

Why support Project Euclid?

Essential scholarship

Project Euclid hosts some of the finest journals in their fields, including *Acta Mathematica*, *Annals of Mathematics*, *Annals of Statistics*, *Duke Mathematical Journal*, and *Journal of Differential Geometry*.

Sustainable publishing practices

Founded in resistance to commercial publishing, Project Euclid helps small publishers remain independent, competitive, and affordable.

Open access

All Euclid Prime journal content older than five years is made freely available. Thanks to subscribers, Project Euclid provides low-cost services to other fully open-access titles.

Sensible collaboration between libraries and publishers

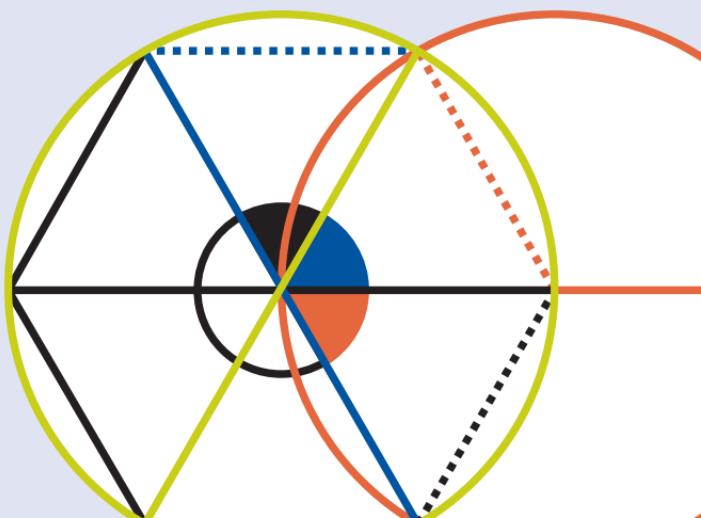
Project Euclid is a partnership between Cornell University Library and Duke University Press. Each partner provides expertise in how to balance the needs of libraries and nonprofit publishers.

Diverse communities of researchers around the world

Project Euclid increases the visibility of journals based in global regions where the mathematics community is still developing, building a stronger, more diverse field of scholars.

projecteuclid.org/librarians

libraryrelations@dukeupress.edu



Project Euclid

for librarians

Project Euclid is a nonprofit, university-based online hosting platform for mathematics and statistics literature.

September 2020
Rigid connections and F -isocrystals
Hélène Esnault, Michael Groechenig
Author Affiliations +
Acta Math. 2020: 195–198 (September 2020) DOI: 10.4310/ACTA.2020.v221.n1
Full Text PDF | Cite this Article
Abstract
An irreducible integrable connection (E, ∇) on a smooth projective complex variety X is called rigid if it gives rise to a W -isocrystal, where W is the ring of integers in a finite extension of \mathbb{Q}_p . According to Beilinson's conjecture, irreducible rigid connections are of generic singularities, that is, lie in an open submanifold of a Grothendieck connectedness of a family of smooth projective varieties defined on an open dense subvariety of X . In this article we study mod- p -reductions of irreducible rigid connections and their mod- p -reductions for p a prime number. We prove that the mod- p -reductions of irreducible rigid connections are of generic singularities. As an application, we prove that mod- p -reductions of irreducible rigid connections are complete. Building on this result, we construct an F -isocrystal equivalence between irreducible rigid connections. More precisely, we prove that for every finite extension K/\mathbb{Q}_p , there is a natural isomorphism $\mathcal{F}_{K/p} : \mathcal{C}^{\text{rigid}}(X, \nabla) \rightarrow \mathcal{C}^{\text{rigid}}(X, \nabla)$ for every finite extension K/\mathbb{Q}_p of a finite field and any very flat morphism $\mathbb{P}^1 \rightarrow W(K)$, where the preimage of the base change $(E_{K/p}, \nabla_{K/p})$ in X represents an F -isocrystal. Subsequently, we prove that irreducible rigid flat connections with semisimple automorphisms are unitary. This allows us to prove new results on mod- p -reductions of irreducible rigid connections. We also prove the existence of a complete compatibility correspondence for F -isocrystals, showing that mod- p reductions are unitarily rigid connections.

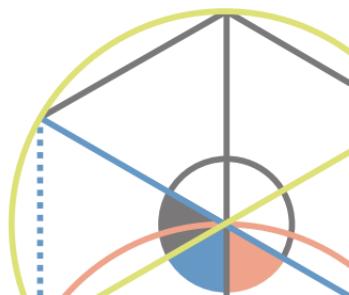
Funding Statement
The first author was supported by the DFG grant and the ERC Advanced Grant 230521. The second author was supported by a Marie Skłodowska-Curie fellowship. This project was funded by funding from

Rocky Mountain Journal of Mathematics
Rocky Mountain Journal of Mathematics Consortium
The Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles.
Search | Advanced Search
Journal Home | Articles | Accepted Papers
FEATURED CONTENT | SCOPE & DETAILS | EDITORIAL OFFICE | AUTHOR GUIDELINES
Most Read Articles
The topological classification of cubic curves
S.A. Hartman (1993) [View Article] [View PDF]
Convolution Sums of Some Functions on Divisors
M. C. Mertin (2019) [View Article] [View PDF]
Quantum mechanical scattering theory for short-rings and Coulomb interactions
John B. Ondrejka (1977) [View Article] [View PDF]
 Subscribe to Project Euclid
 Receive Email Alerts

Access Options

The journals, books, and conference proceedings hosted on Project Euclid can be accessed through one or more of the following models.

◆ Single-title subscriptions


Some titles hosted on Project Euclid are available to libraries as single subscriptions, ordered directly from their publishers.

◆ Open access

About 80% of the content on projecteuclid.org is freely available to all.

◆ Euclid Prime Collection

A collection of current content from 29 high-end titles.

Euclid Prime collection

Libraries can subscribe to [Euclid Prime](#), a collection of 29 titles in mathematics and statistics. Euclid Prime includes high-quality scholarship from independent publishers located around the world. Subscribing to Euclid Prime is an excellent way for libraries to support free and low-cost academic publishing in these fields.

The value of Prime

- Euclid Prime includes titles in applied mathematics, computer science, logic, mathematical physics, probability, and statistics.
- Key titles include *Illinois Journal of Mathematics*, *Publicacions Matemàtiques*, *Rocky Mountain Journal of Mathematics*, and *Tohoku Mathematical Journal*.
- Researchers can access scholarship from multiple international publishers on one site with fully integrated search, discovery, and research tools.

At this time, there is no way to acquire all publications on Project Euclid through a single purchase.