LONG-RANGE PLAN

Intermediate Division: Grades 7-8, Mathematics
Organized by Topics

What is a long-range plan and why is it important?

A long-range plan outlines a year-long plan for learning mathematics. It is a living document that is revised as educators become increasingly aware of the abilities, strengths, needs and interests of their students. A thoughtfully developed long-range plan:

- ensures that instruction is sequenced in a manner that aligns with research about learning mathematics;
- allocates the appropriate time for concepts and skills so that students have multiple opportunities to focus on the overall expectations within the grade;
- ensures that all specific expectations are addressed at least once within the school year; and
- recognizes that some expectations need to be revisited several times throughout the year.

Note: These sample long-range plans outline possible sequences of instruction for the school year. There are many ways to structure an effective plan for learning.

How are these long-range plans structured?

Deep learning occurs when specific expectations are connected, are continuously expanded upon, and are revisited in a variety of contexts throughout the year.

This long-range plan is structured into learning clusters or topics to support students in making connections within a cluster of specific expectations. Topics are carefully ordered to create a flow of learning to strengthen student understanding. In turn, learning can be expanded and applied in subsequent topics.

Suggested timing for each topic is specified, but there should be room for flexibility. Educators should make adjustments to timing if additional days are required to address student learning needs that emerge as the plan is implemented.

Considerations

- Sample long-range plans for each grade level include all overall and specific expectations from strands B through F.
- The overall expectation from Strand A (Social-Emotional Learning Skills and the Mathematical Processes) is integrated and taught in connection with the other strands throughout the school year.
- In developing long-range and daily plans, consider opportunities to teach and reinforce social-emotional learning skills and mathematical processes, as well as transferable skills, in order to help students develop confidence, cope with challenges, think critically and creatively, and develop a positive identity as a math learner.
- Mathematical modelling (Algebra, C4) provides opportunities for students to authentically engage in learning with everyday situations that involve mathematics. Tasks that require the process of mathematical modelling can be strategically situated throughout the year to support students in making connections among mathematical concepts, strands, and disciplines, and to provide opportunities for assessing the integration and application of learning.
- Coding (Algebra, C3) can be used to solve problems and help deepen students' understanding of mathematical concepts; it is strategically addressed and assessed throughout the year, as appropriate.
- Some concepts and skills require ongoing attention so that students can develop proficiency and deep, lasting learning. Number Talks, Number Strings, and other math talk prompts can be used at the beginning of math classes to reinforce and strengthen number relationships, spatial relationships, math facts, mental math strategies, and problem-solving skills.

Reflective questions when planning

- What key concepts, models, and strategies do students need more time to develop?
- Does the long-range plan revisit expectations later? If not, how might । adjust the plan so it does? What prior learning is assumed in order for other expectations to be addressed?
- How can I create opportunities for students to continue to practise and consolidate learning when they are engaged in new learning?

Long-Range Plan: Intermediate Division (Grades 7-8)

The Social-Emotional Learning (SEL) Skills and the Mathematical Processes are to be integrated throughout each of the topics below as appropriate.

Grade 7	Grade 8
Numbers, Patterns, \& Shapes in Everyday Life (10 days) Number, Algebra, Spatial Sense	Numbers, Patterns, \& Measurements in Everyday Life (10 days) Number, Algebra, Spatial Sense
Facts, Expressions, Equations \& Inequalities (20 days) Number, Algebra	Facts, Expressions, Equations \& Inequalities (20 days) Number, Algebra
Transformations and Coding (10 days) Algebra, Spatial Sense	Transformations and Coding (10 days) Algebra, Spatial Sense
Data \& Introduction to Mathematical Modelling (30 days) Algebra. Data, Spatial Sense	Data \& Introduction to Mathematical Modelling (30 days) Algebra Data
Proportionality (25 days) Number, Algebra, Spatial Sense, Financial Literacy	Proportionality (25 days) Number, Algebra, Spatial Sense
Patterns \& Probability (20 days) Algebra, Data	Patterns \& Probability (20 days) Algebra, Data
Circles, Patterning, \& Algebraic Expressions (10 days) Number, Algebra, Spatial Sense	Pythagorean Theorem, Proportionality, \& Algebraic Equations (10 days) Number, Algebra, Spatial Sense
Operations \& Measurements (20 days) Number, Algebra, Spatial Sense	Operations \& Measurements (20 days) Number, Algebra, Spatial Sense
Financial Literacy \& Operations involving Money (15 days) Number, Financial Literacy	Financial Literacy, Patterns, \& Operations involving Money (15 days) Number, Algebra
Integrated Mathematical Modelling Task (10 days) Algebra	Integrated Mathematical Modelling Task (10 days) Algebra

Grade 7 Long-Range Plan

170 days $\mathbf{+} \mathbf{2 0}$ days discretionary

NOTE: The Social-Emotional Learning Skills and the Mathematical Processes are introduced, applied, and integrated throughout the year as appropriate.

Time	Topics and Expectations
10 days	Numbers, Patterns and Shapes in Everyday Life Extending the range of numbers B1.1 represent and compare whole numbers up to and including one billion, including in expanded form using powers of ten, and describe various ways they are used in everyday life B1.3 read, represent, compare, and order rational numbers, including positive and negative fractions and decimal numbers to thousandths, in various contexts B2.7 evaluate and express repeated multiplication of whole numbers using exponential notation, in various contexts Using characteristics to classify C1.1 identify and compare a variety of repeating, growing, and shrinking patterns, including patterns found in real-life contexts, and compare linear growing patterns on the basis of their constant rates and initial values E1.1 describe and classify cylinders, pyramids, and prisms according to their geometric properties, including plane and rotational symmetry
20 days	Facts, Expressions, Equations, \& Inequalities Working with square numbers B1.2 identify and represent perfect squares, and determine their square roots, in various contexts Use patterning and the application of addition and subtraction facts of whole numbers to integers C1.4 create and describe patterns to illustrate relationships among integers B2.4 use objects, diagrams, and equations to represent, describe, and solve situations involving addition and subtraction of integers C2.4 solve inequalities that involve multiple terms and whole numbers, and verify and graph the solutions Checking solutions is an application of evaluating algebraic expressions C2.1 add and subtract monomials with a degree of 1 that involve whole numbers, using tools C2.2 evaluate algebraic expressions that involve whole numbers and decimal numbers C2.3 solve equations that involve multiple terms, whole numbers, and decimal numbers in various contexts, and verify solutions

10 days	Transformations \& Coding Creating, describing, and performing transformations C3.1 solve problems and create computational representations of mathematical situations by writing and executing efficient code, including code that involves events influenced by a defined count and/or sub-program and other control structures C3.2 read and alter existing code, including code that involves events influenced by a defined count and/or sub-program and other control structures, and describe how changes to the code affect the outcomes and the efficiency of the code E1.3 perform dilations and describe the similarity between the image and the original shape E1.4 describe and perform translations, reflections, and rotations on a Cartesian plane, and predict the results of these transformations
30 days	Collection, Organization, Representation, and Analysis of Data, and Introduction to Mathematical Modelling Collecting, organizing, and representing data D1.1 explain why percentages are used to represent the distribution of a variable for a population or sample in large sets of data, and provide examples D1.2 collect qualitative data and discrete and continuous quantitative data to answer questions of interest, and organize the sets of data as appropriate, including using percentages D1.3 select from among a variety of graphs, including circle graphs, the type of graph best suited to represent various sets of data; display the data in the graphs with proper sources, titles, and labels, and appropriate scales; and justify their choice of graphs E2.4 construct circles when given the radius, diameter, or circumference D1.4 create an infographic about a data set, representing the data in appropriate ways, including in tables and circle graphs, and incorporating any other relevant information that helps to tell a story about the data Analysing data using measures of central tendency, and shape and distribution D1.5 determine the impact of adding or removing data from a data set on a measure of central tendency, and describe how these changes alter the shape and distribution of the data D1.6 analyse different sets of data presented in various ways, including in circle graphs and in misleading graphs, by asking and answering questions about the data, challenging preconceived notions, and drawing conclusions, then make convincing arguments and informed decisions Posing a real-life situation that requires the process of mathematical modelling and involves the collection, organization, representation and analysis of data.* C4 apply the process of mathematical modelling to represent, analyse, make predictions, and provide insight into real-life situations** * Depending on the situation it may be appropriate to complete the mathematical modelling task now or continue as new learning is acquired ** One aspect of the mathematical modelling process is to identify things that change (variable) and things that remain the same

25 days	Proportionality Using proportional reasoning B2.2 understand and recall commonly used percents, fractions, and decimal equivalents B2.3 use mental math strategies to increase and decrease a whole number by $1 \%, 5 \%, 10 \%$, $25 \%, 50 \%$, and 100%, and explain the strategies used B2.10 identify proportional and non-proportional situations and apply proportional reasoning to solve problems Use factors and multiples to create equivalent fractions B2.6 determine the greatest common factor for a variety of whole numbers up to 144 and the lowest common multiple for two and three whole numbers B1.5 generate fractions and decimal numbers between any two quantities B2.5 add and subtract fractions, including by creating equivalent fractions, in various contexts B1.4 use equivalent fractions to simplify fractions, when appropriate, in various contexts Developing fluency with operations B2.8 multiply and divide fractions by fractions, using tools in various contexts B1.7 convert between fractions, decimal numbers, and percents, in various contexts B2.9 multiply and divide decimal numbers by decimal numbers, in various contexts F1.1 identify and compare exchange rates, and convert foreign currencies to Canadian dollars and vice versa
20 days	Patterns \& Probability Comparing measures spatially C1.1 identify and compare a variety of repeating, growing, and shrinking patterns, including patterns found in real-life contexts, and compare linear growing patterns on the basis of their constant rates and initial values C1.2 create and translate repeating, growing, and shrinking patterns involving whole numbers and decimal numbers using various representations, including algebraic expressions and equations for linear growing patterns C1.3 determine pattern rules and use them to extend patterns, make and justify predictions, and identify missing elements in repeating, growing, and shrinking patterns involving whole numbers and decimal numbers, and use algebraic representations of the pattern rules to solve for unknown values in linear growing patterns E1.2 draw top, front, and side views, as well as perspective views, of objects and physical spaces, using appropriate scales C2.3 solve equations that involve multiple terms, whole numbers, and decimal numbers in various contexts, and verify solutions Note: solving for an unknown value in an algebraic representation of a pattern rule is an application of solving equations Identifying patterns in real-life can include noticing patterns involving probability D2.1 describe the difference between independent and dependent events, and explain how their probabilities differ, providing examples D2.2 determine and compare the theoretical and experimental probabilities of two independent events happening and of two dependent events happening Using coding to create patterns, check predictions and simulate probability experiments C3.1 solve problems and create computational representations of mathematical situations by writing and executing efficient code, including code that involves events influenced by a defined count and/or sub-program and other control structures C3.2 read and alter existing code, including code that involves events influenced by a defined count and/or sub-program and other control structures, and describe how changes to the code affect the outcomes and the efficiency of the code

15 days	Financial Literacy \& Operations involving Money Developing financial concepts F1.2 identify and describe various reliable sources of information that can help with planning for and reaching a financial goal F1.3 create, track, and adjust sample budgets designed to meet longer-term financial goals for various scenarios F1.4 identify various societal and personal factors that may influence financial decision making, and describe the effects that each might have F1.5 explain how interest rates can impact savings, investments, and the cost of borrowing to pay for goods and services over time F1.6 compare interest rates and fees for different accounts and loans offered by various financial institutions, and determine the best option for different scenarios Using operations and mental math to solve problems involving purchases B2.1 use the properties and order of operations, and the relationships between operations, to solve problems involving whole numbers, decimal numbers, fractions, ratios, rates, and percents, including those requiring multiple steps or multiple operations
10 days	Integrated Mathematical Modelling Task Depending on the real-life situation, coding may be a tool in mathematical modelling* C3.1 solve problems and create computational representations of mathematical situations by writing and executing efficient code, including code that involves events influenced by a defined count and/or sub-program and other control structures C3.2 read and alter existing code, including code that involves events influenced by a defined count and/or sub-program and other control structures, and describe how changes to the code affect the outcomes and the efficiency of the code One aspect of the mathematical modelling process is to identify things that change (variable) and things that remain the same. Variables may be used to represent quantities that will change.

Grade 8 Long-Range Plan

170 days $\mathbf{+} 20$ days discretionary

NOTE: The Social-Emotional Learning Skills and the Mathematical Processes are introduced, applied, and integrated throughout the year as appropriate.

Time	Topics and Expectations
10 days	Numbers, Patterns \& Measurements in Everyday Life Extending the range of numbers B1.1 represent and compare very large and very small numbers, including through the use of scientific notation, and describe various ways they are used in everyday life B1.2 describe, compare, and order numbers in the real number system (rational and irrational numbers), separately and in combination, in various contexts E2.1 represent very large (mega, giga, tera) and very small (micro, nano, pico) metric units using models, base ten relationships, and exponential notation Using characteristics to classify C1.1 identify and compare a variety of repeating, growing, and shrinking patterns, including patterns found in real-life contexts, and compare linear growing and shrinking patterns on the basis of their constant rates and initial values
20 days	Facts, Expressions, Equations, \& Inequalities Working with square numbers B2.2 understand and recall commonly used square numbers and their square roots Using patterning and the application of addition, subtraction, multiplication, and division facts of whole numbers to integers C1.4 create and describe patterns to illustrate relationships among lintegers a subset off rational numbers B2.4 add and subtract integers, using appropriate strategies, in various contexts B2. 7 multiply and divide integers, using appropriate strategies, in various contexts Understanding and working with equations C2.1 add and subtract monomials with a degree of 1 , and add binomials with a degree of 1 that involve integers, using tools C2.2 evaluate algebraic expressions that involve rational numbers C2.3 solve equations that involve multiple terms, integers, and decimal numbers in various contexts, and verify solutions C2.4 solve inequalities that involve integers, and verify and graph the solutions
10 days	Transformations \& Coding Using code to create and verify predicted transformations C3.1 solve problems and create computational representations of mathematical situations by writing and executing code, including code that involves the analysis of data in order to inform and communicate decisions C3.2 read and alter existing code involving the analysis of data in order to inform and communicate decisions, and describe how changes to the code affect the outcomes and the efficiency of the code E1.4 describe and perform translations, reflections, rotations, and dilations on a Cartesian plane, and predict the results of these transformations E1.1 identify geometric properties of tessellating shapes and identify the transformations that occur in the tessellations

Collection, Organization, Representation, and Analysis of Data, and Introduction to Mathematical Modelling

Collecting, organizing, and representing data

D1.1 identify situations involving one-variable data and situations involving two-variable data, and explain when each type of data is needed
D1.2 collect continuous data to answer questions of interest involving two variables, and organize the data sets as appropriate in a table of values
D1.3 select from among a variety of graphs, including scatter plots, the type of graph best suited to represent various sets of data; display the data in the graphs with proper sources, titles, and labels, and appropriate scales; and justify their choice of graphs
D1.4 create an infographic about a data set, representing the data in appropriate ways, including in tables and scatter plots, and incorporating any other relevant information that helps to tell a story about the data

Analysing data using measures of central tendency, and shape and distribution

D1.5 use mathematical language, including the terms "strong", "weak", "none", "positive", and "negative", to describe the relationship between two variables for various data sets with and without outliers

D1.6 analyse different sets of data presented in various ways, including in scatter plots and in misleading graphs, by asking and answering questions about the data, challenging preconceived notions, and drawing conclusions, then make convincing arguments and informed decisions
C3.1 solve problems and create computational representations of mathematical situations by writing and executing code, including code that involves the analysis of data in order to inform and communicate decisions

C3.2 read and alter existing code involving the analysis of data in order to inform and communicate decisions, and describe how changes to the code affect the outcomes and the efficiency of the code

Posing a real-life situation that requires the process of mathematical modelling and involves the collection, organization, representation and analysis of data.*
C4 apply the process of mathematical modelling to represent, analyse, make predictions, and provide insight into real-life situations**

[^0]| 25
 days | Proportionality
 Using proportional reasoning
 B2.3 use mental math strategies to multiply and divide whole numbers and decimal numbers up to thousandths by powers of ten, and explain the strategies used
 B2.8 compare proportional situations and determine unknown values in proportional situations, and apply proportional reasoning to solve problems in various contexts
 B1.4 use fractions, decimal numbers, and percents, including percents of more than 100% or less than 1%, interchangeably and flexibly to solve a variety of problems
 C1.1 identify and compare a variety of repeating, growing, and shrinking patterns, including patterns found in real-life contexts, and compare linear growing and shrinking patterns on the basis of their constant rates and initial values
 B2.5 add and subtract fractions, using appropriate strategies, in various contexts
 B2.6 multiply and divide fractions by fractions, as well as by whole numbers and mixed numbers, in various contexts
 Using scaling to develop understanding of the multiplication and division of fractions.
 E1.3 use scale drawings to calculate actual lengths and areas, and reproduce scale drawings at different ratios
 E1.2 make objects and models using appropriate scales, given their top, front, and side views or their perspective views |
| :---: | :---: |
| 20 days | Patterns \& Probability
 Creating patterns and code, and making predictions about them
 C1.1 identify and compare a variety of repeating, growing, and shrinking patterns, including patterns found in real-life contexts, and compare linear growing and shrinking patterns on the basis of their constant rates and initial values
 C1.2 create and translate repeating, growing, and shrinking patterns involving rational numbers using various representations, including algebraic expressions and equations for linear growing and shrinking patterns
 C1.3 determine pattern rules and use them to extend patterns, make and justify predictions, and identify missing elements in growing and shrinking patterns involving rational numbers, and use algebraic representations of the pattern rules to solve for unknown values in linear growing and shrinking patterns
 C2.3 solve equations that involve multiple terms, integers, and decimal numbers in various contexts, and verify solutions
 Note: solving for an unknown value in an algebraic representation of a pattern rule is an application of solving equations
 Expressing and predicting probability
 D2.1 solve various problems that involve probability, using appropriate tools and strategies, including Venn and tree diagrams
 D2.2 determine and compare the theoretical and experimental probabilities of multiple independent events happening and of multiple dependent events happening
 C3.1 solve problems and create computational representations of mathematical situations by writing and executing code, including code that involves the analysis of data in order to inform and communicate decisions
 C3.2 read and alter existing code involving the analysis of data in order to inform and communicate decisions, and describe how changes to the code affect the outcomes and the efficiency of the code |

10 days	Pythagorean Theorem, Proportionality, \& Algebraic Equations Working with the Pythagorean theorem E2.4 describe the Pythagorean relationship using various geometric models, and apply the theorem to solve problems involving an unknown side length for a given right triangle B1.3 estimate and calculate square roots, in various contexts Understanding and working with equations and proportionality C2.3 solve equations that involve multiple terms, integers, and decimal numbers in various contexts, and verify solutions B2.8 compare proportional situations and determine unknown values in proportional situations, and apply proportional reasoning to solve problems in various contexts
20 days	Operations \& Measurements Developing fluency with operations B2.1 use the properties and order of operations, and the relationships between operations, to solve problems involving rational numbers, ratios, rates, and percents, including those requiring multiple steps or multiple operations C2.2 evaluate algebraic expressions that involve rational numbers Solving measurement problems C2.3 solve equations that involve multiple terms, integers, and decimal numbers in various contexts, and verify solutions C3.1 solve problems and create computational representations of mathematical situations by writing and executing code, including code that involves the analysis of data in order to inform and communicate decisions C3.2 read and alter existing code involving the analysis of data in order to inform and communicate decisions, and describe how changes to the code affect the outcomes and the efficiency of the code E2.2 solve problems involving angle properties, including the properties of intersecting and parallel lines and of polygons E2.3 solve problems involving the perimeter, circumference, area, volume, and surface area of composite two-dimensional shapes and three-dimensional objects, using appropriate formulas

[^0]: Depending on the situation it may be appropriate to complete the mathematical modelling task now or continue as new learning is acquired
 ** One aspect of the mathematical modelling process is to identify things that change (variable) and things that remain the same

