genotyping and Polygenic Scores
Genotyping and quality control were performed by each cohort, following 

common standards (eAppendix 2 in the  Supplement). In each cohort, PGS were 

constructed for the following adult traits: MD,51 BD,52 SWB,215 neuroticism,215 

insomnia,216 EA,213 and BMI.33 Height33 was included as a control phenotype (eTable 

1 in the  Supplement  contains the GWAS discovery sample size for each trait). To 

avoid overlap between discovery and target samples, summary statistics omitting 

the target cohort or cohorts were used. Analyses were limited to individuals of 

European ancestry.
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Polygenic scores were estimated using LDpred, a method that takes into account 

the level of linkage disequilibrium between measured single-nucleotide variants 

(SNVs; often called single-nucleotide polymorphisms) to avoid inflation of 

effect sizes.217  The method LDpred requires the inclusion of prior probabilities 

corresponding to the fraction of SNVs thought to be causal, which allows for 

testing varying proportions of SNVs associated with the outcome of interest. We 

thus tested a range of priors (0.75, 0.50, 0.30, 0.10, and 0.03) to assess the prior at 

which assessment was optimal. We restricted analyses to common variants, using 

SNV inclusion criteria of minor allele frequency greater than 5% and imputation 

quality of R2 greater than 0.90.

Table 1. Sample characteristics

Cohort Approximate 
age groups

Scale(s) Phenotype(s) 
measured

Rater Sample size

Avon Longitudinal 
Study of Parents 
and Children

7, 10, 12, 
14, 16

Strength and Difficulties 
Questionnaire

ADHD symptoms, 
internalizing problems, 
social problems

Maternal 6502

Child and 
Adolescent Twin 
Study in Sweden

9, 12, 15 Autism-Tics, AD/HD and other 
comorbidities inventory, 
Screen for Child Anxiety 
Related Emotional Disorders, 
Short Mood and Feelings 
Questionnaire, Strength and 
Difficulties Questionnaire

ADHD symptoms, 
internalizing problems, 
social problems

Maternal, 
self

11039

Generation R 6, 10 Achenbach System of 
Empirically Based Assessment 
(Child Behaviour Checklist)

ADHD symptoms, 
internalizing problems, 
social problems

Maternal 2438

Norwegian 
Mother and Child 
Cohort Study

8 Screen for Child Anxiety 
Related Emotional Disorders, 
Short Mood and Feelings 
Questionnaire, Rating Scale for 
Disruptive Behaviour Disorders

ADHD symptoms, 
internalizing problems

Maternal 4583

Northern Finland 
Birth Cohort of 
1986

16 Achenbach System of 
Empirically Based Assessment 
(Youth Self Report)

ADHD symptoms, 
internalizing problems, 
social problems

Self 3409

Netherlands Twin 
Register

7, 10, 12, 
14, 17

Achenbach System of 
Empirically Based Assessment 
(Child Behaviour Checklist & 
Youth Self Report)

ADHD symptoms, 
internalizing problems, 
social problems

Maternal, 
self

5501

Twins Early 
Development 
Study

7, 8, 9, 12, 
14, 16

SDQ, Conners’ Parent Rating 
Scale

ADHD symptoms, 
internalizing problems, 
social problems

Maternal, 
self

9526

Abbreviation: ADHD, attention-deficit/hyperactivity disorder



47

3

Cohort-Specific Association Analyses
In each cohort, associations between childhood psychopathology and adult 

traits were estimated by regressing each outcome measure (ie, ADHD symptoms, 

internalizing, and social problems) stratified by age and rater, on the calculated 

PGS of the 8 adult traits at the 5 priors. A wide variety of surveys were used to 

further characterize the cohort.218-224 

Where cohorts included related individuals, regressions were performed using the 

exchangeable model in generalized estimating equations to correct for relatedness 

in samples.225 Scales were coded such that higher scores reflected more childhood 

problems. Both childhood psychopathology scores and PGS were standardized to 

a mean of 0 and an SD of 1, allowing for comparable βs across cohorts. Sex, age, 

batch effects, and genetic principal components (which correct for population 

stratification) were included as covariates in the regression (eAppendix 2 in 

the Supplement).

Multivariate Meta-analyses
Meta-analyses were performed using the metafor package in R version 3.6.0 (R 

Foundation for Statistical Computing).226  To obtain the prior that provided the 

strongest estimate of the association with overall childhood psychopathology, we 

performed a random-effects meta-analysis for each of the 5 priors for each adult-trait 

PGS. Specifying random effects accounts for heterogeneity in the true associations 

attributable to factors that contribute to sample variation across cohorts, such 

as differences in measurements and sample characteristics. Subsequent analyses 

for each adult trait were conducted based on the selected prior from the previous 

analysis (ie, the one that provided the highest estimate of the association). As a 

sensitivity check, we repeated all analyses using a prior of 0.50 and compared these 

results to those using the prior with the highest estimate. We selected the prior of 

0.50, because it represents a reasonable estimation of the proportion of associated 

SNVs across the different types of complex traits we tested.

To correct for dependency in the outcome variables attributable to repeated 

measures of the same individuals over time, we specified the variance-

covariance matrix between their sampling errors. Because errors were assumed 

to be independent between cohorts, we combined variance-covariance matrices 

across cohorts by setting correlations between cohorts to 0 in the matrix, further 
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accounting for differences between cohorts.134 To test whether the error covariance 

matrix alone suitably accounted for differences between cohorts, we applied for 

each adult trait an analysis of variance (ANOVA) test to compare models with the 

random effects dropped with those where they were specified along with the error 

covariance matrix.

Subsequent meta-analyses to test the association between each adult-trait PGS 

and overall childhood psychopathology (ie, all 3 childhood measures analyzed 

jointly) were performed on the reduced model (no random effects), if dropping 

them did not result in a significant loss of fit compared with the full model (random 

effects plus error covariance matrix). We also tested the association between the 

PGS and each individual childhood psychopathology measure.

Because both the childhood outcomes, and PGS measures are correlated, we 

estimated the effective number of tests between both sets of variables under the 

assumption that they are nonindependent.227, 228  We corrected the meta-analysis 

results for multiple testing by applying Bonferroni correction (P = .05/number of 

tests) to the effective number of tests (2015.04 effective tests; α = 2.48 × 10−5) 

(eTable 2 in the Supplement).

Multimodel Inference Analyses to Identify Moderators
To ascertain whether the variables age, type of childhood psychopathology (ie, 

ADHD symptoms, internalizing problems, or social problems), measurement 

instrument (eg, Strength and Difficulties Questionnaire,218  Achenbach System 

of Empirically Based Assessment222), and rater (ie, maternal or self ) moderated 

association between childhood psychopathology and adult-trait PGS, we 

performed multimodel inference analyses using the glmulti package in R version 

3.6.0.229  The glmulti package allows the definition of a function that takes into 

account all potential moderators and generates all possible models for the 

association of interest, returning the best models based on a specified information 

criterion; in our study, this was Akaike information criterion.230  Furthermore, it 

provides parameter estimates based on all possible models, rather than a single-

top model, while considering the relative importance of each potential moderator 

by weighting them. The averaged model avoids relying too strongly on a single 

best model.
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In summary, for each adult-trait PGS, we selected the prior that provide the strongest 

estimate of its association with childhood psychopathology by performing random-

effects meta-analyses at each prior. This was followed by ANOVA tests to determine 

whether our error covariance matrix suitably accounted for differences between 

cohorts. We then performed multivariate meta-analyses testing the associations of 

PGS of adult traits with childhood psychopathology at all ages. Finally, we performed 

multimodel inference analyses to ascertain whether moderators affected the 

association between each adult-trait PGS and childhood psychopathology.

RESULTS

The 7 included cohorts combined participants from the Netherlands, UK, Sweden, 

Norway, and Finland in a combined sample of 42 998 unique participants aged 6 to 

17 years old. The percentage of male participants ranged from 43.0% (1040 of 2417 

participants) to 53.1% (2434 of 4583 participants) by age and across all cohorts.

Cohort-Specific Association Analyses
Cohort-specific descriptive statistics and correlation matrices of the 3 

psychopathology measures, ADHD symptoms, internalizing problems, and 

social problems are described in eTables 3, 4, 5, 6, 7, 8, and 9 in the Supplement. 

Correlation matrices show the observed variability or stability of childhood 

psychopathology over time. Based on cohorts with multiple or consistent measures 

of psychopathology across development, we observed moderate correlations 

across different ages. Estimates were highest for measurements of the same trait 

at adjacent ages, around 0.50, and lowest between self-rated and maternally rated 

measures, around 0.20. The results of the univariate analyses in each cohort are 

displayed in eTables 10, 11, 12, 13, 14, 15, and 16 in the Supplement.

Meta-analyses
Random-effects meta-analyses corresponding to the 5 priors showed that the prior 

that provided the strongest association estimates were 0.75 for EA and BMI; 0.50 

for MD, insomnia, and height; 0.30 for neuroticism; 0.10 for BD; and 0.03 for SWB 

(eTable 17 in the Supplement). A reduced model (error matrix alone) was used in 

the multivariate and subsequent analyses for all traits except for the EA and BMI 

PGS, for which we used the full model (random effect plus the error covariance 
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matrix). This was because ANOVA tests comparing the full model with the reduced 

model suggested that the error covariance matrix alone insufficiently accounted 

for differences between cohorts (ANOVA results, eTable 18 in the Supplement).

Subsequent meta-analyses of the association between PGS of each adult trait 

and overall childhood psychopathology (all 3 childhood measures in the same 

model) showed that the directions of associations were as expected (Figure 1). 

Significant positive associations were observed for PGS of MD (β, 0.042 [95% CI, 

0.036-0.049]; SE, 0.003;  P = 2.48 × 10−37;  R2, 0.002), neuroticism (β, 0.035 [95% CI, 

0.029-0.042]; SE, 0.003; P = 1.22 × 10−26; R2, 0.001), insomnia (β, 0.023 [95% CI, 0.017-

0.030]; SE, 0.003; P = 2.36 × 10−12; R2, 0.0005), and BMI (β, 0.035 [95% CI, 0.025-0.046]; 

SE, 0.005; P = 2.23 × 10−11; R2, 0.001), while associations for SWB (β, −0.026 [95% CI, 

−0.020 to −0.033]; SE, 0.003; P = 1.92 × 10−15; R2, 0.0006) and EA (β, −0.046 [95% CI, 

−0.035 to −0.057]; SE, 0.006;  P = 6.74 × 10−17;  R2, 0.002) were negative. There was 

no evidence for association with BD PGS (β, 0.005 [95% CI, −0.001 to 0.012]; SE, 

0.003; P = .11; R2, 2.50 × 10−5). No associations were found with the PGS of height.

Moderators
Using model averaging, we considered the effect of 4 moderators (ie, outcome, 

age, measurement instrument, and rater) across all possible models. Using a P value 

threshold of .0125 (α = .05/number of moderators), we found evidence of moderation 

for EA and BMI PGS (Table 2). The association between EA PGS and childhood 

psychopathology varied as a function of outcome, rater, and age. The EA PGS were 

associated with ADHD symptoms but not internalizing problems (Δβ, 0.0561 [Δ95% CI, 

0.0318-0.0804]; ΔSE, 0.0124) or social problems (Δβ, 0.0528 [Δ95% CI, 0.0282-0.0775]; 

ΔSE, 0.0126); Figure 1). Additionally, the association between ADHD symptoms and EA 

PGS increased with age (Δβ, −0.0032 [Δ 95% CI, −0.0048 to −0.0017]; ΔSE, 0.0008) in 

maternal ratings, while self-ratings showed the opposite (Δβ, 0.0463 [Δ95% CI, 0.0315-

0.0611]; ΔSE, 0.0075). However, the influence of rater on the associations appears to 

be driven by a single outlier aged around 17 years in the self-reported data (Figure 2). 

The association between BMI PGS and childhood psychopathology also varied across 

outcomes. Associations were strongest with ADHD and social problems (Δβ, −0.0001 

[Δ95%CI, −0.0102 to 0.0100]; ΔSE, 0.0052), compared with internalizing problems (Δβ, 

−0.0310 [Δ95% CI, −0.0456 to −0.0164]; ΔSE, 0.0074). Moderators did not influence 

associations between the other adult-trait PGS and childhood psychopathology 

(eTable 19 in the Supplement).
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Figure 1.  Multivariate Meta-analysis Estimates of the Associations Between Adult Traits and Overall 
Childhood Psychopathology

Bars represent confidence intervals corresponding to α = .05. ADHD indicates attention-deficit/
hyperactivity disorder. aIndicates significance after correction for multiple testing (α = 2.48 × 10−5).
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Figure 2.  Moderator Effects of Age and Rater on the Association Between Educational Attainment 
Polygenic Scores and Attention-Deficit/Hyperactivity Disorder

Each point represents β estimates from univariate analyses of the association between educational 
attainment polygenic scores and attention-deficit/hyperactivity disorder symptoms at different ages. 
Overall, the negative association becomes stronger with increasing age (Table 2). The gray shadow 
around the trend line represents the 95% CI of the age effect size.

Sensitivity Analyses
Using a prior of 0.50 sensitivity analyses showed similar results to the main 

analyses, except for the moderation of outcome on the association with BMI PGS 

(intercept: β, 0.0439; SE, 0.0087 [95% CI, 0.0269-0.0609]; internalizing problems: Δβ, 

−0.0257; ΔSE, 0.0130 [Δ 95% CI, −0.0512 to −0.0003]; social problems: Δβ, −0.0018; 

ΔSE, 0.0055 [Δ 95% CI, −0.0126 to 0.0089]; eFigure in the Supplement). While this 

was nominally significant (P = .047), it did not remain after adjusting for the 4 

moderators tested (α = .0125; eTable 20 in the Supplement). Results from the main 

analyses also remained the same when all meta-analyses included random effects.
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Table 2. Model-averaged moderator effects for Educational Attainment and Body Mass Indexa

EDUCATIONAL 
ATTAINMENT

Estimate SE z Value P value ci.lb ci.ub Importance

Intercept -0.0770 0.0092 -8.4072 4.20x10-17b -0.0950 -0.0591 1.0000

Rater – self 0.0463 0.0075 6.1370 8.41x10-10b 0.0315 0.0611 1.0000

Age -0.0032 0.0008 -4.0563 4.99x10-5b -0.0048 -0.0017 0.9896

Outcome – internalizing 
problems

0.0561 0.0124 4.5239 6.07x10-6b 0.0318 0.0804 0.9606

Outcome – social 
problems

0.0528 0.0126 4.2076 2.58x10-5b 0.0282 0.0775 0.9606

Scale – ATAC 0.0008 0.0016 0.4956 0.6202 -0.0023 0.0039 0.0194

Scale – Conners’ 0.0008 0.0016 0.4898 0.6243 -0.0023 0.0039 0.0194

Scale – RS-DBD 0.0007 0.0015 0.4737 0.6357 -0.0022 0.0037 0.0194

Scale – SCARED 0.0001 0.0004 0.1861 0.8524 -0.0007 0.0008 0.0194

Scale – SDQ -0.0002 0.0004 -0.4316 0.6660 -0.0010 0.0007 0.0194

Scale – SMFQ -0.0008 0.0016 -0.4923 0.6225 -0.0038 0.0023 0.0194

       

BMI Estimate SE z Value p Value ci.lb ci.ub Importance

Intercept 0.0468 0.0064 7.3531 1.94x10-13b 0.0343 0.0593 1.0000

Outcome – internalizing 
problems

-0.0310 0.0074 -4.1744 2.99x10-5b -0.0456 -0.0164 0.9374

Outcome – social 
problems

-0.0001 0.0052 -0.0192 0.9847 -0.0102 0.0100 0.9374

Rater – self -0.0011 0.0022 -0.5068 0.6123 -0.0055 0.0033 0.0923

Age 7.48x10-6 2.32x10-5 0.3223 0.7473 -3.80x10-5 0.0001 0.0195

Scale – ATAC -1.42x10-9 3.35x10-9 -0.4241 0.6715 -7.99x10-9 5.14x10-9 8.21x10-8

Scale – Conners’ 2.77x10-12 1.62x10-9 0.0017 0.9986 -3.18x10-9 3.19x10-9 8.21x10-8

Scale – RS-DBD -1.03x10-9 3.12x10-9 -0.3290 0.7422 -7.15x10-9 5.09x10-9 8.21x10-8

Scale – SCARED -3.32x10-9 6.90x10-9 -0.4809 0.6306 -1.68x10-8 1.02x10-8 8.21x10-8

Scale – SDQ -1.05x10-9 2.47x10-9 -0.4260 0.6701 -5.90x10-9 3.80x10-9 8.21x10-8

Scale – SMFQ 2.69x10-10 1.67x10-9 0.1612 0.8720 -3.00x10-9 3.54x10-9 8.21x10-8

Abbreviations: A-TAC, Autism-Tics, ADHD, and Other Comorbidities Inventory; BMI, body mass index (calculated as 
weight in kilograms divided by height in meters squared); RS-DBD, Rating Scale for Disruptive Behavior Disorders; 
SCARED, Screen for Child Anxiety Related Emotional Disorders; SDQ, Strength and Difficulties Questionnaire; SMFQ, 
Short Mood and Feelings Questionnaire, ci.lb, confidence interval lower bounds; ci.ub, confidence interval upper bounds 
a The intercept estimate contains information from the reference variable of each moderator, selected in alphabetical 
order or with the lowest value, in the case of numerical moderators. Hence the intercept reflects the association 
estimate between educational attainment or BMI and Achenbach System of Empirically Based Assessment measured, 
maternally rated attention problems at approximately age 6 years. The other estimates show the change in 
association estimates depending on the moderator variable. The importance value for each moderator represents 
their overall support across all models. Moderators present in multiple models with large weights will have higher 
importance, and the closer this value is to 1, the more important the moderator is for the association being considered. 
b Values were significant when adjusted for 4 moderators (α = .05/4 = .0125).
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DISCUSSION

We investigated genetic associations between childhood psychopathology and 

adult mood disorders and associated traits over time. Using results of well-powered 

GWAS meta-analyses of adult traits, we calculated PGS in what is, to our knowledge, 

the largest childhood target sample to date for this type of study (N = 42 998). We 

revealed strong evidence of associations of PGS for adult MD, SWB, neuroticism, 

insomnia, EA, and BMI with childhood ADHD symptoms, internalizing problems, 

and social problems. We found no evidence of associations between BD PGS and 

childhood psychopathology. In addition, we found no evidence of the moderators 

age, outcome, measurement instrument, and rater on these associations, except 

for EA PGS and BMI PGS. While EA PGS was more strongly associated with ADHD 

symptoms compared with the 2 other outcomes, BMI PGS was more strongly 

associated with ADHD symptoms and social problems than with internalizing 

problems. The association between EA PGS and ADHD symptoms increased with 

age and was stronger for maternal-rated ADHD symptoms compared with self-

rated ADHD symptoms.

Our results indicate a consistent pattern of genetic associations between PGS of 

adult depression and associated traits and childhood psychopathology across 

age. This has not been observed previously, which is likely partly attributable to 

the increased power of our larger discovery and target samples compared with 

previous studies.92, 210  Moreover, previous studies focused on separate childhood 

phenotypes38, 231 as opposed to our approach of simultaneously analyzing multiple 

childhood problems at different ages. Consistent genetic associations across age 

suggest a set of genetic variants that influence a range of traits across the life span.

The exceptions to these consistent associations were EA and BMI PGS, which 

showed moderation on the associations by the different types of childhood 

outcome. While both were genetically associated with ADHD in accordance with 

previous research,38, 140, 211, 212 they were not associated with internalizing problems, 

or social problems, in the case of EA. The lack of association with internalizing 

problems was somewhat unexpected, given genetic correlations previously found 

for BMI and EA with adult MD.32, 51 These results suggest that genetic associations 

between EA and BMI and MD may become more apparent after adolescence, while 

they are already present for childhood ADHD and social problems (for BMI).
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We did not identify associations between BD PGS and childhood psychopathology. 

This is intriguing because moderate genetic correlations with BD have been 

observed for MD and ADHD, as well as other behavioral-cognitive phenotypes, 

such as SWB and EA.98  However, previous analyses of BD PGS also found no 

associations with continuous measures of psychopathology in childhood92, 

141  or adolescence.106  These results may be explained by less powerful BD GWAS 

compared with MD and other traits, which might result in underpowered PGS. 

Nevertheless, the lack of association with BD PGS may also suggest that genetic 

risk for BD does not manifest until later in development, but given the higher 

prevalence rates of childhood psychopathology in offspring of parents with BD, 

this seems less likely.209, 232, 233 It will be interesting to see if the observation holds as 

more powerful GWAS become available for BD.

Limitations
A limitation of our study is that analyses are limited to European ancestry, and 

therefore results are not generalizable to populations of differing ancestry. 

Second, associations between PGS and childhood psychopathology measures 

may be confounded by unaccounted passive gene-environment correlations, 

an association between a child’s genotype and familial environment resulting 

from parents providing environments that are influenced by their own (parental) 

genotypes.137, 234  Consequently, associations observed with adult PGS may be the 

result of both direct and indirect (environmentally-mediated) genetic effects. 

Third, dropout may have influenced our results. Previous analyses in longitudinal 

cohorts have reported negative associations between PGS for schizophrenia, 

ADHD, and depression and participation in childhood and adolescence.235, 

236 Nonparticipation in adolescence is also associated with higher psychopathology 

scores at earlier ages.134 These results suggest that individuals with higher genetic 

risk for psychiatric disorders and higher childhood psychopathology are more 

likely to drop out of longitudinal studies. Genetic associations and the magnitude 

of associations reported may therefore be underestimated. Finally, because 

we combined data from different cohorts, we introduced heterogeneity in the 

assessment of childhood psychopathology. However, the meta-regression showed 

in general, consistent effect sizes across scales and raters. Moreover, combining 

multiple cohorts resulted in a large sample size, increasing statistical power 

compared with previous studies, which is a strength of this study.
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Conclusions
The general lack of an influence of age and type of childhood psychopathology 

on our identified associations supports evidence of a common genetic 

psychopathology factor that remains stable across development.237  Polygenic 

scores by themselves are not sufficient to identify individual children at high risk 

for persistence (they explain <1% of the variance in childhood psychopathology 

in this study). Nevertheless, these findings are of major importance because the 

individuals who are affected across the life span with consequences on other 

outcomes, such as EA and BMI, should be the focus of attention for targeted 

treatment. Furthermore, PGS could be combined with other risk factors for 

risk assessment in clinical samples, as was recently done for psychosis risk 

using schizophrenia PGS.119  Future studies focusing on samples from high-risk 

populations are warranted to investigate whether PGS for adult traits, together 

with other variables, can be used to build risk profiles with reasonable accuracy. 

These may allow for the stratification of children into high-risk and low-risk 

groups for persistence, as well as test whether early intervention or more intense 

treatments for the former group can prevent poor outcomes.238

In conclusion, we demonstrate the power of combining genetic longitudinal 

population data to elucidate developmental patterns in psychopathology. Our 

study provides novel evidence for the presence of shared genetic factors between 

childhood psychopathology and depression and associated adult traits, as well 

as their stability across development. Insight into these associations may aid 

identification of children at risk for a relatively chronic course of illness, ultimately 

facilitating targeted treatment to this vulnerable group.
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ABSTRACT

Ubiquitous associations have been detected between different types of childhood 

psychopathology and polygenic risk scores based on adult psychiatric disorders 

and related adult outcomes, indicating that genetic factors partly explain the 

association between childhood psychopathology and adult outcomes. However, 

these analyses in general do not take into account the correlations between 

the adult trait polygenic risk scores or between the childhood psychiatric traits. 

This study aimed to further clarify the influence of genetic factors on continuity 

of symptoms by accounting for correlations within adult and within childhood 

traits. Using a multivariate multivariable regression, we analysed associations of 

childhood attention-deficit/hyperactivity disorder (ADHD), internalizing, and social 

problems, with polygenic scores (PGS) of adult traits including major depression, 

bipolar disorder, subjective well-being, neuroticism, insomnia, educational 

attainment, and body mass index (BMI), derived for 20,539 children aged 8.5 to 

10.5 years. After correcting for correlations between traits, major depression PGS 

were associated with all three childhood traits, i.e., ADHD, internalizing, and social 

problems. In addition, BMI PGS were associated with ADHD symptoms and social 

problems, while neuroticism PGS were only associated with internalizing problems 

and educational attainment PGS were only associated with ADHD symptoms. PGS 

of bipolar disorder, subjective well-being, and insomnia were not associated with 

any childhood traits. Our findings suggest that associations between childhood 

psychopathology and adult traits like insomnia and subjective well-being may 

be primarily driven by genetic factors that influence adult major depression. 

Additionally, specific childhood phenotypes are genetically associated with 

educational attainment, BMI and neuroticism.
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INTRODUCTION

Psychiatric disorders cause significant distress and impaired functioning. They 

are also highly comorbid, with extensive phenotypic and symptom overlap. 

Comorbidity and symptom overlap has been observed between a range of disorder 

types including mood disorders like depression and anxiety 239, 240, childhood-

onset neurodevelopmental disorders like attention-deficit/hyperactivity disorder 

(ADHD), autism spectrum disorder (ASD), and Tourette syndrome 241, as well 

as between ADHD and anxiety disorders and depression 242, 243. Importantly, a 

substantial proportion of children and adolescents with psychopathology continue 

to have psychiatric disorders in adulthood, as well as poorer outcomes related to 

physical health and functional outcomes, including higher body mass index (BMI), 

and lower educational attainment among others 5, 6, 8, 244-246. Thus psychopathology 

traits are correlated with each other, and are linked to increased risk for negative 

outcomes, both related to mental health and beyond. 

Using both twin- and molecular-based analyses, studies have shown genetic 

influences on the stability and continuity of psychopathology traits including 

attention problems, anxiety, and depression over time. Indeed there is evidence 

of genetic influence both for homotypic continuity (when a disorder is predicted 

by itself at a later time point) and heterotypic continuity (when one disorder 

predicts another at a later time point, e.g., childhood anxiety is associated with 

schizophrenia later in life) 44, 45, 78, 115, 206, 247. Many studies investigating such genetic 

associations between childhood psychopathology and adult traits have employed 

polygenic scores (PGS), which index an individual’s genetic risk for a trait based 

on previously determined effect sizes for alleles associated with the trait 30. They 

have been used to show that shared genetic overlap likely underlies associations 

between childhood psychopathology and adult mood disorders including 

depression and anxiety, as well as related traits like neuroticism, insomnia, and 

subjective well-being 115, 248. Furthermore, PGS have also been used to demonstrate 

genetic overlap between childhood psychopathology and mood disorder-related 

functional outcomes, such as educational attainment, and BMI 92, 115, 212. 

Crucially, these associations are typically analysed in univariate analyses. However, 

both the adult, and the childhood traits are phenotypically and genetically 

correlated 86, 98, 164, 249-252. This raises the question of whether the ubiquitous genetic 
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associations observed are genuine or whether they are driven by unaccounted 

correlations between related traits. For instance, a previous study reported 

genetic associations between major depression PGS and childhood ADHD, 

internalizing, and social problems 115. However, it is possible that the association 

with all three childhood traits is explained primarily by an association between 

major depression PGS and internalizing problems, with the associations between 

major depression PGS and ADHD symptoms and social problems being the result 

of correlations between the three traits rather than genuine genetic associations 

between ADHD and social problems, and adult major depression. Knowledge of 

how underlying correlations influence genetic associations may provide insight 

into trans-diagnostic continuity of psychopathology across the lifespan and 

can be of importance for building prediction models for outcomes of childhood 

psychopathology.   

In the current study, we performed a preregistered (https://osf.io/7nkw8) 

multivariate analysis to investigate genetic associations between childhood 

ADHD symptoms, internalizing, and social problems, and adult depression and 

related traits. Specifically, we were interested in exploring how accounting for the 

correlations between the adult trait PGS and between the childhood measures 

affects previously observed univariate genetic associations between them. As 

previous analyses largely showed no age effects in associations between childhood 

psychopathology and PGS of adult traits, we focused the current analysis at the 

age at which we had the most combined data which was at age 9-10. We obtained 

maternal-rated data for 20,539 children across three cohorts.

METHODS

Participants and Measures  
Maternal-rated measures of ADHD symptoms, internalizing, and social problems 

were obtained for children aged 9 – 10 years from four population-based cohorts 

including the Avon Longitudinal Study of Parents and Children (ALSPAC) 253-255, 

Child and Adolescent Twin Study in Sweden (CATSS) 256, Netherlands Twin Register 

(NTR) 257, and Twins Early Development Study (TEDS) 258 (Table 1). CATSS, NTR 

and TEDS are population based twin cohorts while ALSPAC is a population based 

birth cohort that recruited all pregnant women in the former county of Avon 

https://osf.io/7nkw8
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with an expected due date between April 1991 and December 1992 Childhood 

psychopathology was measured in ALSPAC and TEDS using the hyperactivity-

inattention, emotional symptoms, and peer relationship problems subscales of the 

Strength and Difficulties Questionnaire (SDQ) 218, while in the NTR, the attention, 

internalizing, and social problems subscales of the Child Behaviour Checklist 

(CBCL) 222 were used. In CATSS, the AD/HD module of the Autism-Tics, AD/HD and 

other comorbidities inventory 219, was used to measure ADHD symptoms. For 

internalizing problems, the  Screen for Child Anxiety Related Emotional Disorders 

(SCARED) 220 was selected over the Short Mood and Feelings Questionnaire (SMFQ) 
221. This is because while they both had comparable psychometric properties, the 

SCARED measures symptoms over the past three months, which is more in line 

with the longer-term measures of the CBCL (two months) and SDQ (six months) 

used by other cohorts, compared to the SMFQ which measures symptoms over the 

past two weeks. The CATSS cohort did not have a measure of social problems at 

age 9-10.

Genotyping and quality control were performed by each cohort according to 

common standards and have been previously described 115. We obtained PGS for 

traits including major depression 51, bipolar disorder 52, subjective well-being, 

neuroticism 215, insomnia 216, educational attainment 213 and BMI 33, calculated using 

LDpred 217. LDpred allows the inclusion of prior probabilities which correspond to 

the assumed proportion of genetic variants thought to be causal for a given trait. 

We used PGS at the most predictive priors per trait, determined from previous 

univariate analyses 115. Data collection was approved by each cohort’s local 

institutional review or ethics board, waiving the need for informed consent for this 

study. Analyses were limited to individuals of European ancestry.

Statistical Analyses
The main model tested is described in Figure 1. The model represents a 

multivariate regression with three dependent and seven independent variables, 

as well as additional covariates. The dependent variables are the maternal-rated 

measures of ADHD symptoms, internalizing, and social problems, while the 

independent variables are PGS of major depression, bipolar disorder, subjective 

well-being, neuroticism, insomnia, educational attainment, and BMI. Multivariate 

multivariable regression analyses were performed in R using path specification in 

the OpenMx package 259-262. Full information maximum likelihood (FIML) estimation 
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263, optimized in OpenMx was used to account for missingness in the outcome 

(childhood measures) data. We also accounted for the effects of sex, age, genetic 

principal components (to correct for population stratification), genotyping chip, 

and batch effects on the childhood measures, by including them as covariates in 

the model (Table 1).

Table 1. Sample characteristics

Cohort Phenotype(s) measured Scale(s) Sample size Covariates included in 
regression model

ALSPAC ADHD symptoms, internalizing 
problems, social problems

SDQ 5025 10 genetic PCs, age, sex

CATSS ADHD symptoms, internalizing 
problems

A-TAC, SCARED 7284 10 genetic PCs, sex

NTR ADHD symptoms, internalizing 
problems, social problems

ASEBA-CBCL 3652 10 genetic PCs, genotyping 
chip, age, sex

TEDS ADHD symptoms, internalizing 
problems, social problems

SDQ 4578 10 genetic PCs, genotyping 
chip, genotyping batch, age, 
sex 

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; CATSS, Child and Adolescent Twin Study in Sweden; 
NTR, Netherlands Twin Register; TEDS, Twins Early Development Study; ASEBA, Achenbach System of Empirically Based 
Assessment 222; A-TAC, Autism-Tics, AD/HD and other comorbidities inventory 219; CBCL, Child Behaviour Checklist 222; SDQ, Strength 
and Difficulties Questionnaire 218; SCARED, Screen for Child Anxiety Related Emotional Disorders 220; PCs, principal components.

Both the childhood measures and the PGS were scaled so that they each had a 

mean of zero and standard deviation of 1. This allowed for data to be jointly 

analysed across cohorts using a multi-group model, which aggregates fit statistics 

from separate submodels specified for each cohort. Correlations and regression 

coefficients were constrained to be equal across cohorts, while estimates for the 

PCs, genotyping chip and batch effects, as well as their variances which were 

estimated separately per cohort. We corrected for relatedness in the twin samples 

(CATSS, NTR, TEDS) by estimating the cross-twin covariance for each outcome 

measure, as well as cross-twin cross-trait covariances. 

We adjusted our significance threshold to account for multiple testing, using 

Bonferroni adjustment (α = 0.05/number of tests), where the number of tests is the 

number of outcome measures multiplied by the number of predictors (α = 0.05/ 

(3 x 7)=0.00238). 
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RESULTS

Across all cohorts, 20,539 children were included in the current analyses. Their 

ages ranged from 8.5 to 10.5 years. Full descriptive statistics per cohort for age 

and childhood measures, as well as sex-based information are provided in 

Supplementary Tables 1 and 2.

Associations between adult trait PGS and childhood traits
We fitted a multivariate multivariable regression model investigating associations 

between the three childhood outcome measures, and PGS at a prior of 0.75 for 

educational attainment and BMI, 0.5 for major depression, and insomnia, 0.3 

for neuroticism, 0.1 for bipolar disorder, and 0.03 for subjective wellbeing. We 

observed moderate phenotypic correlations between the childhood measures; 

0.32 between ADHD symptoms and internalizing problems, 0.35 between 

ADHD symptoms and social problems and 0.46 between internalizing and social 

problems (Figure 2). Negative correlations between the PGS ranged from -0.009 

to -0.305 while positive correlations ranged from 0.011 to 0.306 (Table 2). The 

pattern of correlations between the adult trait PGS was similar to those seen in 

previous analyses, with high correlations between variables on the depression-

wellbeing spectrum including neuroticism, and lower associations with other traits 

like BMI, educational attainment and bipolar disorder 98, 205, 215, 216. Further, insomnia, 

subjective wellbeing, and neuroticism were also correlated with each other, 

although to a slightly lesser extent.
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Table 2. Polygenic scores correlation matrix

Major 
depression

Bipolar 
disorder

Subjective 
wellbeing

Neuroticism Insomnia Educational 
attainment

BMI

Major depression 1 0.184 -0.215 0.306 0.191 -0.125 0.05

Bipolar disorder 0.184 1 -0.03 0.068 0.014 0.068 -0.009

Subjective wellbeing -0.215 -0.03 1 -0.305 -0.118 0.047 0.011

Neuroticism 0.306 0.068 -0.305 1 0.244 -0.152 -0.082

Insomnia 0.191 0.014 -0.118 0.244 1 -0.152 0.04

Educational attainment -0.125 0.068 0.047 -0.152 -0.152 1 -0.201

BMI 0.05 -0.009 0.011 -0.082 0.04 -0.201 1

Note: matrix represents the average correlation between the scaled PGS of the adult traits across four 
cohorts

After correction for multiple testing (α = 0.00238), we observed significant positive 

associations between BMI PGS and ADHD symptoms (beta = 0.024, 95% C.I = 0.008 

to 0.039, SE = 0.008, p = 0.002) and social problems (beta = 0.057, 95% C.I. = 0.039 

to 0.076, SE = 0.009 , p = 1.37×10-09), between major depression PGS and ADHD 

symptoms (beta = 0.035, 95% C.I. = 0.019 to 0.051, SE = 0.008, p = 2.23×10-05), 

internalizing (beta = 0.027, 95% C.I. = 0.010 to 0.044, SE = 0.009, p = 0.002), and 

social problems (beta = 0.034, 95% C.I. = 0.014 to 0.053, SE = 0.010, p = 0.001), 

and finally between neuroticism and internalizing problems (beta = 0.041, 95% 

C.I. = 0.024 to 0.059, SE = 0.009, p = 4.97×10-06). We also observed significant 

negative associations between educational attainment PGS and ADHD symptoms 

(beta = -0.087(95% C.I. = -0.071 to -0.102), SE = 0.008, p = 2.45×10-28) (Figure 2). 

Other associations between childhood measures and PGS were not statistically 

significant (Table 3). 
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DISCUSSION

So far, studies have primarily used univariate analyses to investigate genetic 

associations between childhood psychopathology and PGS of adult mood 

disorders and related traits like neuroticism, insomnia and subjective-well-being, 

as well as functional outcomes like educational attainment and BMI 115, 248. In the 

current study, we performed a multivariate multivariable regression analysis 

with the aim of exploring how underlying correlations between these variables 

influences the strength/presence of previously observed associations. Using a 

multivariate model, we accounted for correlations between the PGS of adult traits 

as well as correlations between childhood ADHD symptoms, internalizing, and 

social problems. We found that major depression PGS were significantly associated 

with all three measures of childhood psychopathology. In addition, BMI PGS were 

positively associated with ADHD symptoms and social problems, and neuroticism 

PGS were positively associated with internalizing problems, while educational 

attainment PGS were negatively associated with ADHD symptoms. Previously 

reported associations of childhood psychopathology with PGS of insomnia, 

neuroticism, and subjective well-being were largely no longer present. 

We observed differential genetic associations between childhood psychopathology 

and adult traits, with all childhood problems investigated associated with 

genetic risk for major depression. On the other hand, genetic risk for traits like 

neuroticism, educational attainment and BMI appeared to be related to specific 

childhood psychopathology measures. The non-specific association of childhood 

psychopathology with depression PGS suggests that there are genetic variants 

associated with depression and shared across the three childhood traits, which 

might be indicative of a dimensional structure of psychopathology where any type 

of childhood psychopathology is linked to genetic risk for depression. To some 

extent, we observed the same for PGS of BMI, which showed associations with 

social problems and ADHD symptoms i.e. there are genetic variants associated 

with BMI which are shared with both traits. However we did not observe this with 

PGS of educational attainment, and neuroticism, which were associated with only 

ADHD symptoms and internalizing problems respectively. This indicates that there 

are also specific genetic factors that are associated with educational attainment 

and ADHD symptoms, and with neuroticism and internalizing problems, which are 
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not shared with the other childhood traits. This is despite the fact that we observed 

modest correlations between the childhood traits (Figure 2). 

These findings highlight the importance of both general and unique genetic factors 

to the understanding of psychiatric aetiology. Moreover, these results also suggest 

that many of the previously detected genetic associations between childhood 

traits and PGS of adult depression-related traits may be the result of their genetic 

correlations with depression. An exception was neuroticism PGS, which were still 

associated with internalizing symptoms. Additionally, we observed no associations 

between bipolar disorder and childhood psychopathology, despite the fact that 

bipolar disorder also shows moderate genetic correlations with major depression 98. 

This may be due to a lack of power in the bipolar disorder discovery GWAS. 

We showed that the use of multivariate methodology is important in furthering our 

understanding of genetic mechanisms underlying psychopathology across childhood 

and adulthood, but also associations between childhood psychopathology traits and 

functional outcomes in adulthood. Importantly, genetic risk for depression appeared 

to be linked to a myriad of childhood psychopathology traits, suggesting shared 

heritability across development. While this is perhaps expected for associations 

with internalizing problems, observed cross-disorder associations between major 

depression PGS and ADHD and social problems have implications for trans-diagnostic 

continuity across development. It contests the view of psychiatric traits or disorders 

as enduring discreet conditions, and raises clinically important questions as to the 

validity of distinct diagnostic boundaries. The observed substantial phenotypic 

correlations between the childhood traits may hint at symptom overlap, while non-

specific associations with depression suggest shared genetic risk for them. Neither of 

these are strongly supportive of categorical classifications of psychopathology. 

The observed associations may also be indicative of a causal association between 

childhood measures and depression in adulthood, which warrants future analyses of 

causality. The independent effect of neuroticism PGS on internalizing problems, on 

top of the effect of PGS for major depression is also interesting in this regard. It could 

be speculated that the measurement of internalizing problems in childhood is more 

reflective of a trait of emotional instability just like neuroticism, than of a depressive 

state like major depression. Furthermore, in conceptualizing causal factors underlying 

comorbidity between childhood psychopathology, negative emotionality (also 
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known as neuroticism) has been proposed to be a common feature underlying all 

childhood psychopathology 23, 264. Interestingly we only observe associations between 

neuroticism PGS and internalizing problems. However the nature of PGS is such that 

the variance that they explain is very small. This means that it is likely/certain that 

associations observed do not reflect the total genetic overlap between neuroticism 

and childhood psychopathology. Replication of this result with PGS from larger GWAS 

are necessary. 

Our findings regarding educational attainment and BMI replicate well established 

findings for genetic overlap between reduced educational attainment and ADHD 

symptoms in childhood 92, 211, 212, as well as for BMI and childhood psychopathology, 

particularly ADHD 98, 143. Genetic analyses of causal mechanisms between ADHD 

and BMI have so far been inconclusive, with evidence of causality in both directions 
265-267. Analyses of causality between ADHD and educational attainment are fewer 

still, with one study showing evidence of bidirectional causal associations 268. We 

add to the growing body of literature supporting associations between genetic 

risk for psychopathology, and health and sociodemographic outcomes in later 

life. The effect sizes reported were generally quite small which perhaps suggest 

that interpretations of our findings should be made cautiously. Nevertheless, more 

studies with a focus on causality are crucial, as knowledge of causal mechanisms 

may eventually inform clinical interventions, as well as risk for adverse effects of 

functional outcomes in the long-term. 

Our study had some limitations. PGS analyses have been shown to include the 

effects of passive gene-environment correlation – an association between a child’s 

genotype and familial environment as result of parents providing environments that 

are influenced by their own genotypes 137, which are unaccounted for in the present 

study and may have affected our findings. Secondly, while PGS involve aggregating 

the effects of many trait-associated variants, they are not informative about which 

specific genetic variants drive the observed associations and further fine-mapping and 

variant prioritization analyses are required to shed more light on this. Further, the small 

proportion of variance explained by the PGS means that they are currently unable to be 

used clinically. However, the aim of the current study was primarily to investigate the 

underlying genetic architecture. Finally, the case samples from the major depression 

GWAS used to construct the PGS in the current study were ascertained using minimal 

phenotyping. Minimal phenotyping involves leveraging information from sources 
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including hospital registers, self-reported symptoms, help seeking, or medication, 

in order to maximise statistical power to detect genetic variants. Major depression 

defined through minimal phenotyping has been shown to have different genetic 

architecture from strictly/clinically defined major depressive disorder (MDD), with 

genetic loci that are not specific to MDD 269. Therefore, our findings regarding major 

depression may be a function of the non-specific nature of genetic factors associated 

with minimally phenotyped depression. However, major depression defined in this 

manner shows strong correlation with MDD, as well as good PGS-based prediction 

of MDD in independent samples 51, 269. Nevertheless, similar analyses using clinical 

measures of MDD are important to further confirm our findings. 

Results from this study show differential genetic associations between childhood 

psychopathology and adult depression and related traits, which may be suggestive of 

both shared and unique genetic factors underlying these associations. Future studies 

combining multivariate methodology with molecular data should focus on further 

unravelling these effects not just for psychopathology traits, but also associated 

functional and non-psychiatric outcomes such as educational attainment, and BMI.
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ABSTRACT

Self-harm and aggressive behaviours cause significant personal and societal 

burden. They are linked to a myriad of adverse outcomes in later life, making 

prediction of these behaviours an important endeavour. The current study 

aimed to create a model to predict self-harm and aggressive behaviours in late 

adolescence. Our data featured a training sample of 5,990 twins from the Child 

and Adolescent Twin Study in Sweden (CATSS) and an external validation sample 

of 1,975 individuals from the Netherland Twin Register (NTR). Using a combination 

of genetic, environmental, and psychosocial predictors derived from parental 

and self-report data we created a stacked ensemble model that contained a 

gradient boosted machine, random forest, elastic net, and a neural network, Model 

performance was assessed using area under the receiver operating characteristic 

curve (AUC). The neural network model was ultimately not included in the 

ensemble model. Model performance was uniform between the datasets (train set 

0.981 [0.995 – 0.965]; tune set 0.683 [0.624 – 0.731]; test set 0.663 [0.616 – 0.721]; 

NTR data 0.729 [0.703 – 0.761] ), suggesting generalizability in population-based 

samples across Northern Europe. Additionally, we evaluated variable importance of 

the predictors in the gradient boosted machines and random forest models which 

showed that aggression in mid-adolescence, as well as genetic risk for psychiatric 

traits indexed by polygenic scores were most important to the model. 

Ultimately, our model would not be suitable for clinical use. However we improved 

on the performance of current prediction models that predict self-harm and 

aggression as well as show that genetic variables may have a role to play in 

predictive models of adolescent psychopathology. 
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INTRODUCTION

Aggressive behaviour and self-harm behaviours, with or without suicidal intent, 

cause significant disruptions on a personal and societal level 270-272. Although both 

behaviors are often seen as separate constructs, there is evidence for an intrinsic 

link 273-275. Many overlapping risk factors for these behaviours have been implicated 

across psychological symptoms, and home environmental factors 276. Self-harm and 

aggression have been shown to be associated with internalizing symptoms such as 

depression, substance abuse, family dysfunction, neglect, abuse and maltreatment 

amidst a myriad of risk factors 276-280. However, sex is a major distinguishing risk 

factor as females are more likely to report self-harm while men have higher 

instances of aggressive behaviour and criminal acts 281, 282. Given their severity and 

enmeshment, it is of interest to create a model that can determine who is most 

likely to self-harm or exhibit aggressive behaviour. 

Overlap between self-harm and aggression
Impulsivity is a common thread between the co-occurrence of aggressive behaviour 

and self-harm 283, 284. For example, individuals with emotional dysregulation, i.e. an 

inability to regulate emotional intensity combined with impulsive and maladaptive 

behaviour to escape unwanted feelings, are at the greatest risk for intentional self-

harm, and spontaneous aggression 285-289. This is observed in psychiatric disorders 

such as attention-deficit hyperactivity disorder (ADHD) and borderline personality 

disorder 290-293. Thus, certain traits may suggest a tendency towards impulsive-

aggressive behaviour in a subset of individuals. In other words, the inability to 

control their behaviour in response to extreme, irritable emotions leaves both 

themselves and others at risk for victimization and harm. Additionally, there is 

evidence for genetic influence on self-harm and aggressive behaviours 294-296, 

though little is known regarding genetic overlap between them.

Predicting self-harm and aggressive behaviour
Many studies have looked into predicting suicide or aggressive behaviour. While many 

models exist for prediction of suicide behaviours in the clinical population, there are 

relatively fewer studies which examine self-harm in population-based samples 297, 298. 

Additionally, while research in forensic psychology has worked to predict recidivism 

and violent criminal behaviour in general 299-301, specific prediction of aggression is 

less common. Moreover, only a handful of studies using a clinical population have 
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examined these interlinked behaviours together as an outcome 302, 303. Therefore, it 

is of interest to create a prediction model that combines aggressive behaviours, and 

self-harm based on a large scale, epidemiological sample. A combination of genetic, 

environmental, and psychosocial factors obtained from epidemiological cohorts 

would theoretically allow for a highly generalizable, comprehensive model that 

could further inform future models for clinical prediction and decision-making. 

Polygenic scores (PGS), which represent an aggregate score of an individual’s genetic 

risk for a trait based on effect sizes from genome-wide association studies (GWAS), 

can be used to measure genetic overlap between traits 304. As genetic associations 

have been reported between self-harm behaviours and psychiatric traits like 

anxiety, depression, schizophrenia and subjective well-being 294, as well as between 

aggression and psychiatric traits including ADHD  autism spectrum disorder (ASD), 

well-being, and neuroticism 296,  incorporating genetic risk factors like PGS may add 

information that improves prediction. 

Thus, our goal is to create a binary model that can predict who will have intentionally 

self-harmed, and/or show high levels of aggression when individuals are 18 years 

old. While aggressive behaviour tends to be childhood- and adolescent-limited, 

there is a subset of individuals for who aggressive behaviour persists into adulthood. 

This trajectory is associated with poorer outcomes in adulthood 305. Thus identifying 

those who remain aggressive at late adolescence or older may identify those who 

will remain aggressive throughout their lifetime 306. Additionally, given the significant 

overlap between risk factors and instances of co-occurrence, combining aggression 

and self-harm as an outcome for a tool to identify high-risk individuals may have a 

knock-on effect for reducing the likelihood of either behaviour. 

METHODS

Participants
A total of 9,433 participants from population-based twin cohorts, who completed 

self-report questionnaires about self-harm, suicidal ideation and aggression 

between ages 17 and 21 were included in this study. Our sample comprised of 

6,669 participants from the Child and Adolescent Twin Study in Sweden (CATSS) 
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307  and 2,764 participants from the Netherlands Twin Register (NTR) 308. Further 

cohort descriptions are provided in the Supplementary text. 

Measures
CATSS: Aggression  and self-harm was measured using the Life History of 

Aggression Checklist 309. A score of 15 out of a possible 40 was used as a cut-off 

for determining aggression cases 309. Self-harm was determined using two binary 

questions, “Deliberately attempted to injure yourself physically when you were 

angry or despondent” and  “Deliberately attempted to kill yourself when you were 

angry or despondent”. Participants who endorsed either question were classified 

as self-harming.

We included 19 predictors collected at age 9 or 12 (first wave) and 15 (second 

wave) which included psychiatric symptoms, parent and child relationship 

characteristics, as well as substance use were derived from the Autism Tics ADHD 

and other Comorbidities (ATAC) 219, Statin Child Monitoring (SCM) 310, Strengths 

and Difficulties Questionnaire (SDQ) 311, Parent Child Relationship Inventory 312, 

the Reactive-Proactive Aggression Questionnaire respectively 313 and self-reported 

drug and alcohol use. These variables were continuous or naturally binary, e.g. sex 

or lifetime history of trying marijuana, thus no cut-offs were used for any of the 

predictors. A full list of variables used can be found in Supplementary Table 1.

NTR: Aggression and self-harm were measured using the Young Adult Self Report 

(YASR) and Adult Self Report (ASR) of the Achenbach System of Empirically Based 

Assessment (ASEBA) 314. The aggression cut-off was derived using a T-score cut 

off of 64 from their respective aggressive behaviour subscales 314, which was 

equivalent to the 91.24% percentile of the NTR sample. Self-harm/suicidal ideation 

was measured using two related items from the internalizing problems subscales 

(“I deliberately try to hurt or kill myself”) and (“I think about killing myself”), where 

items were rated 0 (Not at all/Never/Not true), 1 (Somewhat true/Sometimes true) 

or 2 (Very true/Often true) by participants. Participants were classed as having the 

self-harm outcome if they rated either item anything other than 0.

The predictors, collected at age 12 (first wave) and 16 (second wave), were derived 

from demographic information, as well as the Child Behaviour Checklist (CBCL) and 
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Youth Self Report (YSR) 222. Similar to CATSS, variables were kept continuous when 

possible and no cut-offs were used to create the predictors.

Polygenic scores 
Polygenic scores (PGS) were constructed using summary data from recent GWAS. A 

complete list of traits, and associated GWAS on which PGS are based can be found 

in Supplementary Table 2. Leave-out summary statistics excluding CATSS and/or 

NTR data samples were generated for any traits for which they were included in 

the discovery GWAS. Analyses were limited to individuals of European ancestry. 

Genotyping and quality control were performed in both samples and are described 

in the Supplementary text. 

PGS were derived using LDpred, which accounts for the linkage disequilibrium 

between single nucleotide polymorphisms (SNPs) to avoid inflation of effect sizes 
217. LDpred requires the specification of prior probabilities which correspond to the 

fraction of SNPs from the discovery samples considered causal with the trait, and 

we created scores at a range of priors (0.01, 0.1, 0.3, 0.5, 1). Typically, the prior with 

the strongest association with an outcome is selected for subsequent prediction. 

However this can vary depending on the trait the PGS is based on and the 

outcome being investigated, and may also lead to type 1 errors if multiple testing 

is unaccounted for. In order to reduce the complexity inherent in having multiple 

PGS predictors and outcome variables, we performed principal component 

analysis (PCA) on all priors for each trait PGS, and included the first principal 

component (PCA-PGS) for each trait in our model according to Coombes, et al. 
315. PCA analysis is an unsupervised machine learning technique which reduces 

the dimensionality of datasets while maintaining as much variability as possible; 

the resulting principal components (PCs) represent a certain amount of variation 

within the dataset. The first PC can be interpreted to represent the most variation 

within the data 316. This method has been shown to prevent overfitting each PGS to 

each outcome and removes the need to select a single prior across all PGS 315. We 

subsequently created a genetic general psychopathology score 317 by performing 

PCA analysis on the PCA-PGS scores related to mental health. 

Data Pre-processing
All analysis were performed in R. First, all predictor variables, except for our 

binary variable sex, were scaled in each cohort order to account for variations in 
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measurement tools. Participants with more than half of variables missing were 

removed from the analysis (Figure 1). This was done for two reasons: first, although 

a standard strategy is to maximize the number of data points this may not be the 

best approach when considering data quality, and a model can only be as good as 

the data included. Secondly, we used K-nearest neighbours for imputation, which 

requires a certain number of complete cases, as the full dataset did not adequately 

provide the correct ratio between participants with missing data and complete 

cases, removing those with more than half the data missing provided us with a 

suitable ratio.

Next, PCA analysis was completed on the entire CATSS dataset to determine the 

distances between those who were classified as aggressive and/or self-harming  as 

well as to identify outliers  318. Outliers were determined through the first principal 

component, participants with values that fell outside of the four quartiles were 

removed. This process was repeated separately in the NTR dataset.

Next, CATSS was broken down into a training set, a tuning set, and a test set based 

on an 80/10/10 split. As twins are more similar to each other compared to other 

participants, we stratified based on family number in order to prevent overfitting 

that could occur from twin pairs being separated between the data subsets. 

Additionally, we stratified on the outcome to ensure that the outcome proportion 

was balanced across the data subsets. Descriptive statistics were checked to 

determine the consistency of the split. The NTR dataset was used as an external 

validation set to determine the generalizability of the model across Northern 

Europe, and was thus not split in this manner.

Missing predictor data was imputed using K-nearest neighbours, a k of 6 was 

chosen by finding the square root of the number of columns in our dataset  319. In 

order to avoid bias during this step, the test set as well as the external validation 

data were imputed separately. The outcome variable was not included as an 

informative imputation variable. As PCA analysis requires complete cases, we 

wanted to ensure that there were no outliers in those with missing data that did 

not have complete cases. Therefore, we completed another check for outliers in the 

imputed datasets to capture outliers. This was repeated separately in the NTR data 

and test set. This led to a total sample size of 7,965 participants (N training set = 

4,779; N tuning set = 594; N test set = 617; N Dutch data = 1975) (Figure 1).
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Figure 1. Flow chart of data set creation

* Principal component analysis (PCA) was completed separately for CATSS and NTR. Participants with 
a 1st principal component (PC) score outside the first four quartiles were used to determine outlier 
status.
**3 separate PCA analyses were completed: combined train and tune set, test set, and NTR. 
Abbreviations: CATSS = Child and Adolescent Twin Study of Sweden;  NTR = Netherlands Twin Register
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Statistical Analysis
Main Analysis
R package H2O 320 was used for all supervised machine learning analyses. Model 

performance was determined by area under the receiver operating characteristic 

curve (AUC), with the threshold determined by the optimal F1 threshold. This is the 

threshold where sensitivity and specificity are balanced at their highest point. AUC 

is a popular measure of predictive accuracy with values ranging from 0.5 (random 

guess), to 1.0 (perfect prediction). A generally accepted heuristic for prediction 

using AUC is that an AUC > 0.9 suggests excellent model prediction, 0.8-0.9 is 

good, 0.7-0.8 is fair, and <0.7 is poor 321. However, this rule of thumb is context 

specific and an AUC above 0.95 is desirable for medical use. During the model 

creation process, each model was trained using the training set and the tune set 

was used to evaluate performance at each iteration. Neither the test set nor the 

external validation set (the NTR dataset) were used during this process.

First, as our dataset had an imbalance between those with and without an 

outcome, we added weights to the training set to improve the positive predictive 

performance of the model 322. A weight of 3 for those with an outcome and a weight 

of 1 for those without an outcome was determined by taking the number of the 

majority class over the minority class. This means that during the learning process 

each model resampled individuals in the training set with an outcome three times, 

while those without an outcome were not resampled.

We created a stacked ensemble model, i.e. a model which combines input 

predictions from separate models, that contained a gradient boosted machine 

(GBM), random forest (RF), elastic net, and a neural network (NN) 323. These models 

were selected based on their availability in H2O. Each model was trained separately 

using cross validation (CV) with 3 folds in the training set until the AUC did not 

improve by 0.0001 for five rounds based on performance within the CV folds. The 

model was then put to the tuning test to determine if the model training process 

should continue. A combination of grid search and random search was used to 

tune the hyper-parameters of each model (Supplementary Tables 3 – 6). Scaled 

variable importance scores were obtained from our tree-based models GBM and 

RF, with the overall variable importance rankings determined using the average of 

scores across both models. The variable importance in models built with H2O can 

be interpreted as the improvement in the squared error when the feature is split 
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on a node 320. As these scores were calculated during the learning process these 

values are solely based on the training set. These values were then scaled for ease 

of interpretation.

Once each of the 6 models reached satisfactory performance in the tune set, the 

models were combined into a stacked ensemble model, and tested on the test and 

the NTR data. The model was not modified after this step.

In order to account for population stratification, we also included the first five 

genetic PCs as predictors in our model.

Sensitivity analysis 
To determine the stability of the variable importance for the model we trained 

a GBM  and RF using the NTR data. For these analyses we used the same analysis 

process and range of parameters as the main analysis. However, no validation set 

was created so the data was split based on an 80/20 split stratified by family ID as 

well as the outcomes. The test set was reserved until a satisfactory performance 

was found for each model based on the performance of each cross-validation fold.

RESULTS

Descriptive Statistics
The data was well balanced between the training, tune, and test set (Table 1). The 

age of the sample at the measurement of the outcomes ranged from 17 to 21. The 

percentage of those with aggression or self-harm varied between the CATSS and 

NTR data sets. While the CATSS data had a much higher proportion of individuals 

who reported self-harm (CATSS = 12.94%; NTR = 2.38%), the NTR data had an 

increased proportion of individuals who were classified as aggressive (CATSS = 

7.46%; NTR = 14.53%). The final proportion of individuals with aggression in the 

NTR does not correspond to the previously described T-score percentile because 

the T-score percentile was based on the total NTR sample while the final proportion 

is based on the sample after data cleaning. Overall, 25.19% of individuals in the 

CATSS data set were classed to have endorsed the outcome, compared to 18.78% in 

the NTR data set. PCA analysis did not show a clear distinction between individuals 

with and without the outcome (Supplementary Figure 1). 
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We further investigated the discrepancy in the self-harm outcome by performing 

a logistic regression where self-harm was regressed on cohort and measurement 

year. We observed a significant positive association with measurement year with 

the NTR showing increased endorsement of self-harm items with time (β, 0.063; 

SE, 0.015;  P = 2.41 × 10−05), and a significant negative association with cohort  

(β, -1.561; SE, 0.165;  P < 2.00 × 10−16). This may be a combination of differences in 

the start of data collection for both cohorts (1987 in the NTR and 2004 in CATSS) as 

well as differences in the wording of the questions across both cohorts, and may 

indicate that the higher rate observed in CATSS could be partly due to the later 

year of measurement. 

Table 1. Descriptive statistics for all datasets

Description N (% Female) N Outcome (%) Self-Harm Aggression Both

Total data 7,965 (59.38%) 1,880 (23.60%) 822 (10.32%) 734 (9.22%) 324 (4.07%)

NTR 1,975 (69.06 %) 371 (18.78%) 47 (2.38%) 287 (14.53%) 37 (1.87%)

CATSS 5,990 (56.19%) 1,509 (25.19%) 775 (12.94%) 447 (7.46%) 287 (4.79%)

Training set 4,779 (56.02%) 3,551 (25.7%) 617 (12.91%) 375 (7.85%) 236 (4.94%)

Tune set 594 (56.06%) 143 (24.07%) 83 (13.97%) 30 (5.05%) 30 (5.05%)

Test set 617 (57.70%) 479 (23.79%) 75 (11.65%) 42 (7.49%) 21 (4.66%)

Model Performance
Ultimately, three models were included in the ensemble model: GBM (AUC [1000 

bootstrap, 95% CIs]; train set 0.868 [0.837– 0.870]; tune set 0.661 [0.601 – 0.861]), RF 

(train set 1.000 [1.000 – 1.000]; tune set 0.676 [0.622 – 0.724]), and elastic net (train 

set 0.683 [0.630 – 0.728]; tune set 0.682 [0.664 – 0.700]). The neural network model 

(train set 1.000 [1.000 – 1.000]; tune set 0.606 [0.564 – 0.669]) did not have a suitable 

performance. Overall the model performance for the ensemble model was uniform 

between the datasets (train set 0.981 [0.995 – 0.965]; tune set 0.683 [0.624 – 0.731]; 

test set 0.663 [0.616 – 0.721]; NTR data 0.729 [0.703 – 0.761] )   (Figure 2).   For each 

dataset the positive predictive value (PPV) was lower than the negative predictive 

value (NPV) (Train set PPV = 56.3%, NPV = 99.9%; Tune set PPV = 33.9%, NPV = 

87.3%: Test set PPV = 28.9% NPV = 84.6%; NTR data PPV = 26.6%, NPV = 91.4%) (See 

Supplementary Table 7 for breakdown based on NTR data). Based on a threshold of 

0.219 determined by the maximum F1 statistic, the sensitivity (train set = 0.998; tune 

set = 0.755; test set = 0.667; NTR data = 0.801) and specificity (train set = 0.732; tune 

set = 0.532; test set = 0.528; NTR data = 0.489) of the models varied extensively. 
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Figure 2. ROC curves for each data set

Note: Training set AUC (95% CI) = 0.981 (0.995 – 0.965); Tune set =  0.663 (0.616 – 0.721); Test set = 
0.729 (0.703 – 0.761); Netherlands Twin Register (NTR) = 0.729 (0.703 – 0.761)

Variable Importance
Importance rankings across GBM and RF were inconsistent, although aggression at 

age 15/16 was ranked as most informative overall, followed by PGS of psychiatric 

traits, and then internalizing problems at age 15/16. Although confidence 

intervals overlapped across both models, RF was the better performing model 

and generally rated self-reported psychopathology symptoms at age 15/16 as the 

most informative, compared to PGS variables, parent reported symptoms at age 

9/12, and environmental variables. On the other hand, aggressive symptoms at 

age 15/16 as well as various PGS variables were rated highest by GBM (Figure 3, 

Supplementary Table 8). 
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Figure 3. Scaled variable importance for the top 25 scores 

Variable Importance represents the reduction in mean squared error when the variable was split on 
a node. Abbreviations: w1 = Measured at wave 1; w2 = Measured at wave 2; PGS = Polygenic score; 
PC = Principal component
Gradient Boosted Machines (GBM) Final AUC [1000 bootstrap, 95% CIs] train set: 0.868 [0.837– 0.870]; 
GBM Final AUC tune set: 0.661 [0.601 – 0.861]
Random Forest (RF) Final AUC train set: 1.000 [1.000 – 1.000]
RF Final AUC tune set: 0.676 [0.622 – 0.724])

Sensitivity analysis 
The sensitivity analysis showed an over reliance on self-reported aggression at age 

15/16 for both the GBM and RF models (Supplementary Figure 2; Supplementary 

Table 9). Additionally, the model performance was poor on the combined CATSS 

data set for both the GBM (AUC [1000 bootstrap, 95% CIs]; NTR train set 0.937 

[0.924 – 0.950]; NTR test set 0.758 [0.694– 0.817]; CATSS data 0.585 [0.568 – 0.602] ) 

and RF model (NTR train set 0.932 [0.995 – 0.965]; NTR test set 0.727 0.653– 0.789]; 

CATSS data 0.598  [0.580 – 0.614]).
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DISCUSSION

In the current study we created a model to identify adolescents at a high risk of 

self-harm and/or aggressive behaviour, using a wide range of predictors including 

parental- and self-reported symptoms of psychopathology, behavioural measures, 

and genetic risk for different traits and psychiatric disorders. By training the model 

in the CATSS sample and validating it in the NTR sample, we tested the cross-

cultural/external prediction of the model. Although the model  had a lower final 

AUC of 0.663 in the CATSS test set, it performed satisfactorily in the NTR sample 

with a final AUC of 0.729, uniform with the CATSS training and tune set. A clinical 

cut-off of 80% for sensitivity and 50% for specificity has been previously proposed 
324, and although the sensitivity (CATSS 0.667; NTR 0.801) and specificity (CATSS 

0.528; NTR 0.489) was partially met in the samples, the performance across both 

metrics did not suffice in either dataset. However the model performance in the 

NTR suggests it is generalizable across national twin registers in the Netherlands 

and Sweden. 

While the specificity and sensitivity of the model remain independent of the 

sample size, the PPV (the probability of correctly predicting the presence of the 

outcome) and NPV (the probability of correctly predicting the absence of the 

outcome) are influenced by the absolute number of cases and non-cases. Thus, 

we expected the PPV scores (CATSS 28.9%; NTR 26.6%) to be lower than the NPV 

scores (CATSS 84.6%; NTR 91.4%) for each of the datasets as the number of cases 

were relatively small compared to non-cases, i.e. class imbalance. The PPV scores 

indicate that the model was correct 29% and  27% of the time when it classified 

participants as having the outcome. This should be considered in the context of 

the true prevalence of the outcome which was 23.6% in the entire sample. 

Overall, our study shows comparable or marginally improved prediction compared 

to previous studies investigating both self-harm and aggression outcomes in 

clinical settings. A previous study which developed a clinical risk assessment 

implemented by psychologists for self-harm and aggression had an average AUC 

of 0.63 and 0.66 respectively 302. Another clinical study predicting self-harm and 

aggression in patients reported a PPV of 24% 303. Our model shows improved 

prediction and arguably provides a less time-intensive approach geared towards 

the general population, as we did not use a clinical sample nor data from clinical 
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interviews. We also observed improved prediction when comparing our model to 

models examining only one of the outcomes, i.e. aggression OR self-harm but not 

both. For example, our model had improved performance when compared to a 

study examining aggression in a prison sample 325. Moreover, based on systematic 

reviews of studies conducted primarily in psychiatric populations and military 

veterans, our study improves upon the weighted AUC of 0.61 for self-injurious 

behaviour and a pooled PPV of 26.3% 297, 298, 326. Thus, our study shows improvement 

compared to past models, and its usefulness in a clinical setting is worth testing to 

see if prediction improves. 

As we investigated a range of predictor types across many years, we were also 

interested in examining the predictiveness of key risk factor domains: home 

environment, genetic, behavioural, and psychiatric. Unfortunately the variable 

importance rankings for the GBM and RF models were somewhat inconsistent 

and did not paint a clear picture of which predictors could be considered most 

informative, though aggressive and internalizing symptoms at age 15/16, as well 

as PGS of psychiatric traits ranked highest on average. The high ranking of PGS 

of various traits may be indicative of genetic associations between the PGS and 

the outcome variables. In general, the variance explained from PGS of psychiatric 

traits are not high enough to be clinically relevant. Particularly, PGS of childhood 

psychopathology traits like ADHD and ASD are based on GWAS with relatively 

low sample sizes, and the variance explained will likely increase as GWAS become 

more powerful. These results support that an increase in power should be an 

important focus in the field of psychiatric genetics, as our results suggest that they 

are already more important than some other variables. Thus, while on their own 

PGS are currently not powerful enough to be clinically useful, our results suggest 

that they may provide additional information which improves prediction when 

combined with other variables/risk factors 327. Clinically, such prediction may be 

useful in selecting individuals at highest risk for a chronic course or non-response 

to treatment. Finally, the sensitivity analyses where the model was based on the 

NTR sample showed a similar trend to the RF model in the main analyses. Self-

reported symptoms of psychopathology measured at the second wave were the 

most important predictors of the outcome. However this should be interpreted 

with care as this model heavily relied on aggression measured at the second wave 

(Supplementary Figure 2). This might be because the prevalence of aggression in 

the NTR data was much higher than self-harm.
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The strengths of this study include the diverse, longitudinal data across and 

the use of two international twin cohorts. Our study featured self and parental 

reported measures at multiple age points as well as genetic data in the form of PGS 

for many psychiatric disorders and other physical traits. Moreover, we were able to 

validate our model through an externally collected data source, which was able to 

provide evidence that the performance of the model was not driven by overfitting, 

i.e. the model closely fitting the training data as to not be generalizable to new 

data. However, our study comes with caveats. First, it is likely that our model would 

be improved by a larger sample size. Similarly, it is likely that additional variables 

related to emotional dysregulation and additional psychiatric symptoms would 

also increase our models performance. Thus, future studies which seek to create 

a model to predict self-harm and aggression in early adulthood should include 

more predictors, especially during middle teenage years. As we only used self-

reported predictors for this time point, it would also be of interest to also include 

parent or teacher reported predictors. Next, due to power concerns we do not 

distinguish self-harm with suicidal intent from self-harm without suicidal intent. 

This distinction may also be an interesting avenue for future research. Finally, our 

measure of self-harm were somewhat inconsistent across both cohorts, as the 

measure of self-harm in the NTR also included suicidal ideation. While self-harm 

and suicidal ideation are linked and highly correlated 294, 328, they are not exactly 

the same.

Conclusions
Our model improved upon previous prediction models examining aggression and 

self-harm. The results suggest that aggressive behaviour in mid-adolescence is a 

key indicator for later aggression and self-harm behaviours. This upholds previous 

literature that aggressive behaviour in childhood is an indicator for a higher risk 

of negative outcomes later in life 329-331. Additionally, internalizing problems in 

mid-adolescence as well as PGS of psychiatric traits were highly informative to 

the model. Future studies should investigate multiple raters, e.g. teachers, self, 

or parents, for questionnaires across each time point to examine whether the 

predictive importance of psychopathology in mid-adolescence is a function 

of timing or rater. For example, previous studies have shown that patterns of 

co-occurence between childhood aggression and internalizing/externalizing 

problems were largely rater independent 332. However, SNP-based heritability 

estimates of self-rated aggression have been shown to be higher than maternal-
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rated aggression 296. Finally, additional work should be done distinguishing 

between the different classes i.e. multilevel models with aggression and self-harm 

as separate outcomes. 

As of now, by and large, machine learning models are not ready for clinical use in 

psychiatric clinics and our model is no different 273. However, we improve upon the 

performance of current prediction models that look at self-harm and aggression 

individually and provide a population-based model which combines the two. 
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ABSTRACT

Both common and rare genetic variants (minor allele frequency > 1% and < 

0.1% respectively) have been implicated in the aetiology of schizophrenia. In 

this study, we integrate single-cell gene expression data with publicly available 

Genome-Wide Association Study (GWAS) and exome sequenced data in order to 

investigate in parallel, the enrichment of common and (ultra-)rare variants related 

to schizophrenia in several functionally relevant gene sets. Four types of gene sets 

were constructed 1) protein-truncating variant (PTV)-intolerant (PI) genes 2) genes 

expressed in brain cell types and neurons ascertained from mouse and human 

brain tissue 3) genes defined by synaptic function and location and 4) intersection 

genes, i.e., PI genes that are expressed in the human and mouse brain cell gene 

sets. We show that common as well as (ultra-)rare schizophrenia-associated 

variants are overrepresented in PI genes, in excitatory neurons from the prefrontal 

cortex and hippocampus, medium spiny neurons, and genes enriched for synaptic 

processes. We also observed stronger enrichment in the intersection genes. Our 

findings suggest that across the allele frequency spectrum, genes and genetic 

variants likely to be under stringent selection, and those expressed in particular 

brain cell types, are involved in the same biological pathways influencing the risk 

for schizophrenia.
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INTRODUCTION

Schizophrenia is a severe and highly heritable psychiatric disorder with onset in 

late adolescence or early adulthood. It is associated with early mortality and greatly 

reduced fertility 333, 334, which put selective pressure on genetic variants related to 

schizophrenia. Despite apparent negative selection, schizophrenia remains highly 

heritable, with a relatively high prevalence 335. Its severe clinical presentation and 

persistence despite negative selection make understanding the nature of the 

genetic effects on schizophrenia essential. 

There is abundant evidence that both common (minor allele frequency > 1%) 

and rare genetic variants are related to schizophrenia 336-338, with the effects of 

the variants inversely correlated to their frequency. Rare novel variants can have 

larger effect, while common variants can only persist in the presence of negative 

selection if their effects are small 339, 340. However, common variants, despite 

smaller individual effects, collectively explain a substantial proportion of the total 

genetic variance in schizophrenia 338, 341. The presence of negative selection results 

in extreme polygenicity where substantial portions of the genome carry variants 

with tiny individual effects on schizophrenia, yet only critical (core) genes when 

perturbed by an influential mutation would strongly impact the disorder 342. 

The genetic architecture of schizophrenia has forced two separate lines of 

enquiry into its genetic aetiology. Genome wide associations studies (GWAS) 

have successfully targeted common variant with small individual effects 54, 338, 343. 

Importantly, they have resulted in valuable leads for functional follow-up studies 

of individual loci. For example, in-depth study of the lead genome wide hit for SCZ 

in the Major Histocompatibility Complex (MHC) locus has implicated complement 

component 4 (C4) gene expression and possibly synaptic pruning in puberty in 

the aetiology of schizophrenia 344. While further analysis of the schizophrenia locus 

in the SLC39A8 gene implicated manganese (Mn) related brain phenotypes in the 

aetiology of schizophrenia 345. 

At the same time, whole exome sequencing (WES) has been used to identify rare 

mutations with larger effects. Since the variants of interest are rare, these studies 

require equally large samples. To reduce the multiple testing burden, early research 

has focused on specific classes of variants for which one can assume a deleterious 
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(risk increasing) effect a-priori. Specifically, researchers have leveraged modest 

sample sizes by focusing on singleton (i.e. only observed once) variants in genes 

intolerant to mutations, that are predicted to be protein-truncating variants (PTVs) 

(i.e. disruptive and likely lead to loss of gene function). These variants and genes 

are the ones most likely to increase the risk of schizophrenia when perturbed by a 

mutation of consequence 336, 346-348. This has been borne out by results from these 

studies, with a recent study implicating 10 genes in which ultra-rare variants are 

significantly associated with schizophrenia 336. 

These parallel lines of genetic inquiry based on different analytical strategies share 

a common goal: increased understanding of the neuro-biology of schizophrenia. 

Subsequently, functional genomic analyses are crucial for understanding the 

pathways and mechanisms via which these disorder-associated genetic variants 

may act. Functional analyses of common variants from GWAS have implicated 

the brain and brain-expressed genes in the aetiology of schizophrenia 54, 338. WES 

studies, which make it possible to test for a burden of rare variants across shared 

functional units such as genes or gene sets, have similarly implicated the brain 

in schizophrenia aetiology 346, 347. More recently, high throughput single-cell RNA 

sequencing techniques, which are able to provide expression profiles of individual 

brain cells at greater resolution, have been developed. They allow prioritization of 

specific brain cell types associated with disorders or traits. Single-cell expression 

data of mouse and human brain cells reveal that disorder-associated common and 

rare variants are enriched in genes expressed in (excitatory) neurons more than in 

other (non-neuronal) brain cells 336, 349, 350. 

In this preregistered study (https://osf.io/uyv2s), we integrated single-cell gene 

expression data with results from GWAS and exome sequenced data in order 

to investigate, in parallel, the enrichment of common and (ultra-)rare variants 

related to schizophrenia in specific brain cell types. We investigated whether trait-

associated common and (ultra-)rare variants were enriched in classes of genes 

that are functionally relevant for schizophrenia. These included sets of genes 

expressed in different brain cell types and neurons, as well as PTV-intolerant (PI) 

genes, i.e. genes under stringent selection. As synaptic functions have previously 

been implicated in the aetiology of schizophrenia, we included gene sets based 

on synaptic processes and composition. Finally, we investigated gene sets made 

up of the intersection of PI genes and the brain expressed genes (i.e. PI genes 

https://osf.io/uyv2s
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that are expressed in the brain) as these are potentially smaller gene sets rich in 

genes related to the biology of schizophrenia and therefore of considerable value 

in follow-up analysis, if proven relevant. By synchronizing the functional analyses 

across common and rare variants, the current study attempts to answer two 

questions: 1) Do common and (ultra-)rare variant gene set and cell type enrichment 

analyses converge to similar results for schizophrenia and if so, 2) What gene sets 

are implicated across both (ultra-)rare and common variant analyses? The current 

analyses may shed light on whether common and (ultra-)rare variants reveal 

unique aspects of the aetiology of schizophrenia, or implicate the same pathways. 

METHODS

Data and sources
GWAS data 
To identify gene sets enriched for common variants, we obtained summary data 

from large publicly available GWAS results of schizophrenia in individuals of 

European ancestry 54, as well as those of East Asian ancestry 341. 

Exome sequencing data
To identify gene sets enriched for (ultra-)rare variants, we obtained genotype and 

phenotype data from the Swedish Schizophrenia Exome Sequencing Project 346, 

a case-control sample of 12380 unrelated Swedish individuals. Cases primarily 

had diagnoses of schizophrenia, although a small proportion of individuals were 

diagnosed with bipolar disorder. See data availability for more information on this 

data set. 

Gene sets
Protein-truncating variant (PTV)-intolerant (PI) genes were obtained from the 

Genome Aggregation Database (gnomAD), and ascertained using the probability 

of loss-of-function intolerance (pLI) metric. We selected genes with pLI > 0.9, 

producing a list of 3063 genes 351. 

Human brain cell gene sets were based on single-nucleus RNA-sequence (snRNA-

seq) data generated on the Genotype-Tissue Expression (GTEx) project brain tissues 
352. We included a total of 14 cell types as ascertained in the study referenced. 
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Sources and processing of expression data are described there. Excluding sporadic 

genes and genes with low expression, for the 14 cell types we selected the top 

1600 (roughly 15%) differentially expressed genes in each cell type, which likely 

cover all, or most, genes that have a vital function in a specific cell type. 

Mouse brain cell gene sets were based on data obtained from a previous study 350. 

Extensive description of sources and processing of expression data are described 

there. In that study, cells were assigned to level 1 classification, with subtypes of 

level 1 assigned as level 2 on the basis of single-cell RNA-sequence (scRNA-seq) 

data and clustering analyses. We focused our analyses on the 24 level 1 gene sets. 

As the scRNA-seq data were from mouse brains, we mapped the gene homologs 

using the human-mouse homolog reference from Mouse Genome Informatics. 

Similar to the human brain gene sets, we selected the top 1600 differentially 

expressed genes in each cell type. 

Synaptic gene sets were selected based on synaptic gene ontology from the SynGo 

database 353, including gene sets defined by cellular component, i.e. the location 

in which the genes are active, or by biological process, i.e. the synaptic processes/

functions they influence. In order to ensure that gene sets were powered enough 

to detect significant effects, we selected only gene sets containing 50 or more 

genes, resulting in a total of 35 gene sets.  

PI x brain cell gene sets contained the intersection genes that are PTV-intolerant 

and are present in each human and mouse brain cell gene set. Although the PI x 

brain cell type are smaller than either the PI-gene set or the brain cell type specific 

gene set, they are potentially more strongly enriched given the genes are (1) 

relevant to brain function and (2) under strong negative selection. 

In total 112 different gene sets were included in the analyses. All genes included in 

each gene set are available in Supplementary Table 1. 

Common variant analyses 
Common variant enrichment was evaluated using competitive analyses in MAGMA 

(v1.08b) 354. MAGMA is a commonly used program for gene and gene set analysis 

that applies the principles of linear regression. It works by first computing gene-

level associations in which p-values for individuals SNPs around a gene are 
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averaged, while taking linkage disequilibrium (LD) structure into account. LD 

is estimated using ancestry-appropriate reference panels for each population 

investigated. We used the European panel of 1000 Genomes Project phase 3 for LD 

estimation in the GWAS based on individuals of European ancestry, and the East 

Asian panel in the GWAS based on individuals of East Asian ancestry. Subsequently, 

gene-based p-values were converted to z scores to test associations between 

each gene set and schizophrenia diagnosis. For each GWAS summary dataset, we 

excluded SNPs with INFO <0.8, as well as duplicate SNPs. Gene location information 

with start and stop sites were obtained from the MAGMA website, with no windows 

specified around the genes. 

Rare variant analyses
Analyses of exome sequenced data including QC was mainly performed using 

Hail 0.2 (Hail Team. Hail 0.2.62-84fa81b9ea3d.  https://github.com/hail-is/hail/
commit/84fa81b9ea3d). QC generally followed those described in a previous 

study 347, as well as those detailed here: https://astheeggeggs.github.io/BipEx/
index.html. Full description, including variant annotation and (ultra-)rare variant 

definitions are provided in the Supplementary text. 

Gene set (association) analyses 
We assessed (ultra-)rare variant enrichment in each gene set using logistic 

regression, testing the association between the burden of (ultra-)rare variants, 

and schizophrenia diagnosis. Sex and 10 genetic PCs were included as covariates 

in each set of analyses. We excluded individuals who were more than 4 median 

absolute deviations from the study specific median number of synonymous (ultra-)

rare variants. The significance threshold was set to 5% false discovery rate in 

analyses across all gene sets per variant allele frequency.  

We deviated from the pre-registration outlined by omitting parallel analyses 

for autism spectrum disorder. As analyses of autism exome sequence data 

unexpectedly required considerably more processing than the schizophrenia 

dataset, publication of the current valuable results for schizophrenia would be 

unreasonably delayed.

https://github.com/hail-is/hail/commit/84fa81b9ea3d
https://github.com/hail-is/hail/commit/84fa81b9ea3d
https://astheeggeggs.github.io/BipEx/index.html
https://astheeggeggs.github.io/BipEx/index.html
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RESULTS

Common variants
We used MAGMA to evaluate the enrichment of common schizophrenia-associated 

variants in PI genes, as well as genes expressed in brain cells and synapses. In 

the European sample, schizophrenia-associated common variants were strongly 

enriched in PI genes, as well as genes highly expressed in human brain cells. 

Enrichment in genes expressed in mouse brain cells was also present across the 

different cell types, but not to the same extent as the human brain cells. Across 

brain cell types, we observed higher association betas at the intersection of PI and 

brain cell expressed genes suggesting stronger enrichment, although confidence 

intervals were largely overlapping (Figure 1). Wider standard errors in these 

analyses likely reflect the loss of power from selecting only intersecting genes. 

Across the human brain cell types analysed, enrichment was strongest for genes 

expressed in excitatory neurons from the hippocampus (pyramidal and granule) 

and prefrontal cortex, as well as GABAergic interneurons and oligodendrocyte 

cells. In mouse brain cells enrichment was strongest in pyramidal cortical and 

hippocampal neurons, as well as medium spiny neurons (a type of GABAergic 

neuron). Again we observed more significantly enriched gene sets in the PI and 

mouse brain interaction gene sets, additionally implicating dopaminergic, and 

serotonergic neurons as well as interneurons. Finally, we observed significant 

enrichment in genes associated with synaptic processes. Common variants were 

most enriched in postsynaptic cellular components and biological processes. The 

standard errors for these associations were wide, likely due to the lower number of 

genes per gene set (Supplementary Figure 1).

In analyses of individuals of East-Asian ancestry we observed a similar pattern of 

results as the in the analyses of European individuals, in that there was stronger 

enrichment at the intersection of PI and brain cell expressed genes. However, we 

only observed significant enrichment in four gene sets, including the PI gene set 

(Supplementary Figures 2 and 3). This may have been related to power as this 

GWAS had a smaller sample size. 
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Figure 1. Common variant enrichment in PI and brain cell gene sets. 

Red stars denote significant gene sets after multiple testing correction. ASC=astrocytes, exCA1/
exCA3=pyramidal neurons from the Hippocampal Cornu Ammonis regions, exDG=granule neurons 
from the Hippocampal dentate gyrus region, exPFC1/exPFC2=pyramidal neurons from the prefrontal 
cortex, GABA1/GABA2=GABAergic interneurons. Although not included in the figure, the synaptic 
gene sets were included in multiple testing correction. 
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(Ultra-)rare variants
After QC, 10592 individuals (4623 cases and 5969 controls) were included in the 

ultra-rare variants analyses, while 10553 individuals (4603 cases and 5950 controls) 

were included in the rare variant analyses. The sample sizes were different across 

both sets of analyses due to the exclusion of individuals who were more than 4 

median absolute deviations from the study specific median number of synonymous 

variants. We tested the association between the burden of rare (AF < 0.1%) or ultra-

rare PTVs and schizophrenia diagnosis. Ultra-rare variants were those observed in 

1 out of 188,023 individuals (our sample + gnomAD + DiscovEHR). Schizophrenia 

cases had a significantly higher burden of both ultra-rare (β = 0.082, SE = 0.017,  

P = 2.79 x 10-6) and rare (β = 0.026, SE = 0.007, P = 0.0004) PTVs compared to 

controls. As a negative control, burden scores for synonymous variants were 

computed, which were not significantly different between cases and controls for 

ultra-rare (β = 0.013, SE = 0.009, P = 0.151) or rare (β = 0.0008, SE = 0.002, P = 0.718) 

variants. 

Next, we assessed (ultra-)rare variant enrichment in each gene set using logistic 

regression, testing the association between the burden of (ultra-)rare variants 

and schizophrenia diagnosis. Both rare and ultra-rare variants were significantly 

enriched in PI genes. Overall, there was greater enrichment of ultra-rare PTVs 

compared to rare PTVs across gene sets analysed. Similar to common variants, 

enrichment of rare and ultra-rare PTVs was greater at the intersection of PI genes 

and genes expressed in mouse and human brain cells (Figure 2), though in this 

case there was more enrichment of genes expressed in mouse brain cells compared 

to human brain cells. Across the brain cell types, enrichment was again strongest 

for genes expressed in excitatory neurons from the hippocampus and prefrontal 

cortex, as well as GABAergic interneurons, oligodendrocyte cells, and medium 

spiny neurons. We also observed enrichment in synaptic genes (Supplementary 

Figure 4). Complete regression results for PTVs and synonymous variants are 

described in Supplementary Tables 2 – 5. 
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Figure 2. (Ultra-)rare variant enrichment in PI and brain cell gene sets. 

Red stars denote significant gene sets after multiple testing correction. ASC=astrocytes, exCA1/
exCA3=pyramidal neurons from the Hippocampal Cornu Ammonis regions, exDG=granule neurons 
from the Hippocampal dentate gyrus region, exPFC1/exPFC2=pyramidal neurons from the prefrontal 
cortex, GABA1/GABA2=GABAergic interneurons. Although not included in the figure, the synaptic 
gene sets were included in multiple testing correction.
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Convergence of enrichment across allele frequency spectrum 
We investigated whether common and (ultra-)rare variants converged to similar 

results by rank correlating the association betas across the three allele frequencies 

for each gene set. We also evaluated overlapping gene set enrichment across the 

allele frequency spectrum.

Figure 3. Correlation between gene set enrichment in common vs ultra-rare variants.
 

Point sizes represent the weight assigned to each correlation estimate, obtained by calculating 
the inverse of the product of both standard errors. Correlation estimate is 0.537, while weighted 
correlation is 0.708. Labelled gene sets are significantly enriched across both common and rare 
variants

We observed moderate to high correlations of effect sizes across the three 

pairs of comparisons. Correlation estimates ranged from 0.515 to 0.740, and 

from 0.561 to 0.802 when weighted by the inverse of standard errors from each 
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association estimate (weighting precise estimates more heavily than imprecise 

estimates when comparing across common and rare enrichment results) (Figures 

3 – 5). Additionally, 16 gene sets were significantly enriched across all three allele 

frequencies, implicating PI genes, medium spiny neurons, and pyramidal neurons 

from the mouse brain, as well as multiple intersection gene sets, across the allele 

frequency spectrum. 28 gene sets were significantly enriched across common and 

ultra-rare variants, 17 across rare and ultra-rare variants, and 16 across common 

and rare variants. 

Figure 4. Correlation between gene set enrichment in rare vs ultra-rare variants.
 

Point sizes represent the weight assigned to each correlation estimate, obtained by calculating 
the inverse of the product of both standard errors. Correlation estimate is 0.740, while weighted 
correlation is 0.802. Labelled gene sets are significantly enriched across both common and rare 
variants
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Figure 5. Correlation between gene set enrichment in common vs rare variants. 

Point sizes represent the weight assigned to each correlation estimate, obtained by calculating 
the inverse of the product of both standard errors. Correlation estimate is 0.515, while weighted 
correlation is 0.561. Labelled gene sets are significantly enriched across both common and rare 
variants

DISCUSSION

We used GWAS and whole exome analyses of schizophrenia to investigate whether 

common and (ultra-)rare PTV enrichment converge to similar results in terms of 

what gene sets are implicated across analyses. We observed partial convergence 

across the gene sets significantly enriched for common and (ultra-)rare variants, in 

that multiple gene sets were significantly enriched across all three variant classes. 

Enrichment analyses implicated mainly excitatory neurons from the prefrontal 

cortex and hippocampus, medium spiny neurons, and GABAergic neurons, as well 
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as PI genes, synaptic components, and processes. Moreover, across all three allele 

frequencies, enrichment was stronger in the gene sets containing the intersection 

of brain cell types and PI genes compared to the brain cell gene sets.

Brain cell enrichment findings are consistent with findings from previous analyses 

of both common and (ultra-)rare variants associated with schizophrenia 336, 338, 349, 

350. Overlapping significant enrichment between ultra-rare and common variants 

provides additional evidence of some convergence in genes and biological 

mechanisms implicated by genetic variants across the allelic spectrum. Recent 

analyses showed significant enrichment of ultra-rare variants in genes implicated 

by schizophrenia GWAS, and that two genes implicated in rare variant analyses 

also showed associations in the schizophrenia GWAS 336. Additionally, we showed 

that genes likely to be under stringent selection (PI genes) are implicated in both 

common and (ultra-)rare variants, while stronger enrichment in the intersection of 

brain cell types and PI genes suggests that PI genes are generally important, but 

even more so in these cell types. These gene sets, particularly the intersection gene 

sets, potentially provide a manageable set of genes and biological processes to 

target for follow-up analyses. 

An important factor to consider in light of our and similar findings, is how much 

progress the results represent with regards to disease biology. Analyses of common 

variant cell-type enrichment support current distinctions between neurological 

disorders like Parkinson’s disease and Alzheimer’s disease, versus psychiatric 

disorders, as they have shown different association patterns. Parkinson’s disease 

has implicated cholinergic and monoaminergic neurons, Alzheimer’s disease has 

implicated microglial cells, while psychiatric disorders like schizophrenia have 

implicated excitatory neurons 349, 355, 356. Findings across psychiatric disorders are 

less clear. Analyses of individual psychiatric disorders suggest similar patterns 

of cell-type associations for disorders including schizophrenia, bipolar disorder, 

MDD, and anorexia nervosa, although enrichment was generally strongest for 

schizophrenia 73, 349. However, analyses of psychiatric disorder factors have shown 

that common variant enrichment in excitatory and GABAergic genes from human 

brain cells is limited to a psychotic disorder factor (comprised of schizophrenia 

and bipolar disorder), with no enrichment observed in compulsive (anorexia 

nervosa, obsessive compulsive disorder, Tourette syndrome), neurodevelopmental 

(attention deficit/hyperactivity disorder, autism spectrum disorder, post-traumatic 
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stress disorder, and MDD), or internalizing factors (post-traumatic stress disorder, 

MDD and anxiety disorders) 357. Importantly, similar neuronal enrichment has been 

observed for non-psychiatric cognitive traits including intelligence, educational 

attainment, neuroticism, and body mass index (BMI), which show modest but 

robust genetic correlations with psychiatric disorders including schizophrenia 349, 

358-360. 

These findings suggest that at the current resolution of analyses (expression 

differences between all cell types), common variant enrichment in genes 

predominantly expressed in neurons is non-specific and pervasive across various 

behavioural traits, although the lack of findings for most psychiatric disorders may 

also point to differences in statistical power across the GWAS. Future analyses, 

for example based on more comprehensive single-cell sequencing of all neuron 

subtypes, could identify genes that are specific to certain developmental stages 

in order to seek out cell types, cell functions or developmental phases that 

are specific to schizophrenia. Such analyses using whole-brain developmental 

expression profiles have shown enrichment of schizophrenia-associated common 

variants in the prefrontal cortex during early midfetal development 361. Limits on 

data availability currently make it difficult to investigate whether these similarities 

across various traits in common variant cell type enrichment translate to (ultra-)

rare variant enrichment, and is a significant avenue for future research, although 

brain-expressed genes have also been found to be enriched for ultra-rare variants 

associated with educational attainment 362. This is vital as the importance/

contribution of variant classes along the allelic spectrum may vary depending on 

phenotype. 

Our study, as well as other results 336, 338, further suggest that polygenicity, where 

very many genetic loci are implicated in a disorder like schizophrenia, complicates 

the search for individual risk loci in both common and (ultra-)rare variant analyses. 

As gene set analyses are strongly correlated between GWAS and (ultra-)rare 

variant analysis, it is not unlikely that analyses at the level of the gene show similar 

correlations between common and (ultra)rare variants. Strong correlations at the 

level of the gene may call for meta-analysis across GWAS and rare variant studies, or 

more subtle information integration that accounts for both the weight of evidence, 

as well as the regions/features/functions of the gene that are influenced by rare or 

common variation. 
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Our findings should be considered in light of some limitations. Firstly, our findings 

are limited by the current definitions of ultra-rare variants, and results might be 

subject to change if definitions change as more data becomes available. Secondly, 

our analyses are likely affected by the size of gene sets. Larger gene sets likely 

have more power to detect effects compared to the smaller gene sets. This was 

particularly evident in the interaction and synaptic gene sets which had wide 

confidence intervals. Finally, our analyses were limited to individuals of European 

ancestry, making it not generalizable to individuals of other ancestry. Overall 

similar analyses typically contain limited non-European samples, with non-

European samples making up 20% of the most recent schizophrenia GWAS 338 and 

26% of the most recent WES-based schizophrenia analyses 336. 

In conclusion, we show that there is at least partial overlap in the genes disrupted 

by both common and (ultra-)rare variants associated with schizophrenia suggesting 

involvement of the same biological mechanisms. Genes influencing neuronal 

processes as well as genes likely to be under stringent selection are implicated in 

schizophrenia aetiology across common and (ultra-)rare variants. Future studies 

integrating information across the allele frequency spectrum might prove useful in 

furthering our understanding of schizophrenia aetiology.
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Chapter 7
Conclusion and general 
discussion of findings 
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Childhood and adolescence are important developmental stages that can set 

the tone for long-term outcomes across the lifespan. In particular, children 

with psychopathology have an increased risk of continued psychopathology in 

adulthood compared to the general population 5-9. Moreover, psychopathology 

in childhood has been repeatedly identified as a risk factor for other adverse 

health and socio-economic outcomes. Therefore an understanding of the genetic 

underpinnings of such traits could be crucial in identifying children most at risk of 

adverse outcomes, as well as in developing intervention or prevention strategies 

that may prove useful to them. Over the past decade, there has been major progress 

in the field of molecular and statistical genetics that facilitated research on the 

genetic aetiology of psychopathology and psychiatric traits. However, for various 

reasons, including availability of larger datasets and less developmental variance, 

the bulk of this research has been on adult traits. Therefore, we performed studies 

with the aim of investigating genetic mechanisms underlying the persistence 

of psychiatric traits in children and adolescents, as well as understanding how 

they develop into adulthood. By performing analyses across the allele frequency 

spectrum, we further investigated both common and rare genetic variants and 

their contribution to psychopathology. In this chapter I summarise the major 

findings from these studies as well as their implications and I discuss them in the 

context of other findings in the field. Finally, I discuss potential future research 

directions in childhood psychopathology and psychiatric genomics, informed by 

findings from the studies in the thesis. 

As with initial GWAS of adult traits, the first GWAS of childhood psychopathology 

traits did not identify any convincing trait-associated genetic variants as a result 

of small sample sizes. However, results from analyses of SNP-based heritability 

were low but promising, thus hinting at the possibility of eventually identifying 

trait-associated variants. Similarly, polygenic scores (PGS) which were initially 

developed to test the theory of polygenic inheritance, were able to predict the 

same trait in another sample even when based on GWAS with few or no significant 

hits. This further hinted at effects captured in common variants which could 

become significant with appropriately large sample sizes. 

By the start of my PhD in 2017, studies using various types of polygenic analyses 

had been performed for over a decade, with incremental improvements and 

findings with increased sample sizes in each new study. The systematic review 
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performed in chapter 2 was born out of an interest in assessing how far the field 

had come with regards to findings on molecular genetic analyses of childhood 

psychopathology. Specifically, we were interested in the extent to which molecular 

and statistical genetic approaches could be used to explain development, stability, 

and comorbidity of childhood psychiatric traits. We showed that larger sample 

sizes facilitate the discovery of trait-associated genetic variants, as well as provide 

evidence of heritability based on measured genetic variants, known as SNP-based 

heritability. The review also showed that these SNP-heritability estimates are 

lower than estimates from twin studies, a known phenomenon across all traits 

GWAS called the “missing heritability” problem, which was already well known for 

adult psychopathology 363. Finally, we observed abundant cross-trait associations 

across psychopathology traits, suggesting a role for pleiotropic genetic effects 

(where multiple traits are influenced by the same genetic variant) in the aetiology 

of psychopathology across development. On the whole this review showed that 

while substantial progress has been made regarding the genetics of childhood 

psychopathology, gaps in knowledge remain, and various avenues for research 

need to be exploited in order to further our understanding. These include analyses 

of causality, more inclusion of non-European populations in analyses, analyses of 

larger, phenotypically homogeneous samples, as well as integrating information 

from rare genetic variants in analyses.

Concurrent with the review described in chapter 2, we were interested in the genetic 

underpinnings of observed phenotypic associations between psychopathology 

in childhood and adult mood disorders, and related functional outcomes. Building 

further on the findings described in the review, in chapter 3 we used polygenic scores 

(PGS) to investigate whether genetic risk for adult mood disorders and related traits 

are associated with childhood psychopathology. Combining childhood data from 

multiple longitudinal birth and population cohorts across Europe, we assembled 

the largest sample of a study of this kind (N=42,998), testing associations between 

PGS of adult major depression, bipolar disorder, neuroticism, insomnia, subjective 

wellbeing, educational attainment, and body mass index (BMI), and phenotypic 

measures of childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, 

internalizing, and social problems. We showed a consistent pattern of mostly stable 

genetic associations between adult trait PGS and childhood psychopathology 

across age, indicating the existence of a set of genetic factors that influence 

psychopathology and related traits across the lifespan. Additionally, we showed 
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differential associations between educational attainment and BMI PGS, and types 

of childhood psychopathology. Specifically, educational attainment PGS was 

only associated with ADHD symptoms, while BMI PGS was associated with ADHD 

symptoms and social problems but not internalizing problems.

As both the adult and childhood traits investigated are genetically correlated,  

it raised the question of whether the ubiquitous genetic associations observed in 

chapter 3 are influenced by correlations between related traits. Thus, in chapter 4,  

we extended our previous analyses by performing multivariate multivariable 

regression analyses of all the traits from our previous study using OpenMx, 

which allowed us to account for correlations between the childhood traits and 

between the adult trait PGS. Again, we observed differential associations between 

educational attainment and BMI PGS, and childhood psychopathology, i.e. 

educational attainment PGS was associated with ADHD symptoms, while BMI PGS 

was associated with ADHD symptoms and social problems. Crucially, previously 

observed associations between neuroticism, insomnia, and wellbeing PGS and 

childhood psychopathology measures were no longer present. Only major 

depression PGS remained associated with all three childhood psychopathology 

measures, suggesting that while shared genetic factors have a role in our 

understanding of psychopathology, unique genetic factors are likely also important. 

Additionally, neuroticism only remained associated with internalizing problems 

which might be indicative of shared item- or symptom-level measures of both traits.  

One of the major aims of studying psychopathology is prediction of who will 

eventually develop psychopathology. While genetics clearly play a role in 

psychiatric aetiology, non-genetic/environmental variables also play a role 

and potentially represent modifiable risk factors for targeted intervention or 

prevention strategies. Unfortunately such factors are difficult to account for in 

typical molecular genetic studies. Prediction models represent one method of 

assessing the relative contribution of different variable types in the development 

of an outcome. We used this strategy in chapter 5, where we combined genetic 

and early life environmental and psychosocial variables in order to predict 

aggression and/or self-harm in late adolescence/early adulthood. Although as 

expected the model performance indicated it would not be suitable for clinical 

use, our results suggested that aggressive symptoms in mid-adolescence as well 

as PGS of psychiatric disorders were important predictors of aggression and/or 
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self-harm. We also showed that a combination of different types of predictors, 

including both genetic, environmental and psychosocial factors, provided the best 

model for predicting our outcome.

The analyses described so far largely involved common genetic variants (MAF 

> 1%) and their role in psychopathology. However, studies have shown that 

the contribution of rare variants is non-trivial. In chapter 6 we compared 

schizophrenia-associated common and (ultra-)rare variant enrichment in gene sets 

that are functionally relevant for schizophrenia. Our analyses implicated genes 

likely to be under stringent selection, as well as those expressed in excitatory 

and medium spiny neurons. Moreover, results showed partial convergence across 

common and (ultra-)rare variants, indicating that the same biological mechanisms 

are implicated across the allele frequency spectrum. While studying schizophrenia 

may represent a deviation from the childhood traits studied in previous chapters, 

it is one of few traits with appropriate data and statistical power for this kind of 

analysis and provides proof of concept for how analyses like these might be useful 

in childhood traits as well. 

General discussion and implications of findings
Pervasive genetic overlap across psychopathology  
One of the main findings from chapters 2, 3 and 4 is of pervasive genetic 

overlap amongst a variety of traits across age, indicating pleiotropy. Pleiotropy 

occurs when a single genetic variant or gene influences multiple phenotypes. 

These findings are consistent with numerous studies showing the existence of 

widespread pleiotropy across psychiatric traits in general, with a recent GWAS 

analysing over 500 traits including psychiatric traits finding that more than 60% 

of trait-associated genes were pleiotropic 364. In chapters 3 and 4, we show 

genetic associations between childhood psychopathology and multiple adult 

traits not restricted to psychiatric disorders/traits. These results have implications 

for the continuity of psychopathology across the lifespan, as well as showing that 

beyond psychopathology, genetics also underlie associations between childhood 

psychopathology and adult health and socio-economic status (SES) outcomes like 

BMI and educational attainment.

Pleiotropy can be the result of multiple genetic mechanisms including horizontal 

pleiotropy – where a genetic variant has direct biological influence on multiple 
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traits, and vertical pleiotropy – where a variant influences one trait and that trait 

has a causal effect on another 166, 365. While the polygenic analyses described in 

these chapters can provide insight into the genetic architecture of traits, they are 

not informative about the specific mechanism(s) of pleiotropy that might be at 

play. Yet this knowledge may be important to be able to use genetic information 

for future clinical applications. Additionally they are not able to indicate which 

specific variants or genome regions are responsible for the observed effects. One 

way in which such pleiotropic variants may be identified is via cross-disorder GWAS 

meta-analyses. This method has been recently applied in joint analyses of disorders 

including anorexia nervosa, ADHD, ASD, bipolar disorder, major depression, 

obsessive compulsive disorder (OCD), schizophrenia, and Tourette’s syndrome (TS), 

performed by the Psychiatric Genomics Consortium’s Cross-Disorder Group (PGC-

CDG) 97. Of the 146 genome-wide significant loci identified in this study, 109 (about 

75%) were found to be pleiotropic, affecting two or more disorders, while 23 loci 

(about 16%) affected four or more disorders. The early-onset neurodevelopmental 

disorders including ASD, ADHD, and TS were implicated in 36%, 16%, and 14% 

of the pleiotropic loci respectively. The identification of these variants link the 

occurrence of pleiotropy to specific genetic variants, and represent an important 

step in understanding this phenomenon and its contribution/role in explaining 

psychopathology.

Importantly, pleiotropy underlying cross-trait associations may have clinical 

implications. One of the most pertinent is the implication for current clinical 

boundaries on which diagnoses are based. Disorders are generally categorised 

as distinct syndromes based on the presence of specific symptoms as well as 

other indicators. However, the observation of widespread genetic overlap across 

different traits as shown by numerous studies raises questions as to the validity 

of current diagnostic classifications. While useful and practical, current research 

results indicate the need for a different, more nuanced approach to current 

classification systems. Namely, one that is also informed by genetic aetiology, 

particularly with regards to disorders like depression where symptom profiles 

are highly heterogeneous across patients. For example, genetic information may 

be leveraged to better define more homogeneous disorder subtypes that better 

reflect underlying aetiology. Additionally, pleiotropy may have implications for 

drug development in that development of drugs targeting pleiotropic genes or loci 

might mean that these drug therapies are useful for treating a range of disorders.
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Shared and unique genetic factors likely underlie childhood psychopathology
Observations of correlation, comorbidity, and pleiotropy, have fuelled a line of 

inquiry into the general factor of psychopathology, so-called p factor; the idea 

that psychopathology exists along a shared continuum and that a broad latent 

dimension captures variance across all psychopathology traits 164, 165, 366. Both 

phenotypic and genetic analyses of psychopathology have provided evidence 

for this phenomenon, with the p factor found to be associated with a range of 

psychopathology in childhood 164, 251. These findings further highlight the role of 

shared genetic factors to the architecture of childhood psychopathology. However, 

in chapter 4 we observed that while major depression was genetically associated 

with all childhood measures of psychopathology investigated, educational 

attainment, BMI, and neuroticism were genetically associated with specific 

childhood phenotypes. Further, the finding that major depression PGS remained 

associated with all three childhood psychopathology measures was interesting 

and suggests that previously observed associations of childhood psychopathology 

with adult trait PGS are influenced by their genetic correlations with depression, 

and that genetic factors influencing adult major depression are associated with 

childhood psychopathology over and above genetic factors influencing other 

outcomes. The results suggest that genetic variants associated with depression are 

important for all childhood psychopathology measures investigated. However, it 

would be interesting to know if other childhood psychopathology measures, for 

example externalizing traits, show this association with depression as well. Modest 

genetic correlations have been observed with childhood aggression for example 
296. Furthermore, our findings highlight the importance of multivariate methods in 

building a more complete picture of genetic associations. 

Together, our findings suggest that a combination of shared and specific genetic 

factors may underlie childhood psychopathology and explain their genetic overlap 

with adult traits. This finding is in line with studies that show that while different 

psychopathology traits typically load unto a common factor, there is evidence of 

unique contributions as well 251. For example, in chapter 2 we describe a study 

that showed differential genetic and phenotypic associations between ADHD and 

neurodevelopmental disorders, versus externalising or internalizing disorders, after 

accounting for the p factor 169, as well as another study that showed that while the 

p factor explained considerable variance in childhood psychopathology measures, 

inclusion of more specific emotional, behavioural and neurodevelopmental factors 



118

Chapter 7 – Summary and discussion

explained even more variance than just the p factor alone 367. Additionally, factor 

analyses of genetic covariance across psychiatric disorders suggest that three 97 

or four 357 correlated genetic factor models, including one characterised primarily 

by childhood-onset neurodevelopmental disorders including ASD and ADHD, best 

explain genetic overlap between disorders.

Prediction of psychopathology; PGS as clinically relevant risk factors 
A major aim of studying psychopathology is psychiatric risk prediction. Analyses 

of heritability has shown that while complex traits are influenced by genes, they 

also have substantial environmental components. Thus accurate prediction of 

psychopathology is unlikely to be achieved using only genetic information. In 

chapter 5 we showed that a combination of genetic, behavioural, environmental, 

and psychiatric variables predict aggression and self-harm behaviours in late 

adolescence/early adulthood. Importantly, we show that genetic predictors 

indexed via PGS provide important information for improving prediction, 

suggesting a potential role for them in the future as predictive risk factors. 

Genetic prediction of complex traits like psychiatric disorders is a potential avenue 

for clinical use of PGS, potentially allowing for early identification of risk, better 

characterization of psychopathology, and effective treatment. The use of PGS as 

clinical measures is attractive for many reasons. They are relatively easy to obtain, 

non-invasive, immutable, and the cost of generating them is getting cheaper as 

genotyping techniques also become cheaper. However, the predictive power of 

PGS does not appear clinically relevant as of yet. As observed in chapter 5, in our 

prediction model for self-harm and aggressive behaviours where PGS of psychiatric 

disorders ranked highly, the overall model performance was only average. In chapter 

3, we also observed that the best predictive PGS of adult traits explained <1% of the 

variance in childhood psychopathology. This is the result of many different factors, 

including that this particular analysis represented cross-trait predictions of traits at 

a different age, although as described in chapter 2, similarly low variance explained 

has been reported in studies performing within-trait prediction. 

Though the scale of GWAS has greatly improved over the last decade, adequate 

sample sizes are still lacking for most traits for GWAS to produce clinically useful 

PGS, with childhood traits particularly lagging behind until fairly recently 170, 296. Even 

then, large sample sizes have only been achieved for population-based samples, 
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with polygenic scores in these studies explaining between 0.036% to 0.44% of 

phenotypic variance. It is possible that increased prediction might be achieved using 

a target sample with clinical diagnosis. Recent multivariable analyses showed that 

PGS of educational attainment and smoking initiation jointly explained up to 5.9% 

of variance when predicting case-control status in a clinical psychiatric child and 

adolescent 368, higher than observed in other similar studies using population-based 

samples. The highest variance explained estimate from univariate analyses (3.99% 

for educational attainment) in the same study was also higher than in comparable 

analyses using larger population-based samples. However, large enough sample 

sizes are generally difficult to obtain for psychiatric disorders, and more so childhood 

psychiatric samples, given the relatively low prevalence of these disorders. 

Some of the most predictive PGS of complex traits include those for height and 

educational attainment, with the proportion of variance explained by each up to 

24% and 13% respectively 369. While substantial, these estimates are still well off the 

estimates from twin and family based studies 26. Moreover, there is evidence that 

these values might be optimistic, as recent studies have shown that indirect parental 

effects might influence PGS prediction. Non-inherited parental genes which influence 

the environments they select for their children (genetic nurture) has been shown to 

impact prediction in cognitive traits like intelligence and educational attainment 137, 

370, 371, which are modestly correlated with many psychiatric traits. Although yet to be 

proven, this may also be the case for (childhood) psychiatric traits.

So far, PGS of childhood psychiatric phenotypes, including ADHD and ASD, have 

been able to achieve group-level discrimination, i.e. distinguish cases from controls 
38, 53, and schizophrenia PGS has been shown to be significantly higher in adolescents 

at high risk of psychosis who went on to develop psychosis 119. However, individual-

level prediction is currently not feasible, and PGS are unlikely to ever be stand-

alone predictors of disorders. Nevertheless, they remain a useful research tool 

to investigate genetic overlap in traits for which samples are not large enough to 

employ other methods. They have potential as biomarkers in psychiatry and could 

eventually be used in combination with other risk factors to improve disorder risk 

prediction 327, 372, as we do in chapter 5. Improving phenotyping in order to decrease 

the heterogeneity of samples included in GWAS, as well as increasing GWAS sample 

sizes are some of the most viable avenues of improving their predictive ability. 

Unfortunately, there is a lack of large clinical samples of childhood psychiatric traits 
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compared to population-based or adult samples; which remains a stumbling block 

for improving PGS prediction and further assessing their clinical utility. Prediction 

based on GWAS of population-based samples is unlikely to ever be precise enough 

for stand-alone clinical use as prevalence rates of disorders are too low in such 

samples. Additionally, clinical samples are more likely to carry a broader range of 

genetic variation associated with a given disorder. A focus on high-risk groups, i.e. 

clinical samples, is warranted to address this. The results from Jansen et al., (2021) 

indicate the importance of large scale genetic data collection in clinical samples, in 

order to facilitate well powered studies in high-risk samples.

The role of rare variants 
One of the reasons why PGS prediction remains limited is because the GWAS on 

which they are based are limited to common genetic variants with allele frequencies 

of at least 1% in the population. However, other types of genetic variants also play 

a role in the genetic architecture of psychiatric traits including rare, de novo, and 

structural variants. Next generation sequencing of protein-coding regions of the 

genome has allowed for the identification of trait-associated genes or sets of genes 

which are enriched for rare deleterious/disruptive variants 348. Recent work has 

suggested that rare variants may offer an insight into genes central to the biology 

of complex disorders but which cannot be studied from common variant analysis. 

Due to strong negative selection, common variants that influence key genes are not 

allowed to persists in the population 342. On the other hand, newer variants with more 

deleterious impact arise due to high mutation rates and are necessarily rare as they 

have not had time to be removed from the population 339, 340. This complementary line 

of enquiry is important to pursue as genetic variants at different allele frequencies 

likely show differential contribution to the architecture of psychiatric disorders. 

Moreover, association studies across the allele frequency spectrum have had differing 

levels of success for different disorders. For example, while rare variant analyses 

have been more successful and implicated more genes for ASD and developmental 

disorders compared to common variant studies, studies on schizophrenia have 

generally had success across both rare and common variant analyses 373. GWAS of 

ASD have identified 5 associated loci compared to 270 for schizophrenia, while over 

100 genes enriched for rare coding variants have been identified for ASD (especially 

ASD comorbid with intellectual disability) compared to 10 for schizophrenia 31, 336, 373. 

Overall, large copy number variants (CNVs) have provided the strongest evidence 

for specific trait-associated rare variants. While there are important methodological 
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considerations regarding these findings, statistical power not being the least of 

them, it is not impossible that different classes of variants are differentially important 

for different disorders.

As gene discovery studies require large sample sizes to gain enough power to 

identify risk genes for disorders, gene-set analyses provide a statistical advantage. By 

aggregating genomic effects from multiple variants, we increase the power to detect 

associations with a trait/phenotype. Additionally, as gene sets can be constructed 

to correspond to biological functions, mechanisms, pathways, and/or networks, 

associations with a phenotype are informative for potential mechanism discovery, 

as we demonstrate in chapter 6. We used gene sets to show that schizophrenia-

associated common variants as well as (ultra-)rare protein-truncating variants (PTVs) 

are significantly enriched in PTV-intolerant (PI) genes which are likely to be under 

stringent selection, as well as in excitatory neurons from the prefrontal cortex and 

hippocampus, medium spiny neurons, and genes enriched for synaptic processes. 

Our results suggested some convergence in the pathways/mechanisms underlying 

schizophrenia aetiology across the allele frequency spectrum. Additionally, we 

evaluated findings from other studies regarding common variant enrichment of 

similar gene sets to those we investigated in other psychiatric and neurological 

disorders, to assess the specificity of ours and similar findings. We showed that 

the same genes and brain cell types are implicated in other psychiatric disorders 

as well as cognitive traits like intelligence and educational attainment, further 

indicating, perhaps unsurprisingly, that pleiotropy remains prevalent at this level 

of analysis. Additionally, cross-disorder analyses have also used gene sets to 

show that pleiotropic risk loci were significantly enriched in pathways related to 

neurodevelopment 97. Pleiotropic effects have also been observed for rare variants, 

with studies showing that genes enriched for rare disruptive variants overlap across 

schizophrenia, ASD, and intellectual disability 374.  

Future directions and considerations
Disentangling shared and specific genetic factors
Overall, the current body of evidence regarding genetic overlap suggests that 

while pleiotropy is clearly an important factor underlying psychopathology, 

specific genetic factors likely also play an important role. Future studies focused 

on further disentangling these effects will be important in better addressing or 

explaining genetic overlap across psychopathology. For example, recent analyses 
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leveraging the genetic factor structure underlying anxiety and depression were 

able to disentangle their shared genetic architecture, identifying shared genetic 

regions associated with both traits, regions associated with each, and regions 

associated with both but via separate variants 375. More studies like this will be 

useful in further unravelling shared and unique effects amongst traits. This is 

especially crucial for traits like schizophrenia and bipolar disorder, which represent 

distinct phenotypes/diagnoses, but are highly genetically correlated. Additionally, 

analyses that are stratified across age, such as in chapter 3, are needed to shed 

light on developmental mechanisms underlying childhood psychopathology. 

Causal inference in psychopathology across development
An important consideration regarding pleiotropy is that it might be induced by 

causation (vertical pleiotropy). Standard polygenic analyses are not informative on 

the direction of causation in observed associations, or if the genetic associations 

are the result of causal mechanisms in the first place. Genetic associations could 

also be the result of cross-trait assortative mating, where genes for two traits 

are passed down and inherited together due to mating between people who 

score high on one trait and those who score high on the second 376. Nevertheless, 

knowledge regarding potential causal mechanisms is crucial given the long-

term implications of psychopathology in childhood. Additionally, evidence exists 

for disorders such as bipolar disorder, where onset in childhood was associated 

with poorer outcomes, compared to adult-onset bipolar disorder 377. Crucially, 

poorer outcomes extend beyond psychopathology, and we showed in chapters 

3 and 4 that childhood psychopathology is not only correlated with adult major 

depression, but with health and socio-economic status (SES) outcomes including 

BMI and educational attainment. An understanding of causal mechanisms is 

therefore crucial for identifying children most at risk for unfavourable outcomes 

in adulthood, and to ensure proper early mitigations. Methods like Mendelian 

randomization 378 use genetic markers (either a single SNP or a combination of 

multiple SNPs such as PGS) that are associated with a modifiable exposure as 

instrumental variables in order to investigate whether the association between 

the exposure and an outcome is causal. In chapter 4 we highlight recent studies 

that have tried to disentangle causal relationships between ADHD and BMI 265-267, 

and between ADHD and educational attainment 268, with limited success. More 

investigations in this vein are necessary as identification of modifiable causal 

variables may provide useful avenues for targeted intervention or prevention.  
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How PGS may be useful for clinical purposes
Improved PGS prediction represents a very important avenue for identifying 

children at the greatest risk for continuity not just related to psychopathology, 

but also adverse health and SES outcomes. It is therefore important to begin to 

consider how PGS could be used should they become viable clinical tools. They are 

unlikely to have any preventative utility; most treatments for psychiatric disorders 

cannot be administered prophylactically and moreover, in most cases, genetic 

risk alone is not sufficient to lead to the development of a disorder. As we show 

in chapter 5, a combination of genetic, behavioural, and environmental factors 

produced the best performing predictive model of aggression and/or self-harm. 

However, they could for example be used in the early stages of disorders where 

other risk factors are present, but a specific diagnosis is not possible 372. This could 

be particularly important in disorders for which early intervention may improve 

long-term outcomes, for example stratifying children into groups according to 

their risk for persistence, as well as resulting treatment requirements. Should PGS 

eventually become useful in developing preventative strategies, for example in 

combination with family history and genetic nurturing effects, ethical concerns 

regarding screening otherwise healthy children for risk of psychopathology, 

make it unlikely to be an immediately viable approach. Another important 

consideration, or even a huge limitation, regarding PGS and any potential future 

use is that currently, most GWAS are performed in individuals of European ancestry 

(up to 80% Europeans in studies that include samples of multiple ancestries). 

Unsurprisingly, studies that have subsequently analysed the predictive value 

of PGS across different populations have found that prediction of individual risk 

is better in Europeans than non-Europeans 187. If PGS became clinically viable 

biomarkers today, they would likely only be useful for those of European ancestry. 

We (scientists) have ethical and moral obligations to prioritise diversifying samples 

in genomic studies to ensure that this does not become another avenue in which 

social/societal inequalities are further exacerbated.

A holistic approach to understanding aetiology
It is clear that analyses of common variants alone will be limited in sufficiently 

furthering our understanding of the genetic aetiology of psychopathology. Even 

in non-psychiatric traits like height where analyses are based on large sample 

sizes, only a fraction of its 80% twin-based heritability estimate has been captured 

by measured common variants 33. While it is possible that this is due to various 
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methodological factors related to common variant analyses, it is also clear that 

a proportion of heritability is likely explained by rare variants. In fact, a recent 

study has used whole genome sequence data to show that for height and BMI, 

integration of common and rare variant information moved heritability estimates 

closer to those estimated in twin and family studies 379. It is possible that this is 

also the case for psychiatric traits, which in turn has implications for any future 

genetic-based prediction of psychopathology. This is also in line with findings 

that show that for disorders such as schizophrenia and ASD, as well as severe 

neurodevelopmental disorders, both common and rare variants contributed 

to the risk for these disorders 380-382. An important caveat to this is that height is 

a much more precise phenotype to measure than psychiatric disorders, and 

phenotypic heterogeneity may reflect genotypic heterogeneity which blurs 

the estimate. All in all, a combination of common and rare variants appears to 

underlie psychopathology, and an incorporation of both might prove to be the 

most predictive genetic variable. For example, combining burden scores based on 

rare variants with PGS from common variants to see if this increases prediction/

variance explained. 

Finally, there are epistatic genetic effects as well as environmental interactions at 

play which underlie disorder aetiology. They are largely unaccounted for in the 

methods described so far and represent complementary lines of research that 

should be pursued to ensure more complete picture of childhood psychopathology.

Conclusions
It is clear that much progress has been and is being made with regards to 

understanding the genetics of childhood psychopathology. An increase in the 

availability of ethnically diverse research samples at different developmental 

stages represents a key step to further this, and will aid the identification of 

trait-associated variants in the first instance. Beyond this, a move from genetic 

variation to disease mechanisms and biological pathways is crucial, something 

that gene sets can hint at, but resolution beyond that is also important. As we still 

observe widespread pleiotropy at that level, it is important to go beyond this as 

the mechanisms underlying these traits might be different even though the same 

gene sets and thus pathways are implicated. The hope is that in the coming years, 

increasing sample sizes along with the integration of genomic and functional 

approaches will converge onto specific systems, cell types, mechanisms, and 
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developmental stages that better explain disorder aetiology. Although widespread 

polygenicity and pleiotropy in psychiatric disorders make translating genetic 

findings to biological understanding difficult, leveraging both in order to further 

our understanding of psychopathology, and eventually enhance clinical utility of 

research findings, will be important in the years to come.
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