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Introduction:  
Deep Machines and Surfaces of Experience

An Experience of Computation

Cryptozoology may seem as far-flung from data science as paleon-
tology or alchemy. But in April 2022, a Swedish musician and artist 
working on a then obscure generative art strategy burst an artifi-
cially intelligent “cryptid,” or mythically existent creature, onto the 
text-to-image artificial intelligence (ai) creative scene. Cryptids are 
animals that populate folklore, subcultures, parapsychology, and, in-
creasingly, the internet. They exist in the wild, in wild places; they are 
creatures mainstream science refuses to verify. After several months 
of experimenting, Steph Maj Swanson introduced her proliferating 
images of something she called “an emergent phenomenon that 
arises in certain ai image synthesis models” (Swanson 2022a), via 
her “Supercomposite” Twitter account. She named the woman who 
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regenerated, seeded, and spread across these images “Loab.” Within two 
days, however, Loab was proclaimed the first “ai-cryptid” by eBaum’s World 
(Zachnading 2022), an online meme-gathering and entertainment site; and 
within a week, the powerhouse British fashion and culture magazine Dazed 
had likewise confirmed her cryptid arrival (Waite 2022).
Not only had Loab become an emergent ai phenomenon; she had also em-
phatically implicated the unverifiable creatures of cryptozoology in (data) 
science’s latest shiny enterprise of large-scale language models with gener-
ative capabilities.

Driven by the machine learning (ml) capacities and infrastructure of 
such models, ai had already been heading in one or several of such trajec-
tories for some time: deepfakes standing in for the media presence of ac-

I.1  untitled progenitor Loab 2, one of the first two images of Loab posted by Steph 
Maj Swanson, using the artist name Supercomposite, on her Twitter account, 
September 7, 2022. Image courtesy of Steph Maj Swanson.
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tors and presidents; ai influencers on Instagram and TikTok with millions 
of followers; lifelike computationally synthesized portraits of nonexistent 
human faces. But the efforts of artists, developers, and data researchers in 
crafting text “prompts” and finding new ways to conjure and intervene in 
the ubiquitous culture of statistical computation garner less notoriety and 
commentary. Loab was not hiding in the “black box,” however, waiting to 
crawl out from under a wild ai place; she was prompted. While Swanson 
notes the emergent properties of ai, she nonetheless introduced the Loab 
image series and genealogy via a lengthy Twitter thread on process and 
ai text-to-image generation.1 Swanson had begun with an experiment in 
scripting an image prompt — the action of entering text into a field in an 
interface to generate an image by an ai/model. Models offering these in-
terfaces, such as Stable Diffusion, Midjourney, and dall-e, became hugely 
popular throughout 2022 and were accessed via web browser and dedicated 
apps or run as stand-alone models on desktop computers. They are part of 
a suite of deep learning models that engage, augment, and extend the com-
putational architecture of large language models (llms), which I begin to 
unpack in chapter 1 and take up in more detail in chapter 3. As with much 
ai, technical developments in model architecture, training, and operativ-
ity are both incremental and swift. Throughout this book, I offer examples 
of algorithms, models, and practices that may seem specific to a particular 
historical and technical development or may appear no longer to be widely 
in use. Yet my selection of such examples often rests on their ongoing if un-
remarked deployment by machine learning or, in the case of Loab, because 
the operation performed on or with them becomes a way of probing the 
specificity of machine learning computational experience.

Swanson’s experiment involved doing something slightly different with 
text-to-image models: “negative prompting,” or writing a script for the op-
posite of what the prompt will sample from the image space. In negative 
prompting, the model samples images the furthest statistical distance away 
from their match to the text written in the prompt itself, that is, furthest 
along a distribution of text and image-matched data on which the model has 
been trained. In the case of the prompt that began the generation of Loab, 
Swanson tried for a statistical negative of the text “Marlon Brando,” entering 
the script “Brando: – 1.” This returned an oddly banal imagemash of a nonex-
istent company logo, “digita pntics,” set against a seemingly hand-drawn 
schematic of a skyline, with text deformations typical of the model’s inability 
to graphically render text. Swanson became curious about a double negative 
prompt that might then send the model into re-generating Marlon Brando’s 
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image when prompted by the negative of its negative (prompt): “digita 
pntics skyline logo::  – 1.” Instead Loab appeared, affirming her imagistic 
rise as the model’s response to the negative of Marlon Brando–esqueness.

Although Loab, the ai-generated woman, has been called a cryptid, a 
“demon” (Ryan 2022), and a queer icon (Levanier 2022), Loab, the ai im-
ages generated by text-to-image ml, can be understood a little differently as 
what I will call “process probes.” These are techniques that Swanson devel-
oped to sift and drift through the latent spaces of ai’s generative imaging. 
As I explain in chapter 1, latent space is always specific to an ai’s or model’s 
distribution of the data points it reorganizes when training on an original 
dataset. As a model trains, it organizes and distributes its input data or, in 
some generative image models, the randomized noise data it is fed via a 
particular algorithm or function. These input data are clustered into groups 
or features by the model’s operations. As data are reorganized, a distribu-
tion takes shape that becomes part of the learning the model gains about 
the data, a distribution in which the features are contoured by relations of 
close or distant resemblance and proximity. When Swanson artfully scripted 
her prompts — with Marlon Brando–esque, then negative Brando-esque, 
then the negative negative of Brando-esqueness — she prompted the model 
to sample across its trained distribution of data proximities and distances 
(or resemblances and dissimilarities). It is this overall configuration that 
contours text and image-paired data into what is called the latent space of 
a generative text-to-image model. Swanson developed and stumbled on 
Loabness out of Loab’s “latent” potential phenomenality through her artful 
and curious probing of the blind, relational, and potentially wild spaces of 
machine learning-driven ai. Swanson both stumbled across and developed 
a co-loab-oration with the model, finding something odd, lurking, but barely 
there as “an emergent island in the latent space that we don’t know how to 
locate with text queries” (Swanson 2022b). Loab was the output of a process 
that artfully explored the unknown unknowns of what is otherwise touted 
as predictive computational experience.

Experiencing DeepAesthetics

More than an artwork, more than a collaboration between ai and human, 
Loab affords us a particular mode of experiencing computation. If indeed 
she-they/Loab-Swanson probes the processes and relations that make up the 
physically nonexistent yet real statistical terrain of latent space, then she and 
they occupy and help generate a radically different idea of and encounter 
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with computational experience. This has nothing to do with the identity of 
the woman or artist behind the Loab image. This has to do with conceiv-
ing experience differently or rather differentially. I take up William James’s 
philosophy of experience in the context of probing ml and its strange emer-
gent Loab-like phenomena throughout this book because James’s concept of 
experience can address machine learning as processes that change, and as 
processes for experiencing computation changing. For James, and process 
thinking more broadly, change unfolds; it becomes, via processes of conti-
nuity or conjunction, and discontinuity or disjunction. This offers us expe-
rience based not on identities or positions such as the human, computer, or 
ai but rather on undulating fields shot through with continuously changing 
relations. James furnishes a conception of experience philosophically placed 
to one side of the “lived experience” from the phenomenological tradition 
and, different again, from explorations through feminist, race, and queer 
politics and theory, still preoccupied with all too human embodiments and 
trailing under the long tail of identity politics. Rather than experience being 
“purified” and reified to some primary “ground truth,” body, or position, 
James’s “pure experience” welcomes all, any, and every experience. Cru-
cially, pure experience is not made by or filled with things or places such 
as “subject” and “object” but is generated through relations and processes, 
which James terms “co-ordinate phenomena” organizing its space-times 
(1977, 199). So too do relations organize the space-time of computational 
experience and its weird yet powerfully generative topologies. And while 
Loab has been described as a ghostly haunting of ai and a “creepypasta” 
or internet horror figure (Ryan 2022), the Loab imagescape registers some-
thing real: the statistical reconfiguration of experience by ml computing. As 
computation has increasingly been inflected by ml, our cultural, computa-
tional, and medial outputs as online images, generative artworks, and text 
corpuses — indeed, all and any data — have been modeled into maximum 
and minimum clusters of proximities that simultaneously butt up against 
one another as continuous regions or disperse away from one another via 
discontinuous edges and outliers.

Now that ml is so pervasive a form of enacting computational processes, 
contemporary experience has become littered with all manner of imper-
ceptible statistical relations. Many of these take place between humans and 
computers, and many others among computers or computational elements 
alone. Collectively and differentially, these multiply scaled, differentiating 
relations change the stuff of experience, change all those living and technical 
elements experiencing, and generate new relations that unfold into many 
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ways for making futures. As the hegemonic form of computing today, ml 
encompasses a diverse terrain of systems theory, practices, and applica-
tions that build and modulate computational models in relation to inputs 
or data (Alpaydin 2016, 17).2 The capacity of the computational model or 
ai to change in relation to (changing) inputs is what is understood by data 
science as “learning.” These modulatory and adaptive systems underpin 
everyday (human) experiences such as online shopping, streaming music, 
and airport security by using, respectively, recommenders, collaborative 
filtering, and biometric recognition. And they are now organizing and con-
touring swathes of individual and collective engagements and encounters. 
Loab skips across many ordinary and extraordinary aspects of how ml has 
reconfigured computational experience — from the ways in which entering 
a text prompt can now generate slabs of generic text reportage and writing 
being used by students to write essays, to the ways in which text can artfully 
be rescripted to create uncanny imagery. Loab, then, sensibly registers the 
processes that together underpin and generate ml experience.

In a definition of ml often quoted by data scientists, experience is a key 
term in judging whether a computational system qualifies as one that learns: 
“A computer program is said to learn from experience e with respect to some 
class of tasks t and performance measure p, if its performance at tasks in 
t, as measured by p, improves with experience ‘e’ ” (Mitchell 1997, 2). Here 
experience, or e, appears twice in the proposition, but importantly, its re-
currence suggests change. e is first a defined phenomenon — it could be a 
measurable state of a set of inputs, for example — on which a series of algo-
rithms performing tasks (t) have run (p). But it can also become the change 
taking place — the “improving,” for example — from which a measure of the 
tasks’ improved performance is taken. Tellingly, that measure of improve-
ment is ascertained by running an ml program or model many times over 
the data while it is in its primary learning phase or training. Here, e varies 
as the model’s learning attempts to recognize a structure or pattern in the 
data. Experience, then, for ml, is simultaneously quantifiable as a state of 
measurable change and the ongoing process of learning that variably quali-
fies what that change is to be over time. The final improvement, or what 
the model has learned, is therefore really a coalescence of many processes 
of modulation differing from and conjoining with one another. As changes 
or learning occurs, this modulation — which we will come to know as the 
model’s operativity — qualifies the entire ml ensemble of data and functions. 
Machine learning experience is an ellipsis of the two experiences — of what 
has occurred and what is occurrent. However, ml is typically researched, 
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reported on, and implemented as a “learning problem” to be solved (Mitch-
ell 1997, 3). Rather than the dynamic ellipsis of past and present, e is more 
often than not reduced to a quantifiable ratio of improvement measure 
against a set of inputs on which a model trains, such as a database of faces 
for training a facial recognition ai. The ongoing learning then becomes e 
as the “measure of improvement” against the e of the trained model. We 
lose the dynamic set up by the vectors of the two es continually traversing 
the occurred and occurrent, and traversing the temporalities of a backward 
and forward. We also lose what this ellipsis of present and past, past and 
future, suggests about a double process performed by ml. This doubling 
involves both a reaching across and a contraction of quantity with quality. 
Such slippages, extensions, and mergers from quantity to quality and back 
are at the relational heart of the computational experience of ml.

To take up these pulsations rhythmically, I want to propose that deep-
aesthetics, a concept I use to think computational experience in this book, 
is likewise occurring via different rhythms of expansion and contraction. 
Deepaesthetics offers us both conjunction and disjunction, gluing together 
two worlds that do not seem to be of concern to each other: deep learning, 
the subfield of machine learning that uses neural network architectures; 
and a branch of philosophy traditionally concerned with how valuations of 
formal or sensory qualities come to be made. I am interested in how that 
contraction actively sticks together through the operations performed by 
ml computational assemblages, through the creativity attributed to ml-
driven ai, and via actual artworks that stage encounters with ml. I am also 
interested in how it splits apart, rupturing as the forces across computational 
and human experience difference each other.

Aesthetics is, of course, much more than a branch of philosophy; even 
philosophically in the Western canon, its history is complex and ambiguous. 
Since the eighteenth century, philosophical debate has oscillated between 
the different positions taken up by, on the one hand, Immanuel Kant’s cat-
egorization of aesthetic judgment in his 1770 Critique of Judgment, which 
ultimately grounded aesthetic value in a disinterested appraisal of perceived, 
sensory phenomena (1987, 44), and, on the other, Alexander Baumgarten’s 
Aesthetica of 1758, in which he considered all sensory experience to be aes-
thetic. The contemporary fallout of this legacy for an aesthetic consideration 
of computation has been, largely, to fall on either side of a formalist or senso-
rial approach, although in the ensuing aesthetic debates, neither formalism 
nor sensorialism maps back neatly onto Kant and Baumgarten. Aspects of 
formalism characterize the work of Beatrice Fazi’s (2018a) computational 
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aesthetics in her argument that the digital must be taken as a formally au-
tonomous realm, whereas, for example, Mark Hansen’s approach has been 
to continue to understand computation as a “phenomenotechnics,” a kind 
of entanglement of the technical with lived, sensorial experience (2021).

However, computational experience is entangled with modes of sensing 
that are not only beyond human sensing but, as Matthew Fuller and Eyal 
Weizman argue, beyond perception: leaves that become sensitive to her-
bicides and whose sensitivity might be measured via biosensors, sensors 
encoded to detect respiration and moisture rates in greenhouses, sensing un-
dertaken by computer vision models that detect variability in the forest can-
opy (2021, 33 – 50). This makes both a formalist and an embodied sensorialist 
aesthetics tricky. Fuller and Weizman argue that sensing — whether com-
putationally enabled, augmented, or occurring outside of computation — 
 involves events in which all kinds of surfaces register and inscribe their con-
tact with one another, events that can be ordinary and everyday as well as 
technically refined and deliberate. They call this panoply of sensing events 
coursing throughout the world “aesthetic,” which entails the aesthetic as just 
that ubiquitous domain of all sensing relations. Their argument concerning 
aesthetics as the potential for the registration and inscription of sensing on 
any and by every surface whatsoever resonates with my Jamesian approach 
to (computational) experience throughout this book. As I explain a little 
later in this introduction, experience understood via process philosophy 
comprises largely any and every relation in its/their process and quality of 
relating and registering these relations.

But, as Fuller and Weizman explain, registration and inscription events 
make sense in different ways, since even ubiquitous relations do not regis-
ter evenly or with the same qualities for all entities or surfaces in relation. 
There is always a making sense accompanying sensing — what they refer to 
as “sense-making” — that involves varying “cultures of sensing” (52). Cul-
tures should not be understood as only comprising human subjects who 
make sense of objects. Rather, cultures of sensing work via layers and accu-
mulations of sensing that accrete materially, institutionally, and perspecti-
vally under situated and differing histories and assemblages. And these are 
invoked to make sense of sensing.3 The strata of such formations are never 
frictionless but involve tensions of scale, perspective, materiality, and power. 
Aesthetics, for Fuller and Weizman, is this bringing into relation of sensing 
events with cultures or formations of making sense and can itself involve  
tensions.
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In this book, I take Jamesian “experience” as the broader term with 
which to begin, since it is always already about the reality of relations in 
which surfaces and strata of computational, sentient, or any matter are 
eventfully in contact, registering and prehending each other. But, like Fuller 
and Weizman’s notion of aesthetics, this does not mean that experience is 
self-similar in its relationality or registration. In this book, I understand 
aesthetics as modes of individuating this broader field(s) of experience, so 
that experience comes to make sense via singular sensibilities, whose ac-
cretions and formations may well be riven with tensions. Machine learning 
engenders a specific individuation of computational experience in which we 
are both asked to encounter and bound to insensible and microperceptible 
forms of nonlinear and continuously modulating statistical function and 
calculation; this is its aesthetic condition. This poses a problem for sens-
ing and sensibility: How can we perceptually register and even account for 
what occurs computationally at scales, durations, and dimensions that are 
nonhuman and, frequently, imperceptible?

In the now famous deep learning research that accompanied Google’s 
Inception model (see Szegedy et al. 2015), hallucinatory synthetic images 
of dogs, birds, bananas, and more seemed to have emerged via an imper-
ceptible process from a starting point of visual noise. To make this process 
explainable, Google’s researchers developed an entire visual online site step-
ping through the movements from noise to recognizable animal/object in 
an image.4 However, an entire aesthetic individuation is mobilized around 
this explanation of the functioning of Inception. This individuation relies 
on a representationalist paradigm of (visual) perception widely deployed 
throughout deep learning models, which I draw attention to in chapter 1. 
Here the desired representation of an object seems to emerge via continuous 
steps out of an initial flux: “Start with an image full of random noise, then 
gradually tweak the image towards what the neural net considers a banana” 
(Mordvintsev, Olah, and Tyka 2015). Indeed, the visual layout accompanying 
explanations of how features work in neural networks often reinforces this 
steady building up of a representation. However, imperceptible ml processes 
are operating and registering at the same time, cutting into the continuity 
of this aesthetic of representationalism; as the Google researchers admit, 
“By itself, that doesn’t work very well, but it does if we impose a prior con-
straint that the image should have similar statistics to natural images.” What 
cannot be visually represented in the stepping through of features, then, is 
just that statistical “prior constraint” learned and transduced into a statisti-
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cal weighting from a different distribution and dataset of “natural images.” 
Yet both constraints and distributions are key operations of deep learning 
models and are crucial to how their sensibility registers.

My use of a term such as deepaesthetics aims to work productively with 
this problem of how to sense or register what is occurring imperceptibly, 
whether that involves operations, statistical techniques, or the qualities of 
relations in ml’s computational experience. Across the many sites of ml 
practices, techniques, and operations in this book, I focus on just those 
continuities and discontinuities that characterize the registration of ml 
and its processes, both by its own surfaces and by surfaces of human sens-
ing. My wager will be that by bringing careful, granular attention to ml’s  
processuality — that domain of computational experience registering yet 
often beyond perception — we can scope out what is singular about the sen-
sibility engendered by its aesthetic individuation(s).

The Depth of Deep Learning

Machine learning architectures come in many forms, but a frequently used 
one is the deep learning neural network, in which complex computational 
representations of empirical phenomena are developed through “layers” of 
numerical values that then represent low-level up to higher-level features 
capable of synthesizing new data representations. In what has become a stan-
dard text on deep learning for ml research, Ian Goodfellow, Yoshua Bengio, 
and Aaron Courville define the “deep” of deep learning as the method and 
architecture for computationally resolving the problem of representation: 
“Deep learning enables the computer to build complex concepts out of 
simpler concepts” (2016, 5). From low-level features, increasing functions 
and processes add, subtract, and multiply in linear and nonlinear ways to 
increase the complexity of the representations or syntheses. Eventually, after 
x epochs of training, or synthesis, this results in new data representations/
outputs that correlate with the inputs or are sufficiently synthesized to effi-
ciently accomplish a given task. Examples might include a neural network 
learning the representation of any handwritten letters in an alphabet it ob-
serves after training on a database of diverse-enough alphabetic letters, or 
a network being capable of synthesizing realistic-looking photographs of 
cats in a range of positions after training on many still video frames of cats 
in indoor and outdoor settings. Here the deep aspect of the neural network 
is measured by the number of layers of parameters (constrained sets of nu-
merical relations) through which data inputs — handwritten letters, images, 
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text, music, and so on, transduced into numerical values — pass. To com-
plex representations that are perceived by human sensing, “a deep learning 
system can represent the concept of an image of a person by combining 
simpler concepts, such as corners and contours, which are in turn defined 
in terms of edges” (Goodfellow, Bengio, and Courville 2016, 5). Part of this 
project for probing and registering a deepaesthetics involves finding these 
kinds of discontinuities that are lodged in the operativity and rhetoric of 
deep learning and pose as smooth continuities across computational and 
human logics and modes of perception.

Layers also mark a kind of gateway or threshold for these sets of values 
to pass to or from the next layer/set and then across the neural network. 
Throughout the book, I explore some of the commonly used technical terms 
that interweave ml research and practice via pop-up definitional boxes and 
accompanying images and diagrams. These will facilitate our encounters 
with the technics of ml, giving us provisional means to navigate its tech-
niques and operations. The purpose of these is not to comprehensively de-
fine all technical terms throughout the book. Instead, I touch on technical 
elements that recur and also often work ambiguously or opaquely within 
data science. These pop-ups are, then, terms to watch out for, terms that 
return, and terms that trouble the field.5

Depth in neural network architectures also refers to the multiplication of 
layers, which occurs in larger and more complex models. Learning is then 
understood to occur as the network successively “discovers” across these 
many layers of features and patterns detected in or generated by inputs (Le-
Cun, Bengio, and Hinton 2015, 436). These layers are often referred to as 
“hidden” in the sense that both their location and knowledge of their exact 
functionality in the model may not be precisely discernible. The deeper the 
network or the more layers it has, the better able — the claim is made — it can 
train for fine-grained features. Once trained, the model will have learned 
how to accurately detect and predict the features of unknown data inputs. In 
some generative networks, deep models can create new synthetic instances 
of data; we are familiar with these through deepfakes and with images and 
videos rendered in response to text prompts by post-gpt-3 (Generalized 
Processing Training) large-scale language models.

Deep learning networks can deploy millions of parameters at successive 
layers that adjust during a model’s training. Here I am describing only some 
of the general characteristics of deep neural networks — inputs, layers, pa-
rameters, learning, output, and prediction — to grasp the ways in which data 
science conceives depth as a horizontal stacking of connected layers, which 
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are perceptually inaccessible for human registration. When we look at com-
mon figures that schematize deep neural networks (fig. I.2), we immediately 
see that depth is imaged in avolumetric terms, if we understand volume to 
be a Euclidean geometrical arrangement of measurement between x, y, and 
z axes. Where layers might suggest the potential for depth to accumulate 
via a vertical stacking of each on top of the next, the schematics of deep 
learning’s operations — its processes — perform otherwise via lateral, relay-
ing, and recursive movements. The diagrams that describe deep learning’s 
models must be understood, then, as inhabiting a different kind of space: a 
topological one of relation and process. 

For data science, the “deep” in deep learning is also a quantitative 
problem, which arises out of these more-than-volumetric spaces of data-
operation topologies. Much of the data being crunched through deep mod-
els has high variability; every pixel of an image data input, for example, 

I.2  The three schematics represent the layers of the neural network architec-
ture: first, projected two-dimensional geometric surfaces in a; then as a snapshot 
of dynamic calculative processes producing a network topology across the or-
ange lines in b; and finally named as layers in which groups of values are being 
calculated and passed forward from input to output at c. From “Meta-Neural-
Network for Real-Time and Passive Deep-Learning-Based Object Recognition” 
(Weng et al. 2020). 



	 Introduction	 13

has contrast, hue, luminosity, and saturation features, among many data 
points, and holds these in relation to all other data points within the same 
image. Together this multiplies data’s relationality both intensively and ex-
tensively and is known within data science as “high dimensionality.” The 
relationality encountered here is likewise avolumetric and can only be spa-
tialized n-dimensionally (any number of dimensions), often via what we 
recognize as topological network diagrams (fig. I.3a, fig. I.3b). To discover 
across n-dimensional features of the data only those patterns of relevance 
for a specific task, ml must manage swarms of both irrelevant and less 
relevant features. Its management techniques involve statistical operations 
that compress the volume of the data’s high dimensionality. This suggests 
that a certain qualitative flattening must be implemented for the efficient 
functioning of the model, which, as we will see in chapter 2, may be enacted 
via statistical functions. These functions or algorithms are often performed 
before the operations of the deep learning neural network architecture. Data, 
then, may be subjected to several other ml algorithms and processes before 
becoming the inputs on which an ai deep neural model learns across its 
layers. Such algorithms and processes seem much less spectacular than the 
various deep networks capturing scientific and public attention in the last 
decade, such as DeepMind’s AlphaGo, DeepDream, dall-e, and deepfakes. 

*Pop-Up* Definition: Layers in Neural Networks

Layers are surfaces composed through the topology of a neural network’s 
numerical and functional (algorithmic) relations. They are often repre-
sented in ml diagrams of neural network architectures as geometrically 
projected two-dimensional surfaces. In actuality, they comprise calcu-
lations, extracted sets of values, and vectors produced by functions of a 
particular neural network.

The definition of layers varies in machine learning and often conflates 
concepts such as surface, gateway, feature extraction, and threshold. At its 
most basic, a layer is simply a set of data points either extracted from data 
inputs or computationally synthesized, which have been constrained by 
certain parameters (filters, weights, and so on). These constraints extract 
or configure certain values from the data or perform a synthesis according 
to a set of values, and the result of either operation is known as a “feature.” 
These new sets of features (or new sets of numerical values) are passed on 
to the next layer for further extraction or synthesis.



*Pop-Up* Definition: Dimensionality Reduction

All data have attributes or “dimensions.” These might include age, sex, 
gender, and so on, for demographic data, and pixel color, brightness, 
and saturation, and so on, for digital images. Rich data such as images 
have many attributes for each pixel, and so their data are called “high-
dimensional.” When algorithms and machine learning models attempt to 
locate features in high-dimensional data, they may be slowed down, be-
come inefficient, or “distracted” by unwanted attributes. Data science has 
historically drawn on and remodeled statistical techniques for reducing 
the dimensionality of data.

Dimensionality reduction algorithmically removes attributes or dimen-
sions from a dataset that are not seen to be intrinsic to the patterns, features, 
or tasks being trained for, discovered, or recognized in the data. In data 
science, dimensionality reduction is understood to quantitatively reduce 
data but not to change its overall qualitative characteristics.

I.3  Two different visualizations of high- or n-dimensional space of text data: the 
left panel showing global proximate and distant clustering of data points to repre-
sent similarity and difference via proximity and distance; the right panel showing 
detailed connectivity of words in the text to each other. Note that these visualiza-
tions are manipulable in three-dimensional computer graphic space, which also 
shifts the “view” onto them.
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And yet the stacked horizontality of layers and dimensionality reduction are 
two key aspects of the strange topology of surface-generated depth through 
which machine learning–driven ai works. I will often need to navigate such 
functions and their sociotechnicalities alongside the deep learning models 
that have attracted the most attention. For this reason, I take machine learn-
ing, which encompasses an array of techniques, operations, and processes of 
statistical computation, as the larger domain of computational experience 
in which deep learning and generative ai are embedded.

The routinely performed processes of dimensionality reduction in ml 
are, however, not simply quantitative operations. They simultaneously or-
ganize the relationality of data according to vectors qualified by similarity, 
difference, and their interrelations. Data science attempts to measure or 
quantify such vectorization through functions that calculate maximum and 
minimum distribution of sameness or difference. Nonetheless, these func-
tions qualify the volumes of data by shaping them into differential clusters, 
and this interpolates a more-than-quantitative register in/with the data. At 
the very moment that data come to be quantitively operated on by statistical 
methods such as dimensionality reduction, the data are also being respa-
tialized and reconfigured with hidden potential for machine-discoverable 
pattern, recognition, and classification. Patterns or recurring motifs and 
classification or discrete separation would not be possible without the vec-
torial shaping of data, a shaping that is qualitatively immanent to quantized 
organizations of data. As Adrian Mackenzie puts it, when discussing the 
ways in which the vectorization of prostate tumor data can arrange and 
align features within a dataset: “The question of relation between multiple 
variables and . . . predicted levels . . . suggests the existence of a hidden, oc-
cluded, or internal space that cannot be seen in a data table and cannot be 
brought to light even in the more complex geometry of a plot. This volume 
contains the locus of multiple relations, a locus inhering in a higher dimen-
sional space” (2017, 63). Even while such operations on and with data are 
quantitative, they also change the configuration of the data’s intensive rela-
tions as the model learns: “Deep neural networks operate by transforming 
topology, gradually simplifying topologically entangled data in the input 
space until it becomes linearly separable in the output space” (Naitzat et al. 
2020, 35). Depth, then, reemerges as what resides within both model and 
data yet cannot be seen or calculated exactly. These deep spaces emerge as 
data’s dimensions are reduced, but they also signal a computational register 
that cannot be fully circumscribed by performing quantizing calculations. 
The “deep” in deep learning endures just beyond the measurable. This sug-
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gests a conundrum characterizing ml experience insofar as neither humans 
nor deep learning models seem to possess the capacities to engage those 
very qualities orienting and characterizing ai’s operativity. Rather than 
quantifying, cognizing, or visualizing computational experience in a time 
of ml, I will propose different modes, levels, and registers for experiencing 
(its) experience.

With its myriad operations, novel spaces, and dynamic transductions of 
quantitative phenomena to qualitative events, contemporary computational 
experience lends itself to being thought and felt processually. Through-
out the book, I will have recourse to concepts from process philosophy to 
understand machine-learning-based ai. Rather than focusing on linear 
functions seamlessly chaining inputs to outputs or to nonlinear algorithms 
equally striving for error-free prediction, I will focus on the recursive and 
modulating functioning of ml, whose processes, while calculable, are not in 
themselves necessarily determinable.6 An often-heard proclamation in data 
science is that deep learning, in particular, is a black box: it functions, but 
we don’t know what goes on inside (see, e.g., Castelvecchi 2016). Instead of 
pursuing what is determinable in the black box — which, in deep learning, 
has become a research domain in its own right — I will suggest that more 
might be gained by thinking ml experience as and through processual op-
erations. A significant benefit of doing so is that it allows us to hold together 
the many tensions and knots crossing the quantitative and qualitative, the 
calculable and the indeterminate, the discrete and continuous, as the very 
stuff of experience in a time of ml.

A Radically Empirical Experience for and of ML

I am not the first to propose that the recursive processes of ml-driven 
computation lie at the core of its contemporary operativity. The updating 
of both data and ml systems is also commented on by Taina Bucher, who 
draws attention to the ways in which algorithms are in a constant process 
of becoming as technical, social, and ultimately governing forces and events 
(2018, 28). Closer to the approach I offer here is Luciana Parisi’s project for 
affirming the incomputable as those indeterminate quantities of data pro-
duced through the recursive and nonlinear operations of computational 
modeling (Parisi and Dixon-Román 2020; Parisi 2013). Parisi has argued 
that the shift to many-layered deep learning formations of ai sets up non-
linear recursions across the model as it runs. These recursions generate a 
kind of extra-dimension of data from which the model itself adapts and 
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learns but for which it can never fully calculate or compute, since its on-
going operativity maintains this very excessive generativity: “This wall of 
incompressible data instead overruns the program and this neutralizes or 
reveals the incompleteness of the axioms on which the program was based 
in the first place” (Parisi and Dixon-Román 2020, 57). A margin immanent 
to the neural architecture of ai exposes itself, asserting a gap between the 
model’s claims to prediction and determination and its engendering of an 
excess from its autopoiesis.

However, for Parisi, and likewise for Fazi (2018a), recursive and con-
tingent computation produces indeterminacy by purely quantitative and 
axiomatic means. For Fazi, this occurs because computing is based on Alan 
Turing’s universalizing axiom — the ongoing operation of a machine’s deter-
mination to execute either state a or state b. Yet in its inexhaustible continu-
ity, computing must necessarily encounter numbers such as infinity, which 
are incomputable: “With Turing’s incomputability we are witness to some-
thing especially surprising: it is the mechanical rule itself that, in its own 
operations of discretisation, generates the inexhaustibility of computational 
processing” (Fazi 2018a, 124). Fazi sees the simple digital process of deciding 
a or b, 0 or 1, a binary and determinate action, as the potential for comput-
ing to set off on a path toward indeterminacy. Crucially, for these theoretical 
approaches to contingency, which pursue the quantitative and axiomatic, 
computation exists in a separate domain from empirical experience. The 
former is purely calculative, whereas the empirical is apportioned to the  
field of the sensible. And in the empirical realm, contingency or indetermi-
nacy only arises through material or sensory conditions and circumstances.

But what if neither experience nor the empirical are primarily sensory, 
that is to say, sensory in the first instance? What if this division between the 
formal/axiomatic and the material is a secondary division of the dynamic 
ongoing reality of the world as it occurs in the making, including computa-
tional worlds? As we have already seen in ml, experience can be a measured 
phenomenon such as an input or output on which the model runs. But it is  
also — and crucially for an ontogenesis of autonomous systems — occurrent 
learning, or computation as the differencing generated as computing, the 
process, happens. If we think just of an ai model as a limited instance of 
computation, we locate that change or difference as the experience the 
model gains across its network by vectorially mapping the relations of in-
puts to outputs. We cannot reduce the function of this to any causal or lin-
ear mapping of data inputs to outputs, since most neural networks function 
via combinations of nonlinear relations such as pooling, back propagation, 
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reinforcement learning, and so forth. Here “nonlinear” means that the out-
puts and inputs cannot be directly algorithmically mapped to each other.

What we can state is that any kind of ml understood as “a computer 
[that] is said to learn from experience e” involves relations of comparison, 
contrast, addition, subtraction, and multiplication in which both model and 
data configure and reconfigure through modulation, that is, the work of on-
going change/differences. And, more broadly, ml experience, as technical —  
and, as I will engage it in this book, as cultural, aesthetic, and social — must 
be taken more broadly as change occurring via the multiplicity of com-
putational relations on the move. These encompass the model’s algebraic 
relations but also those across data and its preprocessing via operations 
such as dimensionality reduction; the vectorization of data by a model; the 
differences produced by relations between neural networks in an assem-
blage of models, which are often used to accomplish complex tasks such as 
AlphaGo’s chess wins; back propagation (used to efficiently calculate the 
multiple derivatives produced by the model computing the many variables 
of data inputs); optimization (which makes the model run with a reduced 
error rate); and a multitude of human intelligence tasks with which all the 
purely computational operations might also be entangled.

In this book, I unfold an approach that emphasizes the vectorial and 
qualitative operations performed by ml. These range from statistical func-
tions such as principal component analysis (pca), part of ml’s array of al-
gorithms, to the complex, dispersed, layered, and recursive architectures 
of multilayered neural networks. These qualitative operations are always 
exchanges between and across the quantitative (data) and axiomatic (algo-
rithms or functions) and qualitative operations such as recursion, vector-
ization, and so on. Or, rather, we could say complex relations of sameness 
and difference traverse computational quanta, functions, and operations. 
It is this operative relationality that accounts for ml’s contingent and non-
predictable modes of computation in which novel spaces and sensibilities 
form. And while these spaces and potentialities are insensible, this does not 
foreclose their registration as a sensibility specific to ml. This is machine 
learning experience: production and registration of a peculiar computational 
experience. And an ml sensibility can also be artfully conjured and encoun-
tered. It is part of the project of this book to signal where and how such 
encounters occur in the work of artists, cultural producers, and sometimes 
experimental data scientists interested in an alternate deepaesthetics.7 In-
deed, experiments with ml’s relationality are already occurring, exploring 
its potential to open to the nonknown. In an experiment with the transla-
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tion of synthesized images of chairs generated by a generative adversarial 
network (gan) model, Philipp Schmitt and Steffen Weiss (2018) took the 
odd, dysfunctional deep-learning-generated images of blurry chairs to aid 
the human design of physical, albeit speculative, “chairs.” Images generated 
by gans, with their transmogrified snapshots of their model’s learning of 
prominent features across a training dataset, have become readily identi-
fiable as an aesthetic visual style of ml. But rather than veer either toward 
aesthetic realism — where the visual objective is to get the model to syn-
thesize a realistic-looking chair via training on a dataset — or toward the 
“latent-space” style associated with gans, Schmitt and Weiss’s The Chair 
Project does something different.

The gan-generated images become visual prompts that probe and pro-
duce a relationality across model and (human) designer: “The idea was to 
neither simply trace the generated images, nor to transform it into tradi-
tional pieces of furniture. Rather, we brought out the chairs we saw in the 
blurry images to help viewers see what we imagined. ‘Seeing the chair’ in an 
image is an imaginative and associative process. It pushes designers away 
from usual threads of thinking towards unusual ideas that they might not 
have had otherwise” (Schmitt and Weiss 2018, 2). The resulting physically 
crafted chairs are emergent realizations that embody the processes of back-
and-forth prompting and probing across model and designer and across 
human perception and computational sensing. The chairs hint at a classic 
modernist design lineage bound to notions of “form follows function” while 

I.4  “Steps from Generated Image to Sketch to Physical Model.” Philipp Schmitt 
and Steffen Weiss, The Chair Project, 2018. Image courtesy of Philipp Schmitt.
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also pushing at the limits of functionality through their speculative and 
“useless” design. The gan itself can only assemble features; it cannot see a 
chair. Nonetheless, it can furnish novel conditions for seeing to occur, and 
these can condition what seeing might be or become. Likewise, the human 
designer is prompted via the speculative constraints, probes, and param-
eters that the model blurrily furnishes. The artfulness of The Chair Project 
lies in the ways in which human and more-than-human forces collectively 
individuate across each other to co-compose previously nonknown chairs: 
chairs that are more than what is already in a dataset, and more than what 
a trained designer might sketch through their own imaginings.

The artful probing of ml’s sensibility enables rich and generative encoun-
ters with computational experience that often question and sometimes even 
upturn a more predictive teleology. But to fully account for ml as a rela-
tional mode of computing, we need to think with process thinking. James’s 
thinking has the advantage of valuing relations as the real stuff of experience, 
providing a deceptively simple definition of relations as “different degrees of 
intimacy” (1977, 196). By intimacy, James means a proximity of connection 
that produces varying degrees of transition in experience: “With, near, next, 
like, from, towards, against, because, for, through, my — these words desig-
nate types of conjunctive relation arranged in a roughly ascending order of 
intimacy and inclusiveness” (James 1912, 43). His emphasis on conjunction 
as a key form of transitions occurring revalues relations of continuity. Con-
tinuity is always generated qualitatively via relations that modulate things 
as they also change their milieu: “Not only is the situation different when 
the book is on the table, but the book itself is different as a book from what 
it was when it was off the table” (James 1977, 223). Continuity, then, varies 
and, as it does, modulates into different experiences of situations, things, 
and the entire ensemble of their relations. In the ascending order suggested 
by James, conjunction moves from “with” to “my,” building from exterior 
bare relations to intimate subject-oriented perspectives, terminating with 
a human-subject experience of relation to “their” world. However, James is 
emphatic that no one connection or ordering runs through all experience 
(1977, 197). This then makes his conception of experience an open relation-
ality, potentially made and individuated by all kinds of entities, including 
technical ones. As David Lapoujade puts it, “Pure experience is the set of 
anything that is in relation with something else” (2019, 13). The empirical 
is just that domain of any and every relation in its/their process of relating, 
but James’s emphasis on, and attention to, the processes of relating makes 
his version of empiricism radical.
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What would it mean to bring this radical empiricist attention to pro-
cesses of relating into ml and its now-dominant configuration of compu-
tational experience? It would mean attending to how technical entities and 
operations pass, conjoin, traverse, and difference via statistical and net-
worked ensembles. The connections concatenated in (any postdigital) com-
putation between entities such as numerical values are discrete; in a neural 
network, specifically, at the level of its various layers, values are drawn from 
data inputs and operated on, or values are functionally generated to pro-
duce synthetic outputs. Here we have a calculative relation across weights 
and biases — the parameters for a layer — and data inputs (transduced to nu-
merical values) or other values generated by a random algorithm designed 
to feed the model some noise. We might say, then, that the calculations 
performed in a neural network are, at some level, discrete, maintaining the 
barest relations of “withness” or proximity between the layer and inputs or 
synthesized values.

These processes occur across one layer with potentially millions of pa-
rameters and inputs to produce a new set of values that pass the threshold 
of that layer to become features, passing to being calculated again until, 
eventually after many passes, they become the neural network’s outputs. Yet 
such sets of values and constraints calculated together and against one an-
other also easily accord with Lapoujade’s reading of the openness of James’s 
experience as a “set of anything that is in relation with something else.”

If these computational processes meet the bare criteria of relationality, 
then they also generate or count in radical empiricist experience. They do 
not require the appearance of human subjects or objects with their sensory 
perception or intelligent perception for their operative, calculative experi-
ence to “count.” This is not the same as saying that ml/ai is autonomous 
and can run without human control or action. The claims for autonomous 
ai — whether intellectual, creative, or even functional — are usually pre-
mised on the prior existence of the human subject: Can ai be as creative 
as humans? Is ai more intelligent than humans? Will ai be more efficient 
than humans by 2050? When using a Jamesian process-based account of 
ml computation as radically empirical, I seek to approach its operations, 
sensibility, and relationality differently, suggesting that their relationality 
counts in contemporary experience. But it also counts for us because its ef-
fects register. We only have to think back to Loab and sense that she is such 
a registration. The proposition for ml set out in this book is for a nonsensu-
ous, liminal, imperceptible, and registerable-in-its-effects mode of radically 
empirical computational experience. This places ml computation/ai and 



1

X1

X2

Xn

b(ias)

W1

W2

Wn

output

I.5  Schematization of a node in a neural network. The inputs 
are represented by X1 – Xn. A weight, or W1 – Wn, is added to 
these; 1 is the bias. Since all these diagrammatic elements are 
calculations and sums, this should be understood as a topolog-
ical diagram of relational values in which the node is a value 
produced through all these relations.

*Pop-Up* Definition: Weights and Biases

A node in a neural network — also called a neuron — is a calculative out-
come in which a data input (or collection of data points transduced to 
numerical values) is multiplied by a weight value and a bias value, or 
parameter. The overall calculation of weight and bias is then further sub-
jected to another “activation” function. The activation function calculates 
which inputs’ weights and biases exceed the threshold of activation (>1), 
and these are then passed onto the next layer of nodes.

Weights and biases are core calculations in a neural network, yet their 
activations may be difficult to detect for inputs that are highly variable 
(high-dimensional data such as images, for example), or in multilay-
ered and massively connected networks. Weights and biases are usually 
initialized with arbitrary values, and it is the changes to these, and the 
modulating effects through the network, that become a measure of the 
model’s “learning.”
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humans together through a relation of nonrelation when it comes to know-
ing and feeling one or the other’s modes of individuating experience: we 
don’t know what is happening in the black box of a neural network model; 
ai doesn’t feel creative when Midjourney, a generative ai image platform, 
makes a new image when prompted with a text input. But it also means that 
the nonrelation of humans and ai might play out differently when it comes 
to tallying up what happens in computational experience. Relations, whether 
computationally generated or produced in human-computer conjunctions, 
are constantly registering in and as experience, and “we” all, together and 
differently, experience the experience of ml computation. The pragmatic 
beauty of James and of process thinking the processes of ai is that we move 
to interest not in “what is different” about computation (or the same as the 
human) but in how computation differences or makes both human and 
machinic experience heterogeneous. Inversely, attending to a radical em-
pirical understanding of ml also allows us to register where computational 
experience fails at differentiating tendencies as it is harnessed and captured 
through social, cultural, and political arrangements of predictive computing.

As I have already suggested, ml computation is populated not just by 
quantitative but also by qualitative processes such as vectorization. We can 
already see that ai models now performing image recognition and image 
synthesis, and large-scale language translation and semantic generation 
are using many of the vectorial relations that James describes as “towards,” 
“against,” “because,” and “through” via the very logic of their operations. I 
discuss some of these vectors with respect to image recognition and gener-
ation in chapter 1. So, while dealing with discrete quanta, ml processes are 
simultaneously concatenating operational pathways, and it is these concate-
nating vectors that become the model registering in experience as a dynamic 
and generative entity. Further concatenations and disjunctions occur via 
additional processes such as optimizing the model for its specific tasks, as 
well as human intervention and feedback as part of the model’s develop-
ment, which may be as simple a decision as selecting how many epochs or 
passes over data a model will run in its training. All these ml and human 
activities and actions constitute ai as a human-machine ensemble, laying 
down its relational order of connectivity. In his own time, James offered us 
a sense of experience being made through conjunctions traversing techni-
cal, infrastructural, institutional, and human components: “We ourselves 
are constantly adding to the connections of things, organizing labor unions, 
establishing postal, consular, mercantile, railroad, telegraph, colonial, and 
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other systems that bind us and things together in ever wider reticula-
tions. . . . From the point of view of these partial systems, the world hangs 
together from next to next in a variety of ways” (1916, 130 – 31). By paying 
attention to just such concatenations with respect to ml, as these are made 
by the operations of models and their conjunctions with humans, we can be-
gin to register computation as a singular mode of operativity qualifying our 
relations of, in, and with culture(s) and technics. James’s “experience,” I will 
argue, is well suited to thinking a form of computation, such as ml, whose 
operations — despite their epistemic and social orientation toward predic-
tive outputs — unfold via continuity and modulation or differencing. And, 
importantly, processes of differencing also offer contingencies and surprises.

ML’s Actual Technics as Computational Contingency

A focus on computation’s quantitative and axiomatic potential for novelty 
alone, which has been pursued in a range of approaches emphasizing com-
putation’s contingency, falls short, I think, of the actual technics of ml. By 
“actual technics,” I mean two things: first, ml’s ensemble of technical com-
ponents and operations, which can be specific to a domain or operation such 
as image recognition or natural language production and carry a specific 
technical lineage through which it gathers its components together; and 
second, how these ensembles actualize as and through their sociotechni-
cal milieu. As I will explain shortly, this milieu should not be understood 
as exterior to ml’s technicity, where it is “it” that becomes responsible for 
situating technical elements according to broader epistemic, political, or 
cultural formations. In Fazi’s account of the discrete, quantitative, and axi-
omatic nature of computation, for example, algorithms do participate in the 
broader world of social, political, and even material phenomena, but only 
in a secondary manner in terms of their application and implementation 
in the world. For her, algorithms are “the a priori intelligible” of computing 
(2018a, 106). By this, Fazi means that they are mathematical ideas that pre-
exist their embedding into a program or code, and only a particular code 
or program a posteriori operationalizes them. At the onto-epistemological 
level, Fazi argues that a deterministic organization of computing operates 
when aesthetics and logic combine in “computational idealism,” in which 
computational axiomatics are conceived and implemented as the horizon 
for determining both the ideal/transcendental and the empirical (92). For 
her, this is how algorithms become predictive or are embedded as forms of 
governance. But this implies that it is only when computation joins forces 
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with another agenda or when it functions away from its own axioms that 
it becomes determinate.

But Fazi’s conception of the algorithm as a priori axiom cannot account 
for the kind of computation that constitutes ml and, increasingly, is how 
computational experience is being made. Machine learning is not primar-
ily a mode of digital computation but a statistical one. As I will also argue 
in chapter 2, algorithms that are part and parcel of ml’s operativity germi-
nate from a nineteenth- and twentieth-century statistical mathesis in which 
mathematical ideas are induced from the sociopolitical materialities of race 
and class relations of Anglo-American nationhood. The distinction between 
a priori intelligible and a posteriori implementation does not hold for the 
logic of statistically wrought algorithms. And since ml converges statistics 
and computation, we will need to look out for its entangling of temporally 
conditioning oppositions such as “prior” and “post” with respect to data, 
algorithms, and its entire operativity. Machine learning occurs at the nexus 
of statistical methods and techniques and computation and is, indeed, a re-
configuration of both. Even if (as we will see at many moments throughout 
the book) we cannot easily buy into the simple characterization of ml as 
the emergence of an algorithm from its learning on/of data, nonetheless we 
must account for a different ensemble in which an inductive technics is at 
work. Induction, inference, and probability bring different operations, logics, 
and implications than discrete, a priori axiomatics. As Mackenzie puts it, 
“Statistics has . . . gradually probablized machine learners” (2017, 104). But, as 
he also notes, ml reconfigures the classical statistical methods of sampling 
known sets of phenomena such as populations. Instead, ml begins with the 
premise of operating on all “known” data. Hence ml models are typically 
thought of as architectures for big data — a dataset of all that can be known. 
Of course, as Kate Crawford and danah boyd (2012) have already pointed 
out, claims to the comprehensiveness of big data are limited, since datasets 
are always in some way historically situated and undergo many processes of 
organizing and arranging that necessarily filter out data points. Nonetheless, 
as Mackenzie suggests, the difference between strict statistical samples and 
ml datasets lies with the latter containing all data “known” for the task at 
hand. The model itself — in contradistinction to the classical statistician who 
performed the process of sampling — then becomes the “knower” of the data. 
This automation of knowing occurs by parsing the data via continuous op-
erations to detect and eventually attempt to eliminate error from its outputs. 
Mackenzie’s point is that ml transposes a probabilistic logic from statistics 
to the model rather than simply using statistics’ methods. The consequence 
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of this is the automation of probability. Machine learning delegates the op-
erations of sampling, analyzing, and observing, which account for error and 
prediction in data, to devices and to the operations of models. For Macken-
zie, this also means that the potential for uncertainty — a key and immanent 
quality to the unfolding of practices of classical probabilistic statistics — is 
now ceded to recursive elimination performed via predictive operations: 
“The direct swapping between uncertainty in measurement and variation 
in real attributes that statistics achieved now finds itself rerouted and in-
tensified as machine learners measure the errors, the biases and variance 
of devices” (2017, 106). The actual technics of ml is, then, inductive yet also 
unfolds through a milieu of automated prediction, which it simultaneously 
enfolds. This fundamentally alters its operative mode of computation from 
digitality and, I will be suggesting throughout this book, engenders different 
modes of computational experience.

As we will see, especially in chapter 2 when I look at the ways in which 
a statistical logic of racialization enters ml, this means that contemporary 
computational experience can never be easily debiased. The very operativ-
ity of this kind of ai runs on a singular trajectory in which techniques or 
functions of statistical discrimination have become immanent to its func-
tioning. Statistical discrimination — through which many baseline algo-
rithms of ml operate — constitutes the actual technics of ml as an already 
“biased” technical ensemble before any specific data inputs run through a 
model. Race, class, gender as operations of statistical discrimination be-
come entwined in the core automated functioning of ml models. Yet even 
as ml has automated the project of statistics, it nonetheless remains open 
to the indeterminacies of probabilistic (statistical) techniques. This occurs 
regularly in ai models through phenomena such as category mismatches 
where, for example, images are matched to labels that do not indexically 
describe them, or when ais perform in ways that “err” from, yet neverthe-
less conform to, their task specifications. In chapter 1, I look at ml opera-
tions in some detail with respect to image recognition and misrecognition 
and the ways in which misrecognition recurs across computer vision. My 
overall proposition — pursued via a close look at a range of computer vision 
ais — is that the operativity of ml is not as closed and predictable as is often 
claimed. Instead, ml is a mode of computation in which indeterminacies are 
lodged in the operativity of its actual technics. The question will be: How 
can computational experience remain open to these?

On the one hand, then, we are faced with this delegation of error man-
agement — what we might also call the regulation of chance or indetermi-
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nacy — to the sociotechnics of predictive computation. On the other hand, 
its recursive operations, its actualization as part of an ensemble of conjoined 
algorithms, trained datasets and their legacies, and the contributions of hu-
man cognitive and affective interventions in making ai models operative all 
make ml less predictable. I want to propose that a deepaesthetics of ml must 
consider both the predictive reshaping of life through automation and the 
potential for new openings onto contingency and indeterminacy. This book 
engages, then, in a continuous double-pronged approach to teasing out and 
encountering a deepaesthetics of ml computation: one that recognizes the 
ways in which relations are reconfigured and often restricted by predictive 
trajectories; and one in which ai models, data scientists, cultural producers, 
artists, and theorists are alive to its odd sensibilities and indeterminacies. 
This requires a thinking of ml intensively and extensively as relational field; 
we cannot stop at the axiomatic or numerical registers of quanta prehend-
ing each other according to algorithmic procedures. We must, however, 
stay close to the technical specifications of the statistical computation that 
organizes ml. For it is at the granular level of computation’s operativity that 
we can locate both the production of social propensities, problematic gene-
alogies, seemingly predetermined trajectories and the potential for novel 
(aesthetic) events and experience.

ML’s Machinic Universe and ML as Agencement

We should keep in mind that ml’s terms, images, and diagrams do not be-
long to the technical infrastructure of ai alone; they consistently gesture to 
social, cultural, political, philosophical, and aesthetic ideas and processes. 
We have already seen this in the case of the layered architecture of deep 
learning models, which, at the same time, proffers images that tell us about 
the topological spaces conjured and inhabited by ai. What is particularly 
telling about the layer diagrams used to explain deep learning neural net-
works is that they are not images “of ” technical components or technical 
(infra)structures, since the layers are neither physical nor even systemically 
representative of something technical in the way that a circuit diagram, for 
example, might be. Indeed, there are no geometric layers as such in deep 
learning networks, but rather only cascading series of numerical values, 
summations, and operations. But neural network diagrams and the image 
of the layer as a component of the computational architecture of deep learn-
ing computation must not be explained away as an image used to merely 
“communicate” computation to a nonexpert. The concept of the layer has 
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been operative in ml research from at least the 1970s onward (see Ivakh-
nenko 1971). In this earlier period of ml research, three terms were used to 
describe the architecture of neural networks that learn: hypersurface, layers, 
and thresholds. The hypersurface functioned as a kind of projection of the 
overall connected topology of the network; the concept of the layer was used 
loosely to point to the net set of results of known transformations of “groups” 
of numerical values; and the threshold marked the transformation taking 
place. Interestingly, layers in contemporary deep learning research merge 
aspects of all these concepts (e.g., Goodfellow, Bengio, and Courville 2016, 
164): they are the convergence point for the model’s functions (the earlier 
layer), the ways these functions interact (the earlier threshold), and the vec-
torial chain conjoining one function to another (the earlier hypersurface). 
This later convergence demonstrates the unacknowledged epistemic work 
now performed by the concept of layer and of the layer diagrams, which 
often accompany research on neural networks (see fig. I.2).

As both concept and diagram, the layer is thus part of the “machinic 
universe” of ml, to draw on Félix Guattari’s conceptual apparatus for think-
ing through technologies (1995, 36). For Guattari, any technical machine — a 
neural network, for instance — is a conjunction made possible through a 
composition of many elements: diagrams setting the range or vectorial 
possibilities and constraints of the technical object’s feasibility; materiali-
ties that enable its production; an industrial sector producing it; a political 
economy, which finances it; and a collective imaginary that is the ethical 
and aesthetic condition for it being actualized (48). Taken together, these 
spheres form a technical ensemble, and it is the dynamic of their relations 
that brings a particular technical machine into being.8 While there may be 
no geometrically shaped physical surfaces, no “places” in a neural network 
where layers can be located, and no volumetric depth to deep learning ai, 
layers are nonetheless diagrammatic and aesthetic components of the tech-
nical ensemble that is machine learning. They assign its computation a to-
pological architecture and operativity; they also set the limits for imagining 
what a deep learning ai might be capable of doing.

Yet it is not sufficient to lay out the fields — conceptual, diagrammatic, 
financial, aesthetic, and so forth — that constitute ml’s technical ensemble. 
Gestures of mapping will not give us a sense of its actual technics, since 
simply pointing to this array results in a static and almost structural setting 
in place of ml, or any technical machine, for that matter. Instead, we need 
a sense of how these spheres come together in relation. Agencement is the 
term that Gilles Deleuze and Guattari coined to account for how heteroge-



	 Introduction	 29

neous social, technical, economic, aesthetic, political, biological, inorganic 
(and more) elements conjoin and multiply in ways that are productive of 
new relations and events: “An assemblage [agencement] is precisely this in-
crease in the dimensions of a multiplicity that necessarily changes in nature 
as it expands its connections” (Deleuze and Guattari 2005, 8). Like other 
sociotechnical ensembles, the agencement of ml functions by increasing the 
multiplicity of its relations through conjoining with other machines whose 
dimensions may not be technical at all. This occurs at many different and 
disjunctive scales: from that of a function such as pca, a commonly used 
dimensionality reduction algorithm, to that of the corporate imaginary of 
ai and its claim for predictive futures. Hence, when I pay close attention to 
the genealogy and operativity of a technical aspect of ml, as I do many times 
in this book, I do so to get at the ways in which ml opens onto, conjoins, 
and enfolds the social, epistemic, political, and aesthetic fields (and more) 
into it as part of its technicity, or as I have termed this, its “actual technics.”

In analyzing, following, and landing on aspects of ml, I contend that 
computational experience can best be approached via this conception of 
agencement, since it gives a sense of how a technology is always operating 
within a technical ensemble that is in process and relation. The relations 
conditioning, and the new relations generated by, the agencement of ml are 
experienced not simply by humans but also at and by more-than-human 
machinic registers. Throughout the book, I retain agencement in its original 
French to set my approach apart from the concept, methods, and frame-
work of what is now called “assemblage theory” (DeLanda 2019). Although 
there seem to be overlaps with that theoretical project — its emphasis on 
process, dynamic interrelations, and heterogeneity (Venn 2006, 107) — the 
assemblage, as the object of assemblage theory, drifts back toward an idea 
of an emergent system and sometimes promotes methodological scalability. 
Manuel DeLanda, for example, seeks to provide an entire ontology of social 
processes by developing a theorization from bottom-up emergent “wholes” 
such as “persons,” understood as assemblages of albeit heterogeneous ac-
tions, through to economic or political emergent systems such as finance. 
This conception of assemblage theory, he states, offers, “an approach in 
which every social entity is shown to emerge from the interactions among 
entities operating at a smaller scale” (DeLanda 2006, 90). DeLanda’s empha-
sis is not on processes but rather on entities and how, at each level or scale, 
one gives rise to or conditions another. This implicitly allows each emergent 
entity to be brought into relations of equivalence up and down the scale 
with one another. Perhaps this solves the issue of how to deal with relating 
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things that are heterogeneous, but it does so at the expense of the hetero-
geneities! Instead, ml, as the agencement now dominating computational 
experience, requires an approach that goes to the processes activating and 
making it elastic, the processes that also result in it producing itself contin-
gently. It is these processes of relation that are activators of heterogeneities.

A Simondonian Technics of ML

The concepts of both the technical ensemble and agencement in Deleuze and 
Guattari are indebted to the philosophy of technology elaborated throughout 
the work of Gilbert Simondon. This book and its thinking through of the 
actual technics of ml is likewise indebted to many of Simondon’s technical 
concepts. Simondon himself was deeply skeptical about automation, but his 
skepticism arose not from computation’s technicity but from its capture by a 
sociopolitical reduction of autonomous systems to human behavior and vice 
versa (2017a, 17). He argued for a restoration of technicity to computation 
that would acknowledge the “openness” of computational programming: “A 
purely automatic machine completely closed in on itself in a predetermined 
way of operating would only be capable of yielding perfunctory results. The 
machine endowed with a high degree of technicity is an open machine” (17). 
The sociotechnical program for automated predictability — the publicly de-
clared and dominant agenda for ml in contemporary capitalism — presents 
just such a closed machine, often yielding cursory results. But this is not all 
the agencement of ml might be or become, and indeed many instances in the 
actual technics of ml suggest its potential for openness in this Simondonian 
sense. I turn now to an example drawn from contemporary “automated” 
music production to see how approaching ai both critically and with a de-
gree of Simondonian openness gives us glimpses of the two poles of deep-
aesthetics — predictive and indeterminate — operating in contemporary ai.

The claim that a “deep” aesthetics increasingly stakes for automating and 
autonomizing creativity has gripped the computer graphics and music in-
dustries in ways that suggest the agencement of ml is always already social, 
aesthetic, and economic, and more as it actualizes. Popular digitally pro-
duced music, for example, has been moving in the direction of deploying 
algorithmic correction of pitch and vocal timbre through software such as 
Auto-Tune since the 1990s. While we cannot tell a simple narrative about 
the uses to which automated digital pitch correction has been put — there 
are many artful, experimental, and minor configurations of Auto-Tune — the 



I.6  Early interface for Auto-Tune, ca. 2000, which shows a recorded vocal input 
signal that could be retuned as its pitch is being tracked. The same capacities are 
also possible for live performance. Auto-Tune is an example of negative feedback 
being applied in music production.

*Pop-Up* Definition: Negative Feedback or Cybernetic Recurrent Causality

Negative feedback occurs when the outputs of a system, process, or op-
eration reenter the system to affect its inputs in such a way as to stabi-
lize further fluctuation in outputs. An example often given is a heating 
or cooling system controlled by a thermostat. The heated space is kept 
at a stable temperature by the system if ongoing cooler conditions (cold 
air entering the space or the temperature dropping owing to moisture, 
proximate conditions, and so on), detected as inputs to the system, are 
modified by the thermostat. This would result in the ongoing “output” 
or room temperature being kept at a constant warm temperature despite 
new inputs varying.

Negative feedback in cybernetics tends toward stabilization of a sys-
tem by closing the difference between new information or variability 
and a continuous output of signal modulated by the system’s internal 
operations.
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assertions housed in its original patent nonetheless underscore the homo-
geneous tendencies that it has cultivated since its release in 1997: “Voices or 
instruments are out of tune when their pitch is not sufficiently close to stan-
dard pitches expected by the listener, given the harmonic fabric and genre 
of the ensemble. When voices or instruments are out of tune, the emotional 
qualities of the performance are lost” (Hildebrand 1999, 1). Here we move 
in seamless fashion from performer to pitch to listener to emotion, all to 
be navigated via an algorithm that performs an operation of standardiza-
tion. The Auto-Tune algorithm works by automatically detecting an actual 
human performatively generating pitch; sending inputs to a corrector (a 
set of midi standardized pitches), which automatically correlates these to 
match the standardized pitches; and then re-outputting the performed pitch 
as corrected or retuned.

This input – correlation – output cycle is one of the simplest schemas for 
automating human-machine relations and falls within the shadow cast of 
what Simondon called cybernetic “recurrent causality,” or what we more 
frequently call “negative feedback.”9 Here, (first-order) cybernetic design 
creates a link between “the chain of causality conveying the action and the 
chain of causality conveying the information” (Simondon 2020, 427) by lit-
erally capturing the latter (information) in a circuit for (re)producing the 
former (signal) as the key to the operativity of its system. For Simondon, this 
means that whatever is potentially novel about the information — whatever 
is contingent, in other words — is discarded to ensure the ongoing hegemony 
of seamless signal. In the operation of the Auto-Tune algorithm, the only 
information that comes to count is the difference between the pitch produced 
by a subject and the pitch that needs to be corrected/produced by the software. 
Consequently, the subject/performer/musician learns from that narrowed 
range to adapt their performance and behavior, linking their ongoing  
action/performance to receiving that correction alone. Accordingly, the kind 
of sound produced tends toward increasingly correlating the sung voice to 
the software’s processes of standardization. Over time, a homogenization 
of vocal sound occurs unless other variants of information are introduced 
and explored. The issue here is not the dominance of “the algorithmic” per 
se but rather the privileging of operations of causal recurrence, which divest 
the human-machine relation of a broader milieu of variable information. 
The dominance of cybernetic recurrent causality or the paucity of gener-
ating multiple kinds of information for software and hardware systems 
has primed a good deal of music production and performance for further 
regularization via ml.



I.7  From aiva’s (a music composition tool using rnns) website. This allows 
choosing preset styles that contour the music as it is made to fit into genres and 
even culturally specific music styles on which the model has trained.

*Pop-Up* Definition: Recurrent Neural Networks (RNNs)

A recurrent neural network (rnn) is a type of neural network architecture 
used to learn from sequential data. Examples include letters in a word, words 
in a sentence or sequence of text, and musical sequences. A key characteristic 
of their operation is that data are inputted as vectors or ordered strings of 
numbers. These vectors can be stored in layers and used to sum, multiply, 
or subtract with another vector that is fed back into that layer. This allows, 
for example, predictive text to use other sequences of words (other vector 
states that have been stored) that supply contextual information to make 
correct “guesses” or predictions.

Recurrent neural networks are core architectures in the development of 
natural language processing. While now superseded by other architectures, 
they have provided the programmatic conditions of possibility for large-scale 
language text-to-image models to emerge. These use a network architecture 
called a transformer building on early research in which two rnns were 
used together (encoders and decoders).
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Enter Amper, ibm’s Watson Beat, and Google’s Magenta, deep learning 
models that are being used widely in computational music production. Al-
though these are not stand-alone models — Magenta, for example, leverages 
TensorFlow, now a subplatform within Google for developing many kinds of 
ml algorithms — they all use recurrent neural networks (rnns) or variants of 
them. Recurrent neural networks are models often used for processing data 
with sequences of values occurring over time. They store values as vector 
states — a sequence of data inputs transduced to strings of numbers — which 
subsequent states can connect back to iterate on. At a much larger scale and 
using many more recursions, they apply principles of feedback loops. Their 
neural training for music production usually occurs by feeding in many 
sequences of melody, chord, or rhythm progression data until the model 
learns the style of the music to be generated. Whereas in Auto-Tune the 
recurrent causality operates across software and human voice, in rnns the 
recurrence works on preexisting digital samples of musical style and genre, 
which may be audio recordings or midi files. Importantly, this already sug-
gests a transduction of the performative information, entailing the model 
using samples that have already been compressed or even pitch corrected 
by digital preprocessing algorithms. The rnns can synthetically (re)produce 
genres and even moods as presets for musicians learning from these sam-
ples to generate new musical refrains, percussion sequences, and so forth. 
Crucially, then, at different times and scales, the models are learning data 
already schematized by processes of recurrent causality, embedded in the 
samples and widely circulating via types of signal processing — including 
Auto-Tune but also digital filters and effects, for example — and formatting 
(the ubiquitous mp3 file).

What, then, are the role and place of a human musician or performer 
working with such an ai if a certain schematization of human-machine 
activity has already been subsumed into the model? In what ways might 
human vocal performance introduce variable information or be subsumed 
into a schema of recurrent causality? We can look, first, to the example of 
the pop singer Taryn Southern, who released the album i am ai in 2018 
using both Amper and Watson Beat. A former star of American Idol, South-
ern had previously worked with music producers to create “structure” for 
her pop songs (Deahl 2018). Using ai music platforms, she chose genre 
and mood presets to generate a compositional base for her songs and then 
iterated melody and lyrics over the top of them. This is not so different 
from compositional strategies for many contemporary pop and electronic 
musicians, who use a range of digital audio workstations such as Apple’s 
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Logic, which already integrates various ai operations into its software. But 
what is revealing is Southern’s attribution to the ai of both compositional 
and cognitive agency as it learns preprocessed samples. At the same time, 
she gives her own musicality a programmatic character by describing her 
efforts as iteration or recurrence: “She knew ‘very, very little about music 
theory. . . . I’d find a beautiful chord on the piano . . . and I’d write an entire 
song around that, but then I couldn’t get to the next few chords because I 
just didn’t know how to play what I was hearing in my head. Now I’m able 
to iterate with the music’ ” (Southern, quoted in Deahl 2018). Here we might 
say that the human slots into a diagram of doubled recurrent causality in 
working with the ai’s predictive operativity. Since the model is already work-
ing in a recurrent mode deploying presets, the musician/singer portrays 
their melody as a pattern of recursion on top of the underlying recurrence 
being automatically generated. Here recurrence recurs, intensively within 
the model’s own processes and extensively by drawing the human into its 
diagram. In this respect, the human-machine relation is configured so that 
all elements, human and technical, are seen to be functioning according 
to a reduction of information and variability to seamless signal output: ai 
presets and human iteration match each other. Any openness to something 
outside the programmatic, or what Simondon also calls a machine’s “margin 
of indeterminacy” (2017, 17), is foreclosed. A fully automated mode of com-
putation has no margin of indeterminacy, since theoretically it never varies 
from what it is predicted to be or to deliver. Variability and hence novelty or 
new information — the musician/singer, for example, improvising with the 
ai, and the ai varying and modulating because of that improvisation — could 
only occur in a technical ensemble that is also open to the unforeseen (39).

If we take an altogether different approach to working with an ai as an 
“ensemble member” within musician Holly Herndon’s practice, we begin to 
see how she engages a sensitivity to a form of recurrence that is variable and 
contingent.10 Likewise deploying rnns, Herndon developed a combination 
of spoken and sung extended vocal audio samples from her own and other 
female singers specifically produced to train her ai, Spawn. An artful tech-
nique is here doubly articulated with respect to cybernetic recurrent causality: 
both refusing to attenuate her own voice to a predetermined set of canonical 
musical expectations such as standard pitches, and rejecting attenuation 
of the voice of the ai to pregiven data — even her own prior recordings —  
that could be mined for a style. Consequently, early experiments with Spawn 
generated pitch and rhythm continuity with the extended vocal technique 
tendencies of Herndon’s music making but also developed variable machine-
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generated vocalizations. These sounded like a supra-beatboxing mode of 
vocalizing in which rhythm — rather than oscillating between the regular 
and syncopated — became irregular and contingent. Herndon (2021) notes 
that she didn’t train the model to beatbox per se, that is, to explicitly gen-
erate synthetic vocal percussive sounds that in their live human form aim 
to imitate drum machines, samplers, and the rhythmic components of hip-
hop. Instead, something analogous to beatboxing emerged from Spawn’s 
synthesizing outputs by learning patterns of feature distribution across 
sung and spoken audio sequences made for the training dataset. Spawn’s 
vocalizations have no consistent, stratified, or predictable beat. Instead, an 
echo of the style we name “beatboxing” is conjured as a musical gesture by 
the ai. As Herndon suggests, strict digital sampling such as simply taking 
a riff, rhythm, or vocal phrase and replaying it within another piece of mu-
sic repeats past musical gestures, whereas “spawning builds variations from 
past expressions” (2021, 45:45). Machine learning here is artfully engaged 
by enabling differential recurrence via spawning rather than reproducing 
known expression of styles and genres. Alfred North Whitehead calls this 
the production of “intense experience,” in which a graded set of contrasts 
emerge in relation to identity (ground, past expressions), ushering in the 
emergence of novel “aesthetic fact” (1978, 279). In Herndon’s co-composition 
with Spawn, collective registers of musical phyla — extended technique, digi-
tal audio processing, and beatboxing — variably condition the performance 
of the individual human musicians and of the musicality of the ai.

The overall outcome of the Herndon-Spawn relationality is a recurrent 
vocalization at odds with itself — slightly out of phase rather than predictable. 
I will look to the ways in which artistic engagement such as Herndon’s pulls 
at, twists, and cajoles the schemas that sociotechnically organize the overt 
deepaesthetics of ml. Careful and artful techniques can cut into, conjoin 
with, or jam open a margin of indeterminacy for ai. Artists, in this capacity, 
are not those who represent deep learning as either humanlike or transhu-
man, nor are they interested in drawing out its creative agency. Instead, they 
are the conjurers and crafters of artful techniques: artists, cultural producers, 
critical thinkers, and data scientists alike. These techniques and this “artful-
ness,” as Erin Manning (2016, 46) calls art practices’ capacity to generate new 
opportunities for relation and for living, produce opportunities for becom-
ing sensitive to a “what else” for ai. Here Simondon’s conception of what a 
thoughtfully deployed imagining of technics might do is as useful for ml 
as it was for the thermodynamics and cybernetics dominating the twenti-
eth century: “We can consider the technical imagination as being defined 
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by a particular sensitivity to the technicity of elements; it is this sensitivity 
to technicity, that enables the discovery of possible assemblages” (2017, 74).

How Else for ML?

Throughout this book’s four chapters, artful techniques surface that bring 
the ml operations and deep learning models being rolled out in contem-
porary social, medial, and political contexts into new relations with their 
technicity. What these techniques hold in common is both a sensitivity to 
the actual technics of ml and a desire to ask: How else might ai become 
even amid its trajectory toward prediction? This requires staying close to “the 
technicity of elements” but also seeking out what Guattari calls the “allopoi-
etic” dimension of all systems and processes (1995, 47). This is the collective 
dimension of alterity with which any entity or system is always already in 
relation, and which enables novel generative capacities. To consider organic 
life momentarily, genes, seemingly units that underpin the self-production 
of an organic system, can only reproduce life by carrying the potential mu-
tations of their entire genetic phylum. The gene is not an isolated unit, then, 
but immanently retains a past of actual changes and hence the potential for 
future changes. In this past-future/present-past/present-future topology 
lies the gene’s dimension of and for expressive alterity. Technologies too, 
while inorganic, immanently carry their pasts — the phyla of their realized 
and unrealized sociotechnical mutations. They too open onto other futures. 
These potential lines for unfolding provide conditions for different ways 
they might unfold than their current realizations.

In the first half of the book, I alight on two prominent areas of com-
putational experience: automated image generation via deep learning in 
chapter 1, and the racializing potential of statistical techniques in chapter 2.  
My project in these chapters is one that engages closely with the actual tech-
nics of ml, remaining sensitive to the potential for an alternate technical 
imagination and the conditions for another becoming for ai. In chapter 1, 
I discover the ways in which experimentation with the category mistakes 
of computational vision takes deep learning models toward potential inde-
terminacy and an alternate deepaesthetics. In chapter 2, however, the ac-
tual technics of statistical racism and its increasing manifestation in social 
media, in training data and trained models, and in the algorithmic politics 
of all of this warrants a retraversal of the machinic phylum of ml. I focus 
on the two statistical techniques of pca (which we looked at earlier in the 
context of dimensionality reduction) and linear discriminant analysis (lda). 
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By tracing the immediacy of their relation to the social program of eugenics 
in the nineteenth and twentieth centuries, we can see that these techniques 
operationalize race in a manner that is key to the sociotechnical ensemble 
that becomes ml. It is not simply, then, that datasets are racially biased (or 
biased against other “recognizable” social groupings). Instead, statistics, 
in its deployment of discrimination techniques in a large-scale automated 
mode — that is, platform-enabled ml — shapes and contours data so that 
they are distributed toward whiteness and away from Black, Brown, Yellow, 
or other kinds of “color” experience(s) of life, race, and bodies. Here, again, 
we could say that the agencement of ml closes computational experience to 
any variation that is not already predetermined along a spectrum distrib-
uted according to whiteness as its normative curve. What would it take to 
artfully prize open this deeply racist aesthetics to other kinds of experience? 
Throughout chapter 2, I visit the work of Stephanie Dinkins, whose pro-
posal for an “Afro-now” ai lays out just what it might take to really gener-
ate different color spectra for computation. In Dinkins’s practice, we see a 
refashioning of ml as a different kind of assemblage, whose conjunctions 
hold through relations of experiencing and experiences of making Black and 
colored life through familial socialities, together with participatory design 
engaging Black and colored communities of (technical) practice. Against 
the racism of statistics’ eugenic genealogy and platform ai’s deepaesthetics, 
Dinkins deploys deep learning models as open, contingent, nonscalable, 
and differentiating ensembles.

The operative rhythm of chapters 1 and 2 moves according to a pulse 
that first locates the potential of ml’s machinic “error” (computer vision’s 
category mistakes) and then genealogically traverses the very operativity 
of statistical computation as agencement. Chapters 3 and 4 invert and con-
volve the maneuvers of the book’s first half, accenting what is often cast — for 
example, in speech pathology — as a disfluent and neurodiverse “outside” 
of language as condition for the possibility for the technical ensemble of 
natural language programming. Then, in chapter 4, I return to how con-
temporary artists engaging ml tease out its potential as errant agencement. 
In chapter 3, I am keen to show how ai’s fashioning of “natural” language 
ontogenetically leans on what is disavowed in the quest to make its artifi-
cial agents speak seamlessly. This disavowal involves both an incorporation 
and a denial of nonlinguistic disfluent aspects of language production. The 
actual technics of ai language agent development enfold the affective and 
neurodiverse asignifying conditions of linguistic sense making so that these 
become the conditions of possibility for an ai-human conversational rela-
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tion. If race is the unacknowledged interior core of statistical operativity and 
hence propels the functional continuity of ml models, then the exteriority 
of (normalized “fluent”) speech — disfluent and neurodiverse communica-
tion such as stuttering — is what affectively enables the project of a natural 
ai-generated language. By the end of the book, having traveled back and 
forth across ml as agencement, I return to the generativity of the mistakes 
made as ml performs functionally or on task. I suggest these are less cate-
gory mistakes to be fixed by recategorizing, and more a mode of persistently 
erring that is lodged in ml’s operativity. This errant mode is being drawn 
on by a range of practitioners interested in fashioning a critical sensibility 
for ai via techniques of artful modeling, crafted datasets, and sensory and 
insensible experiments with ml operations and processes.

Together, these and related techniques begin to constitute an artful 
mode of knowing the operations of a technical system, which Simondon 
(2020) called “allagmatics.” Here, analogically tracing and enacting system 
operations dynamically reanimate the (structural) elements of a technical 
ensemble, resituating how the system’s technicity might be made known, 
“by defining structures based on the operations that dynamize them, in-
stead of knowing by defining operations based on the structures between 
which they are carried out” (Simondon 2020, 666). The artful techniques 
devised by artists who critically engage ml reperform the operativity of ai 
yet simultaneously diverge from its homogenizing predictive structuration. 
Instead, these techniques analogically enact differential repetition of the 
contemporary agencement of machine learning. Their artfulness lies in the 
extent to which the artworks retain their margins of indeterminacy between 
ai’s procedural playing out within current sociotechnical constraints and 
a carefully considered deplaying, a making errant of ai that subsequently 
makes it wander away from being “on task.”



N otes

Introduction

1	 The discussion of Swanson’s Twitter thread points to a thread that she 
generated as a series of replies to herself to explicate her process and 
process-based thinking around the generation of Loab. The thread 
was originally located here: https://twitter.com/supercomposite/status 
/1567162288087470081 (accessed March 20, 2023). However, Swanson has 
since made the replies and thread invisible.

2	 These include a wide range of models and functions and a wide range of 
levels of access in terms of knowledge and cost. While the deep learning 
models that subtend text-to-image model prompts are relatively accessible 
in terms of consumer cost and interface, their running is only made pos-
sible through large-platform resourcing by, for example, Google, Micro-
soft, OpenAI, Meta, and so on. Although many widely deployed functions 
within ml facilitating data compression, for example, are “freely” available 
via resources such as GitHub, they require at least an intermediate degree 
of knowledge about data science. The degree to which machine learning 
dominates the production and distribution of contemporary cultural and 
knowledge production via everything from the elite pitting of humans 
against deep learning–enabled chess models to the algorithmic arrange-
ment of music in streaming services is ultimately made possible by financ-
ing funneled through platform capitalism. It is costly to scrape data, train 
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models through many iterations, and furnish the ongoing infrastructure 
to run machine learners. OpenAI is widely reported to have estimated 
that the running costs of training a model will have increased from $100 
million (for gpt-2) in 2020 to at least $500 million for a new model by 
2030. See Knight 2023. Corporations such as Nvidia and Google have been 
able to capture much of the machine learning market by investing in vast 
quantities of graphics processing unit (gpu) infrastructure, which is then 
“rented out” in various array bundles via cloud services for smaller start-
ups in the generative ai space, for example, Hugging Face and Databricks, 
to train and optimize open-source models. This is leading to a new kind 
of computational divide being labeled the “gpu-rich” and the “gpu-poor.” 
See Patel and Nishball 2023.

3	 To be clear, Fuller and Weizman’s argument contains a further dimension, 
which concerns the quality of contemporaneous sensemaking, which they 
call hyper-aesthetics (2021, 57). Hyper-aesthetics involves the intensification, 
amplification, and synthesizing of sensing and surfaces for sensing, gauged 
not only as technologies for sensing multiply throughout environments 
and life but also as life itself becomes hyper-aesthetic. They furnish the 
example of changes in atmospheric conditions such as the halting of the 
jet stream in Europe during 2018, which intensified the summer heat. This 
was sensed not only by satellites, weather, and climate modeling but also 
by berries growing in northernmost conditions, absorbing the changed 
atmospheric conditions and becoming sweeter, and humans becoming hot-
ter and sweating more (59). Hyper-aesthetics not only names the present 
sensing and sensemaking relations but becomes, for them, a method for 
investigating the politics of these relations.

4	 This site was authored by different Google researchers. See Olah, Mord-
vintsev, and Schubert 2017.

5	 My use of pop-up definitions is confluent with Erin Manning, Brian Mas-
sumi, and the collective work of Senselab’s (a large collective network of 
humans and more-than-humans operating internationally since the early 
2000s) concept of “pop-up propositions” (Manning and Massumi 2015). 
Here the idea is that a proposition or definition is provisional and arises 
in the middle of thought and events. It may help both change directions, 
take off, or reform but is not intended to “solidify” or act authoritatively. 
All my pop-up definitions take terms that are difficult to pin down within 
data science but are constantly swirling through it. By boxing these terms, 
I try to grasp at the difficulties of definition while still trying to bring some 
glossing of the term so as to allow further thinking and possibilities for it. 
I draw on a plethora of ml papers, textbooks, diagrams, platform ai blogs, 
and images that are already part of the data science literature informing 
the research throughout this book.
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6	 The constant updating of both data and ml systems is also commented 
on by Taina Bucher, who draws attention to the unfolding labor and op-
erationality of ml models in a platform such as Facebook (2018, 28).

7	 My interest in artful techniques for engaging ml resonates with Erin 
Manning’s attention to art practices, which open up questions, manners, 
and concerns with process (2016, 46). Manning argues that art as a “way,” 
manner, or mode has been eclipsed historically after the medieval period 
in Western culture by a preoccupation with art as an “object.” Manning’s 
and my process-oriented conception of “artfulness” stand in stark contrast 
with a tendency within, for example, software engineering scholarship and 
more informal commentary from programmers to describe it as “artful.” 
In a tradition that stretches back to, perhaps, Donald Knuth’s 1974 Turing 
Award lecture, “Computer Programming as an Art,” software engineers 
have claimed that skillfulness along with the aesthetic beauty of programs 
makes computer programming like art or “artful”: “We have seen that 
computer programming is an art, because it applies accumulated knowl-
edge to the world, because it requires skill and ingenuity, and especially 
because it produces objects of beauty” (Knuth 1974, 673). However, these 
concerns are clearly oriented to the cleverness and elegance of solutions to 
problems that programs and programmers deliver, and distinguishes this 
from the artfulness I am identifying as a manner and mode of (critically) 
probing computational processes and engendering novel sensibilities via 
engagement with computational models and ml techniques.

8	 Guattari uses the example of the Concorde plane to illustrate the ways 
in which the relations of its technical ensemble to finance and econom-
ics produce its singularity. Only twenty Concordes were ever built, in no 
small part owing to the enormous quantities of fuel required for the jet 
to fly at supersonic speeds. Because the first Concorde launched in 1976, 
its flights took place during the energy crisis of the 1970s. It thus was ever 
only available to a small group of elite passengers able to pay the exorbi-
tant cost of travel. And this was indeed the aircraft the Concorde became: 
a luxury supersonic jet (see Guattari 1995, 48).

9	 Yuk Hui has argued that Simondon’s “recurrent causality” and “internal 
resonance” can be collapsed back into the same concept (2019, 169) and 
that this makes them, and indeed Simondon, to an extent compatible with 
a general cybernetics program related to recursivity. I disagree with this 
reading; Simondon’s internal resonance functions on a different register —  
that of conditions. Internal resonance is not internal to a specific techni-
cal object but rather operates across a phylum of technical objects. It is 
the conditions and the conditioning a technical individual (the technical 
machine individuating within its ensemble) facilitates, that together allow 
another new technical individual to become possible: “We could speak of 
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an internal resonance of the technical universe within which each technical 
being effectively intervenes as a real condition of existence for other tech-
nical beings” (Simondon 2020, 416). This resonance is not predetermined 
but rather is generated as a technology unfolds. An example would be the 
internal resonance of computer graphics cards (gpus) — originally a high-
performance image-processing peripheral for computer gaming — with 
machine-learning-enabled computer vision. This internal resonance only 
became available through a convergence of technical, economic, and po-
litical factors that conjoined large-scale deep learning, parallel processing, 
the standardization of benchmark image datasets, and communities of 
practice revolving around computer vision challenges. These all converged 
after 2009 and the release of the ImageNet dataset. Internal resonance is 
due to the agencement of machine learning, and not to the design of spe-
cifically cybernetic feedback systems.

10	 Holly Herndon has been working with the ai model she has trained, Spawn, 
since 2017 in both live performance and studio album recording, particu-
larly in the album released in 2019, Proto. See https://www.hollyherndon 
.com/.

Chapter 1. Heteropoietic Computation: Category Mistakes 
and Fails as Generators of Novel Sensibilities

1	 This was a collaborative project with Adrian Mackenzie and Kynan Tan, 
titled “Re-imaging the Empirical: Statistical Visualization in Science and 
Art,” supported by the Australian Research Council Discovery scheme. Fur-
ther information about the broader project, especially concerning our aims 
and methods, is available at https://github.com/re-imaging/re-imaging 
/wiki.

2	 ArXiv is owned and operated by Cornell University as an online open-
access repository at https://arxiv.org. ArXiv maintains a large and increas-
ing quantity of e-print articles from a range of scientific fields and provides 
a platform for authors to share articles before or during peer review.

3	 Adrian Mackenzie and I have elsewhere explored these experiments (Mac
kenzie and Munster 2022) via William James’s concept of pure experience. 
We also look in more detail at the problems of ai image models that have 
been originally trained on a data ontology comprising “things” or entities, 
which cannot then recognize — and hence mismatches — diagrammatically 
configured scientific images.

4	 The rabbit-duck illusion involves a literal switching of perspective — a tiny 
movement or set of movements — in which the eye or visual sense engages 
a proprioceptive history of looking at images from different perspectives. 
To “see” the duck when one can only “see” the rabbit requires a flexibility 




