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Chapter 1

General Introduction

We are all unique, even if we share certain characteristics with our family members and
those around us. The individual differences that can be observed in the population are
caused by a combination of genetic and environmental factors. In this PhD thesis |
endeavor to add to our understanding of the way genetic factors explain individual
differences in human complex traits by applying a variety of methodological tools to
different sets of personal characteristics, which in genetics are commonly referred to as
‘phenotypes’. In this first chapter | provide a general background, describe the methods |
applied to answer the questions about the etiology of individual differences, and |
introduce the traits of interest, in which variation is analyzed in this thesis.

1.1 General background.

Genetic studies of human complex traits aim to clarify the contribution of genetic factors
to variation in the trait. The phrase ‘complex trait’ or ‘complex phenotype’ refers to traits,
which result from variation at multiple genomic sites, and across multiple environmental
factors. Complex traits do not follow a Mendelian pattern of inheritance and often show
a continuous distribution in the population, either on the scale of measurement or on the
underlying liability scale. Family studies, in particular twin studies, have proven to be
useful tools to determine to which extent genetic factors influence individual variation in
a traits, or stated differently, to provide us with estimates for the heritability of a trait [1].
Such studies, however, do not identify the source of the genetic contribution to individual
differences, namely the variation in DNA sequence in human genomes. Until recently,
there were two main approaches to gain information on the genetic variants influencing
phenotypes of interest: candidate gene association studies and linkage studies. In a
candidate gene association study the focus is on associations between the variation in the
phenotype and variation in one or a few preselected genes. For example, my first genetic
study conducted as part of my Master program investigated the association between
rs16970495 (an intro variant on RASGRF1) and myopia in a sample of 557 Chinese adults.
In this study | found that the A allele of rs16970495 was associated with an increased risk
of myopia (OR=1.21, P=.003). However, such candidate gene studies are generally based
on limited prior knowledge, especially in psychology or psychiatry, and often prove
difficult to replicate in follow up studies [2]. Linkage studies do not focus on a specific
gene but use data from family members to map individual differences in a trait to variation
in genetic markers of a known chromosomal location. A location that correlates with the



guantitative trait of interest is referred to as a quantitative trait locus (QTL), and is more
likely to contain a causal genetic variant. However, linkage studies require family data,
such as big pedigrees, or large samples of sibling pairs and have a low resolution mapping,
with resulting QTLs thus referring to broad chromosomal regions, rather than to a specific
base pair position. In addition, linkage studies are well suited for Mendelian traits with
high penetrance but less so for complex traits [3].

Fortunately, advances in genotyping technology have now made it both time- and cost-
wise possible to explore a large part of the variation in the human genome. Assessment
of genomic variation in DNA can be done by typing samples on SNP (single nucleotide
polymorphisms) arrays, or by sequencing the complete genome, which provides
additional information of genetic variants such as insertions and deletions (indels) and
copy number variants (CNV). These developments have further been supported by
advances in computational support and methodologies for high-throughput data analysis.
Imputation of missing genotypes in subjects with SNP array data, using a large reference
panel of sequenced individuals such as the 1000 Genomes project [4], provides the
possibilities for GWA studies to identify complex trait loci. The combination of arrays and
sequence information results in a nearly complete number of studied genetic markers
across the genome to map associations. Furthermore it allows to harmonize and combine
datasets or results across research groups for meta-analysis [5]. As a result, the last
decade has seen a large number of identified genes, and more scientific achievements
obtained by genome-wide association studies (GWAS) for human complex traits. The
results obtained by GWAS studies have provided the input for new analyses techniques,
furthering our understanding of the way genetic influences are involved in individual
variation, done by exploring the degree to which genes cluster in pathways, influence
multiple traits or are differently expressed during the lifespan.

SNP data have also been analyzed to establish the extent to which all measured genetic
variants are involved in the heritability for a trait. This form of analysis provides
heritability estimates that are based on a genetic relatedness matrix (GRM), rather than
employing the known genetic relatedness among relatives such as parents and offspring
or between twins. A widely-used implementation of this method is in the software
package “Genome-wide Complex Trait Analysis” (GCTA) [6]. Approaches such as
implemented in GCTA can link the outcomes from twin-family studies to those from
genotypic studies.

At other omics levels, it has become possible to study at a large scale the expression of
genes, rather than the DNA variants itself, either through studies of RNA expression or
through epigenetics approaches. As with genetic studies, here too the field has moved
from small-scale studies to the more encompassing studies in the form of transcriptome-
wide and epigenome-wide association studies (EWAS). Together, these various tools can



provide us with a window on the way genetic and environmental factors interact and
create individual variation in complex traits [7-8].

1.2 Genetic methodology used in this PhD thesis

1.2.1 Using structure equation models to estimate heritability with extended twin
family design

Heritability studies make use of genetically informative family data to quantify the
magnitude of genetic and environmental influences on the variation in phenotypes of
interest. The classical twin study has a long history in behavioral and social sciences and
has been used to assess heritability for almost every conceivable trait [9-10]. Twin studies
take advantage of the genetic differences between monozygotic and dizygotic twins to
partition the variance of a trait into components attributable to genetic and
environmental causes [11]. Monozygotic (MZ) twins, also known as identical twins, arise
from one fertilized egg which, within a few days after fertilization, has split in two
separately developing embryo’s, who share ~100% of their segregating genes. Dizygotic
(DZ) twins, also known as fraternal twins, result from two fertilized eggs within one
pregnancy and share, like ordinary siblings, on average 50% of their segregating genes.
Assuming there are no special twin environment effects, which indeed is corroborated by
studies [11-12], differences between the resemblance of MZ twin pairs and the
resemblance of DZ twin pairs (rMZ > rDZ, where r stands for correlation) must be due to
genetic influences. Similarities in the resemblance for MZ and DZ twins that cannot be
attributed to genetic resemblance (e.g. the situation where the correlation in MZ twins
equals the correlation in DZ twins and both are unlike zero) reflect the influence of
common environmental effects (C). All differences within MZ twin pairs can be
contributed to unique environmental effects, e.g. life events unique for one twin but also
measurement error (E), whereas differences within DZ pairs are due to both unshared
genetic and unshared environmental influences.

Genetic effects can further be divided into additive genetic effects (A) and non-additive
genetic effects (D). The additive genetic effects represent a linear effect of the genotypic
contribution to a quantitative trait: any genotypic change in an additive variant has a
similar effect. The non-additive effects include all nonlinear effects of genetic variation,
including dominance (the effect is based on the specific allelic combinations at one locus)
and in human data also epistasis (the effect of specific alleles is dependent on other
genotypic variation). The variance in a phenotypic trait Ve can thus be decomposed into
different components: A, D, Cand E: Vp = Va+ Vp + Vc + Ve [13].

The covariance for MZ twin pairs and DZ twin pairs equals, respectively, Va + Vp and 1/2
Va +1/4 Vp. The proportion of the total phenotypic variance (Vp), which is explained by



the additive genetic effects (Va), is generally called the narrow-sense heritability as
opposed to the broad-sense heritability (Va+Vo/Vp), which includes all the genetic effects.
In a classical twin design, however, the simultaneous estimation of D and Cis not possible,
and a choice is made based on the twin correlations to test either an ACE model, or an
ADE model, which does not allow for any influence of the common environment [14].
Extending the twin design to include additional family members addresses some
limitations in classical twin studies. When siblings of twins are added to the design, the
power of the study is increased and a formal twin-singleton sibling comparison is possible.
While there is very little evidence for twin-singleton sibling differences [15-17], it still is a
question that is put forward by many non-twin researchers. The inclusion of parents
and/or spouses in the study has multiple advantages [18]. Such an extended twin family
design (see Figure 1) not only allows for the modelling of a full ACDE model, but it can also
account for assortative mating. Assortative mating refers to the phenomenon that partner
choice is not random but that individuals tend to choose partners who share certain
similarities [13]. Evidence for a 'like with like' mating pattern comes from a positive
correlation between the phenotypic values of spouses. In the case of a heritable trait, this
phenomenon makes siblings and DZ twins genetically more similar than the expected
average of 50%, leading to biased estimates of the genetic and environmental influences
[1]. Despite the advantages, not all twin registers collect information on additional family
members. In this thesis | made use of data from the Netherlands Twin Register, described
in detail later in this chapter, which is one of the twin registers worldwide that collects
data on twins as well as their family members.

Figure 1. ACDE path diagram for an extended-family twin design of twins and their
biological parents.
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In a classical twin study design the observed correlations for MZ and DZ twin pairs form
the basis to estimate the percentage of the total variance (Vp) due to additive genetic (Va),
non-additive genetic (Vp), shared environmental (Vc), and unique environmental (Ve)
effects. However, Vp and V¢ cannot be estimated simultaneously as such a model is
unidentified. To circumvent this problem, in classical twin either Vp (when rMZ > 2rDZ) or
Vc (when rMZ< 2rDZ) is constrained at zero.

In the extended-family design, the observed correlations for parents-offspring, father-
mother, and additional singleton sibling pairs are also included in the model, which allows
a simultaneous estimation of Vc and Vp and the inclusion of assortative mating (u) effects.
In the path diagram above this is operationalized as: Vp=Va + Vp +Vc + Vg = a’+d*+c?+e?,
where

Covariance (spouse) = i

Covariance (parents-offspring) = 0.5 Va = 0.5a%(1+p)

Covariance (DZ=siblings) =0.5Va + 0.25Vp +V¢ = 0.5a%(1+ u)+0.25d+c?

Covariance (MZ) =Va + Vp + Vc = a?+d%+c?

1.2.2 Genome-wide association study (GWAS)

Genome-wide association studies (GWAS) present an unbiased genomic screening of a
population to establish whether any of the millions of measured genetic variants is
associated with a trait. As indicated, compared with linkage and candidate gene
association studies, GWA studies have larger statistical power to detect common gene
variants and a higher resolution, enabling a detailed dissection of the genetic architecture
of complex traits, although it should be recognized that hardly any of the linkage studies
in human genetics ever achieved the sample sizes that are now seen in GWA studies.

GWAS is a hypothesis-free exploratory approach to detect associations between genetic
variants and the individual differences in a trait. It makes use of genotypic information for
millions of SNPs across the genome. Generally, the genotypic information refers to
common SNPs which represent to the most common form of genetic variants, accounting
for 90% of total genetic variation and representing base pair changes that occur in at least
1% of the population [19]. SNPs are variants, which may have a direct effect on the gene
function, or they act as markers in linkage disequilibrium with the DNA variants that result
in a studied trait, or disease. For example, most European individuals have two C alleles
(CC genotype) at SNP rs1667394 while a minority of the European population has the T
allele (CT or TT genotype). In a blue eye color GWAS, the frequency of all SNPs in the blue
eye color population (the case group) is compared with the frequency of all SNPs in the
non-blue eye color population (control group). The result of this comparison, which shows



a significant higher T allele frequency in the blue eye color group, indicates the importance
of SNP rs1667394 for eye color in these populations [20].

In this straightforward interrogation of the association between phenotype and genotype
avery large number of SNPs is tested, so the alpha level is necessarily very small (generally
significance is set at p < 5x10%) [21] to correct for multiple testing. Also, an independent
replication of the finding is usually needed, so multiple large sample studies are required.
This has led to the formation of various consortia, in which research groups worldwide
collaborate to find significant SNPs, or gene loci, with much success. For instance, we now
have a number of confirmed loci for complex traits such as height [22], BMI [23] and
schizophrenia[24]. These days GWAS is the standard approach to identify loci influencing
complex traits. According to the GWAS catalogue website, from the first GWAS study till
8th May 2016, 21,750 unique SNP-trait associations were identified by 2,437 GWAS
studies [25].

As increased numbers of GWAS are conducted, increased numbers of genetic variants are
uncovered to be associated with complex traits of interest. Genetists are taking effort to
meta-analyse and cluster the GWAS results to identify pleiotropy: the same genetic
variants can be associated with multiple diseases and other complex traits. Pleiotropy
studies unravel the genetic etiology links between complex diseases and traits, which
leads to a deeper understanding of complex traits.

1.2.3 Genome-wide Complex Trait Analysis (GCTA)

When GWAS demonstrates significant SNPs for a trait, one question that comes up is to
what extent these SNPs represent the heritability of the trait. The software program GCTA
was developed to estimate SNP heritability (hg?), that is the percentage of genetic variance
that can be explained by the pooled candidate SNPs or by all SNPs genome-wide [6]. Using
data from unrelated individuals, the algorithms implemented in GCTA first estimate the
genetic similarity among participants based on genotyped or imputed SNPs that have
been appropriately clumped, and this can be genome-wide, represent a single
chromosome or just a region of interest. The covariance matrix, referred to as the genetic
relationship matrix (GRM) summarizes the genetic variance among persons. In the next
step this GRM is used to predict the phenotypic similarity within the population. When
including related individuals in the classical GCTA method would result in inflated SNP
heritability estimates, or actually estimates of the narrow sense heritability when sib-
pairs, parents and monozygotic twins are included [6], but when excluding related
individuals when present has the disadvantage of decreasing the sample size and
increasing the standard error of the estimated SNP heritability. To account for this
limitation of the classical GCTA model, Zaitlen et al [26] introduced the two-component-
covariance matrix model. Instead of one GRM matrix which only includes unrelated



individual pairs (marker allele sharing Identity By State threshold < generally set at 0.025),
now two covariate matrixes are used: One matrix focusing on closely related individuals
(IBS > 0.025) to estimate h? and one matrix including all individuals to estimate the SNP
hg®. The difference between h? and hy? is called the missing heritability, that is the
heritability that is currently not explained by the measured SNPs. In this way the two-
component-covariance matrix option of GCTA results in a narrow sense heritability
estimate under an AE model as well as a SNP heritability estimate.

1.2.4 Epigenome-wide association study (EWAS)

Although MZ twins have ~100% identical DNA sequence (pending relatively rare somatic
mutations), discordance within MZ twin pairs is observed for a large range of complex
traits, even when the trait is heritable. This has led to an interest in exploring non-genetic
factors that could impact on complex trait variance. Epigenetic studies are defined as "the
study of changes in gene function that are mitotically heritable and that do not entail a
change in DNA sequence" [27]. Without altering the DNA sequence, epigenetic changes
may be produced by DNA methylation or histone modification, under the influence of
factors such as behavior, diet or smoking, or as a result of random events [28]. DNA
methylation is the attachment of a methyl-group (CHs) to a DNA molecule, which mostly
occurs at specific sequences of DNA: a cytosine located next to guanine called CpG sites.
Histone modification is a post-translational modification to the histone, the main
component of chromatin proteins. These epigenetic variants regulate gene expression by
influencing the chromatin structure and the binding of regulator proteins to the DNA [29].
Because DNA methylation is more stable and amenable to high-throughput analysis than
histone modification, it is at the moment the most used epigenetic marker in large-scale
human epidemiological studies. Epigenome-wide association studies (EWAS), uses a
similar procedure as GWAS, relating genome-wide epigenetic differences among people
(generally in the form of CpG sites) to differences in phenotype to understand the role of
epigenetics in complex traits [30].

1.2.5 Expression quantitative trait loci studies (eQTLs)

eQTL analyses aim to detect DNA variants that affect gene expression levels in an aim to
understand the basis of gene regulation and have a better interpretation for GWAS and
EWAS results. Standard eQTL analysis detects the association between genetic variants
with gene expression levels (transcriptome profile: amount of mRNA) in hundreds of
samples. The principle is same as genome-wide association study, but gene expression
levels are analyzed as the phenotype of interest [31]. The genetic variants may be
associated with physical proximal gene expression with cis-effects, or distal gene
expression with trans-effects. Incorporating eQTL analyses with GWAS or EWAS will



provide understanding of complex trait genetic etiology, which may unravel causality: if
one (epi) genetic variant is significantly associated with the phenotype of interest in
genome-wide association study, and it also causes the alteration of proximal gene
expression, it then implies the causal effect of this variant for the trait [32].

1.3 Phenotypes of interest

In my thesis, | applied the techniques briefly outlined in the previous sections to two
different kinds of complex human traits: pigmentation traits and hematological
parameters. These traits are of interest in their own right, but can also be thought of as
serving as ‘model phenotypes’ for complex behavioral and complex traits.

1.3.1 Pigmentation traits

Pigmentation traits are among the most visible traits, drawing scientific attention from a
wide range of disciplines, from biology and anthropology to psychology and dermatology
and cosmetics. Pigmentation traits are highly heritable, with heritability estimates ranging
from 61% to 98% for hair color [33-35], 80%-100% for eye color [34, 36-37] and 60%—90%
for skin color [38-39]. The degree of pigmentation is primarily determined by the amount,
the type, and the distribution of melanin, which protects the body against ultraviolet
radiation damage. The variation in pigmentation traits results from a combination of gene
mutations and natural selection.

About 1.2 million years ago our human ancestors (the early Hominids) did not have much
pigmentation and had a lot of body hair. Over the time span of 1 million years hominids
gradually lost their body hair and simultaneously pigmentation increased to ensure
continued protection from sun exposure. When modern humans left Africa (about 11,000
to 19,000 years ago), our ancestors were likely dark skinned, with black hair and dark
brown eyes. Up to this day, individuals from equatorial and tropical regions combine dark
pigmentation traits with little body hair. In moving away from the equator,
depigmentation may have occurred to account for the lower levels of ultraviolet (UV)
radiation to ensure that the levels of folic acid and vitamin D levels, that are dependent
on exposure to UV radiation, remained sufficient [40]. The reduction in the diversity of
the daily diet , due to the emergence of agriculture, which also led to reduced vitamin D
levels, may have further promoted depigmentation [41]. As a result diversity in
pigmentation within the population increased [42] and nowadays, the diversity in hair,
skin, and eye color reaches its maximum in the regions of the East Baltic regions, Northern
Europe and Eastern Europe. The range, prevalence and distribution of human
pigmentation traits continue to change slowly across the world. Assortative mating for
pigmentation traits plays a role [34, 43] and sexual dimorphism also occurs. Women
generally have relatively lighter pigmentation than men. A lighter skin facilitates vitamin



D synthesis needed to meet the higher calcium level requirements for females especially
during pregnancy and lactation [44]. Cultural factors may also influence the preference
for a specific skin color in a partner.

During the evolutionary process, positive selection occurred for several gene mutations
relevant to pigmentation. More than 30 pigmentation genes have been identified,
especially in the melanosome biogenesis or the melanin biosynthetic pathways [45], but the
most studied gene is melanocortin 1 receptor (MC1R). The MC1R gene plays an important
role in determining the type of melanin produced: pheomelanin (yellow-red color) or
eumelanin (brown-black color) [46]. A comparison of the African human genome with the
chimpanzee genome, revealed 17 genetic variants in the MCI1R gene in the human
population [47]. The authors of the article suggested that these genetic variants are
associated with high levels of eumelanin, one of the two forms of melatonin, and were
positive selected for along with loss of body hair in African population in the environments
with high UV radiation exposure and high temperature.

Pigmentation traits are ideal candidates for studies on the genetic architecture of human
complex traits. Hair and eye color in particular are very visible traits, easy to obtain with
small measurement error and stable during the lifespan (in the case of hair color before
graying or balding occurs). Compared with skin color, these traits are also influenced less
by environmental variation.

In this thesis, | present outcomes of a GWAS for hair color and eye color in the Dutch
population. | estimate the total heritability for these traits from twin-family data and
estimate the SNP heritability and genetic correlation between hair color and eye color from
SNP data.

1.3.2 The hematological profile

The hematological profile consists of high-dimensional information on the distribution
and type of three different kinds of blood parameters; white blood cells, red blood cells
and platelets. Red blood cells (also called erythrocytes) are responsible for the transport
of oxygen to tissues and the removal of carbon dioxide from the body, white blood cells
(also called leukocytes) coordinate immune responses to e.g. bacteria and virus infections,
and platelets interact with clotting factors in plasma to prevent excessive bleeding and
promote tissue repair. Abnormal values, that is values outside the normal reference
range, in one or more components of the hematological profile may be indicative of
disease or predict future disease development. For instance, a low blood cell count points
to anaemia, high red blood cell count and high platelet count are related to an increased
risk of cardiovascular disease [48], high or low white blood cell count may indicate the
presence of an immune disorder or cancer [49], while high or low platelet counts may
point to coagulation disorders [50]. Since the standard hematological profile is relatively



easy to obtain and inexpensive, it is one of the most commonly diagnostic tests conducted
in medical practice.

Though these hematological indices are tightly regulated and heritable, with heritability
estimates ranging from 32% to 87% [51-53], they are also influenced by environmental
factors. For example, the number of neutrophils, a specific type of white blood cell,
fluctuates strongly in response to contact with bacteria or air pollutants and when the
outside temperature changes [54], while dietary intake may be responsible for changes in
the number of red blood cells [55-56]. People in high-altitude regions tend to have higher
hemoglobin levels to maintain oxygen saturation levels, which may reflect a combination
of genetic and environmental conditions [57-59].

Individual hematological indices have received a lot of attention within genetics and have
been shown to be heritable. Linkage and candidate gene association studies have
identified a number of QTLs for these individual parameters, and recently GWA and EWA
studies showed evidence for the involvement of several (epi)genetic variants for these
parameters [60-62].

However, hematological indices are closely interlinked and a multivariate approach may
provide additional information. At present, the number of studies which use a
multivariate approach is limited. One common strategy for high dimensional data is
adding together items to sum scores and use these sum scores for subsequent statistics.
One could argue that within hematology sum scores are used when total white or red
blood cell count is analyzed and indeed, as indicated earlier, these scores have predictive
values of their own for disease status. Recent studies however have used a different
approach, examining the balance between two hematological indices rather than the
individual blood counts. The myeloid-lymphoid ratios such as neutrophils to lymphocyte
ratio (NLR), monocytes to lymphocyte ratio (MLR) and platelet to lymphocyte ratio (PLR)
have been put forward as novel and useful predictive or prognostic biomarkers for cancers
[63-65] and/or complex diseases such as immune disease [66-69]. So far these ratios
received most attention within clinical studies, where cut-off values for each of these
biomarkers were evaluated for their usefulness regarding early admission, stratification,
classification, diagnosis, prognosis and response to therapy [70-73]. However, the genetic
study of these three biomarkers in a healthy population has yet to be explored.

In this thesis, | present the results of a comprehensive series of genetic analyses for these
biomarkers, including twin-family, GWA, GCTA and EWA studies. In addition, | examined
the importance of demographic, environmental and lifestyle factors for individual
variation in these hematological ratios.

Using the information from all hematological variables simultaneously may prove even
more informative. To this aim, the possibility was explored of using the full hematological
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profile using multivariate distance matrix regression (MDMR). This analysis technique
allows more than two variables to be analyzed at once, taking into account the
relationship of dependent variables by using a so-called distance matrix. This matrix is
constructed as an (n x n) matrix in which n is the number of participants and pair-wise
distances represent the (dis)similarity of participants based on multiple variables. Using
MDMR one can test the association between the full hematological profile and other
variables of interest.

MDMR was used to investigate the effects of several demographic and lifestyle factors in
relation to the full hematological profile consisting of 10 variables and to determine the
potential of the profile thus obtained for future studies, including genetic studies.

1.4 My data source: the Netherlands Twin Register

The majority of the data reported on in this thesis are derived from the Netherlands Twin
Register (NTR). The NTR was established in 1987 to study the way genetic and
environmental factors influence individual variation in development, lifestyle, personality
and health. The NTR consists of a young cohort (YNTR) and an adult cohort (ANTR), with
all participants followed longitudinally. In the YNTR twins are followed from birth onwards
at specific ages, first by parent report, later also by teacher report and from 14 years
onwards by self-report. The main focus of the YNTR is the motoric and cognitive
development as well as the development of emotional and behavioral problems (a
detailed description of the YNTR is provided in [74]). The ANTR started as a longitudinal
study in a cohort of adolescents and young adults in 1991 and since then has sent out
surveys on lifestyle, personality and mental and physical health to the twins and their
family members at two to four yearly intervals. At present, 12 surveys have been sent (for
a detailed description of the ANTR survey study see [75]). The NTR contains around 86,000
young twins/multiples, 11,000 adult twins/multiples and 101,000 family members of
twins, with a total N of more than 199,000 participants from ~ 50,000 families. The survey
data provided the information used for the hair and eye color analyses. The seventh
survey of the ANTR sent out in 2004 contained the question "What is your natural hair
color?" with five answer categories (blond, red, light brown, dark brown and black) and
the question "What color are your eyes?" with three answer categories (blue/gray,
green/light and brown). The same questions on eye color and hair color were answered
by adolescent (14-18 year old) YNTR twins when they completed the Dutch Health and
Behavior Questionnaire in 2005 or 2006.

In 2004 the NTR started a large biobank project, asking adult participants whether they
were willing to provide a blood sample. Between 2004 and 2008 ~9500 participants were
visited at home for blood sampling and a short interview on lifestyle and health [76]. In
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2011 a second, similar but smaller-scale project [77] was carried out bringing the total
number of participants to ~10,000 individuals. The biobank project has been described in
detail elsewhere [76]. The hematological data analyzed in this thesis were determined in
whole blood sample using the Coulter system (Coulter Corporation, Miami, USA). One of
the EDTA tubes collected in biobank participants was used for DNA isolation. In addition,
DNA was isolated from buccal swab samples for twin participants within the biobank and
for other NTR participants as well, as part of various projects. For a large number of these
samples genome-wide data were obtained using one of several platforms. In
chronological order the following platforms were used: Perlegen/Affymetrix 5.0 600K,
[llumina 370, lllumina 660, lllumina Omni Express 1 M and Affymetrix 6.0. Currently
genotyping is also being done on the Axiom array from Affymetrix (Ehli et al. under
revision [78]). As some samples were included on multiple platforms it was possible to
align the data from the different sources and then impute to 1000 Genomes reference
set. The genotypic data thus generated were used in the GWAS and GCTA studies
presented in this thesis. Regarding EWAS data, the DNA isolated from whole blood was
bisulfate-treated using the ZymoResearch EZ DNA Methylation kit (ZymoResearchCorp,
Irvine, CA, USA) following the standard protocol for lllumina 450K micro-arrays [79].

1.5 Thesis outline

This thesis applies multiple genetic methods to pigmentation traits and hematological
profiles, to explore the way individual differences in these traits can be explained by
genetic and environmental factors.

Chapter 2 and chapter 3 focus on pigmentation traits. In Chapter 2, first the heritability
for hair color is determined, followed by a GWAS to identify genetic variants for this trait.
Finally, GCTA is performed to estimate how much of the genetic variance can be explained
by the measured SNPs. The appendix of chapter 2 contains the supplementary to the
article on hair color. In chapter 3, the genetic correlation between eye color and hair color
was estimated using European unrelated population. The appendix contains the
supplementary to the article: GWAS results for eye color.

Chapters 4 to 9 focus on three hematological ratios: the neutrophil-lymphocyte ratio
(NLR), the monocyte-lymphocyte ratio (MLR) and the platelet-lymphocyte ratios (PLR).
Chapter 4 examines the genetic and environmental causes of variation in NLR and PLR.
The heritability of NLR and PLR is estimated using a parent-offspring design, in which the
majority of the offspring consists of mono- and dizygotic twin pairs. In addition, the
associations of NLR and PLR with sex, age, smoking behavior, body mass index and
seasonal conditions at the time of blood sampling were examined. Specific analyses
regarding age and BMI interaction effects on NLR and PLR and the results of analyses in
the unhealthy population and total population are presented in the two appendices of
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Chapter 4. In chapter 5, GWAS and GCTA was applied to these ratios to identify the genetic
variants and estimate the percentage of the variance in NLR and PLR explained by these
genetic variants, as well as eQTL mapping to detect these genetic variants affected gene
expression level. The detail of eQTL analysis is describe in Appendix V. Chapter 6 presents
the heritability, GWAS, GCTA and eQTL results for MLR. Chapter 7 explores the
multivariate hematological profile by comparing the results of a univariate and a
multivariate analysis of hematological profile parameters. First, a standard linear
univariate regression was conducted to determine for each individual hematological index
whether it was associated with age, sex, smoking, body mass composition and its
interactions. Next, MDMR was introduced to establish hematological profiles using all
hematological indices simultaneously and the interactive effects of age, sex and lifestyle
on the derived profiles was investigated.

In chapter 8 the association between the methylation profile and NLR and MLR is
examined using EWAS meta-analysis. A EWAS study for PLR and a detail methylation
profile investigation in the particular region which obtained from previous GWAS result
was presented in chapter 9.

The thesis concludes in chapter 10 with a general summary of the results presented in this
thesis and a general discussion.
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Chapter 2

Heritability and Genome-Wide Association studies
for hair color in a Dutch twin family based sample

This chapter is published as: Lin BD, Mbarek H, Willemsen G, Dolan CV, Fedko 10, Abdellaoui A, de
Geus EJ, Boomsma DI, Hottenga JJ., Heritability and Genome-Wide Association Studies for Hair
Color in a Dutch Twin Family Based Sample. Genes, 2015. 6(3): p. 559-576.

Abstract

Hair color is one of the most visible and heritable traits in humans. Here, we estimated
heritability by structural equation modeling (N = 20,142), and performed a genome wide
association (GWA) analysis (N = 7091) and a GCTA study (N = 3340) on hair color within a
large cohort of twins, their parents and siblings from the Netherlands Twin Register (NTR).
Self-reported hair color was analyzed as five binary phenotypes, namely “blond versus
non-blond”, “red versus non-red”, “brown versus non-brown”, “black versus non-black”,
and “light versus dark”. The broad-sense heritability of hair color was estimated between
73% and 99% and the genetic component included non-additive genetic variance.
Assortative mating for hair color was significant, except for red and black hair color. From
GCTA analyses, at most 24.6% of the additive genetic variance in hair color was explained
by 1000G well-imputed SNPs. Genome-wide association analysis for each hair color
showed that SNPs in the MCI1R region were significantly associated with red, brown and
black hair, and also with light versus dark hair color. Five other known genes (HERC2,
TPCN2,SLC24A4, IRF4, and KITLG) gave genome-wide significant hits for blond, brown and
light versus dark hair color. We did not find and replicate any new loci for hair color.

Keywords: hair color, twin-family based heritability, GRM based heritability, Genome
wide association study
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2.1 Introduction

Hair color is a genetic and physiologically complex phenotype, which represents one of
the most visible variations within humans and between populations [80]. It influences
many human interactions including spouse selection. Previous studies of the effect of hair
color on social behavior and personality have shown that hair color is related to
attractiveness, but it is unclear how strong this effect is [81-82]. In general, individuals
with a lighter hair color, e.g., blond, have a higher probability to receive courtship
solicitations, as compared to individuals with red hair. Dyeing the hair has been practiced
for over four thousand years, and is still immensely popular today, with over 75 percent
of American women dyeing their hair [83].

Pigmentation of skin and hair is important for protection against sunlight [84]. From a
medical point of view, pigmentation is also relevant, as the mechanisms underlying
pigmentation are involved in one of the most aggressive types of cancer, namely
malignant melanomas. These tumors of melanocytes, cause about 75% of deaths related
to skin cancer, with high rates of incidence in Caucasians, especially in northwestern
Europeans [85]. This prevalence is associated with ultraviolet light (UV) exposure and the
amount of skin pigmentation [86].

Hair pigmentation is a highly heritable trait. In Europeans, genetic factors explain a large
part (61%—92%) of the variation in natural hair color, while the rest of the variation is due
to environmental influences and measurement error [34, 87-88]. Previous studies have
found several genes that are relevant in human pigmentation, especially in the
melanosome biogenesis or the melanin biosynthetic pathways [45]. Differences in eye
and hair color are mainly due to variation in the amount, type, and the packaging process
of key pigment molecule melanin polymers produced by melanocytes secreted into
keratinocytes. Melanin exists in two basic forms: brown-black eumelanin and yellow-red
pheomelanin. Hair color mainly depends on the ratio of eumelanin and pheomelanin [89].
Studying the genetic background of a human pigmentation trait like hair color is useful to
understand human evolution and biology and may have important applications to
melanoma treatment and to forensics. Loss-of-function mutations at the melanocortin 1
receptor (MCIR) are known to be associated with a switch from eumelanin to
pheomelanin production, resulting in a red or yellow coat color in animal models [90].
Over 30 MC1R variant alleles correlated with skin and hair color have been identified [91].
In addition to MCI1R, the HERC2 and OCA2 genes, located close to the MCIR gene on
chromosome 15, are also related to hair color. Studies have shown that HERC2 regional
variants function as enhancers regulating OCA2 transcription [92]. Variants located in and
around these genes determine the normal human hair pigment variation.

To identify human pigmentation genetic variants and to gain new knowledge of genetic
background of hair color in the Dutch population, we estimated the broad-sense
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heritability of hair color with a liability threshold model on twins and their family members
from the Netherlands Twin Register (NTR) [93]. In addition, we estimated SNP heritability
based on the measured and imputed SNP data from unrelated NTR individuals, by
associating their genetic relatedness to their phenotypic resemblances using GCTA [6].
Finally, to identify genetic variants underlying the heritability of hair color, we performed
a series of genome-wide association studies (GWAS) of hair color in this population-based
sample.

2.2 Materials and methods
2.2.1. Subjects

Hair color data were available for 25,201 NTR participants, clustered in a total of 7862
families, with ages ranging between 14 and 80 years old. Each participant completed one
or more longitudinal surveys that included questions about age, sex, and natural hair
color. The self-reported hair color was obtained from a question with five answer
possibilities: “fair/blond”, “light brown”, “red/auburn”, “dark brown”, and “black”.
Written informed consent was obtained from all participants. The Medical Ethics
Committee of the VU University Medical Center approved the study protocols.

For the twin-family based heritability analyses, we selected families comprising at most 6
members (N =20,142). The subjects included in these families were the twins (N = 15,359),
a maximum of two siblings (N = 2008), and the biological father and mother (N = 2774)
(Table S1). Of the twins, 2345 were monozygotic males (MZM), 4651 were monozygotic
females (MZF), 1678 dizygotic males (DZM), 2710 were dizygotic females (DZF) and 3975
were from an opposite-sex (DOS) twin pair (Table S2). For the GWAS analyses, a total
number of 7091 related subjects were available with genotype, phenotype and covariate
data (Table S3). For GCTA, only unrelated people were selected from the available GWAS
sample, resulting in a sample of 3340 individuals.

2.2.2 DNA sampling and genotyping

Buccal or blood DNA samples (N = 14,003) were collected for multiple NTR projects. DNA
extraction and purification of these samples were performed at various points in time,
following several manufacturer specific protocols to obtain the best quality and
concentration prior to SNP platform genotyping [6]. Genotyping of several partly
overlapping subsets was done on multiple platforms. Chronologically the following
platforms have been used Affymetrix Perlegen 5.0, lllumina 370, Illumina 660, lllumina
Omni Express 1M, and Affymetrix 6.0. After array specific data analysis, genotype calls
were made with the platform specific software (BIRDSUITE, APT-GENOTYPER,
BEADSTUDIO).
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Quality control was done within and between platforms and subsets prior to imputation.
For each platform, the individual SNP markers were lifted over to build 37 (HG19) of the
Human reference genome, using the LiftOver tool. SNPs that were not mapped at all, SNPs
that had ambiguous locations, and SNPs that did not have matching (or strand opposite
alleles) were removed. Subsequently, the data were strand aligned with the 1000
Genomes GIANT phasel release v3 20,101,123 SNPs INDELS SVS ALL panel. SNPs from
each platform were removed if they still had mismatching alleles with this imputation
reference set, if the allele frequencies differed more than 0.20 with the reference. From
each platform, SNPs with a Minor Allele Frequency (MAF) <0.01 were removed, as well as
SNPs that were out of Hardy—Weinberg Equilibrium (HWE) with p < 0.00001. Samples
were excluded from the data if their expected sex did not match their genotyped sex, if
the genotype missing rate was above 10% or if the Plink F inbreeding value was either
>0.10 or <-0.10.

After these steps, the data of the individual arrays were merged into a single dataset using
PLINK 1.07 [94]. Within the merged set, identity by state (IBS) sharing was calculated
between all possible individual pairs and compared to the known family structure of the
NTR study. Samples were removed if the data did not match their expected IBS sharing.
DNA samples, which were typed on multiple platforms, were tested to ascertain that the
concordance rate among overlapping SNPs exceeded 99.0%. If the concordance rate was
lower, we removed all data of these samples. Subsequently, from each MZ twin pair a
single DNA sample was selected. The HWE-, MAF- and the reference allele frequency
difference <0.20 filters were re-applied in the combined data. As a final step, SNPs with
C/G and A/T allele combinations were removed when the MAF was between 0.35 and
0.50 to avoid incorrect strand alignment.

Phasing of all samples and imputing cross-missing platform SNPs was done with MACH 1
[19, 95]. The phased data were then imputed with MINIMAC [96] in batches of around
500 individuals for 561 chromosome chunks obtained by the CHUNKCHROMOSOME
program [97]. After imputation, DNA confirmed MZ twins were re-duplicated back into
the data. The format of the data was transformed to the basic three probabilities SNPTEST
gen.gz format, as this is the most general applicable format for the subsequent genomic
analyses tools. The mean imputation quality R2 metric is 0.38 (based on all

30,051,533 imputed autosomal SNPs).

After imputation, SNPs were filtered based on the Mendelian error rate in families. The
Mendelian error rate was calculated on the best guess genotypes in families (trios and
sib-pairs with parents) using first GTOOL to calculate best guess genotypes and then PLINK
1.07 to analyze the data. SNPs were removed if the Mendelian error rate >2%, if the
imputed allele frequency differed more than 0.15 from the 1000G reference allele
frequency, if MAF < 0.005 and if R2 < 0.30. HWE was calculated on the genotype
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probability counts for the full sample, and SNPs were removed if the p-value < 0.00001.
This left 7,981,681 SNPs prior to the statistical analyses.

2.2.3 Statistical analyses

First, we created binary variables for each hair color, representing a given hair color versus
the other hair colors. In the following analysis, we found a much lower heritability for the
light brown and dark brown classification than for other classifications. By combining light
and dark brown hair color into a single brown category, we obtained a more sensible
heritability estimate as compared to the other colors. Assuming this discrepancy is due to
confusion among participants concerning the distinction light versus dark brown, we
decided to proceed with a simple category “brown”. An additional binary variable,
denoted “light versus dark”, was created representing blond and red hair versus brown
(light and dark) and black. We studied this binary variable to detect the genes involved in
the switch from eumelanin to pheomelanin. Hence, in total we analyzed the following 5
binary classifications, namely “blond versus non-blond”, “red versus non red”, “brown
versus non-brown”, “black versus non-black”, and “light versus dark”.

2.2.4 Genetic covariance structure modeling of hair color

To obtain an indication of family clustering, we calculated (tetrachoric) correlations
among family members for binary hair color variables in OPENMX [98]. We adopted a
liability-threshold model, in which the probability of having a given hair color (say blond)
is a function on the position on the continuous (standard normal) liability scale. The
tetrachoric correlations express the association between family members at the level of
the liability. The actual proportion of the given hair color in the sample is expressed in
terms of the threshold, i.e., a point on the liability scale. For instance, a threshold of zero
on the standard normal liability scale is associated with a proportion of 0.50 (e.g., 50% are
blond). The more extreme the threshold is, the greater or smaller the proportion
(threshold of 1 implies ~84% are blond; a threshold of -1 implies ~16% are blond).
OPENMX was then used to estimate the heritability of hair color by fitting a genetic model
to the liabilities of the parents and offspring (twins and sibs). The total liability variance
was decomposed into genetic and environmental variance components [99]. We started
with a model, which included the following effects: (1) the spousal correlation to account
for phenotypic assortative mating (see supplemental material); (2) quantitative sex
differences in the genetic and genetic influences on the liability; and (3) age effects on the
threshold. Our visual inspection of the tetrachoric correlations strongly suggested the
absence of common (or shared) environment influences for the hair colors blond, brown,
and the dark versus light dichotomy [100] (i.e., the MZ correlation was higher than twice
the DZ correlation). The twin correlations for the red and black hair color suggested the

21



possible presence of common environmental influences (C). We focused on the model
including additive genetic effects (A), which represent the sum of the additive effects of
all loci relevant to the trait, genetic dominance effects (D), which represent interactions
between alleles at the same locus, and unique (or unshared) environmental effects (E),
which are not shared by family members. Note that the unique environmental factors
may include genetic causes, such as personal genetic mutations, and also measurement
errors. In the analyses of red and black hair, we also considered the model including C
instead of D. We accommodated the phenotypic assortative mating by deriving the
expected correlation between the family members taking into account phenotypic
assortment (more detail in Supplementary Material 1).

Since the prevalence of hair color may vary with age, we included age (Z transformed) as
covariates on the liability threshold. We fitted the full model as described, and tested
various effects by dropping the effects and conducting a likelihood ratio test. In this
fashion we tested whether the prevalence of hair color varied with age, whether the
spousal correlation was zero (i.e., random mating for hair color), whether sex effects in
genetic architecture were absent, and whether dominance effects (or common
environmental effects in the cases of red and black hair) were absent. Given the power
that our large sample size confers to detect minor effects, we tested the specific effects
mentioned using a stringent alpha of 0.0001 [101].

Since hair color displays a geographical gradient in the Netherlands (e.g., blond is more
prevalent in the northern provinces), we refitted the full twin model in the subsample of
genotyped individuals (5777 individuals in 2225 families) while correcting for the gradient
using their data on three Dutch genotype principal components (PCs). These PCs were
calculated from the genotype data with the EIGENSOFT software [102]. First, 10 PCs were
calculated by projecting the NTR data on the 1000 Genomes reference set and all
individuals with non-Dutch ancestry were excluded. Then, three new only Dutch PCs
within the NTR samples were calculated, which correlate highly with the geographic
location [103]. We examined if these PCs affected the broad heritability with blond, brown
and light versus dark hair colors (the rare black and red hair colors excluded) by including
these PCs in the ADE model as covariates on the threshold.

2.2.5 Variance explained by common SNPs (GCTA)

The proportion of variance of the binary hair color traits that can be explained by the
measured and imputed SNPs was estimated in GCTA (Genome-wide Complex Trait
Analysis) using the Restricted maximum likelihood (REML) analysis procedure under a
case-control design, where we report the proportion of genetic variance explained on the
underlying liability scale untransformed for prevalence [6]. Sex and age were included as
covariates and the three Dutch PCs were alternated. A single genetic relationship matrix
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(GRM) was build to test all hair colors. From the 1000 genomes imputed and cleaned data,
we selected SNPs with a minimum imputation R2 quality metric of 0.80 and MAF > 0.01.
In order to avoid explained variance and artificially increased GRM differences due to
differing platforms and subsamples, additional SNP Quality Control (QC) included an
evaluation of the SNP platform effects. We tested the effect of different platforms and
removed SNPs showing platform effects. This was done by defining individuals on a
specific platform as cases and the remaining individuals as controls. Allelic association was
then calculated and SNPs were removed if the specific platform allele frequencies were
significantly different from the remaining platforms with p-value < 0.00001. The selected
5,987,253 SNPs were transformed to best guess Plink binary format, and subsets were
made for each of the 22 chromosomes. The GRM for all NTR samples was then calculated
per chromosome and subsequently the 22 matrixes were merged into a single autosomal
GRM using GCTA. Ethnic outliers based on the PCs were excluded and 3340 unrelated
individuals with hair color data were selected using the standard GRM cut-off filter of
0.025.

2.2.6 GWA analyses

The GWA analyses were run for all binary hair color variables. The input SNPs used were
all 7,981,681 that passed the initial imputation QC. However, post GWAS analyses we
additionally filtered the SNPs, depending on the cases sample size for MAF and imputation
quality in the sub-sample of individuals with a hair color phenotype. Re-filtering on MAF
> 0.01 was done after the GWAS analyses for blond, brown, and light versus dark hair
color. For red and black hair color a MAF > 0.05 was selected to account for the lower
prevalence of these hair colors. For imputation quality we filtered on the Plink information
criterion, which is similar to R2: the variance of the mean posterior genotype probabilities
divided by the maximum expected variance given full HWE and complete known
genotypes. In all hair colors we filtered with 0.40 < Plink Info < 1.02. In total 6,473,680
SNPs survived this QC leading to a mean original imputation R2 of 0.77 (0.22) for MAF
0.01-0.05 and a mean R2 of 0.97 (0.07) for MAF > 0.05 for the selected SNPs.

Since, hair color is affected by population stratification; we used the three Dutch ancestry
PCs as covariates [103] and excluded ethnic outliers, similar to the twin modeling. Other
covariates that were included were binary dummies for genotyping platform, sex and age.
Analysis was performed with the PLINK 1.07 software running a logistic regression on each
SNP, taking genotype inaccuracy into account using dosage data in the analyses. Because
the GWAS data includes family members, we included the family option in our analyses,
which takes the familial structure into account using a sandwich estimator [104]. The
assortative mating of parents was corrected with the same familial-based correction
[105]. Only one of the two monozygotic twins was selected for the GWAS analyses in the
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case that there was hair color data for both. For the GWAS, we assume a p-value less than
5 x 1078 to be statistically significant [21].

2.3 Results and discussion
2.3.1 Prevalences and phenotypic tetrachoric correlations

The prevalences and the familial tetrachoric correlations based on N = 20,142 (clustered
in 7497 families) for blond, brown, red, black and light versus dark hair colors are
presented in Table 1. The prevalence of the blond, brown, and light versus dark hair colors
ranges from 39% to 53%, but the prevalence of red and black hair colors is appreciably
lower (red: 4.5%; black: 3.4%).

The MZ correlations are consistently high, ranging from 0.93 to 0.99. The full sib
correlations, including the DZ twins, are lower (range 0.14—0.86) and that also goes for
the parent-offspring correlations (range 0.19-0.73). Overall, the pattern of correlations is
consistent with the expected large genetic contribution to hair color variation. In all but
the red and black hair colors, the correlations suggest the presence of additive genetic
and dominance effects, as the MZ correlations (range 0.93-0.99) are appreciably higher
than the full sibs (including the DZs, range 0.14—0.49) and the parents and offspring (range
0.33-0.58). The correlations among first-degree relatives for red and black hair color tend
to be larger than for the other hair colors. However, given the lower prevalence of these
hair colors, these correlations are subject to larger standard errors. The spousal
correlations suggest weak assortative mating with respect to hair colors (except black hair
where the correlation is —0.179 and red hair where the correlation is 0.528). We note that
the spousal correlations may be due to direct phenotypic assortment for hair color, or
may be related to the geographic population structure of the Netherlands, as was
established previously in our data [103].

2.3.2 Genetic covariance structure modeling

The results of fitting all models are shown in Tables S4 and S5. Briefly, the ADE model
optimally fits for the blond, brown and light versus dark hair colors. Furthermore, the
results unambiguously show that no effects could be dropped, i.e., age effects, phenotypic
assortment, sex differences on the genetic architecture, and non-additive genetic effects
are present (all p-values are <0.0001). The results pertaining to the red and black hair
colors are mixed. In the ACE model, as fitted to the red hair color, there is no sex difference
(Table S5; p-value = 0.05), but all other effects are present (Table S5, p-value < 0.0001).
With respect to the black hair color, we find a simple AE with age effects, but no
assortative mating (p-value = 0.07), no C (p-value = 0.21) and no sex differences (p = 0.56).
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The absence of specific effects in the red and black hair colors may be due to low power
as a consequence of the low prevalence of these hair colors.

Table 2 shows the parameter estimates as obtained in the best fitting model. With respect
to the genetic influences, we find that the broad sense heritabilities in the ADE models
are high (over 0.90). The narrow sense heritability of red hair color, as obtained in the ACE
models, is lower (0.73), and the narrow sense heritability of black hair color is 0.96.
Inclusion of the genotype based three Dutch PCs in the models, to account for Dutch
genetic population stratification and the geographical gradient of hair color in the
Netherlands, did not strongly alter the estimates of heritability, phenotypic assortment
and variance decomposition (Table S6). However, the PCs do significantly explain hair
color variance in all modeled colors (all p-values are <1.0 x 107).
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2.3.3 Variance of hair color explained by autosomal SNPs using GCTA

The GCTA analyses in unrelated individuals show that depending on the hair color, at most
24.6% of the hair color liability can be explained by the autosomal SNPs (Table 3). All SNPs
of the top individual chromosomes explain between 1% and 16.3% of the liability. These
SNPs are on chromosome 16 (where the MCIR gene is located) for red hair, on
chromosome 15 (where the HERC2 gene is located) for brown and light versus dark, and
on chromosome 6 (where the RPS6KA2 gene is located) for black hair color. We also
studied the explained liability given by the top SNPs that are already known hair color loci
as reported in earlier studies. These SNPs explain between 0.5% and 6.9% of the hair color
liability in our sample.

The estimated genetic liability explained by common SNPs is low (<30%), given the fact
that the heritability of hair color as a trait is very high (>70%). There are several possible
explanations for this: GCTA is less appropriate for binary data than for quantitative
phenotypes; there are not many genes related to hair color; the distribution of effect sizes
of the genes and a combination of assortative mating plus possible common environment
and dominance for this trait are not accounted for by the modeling assumptions of GCTA.
In addition, SNPs were filtered by MAF > 0.01 and R2 > 0.80, leading to a large reduction
of all SNP variants present within the GCTA matrix, and the coverage of rare alleles and
less well imputed SNPs might therefore not be optimal. Also the LD tagging of SNPs might
not be good enough to detect all hair color variants. Finally, for red and black hair color
the results may be difficult to interpret due to the lack of power.

When adding the three Dutch PCs as covariates in the model, the estimates of the hair
color liability explained by the known hair color loci do not change much (Table 4).
However, the estimates of the total autosomal variation, as well as the top chromosomes
all drop to almost 0 for blond and brown hair (and therefore light versus dark). Although
standard errors do not show significant differences between the estimates, it indicates
there are still unknown variants that determine blond and brown hair color, which are
captured by the PCs, or there are variants that determine traits related to hair color
(population stratification).

2.3.4 GWA analysis

In total, genotype and hair color data were available for 7091 subjects from the NTR. We
performed five case-control GWAS with logistic regression for all SNPs including age, sex,
the three Dutch PCs and genotype platform as covariates. Familial structure was taken
into account in the analysis using Plink and selecting a single monozygotic twin. The
resulting QQ and Manhattan plots for all colors and light versus dark hair color are shown
in Figures $S1-S5. As shown with GCTA and with the twin heritability modeling, the PC’s
are significantly related to hair color in the Netherlands along the three Dutch major axes
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of genetic variation (Figures S6 and S7). Using the PCs, we corrected for this population
stratification, with post correction GWAS As ranging between 1.004 and 1.027. However,
as a consequence, we have likely also reduced the significance of SNPs, which are truly
associated with hair color.

2.3.4.1 Known hair color variants in relation to the GWAS results

Table 5 and Table 6 display the gene variants for hair color, which are known from
previous studies and our most significant SNPs within these genes. The two genes HERC2
(15911.2-13), along with neighboring gene OCA2, are known as the most essential genes
for determining human pigmentation traits including eye, hair and skin color [92, 105].
These genes also show strong signals on chromosome 15 in our study, with SNPs
rs7495174 and rs79097182 for blond, brown and light hair color.

The solute carrier (SLC) gene family group is a large family gene group that consists of 458
genes in 52 families. Three loci have been found to be associated with human
pigmentation: SLC24A5, SLC45A2 and SLC24A4 gene. Interactions between HERC2 and
SLC24A4 play a role in determining blue eye color, but also light hair color and less tanning
ability [106-107]. SLC24A4 (14932.12) encodes the sodium/potassium/calcium exchanger
4 protein (NCKX4). Alternative splicing of this gene results in multiple transcript variants.
Variants in SLC24A4 have been previously associated with eye and hair color, skin
sensitivity to sun and cutaneous malignant melanoma [108]. We confirmed the
associations for hair color. Within SLC24A4, rs8014907 was significantly associated with
all hair colors, except red. The SLC45A2 gene, which is in the same family as SLC24A4,
encodes a transporter protein that mediates melanin synthesis. The protein of SLC45A2 is
expressed in a high percentage of melanoma cell lines. Mutations in this gene are a cause
of oculocutaneous albinism type 4, and polymorphisms in this gene are associated with
variations in skin and hair color [109-110]. Multiple transcript variants encoding different
isoforms have been found for this gene. Our results do show a p-value = 9.1 x 107 for the
gene. SLC24A5 was found to be involved in skin pigmentation in European populations
[107]. A 4-bp insertion (c.569 572insATTA rs1426654) in the SLC24A5 gene, causing a
frame shift and premature termination, was identified in a man with Indian ancestry
[111]. Homozygosity of this insertion results in extreme hypopigmentation and pinkish-
white skin, with dark brown hair and a brown iris [109]. However, we have not found any
significant hits in this locus. For SLC24A5 gene the lowest p-value is 0.7 and the question
is whether we have people with this particular insertion present within our Dutch
population.

MCIR (16g24.3) is an intron-less gene of the size less than 1 kb. Non-synonymous variants
in MIC1R are present in approximately 50% in the European population [112]. Its multiple
variants were first found to be associated with human red hair color in 1995 [113]. A

28



subsequent study found these variants to have the same effect on pigmentation at
increased frequency with increasing latitude in humans [114-115]. We replicate this
association in our study, as MCIR is associated with multiple hair colors, except blond.
KITLG (12922) is known to regulate the number of melanocytes during development,
melanin distribution and hyper/hypo pigmentation. Sequence variation is thought to
affect expression of KITLG (184,745), which results in the blond hair color. In European
populations rs12821256 T/C SNP is found to be associated with blond hair color [116-117],
and this SNP explains 3%—6% of the variance [87]. Our study confirmed this result,
rs12821256 showed a significant associations with blond, brown and light versus dark hair
color. Recently, a functional study showed that this SNP alters a transcription factor
binding site for lymphoid enhancer-binding factor 1 (LEF1), reducing LEF1 responsiveness
and enhancer activity in cultured human keratinocytes [118].

IRF4 (6p25.3) is associated with hair color and skin pigmentation [117]. There is a strong
association of the A allele of a single-nucleotide polymorphism (SNP) on chromosome
6p25.3, rs1540771, with the presence of freckles in Icelandic and Dutch population
samples (discovery OR = 1.40, p-value = 3.7 x 107*8) [119]. In our study, the most significant
SNP rs62389424 is a bit further away (34 kb) and is associated with all hair colors except
red (p < 1.3 x 10™).

Genetic variants in 3-prime-untranslated region of the ASIP result in skin/hair/eye
pigmentation variation. ‘The ASIP haplotype’, rs1015362G and rs4911414T was shown to
be associated with red hair color, freckling, and skin sensitivity to sun, in addition to
burning and freckling that reached genome wide significance (max odds ratio = 1.60, p-
value = 3.9 x 10™) in the Icelandic and Dutch populations [119]. In our study, however, we
did not find any significant results for the ASIP locus. Minimum p-values for these genes
were above 0.35 for the hair colors. Note that red hair color in our sample is not so
frequent, so this could be related to detection power.

TPCN2 (11913.3.) was found to be significantly associated with blond versus brown hair
color in Icelandic Europeans [117]. In our study SNPs in this locus are significantly
associated with blond, brown, black and light versus dark hair colors (p < 4.7 x 107%9).
The variants of TYRP1 gene are known skin/hair/eye pigmentation variation loci. A
suggestive association for blond versus brown hair was observed for rs1408799 in Iceland
and Dutch populations, and functional data suggest that the TYRP1 gene encodes a
melanosomal enzyme with a role in the eumelanin pathway [119]. The p-values in our
study are about 10™* implying a potential, but weak association with hair color.
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2.3.4.2 Identification of new hair color variants from the NTR GWAS results

Within this study, no new SNPs were significantly associated with hair color after
conservatively filtering on MAF > 0.01 for blond, brown and light versus dark hair color
and MAF > 0.05 for red and black hair color. Initially we had some associations for black
and red hair color when also filtering on MAF> 0.01. However, with this threshold of
filtering the number of cases having the minor allele(s) is extremely small, which leads to
inflated statistics. Subsequently, these were not confirmed as positive results as none of
the red hair color findings (black hair color unavailable) were replicated by the Decode
study, and permutation analyses showed that the findings were also likely under the
hypothesis of no association (Table S7).

2.4 Conclusions

Our twin family analysis shows high heritability for hair color (70%-97%). Both additive
and non-additive genetic models, as well as positive assortative mating and population
stratification should be taken into consideration when conducting genetic studies of these
traits in the Dutch population. In the GWA analysis we could confirm previously known
associated variants in the MCIR and HERC2, TPCN2, SLC24A4, IRF4 and KITLG genes. The
GCTA analyses shows that common SNPs in these loci explain about 6% of the hair color
liability in our population. In total, between 0% and 25% and, on average, roughly 13% of
the hair color liability can be explained by common SNPs genome wide, and therefore new
variants, either rare and tagged by the common SNPs or simply not identified yet, are
likely still present within the genome. This study also shows the issues of current standard
GWAS approaches. The modeling assumptions of GCTA assume additive effects with many
genes influencing the trait. However, as made evident, there are non-additive effects,
assortative mating, population stratification and the likelihood of involvement of rare
gene variants and the question is thus whether estimates of the variance explained by
these methods are optimal. To find the missing heritability, an investment in large sample
sizes with meta-analysis and methodological innovation to deal with these other-than-
additive circumstances, a stratified population and better rare allele detection is needed
to improve locus detection, even for a highly heritable trait like hair color.
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Appendix I.

Details on methodology

Variance decomposition including assortative mating within the applied twin model

The variance of the liability underlying the phenotype, Vy, is standardized, i.e., Von = 1.
The variance is decomposed as follows Vyn = Vat+ Vp + Vg, where, additive genetic (Va), the
dominance genetic (Vp) and the unshared environmental variance components (Vg) sum
to one, and two parameters are estimated as free parameters. The broad-sense
heritability equals Va + Vb, and the narrow-sense heritability equals Va. In the notation of
Falconer and MacKay (1996) [13], we use r to denote the spousal phenotypic correlation,
and m to denote the correlation between the parental breeding values, i.e., m =r x Va.
Given the standardization, we express the expected phenotypic covariances in terms of
correlations. These are:

Spousal: r
Parent-offspring covariance: %Va (1+47)
Monozygotic twin correlation: Va+ Vo

Dizygotic twin and full sib correlation:  %Va (1 +m) + %Vp = %Va (1 +r x Va) + %Vp

The dizygotic twin, and full sib correlation, follows from m =r x Va given the assumption
of purely phenotypic assortment [13]. Note that the phenotype spousal correlation (r)
may differ when it is estimated directly on the basis of the parental data as compared to
the correlation estimated in the full model, as in the latter the dizygotic twin and full sib
correlations also play a role.

We also considered an ACE model (in the case of red and black hair colors), where C stands
for common environmental influences shared by family members. Letting VC denote the
shared environmental variance, the expected correlations sib correlations are Va + Vc
(MZs) and %Va (1 + r x Va) + V¢ for full sibling and dizygotic twins.
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Table S1. The sample of family members within the twin-family modeling study (N

=20,142).
Members N Age Blond Red Light Dark Black
Brown Brown
Fathers 1190 67.16 £ 6.52 458 39 227 349 117
Mothers 1584 64.40 +7.35 449 48 412 608 67
Twins 15,359 31.25+14.19 6245 759 3840 4147 368
Brothers 370 31.27 +£13.90 159 10 89 98 14
Sisters 1639 32.25+13.72 772 55 410 384 18
Table S2. Zygosity information for the subsample of twins within the twin
modeling study (N = 15,359).
Zygosity N Blond Red Light Dark Black
Brown Brown
Monozygotic males 2345 904 101 534 709 97
Dizygotic males 1678 632 75 396 495 80
Monozygotic females 4651 1905 280 1196 1211 59
Dizygotic females 2710 1095 154 753 676 32
Opposite-sex twins 3975 1709 149 961 1056 100

Table S3. Characteristics for subjects in the GWA study (N = 7,091) and the sub-
selection of unrelated individuals from these subjects for the GCTA study (N =

3,340).
Members N Blond Red Light Dark Black
Brown Brown
Fathers 657 292 14 101 187 63
Mothers 1021 329 22 240 395 35
Twins 4320 1828 115 1103 1205 69
Siblings 882 353 25 246 235 23
Spouses 211 86 5 53 61 6
GCTA 3340 1547 87 1019 927 66
Unrelated
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Some of these genes are biologically interesting candidates. MC4R belongs to the melanocortin
receptor family, involved in a wide range of physiological functions, including pigmentation.
Mutations in HPS4 result in subtype 4 of Hermansky-Pudlak syndrome, a form of albinism as
reported in Hutten et al. (2008) [120]. USH2A (Usher syndrome 2A) is previously found to be
related to retinitis pigmentosa [121].
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Figure S1. Manhattan plot and QQ plot for blond hair color (MAF > 0.01, A = 1.004673).
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Figure S2. Manhattan plot and QQ plot for brown hair color (MAF > 0.01, A = 1.003738).
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Figure S3. Manhattan plot and QQ plot for red hair color (MAF > 0.05, A = 1.021156).
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Figure S4. Manhattan plot and QQ plot for black hair color (MAF >0.05, A = 1.027328).
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Figure S5. Manhattan plot and QQ plot for light vs. dark hair color (MAF > 0.01, A =1.006079).
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Figure S7. The minor allele frequency of the known hair color genes in relation to the hair color
distribution, comparing the total GWAS sample to the 1000 PC1 based most northern individuals and 1000
PC1 based most southern individuals.
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Chapter 3

The genetic overlap between hair and eye color

This chapter is published as : Lin BD, Willemsen G, Abdellaoui A, Bartels M, Ehli E, Davies
G, Boomsma DI, Hottenga lJ., The genetic overlap between hair and eye color. Twin Res
Hum Genet, 2016. 19(6): p. 59.

Abstract

We identified the genetic variants for eye color by Genome-Wide Association Study (GWAS) in a
European family-based population sample and examined the genetic correlation between hair and
eye color using data from unrelated participants from the Netherlands Twin Register. With the
GCTA software package, we found strong genetic correlations between various combinations of
hair and eye colors. The strongest positive correlations were found for blue eyes with blond hair
(0.87) and brown eyes with dark hair (0.71), whereas blue eyes with dark hair and brown eyes with
blond hair showed the strongest negative correlations (-0.64 and -0.94, respectively). Red hair with
green/hazel eyes showed the weakest correlation (-0.14). All analyses were corrected for age and
sex, and we explored the effects of correcting for Principal Components (PCs) that represent
ancestry and describe the genetic stratification of the Netherlands. When including the first three
PCs as covariates, the genetic correlations between the phenotypes disappeared. This is not
unexpected since hair and eye colors strongly indicate the ancestry of an individual. This makes it
difficult to separate the effects of population stratification and the true genetic effects of variants
on these particular phenotypes.

Key words: physical characteristics, population stratification, genetic correlation, hair color, eye
color

45



3.1 Introduction

Hair and eye color are two major features in determining an individual’s appearance
within a population. Both hair and eye color are highly heritable. Heritability estimates for
hair color range from 61 to 100% and for eye color similar high estimates are obtained
[34, 36, 122]. Linkage studies indicate quantitative trait loci (QTLs) on chromosomes 15q
[37, 123], which contain the well-known pigment genes: OCA2 and HERC2. Both hair and
eye color are determined by gene variants present in the melanin pathway including
HERC2/OCA2, SLC24A4 and TYR [20, 87, 124-125], though these genes may not explain all
genetic variance in hair and eye color. Here we focus on the question whether all genes
affecting one of these visible traits also affect the other trait. To address this question, we
estimated the genetic correlation between hair and eye color for common single
nucleotide polymorphisms (SNP) within a sample from the Dutch population using GREML
(genomic restricted maximum likelihood) estimation for bivariate analyses [126] as
implemented in the GCTA (Genome-wide Complex Trait Analysis) software package [6].
The data came from unrelated individuals (N=3,619) registered with the Netherlands Twin
Register, which includes participants from all regions of the Netherlands. We explored the
effect of including Principal Components (PCs) on the genetic correlation between hair
and eye color. The first 3 PCs in the Dutch population significantly correlate with
participants' geographic location: PC1 with north-south, PC2 with east-west and PC3 with
centre belt region of the Netherlands [103]. Peripheral pigmentation traits such as eye,
hair, and skin color show a close correspondence with latitudes in national to world-wide
geographic regions: low-pigmentation prevalence is found to be higher in high latitudes
[103, 127]. Bolk [128] reported in a paper published in 1908, that early in the 20'" century
in the Netherlands, the northern part of the country was characterized by more blond hair
and lighter eye color than the southern part of the country. As is evident from Table 1
using data from the Netherlands Twin Register collected around 2004, this is still the case
roughly a hundred years later.
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Table 1. The distribution (in %) of hair color and eye color across Dutch provinces in the
1908 sample collected by Bolk (N=480,165) and for the 2004 survey in adult NTR
participants (N=7,661). We report 3 classes as in the original 1908 paper, i.e. blond hair-
blue eyes, black hair-brown eyes and red hair.

Birth Blond hair + blue eye Black hair + brown eye Red hair
Province 1908 2004 1908 2004 190¢ 2004
Friesland 43.2 40.0 1.7 1.3 2.5 2.1
Groningen 41.3 37.9 1.4 0.7 2.3 1.1
Drenthe 39.4 37.3 1.3 0.9 2.7 2.7
Flevoland** - 35.7 - 5.7 - 2.9
North-Holland 31.2 35.6 1.8 1.7 2.5 33
Overijssel 35.5 34.2 1.6 1.4 2.2 4.1
South-Holland 314 32.7 2.5 1.8 2.4 1.7
Gelderland 34.4 32.1 2.8 14 2.5 1.8
Utrecht 20.1 30.8 2.4 0.3 2.5 2.3
Zeeland 28.4 22.0 4.0 0.5 1.8 2.0
North-Brabant 22.3 28.0 4.0 0.5 2.6 2.0
Limburg 21.8 24.2 4.6 0.6 2.2 3.0
Total 32.3 32.2 2.5 1.3 2.5 2.4

*This variable is Blond hair + blue eyes in the 1908 data and Blond hair + blue/ gray eyes
in the 2004 data.** The province of Flevoland consists of reclaimed land and did not yet
existin 1908.

3.2 Methods

Participants in the Netherlands Twin Register [74-75] were included in this study based
on the presence of self-reported data on natural hair and eye color and the presence of
genotype data on an lllumina 370, 660, 1M or Affymetrix Perlegen-5.0, or 6.0 platform.
There were 7063 genotyped Dutch-ancestry participants, clustered in 3407 families with
data on eye color and 6965 genotyped individuals had data on both hair and eye color.
For the genetic association analysis of eye color (see Supplementary Online Materials) all
data were analyzed. For bivariate genetic analyses in GCTA all unrelated individuals were
selected, based on a Genetic Relatedness Matrix (GRM) cut-off of 0.025 [6]. This left 3,619
individuals for the bivariate analyses with a genetic relatedness equivalent to less than
third or fourth cousin.

Age, sex, natural hair and eye color were obtained from Adult NTR survey 7, which was
collected in 2004 [75]. Adult participants reported their own natural hair color from one
of five options: “fair/blond”, “hazel”, “red/auburn”, “dark brown”, and “black” and eye
color with one of three options: "blue/ gray", "green/hazel" and " brown". The same
guestions on eye color and hair color were answered by adolescent (14-18 years old) twins
when they completed the Dutch Health and Behavior Questionnaire in 2005 or 2006 [74].
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For the statistical analyses we combined the black, light brown, and dark brown hair colors
to “Dark”, as only very few people reported black hair color [122]. Written informed
consent was obtained from all participants.

DNA extraction, purification and genotype calling of the samples were performed at
various points in time following the manufacturer’s protocols and genotype calling
programs [122]. For each platform, the individual single nucleotide polymorphisms (SNP)
were remapped on the build 37 (HG19), ALL 1000 Genomes Phase 1 imputation reference
dataset [129]. SNPs that failed unique mapping and SNPs with an allele frequency
difference over 0.20 with the reference data were removed. Also, SNPs with a Minor Allele
Frequency (MAF) <0.01 were removed, as well as SNPs that were out of Hardy—Weinberg
Equilibrium (HWE) with p < 10°. The platform data were then merged into a single
genotype set and the above SNP QC filters were re-applied. Samples were excluded from
the data when their DNA was discordant with their expected sex or IBD status, the
genotype missing rate was above 10%, the Plink F-inbreeding value was either larger than
0.10 or smaller than -0.10, or they were an ethnic outlier based on EIGENSTRAT Principal
Components (PCs) calculated from the 1000G imputed data [129]. Phasing of the samples
and imputing cross-missing platform SNPs was done with MACH 1 [95]. The phased data
were then imputed with MINIMAC to the 1000G reference. After imputation, SNPs were
filtered based on Mendelian error rate (> 2%), a R? imputation quality value of <0.80, MAF
<0.01 and a difference of more than 0.15 between the allele frequency and the reference
[96]. We tested the effect of different platforms and removed SNPs showing platform
effects. This was done by defining individuals on a specific platform as cases and the
others as controls. If the allelic association between the specific platform allele frequency
and the other platforms allele frequency was significant (p < 10”°) SNPs were removed.
This left 5,987,253 SNPs, which were all used to construct a GRM.

A GRM based on autosomal SNPs was obtained from GCTA on the best-guess imputed
data from Plink 1.07 [94]. The genetic correlation between the various dichotomous hair
and eye color combinations (i.e., defined by whether a color was present or absent for
the eyes and hair) was estimated using the GCTA bivariate analysis option [126]. Sex and
age were used as covariates in the analyses. Next, we added three Dutch PCs calculated
from the genetic data [103] as covariates, to explore the effect of ancestry-informative
PCs on the analysis, since hair and eye color are likely related to the population diversity
captured by these PCs.

3.3 Results

The GWAS for hair color in this sample was published previously [122] and the results
from the GWAS for eye color are described in the supplementary online material. We
replicated the known genetic variants for eye color including the HERC2 region for brown
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eye color (top SNP: rs74940492, OR=0.09, p=5.4E-8) and for blue/ gray eye color (top SNP:
rs2240202, OR=13.55, p=1.0E-47); TYR and SLC24A4 for blue/ gray (top SNPs: rs4904871,
OR=0.71, p=2.8E-13; rs67279079, OR=0.70, p=3.1E-11) and green/hazel eye color (top
SNPs: rs4904871, OR=1.52, p=3.8E-20; rs67279079, OR=1.49, p=3.6E-10). Among these
identified pigment genetic variants, we detected that HERC2 has pleiotropic effects on
blond, brown, dark hair color and blue/ gray, brown eye color, and SLC24A4 has
pleiotropic effects on blond, brown, dark hair color and blue/ gray and green/hazel eye
color.

The phenotypic association of eye and hair colors confirms the two traits to be strongly
related in our sample (x2-test with 4 degrees of freedom gave a p-value < 2.2x10-16):
people with blond and red hair are likely to have blue/ gray eyes while people with dark
hair are more likely to have brown eyes. The counts and frequencies of the hair and eye
color phenotypes for the 3619 individuals (1401 males; age: 41.04+19.81 and 2218
females; age: 39.13+£17.17) are presented in Table 2a while Table 2b summarizes the
information on the hair-eye color association from the much larger sample collected by
Blok [128], confirming the strong association in the Dutch population.

Table 2a. Hair and eye color counts and percentages for unrelated genotyped individuals
of the Netherlands Twin Register.

Color Blond hair Red hair Dark hair
Brown eyes 91(2.5%) 10(0.3%) 566(15.6%)
Blue/ gray eyes 1165(32.2%) 58(1.6%) 1024(28.3%)
Green/hazel eyes 224(6.2%) 14(0.4%) 467(12.9%)
Table 2b. Hair and eye color counts and percentages from Blok 1908.
Color Blond hair Red hair Brown hair Black hair
Brown eyes 37102(7.8%) 1671(0.4%) 31791(6.6%) 11758(2.5%)
Blue eyes 155040(32.4%) 4595(1.0%) 21970(4.6%) 4428(0.9%)
gray eyes 121157(25.3%) 4000(0.8%) 22294(4.7%) 4653(1.0%)
Green/hazel eyes 35517(7.4%) 1493(0.3%) 16763(3.5%) 4682(1.0%)

The genetic correlations between the hair and eye colors are presented in Table 3. Here
the same relation is shown as in the phenotypic description of the data, where the genes
related to blond hair show a strong positive correlation with blue/ gray colored eyes and
a negative correlation with brown and green colored eyes. Due to the low prevalence of
red hair color in our population, we do not detect any significant genetic overlap with any
eye color. Finally, there is a clear and strong genetic overlap for brown eyes and a dark
hair color. When adding the first three genetic PCs that correlated with Dutch ancestry,
the genetic correlations are reduced to zero (LRT=0, P-value=0.5). This indicates that the
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genetic PCs of the Dutch population are capturing the overlapping genetic variance of eye
and hair colors.

Table 3. The genetic correlations (se) between hair and eye color estimated from
common SNPs (MAF > 0.01) covering the full genome, corrected for age and sex, within
unrelated individuals of the Netherlands Twin Register.

Color Blond hair Red hair Dark hair
Brown eyes -0.64(0.31)* -0.18(0.40) 0.71(0.33)**
Blue/ gray eyes 0.87(0.35)** 0.21(0.40) -0.94(0.37)***
Green/Hazel eyes -0.61(0.47) -0.14(0.63) 0.64(0.48)

*One-sided P-value < 0.05, **One-sided P-value < 0.01, ***0One-sided P-value < 0.001, likelihood
ratio x>-test, df = 1, with the correlation fixed at 0.

3.4 Discussion

Based on our analyses of genome-wide SNP data, there is a strong genetic overlap
between eye and hair color within the Dutch population. This is in line with findings from
previous molecular studies indicating that the same genes are involved in hair and eye
color, for example, variants within the melanin producing pathway including HERC2,
OCA2, SLC24A4 and TYR [87, 117, 130]. We also conducted a GWAS for each of the two
traits in the NTR population (see Lin et al., 2015 for hair color and supplementary online
materials for eye color). The results confirmed the involvement of two genes, HERC2 and
SLC24A4, in both hair color and eye color.

It is important to realize when studying eye and hair color that these phenotypes can be
highly correlated with the genetic constitution of the population. Although the overall
pigmentation prevalence has changed during past 100 years (see Table 1: hyper-
pigmentation traits are more prevalent in 2004), the distribution pattern of pigment traits
following latitude is still the same. PCs representing Dutch ancestry and geographic
location are likely to explain the largest part of the variability of human pigment traits. As
shown here, the effect of population stratification and the true effects of genes on the
two traits are closely linked, as PC1 to PC3 also explained the genetic overlap between the
traits. In our study we only selected European Caucasian individuals based on the genetic
PC projection and 1000 genomes. Subsequently, three Dutch PCs were calculated in the
remaining individuals to account for the population stratification of regions where people
live in the Netherlands. However, these PCs also capture multiple traits that likely
underwent simultaneous genetic divergence between (sub)populations, such as eye and
hair color. When conducting gene finding studies or GCTA analyses, researchers should
therefore be aware of the effects of ancestral population differences on the relationship
between stratified traits.
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Appendix Il.

GWAS results for eye color

Results of a genome-wide association study for eye color in
the Netherlands Twin Register (NTR)

Participants

Within the NTR, there were 7063 Dutch ancestry participants, clustered in 3407 families
(2641 men, age: 44.994+19.15; 4546 women, age: 45.15+16.72) with information on both
genotype and eye color. Data on eye color were obtained from surveys. Participants
reported their eye color by choosing from one of three answer possibilities: “blue/ gray",
"green/hazel" and "brown". Written informed consent was obtained from all participants.
Genotyping data

Buccal or blood DNA samples were collected for multiple NTR projects. DNA extraction
and purification of these samples were performed at various points in time [76, 131],
following several manufacturer specific protocols to obtain the best quality and
concentration prior to SNP platform genotyping. Quality control was done within and
between platforms and subsets prior to imputation. For each platform, the individual SNP
markers were lifted over to build 37 (HG19) of the Human reference genome, using the
LiftOver tool. SNPs that were not mapped at all, SNPs that had ambiguous locations, and
SNPs that did not have matching (or strand opposite alleles) were removed. Samples were
excluded from the data if their expected sex did not match their genotyped sex, if the
genotype missing rate was above 10% or if the Plink F inbreeding value was either >0.10
or <-0.10. Quality control details were detailed in Lin et al. [122]. Phasing of all samples
and imputing cross-missing platform SNPs was done with MACH 1

[132]. The phased data were then imputed with MINIMAC [96] against the 1000 Genomes
Phase 1 Reference panel in batches of around 500 individuals for 561 chromosome chunks
obtained by the program CHUNKCHROMOSOME [97]. After imputation, SNPs were
filtered based on the Mendelian error rate (> 2%) in families. If the imputed allele
frequency differed more than 0.15 from the 1000G reference allele frequency, SNPs were
removed.

GWA analysis

We performed 3 case-control GWAS on binary eye color variables: brown versus non-
brown eye color, blue/ gray versus non-blue/ gray eye color, green/hazel versus non-
green/hazel eye color, with logistic regression, having age, sex, 3 Dutch PC's and
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corrections for genotype platform as covariates. Analyses were performed with the PLINK
1.07 software running a logistic regression on each SNP, taking genotype inaccuracy into
account by using dosage data [94]. Familial structure was taken into account using "--
family" option. Filtering on MAF > 0.01, imputation quality R%> 0.80, and Hardy—Weinberg
equilibrium (HWE) p-values >0.0001 were done after the GWA analyses within all eye
color informative individuals. This left 5,834,593 SNPs for generating Manhattan and QQ
plot.

Results

The eye color prevalence was 62.28% for blue/ gray eyes, 19.58% for green/light eyes and
18.14% for brown eyes. The top SNPs in a LD block for each eye color are shown in Table
S1. The resulting Q-Q and Manhattan plots for all eye colors are shown in the
supplemental Figures (S1-S3).

For brown eye color, we found that the presence of the T allele at rs74940492, an intron
variant for HERC2, significantly decreases the probability of brown eye color (OR=0.09,
p=5.4E-8). This SNPs is in the same LD block with top SNP rs2240202 for blue eye color
(OR=13.55, p=1.0E-47). This locus was also found to be associated with blond hair color,
brown hair color and dark hair color in our study. HERC2 which harbors this SNP has been
identified as an eye iris color gene by multiple studies [123, 133].

The top SNP rs4904871, an intron genetic variant in SLC24A4, was significantly associated
with both blue eye color (OR=0.71, p=2.8E-13) and green eye color (OR=1.52, p=3.8E-20).
This SNP was has also been associated with hair color in GWA studies [122]. The
rs12896399, which is located in the same LD block of rs4904871 (LD r?=0.95
distance™~22kb) was found to be associated with blond versus brown hair color, blue
versus green eye color [87] and black versus blond hair color [117] in other GWA studies.
The T allele of rs67279079 at TYR has been found to significantly decrease the probability
of blue eye color (OR=0.70, p=3.1E-11), and simultaneously to increase the probability of
green/hazel eye color (OR=1.49, p=3.6E-10). The TYR gene codes tyrosinase located in
melanocyte, which is responsible for the first step in melanin production. This gene is
associated oculocutaneous albinism and skin tanning ability

[125, 130, 134]. Three known pigment genetic loci were thus confirmed, but no new
genetic variants for eye color were identified.

Conclusion

In this study, we have replicated genetic variants for eye color: HERC2 for brown eye color
and blue/ gray eye color; TYR and SLC24A4 for blue/ gray and green/hazel eye color.
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Figure S1. Manhattan and QQ plot for brown eye color (MAF > 0.01, A =1.03114).
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Figure S2. Manhattan and QQ plot for blue/gray eye color (MAF > 0.01, A =1.0259).
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Figure S3. Manhattan and QQ plot for green/hazel eye color (MAF > 0.01, A = 1.02163).
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Part Il: Hematological profiles

55



56



Chapter 4

Causes of variation in the neutrophil-lymphocyte and
platelet-lymphocyte ratios: a twin-family study

This chapter is published as: Lin BD, Hottenga JJ, Abdellaoui A, Dolan CV, de Geus EJ,
Kluft C, Boomsma DI, Willemsen G., Causes of variation in the neutrophil-lymphocyte
and platelet—lymphocyte ratios: a twin-family study. Biomark Med, 2016. 10(10):p.
1061-1072.

Abstract

Aim: Neutrophil-lymphocyte ratio (NLR) and platelet—lymphocyte ratio (PLR) are biomarkers for
disease development, for whom little is known about causes of variation in the general population.
Materials & methods: We estimated the heritability of PLR and NLR and examined their association
with gender, demographic, lifestyle and environmental factors in a Dutch nonpatient twin family
population (n = 8108). Results: Heritability was estimated at 64% for PLR and 36% for NLR. Men
had on average higher NLR, but lower PLR levels than women. PLR and NLR increased significantly
with age, decreased in colder months and showed small but significant sex- and age-specific
associations with body composition and smoking. Conclusion: NLR and PLR levels are heritable and
influenced by age, sex and environmental factors, such as seasonal conditions and lifestyle.

Keywords: heritability, PLR, NLR, BMI, smoking, age, sex differences, weather conditions
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4.1 Introduction

Hematological biomarkers in peripheral blood are indicators of physiological function and
their levels may direct clinical decisions regarding disease status and treatment of
patients. The two largest sets of immune cells, as reported in clinical hematological
profiles, are neutrophils and lymphocytes. While both cell types play a key role in human
inflammation and disease response, recent clinical studies suggest that their ratio may
serve as a useful biomarker of disease. The neutrophil to lymphocyte ratio (NLR) has
prognostic value for cancer progression [135-136], inflammatory disease [66-67], and
cardiovascular disease [137]. A second hematological ratio of interest is the platelet to
lymphocyte ratio (PLR), which has also been related to cancer progression [70],
cardiovascular disease and inflammation [138].

To understand the role of NLR and PLR in disease processes, it is important to gain insight
into the degree of variation in these ratios within non-patient populations and the extent
to which variation is due to genetic and non-genetic causes. Normal variation in immune
function may be due to inherent factors such as age, sex, and genetic constitution,
environmental factors such as season, and lifestyle factors such as smoking and diet. To
date, few studies examined the factors influencing the variation of NLR and PLR in non-
patient populations and most of those focused on NLR. Sex and age effects on NLR in the
general population were examined in two studies [139-140], with similar results. No
evidence was seen for sex differences in NLR but NLR did increase with increasing age. Li
et al. [139] suggested that this age-related increase may reflect a higher prevalence of,
often undetected, chronic infectious disease and cancer development in the older
population. Genetic epidemiological studies of NLR and PLR are, to the best of our
knowledge, lacking. However, genetic factors have been shown to contribute
substantially to the phenotypic variation in neutrophil, lymphocyte, and platelet counts,
with heritability estimates of 67%, 48-71%, and 57-86% respectively [51-53, 141]. In
addition to the contribution of inherent factors to variation among individuals, immune
function may also be influenced by external factors. Seasonality is thought to be an
important source of variation in the hematological profile [142]. Lymphocyte subset
counts as well as platelet levels have been found to be lower in the summer season [143-
144] and month-to-month changes in leukocyte and platelet levels were observed in a
study of trained and untrained men [145]. Buckley et al. [144] estimated that seasonal
factors accounted for 2% of the overall variation in platelet count, but not all studies show
evidence for seasonal effects on platelet count [146]. Lifestyle may also contribute to
variation in immunological function. Positive associations between body mass index (BMI)
and NLR were observed in two non-patient populations [139-140], but a third study did
not find BMI to be related to NLR nor to PLR [147] . With respect to their subcomponents,
larger waist circumference has been related to higher levels of lymphocytes, neutrophils
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and platelets [148] and these cell counts were also increased in obese women compared
to non-obese women [149-150]. Smoking has also been related to increased NLR in two
studies in the general population [140, 151] and to increased neutrophil [151] and
lymphocyte counts [152]. PLR, however, was not related to smoking [151] in the general
population, and neither was platelet count in this study. Lack of evidence for an
association between platelet count and smoking has been reported more often [153-154],
though lower platelet levels in smokers have also been observed [155-156].

The present study analyzed data collected in over 8,000 adult participants from the
Netherlands Twin Register, including adult twins and their family members, who were
very well characterized with respect to demographic and lifestyle traits and for whom
information on date and time of blood sampling was available. Also, the study collected
blood samples in women at a fixed moment of the menstrual cycle. We have two aims:
Firstly, to estimate the contribution of the genome (heritability) and of non-genetic
factors to variation in NLR and PLR and their subcomponents. Secondly, to further study
non-genetic factors by examining the associations of the two ratios with age, sex, weather
conditions at the day of sampling, indicators of inflammation, i.e. C-reactive protein (CRP)
and Interleukin 6 (IL6) levels, and the influence of smoking behavior and BMI, although it
should be recognized that some of these traits, e.g. BMI or smoking, are themselves
influenced by genes.

4.2 Materials and Methods

4.2.1 Participants

Data for the present study came from participants in the Netherlands Twin Register (NTR)
Biobank projects, which took place between 2004 and 2008, and in 2011 [75-77]. After
excluding outliers (i.e. absolute values exceeding mean +5xSD), NLR and PLR data were
available for 9,434 participants, clustered in 3,411 families. In a next step, data were
excluded in case of: 1) illness in the week prior to blood sampling (N=539); 2) CRP > 15
(N=287); 3) basophil count > 0.02x10°/L (N=151); 4) blood related disease or cancer
(N=83); and 5) use of anti-inflammatory medication (N=437), glucocorticoids (N=143) or
iron supplements (N=28). This resulted in data for 8,108 participants from 3,411 families.
The study protocol was approved by the Medical Ethics Committee of the VU University
Medical Center Amsterdam, (the Netherlands), and all participants provided informed
consent.

4.2.2 General biobank procedure

Participants were visited at home, or in some cases at work, between 7 a.m. and 10:00
a.m. They were instructed to fast overnight and to refrain from smoking, heavy physical
exertion and from medication use (if possible) in the morning prior to the visit. Fertile
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women without hormonal birth control were, if possible, seen on the 2nd to the 4th day
of the menstrual cycle and women taking hormonal birth control were visited in their pill-
free week. During the home visit, a brief interview was conducted concerning general
health status, any chronic diseases, medication use and smoking history. Measures of
height, weight, waist circumference and hip circumference were obtained. Peripheral
venous blood samples were drawn by safety-lock butterfly needles in EDTA, lithium and
sodium heparin, CTAD and PAX tubes. Immediately after blood collection, tubes were
inverted several times to prevent clotting and subjected to initial processing in a mobile
laboratory. Within 3 to 6 hours after the blood draw all samples were transported to the
laboratory facility in Leiden, the Netherlands (for details see [76-77]).

4.2.3 Blood parameters

Hematological profile. The 2 ml EDTA tubes were transported at room temperature to the
laboratory, where the hematological profile was obtained using the Coulter system
(Coulter Corporation, Miami, USA). The profile consisted of total white blood cell count,
percentages and numbers of neutrophils, lymphocytes, monocytes, eosinophils and
basophils, red blood cell count, hemoglobin, hematocrit, mean corpuscular volume, mean
corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell
distribution width, platelet count and mean platelet volume.

NLR and PLR levels. NLR was calculated as absolute neutrophil count (109/ L) divided by
absolute lymphocyte count (109/ L), and PLR was calculated as absolute platelet count
(109/ L) divided by absolute lymphocyte count (109/ L).

CRP level. Plasma heparin was collected from a 9 ml heparin blood tube that was
transported in melting ice to the laboratory. The plasma subsamples were snap-frozen
and stored at -30°C. One heparin plasma subsample was used to determine C-reactive
protein (CRP) by the 1000 CRP assay (Diagnostic Product Corporation) [157].

IL6. EDTA plasma was obtained from the 9ml EDTA tubes, which were stored in melting
ice during transport. Upon arrival at the laboratory, the tubes were centrifuged for 20 min
at 2000xg at 4 °C, and the plasma subsamples were snap-frozen and stored at -30°C. IL-6
level was subsequently measured in one EDTA plasma subsample using the Quantikine
Elisa Human IL-6 sR assay of R&D systems. Data were made missing if they exceeded mean
+ 5xSD (1.02% in total sample size) [158].

4.2.4 Health status, seasonal effects, BMI and smoking behavior

Health status. Participants were asked to report any chronic diseases and when they were
last ill (i.e., less than 1 week ago, less than 1 month ago, or more than 1 month ago). For
any medication use, the dosage, brand and name were recorded.

BMI. BMI was calculated as weight (kg) divided by height squared (m?).
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Smoking behavior. Participants indicated whether they currently smoked or ever had
smoked. If so, they were asked to provide information on the number of cigarettes
smoked and how long they (had) smoked. Based on this information, participants were
divided into 5 categories: nonsmoker, ex-smoker, light smoker (currently smoking less
than 10 cigarettes a day), average smoker (currently smoking 10 to 19 cigarettes a day),
and heavy smoker (currently smoking 20 or more cigarettes a day).

Seasonal effects. The information on daily weather conditions was obtained from the
website of the Royal Netherlands Meteorological Institute (KNMI). We analyzed the daily
data on temperature, wind speed, mean sea level, sunshine duration, global radiation and
mean relative atmospheric humidity and potential evapotranspiration [159].

4.2.5 Analyses

For NLR and PLR, the contribution of genetic factors (heritability) was estimated based on
the resemblance between relatives including mono- and dizygotic twins. First, we
summarized familial resemblance with respect to NLR and PLR, corrected for age, sex, and
age x sex effects, by means of correlations. Next, genetic and non-genetic variance
components were estimated by raw-data maximum likelihood in OpenMx [98]. The total
variance in each phenotype was decomposed into four sources of variation: additive
genetic (A), non-additive genetic or dominance (D), common environmental (C) and
unique environmental (E) variation. Common environmental variance was considered as
the variance shared between siblings and twins (Vs) who grow up in the same family. The
resemblance among family members was modeled as a function of A, D and C, making use
of well-established genetic relatedness among family members. As monozygotic (MZ)
twins derive from a single fertilized egg (zygote), they share ~100% of their genetic
material, and consequently share all genetic (additive and dominance) variance. Dizygotic
(DZ) twins, like full siblings, derive from two zygotes and share on average 50% of their
segregating genes. Consequently, they share 50% of additive (Va) and 25% of dominance
genetic variance (Vp) [13]. Parents and offspring share exactly half of their genetic
material, and share 50% of Va, but no Vp. Our model allowed siblings and twins to share
variance attributable to shared environment (Vs). Unshared influences (environmental,
measurement error and personal mutations) (Ve) contribute to total variance, but not to
familial resemblance. We allowed for a correlation in phenotype between spouses ().
Genetic analyses were done in twin families with at most one twin pair per family, and
two brothers and two sisters, father and mother. The sample of 3,251 families included
7,481 participants (238 MZM, 99 DZM, 530 MZF, 215 DZF and 221 DOS complete twin
pairs). Nested sub-models were compared to the full model by log-likelihood ratio test (-
2LL), at a significance level of 0.05.
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The association of NLR and PLR with IL6 and CRP was quantified by Pearson correlations
in sex and age-corrected data. To test the effect of sex, we performed a T-test with sex as
the independent factor on age-corrected NLR and PLR. The effects of age, temperature,
smoking and BMI on NLR and PLR were tested by linear regression in STATA [160],
separately for men and women. All analyses were corrected for familial clustering using
the option of robust cluster. All beta values presented below represent raw values and
are evaluated at a significance level of 0.05.

4.3 Results

We carried out a series of analyses of the twin family data to gain insight into the
heritability of PLR and NLR and their association with demographic factors, indicators of
inflammation, seasonal conditions and lifestyle. Table 1 provides the descriptive statistics
for NLR and PLR, their subcomponents neutrophil, lymphocyte, and platelet count, and
CRP and IL6 levels, separately for men and women. Table 2 contains the familial
correlations for NLR and PLR. We found that the NLR and PLR familial correlations did not
depend on sex (i.e., correlations in MZ males and MZ female twin pairs were equal, as
were the correlations for male and female first-degree relatives; p = 0.23). For NLR, the
MZ correlation was 0.36 (Cl is 0.30-.42) and the DZ correlation was 0.19 (.16-.22), which
indicates an additive genetic model. For PLR, the MZ correlation was 0.64 (0.60-0.68), but
the DZ correlation was less than half the MZ correlation. i.e. 0.24 (0.21-0.27), suggesting
the presence of non-additive genetic effects. Spousal correlations were significant at 0.14
(0.07-0.21) for NLR and 0.17 (0.10-0.23) for PLR. The most parsimonious genetic models
showed no evidence for common environmental influences on NLR (p = 0.47) and PLR (p
= 0.99). The narrow sense heritability (proportion of total variance explained by additive
genetic factors) of NLR was estimated at 35.8%, with no evidence for non-additive effects.
For PLR, the narrow sense heritability was 38.3%, with non-additive effects accounting for
an additional 25.9% of the total variance. The broad sense heritability for PLR was thus
64.2%. The remainder of the variance (64.2% in NLR and 35.8% in PLR) was explained by
environmental factors. We also estimated the heritability for the three subcomponents
of the ratios. The broad-sense heritability for neutrophil count was estimated at 41.1%
(no non-additive effects), for lymphocyte at 57.6% (22.4% due to non-additive effects),
and for platelet numbers at 70.5% (with 21.9% due to non-additive effects). There was no
evidence for common environmental effects for neutrophil count (p = 0.87), platelet
count (p = 0.32) and lymphocyte count (p = 0.99).

For age- and sex-corrected values, the correlation between NLR and PLR was 0.49 (p <
0.001). We further determined the correlation of the two ratios with two established
markers of inflammation, namely CRP and IL6. PLR correlated neither with CRP nor with
IL6 (p > 0.05), but NLR correlated significantly with CRP (0.15, p<0.001) and with IL6 (.08,
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p < 0.001). NLR and PLR levels were affected by both sex and age. For age-corrected
values, men had higher mean NLR levels than women (men: Mean nr=1.667, SEnir=0.012;
women Mean nr=1.626, SEnr=0.010; t(8106)=2.2602, P=0.009) and lower PLR levels than
women (men: Mean pr=116.944, SEpr =0.753; women: Mean pr=125.156, SDpr =0.587;
t(8106)=20.073, P<0.001). NLR increased with age in men but not in women (Table 3,
model 1), while PLR increased with age in both men and women (see Table 3, model 1).

Table 1. Mean (SD) levels of NLR and PLR and their constituents for men and women in the twin

family population.

Men Women
N 3068 5040
Age 44.13 (15.89)  43.07 (14.53)
NLR 1.67 (.66) 1.62 (.70)
PLR 117.11 (40.27)  125.05 (42.81)
Neutrophil 3.41 (1.16) 3.45(1.28)
Lymphocyte 2.17 (.634) 2.27 (.71)
Platelet 236.48 (53.36) 263.13(6.84)
CRP* 2.01 (2.36) 2.66 (2.92)
IL6* 1.69 (3.07) 1.637 (3.80)
BMI 25.47(3.67) 24.84(4.37)
Current Smoker 14.1 11.3
y/n (%)

* The sample size for CPR: N=3045 for men, N=4980 for women; IL6: N=2929 for men, N=4867 for women.
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Table 2. Familial correlations and confidence intervals for NLR and PLR.

Pairs NLR PLR
R 95% Cl R 95% Cl

MZ twins 0.361 0.296-0.420 0.644 0.603-0.680
MZ male 0.396 0.277-0.496 0.607 0.518-0.675
MZ female 0.348 0.270-0.418 0.658 0.610-0.699
Male first-degree relatives 0.186 0.111-0.258 0.223 0.142-0.299
DZ male 0.160 -0.078-0.392 0.295 0.085-0.461
Brother-male twin 0.331 0.199-0.439 0.342 0.028-0.557
Brother-brother 0.036 -0.225-0.309 0.308 0.122-0.450
Father-son 0.132 0.032-0.226 0.191 0.092-0.282
Female first- degree relatives 0.172 0.127-0.216 0.240 0.199-0.279
DZ female 0.293 0.152-0.405 0.355 0.228-0.462
Sister-female twin 0.205 0.101-0.296 0.337 0.201-0.447
Sister-sister 0.179 0.083-0.266 0.241 0.150-0.327
Mother-daughter 0.141 0.079-0.198 0.221 0.165-0.275

Female-male first degree relatives | 0.205 0.165-0.244 0.240 0.197-0.282

DZ opposite sex 0.172 0.037-0.297 0.257 0.129-0.371
Brother-female twin 0.180 0.049-0.296 0.211 0.165-0.275
Sister-male twin 0.183 0.061-0.293 0.342 0.028-0.557
Sister-brother 0.127 0.006-0.240 0.217 0.102-0.322
Mother-son 0.237 0.149-0.317 0.261 0.173-0.340
Father-daughter 0.235 0.175-0.296 0.233 0.172-0.291
Parents (father-mother) 0.137 0.066-0.207 0.166 0.101-0.230
Heritability 0.358 0.304-0.421 0.642 0.598-0.683

Correlations in bold italic were obtained from sub-models, in which all matching correlations of
the tested subgroup of family relations were set to be equal.
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Next, we explored the influence of seasonal conditions on variation in the ratios. Figure 1
illustrates the association between daily temperature and age-corrected NLR and PLR for
men and women. To avoid outliers due to periods with very few observations, we
restricted the entries in the graph to the months with more than 75 data points between
August 2004 and December 2007. We note a similar pattern for NLR and PLR from year to
year: Overall, NLR and PLR ratios increase with decreasing temperature. This pattern
seems more evident in the female group than in the male group. To formally test for the
effect of temperature, we included this variable in a regression analysis conducted
separately by sex and taking age into account. The results, shown in Table 3 (model 2)
demonstrate that both NLR and PLR are negatively significantly associated with daily
temperature in women, but not in men. There was no evidence for significant age x
temperature interactions for NLR and PLR.

We also explored the associations of NLR and PLR levels with the other weather-related
information available. Although sunshine duration, global radiation, atmospheric
humidity and evapotranspiration were related to NLR and PLR, these associations were
rendered insignificant by the addition of temperature. One exception was the effect of
global radiation on NLR: as the daily global radiation level increased, NLR levels decreased
(B =2.01E-5, p < 0.001).
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Table 4 includes the average NLR and PLR values as a function of smoking, BMI and sex,
while Table 3 includes the results of the linear regression modeling (see model 3 in Table
3). Smoking was not significantly associated with NLR in either men or women. BMI was
not associated with NLR in men, but it was related to NLR in women. In women, NLR
increased with increasing BMI and there was a significant age x BMI interaction, due to an
alleviation of the BMI association with increased age. PLR was more strongly affected by
smoking and BMI. In women, there was a significant BMI main effect as well as an age x
BMl interaction: the positive association was reduced at older age. Though we had limited
numbers of participants at older ages, an exploration of the data seems to suggest the
direction of event may be even reversed at old age. A similar pattern, though less strong,
was seen for the men. Unexpectedly, smoking was associated with a decrease in PLR in
both men and women, while age x smoking interaction effects were not present. To
explore the mechanisms underlying the association with smoking, we also examined the
relation between the subcomponents and smoking. Smoking was related to an increase
in neutrophils (B = 0.305, p < 0.001) and lymphocytes (B = 0.260, p < 0.001), but had no
significant effect on platelets (B = 0.017,p = 0.133). There was no evidence for smoking x
age interactions for the subcomponents.

The full model (Table 3, model 3) including age, temperature, BMI, smoking and their
interactions with age, explained about 6% of the variance in PLR in both men and women.
In men, this model also explained around 6% of the variance for NLR, but in women only
1.6% of the variance in NLR was explained by the factors included in the model.
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4.4 Discussion

The current study examined causes of variation in NLR and PLR to provide an insight into
individual differences in these biomarkers in the non-patient population. We examined
the effects of genetics, demographics, seasonal conditions and lifestyle and described for
the first time the importance of genetic factors for variation in PLR and NLR. Especially
PLR is influenced to a large extent (64%) by additive and non-additive genetic influences.
This high heritability is in accordance with the heritability estimates reports for the
individual platelets and lymphocytes components, which ranged from 48% to 86% in
previous studies [51-53, 141] and which we here estimated to be 71% for platelets and
58% for lymphocytes. Genetic factors also explain the variation in NLR with heritability
estimated at 36%. A lower heritability was also observed for neutrophil count (38%). The
genetic architecture underlying NLR and PLR was similar in men and women. Also, there
were no differences between the generations in the genetic architecture of NLR and PLR
as indicated by similar correlations for parents and offspring as for siblings. Our data
showed significant spousal associations, which is in line with previous reports of
assortative mating for immune parameters [161] but may also reflect a shared spousal
environment leading to a similar immune response.

In addition to being significantly influenced by our genome, normal variation in NLR and
PLR levels is also explained by differences in gender, age, and environmental and lifestyle
traits. There were sex differences in mean levels, with higher NLR and lower PLR in men
compared to women, and an older age was related to an increase in PLR and, to a lesser
extent, to an increase in NLR. As suggested by Li at el. [139], the age effect could reflect
underlying diseases in the older population, even though we selected relatively healthy
individuals as determined by immunological data, medication use and disease reports. It
is possible that some diseases were present at sub-threshold level and the higher
prevalence of autoimmune disease in women, especially after age 50, is well established
[162].

Non-genetic causes of variance in NLR and PLR included the effect of weather conditions.
For both ratios, average levels were higher in colder months, indicating seasonal
influences on immune parameters. This is consistent with previous work, which found
higher levels of inflammation during the winter in European countries [163] and in line
with previous studies on seasonal effects on cell counts in humans [142-145]. One likely
explanation for the higher levels during the winter is that there is a higher prevalence of
viral infections during the cold season [146], though many other factors are likely involved
in the seasonal effects on immune response and further study is needed [163]. Women
may be more sensitive to the seasonal changes, as an effect of temperature was mainly
visible in women.
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Lifestyle factors were related to individual differences in the two ratios. In women, a
higher BMI was related to higher NLR and PLR levels and there was also evidence for
significant BMI x age interactions for both ratios. In men, NLR was not influenced by BMI
but there was a significant age x BMI interaction for PLR. The interactions with age were
due to the fact that the influence of BMI became less strong at an older age. Our data
suggested there may even be a reduction in the ratios at old age, and studies including
more participants in the old-age range are needed to confirm this. A positive association
between BMI and NLR has been found before [139-140] and obesity is often considered
to be associated with a chronic state of inflammation [164]. Dietary habits may also
influence both platelet and leukocyte counts [165]. The greater influence of BMI at
younger ages points to the importance of weight control in early life.

Smoking increased both neutrophil and lymphocyte count, but whereas we observed
decreased PLR levels in men and women who smoked, there was no effect of smoking on
NLR. Tulgar et al. [151] found no effect of smoking on PLR or its subcomponents, but this
may be due to a small sample size, as the descriptive data do suggest a lower average PLR
in smokers compared to non-smokers. This study also reported NLR to be increased in
smokers, as did a larger study [140]. The mechanisms underlying the association of NLR
and PLR with disease are not fully understood. Increases in NLR and PLR may be indicative
of a decreased ability to detect and destroy infected cells, and of increased tumor-
promoting activities. A higher NLR indicates a shift in the balance between neutrophil and
lymphocytes, which in our sample was due to both a decrease in lymphocyte count and
an increase in neutrophil count. Lower lymphocyte counts are associated with poorer
survival in different types of cancer [166-167], while high lymphocyte counts are related
to better responses to cytotoxic treatment and to better prognosis in cancer patients
[168]. Neutrophils have also been reported to secrete tumor growth promoting factors,
including vascular endothelial growth factor, hepatocyte growth factor, multiple
interleukins and matrix metalloproteinases, and may thus contribute to a tumor
stimulating microenvironment [169-170]. A high BMI seems to be related to an increased
imbalance between lymphocytes and neutrophils, resulting in an increased NLR,
especially in women. With respect to PLR, overall, higher PLR in our study was related to
lower lymphocyte and higher platelet numbers. Platelets play an important role in
angiogenesis, thrombosis and hemostasis and increased platelet numbers have been
implicated in the development of cardiovascular disease [171] and cancer progression
[172]. Further study of the relationship of the two ratios with smoking and BMI in a
longitudinal sample, with attention to sex differences and interactions, may provide
important information about the way lifestyle influences our health.

Several studies have suggested that NLR and PLR may also be used as indicators of
inflammation and provide a cheap and easily-obtainable alternative to the currently used
CRP and cytokines, such as IL6 [173]. However, the low correlations we observed between
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the ratios and these two inflammatory markers argue against this. Correlations may have
been low because of exclusion criteria in our study, which included high CRP levels. Upon
exploring the correlations in the total sample, the correlations for NLR with CRP and IL6
were not much higher (0.214 and 0.121 respectively) while PLR remained unrelated to
CRP and IL6. Our results agree with those of Oh et al. [174], in that NLR and PLR are no
replacements for CRP and IL6 but should be used in addition to each other.

The correlation between NLR and PLR in our healthy population was moderate (r=0.49).
The presented differences in heritability, in the effects of lifestyle and in the association
with IL6 and CRP indicate that mechanism underlying individual differences in the two
rations are not the same for NLR and PLR. This is in line with studies showing that the two
ratios do not predict disease progress to the same extent [175] and may act as
independent disease predictors [176].

The combination of demographic and seasonal factors, smoking and BMI explained
around 6% of the variation in NLR and PLR. This is substantially smaller than the part of
the variance explained by genetic factors; 36% in NLR and 64% in PLR. Thus, it is of
importance to realize that variation in NLR and PLR to a large extent can represent genetic
variation, and that high levels in these ratios also may occur independent of disease
status. While a further search for additional environmental factors influencing variation
in these immune parameters is warranted, more insight into the genes and genetic
mechanisms underlying the high heritability is needed and gene finding studies form an
important next step in characterizing the DNA polymorphisms causing variation in NLR
and PLR.

In conclusion, variation in basal NLR and PLR in a general population sample is influenced
by the genome, by age and sex, by lifestyle factors and by environmental factors, such as
seasonal weather conditions.

4.5 Conclusion

This first study on the heritability of NLR and PLR showed that genetic factors influence
variation in NLR, and to an even larger extent, in PLR. To provide more insight into the
genetic variation in NLR and PLR gene finding studies are needed. Non-genetic factors are
more relevant to NLR than to PLR and while sex, age, seasonal conditions and lifestyle play
arole, these factors explain only a small part of the variation. For NLR in particular, studies
are warranted to identify additional environmental influences.
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Appendix lll.

Age and BMI interaction effects on NLR and PLR

In regression Table 3 model 3 of chapter 4, we found age x BMI interaction effects on PLR
in women and men, and on NLR in women. To further investigate these interaction effects,
we studied BMI effects on NLR and PLR 5 age groups (see Table S1). The age range
between 18 to 84 in our NTR data. We categorize the age into 5 levels: 18-30 years old,
30-40 years old, 40-50 years old,50-60 years old, and older than 60 years old.

The linear regression model shows that (Table S2): BMI increases NLR level in all women
except women who are more than 60 years old. BMI decrease PLR level in women and
men older than 50, and men between 30-40 years. The results show that BMI have
constant direction effects on NLR or PLR level. For NLR level in women, BMI have positive
effects effect on NLR, and this effect was alleviated with increased age. For PLR, BMI does
not have effect in younger male and female. However, BMI has negative effect in both old
males and females, and this effect was enhanced with increased ages.

Then | did the ANOVA test of NLR and PLR level on 5 age groups and 4 BMI groups (4
categories same as the paper) as fixed factors (Table S2).

The post hoc test for age and BMI results shows that: For NLR, there are significant
standard deviation differences in almost all different age groups; and there are significant
standard deviation differences between normal and overweight group and between
normal and obese group in men, between underweight and obese group, normal and
overweight group and between normal and obese group in women. For PLR, there are
significant standard deviation differences between 18-30 and other age groups in men,
18-30 and other age groups and 40-50 and other groups in women; and there are marginal
standard deviation differences between normal and obese group and between
overweight and obese group in men, there are no significant standard deviation
differences among BMI groups in women. We further check the standard deviations in
different age groups (TableS3): although older groups have smaller sample size, they have
larger deviation for NLR and PLR.

In conclusion, BMI age interactions are exist in female NLR level and both male and female
PLR level. Higher BMI increase NLR level in female, but this effect was alleviated with
increased age. BMI do not have effects in younger male and female. However, BMI have
negative effects in both old male and female, and this effect was enhanced with increased
age. In addition, older people have larger variance for NLR and PLR levels.
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Appendix IV.

Results for NLR and PLR in total and unhealthy
population

In this section, we mainly focus on the comparison of NLR, PLR and its subcomponents'
characters between healthy population, unhealthy population and total population.
Based upon disease and immune parameter specifications, we first divided the population
into a healthy and unhealthy subpopulation from total population (N=9434). Being
unhealthy was based on the possibility of having a compromised immune system, and
referred to several indicators: 1) illness reported in the week (N=539); 2) CRP > 15
(N=287); 3) basophil count > 0.02x109/L (N=151); 4) report of chronic immune disease or
cancer (N=83); and 5) use of anti-inflammatory medication (N=437), glucocorticoids
(N=143) or iron supplements (N=28). All individuals who met one or more of these criteria
were classified as unhealthy, leading to 1326 individuals within the unhealthy population
and 8108 within the healthy population.

Healthy versus unhealthy population.

Table SS1 provides the descriptive statistics for NLR and PLR, their subcomponents
neutrophil, lymphocyte, and platelet count, CRP and IL6 level in the unhealthy population.
To test for differences in NLR and PLR characteristics across two subpopulations, one
classified as healthy and the other as unhealthy, we conducted an ANOVA using SPSS
(version 21.0) [177], including age and sex as covariates. To explore the relationship of
NLR and PLR with two inflammatory markers, IL6 and CRP, we computed their correlations
in the unhealthy population and total population.

The unhealthy population was significantly older (t(9432)=3.002, p=0.003) and more likely
to be female (t(9432)=3.837, p<0.001) compared to healthy population. Using age- and
sex- corrected data, the unhealthy population has a higher mean NLR (t(9432)=12.460,
p<0.001) and PLR (t(9432)=6.451, p<0.001). This difference was related to higher
neutrophil (t(9432)=10.925, p<0.001) and platelet counts (t(9432)=4.465, p<0.001) and
lower lymphocyte counts (t(9432)=2.126, p<0.034). As one would expect, since CRP was
one of the criteria used to defined the unhealthy population, the unhealthy population
had a higher mean CRP (t(9432)=35.064, p<0.001) but also higher IL6 values
(t(9432)=10.014, p<0.001) than the healthy population. To further explore the association
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between the ratios and the two established markers of inflammation, CRP and IL6, we
also examined the correlation in the total sample, and separately for the healthy and
unhealthy population (Table SS2). Expect the correlation between NLR, PLR with
lymphocyte count, all association are stronger in unhealthy population than the healthy
population.

Subjective health was more often judged as less than good in the unhealthy population
and, as can be seen in Table $S3, NLR and PLR increased with a decrease in subjective
health, more obviously so in the unhealthy population.

Table SS1. Mean (sd) for NLR and PLR and their constituents in unhealthy population.

Male Female
N 429 897
age 46.66(17.38) 43.95(15.65)
NLR 2.05(0.96) 1.85(0.87)
PLR 127.59(49.31)  132.69(49.08)
Neutrophil 3.94(1.57) 3.82(1.58)
Lymphocyte 2.09(0.73) 2.23(0.74)
Platelet 242.96(59.42)  271.24(66.27)
CRP* 8.09(16.27) 9.00(13.43)
IL6* 3.08(5.30) 3.09(9.24)

* The sample size for CRP and IL6 is somewhat smaller due to missing data, CPR: N=423
for men, N=890 for women; IL6: N=399 for men, N=849 for women.

Table SS2. Correlation of NLR, PLR and other immune biomarkers (corrected age and
sex) in unhealthy population and total population.

r with NLR r with PLR
variables unhealthy all unhealthy all
NLR 1 1 0.495** 0.497**
PLR 0.495** 0.497** 1 1
Neutrophils | 0.699** 0.669**  -0.029 -0.053**
lymphocytes | -0.471**  -0.472** -0.676** -0.681**
Platelet 0.055* 0.040**  0.464** 0.474**
CRP 0.291** 0.214**  0.049 0.040
IL-6 0.176** 0.121** 0.022 0.004
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Heritability in total population

We restricted the dataset for the total population to subset of twins within a family, a
maximum of two brothers and two sisters, father and mother. This resulted in 8689 total
participants with 3388 families, including 299 MZM, 131 DZM, 700 MZF, 294 DZF and 287
DOS twin pairs. We took age, sex, age x sex interaction on the mean into account in twins
study. The genetic model for heritability study in total population is same as genetic model
for healthy population.

We were allowed to equate the MZ correlation for males and females and to equate all
first-relative correlations for both ratios. Familiar correlations of NLR and PLR are shown
in Table SS4. For NLR, the resulting MZ correlation was 0.34 (.28-.39) and the DZ
correlation was .15 (.09-.22), which suggests non-additive genetic effects are absent. For
PLR, the MZ correlation was 0.60 (.56-.68) and DZ was .23 (.16-.30), suggesting the
presence of non-additive genetic effect. Spouse correlations could not be dropped from
the model: the spouse correlation was 0.12 for NLR and 0.18 for PLR. Correlations in total
populations have similar pattern as correlations of healthy population, but estimations
are slightly lower.

The most parsimonious models showed no evidence for a common environmental
influence for both NLR and PLR. The heritability for NLR was estimated at 32.1% in total
population, with no evidence for non-additive effects. For PLR the broad sense heritability
of PLR was 60.4% in total population, with non-additive effects accounted for 22.1% in
total population. Unique environmental effects thus counted for 67.9% in total population
of the variance in NLR and 39.6% of the variance in PLR. Compared to healthy population,
both genetic effects on NLR and PLR are smaller in total population.

With regards of three sub components for these two biomarker (Table SS5), for
neutrophils count, the correlations of MZ, other first degree relative and spouse pairs are
0.421 and 0.195 and 0.154. The heritability is 37.3%, the else part of variance due to
unique environmental effects. For lymphocyte count, the correlations of Mz, other first
degree relative and spouse pairs are 0.579 and 0.209 and 0.178. The narrow sense and
broad sense heritability's are and 33.7% and 54.8%, the else part of variance due to unique
environmental effects. For platelets count, the correlations of MZ , other first degree
relative and spouse pairs are 0.639 and 0.279 and 0.130. The narrow sense and broad
sense heritability are 45.2% and 61.3%. The common environmental effect is small (5.6%)
but significant (p=0.03), and unique environmental effect is 33.2%. Compared the results
between healthy population and total population, the correlations of family membership
in healthy population are always smaller than that of total population, which give bigger
heritability's in healthy population.
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Table SS4. Familial correlations of PRL and NLR in total population. (N=8689,
family=3388).

pairs NLR PLR
R 95% Cl R 95% Cl

MZ twins 341 .284-394 .603 .563-.637
MZ male 341 .237-432 581 .503-.644
MZ female 341 .271-404 613 .567-.653
Male first-degree relatives .151 .087-.215 .230 .155-.300
DZ male .288 .111-435 327 .129-.480
Brother-male twin 213 .096-.317 265 .094-.404
Brother-brother .078 -.192-.336 .405 .096-.596
Father-son .108 .024-.189 .200 .114-.280
Female first- degree relatives .189 .152-.224 .247 .210-.283
DZ female 245 131-.348 387 .282-.477
Sister-female twin 209 .118-.291 .263 .178-.341
Sister-sister 128 .033-.219 .167 .084-.248
Mother-daughter 124 .073-.173 217 .169-.263
Female-male first degree relatives | .152 .113-.190 .229 .191-.266
DZ opposite sex .210 .008-.237 .286 .171-.388
Brother-female twin 112 -.007-.223 239 .124-.341
Sister-male twin 141 .027-.248 362 .247-.453
Sister-brother 126 .008-.238 .265 .165-.354
Mother-son 273 .193-.344 255 .173-.329
Father-daughter 188 .132-.241 227 .175-.278
Parents (father-mother) 117 .058-.174 .178 .123-.232
Heritability 321 .293-.419 .604 .586-.679

Correlations in bold italic were obtained from sub-models in which all matching
correlations of the tested subgroup of family relations were set to be equal.
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Conclusion

Unhealthy individuals, classified on disease history and biomarker profiles, had higher NLR
and PLR levels than healthy individuals. The familial correlations of NLR and PLR are higher
in unhealthy population than correlations in healthy population. Same result pattern has
been observed in correlations of NLR with CRP, NLR with IL-6, NLR with neutrophil count,
NLR with platelet count, PLR with platelet. The variance of blood ratios and blood counts
caused by less genetic effects if we including unhealthy population into model.

Discussion

Our comparison of healthy individuals with unhealthy individuals who had possibly a
compromised immune system showed that higher NLR and PLR levels in the unhealthy
individuals. NLR thus seems to be the most promising marker for inflammation, which also
suggest from other study [178], though more study is needed to establish its use in clinical
practice.

Heritability studies show the familial correlations of NLR and PLR to become smaller after
adding unhealthy individuals into account, which results smaller heritabilities in total
population than healthy population. Health status, which is also tightly regulated by
genetic effects, can become a confounding factor for twins study.
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Chapter 5

SNP heritability and effects of genetic variants for
neutrophil-to-lymphocyte and platelet-to-
lymphocyte ratio

This paper is to be submitted as: BD Lin, EC Montoro, JT Bell, DI Boomsma, EJCN de
Geus, R Jansen, C Kluft, M Mangino, BWJH Penninx, TD Spector, G Willemsen, JJ
Hottenga. SNP heritability and effects of genetic variants for neutrophil-to-lymphocyte
and platelet-to-lymphocyte ratio.

Abstract

Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are important
biomarkers for disease development and progression. To gain insight into the genetic causes of
variance in NLR and PLR in the general population, we conducted genome-wide association (GWA)
analyses and estimated SNP heritability in a sample of 5901 related Dutch individuals. GWA
analyses identified a new genome-wide significant locus on the HBSIL-MYB intergenic region for
PLR, which replicated in a sample of 2538 British twins. For platelet count, we replicated three
known genome-wide significant loci in our cohort (at CCDC71L-PIK3CG, BAK1 and ARHGEF3). For
neutrophil count, we also replicated the PSMD3 locus. For the identified top SNPs, we found
significant cis and trans eQTL effects for several loci involved in hematological and immunological
pathways. Linkage Disequilibrium score (LD) regression analyses for PLR and NLR confirmed that
both traits are heritable, with a polygenetic SNP-heritability for PLR of 14.1%, and for NLR of 2.4%.
Genetic correlations were present between ratios and the constituent counts, with the genetic
correlation (r=0.45) of PLR with platelet count reaching statistical significance. In conclusion, we
established that two important biomarkers have a significant heritable SNP component, and
identified the first genome-wide locus for PLR.

Keywords: NLR, PLR, GWAS, eQTL, SNP heritability.
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5.1 Introduction

Both neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have
been suggested as novel and useful biomarkers for the diagnosis or prognostic prediction
of diseases [179-180]. A high NLR level was shown to be an independent predictor
of mortality in patients undergoing cardiac revascularization [181] and in patients with
myocardial infarction [182]. Elevated NLR levels were also related to a poor prognosis of
various cancers, such as esophageal, pancreatic, lung, ovarian and hepatocellular cancer
[183-185]. Similar to NLR, PLR was also reported as an index for diagnosis or prognostic
prediction of oncologic disorders and inflammatory diseases [70, 186]. NLR and PLR thus
may serve as biomarkers in patient populations. However, studies of variation in these
biomarkers within healthy populations are scarce. Recently, we showed that variation in
NLR and PLR levels is due to genetic influences, with a broad sense heritability of 36% for
NLR and 64% for PLR, using a twin-family epidemiological design [187]. Here, we
investigate if the significant heritability estimates can be explained by common SNPs
(single nucleotide polymorphisms) and if we can identify the genes that play a role in these
two blood ratios. We also investigate if our findings are unique to the two ratios or
whether their count-components (i.e. lymphocyte, neutrophil and platelet counts) show
similar results.

No genome-wide association study (GWAS) has yet been published for NLR and PLR.
However, GWASs on their subcomponents, the neutrophil, lymphocyte and platelet
counts were carried out in different populations including European [188-191], African-
American [192-195], Korean [196-197] and Japanese populations [60, 198]. These GWASs
for blood cell count in different cohorts have identified multiple genetic loci for blood cell
components. For neutrophil count, the DARC gene promoter at 1923.3 was identified in
African-American populations [199] and loci at 20p12 (PLCB4 gene) [198] and 7q21.2
(CDK6 gene) [60] were found in the Japanese population. The chromosomal region nearby
PSMD3 on 1721 was associated in a GWAS meta-analysis in both Japanese and European
ancestry cohorts, but not in African-American cohorts. The variants at AK123889 on
6p21.33 were novel findings in a European ancestry cohort [192], and were also confirmed
by meta-analysis [200]. For lymphocyte count, two genetic variants nearby EPS15L1 gene
on 6p21 and LOC101929772 on 19p13 were identified [195]. For platelet count, many loci
were identified: SH2B3 on 12924, ARHGEF3 on 3pl4.3, ZBTB9-BAK1 on 6p21.31,
KIAA0232 on 4p16.1, EGF on 4925, PNPLA3 on 22q13.31 in the Korean population [196-
197]. ARHGEF3 on 3p14.3, PEAR1 on 1g23.1, BMPR1A on 10g23.2, loci on 6p22, 7911,
10921, 11q13, 20913 were detected in the African-American population [193-194, 201]
and over 55 loci including CCDC71L-PIK3CG, ARHGEF3, BAK1 and HBS1L-MYB in the
European population [188-189, 191, 202].
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Some blood cell count loci show pleiotropy: they influence multiple hematological indices
[60, 202-205]. For example, the genetic region nearby AK123889 on 6p21.33 was
associated with neutrophil count, lymphocyte count and total white blood cell count [195,
200] and the DARC promoter on 1g23.2 was associated with neutrophil count, monocyte
count and total number of white blood cells [192, 206]. The intergenic HBS1L-MYB
variants were associated with total white blood cell count and also with number of
neutrophils, lymphocytes, erythrocytes, eosinophils, monocytes, and platelets [60, 207].
Therefore, we also examined genetic effects across the ratios and constituent cell counts.
We conducted five GWASs to identify genetic variants associated with NLR, PLR and
neutrophil, lymphocyte and platelet counts. The discovery cohort consisted of 5901
participants from the Netherlands Twin Register (NTR) and replication of top results was
sought in a TwinsUK cohort consisting of 2538 participants. Furthermore, all top SNPs,
which showed a significant association with our phenotypes of interest, were selected for
an eQTL analysis to test whether these variants have an effect on the gene expression
level. For the ratios, we estimated the proportion of trait variance explained by significant
SNPs from the GWAS and the variance explained by SNPs that were associated with
lymphocyte, platelet and neutrophil counts [6, 26]. Using the summary statistics of the
GWAS results, we applied LD regression to determine the variance explained by all
autosomal SNPs to examine polygenetic effects between NLR and PLR and to determine
the genetic correlation between variants affecting the two ratios and their
subcomponents [208-209].

5.2 Methods
5.2.1 Participants

All participants were registered with the Netherlands Twin Register (NTR) and had taken
part in one of two biobanking projects with similar procedures conducted between 2004
and 2008 and in 2011 [76-77]. After removing outliers (defined as values outside mean
+5xSD for NLR, PLR or their subcomponents), the initial sample size for PLR and NLR was
9434 individuals clustered in 3411 families. We further excluded individuals who met one
or more of these criteria: 1) illness in the sampling collection week (N=539); 2) values of
CRP > 15 mg/L (N=287); 3) basophil count > 0.02x10°/L (N=151); 4) report of chronic
immune disease or cancer (N=83); and 5) anti-inflammatory medication, glucocorticoids
oriron supplements (N=537). The sample size reduced to 8018 with these criteria applied.
When linking these data to the genetic data, 6112 individuals had both phenotype and
genotype data. After exclusion of 211 individuals with non-Dutch ancestry, the final
sample size for GWAS, GCTA and LD score regression was 5901 individuals. Written
informed consent was obtained from all participants and the Medical Ethics Committee
of the VU Medical Centre approved the study protocols.
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5.2.2 Cell Counts

Blood samples were obtained during a home visit, or sometimes a work visit, between 7
and 10 a.m. Participants were instructed to fast overnight and to refrain from heavy
physical exertion and medication use (if possible) in the morning before the visit. Smokers
were asked to abstain from smoking at least one hour prior to the home visit. For fertile
women without hormonal birth control, when possible, an appointment was made within
the 2nd to 4th day of the menstrual cycle and women taking hormonal birth control were
visited during the pill-free week. Peripheral venous blood samples were collected into
multiple anticoagulant vacuum tubes. Within 3 to 6 hours upon blood withdraw all tubes
were transported to the laboratory in Leiden. During the visit to the participants,
phenotypic data were also collected on body composition, the presence of chronic
diseases, medication use, and smoking history [76].

The hematological profile, including the number of neutrophils, lymphocytes and
platelets, was obtained from 2 ml EDTA tubes using the Coulter system (Coulter
Corporation, Miami, USA). NLR was calculated as the absolute neutrophil count (10°/L)
divided by the absolute lymphocyte count (10°/L), and PLR was calculated as the absolute
platelet count (10%/L) divided by the absolute lymphocyte count (10°/L).

5.2.3 Genotype Data

For DNA isolation, we used the GENTRA Puregene DNA isolation kit. All procedures were
performed according to the manufacturer's protocols [131]. Genotyping was done on
multiple chip platforms, with a number of overlapping participants. Chronologically the
following platforms were used: Affymetrix Perlegen 5.0 (N=1,718), lllumina 370 (N=424),
lllumina 660 (N=1,103), lllumina Omni Express 1 M (N=346) and Affymetrix 6.0 (N=3602).
Genotype calls were made with the platform specific software (Birdsuite, APT-Genotyper,
Beadstudio) for each specific array.

Quality control was done within and between platforms and subsets. For each platform,
the individual SNP markers were lifted over to build 37 (HG19) of the Human reference
genome, using the LiftOver tool (“http://genome.sph.umich.edu/wiki/LiftOver”). The
data were then strand aligned with the 1000 Genomes GIANT phasel release v3
20,101,123 SNPs INDELS SVS ALL panel. SNPs from each platform were removed if they
had ambiguous locations, mismatching alleles with this imputation reference set or the
allele frequencies differed more than 0.20 compared to the reference. From each
platform, SNPs were also excluded if meeting the following criteria: a Minor Allele
Frequency (MAF) <1%, Hardy—Weinberg Equilibrium (HWE) with p < 0.00001, and call rate
<95%. Samples were excluded from the analysis when their expected sex did not match
their genotyped sex, the genotype missing rate was above 10% or the PLINK1.07 F
inbreeding value was either >0.10 or <-0.10.
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After these steps, the data of the individual arrays were merged into a single dataset using
PLINK 1.07 [94]. Within the merged set, identity by state (IBS) sharing was calculated
between all possible pairs of participants and compared to the known NTR family
structures. Samples were removed if the data did not match their expected IBS sharing.
The concordance rate of DNA samples on multiple platforms for overlapping SNPs
generally exceeded 99.0% after data cleaning. The HWE-, MAF- and the reference allele
frequency difference <0.20 filters were re-applied in the combined data. As a final step,
SNPs with C/G and A/T allele combinations were removed when the MAF was between
0.35 and 0.50 to avoid incorrect strand alignment. Phasing of all samples and imputing
cross-missing platform SNPs was done with MACH 1 [132]. The phased data were then
imputed with MINIMAC [210] in batches of around 500 individuals for the autosomal
genome using the above 1000G Phase | integrated reference panel for 561 chromosome
chunks obtained by the CHUNKCHROMOSOME program [97]. To avoid issues having SNPs
from different platforms partly imputed and partly genotyped we took the re-imputed
calls for all genotyped SNPs. After imputation of these SNPs, we generally find a high
concordance between re-imputed SNPs and the original genotype (0.9868). The mean
imputation quality R metric is 0.38 (based on all 30,051,533 imputed autosomal SNPs).
After imputation, SNPs were filtered based on the Mendelian error rate in families. The
Mendelian error rate was calculated on the best guess genotypes in families (trios or sib-
pairs with parents) using first GTOOL to calculate best guess genotypes and then PLINK
1.07 to analyze the data. SNPs were removed if the Mendelian error rate >0.02, the
imputed allele frequency differed more than 0.15 from the 1000G reference allele
frequency, MAF < 0.01 or R? < 0.80. HWE was calculated on the genotype probability
counts for the full sample, and SNPs were removed if the p-value < 0.00001. This left
6,010,458 SNPs for the GWAS analyses.

5.3 Analyses
5.3.1 Generation of Genetic Relatedness Matrices

Genetic Relatedness Matrices (GRMs) with the values of the identity by state (IBS) allele
sharing for a given set of SNP markers between all possible pairs of individuals were
calculated with the GCTA software [211]. Since we combined genotype data from
different genotyping platforms, which cannot be corrected for when calculating the
GRMs, we first removed SNPs that showed significant genotyping differences between
platforms (p < 0.0001). A total of 6,009,498 SNPs were retained, which is sufficient for
GRM estimation [211]. The SNP data were transformed to best guess Plink binary format,
and subsets were made for each of the 22 chromosomes. We generated 25 GRMs: one
GRM containing only the significant GWAS SNPs for PLR from our own study, and one
GRM containing the SNPs known to be involved in the cell counts. A third GRM was
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constructed for only closely related individuals (IBS>0.05), pairwise relationship estimates
smaller than 0.05 were set to 0 in this matrix [26]. This matrix is used as second covariate
matrix in the GWAS and GCTA studies to account for the family structure and it provides
an estimate of the total heritability [26]. Finally, 22 GRM matrixes were made that include
all autosomal SNPs, except for the one chromosome on which the SNP is present that is
tested in the GWAS: the Leave One Chromosome Out (LOCO) strategy [212]. These
matrixes are used in the GWAS study as covariates to remove any remaining statistical
inflation due to subsample stratification.

5.3.2 GWAS

Three Dutch Principal Components (PCs) were generated with the EIGENSOFT software as
described earlier by Abdellaoui et al. [213-214] to be used as covariates in the GWAS.
Additional covariates were age, sex and genotype platform. For NLR and PLR as well as for
the three sub-component counts we modelled the phenotypes as being influenced by SNP
and the six covariates. Analyses were performed with the GCTA software running a mixed
linear association model (MLMA) including the LOCO GRMs for chromosome 1 to 22, and
the close-related GRM [26, 215]. For the GWAs, the significance threshold was p-value <
5x1078 [21].

5.3.3 GWAS Replication

Replication of significant GWAS hits for NLR, PLR or individual blood cell counts, which
were not previously found, was examined in TwinsUK. TwinsUK is an United Kingdom
based twin registry with a focus on the genetic and environmental etiology of age related
complex traits and diseases [216]. Samples from TwinsUK were genotyped using the
lumina Hap317K and Hap610K assays (lllumina, San Diego, USA) following standard
procedures. Normalised intensity data were pooled and genotypes called on the basis of
the lllumina’s algorithm [217]. No calls were assigned if the most likely call was less than
a posterior probability of 0.95. SNPs that had a low call rate. Subjects were also removed
if the sample call rate was less than 95%, autosomal heterozygosity was outside the
expected range, genotype concordance was over 97% with another sample and the
sample was of lesser call rate. Imputation of genotypes was carried out using the software
IMPUTE [96]. The best guess Plink binary format data was used to conduct the replication
analysis. The sample size of the TwinsUK dataset was 2538 subjects with genetic and
phenotypicinformation, after values outside meanz5SD in the phenotype of interest were
removed. We tested the association with the SNPs using a linear mixed model, in which
the traits were regressed on the SNPs, while correcting for age and sex as fixed effects
variables.
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5.3.4 eQTL Analysis

To determine the effects of the GWAS located genetic variants for both ratios as well as
the constituent counts, we conducted eQTL analysis, using the NESDA-NTR Conditional
eQTL Catalog (online accessible: https://eqtl.onderzoek.io). The details of the eQTL
analysis are described in the supplementary material. In brief, eQTL effects were
examined with a linear model approach using MatrixeQTL [218] with expression level as
dependent variable and SNP genotype values as independent variable. eQTL effects were
defined as cis when probe set—SNP pairs were at distance < 1M base pairs (Mb), and as
trans when the SNP and the probe set were separated by more than 1 Mb on the genome
according to the Human reference genome HG19. To determine whether the observed cis
and trans effects may reflect causal mechanism we checked the LD of our top SNPs with
the top SNPS identified for gene expression in the implicated genes. Since gene expression
is related to blood composition we repeated the analysis with and without correction for
blood composition components (specifically mean corpuscular volume, red cell
distribution width, and neutrophil, lymphocyte, monocyte, eosinophil, basophil and
platelet counts).

5.3.5 SNP Heritability and Genetic Correlation

The variance explained by the significant SNPs in our GWAS for PLR was estimated with
the GCTA software [211]. The variance explained in NLR and PLR was estimated with GCTA
for the known loci from literature for neutrophil, platelet and lymphocyte blood cell
counts. For each analysis we included family members and therefore included the closely-
related GRM under the Restricted maximum likelihood (REML) analysis procedure within
GCTA [26]. Sex, age, genotype platform and three Dutch PCs were used as covariates. The
variance explained by all SNPs was estimated by Linkage Disequilibrium (LD) regression
between our computed GWAS summary statistics effect sizes and the expected Hapmap
3 LD [208]. In order to do this, we used the HapMap3 LD scores (NSNPs= 1,293,150),
computed for each SNP based on the LD observed in European ancestry individuals from
1000 Genomes project (http://github.com/bulik/Idsc). The criteria of passing quality
control for SNPs were the default by LD regression: imputation quality info > 0.90, MAF >
0.01. SNPs with invalid P values (P >= 1 or P < 0) were excluded. In addition, variants that
are not SNPs (e.g., insertion-deletions), strand ambiguous SNPs, and SNPs with duplicated
RS numbers were also excluded. After quality control, the number of SNPs for these
analyses reduced to 951,097.

Genetic correlations among the phenotypes of interest were also estimated using LD
regression. The principle of this technique is that the genetic correlation of two traits can
be calculated by the slope from the LD regression on the product of effect sizes (z-score)
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for two phenotypes. Pearson correlations between PLR, NLR and the constituent cell
counts were calculated with the R program [219].

5.4 Results
5.4.1 GWAS

Summary statistics for the phenotypes of interest are given in Table 1 and GWAS results
for NLR and PLR are summarized in the Manhattan and QQ plots in Figures 1 and 2
respectively. The GWAS inflation factors (A) were 0.9963005 for NLR and 1.020995 for
PLR, indicating that there is no hidden stratification left in the studied GWAS sample. For
NLR, no loci were found that reached genome-wide significance levels. For PLR, there
were 20 SNPs located between HBS1L and MYB genes on chromosome 6g23.3 in the
HBS1L-MYB region, which were significantly associated with the phenotype (in Figure 2
Manhattan, Table 2 descriptive and Figure 3 locus zoom). The top SNP rs9376092 of this
locus has a C allele which significantly increases PLR level (B=5.48, p =2.75 x 107°). This
SNP was also significantly associated with platelet count (B=6.98, p =4.05 x 1078), but not
with lymphocyte count (B=-.039, p =0.008). In the TwinsUK sample, rs9376092 replicated
with a similar effect for PLR (B=4.766, p=0.004) as well as platelet count (B=6.053, p
=0.002). Here again, the SNP was not associated with lymphocyte count (3=0.014, p = 0.49)
(Table 3).

Table 1. Summary statistics of neutrophil-lymphocyte ratio (NLR) and platelet-
lymphocyte ratio (PLR), the constituent blood cell count phenotypes and age in males
and females.

mean (SD) males mean (SD) females mean (SD) all
(N=2250) (N=3651) (N=5091)
NLR 1.662 (.653) 1.615 (.690) 1.633 (.676)
PLR 116.354 (39.457) 124.770 (42.626) 121.561 (41.643)
Neutrophil 3.404 (1.146) 3.429 (1.256) 3.419 (1.215)
Lymphocyte | 2.170(.622) 2.264 (.699) 2.228(.673)
Platelet 235.464 (52.147) 262.006 (60.187) 251.886 (58.684)
Age 43.60 (15.88) 42.26 (14.27) 42.77 (14.91)
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Table 2. The significant SNPs associated in our study for PLR and the p-values for the

platelet and lymphocyte counts.

P(platele P(lym
RSNUMBER  CHR BP MAF B SE P (PLR) phocy
t count)
te)

rs9376092 6 135427144 0.270 5.483 0.922 2.75E-09 4.05E-08 0.008
rs4895440 6 135426558 0.271 5.478 0.922 2.83E-09 4.45E-08 0.007
rs35959442 6 135424179 0.272 5.476 0.922 2.9E-09 2.30E-08 0.009
rs4895441 6 135426573 0.270 5.472 0.922 2.95E-09 4.37E-08  0.007
rs11759553 6 135422296 0.273 5.446 0.919 3.19E-09 2.64E-08 0.010
rs7776054 6 135418916 0.258 5.492 0.934 4.21E-09 3.10E-08 0.014
NA 6 135418632 0.257 5.474 0.934 4.74E-09 3.10E-08 0.016
rs9399137 6 135419018 0.257 5.468 0.934 4.89E-09 1.99E-08 0.016
rs35786788 6 135419042 0.257 5.468 0.934 4.89E-09 1.99E-08 0.016
rs9373124 6 135423209 0.274 5.365 0.918 5.24E-09 2.64E-08 0.011
rs9389268 6 135419631 0.258 5.449 0.934 5.42E-09 2.64E-08 0.014
rs9376091 6 135419636 0.258 5.449 0.934 5.42E-09 2.52E-08 0.014
rs34164109 6 135421176 0.258 5.449 0.934 5.42E-09 2.52E-08 0.014
rs9402685 6 135419688 0.258 5.407 0.933 6.93E-09 3.30E-08 0.015
rs7758845 6 135428537 0.263 5.362 0.929 7.86E-09 5.06E-08 0.015
rs9376090 6 135411228 0.252 5.402 0.937 8.29E-09 1.69E-08 0.021
rs9389269 6 135427159 0.263 5.325 0.928 9.64E-09 4.51E-08 0.016
rs9402686 6 135427817 0.263 5.325 0.928 9.64E-09 4.51E-08 0.029
rs1331309 6 135406178 0.252 5.221 0.936 2.45E-08 3.93E-08 0.029
rs9399136 6 135402339 0.250 5.179 0.936 3.23E-08 3.73E-08  0.033

Table 3. Top SNP rs9376092 GWAS statistics results in NTR data and TwinsUK data.

Dataset | Alleles(A1/A2) Frequency Al Beta se P

NTR PLR 5.484 0.923 2.75E-9

(N=5091) C/A 0.72 Platelet 6.984 1.273 4.05E-8
- Lymphocytes -0.039 0.015 0.008
. PLR 4,766 1.642 0.004

TwinsUK

(N=2538) C/A 0.73 Platelets 6.053 1.942 0.002
- Lymphocytes 0.014 0.020 0.49
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Figure 1. A) Manhattan and B) QQ plot for neutrophil-lymphocyte ratio (NLR) GWAS results with SNPs'

MAF> 0.01.
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Figure 2. A) Manhattan and B) QQ plot for platelet-lymphocyte ratio (PLR) GWAS results with SNPs'

MAF> 0.01.
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Figure 3. Regional plot for the rs9376092 association with PLR level.
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Manhattan and QQ plots for the GWAS of neutrophil, lymphocyte and platelet counts
are given in Figure 4 to 6. For neutrophil counts we found significant associations (P <
5x107®) for 65 SNPs in LD in the PSMD3 locus (Table 4). For lymphocyte count we did not
detect any significant genetic associations. For platelet count, a locus in CCDC71L-
PIK3CG on 7922.3 showed the strongest signal in our study (p = 3.45x 1071%). We also
detected genetic variants for platelet count ARHGEF3, BAK1 and HBS1L-MYB.

Table 4. Significant loci associated with neutrophil and platelet blood cell count within
the NTR study.

Count RSNUMBER CHR BP GENE MAF B SE P

Neutrophil  rs8081692 17 38154595 PSMD3 0.370 0.157 0.024 1.77E-10
CCDC71L-

Platelet rs342213 7 106324612 PIK3CG 0.433 -6.981 1.112 3.45E-10
Platelet rs169738 6 33537546 BAK1 0.412 -6.824 1.151 3.06E-09
Platelet rs11925835 3 56865445  ARHGEF3  0.387 -6.457 1.147 1.84E-08
Platelet rs9376090 6 135411228 H'\B;lelBL- 0.254 7.296 1.293 1.69E-08

In Table 5 we report the known genetic variants from literature for the three blood cell
counts of interest and their significance level as reported previously, together with the p-
values obtained from our GWAS study. For neutrophil count we replicated the PSMD3
locus, which also showed an indication of association with PLR (p < 1.0x103). The
AK123889 locus showed a similar pattern for PLR (p = 3.67x10%), and this locus also had a
somewhat lower p-value for lymphocyte count (p = 0.001). For lymphocyte count, the
known locus rs25224079 was marginally significant (p = 3.02x10*), while this locus
showed a stronger association with PLR (p = 6.56x10°). We did not detect an association
for lymphocyte count with the other known locus ESP15L1 for lymphocyte count (p =
0.107). For platelet count, our top hit CCDC71L-PIK3CG was a replication of earlier studies
and also associated with mean platelet volume [188, 202]. We also replicated the loci at
ARHGEF3, BAK1 and HBS1L-MYB, with the latter being associated with PLR as well.
Furthermore five loci showed some signal at (p < 1.0x1073) for platelet counts: PDIAS,
MEF2C, JMD1C, rs7149242 and TAOK1. Other platelet count loci showed some association
(p < 1.0x1073) with related phenotypes: RCL1, IMDIC, rs7149242 and SNORD7-AP2B1 with
PLR, and MICA with lymphocytes.

93



Figure 4. A) Manhattan and B) QQ plot for neutrophil count GWAS results with SNPs' MAF>

0.01(A=1.011742).
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Figure 5. A) Manhattan and B) QQ plot for lymphocyte count GWAS results with SNPs' MAF> 0.01

(A=1.022341).
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Figure 6. A) Manhattan and B) QQ plot for platelet count GWAS results with SNPs' MAF> 0.01

(\=1.018586).
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5.4.2 eQTL effects for significant SNPs

Whole blood cis and trans eQTL analysis was performed for the top significant SNPs per
region identified in the GWAS for PLR (in Table 3) and blood cell counts (in Table 4), with
and without correcting for blood composition. The eQTL results are shown in Table 6.
Information on the function of the genes and the involved pathways was retrieved from
the GeneCards website (http://www.genecards.org).

Cis effects were found for rs8081692: it increases GSDMB, MSL1 and KRT23 gene
expression and decreases GSDMA expression. However, after blood components
correction, only GSDMA gene expression was upregulated by rs8081692. The locus
rs169738 was found to increase HLA-DPB1 and decrease TAPBP and HLA-DPA1
expression, also after correcting for blood composition. For rs9376090, we detected a
significant negative association with ALDH8A1 gene expression, but this SNP is not in LD
with the top SNP for ALDH8A1 gene rs4646871.

Trans effects for both rs9376090 and rs9376092 were found to increase TMEM158 and
HBE1 gene expression, and while the trans effects were alleviated when correcting for
blood composition, they remained significant. In addition, some eQTLs for genes involved
in platelet activation, signaling and aggregation pathways, were present for the
uncorrected expression results but disappeared when correcting for blood composition:
GNAS (for rs9376090), AQP9 and CREB5 (for rs8081692). The top SNP rs11925835 nearby
ARHGEF3 gene was found to regulate several sets of genes involved in: 1) platelet
activation, signaling and aggregation (/TGB3, PPBP, ITGA2B, PF4, GP1BA, PRKAR2B,
Cé6orf25, SELP, THBS1, GNG11, CLU, SPARC, F13A1, VCL, EHD3, CD9, PDGFA, MGLL,
GUCY1A3, TBXA2R, MMRN1); 2) immune system (TREML1, CDS, CD226) ; and 3)
metabolism (PTGS1, VS1G2, EVOVL7, MGLL, ALOX12, MFAP3L, and NDUFAF3). In addition
to these genes, there were several eQTLs for genes that regulate cell division,
proliferation, and differentiation such as ABLIM3, LMSM1, c7orf41, FHL1, MAX, RSU1,
TSPAN9 and MTPN. Furthermore, some genes play a key role in hematopoietic stem cell
differentiation pathways and lineage-specific markers, such as PEAR1 and CD226. For the
majority of these genes the effect was alleviated after correction for blood composition.
Some trans effects were no longer present after the correction such as the effects for
TPM1, EHD3, PDLIM1, MGLL, LMNA, SLA2,ELOVL7, MGLL , TBXA2R, RSU1, MFAP3L, NEXN,
CMTM5, ALOX12, PGRMC1, SEPT5, CDK2AP1, CD226, NDUFAF3, MMRN1, TSPANS, and
MTP.
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5.4.3 SNP heritability and correlations among phenotypes

The SNP heritability of NLR and PLR was estimated at 2.4% (se = 0.082) and 14.1% (se =
0.084) respectively using LD regression (Table 7). With GCTA the estimated variance
explained by the known loci from literature was 0.5% (se = 0.300) for NLR and 3.28% (se
= 0.700) for PLR within our study. Finally, the significant SNPs for PLR, the single SHB1l-
MYB region found in our study, explained 0.50% (se = 0.600) of variance.

Table 7. LD regression results of NLR and PLR and the blood cell counts.

NLR PLR Neutrophil Lymphocyt Platelet
Median of Signed_sumstatistic | -3.66E-5 -0.006 -2.12E-5 -6.58E-5 -0.003
Mean of X2 0.997 1.014  1.009 1.021 1.034
A GC 0.996 1.024 1.017 1.018 1.027
H? (se) 0.024 0.141 0.154 0.191 0.362

(0.082) (0.084) (0.101) (0.090) (0.088)
Intercept (se) 0.994 0.999 0.993 1.001 0.997

(0.007) (0.006) (0.008) (0.007) (0.007)

Median of Signed_sumstatistic: median value of beta values from GWAS.

Significant positive phenotypic correlations were observed between NLR and PLR (r=0.491,
p < 0.0001), between neutrophil count and NLR (r=0.651, p < 0.0001), and between
platelet count and PLR (r=0.478, p < 0.0001). Significant negative phenotypic correlations
were observed between NLR and lymphocyte count (r=-0.481, p < 0.0001), between
neutrophil count and PLR (r=-0.073, p < 0.0001), and between PLR and lymphocyte count
(r=-0.678, p < 0.0001). Significant and nearly significant genetic correlations were found
between PLR and platelet count (r=0.457, p = 0.031) and between PLR and lymphocyte
count (r=-0.486, p=0.070) (Table 8). The other genetic correlations were non-significant:
NLR with neutrophil count (r=0.223, p=0.850) and NLR with lymphocyte count (r=0.153,
p=0.882).

Table 8. Phenotypic correlations and genetic correlations of NLR and PLR levels and blood
cell counts.

Phenotype correlation estimated Genetic correlation estimated by LD
inR regression
Phenotypes
NLR PLR NLR PLR
r P r P re (SE) p rg (SE) P
PLR 491 <.0001 0 1
Neutrophil | 651 <.0001 -.073 <.0001 | .223(1.184) .850 0 1
Lymphocyte | -481 <.0001 -.678 <.0001 | -.153(1.024) .882 -.486(.268) .070
Platelet .018 174 478  <.0001 0 1 .457(.212) .031
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5.5 Discussion

We studied the genetic architecture of NLR and PLR as well as the genetic relationship
between NLR, PLR, and the corresponding immune cell counts. The intergenic HBS1L-MYB
region is a well-known locus for hematological parameters such as red blood cell count
[220], platelet count, hemoglobin level [221], MCHC level [222], and blood related
diseases such as myeloproliferative neoplasms [223], beta-thalassemia [224] and sickle
cell anaemia [207]. We found this intergenic HBS1L-MYB region to be significantly
associated with PLR. HBS1L-MYB intergenic variants reduce the transcription factor
binding and affect long-range interactions with MYB and MYB expression levels [225]. This
region was first identified as a quantitative trait locus (QTL) controlling fetal hemoglobin
level and is associated with iron deficiency anemia, beta-thalassemia, and sickle cell
disease [226-227]. The MYB gene encodes a protein with three HTH DNA-binding domains
that functions as a transcription regulator. This protein plays an essential role in the
regulation of hematopoiesis and lymphocyte differentiation. This gene can be aberrantly
expressed, rearranged or undergo translocation in leukemia’s and lymphomas, and is thus
considered to be a (proto-)oncogene [228-230]. The HBSIL (Hsp70 subfamily B suppressor
1-like) gene encodes a member of the GTP-binding elongation factor family. A single
nucleotide polymorphism in exon 1 of HBS1L gene is significantly associated with severity
in beta-thalassemia/hemoglobin E as found in a sequencing study [231] and verified in
several other studies [232-233]. Recently, this gene has been associated with several traits,
including erythrocyte and platelet count [188, 207, 234] and cholesterol level [235]. A
pleiotropic association study on a wide number of hematological traits found that
rs9373124, also in the HBS1L-MYB region, was significantly associated with all of the
evaluated hematological traits (p<0.005) including white blood cell count, red blood cell
count and platelet count [60].

The eQTL results show that some of the GWAS top SNPs for PLR and blood cell counts
regulate the expression of genes which are mainly involved in immune system pathways:
platelet activation, signaling and aggregation; metabolism; cell division, proliferation, and
differentiation; and hematopoietic stem cell differentiation pathways and lineage-specific
markers. These results provide new genetic targets for immune biomarkers and inform
future functional studies. In our GWAS study, SNPs with significant associations for NLR
were not identified, which is consistent with the small SNP heritability found with LD
regression analyses. Compared to PLR, NLR shows more phenotypic plasticity, because
neutrophils are part of the immune response to viral infections, autoimmune diseases,
acute-phase reactions and several drugs [236]. Furthermore, compared to the longer
lifespan of platelets (8-9 days), the life span of neutrophils is shorter (a few hours to max
5 days) [237-238]. The phenotype is therefore much more dependent on environmental
effects, e.g. the time of measurement and health state of the individual also indicated by
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our own heritability findings [187]. By selecting only healthy individuals, we may have
reduced the genetic variation in neutrophil count as well as lymphocyte count. We
examined the heritability of NLR in the full population, not excluding anybody based on
potential immune disease. There was no significant difference in heritability compared to
our healthy sample. The point estimates were somewhat higher for the healthy
population compared to the total population.

For both NLR and PLR a large part of the heritability is not explained by common SNPs or
genetic variants in LD. This may suggest that other genetic variants, such as rare variants
and copy number variants need to be studied. Furthermore, the missing heritability might
be high because of non-additive effects and genetic interactions, which are not taken into
account with the current applied statistical models. Epistatic effects of genetic variants
for hematological indexes are already found [201, 239]. We thus assume that, especially
for immune system phenotypes, gene-gene and gene-environment interactions need to
be studied further.

The LD regression results show that polygenic effects, rather than confounding factors
explain NLR and PLR variance in our study. We also demonstrated significant genetic
correlation between PLR and platelet count, but none of the other correlations between
ratios and cell counts were large enough to be significant. Since we found no SNP effects
on NLR, it is not surprising that no genetic overlap between NLR and PLR is detected,
although the genetic background of the lymphocyte count is expected to be affecting both
ratios.

In summary, our study found the HBS1L-MYB locus to be associated with PLR level and
with platelet count. In addition, we verified 3 additional known loci for platelet
count(rs342213 in CCDC71L-PIK3CG, rs169738 nearby BAK1 and rs11925835 nearby
ARHGEF3) and one locus for neutrophil count (rs8081692 nearby PSMD3). We did not
identify any locus or any significant SNP heritability for NLR. Although NLR and PLR are
both utilized as predictive or prognostic biomarkers for the same diseases, and phenotypic
correlations are present, there seems to be no genetic overlap between the two
biomarkers in our healthy population. The NLR and PLR responses associated with same
disorders, thus likely represent the simultaneous influence of separate and multiple
immune genetic pathways.
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Appendix V.

Details on eQTL analysis

Expression Data

The two parent projects that supplied data for the eQTL analysis are large-scale
longitudinal studies: the Netherlands Study of Depression and Anxiety (NESDA) [240] and
the Netherlands Twin Registry (NTR) [93]. NESDA and NTR studies were approved by the
Central Ethics Committee on Research Involving Human Subjects of the VU University
Medical Center, Amsterdam (institutional review board [241] number IRB-2991 under
Federal wide Assurance 3703; IRB/institute codes: NESDA 03-183 and NTR 03-180). All
participants provided written informed consent.

Subjects for eQTL analysis

The sample used for eQTL analysis consisted of 4,896 subjects with European ancestry
(1,880 unrelated subjects from NESDA, 559 MZ twin pairs, 102 siblings of MZ twins (one
per MZ twin pair), 594 DZ twin pairs, 111 siblings of DZ twins (one per DZ twin pair), 51
parent-sibling trios and 344 unrelated subjects from NTR). The age of the participants
ranged from 17 to 88 years (mean=38, SD=13); 65% of the sample was female.

Blood sampling, RNA extraction, and RNA expression measurement

Study protocols and biological sample collection methods were harmonized between NTR
and NESDA. RNA processing and measurements have been described in detail previously
[242-243]. Venous blood samples were drawn in the morning after an overnight fast.
Heparinized whole blood samples were transferred within 20 minutes of sampling into
PAXgene Blood RNA tubes (Qiagen, Valencia, California, USA) and stored at -20°C. Gene
expression assays were conducted at the Rutgers University Cell and DNA Repository.
Samples were hybridized to Affymetrix U219 arrays (Affymetrix, Santa Clara, CA)
containing 530,467 probes summarized in 49,293 probe sets. Array hybridization, washing,
staining, and scanning were carried out in an Affymetrix GeneTitan System per the
manufacturer’s protocol. Gene expression data were required to pass standard Affymetrix
QC metrics (Affymetrix expression console) before further analysis. We excluded from
further analysis probes that did not map uniquely to the hgl9 (Genome Reference
Consortium Human Build 37) reference genome sequence, as well as probes targeting a
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messenger RNA (mRNA) molecule resulting from transcription of a DNA sequence
containing a single nucleotide polymorphism (based on the dbSNP137 common database).
After this filtering step, data for analysis remained for 423,201 probes, which could be
summarized into 44,241 probe sets targeting 18,238 genes. Normalized probe set
expression values were obtained using Robust Multi array Average (RMA) normalization
as implemented in the Affymetrix Power Tools software (APT, version 1.12.0, Affymetrix).
Data for samples that displayed a low average Pearson correlation with the probe set
expression values of other samples, and samples with incorrect sex-chromosome
expression were removed, leaving 4,896 subjects for analysis.

Gene expression normalization

Inverse quantile normal transformation was applied for each expression probe set to
obtain normal distributions. The transformed probeset data were then residualized by
multiple linear regression with respect to the covariates sex, age, body mass index
(kg/m2), blood hemoglobin level, smoking status, several technical covariates (plate, well,
hour of blood sampling, lab, days between blood sampling and RNA extraction and
average correlation with other samples) and the scores on three principal components
(PCs) as estimated from the imputed SNP genotype data [103] using the EIGENSOFT
package. The residuals resulting from the linear regression analysis of the probe set
intensity values onto the covariates listed above were subjected to a principal component
analysis, with the aim to further filter out environmental variation from the data [244].
For each principal component a genome wide association study was performed, and the
first 50 principal components without genome wide significant SNP associations were
removed from the residualized probeset data before eQTL analysis.

DNA extraction and SNP genotyping and imputation

DNA was extracted from peripheral blood or buccal swabs as has described previously
[131]. SNP genotype pre imputation quality control, haplotype phasing and 1000
Genomes imputation were performed as described previously [245]. Imputed SNP
genotypes were coded into reference allele dosage format, and filtered at MAF>0.01 and
HW P>1E-04 resulting in 8,158,830 remaining SNPs for eQTL analysis.

eQTL analysis and FDR based on permutations accounting for relatedness

eQTL effects were detected with a linear model approach using MatrixeQTL [218] with
expression level as dependent variable and SNP genotype values as independent variable.
To account for relatedness of the NTR subjects, permutations were performed where in
each permutation the relatedness was preserved (i.e, in each permutation the genotypes
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of the MZ twin pairs were assigned the expression of a random MZ twin pair, the
genotypes of the DZ twin pairs were assigned the expression of a random DZ twin pair,
the genotypes of the MZ twin pairs with sibling were assigned the expression of a random
MZ twin pair with sibling, the genotypes of the parent-sibling trios were assigned the
expression of a random parent-sibling trios and the genotypes of the unrelated subjects
were assigned the expression of a random subject from the group of unrelated subjects).
For each permutation the complete cis or trans eQTL analysis was repeated, and after
each permutation the P-value threshold for rejecting at FDR<0.05 was computed. This can
be done in 2 ways: 1) divide the total number of significant eQTLs in the permuted data
by the total number of significant eQTLs in the unpermuted data (=false positives/true
positives) or 2) divide the total number of probesets with a significant eQTL in the
permuted data by the total number of probesets with a significant eQTLs in the
unpermuted data. We used the the second method which is more conservative and was
proposed by [244] to account for large LD blocks with strong eQTL effects that inflate the
FDR when using the first method. Similar as what was observed in Fehrman et al, only 10
permutations were needed to have the P-value threshold corresponding to FDR<5%
converging. Of note, the eQTL P-values reported in this manuscript are based on the
complete sample with related subject and thus are too liberal: however the FDR takes into
account the family structure and should be used to draw conclusions. The reported betas
from the linear models can be correctly estimated from samples containing related
subjects.

eQTL effects were defined as cis when probe set—SNP pairs were at distance < 1M base
pairs (Mb), and as trans when the SNP and the probe set were separated by more than 1
Mb on the genome according to hgl9. For each probe set that displayed a statistically
significant association with at least one SNP in the cis region, we identified the most
significantly associated SNP (E1 SNP). Conditional eQTL analysis was carried out by first
residualizing probeset expression using the corresponding E1 SNP and than repeating the
eQTL analysis using the residualized data. Then, for each probe set the most significant
SNP was selected (E2 SNP) and each probeset was residualized using the E1 and E2 SNPs,
and eQTL analysis was repeated using the residualized expression. This was repeated until
no more significant associations were found between residualized expression and SNP
data (after up to 12 rounds of conditional analysis). For the trans eQTL analysis the
expression was first residualized using the E1,.., and E12 cis SNPs. For each probeset with
significant trans-eQTL a similar conditional analysis was performed by conditioning the
gene expression on the strongest corresponding trans eQTL.
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Blood composition trait estimates

For 2958 subjects (60% of the complete sample), mean corpuscular volume, red cell
distribution width, and neutrophile, lymphocytre, monocyte, eosinophile, basophil and
platelet counts were available. Using partial least squares regression, estimates of these
blood trait were computed for the samples without blood composition measurements
(using the R function plsr (50 components) from the R library pls) based on the gene
expression measures. To verify how well the estimates are, first two third of the samples
having these blood cell traits were used to compute the estimates for the other third of
the sample having the blood cell traits, in order to compute the correlation between the
estimates and the actual blood composition traits. Spearman rank correlations were >0.75
for neutrophile, lymphocyte, monocyte and eosinophile counts, and >0.3 for the other
traits except for basophil count (rho=0.129). Basophil counts were mostly zero, not
associated with gene expression and therefore excluded from further analysis. The final
predictor was computed using all the samples for which the blood composition were
measured. Gene expression was corrected for these blood composition traits and eQTL
analysis was repeated.
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Chapter 6

Heritability and GWA studies for the monocyte-
lymphocyte ratio

This chapter is published as: Lin BD, Willemsen G, Fedko 10, R Jansen, BWJH Penninx, de
Geus EJ, C Kluft, Hottenga JJ, Boomsma DI. Heritability and GWA studies for the
monocyte-lymphocyte ratio. Twin Res Hum Genet. doi: 10.1017/thg.2017.3.

Abstract

Aim. The monocyte—lymphocyte ratio (MLR) may be a useful biomarker for disease development,
but little is known about the way genetic and environmental factors influence MLR variation.
Here we study the genetic architecture of MLR and determine the influence of demographic,
lifestyle and environmental factors on MLR using data from a Dutch non-patient twin-family
population. Methods. Using data obtained in 9501 individuals from the Netherlands Twin
Register, regression analyses were applied to determine the effects of age, sex, weather
conditions, smoking and body mass index (BMI) on MLR and its subcomponents. Data on twins,
siblings and parents (N=7513) were used in structural equation modelling to establish heritability
and whole genome wide analyses were conducted in a genotyped subsample (N=5892) to
identify the genes involved. GCTA, LD regression and eQTL analyses were performed to further
explore the significance and nature of the genetic findings. Results. Age, sex and age x sex
interaction effects were present for MLR and its subcomponents. Taking these effects into
account, heritability was estimated at 39.7% for MLR and at 58.3% for monocyte and 57.6% for
lymphocyte count. GWAS identified a locus on ITGA4 which was associated with both MLR and
monocyte count. For monocyte count, additional genetic variants were identified on ITPR3,
LPAP1 and IRF8. For lymphocyte count, GWAS provided no significant findings. Taking all
measured SNPs together, their effects accounted for 13% of the heritability of MLR, while all
known and identified genetic loci explained 1.3% of variation in MLR. Additional eQTL analyses
showed that these genetic variants are unlikely to be eQTLs. Variation in MLR was not related to
weather conditions, nor to BMI, but smoking was positively associated with MLR.Conclusion.
Variation in MLR level in the general population is heritable and influenced by age, sex and
smoking. Though we identified one gene variant associated with variation in NLR, more research
is needed to fully elucidate the genetic pathways.

Keywords: Heritability, MLR, GWAS, Age, Sex differences, Weather conditions, Lifestyle.
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6.1 Introduction

As early as the 1960s the relevance of the monocyte-lymphocyte ratio (MLR) for disease
prediction was pointed out. The first studies focused on infectious diseases, suggesting
MLR to reflect the balance between effector and host [246] and found MLR to predict the
development and progress of tuberculosis [247]. In later studies the association between
MLR and other diseases was studied and the MLR emerged as a predictor for cancer [248].
While MLR is examined in relation to disease, studies examining the causes of variance in
MLR in the general population are lacking. To fully understand the role of MLR in disease,
it is however necessary to understand the factors underlying variation in MLR in the
general non-patient population.

We recently showed heritability to play a role in individual differences in two other
lymphoid ratios, the neutrophil-lymphocyte ratio (NLR) and the platelet-lymphocyte ratio
(PLR). For NLR, the heritability was moderate (35%), but for PLR heritability was high
(64%), with evidence for the presence of non-additive genetic effects [187]. A first GWAS
study for these two rations identified a genome-wide locus on the HBS1L-MYB intergenic
region associated with PLR (chapter 5), which has been be associated with multiple blood
parameters, including platelet count [187].

Although the heritability of MLR has not been studied, genetic studies have been
conducted for its subcomponents, the monocyte and lymphocyte levels, showing
heritability estimates of 56-73% for monocyte level and 35-66% for lymphocyte level [51,
53]. In addition, linkage and GWAS have pointed to the genetic variants partly responsible
for the individual variation in monocyte and lymphocyte levels. GWAS studies have
identified eight loci associated with monocyte level: ITGA4 at 2q31.3, HLA-DRB1 at
6p21.32, CCBP2 at 3p22.1, RPN1 at 3921.3, LPAR1 at 9931.3, intergenic regions at 8q24
and 3921, and IRF8 at 16g24.1 [192, 195, 200, 249]. GWAS also identified two loci for
lymphocyte level: 6p21 (EPS15L1 gene) and 19p13 [195, 249]. Taken together, genetic
factors are likely to play a role in normal variation in MLR, but the nature of the
involvement remains to be determined.

Environmental and lifestyle factors may also influence MLR levels. Here too studies on
MLR itself are lacking, but our own study on PLR and NLR [187] showed that seasonal
conditions influence PLR and NLR levels, and agreed with other studies [139-140] that
smoking and BMI may also affect these parameters. In addition, its subcomponents,
monocyte an lymphocyte level have been found to be influenced by BMI [250-251] and
smoking [252], though these effects are not found in all studies [253-254].

In this paper we examine several potential causes of variance in MLR in the general
population. First, we present a series of genetic studies on MLR to provide more insight
into its genetic architecture. We started by estimating the heritability of MLR and it
subcomponents by extended twin family modelling. Next, we used GWAS to identify
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genetic variants associated with MLR variation and GCTA to determine the percentage of
variance of MLR that is explained by significant versus all measured genetic variants
(single nucleotide polymorphisms, SNPs). Subsequently, we performed an eQTL analysis
using all the top SNPs, which were significantly associated with MLR. We repeated the
GWAS, GCTA and eQTL analyses for monocyte level, while referring for lymphocyte level
to the results presented previously (chapter 5). Finally, LD-regression was performed
using the summary statistics of the GWAS results to determine the polygenetic effects
and genetic correlations between MLR and subcomponents.

After our examination of the role of genetic factors in the variance in MLR, we also
investigated additional causes of individual differences in MLR. We first studied the effect
of seasonal conditions such as outside temperature and next investigated the effect of
lifestyle factors, specifically smoking and BMI, on MLR.

6.2 Methods
6.2.1 Participants

All participants were adults registered with the Netherlands Twin Register (NTR) who took
part in a longitudinal study on health and lifestyle in twins and their family members [75].
Data were obtained as part of NTR biobanking projects conducted in 2004-2008 [76] and
2011 [77]. After removing outliers (i.e. absolute values exceeding mean +5SD), data on
MLR, monocyte count and lymphocyte count were available for 9501 participants
clustered in 3412 families.

The following exclusion criteria were used to identify individuals who may have had a
compromised immune system at the time of blood sampling: 1) iliness reported in the
week prior to sampling (N=552); 2) CRP > 15 (N=307); 3) basophil count > .02x10°/L
(N=154); 4) report of blood related disease or cancer (N=84); and 5) use of anti-
inflammatory medication (N=423), glucocorticoids (N=143) or iron supplements (N=29).
Participants meeting one or more of these criteria were labelled as unhealthy (N=1362),
leaving 8139 individuals from 3280 families as the population which we will here refer to
as the healthy population. Genetic twin-family modelling was conducted using data from
twin families limited to at most one twin pair per family and at most two brothers and
two sisters and father and mother. This resulted in a sample of 7513 participants from
3252 families, including 240 monozygotic male (MZM), 98 dizygotic same-sex male (DZM),
536 monozygotic female (MZF), 219 dizygotic same-sex female (DZF) and 222 dizygotic
opposite-sex (DOS) twin pairs.

The study protocol was approved by the Medical Ethics Committee of the VU University
Medical Center Amsterdam and all participants provided informed consent.
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6.2.2 Procedure and measurements

Participants were visited at home, or when preferred at work, to obtain blood samples
and conduct a brief health-related interview. Visits took place in the morning between 7
a.m. and 10:00 a.m. and women were seen, when possible, between the 2nd to the 4th
day of the menstrual cycle or, when on hormonal birth control, were visited in their pill-
free week. Participants were asked to remain fasting as of the evening before and to
refrain from smoking or physical exercise one hour before blood sampling (for more
details see [76]).

Health status

Participants were asked to indicate when they were last ill and the nature of the illness.
In the case of medication use the dosage, brand and name were recorded. In addition,
participants indicated on the presence and nature of any chronic disease.

Blood parameters.

Procedures have been described in detail elsewhere ([76] and chapter 4 in this thesis). In
short, peripheral blood was collected in anticoagulant vacuum tubes, which were inverted
8-10 times immediately after the blood draw. All samples were transported to the
laboratory facility in Leiden, the Netherlands, within 3 to 6 hours after blood sampling.
The blood samples were then directly used or stored to measure parameters of interest
or extract DNA or RNA at a later moment.

The haematological profile was obtained from blood collected in an EDTA tube using the
Coulter system (Coulter Corporation Miami USA). This profile consisted of total white
blood cell count, percentages and numbers of neutrophils, lymphocytes, monocytes,
eosinophils, and basophils, and indicators of red blood cell types and platelets. We
calculated MLR as the absolute monocyte count (10°/L) divided by the absolute
lymphocyte count (10%/L). C-reactive protein (CRP) was determined from a heparin
plasma sample using the 1000 CRP assay (Diagnostic Product Corporation).

Seasonal effects.

The information on daily weather conditions was obtained from the website of the Royal
Netherlands Meteorological Institute (KNMI) [159]. We analyzed the daily data on
temperature, wind speed, mean sea level, sunshine duration, global radiation and mean
relative atmospheric humidity and potential evapotranspiration.

Lifestyle

During the interview conducted at the time of the home visit, height and weight were
obtained. BMI was calculated as weight (kg) divided by height squared (m?). Participants
reported whether they currently smoked or had smoked. If so, they were asked for the
number of cigarettes smoked per day and how long they (had) smoked. Based on their
answers, participants were divided into 5 categories: non-smoker, ex-smoker, light
smoker (currently smoking less than 10 cigarettes a day), average smoker (currently
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smoking 10 to 19 cigarettes a day), and heavy smoker (currently smoking 20 or more
cigarettes a day).

6.2.3 Genotype Data

For DNA isolation we used the GENTRA Puregene DNA isolation kit on frozen whole blood
samples, which were collected in EDTA tubes. All procedures were performed according
to the manufacturer's protocols [131]. Genotyping was done on multiple chip platforms,
including a number of partly overlapping subsets of participants. The following platforms
were used: Affymetrix Perlegen 5.0, lllumina 370, Illumina 660, lllumina Omni Express 1
M and Affymetrix 6.0 (for details see chapter 4). The individual SNP markers were lifted
over to Build 37 (HG19) of the Human Reference Genome using the LiftOver tool
(“http://genome.sph.umich.edu/wiki/LiftOver”). Genotype calls were made with the
platform specific software (BIRDSUITE APT-Genotyper Beadstudio) for each specific array.
Phasing of all samples and imputing cross-missing platform SNPs was done with MACH 1
[132]. The phased data were then imputed with MINIMAC [96] in batches of around 500
individuals for the autosomal genome using the above 1000G Phase | integrated reference
panel for 561 chromosome chunks obtained by the CHUNKCHROMOSOME program [97].
SNPs were removed if the Mendelian error rate >0.02, if the imputed allele frequency
differed more than 0.15 from the 1000G reference allele frequency, if MAF < 0.01 and if
R2 < 0.80. Hardy-Weinberg Equilibrium was calculated on the genotype probability counts
for the full sample and SNPs were removed if the p-value < 0.00001. After imputation, the
DNA confirmed MZ twins were re-duplicated back into the data. This left 6,010,458 SNPs
in the GWAS analyses.

As several different platforms were used, additional SNP Quality Control (QC) included an
evaluation of the SNP platform effects and SNPs showing platform effects were removed.
This was done by defining individuals on a specific platform as cases and the remaining
individuals as controls. Allelic association was then calculated and SNPs were removed if
the specific platform allele frequencies were significantly different from the remaining
platforms with p-value < 0.00001. In total 5,987,253 SNPs survived this QC and these SNPs
were then used to build the Genetic Relationship Matrix (GRM)s for all individuals. The
selected SNPs were transformed to best guess Plink binary format and subsets were made
for each of the 22 chromosomes. The GRMS for all NTR samples were then calculated
using GCTA [6].

We generated 24 GRMs in total. A first autosomal GRM reflects an IBS matrix for all
individuals. This GRM matrix is determined from all autosomal SNPs and is used to
estimate the SNP heritability (hg?). A second autosomal GRM represents closely related
individuals (IBS> 0.05), any remaining pairwise relationship estimates smaller than 0.05
were set to 0 in this matrix. This matrix is used as second covariate matrix in the GWAS
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and GCTA studies to account for the family structure of individuals and to estimate the
narrow-sense heritability (h?) applying an additive model. Finally 22 GRM matrixes were
created that include all autosomal SNPs except for those on the one chromosome that is
tested in the GWAS (the leave one chromosome out or LOCO strategy). These matrices
were used in the GWAS study as a covariate matrix to remove artificial inflation due to all
kinds of subsample stratification.

6.3 Analyses
6.3.1 Influence of health status, age and sex.

First, using age- and sex corrected values, we tested for differences in MRL, monocyte and
lymphocyte level between the healthy and unhealthy population using a T-test. Next,
within the healthy population, we explored the age and sex effects by linear regression.
All these analyses were performed using STATA [160], using the cluster option to correct
for the inclusion of family members.

6.3.2 Heritability estimation

Using structural equation modelling in OpenMx [98], the heritability of MLR, monocyte
count and lymphocyte count was estimated in the healthy population. MLR, monocyte
count, lymphocyte count, age were standardized using Z-scores. Parameters were
estimated by maximum likelihood. First, we summarized the family resemblance with
respect to MLR by means of correlations corrected for age, sex, and age x sex effects.
Next, we fitted a series of genetic models. The total phenotypic variance was decomposed
into four sources of variation: additive genetic (A) non-additive genetic (D), common
environmental (C) and unique environmental (E) variation. The common environmental
variance reflects the variance shared between siblings and twins (Vs). The resemblance
among family members was modelled as a function of A, D and C. We allowed for a
correlation in phenotype between spouses (u). In fitting the genetic models we included
as covariates age, sex, sex x age. We fitted the full model as described and tested the
presence of assortative mating (i.e. the correlation between phenotypes of spouses) and
the presence of shared environment and non-additive influences. The nested sub-models
were compared to the full model by log likelihood ratio test (-2LL) using a significance
level of 0.05.

6.3.4 GWAS

We performed 2 GWASs: MLR level and monocyte count on the quality controlled
imputed SNPs including age, sex, three Dutch PCs generated with the EIGENSOFT software
and genotype platform as covariates (N=5892) [103]. As we already conducted a GWAS
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for lymphocyte count, using a largely overlapping sample (N=5901, overlap of 5890
individuals) we did not rerun this analysis but instead refer here to the results published
in chapter 5. Analyses were performed with the GCTA software running a mixed linear
model association (MLMA) model [215]. To avoid inflated test statistics in datasets with
related individuals and other remaining cryptic stratification we used two covariate GRM
matrixes: the matrix for all individuals excluding the chromosome under analysis (LOCO
analysis) and the matrix only focusing related individuals with IBS>0.05 [215]. For the
GWAS we assume the statistically significant threshold as p-value less than 5 x 1078 [21],
and we refer to marginally significant when p-values exceed this threshold but remain
below 10™.

6.3.5 GCTA

We performed GCTA analyses to estimate narrow sense heritability, the fraction of
genetic variance explained by the significant SNPs detected in the GWA and the fraction
of genetic variance explained by the known significant SNPs from the published literature.
These analyses were done for MLR level, monocyte count and lymphocyte count. A
restricted maximum likelihood (REML) analysis procedure was used under a linear design
[6]. Sex, age, genotype platform and three Dutch PCs were included as covariates. We
used two covariance matrixes to estimate narrow sense heritability (h?), and GWAS and
known loci heritability. The first GRM matrix is the full autosomal GRM as described
previously. The second GRM matrix is the closely related (IBS> 0.05) matrix.

6.3.6 Linkage Disequilibrium score regression

First, overall Pearson correlations between the phenotypes of interest were calculated in
R [219]. Then polygenetic effects [209] the SNP heritability [255] of MLR, monocyte count
and lymphocyte count; and genetic correlations [208] among the phenotypes of interest
were determined using Linkage Disequilibrium (LD) regression on our computed GWAS
summary statistics. The genetic correlation of two traits can be calculated by the slope
from the LD regression on the product of effect sizes (z-score) for two phenotypes of
interest. In order to do this we used the HapMap3 LD scores (NSNPs=1293150) computed
for each SNP based on the LD observed in European ancestry individuals from 1000
Genomes project (online accessible: http://github.com/bulik/Idsc). Quality control for
genetic data is the default setting in the program.

6.3.7 eQTL analysis

To detect the casual effects for the genetic variants for phenotypes of interest, we
conducted an eQTL analysis. Details are described elsewhere (chapter 5). In short, eQTL
effects were detected with a linear model approach using MatrixeQTL [218] with
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expression level as dependent variable and SNP genotype values as independent variable.
eQTL effects were defined as cis when the distance between probe set-SNP pairs was
smaller than 1M base pairs (Mb), and as trans when the SNP and the probe set were
separated by more than 1 Mb on the genome according to hg19.

Weather conditions and lifestyle.

To detect the influence of seasonal conditions on variation in the MLR level, we included
mean temperature and other weather parameters in a regression analysis conducted
separately by sex and taking age into account. Analyses were conducted in STATA [160],
again using the cluster option to correct for the family structure within the data. In a
similar manner, the association with BMI and smoking behavior was examined.

6.4 Results
6.4.1 Health status, sex and age

Table 1 provides the descriptive statistics for MLR and its subcomponents, the monocyte
and lymphocyte count, for the healthy and for the unhealthy part of the population. The
comparison of the healthy and unhealthy population, taking sex and age into account as
well as family structure, showed as expected that individuals in the unhealthy population
had on average a higher MLR ratio (t(9499)=-7.95, p < 0.001) and monocyte count
(t(9499)=-5.06, p < 0.001) and a lower lymphocyte count (t(9499)=-2.57, P=0.01).

We continued our investigation in the healthy population, examining the influence of age
and sex. Men had higher MLR levels than women and MLR increased with higher age in
both men and women. There was also evidence for an age x sex interaction: the age
effects were alleviated in the women. With respect to the subcomponents, monocyte and
lymphocyte levels were higher in men than in women and increased with age. These age
effects were similar in men and women.

Table 1. Average level (SD) for MLR and its subcomponents for the healthy and
unhealthy population, separately for men and women.

Healthy population Unhealthy population

Men Women Men Women
N 3074 5065 444 918
Age 44.12(15.88) 42.98(14.48) 46.75(17.37) 43.75(15.48)
MLR 0.29(0.09) 0.24(0.08) 0.32(0.14) 0.26(0.12)
Monocyte 0.58(0.17) 0.51(0.16) 0.61(0.19) 0.54(0.20)
Lymphocyte | 2.17(0.64) 2.27(0.71) 2.07(0.75) 2.22(0.75)
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Table 2. Age, sex and age x sex interaction effects (B value) on MLR and its
subcomponents in the healthy population.

variable | MLR monocyte count lymphocyte count
Sex -0.0176**  -0.0503*** 0.0986*

Age 0.0013***  0.0006** -0.0057***

Age x Sex | -0.0006*** -0.0005 5.7E-5

* P<0.05, **P<0.01, ***P<0.001.
6.4.2 Heritability

Next, the known genetic relations among mono- and dizygotic twins and their family
members were used to model familial resemblance in MLR, monocyte and lymphocyte
count as a function of genetic and environmental parameters. These models included sex,
age and sex x age effects as fixed effects. Table 3 contains the familial correlations as
obtained for MLR, monocyte and lymphocyte count. For MLR, twin pair correlations did
not depend on sex, and the correlations did not differ across DZ twin and sibling relations.
The correlations in MZ males and MZ female twin pairs were equal as were the other male
and female first-degree relative correlations. The resulting MZ correlation was 0.43 (Cl is
0.33-0.46) and the DZ correlation was 0.22 (0.14-0.24), with spousal correlations
significant at 0.104 (0.002-0.135). The pattern of twin correlations showed no evidence
for non-additive or common environmental effects. This was confirmed by model fitting
in which the heritability of MLR was estimated at 40% (0.34-0.43).

We also conducted these series of genetic modelling analyses for monocyte and
lymphocyte count. For monocyte count, there were no significant spousal correlations
and the MZ correlation was 0.58 (0.54-0.62) while the DZ correlation was 0.27 (0.21-0.31).
In line with the pattern of the correlations, genetic modelling estimated the broad sense
heritability at 58% with non-additive effects accounting for 12% and no evidence for the
influence of common environmental factors. For lymphocyte count, we estimated the
heritability in the current set (N=5892, with > 99% overlap with the set described in
chapter 4) and as to be expected results were similar to those published in chapter 4 with
a broad sense heritability at 58% and non-additive effects accounting for 22%.
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Table 3. Familial correlations (confidence interval) for MLR monocyte and lymphocyte
count within the healthy population.

Pairs MLR Monocyte Lymphocyte

R 95% Cl R 95% Cl R 95% Cl
MZ twins 0.431 | 0.330-0.463 | 0.583 |0.539-0.622 | 0.582 | 0.537-0.621
MZ male 0.340 | 0.329-0.344 | 0.515 |0.432-0.585 | 0.576 | 0.487-0.646
MZ female 0.489 | 0.478-0.492 | 0.620 |0.568-0.663 | 0.584 | 0.531-0.630

Male first-degree relatives | 0.182 | 0.082-0.205 | 0.247 |0.183-0.308 | 0.234 | 0.156-0.307

DZ male 0.244 | 0.121-0.248 | 0.170 |-0.034-0.354 | 0.390 | 0.153-0.551
Brother-male twin 0.128 | 0.116-0.132 | 0.182 |0.054-0.301 | 0.181 | 0.007-0.336
Brother-brother 0.242 | 0.231-0.246 | 0.346 |0.082-0.545 | 0.341 | 0.007-0.580
Father-son 0.186 | 0.174-0.190 | 0.269 |0.194-0.339 | 0.219 | 0.122-0.307
Female first- degree 0.224 | 0.139-0.239 |0.228 |0.186-0.268 | 0.225 | 0.183-0.266
relatives

DZ female 0.279 | 0.267-0.282 | 0.385 |0.154-0.279 | 0.286 | 0.181-0.382
Sister-female twin 0.169 | 0.157-0.173 | 0.285 |0.156-0.390 | 0.175 | 0.008-0.265
Sister-sister 0.241 | 0.230-0.247 |0.315 |0.214-0.406 | 0.151 | 0.055-0.243
Mother-daughter 0.228 | 0.216-0.232 | 0.247 |0.183-0.307 | 0.210 | 0.157-0.260

Female-male first degree 0.225 | 0.152-0.235 | 0.285 |0.237-0.331 | 0.203 | 0.162-0.244
relatives

DZ opposite sex 0.098 | 0.086-0.103 |0.181 |0.054-0.301 | 0.216 | 0.086-0.333
Brother-female twin 0.232 | 0.220-0.236 |0.335 |0.026-0.443 | 0.182 | 0.007-0.336
Sister-male twin 0.193 | 0.181-0.197 |0.189 |0.060-0.307 | 0.172 | 0.023-0.307
Sister-brother 0.200 | 0.188-0.204 |0.227 |0.080-0.352 | 0.312 | 0.178-0.419
Mother-son 0.217 | 0.205-0.221 |0.240 |0.168-0.308 | 0.198 | 0.115-0.276
Father-daughter 0.262 | 0.250-0.265 |0.218 |0.154-0.278 | 0.245 | 0.183-0.260

Parents (father-mother) 0.104 | 0.002-0.135 | 0.061 |-0.013-0.135 | 0.166 | 0.089-0.241

Narrow-sense 0.397 | 0.341-0.429 | 0.468 |0.404-0.530 | 0.353 | 0.294-0.402
Heritability(V,)

Broad-sense 0.583 |0.446-0.720 | 0.576 | 0.461-0.653
Heritability(Va+Vp)

Correlations in bold italic were obtained from sub-models in which all matching correlations of
the tested subgroup of family relations were set to be equal.
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6.4.5 GWAS

Figures 1 and 2 show the results of the GWAS in the form of the QQ and Manhattan plots
for MLR and monocytes. After adjusting for age, sex, genotype platform, PCs and using
the LOCO and family based GRM matrix correction, the GWAS As were 0.9965 for MLR
and 1.0166 for monocyte count.

For MLR, associations were found with 11 SNPs situated on the /ITGA4 (VLA-4 Subunit
Alpha) genes on chromosome 2q31 (Figure 1 and Table 4). The top SNP rs3755021 T allele
was linked to a decrease in MLR level (B=-0.012, p=2.21 x 107%). This SNP was not
associated with lymphocyte count, but was in our study marginally significantly associated
with monocyte count (B=-0.018, p= 6.34x 107°), and has also been associated with
monocyte count in a linkage study [256] and two previous GWA studies [195, 249]. The
genetic variant rs6740847 G allele in this region has been linked to
decreased ITGA4 expression levels in the blood, which increases the number of circulating
monocytes and may indicate this is a causal gene [256].

For monocyte count, the four top hits were rs13029501 at /ITGA4, rs55929401 located at
a region nearby LPAR1 at 9931.3, rs391855 at /RF8 and rs9469532 at 6p21. The most
significant locus rs13029501 at 9931 has been previously associated with monocyte count
in European and Japanese populations [195, 256-258]. It is located in a region 163kb
downstream of lysophosphatidic acid receptor 1 gene (LPAR1, also known as EDG2) and
increases LPAR1 expression, which is linked to an increased number of monocytes [256].
As indicated previously, genetic variants nearby the ITGA4 region are involved in the down
regulation of ITGA4 expression, which increases the number of monocytes circulating in
the peripheral blood. The /IRF8 gene has also been associated before with monocyte count
and has been identified as multiple sclerosis susceptibility loci [259]. Animal model studies
showed that IRF8 as transcription factor plays an essential role in the regulation of lineage
commitment during monocyte differentiation [260-262]. The top SNP at 6p21 rs9469532
is an intergenic genetic variant nearby ITPR3, LOC101929188 and LOC105375023. The
HLA-DRB1 region 1,043kb upstream of this SNP has previously been associated with
monocyte count [60].

As published in chapter 5, there were no significant hits when conducting the GWAS for
lymphocyte count. However, it is of interest to note that the locus on chromosome 6p21,
which was associated with monocyte level was also marginally associated with MLR (for
rs9469532, B=-0.069, p= 7.69x 107°) and lymphocyte count (for rs114641912, B=-.059,
p=6.19x 107%). This region harbours candidate genes like ITPR3 [263], and HLA-DRB1 [264]
which have been previously implicated in immunological diseases. In addition, other loci
with "potential association peaks", meaning p-values are low but do not reach the
required significance level, have been found to be associated with immune disease such
as ERAP1 at 5q15 [265] and CNTN5 at 11922 [266].
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Figure 1. Manhattan and QQ plot for MLR level with SNPs having a minor allele frequency
above 0.01(A=0.996503).
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Figure 2. Manhattan and QQ plot for monocyte count with SNPs having a minor allele
frequency above 0.01(A=1.0166495).
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Figure 3. Manhattan and QQ plot for lymphocyte count with SNPs having a minor allele
frequency above 0.01(A=1.022341).
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Table 5 shows the loci for monocyte and lymphocyte count found in previous studies and
their significance levels for MLR and its subcomponents in the current study. For some

IM

loci, p-values were low, indicating a “potential” for association, even though they did not
reach the required significance level. For example, rs9880192 located in the intergenic
region between C3orf27 and rs1991866, a intergenic variant at 8q24.21, show p-values <

10°® for monocyte level and < 107 for MLR.

6.4.6 eQTL results

Among the significant GWA loci for MLR and blood cell counts, there were a number of
associations between the SNPs of interest and nearby gene expression (Table 6).
However, the SNPs identified in our GWAS have low LD (r2 <0.8) with the top SNPs
associated with gene expression, which suggest the GWAS SNPs are not part of the
functional eQTL locus. Furthermore, no eQTLs with trans-effects were identified. In
conclusion, we did not detect any cis- or trans- effects for the SNPs of interest.

Table 6. Overview of eQTL results: the association between genetic variants of interest
(Beta) with gene expression level, uncorrected for blood composition.

GWA SNP of | Top SNP in gene LD Beta FDR
interest eQTL r2

analysis
rs3755021 | rs2305591 ITGA4 0.32 0.191 1.4e-05
rs13029501 | rs2305591 ITGA4 0.03 0.203 1.34e-05
rs13029501 | rs16867443  CERKL 0.43 0.132 1.34e-05
rs9469532 rs115378869 HLA-DPB1 0.04 0.106 3.07e-04
rs391855 rs1568391 IRF8 045 0.13 1.34e-05
rs55929401 | rs7023923 LPAR1 0.24 0.42 1.34e-05

LD r%: LD between GWAS SNP and top SNP in eQTL analysis. Beta= eQTL beta of GWA SNP, FDR=
eQTL FDR GWA SNP.

6.4.7 GCTA

The results of the GCTA analyses are shown in Table 7. From GCTA we found a narrow
sense heritability of 43.3% for MLR, 54.1% for monocyte count and 51.7% for lymphocyte
count. The significant SNPs obtained in the GWAS for MLR explained 0.6% of the variance
in MLR and the significant SNPS obtained in the GWAS for monocyte count explained 4.4%
of the variance in monocyte count. All known loci from published literature together
explained 1.3% of MLR variance, 2.4% of monocyte count variance and 0.3% of
lymphocyte count variance.
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Table 7. Narrow sense heritability and the proportion of genetic variance explained by
known and significant SNPs according to GCTA analyses for MLR and its subcomponents.

Proportion of Proportion
Narrow Genetic of Genetic
Phenotvpe | SENSE p Variance p Variance
yp heritability Explained by Explained
(SE) Significant by Known
SNPs (SE) loci (SE)
MLR .4336(.025)  3.0E-8  .0058(.008) S'GE' -0132(.006) ‘1"31E'
monocyte | .5408(.022) i'ZOE' 0437(.024) §'5E' 0234(.009) i'lgE'
lymphocyte | .5174(.023) 49E-8 NA NA .0027(.002) .014

6.4.8 LD regression

In LD regression all A values were larger than the LD score regression intercept and
intercepts were close to 1, indicating that the inflation of the P value distribution from the
GWAS results is caused by polygenetic effects, rather than population stratification. The
SNP heritability of MLR, monocyte count and lymphocyte count, when applying LD
regression was 13% and 17% and 19% respectively (see Table 8).

Table 8. LD regression results for MLR, monocyte count and lymphocyte count.

MLR Monocyte Lymphocyte
Median of SIGNED_SUMSTATS -9.23E-05 9.03E-06 -6.58E-05
Mean of X2 1.007 1.011 1.021
AGC 1.002 1.017 1.018
H? (se) 0.1302(.0733) 0.1702(0.0854) 0.1912(0.0895)
Intercept (se) 0.9915(.0063) 0.9912(0.0073) 1.0011(0.0069)

* P<0.05, **P<0.01, ***P<0.001. Median of Signed_sumstatistic: median value of beta
values from GWAS.

In addition, we observed positive phenotypic correlations between MLR and monocyte
count (r=0.550, p<.0001) and between monocyte count and lymphocyte count (r=0.386,
p<.0001), and a negative phenotypic correlation between MLR and lymphocyte count (r=-
0.494, p<.0001). However, despite the presence of phenotypic associations, no significant
genetic correlations were detected between any pair of variables.
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6.4.9 Exploring the effect of seasonal conditions and lifestyle.

Next, we explored the influence of seasonal conditions and lifestyle on variation of MLR
in men and women (Table 9). Seasonal conditions did not influence MLR levels in either
group. Figure 4 illustrates the association between daily temperature and age-corrected
MLR for men and women between August 2004 and December 2007. We note that MLR
ratio seems do not influenced by temperature in both male and female groups. With
respect to the subcomponents, a clear pattern of seasonal influence was only seen for
monocyte count in women, with lower temperature being related to higher monocyte
levels (B=-0.0005, p <0.004). Significant associations were also found between monocyte
level and sunshine duration, global radiation, mean relative atmospheric humidity and
potential evapotranspiration, but these associations did not survive correction for mean
temperature.

Table 9. Results of the linear regression modeling for MLR and its subcomponents,
separate for men and women.

Dependent | Independent Men Women
variable variable model 1 model 2 model 1 model 2
Age 0.0013*** 0.0016** 0.0008%** 0.0014%**
BMI -0.0041 -0.0011 -0.0034 0.0075
MLR Smoking -0.0029* 0.0016 -0.0044*** 0.0046
Age*BMI 0.0007 -0.0002*
Age*Smoking -0.0001 2.8E-6
Age 0.00016 0.0005 -0.0001 -0.0011
BMI 0.0193*** 0.0304* 0.0151%** -0.0003
Monocyte .
count Smoking 0.0343*** 0.0245** 0.0297*** 0.00262***
Age*BMI -0.0002 0.0004
Age*Smoking 0.0002 0.0009
Age -0.0078***  -0.0086** -0.0078*** -0.0154***
Lymphocyte BMI 0.0947*** 0.0972* 0.0902%** -0.0487
count Smoking 0.1512***  0,1163*** 0.1765%** 0.1836***
Age*BMI -0.0003 0.0031**
Age*Smoking 0.0009 -0.0001

* P<0.05, **P<0.01, ***P<0.001.

To test the effects of BMI and smoking, we included this variable in a regression analysis
conducted separately by sex and taking age into account. The results, shown in Table 9
(model 1), indicate that smoking is related to a decrease in MLR level in both men and
women. BMI was not associated with MLR in both men and women. However, an age x
BMl interaction is seen for MLR in women (model 2): the age effects were alleviated by
increased BMI level. The BMI and smoking effects were also examined in the MLR
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subcomponents: Higher BMI and being a smoker were related to higher monocyte and
lymphocyte levels. For lymphocyte count in women, there was evidence for an age x BMI
interaction, again indicating a reduction of the BMI effect at an older age.

6.5 Discussion

In this paper, we present a detailed examination of the causes of variance in MLR in the
general population. Health status was as expected an important determinant of MLR
level: individuals who were thought to have a compromised immune system, our so-called
unhealthy group, had on average a higher MLR than our healthy participants. We
continued with our healthy population and showed sex and age and their interaction to
be important determinants of variation in MLR and its subcomponents.

Next, genetic factors were shown to be play a role in MLR variation in the general
population. Heritability for MLR was estimated at 40% and MLR level was associated with
a locus near ITGA4. Previous studies have shown this locus to be associated with
monocyte level. Heritability estimates were higher for its subcomponents (58 % for both
lymphocyte and monocyte count) and, in contrast to MLR, evidence was found for the
presence of non-additive effects. Monocyte level was also associated with ITGA4 and four
more genes were related to monocyte level in our analyses, replicating findings in
previous GWAs studies. For lymphocyte level no significant genetic variants emerged.
From our results it is clear that the genetic variants associated with blood cell counts may
also influence their balance as reflected in their ratios. In addition to the genetic variant
ITGA4 which was significantly associated with both MLR and monocyte count in our study,
there were a number of loci which were significantly associated with monocyte count and
may have pleiotropic effects: The loci nearby LPAR1, IRF8 and ITPR3 were marginally
significant associated with MLR level. Also, a locus nearby C3orf27 was marginally
significantly associated with both MLR and monocyte count. We did not see any
suggestive evidence for pleiotropic genetic variants associated with both MLR and
lymphocyte count.

To understand more about the role of the genetic variants in MLR variation, we
investigated what is known about the role the identified genetic variants play in regulating
gene expression. However, we did not find any evidence for cis-effects or trans-effects by
these genetic variants.

Among three phenotypes of interest, the narrow sense heritability h? of lymphocyte
(35.3% in the healthy population) was the lowest, but its SNP heritability was the highest
(19.12% from LD regression). These results suggest more common autosomal SNPs may
be associated with lymphocyte count. The LD regression results show that polygenetic
effects, rather than confounding factors explain both ratio and counts variance in our
study. Although there are significant overall correlations and an overlap in associated
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genetic variants has been detected between MLR and monocyte count, no significant
genetic correlations were detected between any pair of variables. Overall, our results
suggest that the polygenetic effects are too small to be detected with the current sample
size.

We also examined the impact of weather conditions and lifestyle on MLR variation. In
contrast to what we found in an earlier study for PLR and NLR, weather conditions did not
influence MLR, and neither did BMI. Smoking however was associated with a higher MLR.
Note that this is in line with the higher MLR in the individuals with a compromised immune
system in our study and the higher MLR seen in cancer patients.

Overall, this series of studies provided more insight into the causes of variation in MLR
within the general population. While the genetic pathways as well as non-genetic causes
of variance still need more clarification, it is clear that these factors need to be taken into
consideration when studying the relationship between MLR and disease development.
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Figure 4.The relationship between monthly temperature (grey dotted line) and the average MLR for men (blue line) and

women (red line).

MLR value corrected for age effect

0.2

0.1~

o ueaw

0.0-

130

0.1~

_laag
Loy
_teo
_ddsg
i
_ e
o
ey
by
L
oy
_ buep
e
oy
]
adg
_ gbny.
.o
_qunp
_olepy
_ dy
L
L0y
 quer
500
o
]
_gdag
il
_ar
_qum
_ohep
iy
_SEn
g4
guer
_poeg
_phoy
]
g

Rl

month of smapling



Chapter 7

The interactive effects of age, sex, and lifestyle on
the hematological profile

This chapter was under review as: McArtor DB, Lin BD", Hottenga JJ, Boomsma D,
Willemsen G, Lubke G., The interactive effects of age, sex, and lifestyle on the
hematological profile. Biomark Med, 2016.

* Both authors contributed equally

Abstract
Aim. The hematological indices obtained in a standard blood test are closely interlinked. In this
study, we exploit these interrelations in an investigation of the effects of age, sex, and lifestyle. We
establish subjects’ hematological profiles (i.e., scores on 10 indices, including measures of
hemoglobin, corpuscular volume, platelets, and red blood cell distribution) and study the effects
of demographic and lifestyle differences on these profiles. Results from this multivariate approach
are compared to results based on the traditional approach of modeling each hematological index
in isolation, which implicitly ignores the relationships among the indices.
Method. The sample consists of 3278 unrelated individuals from the Netherlands Twin Register
biobank who provided hematological data. We use standard linear regression to examine the
association between the individual hematological indices and the following predictors: age, sex,
BMI, smoking, and their two-way interactions. Next, we use Multivariate Distance Matrix
Regression (MDMR) to investigate the effects of the same predictors on the hematelogical profiles
as a whole.
Results. Several main effects were identified in univariate analyses, but there was little evidence
for two-way interaction between the predictors. The multivariate analyses of the hematological
profiles, however, highlight the interactions of age with sex, BMI, and smoking, as well as the main
effects of all predictors.
Conclusion. The multivariate approach increases the power to detect important interaction effects
involving age and other predictors, and may help identify subgroups who benefit from different
treatment or prevention measures. Implications for personalized medicine and gene-finding
studies are discussed.
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7.1 Introduction

Hematological indices are complex, heritable [51-53] and tightly regulated human
phenotypes [267]. The set of blood cells targeted in a standard laboratory blood test
provides information on a wide range of functions, including immune response, hormone
regulation, osmotic balance and coagulation regulation [268-269]. Abnormal values on
hematological indices that fall outside the reference range may be indicative of current or
future disease [270]. Because the standard hematological profile is relatively easy and
inexpensive to obtain, it provides the basis for many commonly used tests in diagnoses.
Many hematological variables are related to demographics and lifestyles. For instance,
red blood cell count, hematocrit and hemoglobin have been shown to be associated with
age, sex, smoking, and BMI [271]. Age and sex have also been found to be strongly related
to platelet count, and age- and sex-specific reference ranges have even been proposed
[272]. White blood cell count and platelet numbers are increased in obese participants
[149], and in fact most hematological parameters show an association with BMI [148].
Smoking has also been associated with increases in white blood cell count, and changes
in smoking behavior result in changes in the number of white blood cells [273].

Most studies concerning associations with hematological variables have taken an
approach of investigating one hematological variable at a time. This approach is
appropriate if a researcher is interested in the effects on a specific individual blood
characteristic. If, however, the goal is to identify predictors associated with multiple blood
characteristics, then the strategy of modeling each hematological variable in isolation is
suboptimal. A more efficient strategy to accomplishing this goal is to test the association
between a set of covariates and subjects’ hematological profiles. Here, a hematological
profile is defined as a set of scores on multiple observed hematological variables.
Analyzing blood characteristics jointly rather than individually is theoretically appealing
because it facilitates the identification of predictors (and interactions between predictors)
that influence multiple blood traits jointly. Furthermore, considering blood counts as a
multivariate outcome is statistically beneficial because it removes the necessity to correct
for multiple testing, potentially resulting in more powerful tests.

An important benefit of the multivariate approach is that it facilitates the identification of
characteristic profiles for subgroups, for example, characteristic profiles of subjects with
high versus normal BMlI levels in males and females. Differences among these profiles can
be highly informative and useful in the distillation of personalized treatments. For
example, they can characterize risk for maladaptive levels of particular blood counts in
subgroups of the population that may otherwise tend to appear normal on many other
hematological indices. The first step in this process is to identify predictors that are
relevant in explaining differences in the hematological profiles. Once established, profiles
can be compared across subgroups.
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In this study, we establish hematological profiles and investigate whether hematological
profiles are associated with age, sex, BMI, smoking, and assess the importance of
moderation of main effects by age. This question is addressed using the standard
univariate approach, as well as a multivariate approach that employs Multivariate
Distance Matrix Regression (MDMR) [274-275] to test the association of the predictors
with individual differences between the blood profiles as a whole.

7.2 Methods

7.2.1 Participants

The participants in this study are registered with the Netherlands Twin Register (NTR) and
took partin NTR biobank projects [75-77]. In these projects, blood samples were collected
during a home visit, and a brief interview was conducted to collect information on health
status, lifestyle and body composition. All participants provided informed consent and the
project was approved by The Medical Ethics Committee on Research Involving Human
Subjects of the VU University Medical Center, Amsterdam.

Within the group of individuals with hematological data (n = 9672), several exclusion
criteria were applied. First, we excluded subjects with (1) blood C-reactive protein greater
than or equal to 15 (mg/L), (2) basophil count > 0.3 (10°/ L), (3) illness within one week of
measurement, (4) cancer treatment, (5) use of anti-inflammatory medication, (6) use of
iron supplementation. The resulting sample was comprised of 8176 subjects. Next,
subjects who had at least one blood cell score beyond 5 standard deviations from that
variable’s mean were excluded. The resulting sample was comprised of 7999 subjects
from 3278 families. The final dataset (n = 3278) was formed by randomly sampling one
member from each family to ensure independence of observations because MDMR
cannot currently be adjusted to account for familial clustering.

7.2.2 Data collection

Blood sampling and hematological indices. Participants were visited at home to obtain
blood samples and a brief interview. These visits occurred between 7:00 a.m. and 10:00
a.m. following an overnight fast. Participants were asked to refrain from strenuous
exercise and, if possible, medication as of the evening before the visit, and smokers were
instructed to refrain from smoking one hour prior to the home visit. Fertile women
without oral contraceptives were, when feasible, visited on the 2" to 4™ day of the
menstrual cycle, and women taking oral contraceptives were visited in the pill-free week.
During the home visit, peripheral venous blood samples were drawn by safety-lock
butterfly needles into anticoagulant vacuum tubes in the following sequence: 2x9 ml
EDTA, 2 x 9 ml lithium heparin (only one tube in a subset), 1 x 9 ml sodium heparin (in a
subset only), 1x4.5 ml CTAD, 1 x 2.5 ml PAX (in a subset only), 1x4.5 ml serum and 1x2 ml
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EDTA tube. After collection, all tubes were inverted about 10 times to prevent clotting
and then transported to the laboratory in Leiden.

Hematological parameters. The 2 ml EDTA tubes were transported at room temperature
and upon arrival in the laboratory used to determine the hematological parameters using
the Coulter system (Coulter Corporation, Miami, USA). These parameters consisted of the
total white blood cell count, percentage and absolute cell counts of five subtypes of white
blood cells (neutrophils, lymphocytes, monocytes, eosinophils and basophils), red blood
cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular
hemoglobin, mean corpuscular hemoglobin concentration, red blood cell distribution
width, platelet count and mean platelet volume.

C-creactive protein. C-reactive protein (CRP) level was obtained from a plasma subsample
that came from a 9 (mL) heparin tube that was transported in melting ice to the
laboratory. The plasma subsample was snap-frozen and stored at -30°C. Upon defrosting
one of these subsamples, CRP was determined by the 1000 CRP assay (Diagnostic Product
Corporation).

Health, BMI and smoking. During the visit, a brief interview was conducted. Participants
provided information on their current medication use and disease status and were asked
about their smoking history. Height was reported and weight was measured. Body Mass
Index (kg/m?) was calculated from weight (kg) divided by the square of height (m?). Based
on their current smoking behavior, participants were divided non-smokers and current
smokers.

7.2.3 Statistical analyses

Selecting outcome variables. To avoid the possibility of analyzing highly collinear
variabels that measure extremely similar traits, we excluded several hematological
variables that displayed large (>0.70) correlations with other candidate outcome variables.
Specifically, we removed white blood cell count, red blood cell count, mean corpuscular
hemoglobin and hematocrit ratio. In addition, basophil level was not included because
variation in the basophil numbers was limited. This resulted in ten hematological outcome
variables in total: neutrophil count (#nneut), lymphocyte count (#nlymp), monocyte count
(#nmono), eosinophil count (#neos), hemoglobin level (hgb), mean corpuscular volume
(mcv), mean corpuscular hemoglobin concentration (mchc), red cell distribution width in
percent (rdw%), platelet count (#plt), and mean platelet volume (mpv).

Univariate association tests. Standard multiple regression with a univariate
hematological outcome was used to investigate the effects of age, sex (62.6% female),
smoking (77.6% non-smoker), BMI, and their two-way interactions on ten hematological
variables (see Table | for descriptive statistics). The main interest of the analyses was to
investigate interactions in order to explore potential risk groups.

The statistical significance of each predictor on each outcome was evaluated using two
different univariate significance criteria, each of which use a Bonferroni correction to
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account for multiple testing. First the criterion a}‘ = 0.05/10 = 0.005 controls the family-
wise Type-l error rate at 0.05. That is, a}‘ sets the probability of committing a Type-Il error
on a particular predictor to 0.05, which is accomplished by dividing 0.05 by the number of
fitted regression models. Second, aj, = 0.05/(10 X 10) = 0.0005 controls the per-
comparison Type-| error rate at 0.05. This stricter criterion controls the probability of
committing any Type-l errors across all ten models that each use ten predictors.

Table 1. Descriptive statistics for the hematological outcome variables and the numeric

predictors.
Mean SD Min 1st Quantile| Median 3rd . Max
Quantile

Age 42.279 15.075 13.000 30.000 39.000 55.000 90.000
BMI 24951 4.140 14.906 22.018 24.403 27.166 49.071
nneut(10°/1) 3.473 1.268 0.300 2.600 3.200 4.100 9.700
nlymp(10°/L) 2.230 0.682 0.300 1.798 2.100 2.600 5.900
nmono(10°/ 1) 0.534 0.171 0.000 0.400 0.500 0.600 1.400
neos(10°/L) 0.200 0.128 0.000 0.100 0.200 0.300 0.900
hgb(mmol/ L) 8.798 0.769 6.100 8.300 8.700 9.400 11.100
mcv (fL) 91.536 4.534 69.300 88.800 91.600 94.400 113.500
mchc(g/dL) 20.721 0.549 16.600 20.400 20.700 21.000 23.000
rdw(%) 12.364 0.743 10.700 11.900 12.200 12.700 16.600
plt(10°/ 1) 253.807 59.702 51.000 212.000 248.000 287.000 537.000
mpv(fL) 8.889 1.069 6.300 8.200 8.700 9.400 14.000

Multivariate association tests. Multivariate distance matrix regression (MDMR) [274-
275] is a procedure that permits testing the association of hematological profiles based
on multiple blood cell indices with predictor variables. More specifically, differences
between each pair of subjects’ profiles are collected in symmetric n X n “distance
matrix”. Distance matrices are often subjected to cluster analysis, but MDMR utilizes them
in a regression framework instead in order to test the effects of covariates on the profiles.
This is done by partitioning the sums of squares of the distance matrix into a portion due
to regression and a portion due to error. This decomposition is analogous to the
partitioning of the sums of squares of a univariate outcome in standard linear regression.
Importantly, differences between profiles on multiple variables can be quantified using
different measures of dissimilarity (i.e., distance). In this study, two different distance
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metrics were computed to characterize the dissimilarity between subjects’ blood profiles,
and the two resulting distance matrices were regressed onto the set of predictors using
MDMR. The first metric considered was the Euclidean distance. If y; and y; denote
vectors of scores along g outcome variables for subjects i and j, the Euclidean distance
between these two subjects’ response profiles is defined as,

a
d.(i,)) = Z()’ik - ij)z
k=1

It can be shown that Euclidean-MDMR is the same model as multivariate multiple
regression, so this approach also represents the natural multivariate extension to the
standard linear regression used in the univariate analyses described above. Second,
Manhattan distances were considered. The Manhattan distance between subjects i and j
is defined as the sum of their absolute item-wise differences:

q
dp (i) = Z |Yik — Vjil
k=1

These distances are less sensitive to outliers and therefore more robust than Euclidean
distances because they are based on absolute rather than squared differences. That is,
the use of Euclidean distances (and standard linear regression) can result in spuriously
significant effects due to outlying observations, but Manhattan distances are less prone
to this phenomenon. When conducting MDMR, one model is fit to all ten outcome
variables jointly. This approach therefore requires a less stringent correction for multiple
testing than the univariate approach. More specifically, the criterion a}”: 0.05 controls
the family-wise Type-I| error rate of MDMR at 0.05 because only one model is fit to all
outcome items jointly. Similarly, a;’é = 0.05/10 = 0.005 controls the probability of
committing a Type-l error on any of the ten predictors at 0.05.XAll analyses were
conducted in R [219] using the MDMR package, which is available on CRAN (https://cran.r-
project.org). This package is the software companion to McArtor et al. [276], where the
reader can also find a more detailed discussion of MDMR.
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7.3 Results

7.3.1 Univariate association tests

Table 2 reports the result of the univariate analyses in the form of p-values, and Table 3
gives the standardized regression coefficients and variance explained. One or more main
effects were significant for all hematological variables except mean corpuscular
hemoglobin concentration (mchc). Results indicated that smoking and high BMI are
associated with elevated levels of most hematological variables, while sex and age were
both found to be related to roughly half of outcomes. Unlike smoking and BMI, the
direction of the main effects of sex and age differed across hematological variables. The
majority of the two-way interactions assessed with the univariate regression models were
not marked as significant using either of the univariate significance criteria. Only
hemoglobin (hgb) was significantly predicted by multiple interaction effects (age:sex,
age:smoker, sex:smoker), and neutrophil count (nneut) was found to be significantly
associated with the interaction of age and sex. Figure 1 illustrates the nature of these four
interaction effects on their corresponding univariate outcome. None of the other
hematological variables were found to be significantly predicted by any interaction
effects.

Table 2. Results of models predicting individual hematological indices: p-values for the
overall models, and for each test of main effects and interactions.

nneut nlymp nmono neos hgb mcv mchc rdw plt mpv
Full Model | <1e-16 <le-16 <le-16 <le-16 <le-16 <le-16 0.019 <le-16 <le-16 0.00026
Age 0.00055 3.9e-13 0.015 0.13 0.23 1.4e-23 0.04 1.2e-19 8.0e-06 0.0055
Sex 0.00013 3.9e-07 1.3E-23 1.9e-05 2.3e-16 0.021  0.38 0.01 6.1E-35 0.011
BMI 1.1e-29 1.2e-10 5.9e-07 0.0027 5.2e-09 2.0e-10 0.048 0.0016 1.3e-10 0.97

smoker 5.3e-60 2.9e-51 2.8e-39 1.8e-13 5.2e-15 4.8e-38 0.0017 0.22 0.10 0.0023

age:sex 2.8e-08 0.29 0.5 0.051 1.4e-17 0.13 0.92 0.0082 0.27 0.12
age:bmi 0.62 0.011 062 0.057 0.13 0.044 0.73 039 0.031 0.12
age:smoker| 0.56 0.74 0.38 0.25 3.0e-07 0.0065 0.25 0.043 041 0.26
sex:bmi 0.03 0.26 0.76 0.95 0.17 0.62 0.18 0.24 0.012 0.10
sex:smoker| 0.71  0.011 0.43 0.84 3.5e-06 0.069 0.64 0.24 0.63 0.52
bmi:smoker| 0.86 0.54 0.47 0.01 0.59 0.56 0.53 0.64 0.40 0.42

Each column corresponds to a model fit to one of the outcome variables. The first row
corresponds to the p-value of the model as a whole, rows 2-5 correspond to the p-value
of a main effect, and rows 6-11 report the p-values of each interaction effect. Values
smaller than the Bonferroni-adjusted significance criterion to ensure that each predictor
has a Type-| error rate of 0.05 (i.e. a}‘= 0.05/10) are emphasized with italic font. Values
smaller than the Bonferroni-adjusted significance criterion to ensure that the probability
of any Type-l error is 0.05 (i.e. a;.= 0.05/100) are emphasized with bold font.
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Table 3. Results of models predicting individual hematological indices: R? of the different
full models including all main and interaction effects, and standardized regression

coefficients of age, sex, BMI, smoking status and their two-way interactions.

nneut | nlymp | nmono | neos hgb mcv mchc rdw plt mpv
R? 0.136 | 0.106 | 0.11 | 0.041 | 0.472 | 0.097 | 0.007 | 0.048 | 0.071 | 0.011
Age -0.066 | -0.145 | 0.048 | 0.031 | -0.018 | 0.189 | -0.04 | 0.185 | -0.09 | -0.048
Sex 0.068 | 0.093 | -0.181 | -0.08 | -0.662 | -0.04 | -0.016 | 0.048 | 0.232 | 0.041
BMI 0.215 | 0.126 | 0.096 | 0.06 | 0.086 | -0.117 | 0.038 | 0.062 | 0.128 | 0.001
smoker 0.287 | 0.272 | 0.232 | 0.134 | 0.105 | 0.219 | 0.055 | 0.022 | 0.029 | 0.048
age:sex -0.106 | 0.021 | 0.013 | -0.039 | 0.127 | -0.028 | 0.002 | -0.053 | -0.022 | -0.027
age:bmi -0.01 | 0.051 | 0.01 | 0.039 | 0.023 | 0.038 | -0.007 | 0.017 | -0.043 | 0.027
age:smoker| 0.011 | -0.007 | 0.017 | -0.023 | 0.078 | 0.051 | 0.023 | 0.041 | -0.017 | 0.02
sex:bmi 0.042 | -0.023 | -0.006 | 0.001 | -0.021 | -0.009 | -0.026 | 0.024 | 0.051 | -0.029
sex:smoker | -0.006 | 0.044 | -0.013 | -0.004 | 0.061 | 0.03 | 0.008 | -0.021 | -0.008 | 0.01
bmi:smoker| -0.003 | -0.012 | -0.013 | -0.05 | -0.008 | -0.01 | -0.012 | -0.009 | 0.016 | -0.013

R? is shown in the first row, standardized regression coefficients of each main effect in

rows 2-5, and all two-way interaction effects in rows 6-11. Values smaller than the

Bonferroni-adjusted significance criterion to ensure that each predictor has a Type-I error
rate of 0.05 (i.e. a}‘: 0.05/10) are emphasized with italic font. Values smaller than the

Bonferroni-adjusted significance criterion to ensure that the probability of any Type-I
error is 0.05 (i.e. a;.= 0.05/100) are emphasized with bold font.
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Figure 1. Age sex interaction, age somker interaction and sex smoker interaction on the
blood parameters.
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Illustration of significant interaction effects found in the univariate linear regression
models. Each panel illustrates predicted values (vertical axis) across two variables
(horizontal axis and line type) that interacted to predict a hematological variable. All
predictors not involved in aniillustrated interaction were kept fixed at their sample means.
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7.3.2 Multivariate association tests

Both Euclidean- and Manhattan-MDMR resulted in extremely small p-values for all four
main effects. However, Euclidean-MDMR also detected three interactions with age
(age:sex, age:bmi, age:smoker) that were significant at a{,’é, and two more that were
significant at a}" (sex:bmi, sex:smoker). Manhattan-MDMR found the same three highly
significant interaction effects involving age, and one more that was significant at a}”
(sex:bmi). BMI and smoking were the only two predictors that did not combine to yield a
statistically significant interaction effect from at least one of the MDMR models. See Table
4 for all MDMR p-values.

Significant effects imply substantial differences between participants in their
hematological profiles based on the ten observed blood variables. To visualize these
effects, we conducted a median split on each of the two predictors comprising a
significant interaction and plotted the average blood profiles in each of the resulting four
groups (high/low x high/low on each pair of predictors). Figure 2 displays these
“prototypical” or “average” hematological profiles for each resulting group.

The five sub-plots comprising Figure 2 elucidate the five significant two-way interaction
effects and the main effects of each predictor by illustrating how differences in the
predictor variables relate to differences in the blood profiles. For example, the top-left
subplot illustrates the effects of age, sex, and their interaction on the multivariate
outcome. There are clear differences in hematological profiles among younger females,
older females, younger males, and older males, but the differences between groups are
not constant among the ten indices defining the profile. That is, it is not the case that one
group tends to score uniformly higher or lower than another on all ten outcomes. The
multivariate effects have complex patterns that allow for potentially different effects on
each variable comprising the outcome. For example, both age and sex seem to have
comparatively small effects on mean platelet volume (mpvy) (all four groups tend to score
similarly), age seems to have a main effect on mean corpuscular hemoglobin
concentration (mchc) (young people tend to score higher regardless of sex), sex seems to
have a strong main effect on hemoglobin level (hgb) (males tend to score higher
regardless of age), and the interaction between these two predictors is important in
predicting neos (younger females tend to score lower than the other three groups). The
differential effects of age and sex on the remaining six hematological variables are also
illustrated in the top-left sub-plot of Figure 2, and the other four sub-plots illustrate the
differential effects of the other pairs of predictors that comprise a significant interaction
effect.
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Table 4. Results of models predicting hematological profiles: MDMR p-values for each
overall model, and for each test of main effects and interactions.

Euclidean | Manhattan
Full Model <le-16 <le-16
age <le-16 <le-16
sex <le-16 <le-16
bmi <le-16 <le-16
smoker <le-16 <le-16
age:sex 4.3e-10 4.4e-09
age:bmi 0.00034 0.0044
age:smoker | 0.0022 0.00034
sex:bmi 0.0099 0.0094
sex:smoker 0.0075 0.33
bmi:smoker 0.33 0.062

Rows correspond to predictors, columns correspond to metrics used to define the
dissimiliarty between pairs of haematological profiles. Values smaller than the Bonferroni-
adjusted significance criterion to ensure that each predictor has a Type-l error rate of 0.05
(i.e. a}‘= 0.05/10) are emphasized with italic font. Values smaller than the Bonferroni-
adjusted significance criterion to ensure that the probability of any Type-I error is 0.05
(i.e. ap.=0.05/100) are emphasized with bold font. The p-value corresponding to the joint
effect of all predictors is found in the upper panel, the main effects of each predictor in
the middle panel, and all two-way interaction effects in the lower panel.
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Figure 2. Median values for each hematological outcome variable for subgroups.
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Median standardized scores (vertical axes) on each hematological outcome variable (horizontal
axes) for five sets of subgroups (each plot) to illustrate the effects of the five interactions
identified as significantly associated with subjects’ hematological profiles. Each interaction is
illustrated by plotting the “average hematological profile” of four subgroups that characterize
the two-way interaction. These groups are defined by, (a) a median-split on age and by sex, (b)
a median split on age and on BMI, (c) a median-split on age and by smoking, (d) sex and a median
split on BMI, and (e) sex and smoking. The average profiles of each subgroup within each plot
are differentiated by color, point type, and line type, as indicated in each figure legend.
Connecting lines were added to allow for an easier visual comparison of the groups’profiles.
These visualizations illustrate the differential covariate effects on the hematological profiles as
a whole. For example, the sub-plot concerning the effects of age and sex illustrates the
comparatively small effects of both predictors on mean platelet volume (all four groups tend to
score similarly), the main effect of age on mean corpuscular hemoglobin concentration (young
tending to score higher regardless of sex), the main effect of sex on on hemoglobin level (males
tend to score higher regardless of age), and the effect of the interaction between these two
predictors on eosinophil count (younger females tend to score lower than the other three
groups).
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7.4 Discussion

In line with previous research, our univariate analyses confirmed that age, sex, BMI and
smoking are related to individual hematological parameters. This set of analyses,
however, did not provide strong evidence for interactive effects of these predictors. On
the other hand, focusing on differences among subjects’ hematological profiles rather
than differences in individual hematological indices was shown to yield sufficient power
to detect interactions among predictors in the model. For example, the interaction of age
and BMI was not marked as significant in any of the univariate analyses, but this
interaction was found to be significantly related to the hematological profiles as a whole.
This phenomenon can be understood by examining the upper-rightmost plot of Figure 2,
which illustrates the effects of age and BMI on the hematological profiles. While no single
outcome variable is characterized by a large interaction effect, the interaction of age and
BMI clearly has a modest effect on many of the blood variables (e.g., nneut, neos, hgb,
rdw). By using information from all of the outcomes jointly, the multivariate approach can
detect these smaller, but still meaningful, effects more efficiently than the traditional
univariate approach, which can only consider each effect in isolation.

Beyond facilitating higher statistical power than the standard univariate approach, using
the multivariate approach to identify “prototypical profiles”, such as those illustrated in
Figure 2, may be useful for clinicians in the future. These profiles could be used to
formulate expectations about patient groups in a more fine-grained manner than could
be achieved based on analyses of individual outcome variables.

Furthermore, the benefits of this multivariate approach invites future research on
personalized treatment that directly utilizes multivariate association tests. Jointly
modeling several outcomes facilitates the simultaneous study of multiple biological
responses to a treatment. The multivariate approach can therefore be used to test the
effectiveness of a treatment on several target variables while also considering potential
treatment interactions with demographic variables. For example, the multivariate
approach could be used to model phenotypes that are known to be impacted as a side
effect of a treatment in conjunction with the variable(s) that are targeted by the
treatment. This allows the identification of subgroups of individuals within a population
who respond well to the treatment while also uncovering subgroups who are particularly
succeptible to its side effects.

Importantly, the multivariate approach may also be useful in the context of genetic
association studies. The effects of individual genetic variants on complex human traits are
usually small [277]. Genome wide association studies for hematological parameters have
now implicated several loci in the regulation of hematological indices, but the power is
currently insufficient to detect all loci involved [188, 200, 220, 258]. To attain sufficient
power to detect these effects, consortia currently focus on increasing sample sizes.
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However, an alternative approach to increasing power involves improving the way that
the phenotypes are operationalized and analyzed. When a researcher has multiple
variables that measure a trait of interest, the multivariate approach can be used to test
their joint association with individual genetic variants. The results presented here suggest
that this approach could lead to increased power relative to analyzing each variable on its
own, and this approach can also yield higher power than analyzing an aggregate-score
computed from all of the variables measuring the trait [278]. MDMR facilitates the
inclusion of an arbitrary number of outcome variables. It can even be used when there
are more outcomes than observations, so these benefits can still be capitalized upon
when the outcome is extremely high-dimensional.

In the analyses presented here, both Euclidean- and Manhattan-MDMR marked the
interactions of age with sex, BMI, and smoking, as well as the interaction of sex and BMI,
as significantly related to the hematological profiles. The use of Euclidean and Manhattan
distances, however, yielded inconsistent results with respect to the interaction of sex and
smoking. The use of Euclidean distances to define the dissimilarity between pairs of
response profiles resulted in a significant sex by smoking interaction, but the use of
Manhattan distances did not. Manhattan distances are less sensitive to outlying
observations, and are therefore preferable if analyses are conducted in small samples in
order to avoid potentially spurious results. This robustness, however, comes at the
expense of potentially suboptimal power to detect genuine effects in larger samples.
Researchers should therefore consider their sample size in addition to the relative cost of
false positives and false negatives when choosing between Euclidean and Manhattan
distances.

In conclusion, a multivariate approach to hematological analysis increases the power to
detect important interactions within predictors relative to standard univariate analyses.
In the future, multivariate methods, including MDMR, have the potential to help identify
subgroups of patients who benefit from different treatment or prevention measures.
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Part Ill: Epigenome-wide studies
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Chapter 8

Blood hypomethylation is associated with elevated
myeloid-lymphoid ratios in cell-specific active
genomic regions

This chapter is ready to submitted as: Carnero-Montoro E*, Lin BD*, van Dongen J,
Fairfax BP, Boomsma DI, Spector TD, Naranbhai V, Bell J. Blood hypomethylation is
associated with elevated myeloid-lymphoid ratios in cell-specific active genomic regions.
Blood.

*These authors contributed equally to this work.

Abstract

Peripheral blood myeloid-lymphoid ratios are increasingly being recognized as better biomarkers
of immunological, cancer and cardiovascular diseases than single leukocyte counts on their own.
Epigenetic mechanisms play an important role in cell fate and differentiation during
hematopoiesis, and ultimately cell function. We hypothesized that differentially methylated
genomic regions in whole blood associated with myeloid-lymphoid ratios may reveal genes
involved in the process of hematopoietic cell differentiation and lineage specification. In this study
we performed epigenome-wide analyses of myeloid-lymphoid ratios (monocyte- lymphocyte ratio:
MLR and neutrophil-lymphocyte ratio: NLR) in two population-based cohorts; TwinsUK (N=844)
and the Netherlands Twin Register (N= 2876). Through meta-analysis we identified thousands of
sites where hypomethylation is associated with elevated myeloid-lymphoid ratios independently
of single cell proportions. By contrasting our results with available data on genome functionality
for different cell types, we find that differentially methylated sites are enriched in myeloid-specific
active regulatory regions. The relevance of the identified differentially methylated sites (DMS) for
disease biology is illustrated by enrichment of DMS for proximity to genes implicated in
haematological malignancies and proximity to GWAS loci associated with autoimmune,
inflammatory and endocrine diseases. Our results illustrate that epigenome-wide association study
approaches utilizing peripheral whole blood DNA methylation in human population-based cohorts
may provide fundamental insights into hematopoietic cell biology.
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8.1 Introduction

Myeloid and lymphoid lineages of blood cells are formed from distinct hematopoietic
stem cell-derived progenitor cells through the process of hematopoiesis [279]. Lymphoid
cells (including T cells, B cells, and natural killer cells) are thought to be the major effector
cells in pathogen immunity while myeloid cells (namely erythrocytes, megakaryocytes,
monocytes, and granulocytes (which include neutrophils, basophils, and eosinophils) are
the major host cells for infection. The relative abundance of myeloid and lymphoid cells
reflects a balance between effectors and target cells in the immune response. Elevation
of the ratios NLR and MLR are associated with impaired health outcomes due to
cardiovascular diseases [181, 280], type 2 diabetes [281], hematological malignancy [282-
283], solid-organ malignancy [184, 284-288] and some infectious diseases such as
tuberculosis [288]. Recent studies have shown that peripheral blood MLR and NLR are
better predictors of impaired health outcomes than the individual peripheral blood
leukocyte subset counts on their own

[289-291]. The adverse physiological effects and health outcomes connected to elevated
MLR and NLR may be mediated by epigenetic mechanisms such as DNA methylation. No
study to date has performed a methylome-wide association analysis of myeloid-lymphoid
ratios.

Epigenetic mechanisms are a key player in hematopoiesis [292]: the differentiation
process of hematopoietic stem cells is accompanied by extensive changes in their
methylation pattern [292-293]. Specifically, hypomethylation is essential to differentiate
stem cells into myeloid progeny, but not into lymphocytes [292]. As lifelong
replenishment of hematopoietic cells is sustained by differentiation of hematopoietic
stem cells (HSCs), methylome-wide association analysis of myeloid-lymphoid ratios may
reveal molecular mechanisms regulating stem cell function, such as self-renewal, cell
differentiation and cell fate decision. Methylation analysis may also reveal the functional
impact of changes in stem cell fate programs, which are still poorly understood.

We performed a genome-wide DNA methylation analysis to identify methylation sites
associated with peripheral blood MLR and NLR based on data from two large twin
registers, including 2876 participants from the Netherlands Twin Register (NTR) and 877
participants from TwinsUK. With this analysis, we aimed to gain insight into 1) the
epigenetic mechanisms driving changes in myeloid-lymphoid ratios and 2) the epigenetic
consequences of elevated ratios, which may be connected to the adverse physiological
effects and health outcomes. We report 4185 methylation sites associated with MLR
and/or NLR independently of single leukocyte counts. Functional annotation analysis
reveals that these sites are enriched in myeloid-specific active enhancer regions and mQTL
analysis shows that methylation at many of these sites is influenced by SNPs.
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8.2 Methods
8.2.1 Study populations

This study includes participants of the Netherlands Twins Register (NTR) and participants
of the Twins UK Registry (TwinsUK). The study-specific characteristics and methodology is
described in previous work [75-77, 294-295]. The NTR includes more than 175,000
participants who are members of twin families: twins, parents, sibling, spouses, etc. from
all regions of the Netherlands. The TwinsUK cohort includes more than 13,000
monozygotic and dizygotic twin volunteers from all regions across the United Kingdom.
Participants were not selected based on any disease or phenotypic characteristic. For this
work, information on blood traits and DNA methylation was available for 3,089 subjects
in NTR and for 877 subjects in TwinsUK. The study protocol for NTR was approved by the
Medical Ethics Committee of the VU University Medical Center Amsterdam, and all
participants provided informed consent. For TwinsUK, Guy’s and St Thomas’ Hospital NHS
Trust Research Ethics Committee approved the study, and all twins provided informed
written consent.

8.2.2 Blood sample collection and cellular composition assessment

Blood samples from participants were collected during visits following well established
protocols described somewhere else for NTR [76-77] and for TwinsUK [295]. In NTR, the
hematological profile of the blood samples was obtained, including white blood cell type
counts that were measured using the Coulter system (Coulter Corporation, Miami, USA).
The total white blood cell counts, numbers and percentages of sub types of white blood
cells namely neutrophils, lymphocytes, monocytes, eosinophils and basophils, were
obtained from hematological profile results. NLR was calculated by dividing the
percentage of neutrophil counts among all white blood cell counts by the percentage of
absolute lymphocyte count among all white blood cell count. Likewise, MLR was
calculated by dividing the percentage of monocyte counts among all white blood cell
counts by the percentage of absolute lymphocyte count among all white blood cell count.
The blood samples used to characterize the blood composition for NTR were the same as
those used to assess the genome-wide DNA methylation levels. In TwinsUK, measured
blood cell counts were not available for the blood samples in which DNA methylation was
measured. Therefore, white blood cell proportions were predicted in TwinsUK based on
the genome-wide methylation data, by means of the widely used method described by
Houseman et al [296], which makes use of a reference dataset consisting of DNA
methylation profiles in purified white blood cells. We used the Houseman reference-
based method as implemented within the R package meffil, using blood gse35069 as the
reference [297]. With this method we predicted the proportions of monocytes,
neutrophils, basophils, B cells, CD8T, CD4T and NK cells. We calculated MLR and NLR based
on predicted leukocyte cell proportions, in which the lymphocyte denominator was
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formed by the sum of B cells, CD8T, CD4T and NK cells. To allow for comparison of EWAS
results obtained with measured versus predicted white blood cell counts, we also
obtained predicted white blood cell traits in NTR with the Houseman et al algorithm
following exactly the same methods.

8.2.3 Genome-wide DNA methylation assessment

The Infinium HumanMethylation450 BeadChip (lllumina Inc, San Diego, CA, USA) was used
to measure DNA methylation in 500ng of genomic DNA obtained from whole blood.
Details of experimental approaches and quality control steps have been previously
described for both cohorts [298-299]. Briefly, in TwinsUK, probes with detection of P
value >0.05 in more than 5% of the samples, mapping to multiple locations in the genome,
or non-autosomal were excluded. In NTR, probes were set to missing in a sample if they
had an intensity value of exactly zero, or a detection p > 0.01, or a bead count of < 3. After
these steps, probes that failed based on the above criteria in > 5% of the NTR samples
were excluded from all NTR samples (only probes with a success rate > 0.95 were
retained). In total, 453,288 and 452,874 probes passing QC filters in NTR and in TwinsUK
were analysed. The methylation data were normalized using functional normalization in
NTR [300], and using the BMIQ method in TwinsUK [301]. For subsequent analyses, we
used methylation B-values, which represent the methylation level at a site, ranging from
0 to 1, and is calculated as: B=M/(M+U+100, where M = methylated signal, U =
unmethylated signal, and 100 represents a correction term to control the B-value of
probes with very low overall signal intensity.

8.2.4 Exclusion criteria

We excluded from the analyses individuals that were outliers for MLR and/or NLR as
determined by values deviating more than 5 times the SD from the mean. In TwinsUK, we
excluded non-Caucasian samples. For NTR, we also filtered out individuals either with hpa-
axis related medication, anti-immune medication, or cancer treatment. After applying
exclusion criteria, we ended up with 2,876 subjects for NTR and 844 subjects for TwinsUK
that were used for our statistical analyses.

8.2.5 Statistical analyses

The complete analysis workflow is illustrated in Figure 1. All statistical analyses were
performed using R programming language [302]. In the NTR cohort, Pearson’s correlation
was computed to evaluate how strongly the measured cell ratios (MLR and NLR) correlate
with the prediction-based cell ratios.

Epigenome-wide association studies (EWAS) were performed to test, at each CpG site, if
the methylation B value is associated with MLR and NLR in each cohort separately (see
model 1). For NTR, we ran EWASs on measured and predicted ratios, while in TwinsUK we
only ran the EWAS based on predicted ratios. In NTR, we used generalized estimation
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equation (GEE) models [303], with DNA methylation B value as outcome and the following
predictors: NLR or MLR, sex, age at blood sampling, smoking status (3 categories: current
smoker, former smoker and non- smoker), HM450k array row, sample plate, and single
cell proportions (monocytes, neutrophils and lymphocytes). GEE models were fitted with
the R package GEE, with the following specifications: Gaussian link function (for
continuous data), 100 iterations, and the ‘exchangeable’ option to account for the
correlation structure within families and within persons. In TwinsUK, we used a linear
mixed model framework with methylation B value as outcome, MLR or NLR as the
predictors, the following fixed effect covariates: age, gender, smoking, predicted single
cell proportions (monocytes, neutrophils and lymphocytes) and batch effects (plate ID and
plate position within 450K array); and the following random effects variables: zygosity and
family. Linear mixed models were fitted using the function “Imer” within the R package
“Imed” [304].

To combine association results from both cohorts, a random effects meta-analysis of the
EWAS results based on the predicted white blood cell traits was performed on a total of
437,677 shared probes using the "metafor" R package and the REML method [305]. Next,
we considered robust differentially methylated sites for MLR and NLR (DMSmir and
DMSnir) as those CpGs showing associations that passed a Bonferroni threshold
P<1.14x107in the meta-analyses and that showed a nominal significance level (P<0.05) in
the EWAS of observed (measured) ratios in NTR.

Based on the same methodology, we also performed EWASs and meta-analyses to test
the association between methylation and monocyte, neutrophil and lymphocyte
proportions separately, while correcting for other single leukocyte proportions (see
model 2,3,4).

Model 1: B value ~ MLR or NLR + % Monocytes + % Neutrophils + %
Lymphocytes + Age + Sex + Smoking + Family/Population
structure + Batch effects.

Model 2: B value ~ %Monocytes + % Neutrophils + % Lymphocytes + Age +
Sex + Smoking + Family/Population structure + Batch effects.

Model 3: B value ~ % Neutrophils + % Lymphocytes + %Monocytes + Age +
Sex + Smoking + Family/Population structure + Batch effects.

Model 4: B value ~ % Lymphocytes + %Monocytes + % Neutrophils + Sex +
Age + Smoking + Family/Population structure + Batch effects.
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Figure 1. Overview of study design and main results.
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Table 1. Study population characteristics.

NTR TwinsUK NTR: Netherlands Twin
N 2876 844 Register. Quantitative values
%Fema]es 65.6 96.6 are represented as mean
Age 36.71(12.84) 57.99(10.34) (standard deviations).
% Current Smokers 20.58 11.25 N=Sample size after quality
% Neutrophils measured | 52.35 (8.74) NA control and exclusion criteria.
% Monocyte measured 8.35 (2.08) NA NLR: Neutrophil to
% Lymphocyte measured | 35.71 (8.08) NA lymphocyte ratios. MLR:
NLR measured 1.61 (0.69) NA Monocyte to lymphocyte
MLR measured 0.25 (0.09) NA ratios. NA: Non-available
% Neutrophils predicted | 53.45(9.15) 56.29 (11.57) information. Measured: data
% Monocyte predicted 8.27 (2.13) 8.29 (2.35)  obtained directly from
% Lymphocyte predicted | 39.42 (9.66) 36.06 (12.03) experimental procedures.
NLR predicted 1.52 (0.75) 1.86 (1.02) Predicted: Data obtained
MLR predicted 0.23 (0.10) 0.26 (0.13) indirectly by applying

algorithm for predictions.
8.3 Results

8.3.1 Characteristics of study populations

We included in this study 2,876 subjects from the NTR cohort and 844 subjects from
TwinsUK with information on genome-wide methylation and white blood parameters that
passed our quality control and exclusion criteria. The characteristics of the samples can
be seen in Table 1. In both cohorts we estimated leucocyte subset proportions using a
widely-adopted reference-based approach [296]. For NTR, we had information on white
blood cell ratios (MLR and NLR) available based on both measured and predicted data.
We observed a very high and significant correlation between these two type of data
(Pearson correlations cormir=0.86, P<2.2e-16 ; cornr=0.89, P<2.2e-16), (Figure 2).

8.3.2 Association between DNA methylation and blood ratios.

The complete analysis workflow is illustrated in Figure 1. In a total of 3,720 individuals we
identified differentially methylated sites (DMS) associated with MLR (DMSwmir) and NLR
(DMSyir), and with single leukocyte proportions: neutrophils (DMSy), monocyte (DMSw)
and lymphocyte (DMS;). We assessed CpG methylation on the HumanMethylation450
Beadchip, and performed epigenome-wide association analyses (EWAS), comparing
methylation levels at each CpG site in a regression framework to the predicted myeloid-
lymphoid ratio, adjusting for population and/or family structure, age, sex, smoking status,
batch effects, and leucocyte subset proportions (lymphocyte, monocyte and neutrophil
proportions) separately in each sample. We combined effect estimates from TwinsUK and
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NTR in a random-effects meta-analysis and applied a Bonferroni-correction to determine
significant DMS (P <1.14x10%). To exclude potential bias due to the white blood cell
proportion prediction method, we filtered meta-analysis results further, and report only
those validated in an EWAS of measured proportions. A distribution of P values and
direction of effects obtained in each meta-analyses EWAS can be seen in Figure 3A.

The level of methylation at 9749 CpG sites (2.2% of tested) was associated with NLR, MLR,
neutrophil proportion, monocyte proportion or lymphocyte proportion. The largest
number of DMS were observed for NLR (DMSyr=4402) and MLR (DMSwir =3860) and for
the neutrophil (DMSy=3506) and monocyte (DMSw=3628) proportions while few DMS
were associated with lymphocyte proportion(DMS=229). Examining the patterns of
overlap demonstrates a striking overlap of DMSyir and DMSwr.. Although some overlap
was seen between DMSy and DMSy, there was smaller overlap between DMSyr and
DMSy or DMS, Similarly, there was also smaller overlap between DMSyir and DMSy or
DMS, (Figure 3B). These data suggest profound epigenetic correlation between MLR and
NLR, which is more marked than the epigenetic correlation between the ratios and their
constituents.

A second noteworthy observation is that the majority of DMS were inversely associated
with the outcome of interest, i.e. that hypomethylation was associated with elevated
ratios or proportions and this characteristic was more marked for the ratios than for their
constituents. This pattern was true for NLR (95.56% of DMSy.r have B<0), MLR (94.09% of
DMSmir have B<0), neutrophil proportion (79.41% of DMSy have B<0), monocyte
proportion (67.19% of DMSy have B<0) and lymphocyte proportion (60.26% of DMS, have
B<0). For DMS associated with both MLR and NLR (3170 sites), all DMS shared the same
direction of association (3021 <0, 149 3>0). The DMSnir and DMSwr tend to be more
likely to overlap with methylation sites that are hypomethylated in neutrophils or
monocytes than expected, and less likely to overlap sites that are hypermethylated (data
not shown).

The marked overlap in the sites of (mostly) hypomethylation and their directionally similar
effect on MLR and NLR is consistent with a model in which long-term hematopoietic stem
cells (LT-HSC), which have constitutive DNA methylation, actively undergo demethylation
to give rise to myeloid-biased progeny leading to higher ML and NL ratios. Moreover, the
regions of hypomethylation likely remain hypomethylated in the myeloid progeny.

8.3.3 Functional characterization of blood ratios epigenetic signals

To characterize potential mechanisms through which DMSyir and DMSyr may associate
with myeloid-lymphoid ratio we examined their location relative to gene structures, a
number of regulatory marks (as histone modification, TFBS, enhancer regions), the
overlap with differentially expressed regions, and the influence of genetic variants on
differential methylation and/or association.
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Figure 2. Comparison between predicted and measured white blood ratios
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8.3.4 Genomic co-localization

oo

We examined the genomic distribution of DMSyir and DMSwir relative to gene structures
and CpG island regions and compared this to all sites evaluated (background). We
observed a depletion of DMSyir and DMSmir within 200bp of the TSS or within the first
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exon and reciprocally observed a substantial enrichment in the body of genes (Figure 4A).
DMSnirand DMSuir were relatively depleted for locating precisely within a CpG Island, but
enriched in the shores (2-4KB up/downstream from an island) (Figure 4B).

8.3.5 Enrichment of epigenetic signals in cell-specific regulatory histone marks and
enhancers

We evaluated the overlap between DMS and regulatory histone marks reasoning that co-
localisation may indicate evidence for multiple regulatory mechanisms being involved in
regulation of gene expression. Both DMSyir and DMSwir are markedly enriched for
overlapping with activating histone marks (H3K27Ac, H3K36me3 or H3K4me3), or histone
marks reflective of active (H3K27Ac) or poised enhancers (H3K4mel) expressed in mature
myeloid cells (monocytes or neutrophil ChIPSeq data from BLUEPRINT) [306] and are
depleted for overlap with regions bound by repressive histone marks (H3K27me3 or
H3K9me3), (Figure 4C). An orthogonal analysis of expressed enhancers (from FANTOMD5)
[307] confirms this observation and demonstrates relatively greater enrichment for
myeloid (basophil, neutrophil, eosinophil, monocyte or dendritic cell) than lymphoid (B, T
or NK cell) expressed enhancers (Figure 4D). These data collectively suggest that the
DMSwmir and DMSyir occur more frequently in the gene body and the shores of CpG island
regions, in regions bound by activating histone marks and in enhancers.

8.3.6 Overlap between epigenetic and transcriptional signals

We previously demonstrated that an elevated myeloid-lymphoid cell ratio is associated
with a consistently altered signature of transcript in myeloid cells. We overlapped the
epigenome maps generated here to transcriptome maps in order to test whether the
regions of hypomethylation may explain transcription levels in monocytes and
neutrophils. Overall, 136 DMSuir were within genes that we previously identified as
differentially expressed in monocytes dependent on the MLR, which represents a 1.65-
fold enrichment over background (95%Cl 1.38-1.96, p=1.22x107). There was modest
evidence for localization of DMS to within 1000kb of reported eQTL in neutrophils,
monocytes, DC, T and B-cells (Enrichment OR all <2, data not shown).

8.3.7 Genetic determination of epigenetic signals

We investigated how the interplay between genetic and epigenetic variation could
influence MLR and NLR levels. We used a genome-wide catalog of genetic variants
influencing DNA methylation (mQTLs) produced in TwinsUK and interrogated whether
MLR and NLR-associated CpGs were under genetic control. We found that a proportion of
0.49 DMSpir (1910 CpGs) and DMSnir (2161 CpGs) showed at least one SNP regulating the
methylation level at a significance level of P<1x10% and FDR<0.05, which represents a
significant enrichment of mQTL among significant cpgs compared to the number of mQTLs
among all CpGs included in the meta-analysis (Fold enrichment = 1.43 for DMSwmir and
1.41for DMSyr, P< 0.0001). This enrichment is slightly higher among mQTLs acting in cis,
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than among mQTLs acting in trans (those SNP-CpG pairs located in different chromosomes
or further than 1Mb) (data not shown). Our results reveal that at least partially, the
epigenetic signals associated with elevated white blood ratios could be the consequence
of genetic variations influencing blood ratios via methylation changes.

8.3.8 Disease relevance

The myeloid-lymphoid ratio is implicated in a range of human disorders in epidemiological
studies. To further explore this observation leveraging the EWAS findings we pursued two
additional approaches: we tested whether DMSyirand DMSwirare enriched for proximity
to genes involved in haematological malignancies and whether they are enriched within
100kb of a GWAS associated genetic variant according to disease category. We found that
the DMSnirand DMSuirwere enriched for proximity to genes implicated in haematological
malignancies in particular. They were also enriched for proximity to GWAS loci associated
with autoimmune, inflammatory and endocrine diseases.

8.4 Discussion

We performed an epigenome-wide association meta-analysis of the myeloid-lymphoid
ratios MLR and NLR in two population-based cohorts; TwinsUK and the Netherlands Twin
Register, including a total number of 3,720 subjects. This is the first EWAS to date
specifically focused on MLR and NLR. The meta-analysis identified thousands of sites
where methylation level is associated with myeloid-lymphoid ratios independently of
single cell proportions. For the large majority (> 94%) of these differentially methylated
sites (DMSwmir and DMSyir), a higher MLR or a higher NLR was associated with
hypomethylation. There was very large overlap between sites significantly associated with
MLR and sites significantly associated with NLR, and between their direction of effect.
Functional annotation analyses indicated that DMSwmir and DMSnir occur preferentially in
myeloid-specific active regulatory regions including enhancers and mQTL results indicated
that approximately 50% DMSmir and DMSygr are also associated with one or more SNPs.
This pattern is consistent with a model in which long-term hematopoietic stem cells (LT-
HSC), which have constitutive DNA methylation, actively undergo demethylation at
myeloid-specific regulatory regions to give rise to myeloid-biased progeny leading to
higher MLR and NLR, and this process may be influenced at least to some extent by SNPs
that affect the methylation levels of these locations .

Peripheral blood myeloid-lymphoid ratios have repeatedly been reported to be better
biomarkers of immunological, cancer and cardiovascular diseases than single leukocyte
counts on their own. Our study showed that myeloid-lymphoid ratio- associated
methylation sites are enriched for proximity to genes implicated in haematological
malignancies and proximity to GWAS loci associated with autoimmune, inflammatory and
endocrine diseases. This suggests that differential epigenetic regulation of disease-related
genes may be a key mode of action linking elevated myeloid-lymphoid ratios to disease.
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Figure 4. Functional annotation results.

Figure 4 A. Enrichment of DMSyirand DMSwr with respect to gene-centric annotations.
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Figure 4B. Enrichment of DMSyirand DMSwir with respect to CpG island-centric annotations.
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Figure A and Figure B. Gene-centric annotations:

TSS1500: from 1.5kb upstream of RefSeq transcription start sites. TSS2000: from 2.0kb upstream
of RefSeq transcription start sites. X5'UTR: five prime untranslated region of X gene (the region of
an mRNA that is directly upstream from the initiation codon. X 1st Exon: first exon of X gene. Body:
the entire gene from the transcription start site to the end of the transcript. 3'UTR: three prime
untranslated region of X gene (the region of an mRNA from the 3' end to the position of the last
codon used in translation). N_Shelf: North shelf of CpG island. S_Shelf: South shelf of CpG island.
N_Shore: North shore of CpG island. S_Shore: South shore of CpG island.Island: a region with a
high frequency of CpG sites. It is a region with at least 200 bp, and a GC percentage that is greater

than 50%, and with an observed-to-expected CpG ratio that is greater than 60%.
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Chapter 9

Epigenome-wide association study for platelet-
lymphocyte ratio (PLR) level.

Lin BD, van Dongen J, Boomsma DI, Willemsen G, Abdellaoui A, de Geus EJ, Hottenga JJ.
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9.1 Introduction

Platelet—lymphocyte ratio (PLR), derived from the complete blood count, is a novel
biomarker, reflecting systemic inflammatory status, which may predict the outcome of
cancer, cardiovascular and infectious disease [70, 308-309]. Recently, PLR received
increased attention by epidemiologists. The variation in PLR level was found to be
influenced by sex and age, but also with environmental conditions and lifestyle, with the
effect of lifestyle being dependent on age and sex [147, 151, 187].

The genetic component of PLR was also investigated. We previously reported that PLR is
a highly heritable trait with heritability estimated at 64% [187]. A genome-wide
association study identified genetic variants in the HBS1L-MYB intergenic region that were
significantly associated with PLR. The SNP-heritability for PLR was estimated at 14.1%.

A meta-analysis of data from the Netherlands Twin Register (NTR) and TwinsUK identified
thousands of methylation sites associated with two other myeloid-lymphoid ratios (MLR
and/or NLR, chapter 8 of this thesis). We hypothesize that elevated PLR is also mediated
by epigenetic mechanisms such as DNA methylation. However, no study to date has
performed a methylome-wide association analysis of PLR. In this study, we performed a
genome-wide DNA methylation analysis to identify methylation sites associated with PLR
using the DNA methylation data from a Dutch non-patient population. Additionally, we
focus on the HBS1L-MYB region identified in our GWAS of PLR (chapter 5 in this thesis).

9.2 Methods

9.2.1 Participants

Good quality DNA methylation data obtained from peripheral blood samples were
available for 3057 participants in the Netherlands Twin Register [75] (NTR) biobank
project [76-77]. We excluded individuals with extreme values for platelet-lymphocyte
ratio (PLR) (> mean = 5 x standard deviation (SD)), individuals with HPA-axis related
medication or anti-inflammatory medication, and individuals who underwent cancer
treatment, leading to a final dataset of 2876 individuals. The study protocol was approved
by the Medical Ethics Committee of the VU University Medical Center Amsterdam, and all
participants provided informed consent.

9.2.2 Blood sampling, blood cell counts, and smoking status

Blood samples were collected during home visits following well-established protocols
described previously [76-77]. The hematological profile was obtained in EDTA whole
blood samples using the Coulter system (Coulter Corporation, Miami, USA). PLR level was
calculated as platelet count divided by lymphocyte count. Table 1 shows the mean and
SD of the blood cell traits studied. Information on smoking was obtained during the home
visit. Smoking status at the moment of blood draw, coded into three categories (O=non-
smoker,1=former smoker, 2=current smoker), was included as a covariate in the analyses.
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Table 1. Descriptive statistics for blood parameters of interest.

Popula | N Age PLR Platele Lymphocyt Neutrophi Monocyt
tion tcount e count I e
count count
Total 2876 36.71 119.34 255.4 2.30 3.47 0.54
(12.84) (41.36) (61.46) (0.76) (1.28) (0.17)
Male 988 39.96 114.15 239.2 2.24 3.42 0.58
(13.56) (38.54) (54.97) (0.73) (1.46) (0.17)
female | 1888 36.58 122.06 263.8 2.34 3.50 0.51
(12.45) (42.53) (62.97) (0.77) (1.35) (0.16)

9.2.3 DNA methylation

The Infinium HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA, USA) was used
to measure DNA methylation in 500ng of genomic DNA obtained from whole blood
following the manufacturer’s protocol. The quality control steps and normalization of the
data have been previously described [298] . The analysis included all autosomal
methylation sites (N=411,169). The analyses were performed on methylation B-values,
which represent the methylation level at a site, ranging from 0 to 1, and are calculated as:
B=M/(M+U+100, where M = methylated signal, U = unmethylated signal, and 100
represents a correction term to control the B-value of probes with very low overall signal
intensity.

9.2.4 Statistical analysis

We performed an epigenome-wide association study (EWAS) of platelet- lymphocyte ratio
(PLR) level, based on measured white blood cell and platelet count data. All statistical
analyses were performed using R programming language. In the EWAS, we tested for each
CpG site, whether the methylation B value was associated with PLR. We used generalized
estimation equation (GEE) models, with DNA methylation B value as outcome and the
following predictors: PLR, sex, age at blood sampling, smoking status, HM450k array row,
sample plate and, added at a second step, blood cell counts (platelets, monocytes,
neutrophils and lymphocytes). GEE models were fitted with the R package GEE, with the
following specifications: Gaussian link function (for continuous data), 100 iterations, and
the ‘exchangeable’ option to account for the correlation structure within families and
within persons. We applied two methylation association study models for PLR:

model 1: methylation B value ~ PLR + Sex + Age + Smoking + sample plate + 450k array row.

model 2: methylation B value ~ PLR + #Platelet + #Neutrophils + #Lymphocytes + #Monocytes
+ Sex + Age + Smoking + sample plate + 450k array row.
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9.3 Results
9.3.1 EWAS

In model 1, which did not correct for individual blood cell counts, 92060 methylation sites
were genome-wide significantly associated with PLR level following Bonferroni correction.
The QQ-plot is provided in Figure 1. In model 2, which corrected for white blood cell
counts and platelet count, 3629 methylation sites were significantly associated with PLR
(DMSpir). At 83% (3029) of DMSpir, an increase in PLR level was associated with
hypomethylation. The Manhattan plot and QQ plot for PLR level, platelet count and
lymphocyte count are shown in Figure 2 to 4. The number of methylation sites significantly
associated with individual counts are 3840, 11189, 6496 and 38071 for platelet count
(DMSpi7), neutrophil count (DMSneut), monocyte count (DMSwmono), and lymphocyte count
(DMSyiymen), respectively. The overlap of DMSpir, DMSpir, and DMSiymen is shown in Table
2. The overlap between DMSpr with DMSpir (1,971 CpGs) and between DMSpr with
DMSiymp (1,496 CpGs) was large, and the overlap among the three parameters of interest
was 965 CpGs. In total, 1,112 CpG sites were significantly associated with PLR but not with
the individual platelet and lymphocyte counts.

Table 2. The number and overlap of significant methylation sites for PLR, platelet count
and lymphocyte count.

Methylation sites

DMSPLR(raw) 92,060
DMSPLR(corrected) | 3,467

DMSPLT 3,840

DMSNEUT 11,189
DMSMONO 6,496
DMSLYMPH 38,071
DMSPLR&PLT 1,971
DMSPLR&LYMP 1,496
DMSPLR&PLT&LYMP | 965

9.3.2 Co-localization of methylation signal and GWAS hit for PLR

In our GWAS study of PLR (chapter 5) we identified one locus that was significantly
associated with PLR level: rs9376092 (location: chr6: 135427144) in the intergenic region
between the HBS1L and MYB gene. To examine co-localization of SNPs and methylation
sites associated with PLR, we zoomed in on the EWAS results of all methylation sites
within a range of +/-200kb around this SNP. Our dataset contained 53 methylation sites
in this region. The regional plot, which was generated by coMET package in R [310], is
shown in Figure 5. Following Bonferroni-correction for 53 tests, methylation at 5 CpGs in
the region are significantly (p < 0.05/53) associated with PLR. The nearest significant CpG,
cgl14743594, is 51kb upstream of rs9376092 and located in HBS1L. The other 4 CpGs are
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located in MYB; 12-13kb downstream of rs9376092. At all 5 CpG sites, a higher PLR level
was associated with hypomethylation.

9.4 Conclusion

In this EWAS study, we have identified 3,629 CpGs sites associated with PLR levels, of
which 1,112 CpG sites are uniquely associated with PLR level rather than with individual
blood cell counts. In the region harboring the significant SNP from our GWAS of PLR level,
we observed 5 CpGs for which hypomethylation was significantly associated with a higher
PLR level, when applying a Bonferroni correction for the number of interrogated
methylation sites in the region surrounding the SNP. This suggests that both genetic
variation and variation in methylation level in this region are associated with PLR levels. It
is important to note that the methylation sites that are most strongly associated with PLR
(reaching genome-wide significance) do not overlap with the GWAS region.
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Figure 1. Manhattan plot and QQ plot for PLR without individual blood cell count correction (model 1).
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Figure 5. Regional plot showing EWAS results for the region harboring the most significant SNP

for PLR level.
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The figure shows Chr 6: 135,227,144 - 135,627,144 which is 200kb around rs9376092
(indicated in the green color). rs9376092 is the most significant SNP ( B=5.483, p=2.75E-9)
associated with PLR level from Chapter 5. The closest significant CpG is cg14743594 (p=
0.00087) indicated in purple.
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Chapter 10

General Summary and Discussion

10.1 General Summary

The present dissertation focused on the genetic influence of human complex traits with
two main research topics: the genetics of pigmentation traits and the ontology of
hematological traits. In this chapter, | will first summarize the most important results. In
the second part of the chapter, | will discuss these findings as well as reflect upon the
current state and future direction of complex trait genetics.

Chapter 2 investigates the genetic architecture of hair color. The broad-sense heritability
of hair color was estimated to be between 73% and 99% and the genetic component
included non-additive genetic variance. This is an estimate of pigmentation heritability
obtained in the study with largest statistic power so far (sample size =22,000 subjects).
Assortative mating was present for most pigmentation traits, reflecting that mate choice
is to a fairly large extent governed by visible trait characteristics. Of course, the
pigmentation spectrum distribution correlates with latitude and this contributes to the
correlation of spouses. Known pigmentation loci were confirmed in the Genome-Wide
Association (GWA) analysis for each phenotype of interest: MC1R region for red, brown
and black, and light versus dark hair color; TPCN2, IRF4, and KITLG for blond, brown and
light versus dark hair color; SLC24A4 for blond, brown and light versus dark hair color,
green eye color, and blue eye color; HERC2 for blond, brown, light versus dark hair color,
blue and brown eye color; and PTPRT for green eye color. At most 24.6% of the additive
genetic variance in hair color (specifically red hair color) was explained by the 1000G well-
imputed SNPs in GCTA analysis.

Chapter 3 presents a bivariate analysis of eye and hair color. | detected strong genetic
correlations between various combinations of hair and eye colors with GCTA: a significant
positive correlation between blue eyes with blond hair (0.87) and brown eyes with dark
hair (0.71), and a significant negative correlation between blue eyes with dark hair (-0.64)
and brown eyes with blond hair (-0.94). In addition, GWAS results for hair color and eye
color also indicate a large genetic overlap between eye color and hair color: HERC2 is
significantly associated with blue eyes, brown eyes, blond hair, brown hair and dark hair
color; SLC24A4 is significantly associated with blue eyes, green eyes, blond hair, brown
hair, and dark hair color. Like hair color, eye color prevalence has correlated tightly with
latitude over the past centuries. Consequently, eye color also correlates with Principal
Components (PCs) which represent ancestry and describe the genetic stratification of the
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Netherlands. Including PCs into genetic studies of such phenotypes, which underwent
simultaneous genetic divergence between (sub)populations could underestimate the
genetic association. Therefore, | suggested that when conducting gene finding studies or
GCTA analyses, the effects of ancestral population differences on the relationship
between stratified traits should be carefully considered.

Chapter 4 investigates the cause of variation in neutrophil-lymphocyte ratio (NLR) and
platelet-lymphocyte ratio (PLR) in the Dutch population. These immune biomarkers are
moderately (NLR h?=35%) to highly heritable (PLR h?=64%). The correlation between NLR
and PLR is 0.49. PLR correlated neither with CRP nor with IL6. However, NLR correlated
positively with CRP (0.157, p< .001) and with IL6 (0.083, p < .001). Compared to women,
men had higher average NLR levels, but lower average PLR levels. PLR, and to a lesser
extent NLR, increased significantly with age. Sex specific effects also were observed for
seasonal differences: in colder months NLR and PLR were on average higher in women,
but not in men. In addition, small but significant, age and sex specific associations of NLR
and PLR with BMI and smoking behavior were observed.

Our comparison of healthy individuals with subjects who had a possibly compromised
immune system showed higher NLR and PLR levels along with higher CRP and IL-6 levels
in the unhealthy individuals. When including the unhealthy individuals into the analyses,
heritability estimates were lower than in the healthy population, but since the confidence
intervals overlapped, the difference between the total and the healthy population was
not significant.

Chapter 5 investigates the genetic variants for NLR and PLR. | identified genetic variants
in the intergenic HBS1L -MYB region which were significantly associated with PLR level,
and also affected platelet count. Other loci like PSMD3 for neutrophil count or CCDC71L-
PIK3CG, ARHGEF3 and BAK1 for platelet count were not associated with the blood ratios
derived from them. These loci likely regulate specific types of white blood cells count
rather than the balance of subtype blood cell counts. For most of the top SNPs obtained
in our GWAS analyses, we found significant cis and trans eQTL effects related to the
expression of genes involved in hematological and immunological pathways. Although the
overall correlation between NLR and PLR was 0.49, no significant genetic correlation
between the two ratios was found. The results point to the complexity of the genetic
underpinnings of immune response regulation. Since NLR and PLR serve as biomarkers for
the development of some of the same diseases, their correlation might be mainly due to
environmental stimulation and genetic environmental interaction.

Chapter 6 focuses on the phenotype of monocyte-lymphocyte ratio (MLR) and its
subcomponents: monocyte count and lymphocyte count. The approaches that were used
were similar to those in chapters 4 and chapter 5. The heritability and fraction of
heritability explained by associated genetic variants were estimated. The heritability was
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40% for MLR, 58% for monocyte count (12% non-additive genetic effects) and 58% for
lymphocyte count (21% non-additive genetic effects). The genetic correlation between
MLR and monocyte count was 0.48 by LD regression (se=0.3162, p=0.123). For MLR, |
identified a locus nearby ITGA4 which is a well-known locus for monocyte count. This
ITGA4 locus was also associated with monocyte count in my study, as were three other
loci ((LPAR1, IRF8 and ITPR3). All the genetic variants together explained a small part of
phenotypic variance, which motivated us conduct an epigenetic study for these immune
biomarkers in Chapter 8.

Chapter 7 focuses on the simultaneous analysis of multiple variables, which is a main
challenge of high dimension data analysis to avoid loss of information and gain statistic
power. The haematological profile was examined as a function of age, sex, smoking, BMI,
and their two-way interactions, in both univariate and multivariate analyses for the same
dataset of hematological profile variables (including neutrophil count, lymphocyte count,
monocyte count, eosinophil count, hemoglobin level, mean corpuscular volume, mean
corpuscular hemoglobin concentration, red cell distribution width, platelet count, and
mean platelet volume). Compared to univariate regression results, multivariate distance
matrix regression (MDMR) analysis resulted in relatively smaller p-values for all main
effects and provided evidence for interaction effects (age x sex, age x smoker and age x
BMl interactions). The results show that MDMR increases the power to detect important
interactions within predictors and may help identify subgroups who benefit from different
treatment or prevention measures.

Chapter 8 investigates epigenetic variants for NLR and MLR. | examined the prediction of
the distribution of blood cell counts using the whole methylation profile according to the
Houseman method. The correlation between predicted indices and measured indices was
larger than 0.8, demonstrating that the Houseman method is a valid way to estimate the
blood cell count distribution in samples where blood cell count measurements are not
available. This method was then used to obtain blood cell count distribution in the
TwinsUK sample. Next, a meta-analysis EWAS of NLR and MLR, which combined datasets
from NTR and TwinsUK was conducted. | reported 4185 methylation sites associated with
MLR and/or NLR that were not associated with individual cell count components. Many
of the sites were overlapping between NLR and MLR and the pattern of results found is
consistent with a model in which long-term hematopoietic stem cells (LT-HSC), which
have constitutive DNA methylation, actively undergo demethylation at myeloid-specific
regulatory regions to give rise to myeloid-biased progeny leading to higher MLR and NLR.

In Chapter 9, epigenetic variants for PLR level were investigated. A genome-wide DNA
methylation analysis was conducted to identify methylation sites associated with PLR
using the DNA methylation data from a Dutch non-patient population. | identified 3,629
CpGs sites associated with PLR levels, of which 1,112 CpG sites were uniquely associated
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with PLR level rather than with individual blood cell counts. Similar to the results for the
NLR and MLR EWAS , hypomethylation of the majority of these methylation sites (83%)
was associated with high PLR level. Additionally, | focused on the HBS1L-MYB region
identified in our GWAS of PLR. | found both genetic variation and variation in methylation
level in this region to be associated with PLR levels: there were 5 CpGs for which
hypomethylation was significantly (Bonferroni correction threshold: p < .00094)
associated with a higher PLR level. However, the methylation sites that were most
strongly associated with PLR (reaching genome-wide significance) did not overlap with
HBS1L-MYB region from GWAS study in Chapter 5.

10.2 Discussion

In this dissertation, | introduced several approaches currently utilized in human genetic
studies and applied them to the main characteristics of two traits of interest:
pigmentation and hematology. Different statistical-genetic approaches are appropriate
for different kinds of questions and phenotypes based on features of the trait and
hypotheses underlying its etiology. Both the pigmentation and hematology trait
investigations started with extended family twin designs to estimate heritability. Different
results were obtained for the two traits: the two pigmentation traits hair and eye color
are highly heritable (>73%), while the heritability of the studied immune biomarkers
varied between 35% and 60%.

For highly heritable and possibly less polygenetic traits, linkage studies have successfully
mapped QTLs for hair color and eye color, even if the DNA-marker resolution was not high
[106]. However, it is clear that more loci remained to be discovered and the current
genome wide association studies (GWAS) are well suited to do this.

Hematological traits are expected to be more polygenic compared to pigmentation traits,
involving many genes with small effects. It is difficult to detect loci for such polygenic traits
by linkage analysis; other approaches are needed to identify the individual genetic
variants involved. As we have seen in the past few years, such traits may successfully be
analyzed in GWA studies. Compared to pigmentation traits, immune biomarkers, which
show more phenotypic plasticity, are influenced more strongly by environmental factors.
Therefore EWASs, examining the association of epigenetic variants and measurable
phenotypes, are valuable, given that epigenetic variants may be influenced by non-
genetic effects such as environment, in addition to stochastic variation and measurement
error.
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Twin studies provide an upper-bound limitation for genetic studies of a trait

For a geneticist, the most basic question one would ask about a trait is whether it is
heritable in a human population, In other words, whether the observed variation in the
phenotype can be explained by genetic variation. It is important to note that this is not
the same as asking whether genes play a role in the trait. Gene-mediated developmental
processes lie at the basis of all traits (including behavioral traits), but phenotypic variation
among individuals is not necessarily the result of genetic variation. In addition, heritability
is a population-based concept, which is not informative about the individual. A heritability
of 0.96 for blond hair color indicates that, on average, 96% of the observed individual
differences are attributable to genetic differences. It does not mean that 96% of any
person's hair color is due to his/her genes and the other 4% is due to his/her environment.
In addition, heritability estimates do not reveal anything about the specific genes that
contribute to a trait. Similarly, a numerical estimate of environmental effects could not
provide any information about the important environmental parameters that influence a
trait. However, heritability studies will provide an upper bound of genetic variation
contributing to a trait, which can determinate the necessity of follow-up genetic studies.
Twin studies often provide the first estimates of total heritability; there are few heritable
traits for which a twin study has not been carried out [11]. It has been suggested that
heritability estimates may be overestimated [311], for example due to genetic
interactions (e.g. epistasis). The evidence for epitasis, which is a hidden complexity of
genetic regulation in complex traits, can be examined in experimentally amenable
organisms, or with statistical models that take interaction of genetic variants into account
[312]. One such model is the ADE model, which can be fitted to data from MZ and DZ
twins, where dominance (D) variance components represent the genetic interaction term.
In human data, epistatic effects are then included in the dominance variance component
and contribute to the broad-sense of heritability of a trait.

Estimates of heritability in twin studies may be biased if shared environmental factors are
not properly accounted for in the model. In small studies, the statistical power to estimate
the influence of common environmental factors (C) is often low, which may mistakenly
lead to conclusions that the genetic model included additive genetic factors (A) and
unique environment (E) only. The estimation of heritability also depends on whether we
consider the covariance and interactions between genotype and environments (shared
environment C, or unique environment E) [313], which give rise to an additional source of
phenotypic variance. Ignoring the interaction or correlation of genotype and
environments will result in biased parameter estimates. However we know which parts of
the model are affected: interaction between A and C acts like A; interaction between A
and E acts like E, whereas correlation between A and C acts like C; and correlation
between A and E acts like A. We can thus interpret the results from twin studies in light
of this knowledge. If no Cis found, a correlation between A and Cis unlikely to be present,
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if there is A x C then ignoring interaction between A and C will overestimate the
heritability. The adoption-twin design in which twins reared in different environments are
included can be utilized to explore interaction between genotype and environment. The
variance of a phenotype can be decomposed into the variance between genotypes, the
variance between specific environments and the variance attributed to the interaction of
genotype and environment. Individuals with particular genotypes may seek out particular
environments. Such genotype environment correlations where subjects choose
environments driven by genotypes can be also regards as a part of heritability. Results
from the famous adoption-twin studies from Minneapolis are consistent with results from
classical twin design, which suggest that the similarities between twins are due to genes,
rather than environment or gene environment interaction [314].

Just as means and variances are population parameters, heritability is specific to a
particular population

in a particular environment, and when the environment changes, the heritability can
change as well. Heritability estimates cannot be used to determine the causes of
phenotypic variance between populations, in other words, to distinguish whether the
differences between populations are determined by genes or by environment, unless
genotype data, or environmental exposures are available for both populations.
Heritability estimates may differ depending on how the sample is defined and drawn from
the population. For example, when the hematological profile heritability study in this
dissertation, included a random sample that also contained unhealthy sample of
participants, an additional source of variation was introduced, which resulted in an
somewhat lower point estimate for heritability compared to the estimate based on a
healthy sample only, though the confidence intervals overlapped.

GWAS unravels genetic variants associated with a trait

There is no doubt that the GWAS design has become a very useful and common method
to understand the genetic basis of complex traits and to understand the etiology of
heritable diseases. It provides a very efficient way to identify representative genes and
pathways. These identified genetic variants are expected to play a role in clinical
applications such as early diagnosis of diseases, identifying drug targets, and personalized
medication. As | stated in my introduction, due to the virtues of GWAS, we have better
understanding of the genetic architectures of many complex human traits such as height,
BM, pigmentation, hematological profile and also human diseases. Many significant loci
have been identified by GWAS, which would never have shown up in candidate genes
studies, such as the genetic variants in non-coding regions for type 2 diabetes, rheumatoid
arthritis, obesity, cancer and coronary heart disease [315]. Our GWAS for pigmentation
traits and hematological traits replicated some known genetic variants (PSMD3 for
neutrophil count; HBS1L-MYB, CCDC71L-PIK3CG, BAK1 and ARHGEF3 for platelet count)
and identified genetic variants for PLR (in HBS1L-MYB intergenic region), which
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contributed to new genetic knowledge of these traits. A high and significant genetic
overlap between eye color and hair color was identified by both GWAS and GCTA. The
genetic variants that were detected in the HBS1L-MYB region for the immune biomarker
PLR in the healthy population suggest that this region is possibly involved in the
differentiation direction of hematological stem cells .

The genome-wide genetic association studies require robust findings , with results that
cross a threshold of significance level of 5x10® in order to avoid type | errors. To achieve
this statistical rigor, identification of individual genetic variants generally requires big
sample sizes. The larger the sample size of the GWAS conducted, the more genes tend to
be identified with higher confidence. In recent years, scientist in genetics have
collaborated in their efforts at an unprecedented scale and set up several consortia to
conduct comprehensive GWAS meta-analyses. Consequently, many QTLs and related trait
genetic variants were identified. Such an effort is currently also ongoing for hair color
genes. However, none can guarantee that GWASs will reach sufficient power to detect all
genetic variants related to a trait given the expected small effect sizes of many still
undetected SNPs [316]. The narrow-sense heritability estimated by twin studies provides
an upper-limit of the variation due to genetic effects. GWASs for eye color and hair color
have identified and verified multiple pigmentation genes such as MCIR, TYR, OCA2,
HERC2 and SLC24A4. The genetic variants on these genes have explained a large part of
the heritability of hair color (24.6%) and eye color (88.5%).

With the ambition of increasing the sample size, larger meta-analyses of GWASs
containing multiple cohorts are being conducted more frequently. The latent structure of
populations became one of the main issues in association studies, because population
stratification may yield spurious associations if not properly addressed [317]. As the basic
assumption of a GWAS is the analysis of independent individuals from homogenous
populations, any kind of shared ancestry that is not accounted for can introduce biased
estimates [318]. Shared ancestry can have two main sources: cryptic or unknown
relatedness and population stratification.

Family structure (including cryptic relatedness) refers to kinship within a sample that
needs to be taken into account in association studies, especially when family based data
are utilized [319]. The most straightforward way to address this issue is to select unrelated
individuals, which results in compromised statistical power (if the genotyped sample was
larger than the selected sample of unrelated people). Another method is using the
pedigree information, clustering the family memberships, and fitting the data into a
model as | did in chapter 2 and chapter 3 for the pigmentation trait GWAS. This method
is, however, inappropriate in the presence of cryptic relatedness, where the family
structure is unknown to the investigator. To control for unknown family structure, we can
infer the relationship of any pair of individuals in the population based on genome-wide
SNP data in a genetic relationship matrix (GRM), which we can include in a mixture model
[215]. The GRM can be estimated by all autosomal SNPs or by the majority of autosomal
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SNPs (all SNPs except the chromosome where the SNP that is being tested resides: Leave-
One-Chromosome-Out: LOCO method) [212]. The virtue of this method is that pedigree
information is not needed and relatives do not have to be excluded, which retains the
number of subjects at a maximum to keep the statistic power (it is more computationally
intense however). In the GWASs in chapters 5 and 6 | utilized a LOCO method to correct
for family structure, which gives a non-inflated P-value distribution, successfully
correcting for the shared ancestry in our dataset.

Another potential problem can arise when data are included from more than one
subpopulation, and a false positive result can arise by different allele frequencies across
the subpopulations rather than true different allele frequencies between case and control
groups [320]. The approaches to avoid this issue are multiple: optimally defining the
population of interest (excluding ethic outliers), correcting for principle components, and
using mixed models or genomic control (LOCO method). Population stratification needs
to be considered even if the population of interest is assumed to be relatively
homogeneous and localized in a small geographic area like the Dutch population. The
main pattern of population structure can be summarized by uncorrelated principle
components (PCs) obtained from a principle component analysis (PCA) of genome-wide
genetic data. Based on the Dutch demographic history and geographic landscape, the
Dutch population can be assumed to be relatively homogenous with relatively low
migration rates in recent Dutch history. Regarding the NTR dataset, Abdellaoui et al [103]
used the 1000 Genome dataset to exclude individuals with a non-Dutch ancestry, and
using stringent quality control and stringent LD pruning criteria, computed principal
components that captured Dutch ancestry differences [321]. The first three Dutch PCs
highly correlated with geography (PC1: North-South, PC2: East-West, and PC3: Middle-
Band distribution) which indicates that these PCs indeed reflect ancestry differences
[103].

In our hematological traits studies, | took the first three Dutch PCs into account in GWAS
and GCTA analysis, thus successfully correcting for population stratification. However,
because Dutch PCs are partly representing the phenotypic variability in pigmentation
traits, the significance of the association might be alleviated when including the first three
Dutch PCs as covariates in the pigmentation analyses. Therefore, ancestral population
differences for such stratified traits should be carefully considered when conducting
genetic studies.

Pleiotropy

Besides conducting the GWAS for each individual trait, | also investigated the genetic
relationship between different phenotypes. Pleiotropy describes the phenomenon of
genetic effects of a single gene, or set of genes, on multiple phenotypic traits. Pleiotropy
was first observed by Gregor Mendel who hypothesized that three distinct traits of pea
plants seemed to be inherited together: brown seed coat, violet flowers, and axial spots
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[322]. However, based on the techniques of that time, it was unknown if this inheritance
manner was due to physical linkage of multiple distinct genes or to a single gene affecting
multiple traits (genuine pleiotropy). Molecular studies have shed light on pleiotropic
mechanisms: a single locus may produce different products by alternative splicing,
alternative start/stop codons, and modifying protein structure after translation. A classic
example of pleiotropy in humans is phenylketonuria (PKU) which leads to mental disorders
and pigmentation changes: the mutations in the PAH gene can cause mental
retardation and depigmentation of hair and skin. The molecular mechanism is clear: the
PAH gene codes for the rate-limiting enzyme phenylalanine hydroxylase, which converts
the amino acid phenylalanine to tyrosine. The PAH mutation leads to reduced activity of
the enzyme, which results in an abnormal high phenylalanine concentration that is toxic to
the developing nervous system and a low tyrosine concentration that is a key substrate of
the melanogenic pathway [323].

The genetic correlation between traits can be estimated by multiple methods such as
bivariate and multivariate twin studies [13], bivariate data in subjects with genome-wide
SNP data in GCTA [126], and a more recent method LD regression [208]. These methods
require different types of information to explore the genetic overlap between two traits.
Twin studies do not require genotype information, but need explicit relatedness
information to decompose phenotypic covariance into genetic and non-genetic
components. GCTA requires genome-wide SNP information to estimate a genotypic
relationship matrix (GRM), which is then used to model the phenotypic covariance. LD
score regression can be done using only GWAS summary statistics. In combination with
information on the correlations between the SNPs (LD score), the genetic covariance is
estimated by the product of two slopes obtained in regression for both phenotypes to
detect if SNPs have concordant effects on both phenotypes. However, these methods fail
to answer which genetic variants have pleiotropic effects, whether these genetic variants
have concordant or discordant effects across traits, and whether these effects act in a
common or different biological pathways [324].

Recently, Pickrell et al [325] analyzed results from large scale GWAS on 42 traits including
hematalogical traits such as platelet count and MPV, physical traits, behaviors, immune
diseases and psychiatric disorders. More than 300 loci were associated with more than
one phenotype. The genetic etiologic links between distinct traits were identified and the
genetic correlations among these traits estimated, which showed several tight clusters of
related traits such as hematological traits.

Some of the genes identified in our studies are also associated with multiple traits. For
example, MCIR was associated in our study with red hair color [326], but has also been
associated with higher Parkinson's disease risk [327]. | also identified and confirmed that
HERC2 and SLC24A4 are associated with both hair color and eye color. Such findings
demonstrate etiological links between traits and knowledge about genetic variants that
are associated with multiple phenotypes may help unravel complex issues such as

177



comorbidity of disorders. This is even more complex than we may realize: pleiotropic
variants may not only have concordant effects on two or more diseases, some variants
may also have discordant effects (risk factor for one disease but protective factor for the
other) as has been shown for immune disorders [328]. Pleiotropy is also more common
than was expected: a protein network study has shown that each gene influences on
average four to five traits [329] and acomparative study of protein sequencing and gene
expression suggests that on average, one gene affects six or seven traits [330]. From an
evolutionary point of view, the ubiquity of pleiotropy can be a consequence of fitness for
rapidly adapting to dynamic anthropogenic environments [329]. Insight into the
complexity of pleiotropy can facilitate our understanding of the wide range of trait
combinations within current human populations, and also shed light on the etiology of
genetic diseases. However, it may also make targeting specific gene mutation disorders
with medicines much more difficult.

The gap between twin studies and GWAS

Although GWASs have discovered thousands of complex traits related variants, these
variants often explain only a minor part of the heritability. The SNP heritability can be
estimated by multiple methods: such as GCTA [331], LD Score regression [208], and
GEMMA (Genome-wide Efficient Mixed Model Association) [332]. GCTA can estimate to
what extent phenotypic variation is explained by selected genetic variants. This analysis
can cover candidate genes, but also findings at chromosome or whole genome-wide level
to answer the question which percentage of variance is explained by measured genetic
variants, the genetic profile on the chromosome of interest, and the associated SNPs
based on GWAS data or GWA summary statistics. The classical GCTA estimates the extent
to which the phenotypic similarity across pairs of individuals in a sample is explained by
their genotypic similarity at common variants by restricted maximum likelihood (REML).
However, SNP-heritability can be underestimated by GCTA, because of several reasons,
including incomplete genomic coverage and not including genetic interaction in the model.
A novel SNP heritability estimation approach based on GCTA called GREML-LDMS method
(LD- and MAF-stratified GREML) accounts for both linkage disequilibrium and rare
variants. The strategy is similar to classical GCTA, but the REML analysis is performed using
multiple LD and/or MAF stratified GRMs. SNP heritability estimated by GREML-LDMS
method has been proven to be robust, unbiased and independent of the MAF and LD
properties of causal variants, which account for the majority of narrow-sense heritability
from twins study [333].
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Beyond genetic variation: Epigenome-Wide Association Studies

Epigenetic variation has come to the attention of geneticists since a substantial
proportion of variation in complex traits remains unexplained by GWAS, and this may be
particularly relevant for highly dynamic and environmentally-sensitive traits such as
immunological biomarkers. By interrogating the epigenome of a population, Epigenome-
Wide Association Studies (EWASs) may provide a better understanding of the (epi)genetic
architecture of complex traits and the etiology of diseases. Family-based data especially
twin data is very valuable for EWAS [334]. For example, monozygotic twin pairs have
identical genetics and very similar prenatal environments, but the twins may still differ,
sometimes to a large extent, in their phenotypes. Comparison of discordant MZ twin pairs
in EWAS studies can exclude genetic differences, which may point to disease-associated
epigenetic marks. Compared to the high MZ twin correlations (near 100%) for SNP data,
the MZ twin correlations for DNA methylation are low (on average 0.20 in whole blood
[298]and 0.31 in buccal [335] across all CpGs), resulting in enough epigenetic variation
within MZ pairs to make an investigation of these differences informative.

EWAS may yield new insights into the causes of complex traits. Using GWAS, we
determine which genetic variants are associated with a phenotype, but additional studies
are needed to explain other sources of variation. The direction of causality in GWAS is
from DNA to phenotype, but in EWAS studies causality may be in both directions. The
causality of epigenetic variants may be detected by longitudinal EWAS studies. Because
epigenetic variants are dynamic and dependent on environments and conditions, tracing
the changes in the epigenetic profile of an individual across time, using longitudinally
collected samples, or in different environments can provide useful information on how
epigenetic variants mediate disease development or trait variation [336].

While the DNA profile is uniform across the whole body, epigenetic profiles can differ
across tissues [337]. For example, distinctive DNA methylation patterns contribute to
distinct cell functions and cellular identity. Given that the methylation of DNA from whole
blood constitutes a heterogeneous profile and different cells are characterized by their
own differentially methylated regions (DMRs), knowledge about cell counts is important
in EWA studies. When cell counts are not known for a sample, the proportions of white
blood cell components may be predicted from the methylation profile of whole blood
samples, by using a reference dataset [296]. In our study, we compared measured white
blood cell proportions to predicted proportions in NTR and identified more than 4000
methylation sites associated with NLR and MLR through EWAS meta-analysis based on
predicted cell counts from two cohorts (NTR and Twins UK), one of which did not have
information on measured cell counts (TwinsUK). Using measured platelet and lymphocyte
counts, we identified 1,112 methylation sites for PLR in NTR.
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Functional studies of identified genetic or epigenetic variants

GWASs have identified genetic variants for human complex traits, which tend to be
located outside coding regions in the genome [338-339]. Genome function analysis efforts
therefore also focus on genetic variants in non-coding regions by carrying out expression
guantitative trait loci (eQTLs) analyses [340].

To detect the causal effects for the genetic variants for phenotypes of interest, we have
combined our GWAS and EWAS results with RNA expression databases. The significant
association between the genetic variants with quantitative amount of transcripts can
unravel whether SNPs play a regulating role on the gene expression level. In our study, |
identified eQTL cis and trans effects on gene expression involved in multiple pathways
such as platelet activation, signaling and aggregation; immune system; metabolism; cell
division, proliferation, and differentiation; and genes playing a key role in hematopoietic
stem cell differentiation pathways and lineage-specific markers. In addition, | tested if
these effects remain, when correcting for cell counts. A number of eQTL effects, but not
all, which were present in uncorrected gene expression data, disappeared in the corrected
data, possibly because the genetic variants directly influence the variation of blood
components and influence the plasma gene expression level.

The emergence of eQTLs may provide an easily accessible and interpretable link to
understand the gap between genetic variation and phenotypes. eQTLs analysis, as a new
biological function study, provides insight into human genetics, which cannot be gained
by animal knock-down experiments. Utilizing eQTLs will largely strengthen the
interpretation of the genetic variants mechanisms from genome-wide studies and will add
to our understanding of the biological pathways involved in human complex trait
variability.

Phenotyping

In all genetics-related research, a careful definition of the phenotype is critically
important, as it helps to define the biological pathway of interest. A well-defined
phenotype, which perfectly reflects the research question, is one of the first and foremost
factors to successfully conduct genetic research. Phenotype decisions include whether the
variable should be binary, categorical or continuous but also whether variables should be
considered independently or jointly in a multivariate approach. For example, regarding
the hematological profile, a single parameter fails to represent the whole profile, so the
multivariate analysis becomes more informative as was shown. The virtues of multivariate
analysis compared to univariate analysis in our study were clear: by retaining the
information between variables we increased statistical power. Such a strategy of
combining phenotypes in different ways should be encouraged when new research
questions are considered by a geneticist.
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Next generation sequencing

Despite the extensive discovery of common (epi)genetic variants (SNPs and CpGs), rare
variants and copy number variants are other main components to explain additional
disease risk or trait variability. Rare variants, which often are defined as MAF < 0.01, are
known to play an important role in human complex traits [341]. For example, highly
penetrance rare variants have been found to contribute to many Mendelian disorders and
rare forms of common traits (including red hair color [342]) [343]. In addition, low-
frequency and rare variants are found to be associated with complex diseases [344-345].
Copy number variation (CNV) is a type of structural variation with short nucleotide repeats
varying in copy number between individuals and studies have shown that CNVs influence
human complex traits including susceptibility to diseases [346], for example CNVs effects
for cancer [347] and immune disorders [348-349]. Sequencing enables the detection of
low-frequency, rare genetic variants and copy number variants. With newer advanced
next-generation sequencing (NGS) technologies this detection will become more efficient
and may lead to the sequencing of the methylome.

In conclusion

It is obvious that a single approach will not elucidate human complex trait etiology.
However, the combination of genetic approaches | have used in my thesis and which |
discussed above, and other methods such as computational biology, which provide multi-
faceted findings in different angles, will lead to a better understanding of the processes
and genetic architecture of human complex traits.
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