
Keysight Technologies

Selecting the Right Oscilloscope for Protocol Analysis Applications

Introduction

Serial buses are pervasive in today's electronic designs to provide critical communication between ICs, subsystems, boards and systems. I²C and SPI have found their way into a broad array of chips and peripherals including FPGAs, a variety of I/O, ADCs, sensors, ASICs and processors. JTAG serial buses, test chips and boards also provide debug ports for microprocessors and other integrated circuits. CAN, LIN and FlexRay enable noise-immune communication networks for automotive and industrial products. USB ports have become pervasive on mobile and other consumer products, and PCIe has gained a foothold by passing large amounts of data quickly. Even legacy serial buses like RS-232/485/485 and MIL-STD 1553 continue to prosper despite their age. Low cost, minimal pin usage and a protocol layer that eases software implementation make serial buses ideal for a wide variety of applications across a range of industries.

All major oscilloscope vendors now offer scope-based protocol applications that enable you to gain faster and better insight when debugging systems with serial buses. These applications let oscilloscopes trigger on and display packets in addition to parametric signal detail. They help you answer questions, including "How are the devices on each end of the bus negotiating the link?" and "What values are being passed on the bus?"

With the right combination of oscilloscope and protocol application, you can resolve issues quickly, saving days to weeks of time. Although all major scope vendors offer protocol decode and triggering applications, the applications vary in capability and quality. When evaluating a new oscilloscope that will include protocol applications, you should consider the following six questions.

1. What protocols are supported and to what degree?

Make sure the oscilloscope vendor has support for protocols that you currently use or are likely to use in the near future. It's easy to check a Web page to see if the protocol you are interested in is supported on a particular scope. Getting a trial license is a great way to make a determination. You need to pull up the application on an oscilloscope or look through detail in the datasheet, to determine how well the particular protocol is supported.

COO- http://www	thtp://www.home.keysight.com/find/9000_12C-SP()				
👷 🔷 N5391B I*C a	ASSY18 IPC and SPI Protocol Triggering and Decode				
					6
^	Products & Service	rs 👘	Technical Sup	oport	Applications &
United States Hom	e > > Osolloscope > Osollosco	pe Software >			
			I ² C and SPI code for Infi		l Triggering opes
		Sold By: Keysig	ht Usually arrives in 3 we ized Sales Partners - Cho	eks	
		View Data			
	Visit Technical Support				
	Images				
Overview & Features	Options & Softwar Accessories Trials	re & Docum Library			
Version	Download	Release Date	More Information	Try	
N5391B PC	and SPI Protocol Triggering a Get a 14-day trial license =	and Decode	Software Update		

For example, if you are using SPI, what is the fastest data rate that is supported? Does the application support 2-, 3- and 4-wire SPI or only a subset? If you are using USB 2.0, does the application support the low-, full- and high-speed versions of the specification as well as HSIC? If using I²C, how well does the application support I²C where the read/write bit is included in the address field?

Office Channel 1 Protocol Decode Setup Wardemarka Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1 Image: Channel 1	File Cont	trol Setu	p Display Trigger Measure	Malls Analysis (1979) as Dansas Hala		
Channel 2 Channel 3 Potocol Image: Channel 4 Channel 4 Channel 4						
Open Protocol Open Protocol Open Protocol Open Protocol Open Protocol Decode Protocol Protocol Decode Protocol Protocol Decode Protocol Protocol Decode Protocol Protocol Decode Protocol Decode Protocol Decode Protocol Decodecol	Of				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SPI SPI © Diplat Channels © Wardom Memories CAN © Mais Functions © Protocol Decode Fibre Channel © Protocol Decode Fibre Channel Fibre Channel Protocol Time MIPI M-PHY CJST-M Col Status MIPI M-PHY CJST-M Col Status <t< td=""><td></td><td></td><td>Channel 2</td><td>8 8 8 8</td><td></td><td></td></t<>			Channel 2	8 8 8 8		
SPI SPI © Diplat Channels © Wardom Memories CAN © Mais Functions © Protocol Decode Fibre Channel © Protocol Decode Fibre Channel Fibre Channel Protocol Time MIPI M-PHY CJST-M Col Status MIPI M-PHY CJST-M Col Status <t< td=""><td>Time 🗹 💿</td><td>) 🗄 💿</td><td>Channel 3</td><td></td><td></td><td></td></t<>	Time 🗹 💿) 🗄 💿	Channel 3			
SPI SPI © Diplat Channels © Wardom Memories CAN © Mais Functions © Protocol Decode Fibre Channel © Protocol Decode Fibre Channel Fibre Channel Protocol Time MIPI M-PHY CJST-M Col Status MIPI M-PHY CJST-M Col Status <t< td=""><td>Mez</td><td>•</td><td>Channel 4</td><td>Protocol</td><td></td><td></td></t<>	Mez	•	Channel 4	Protocol		
Protocol Decode Ethernel: LGGASE-KR Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Calubroton Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decod	S DI CLI	_OCK	Digital Channels	(
Protocol Decode Ethernel: LGGASE-KR Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Calubroton Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decod	erticz	0	Waveform Memories			
Protocol Decode Ethernel: LGGASE-KR Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Calubroton Protocol Decode Protocol Decode Protocol Decode Protocol Decode Protocol Decod	8 CS	E	Math Functions			
Image: International State PackBay Troge: International State Generic Bly10b Troge: International State Infinitibility Top: International State International State T	o D3 MC		45			FF 02 10 4D 53 4F
Operation Operation <t< td=""><td></td><td></td><td></td><td></td><td>10.0000000</td><td>2 0/</td></t<>					10.0000000	2 0/
Note Conjuntation InfiniBand InfiniBand 100 Foretorial	0 C2 MI	150				
Default automation Foregradiant 0 200 Protoconduit Jane 2000 0 200 Protoconduit Jane 2000 0 200 Protoconduit Jane 2000 0 2000 Protoconduit Jane 2000 0 2000 Protoconduit Jane 2000 0 2000 Protoconduit MPI Ph-PHY 10 30000 Undo Default Solup MPI Ph-PHY 10 400000 MPI Ph-PHY CogRey Address 10 20 20 10 11 400000 MPI Ph-PHY CogRey Address 10 20 20 10 12 44 180004 m fr 02 MPI Ph-PHY CogRey Address 10 20 41 47 13 4400000 m fr 02 MPI Ph-PHY CogRey Address 10 20 41 47 14 418004 m fr 02 MPI Ph-PHY CogRey Address 10 20 41 47 14 418004 m fr 02 MPI Ph-PHY CogRey Address 10 20 41 47 13 326004 m fr 02 MPI Ph-PHY CogRey Address 10 20 41 47 13 326004 m fr 02 PCI Express Cen 3 10 20 40 00 00 00 00 00 00 00 13 326004 m fr 02 44 45 45 45 PCI Express Cen 3 10 30 40 00 00 00 00 00 00 00 00 00 00 00 00	2		Probe Configuration		4C 45 4 5 FF FF	02 FF FF FF FF FF
Jos Morecontal JSS02048 ADC Bus JSS02048 ADC Bus Jos Adolysis JSS02048 ADC Bus JSS02048 ADC Bus JTAG (EEE 1149.1) JTAG (EEE 1149.1) JTAG (EEE 1149.1) JSS02048 ADC Bus MIPI D-PHY Data Source (MSO) MIPI D-PHY MIPI D-PHY Data Source (MSO) Add yea JSS02048 APP VISS 0.9 FF Add yea MIPI M-PHY DigBPV-4 D2 20 00 Add yea MIPI M-PHY UsBPTO D5 FF Add yea D3 3dd004 mi fr fr fr fr fr PT fr fr fr ID 3dd4054 mi fr 0 MIPI M-PHY UsBPTO D5 FF ID 3dd4054 mi fr 0 MIPI M-PHY UsBPTO D5 FF ID 3dd4054 mi fr 0 PT fr fr fr fr fr PC Express ID 3dd4054 mi fr 0 SAS D5 FF ID 3dd4054 mi fr 0 SAS D5 FF ID 3dd4054 mi fr 0 SAS D1 00 00 00 00 00	S		Probe Calibration	InfiniBand		
Acquisteds Link Track (LEEE 1149.1) Introduct Acquisteds Link 8 Protects Ready Default	'en	8	Horizontal			
Display Display Display Display 0 2.00 Display UN 0 Display UN Display Display 10 Display MIP P-PHY Display 11 P-PHY CSL-3 Display Display Display 12 24.3200.01 mi 1777.21 MIP P-PHY CSL-3 Display Display 14 24.5300.01 mi 1777.21 MIP P-PHY USP Display Display 14 24.5300.01 mi 1777.21 MIP P-PHY USP Display Display 15 25.2300.01 mi 176.21 MIP P-PHY UsP Display Display 15 25.2305.11 mi 177.21 PCL Express Display Display Display 16 22.25	Je	100	Acquisition	JESD204B ADC Bus		116 mc 216 mc
Image International Control (International International Internation Internatintetetee International International International Inte						1.10 ms
B Deck De						
Image of the state of	Protoco	ol 1 L				
2 44.2232dr min 147 f / 2 Mill H-PHY DigPrv4 02 20 21 4 45.2030dr mi 147 f / 2 Mill H-PHY DigPrv4 02 20 01 4 45.2030dr mi 147 f / 2 Mill H-PHY DigPrv4 02 20 01 4 45.2030dr mi 147 f / 2 Mill H-PHY DigPrv4 02 20 01 4 45.2030dr mi 147 f / 2 Mill H-PHY DigPrv4 02 00 4 45.2030dr mi 147 f / 7 Mill H-PHY UsP 00 ph 417 7 41.3100dr mi 147 07 MILP H-PHY UsP 05 ff / 6 8 40.51004 mi 147 07 MILP H-PHY UsP 05 ff / 6 10 3849004 mi 147 07 MILP H-PHY UsP 05 ff / 6 10 3849004 mi 147 07 PCI Express 05 ff 11 39.34004 mi 147 07 r ff / 6 / 6 / 6 / 6 / 6 96 06 12 39.31004 mi 147 07 r ff / 6 / 6 / 6 / 6 / 6 / 6 96 06 12 39.32004 mi 147 07 r ff / 6 / 6 / 6 / 6 / 6 / 6 96 06 12 39.32004 mi 147 07 r ff / 6 / 6 / 6 / 6 / 6 96 06 14 29.82004 mi 147 07 r ff / 6 / 6 / 6 / 6 / 6 97						
44.32000t mi fr fr 21 MI2 M PHY OpEPv4 03 20 00 44.32000t mi fr fr fr 71 MI2 M PHY OpEPv4 06 20 00 44.43200t mi fr 00 MI2 M PHY OpE 06 fr 41.47 5 44.3100t mi fr 00 MI2 M PHY OpE 06 fr 41.47 8 40.3300t mi fr 00 MI2 M PHY UniPro 05 fr 7 8 40.3300t mi fr 00 MI2 M PHY UniPro 05 fr 7 10 30.4400t mi fr 00 MI2 M PHY UniPro 05 fr 7 10 30.4400t mi fr 00 MI2 M PHY UniPro 05 fr 7 10 30.4400t mi fr 00 MI2 M PHY UniPro 05 fr 7 10 30.4400t mi fr 00 MI2 M PHY EFE 05 fr 7 10 30.4400t mi fr 00 MI2 M PHY EFE 05 fr 7 10 30.4500t mi fr 01 R - 232/UART 00 90 00 00 00 00 00 00 00 00 00 00 00 0				MIPI M-PHY CSI-3		
4 44/301001 mi PT 08/50 4 44/301001 mi PTQ 08/51 5 44/310001 mi PTQ 09/51 5 44/310001 mi PTQ 09/51 6 43/31001 mi PTQ 09/51 6 43/31001 mi PTQ 09/51 7 54/31001 mi PTQ 09/51 9 54/31001 mi PTQ 09/51 9 54/31001 mi PTQ 09/57 10 54/51001 mi PTQ 09/57 11 33/30001 mi PTQ PCI Express 09/77 12 57/33041 mi PTQ + 44/54 45 19/52/20147 00/50 00/00 00/00 13 33/30001 mi PTQ + 45/54 54 19/52/20147 00/50 00/00 00/00 13 33/30001 mi PTQ + 45/54 54 19/52/20147 00/50 00/00 00/00 15 32/3001 mi PTQ + 15/74 54/5 00/51 00/50 00/00 15 32/3001 mi PTQ + 15/74 54/5 00/51 00/50 00/00 12 32/3001 mi PTQ + 15/74 54/5 00/51 00/50 13 32/3001 mi PTQ + 15/74 54/5 00/51 00/50				MIPI M-PHY DiaREv4		
5 04.51004 mi fr 0.7 05 fr 4.35006 mi fr 07 fr fr Mi Jr M-PrV USS 20 50 4147 7 41.21005 mi fr 0.7 Mi Jr M-PrV USS 20 50 4147 7 41.21005 mi fr 0.7 Mi Jr M-PrV USS 20 50 4147 9 30.50005 mi fr 0.7 05 fr 05 fr 10 35.80005 mi fr 0.7 Mi Jr M-PrV USS 05 fr 11 33.54005 mi fr 0.7 Mi Jr M-PrV USS 05 fr 12 35.80005 mi fr 0.7 PCI Express 06 13 33.20005 mi fr 0.7 PCI Express 06 14 32.82006 mi fr 0.7 PCI Express 05 fr 15 32.92006 mi fr 0.7 SAS 01 40 42 65 44 54 15 32.92006 mi fr 0.7 SATA 01 40 30 20 70 16 32.32006 mi fr 47 42 42 45 44 54 SPI 06 fr 17 32.82006 mi fr 47 42 42 45 44 54 SATA 01 40 30 20 70 18 32.82006 mi fr 47 42 42 45 42 45 42 SPI 06 fr 19 32.83006 mi fr 47 42 42 45 42 45 42 SPI 07 60						
2 41.321000 mi [F 0] M2P IM PHY UniPro 09.77 3 40.310004 mi [F 0] M2P IM PHY UniPro 09.77 3 3.280004 mi [F 0] M2P IM PHY UniPro 09.77 3 3.280004 mi [F 0] PCI Express 09.77 12 3.733004 mi [F 0] PCI Express 09.77 12 3.733004 mi [F 0] PCI Express 09.77 13 3.89000 mi [F 0] PCI Express 09.77 13 3.38000 mi [F 0] PCI Express 09.77 13 3.38000 mi [F 0] PCI Express Gen3 0.95.76 15 3.297504 mi [F 0] PCI Express Gen3 0.95.77 14 3.2000 mi [F 0] SAS 0.10.00.00 mi 00.00 mi						05 FF
4 40.51004 mi [F 0.3] MI[Z] M-PHY UNITO 05 FF 0 35.80004 mi [F 0.0] MI[Z] M-PHY UNITO 05 FF 10 35.80004 mi [F 0.0] PCI Express 06 FF 10 35.80004 mi [F 0.0] PCI Express 0.0 FF 13 35.80004 mi [F 0.7] PCI Express 0.0 90 00:00 00:00:00:00:00:00:00:00:00:00:00		304004 ms	FF FF FF FF	MIPI M-PHY UFS		
8 40.51004 mi /f 0.5 05 ff 9.32400504 mi /f 0.7 MIPI RFFE 05 ff 10.3340004 mi /f 0.7 PCI Express 05 ff 11.3340004 mi /f 0.7 PCI Express 05 ff 12.3353004 mi /f 0.7 PCI Express 05 ff 13.3358004 mi /f 0.7 (4.7 46 x 4.5 4	7 -41.3			MIPI M-PHY UniPro		
10 3849004 mij fr 06 10 3849004 mij fr 071 Express 06 11 38449004 mij fr	8 -40.5					
11 3B34060 mj ff 02 PCI Express 05 FF 12 3B34060 mj ff 7F FF FF FF FF PCI Express Cen3 02 68 49 42 63 45 54 13 3B34060 mj FF FF FF FF FF PCI Express Cen3 03 60 00 00 00 00 00 00 13 3B34060 mj FF 74 13 49 42 54 45 54 B5-323 (UART 03 60 00 00 00 00 00 00 16 227 3900 mj FF 20 9A5 07 FF 17 24.15000 mj FF 40 53 47 5A7A 03 10 00 00 00 18 22.2000 mj FF 40 53 47 5A7A 03 10 00 00 00 19 22.2000 mj FF 40 53 47 5A7A 03 10 00 00 00 19 22.3000 mj FF 40 53 47 5A7A 03 10 00 00 00 19 22.3000 mj FF 40 53 47 5A7A 03 10 00 00 00 10 23.2000 mj FF 40 53 47 547A 03 10 00 00 00 10 23.2000 mj FF 47 54 547A 03 10 00 00 10 23.2000 mj FF 47 547 04 10 00 00 10 23.2000 mj FF 47 54 547 04 10 00 00 10 23.2000 mj FF 47 547 04 10 00 00 10 <td>9 -39.6</td> <td></td> <td></td> <td></td> <td></td> <td></td>	9 -39.6					
12 27253004 mi f r f r f r f r f r f r f r f r f r f				PCI Express		
33 33:80000 mil Ff Ff 41 49 46 (45 44] 54 00 96 00 00 00 00 00 00 00 00 00 00 00 00 00						
14 29222004 mil FF 06 2922004 mil FF 20 5A5 05 FF 15 26273004 mil FF 40 53 4F 5ATA 03 10 00 0 0 18 2522054 mil FF 40 53 4F 5ATA 03 10 00 0 0 18 2522054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 2522054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 252054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 252054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 252054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 252054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 252054 mil FF 40 53 4F 5ATA 03 10 00 0 0 10 252054 mil FF 40 53 4F 5ATA 03 20 00 12 2523054 mil FF 4F 71 5VID 03 20 00 12 1429004 mil FF 4F 71 US 2.0 06						
15 2927904 mi ff 92 05 ff 15 2927904 mi ff rff rff rff rff 54C 18 2027904 mi ff rff rff rff rff 54T 18 2027904 mi ff rff rff rff rff 54T 18 2027904 mi ff rff rff rff 54T 19 2027904 mi ff rff rff rff 54T 19 2027904 mi ff rff 54T 19 202804 mi ff rff 59T 20 202804 mi ff rff rff 54T 20 202804 mi ff rff rff 54T 20 202804 mi ff rff 54D 20 202804 mi ff rff 54D 20 202804 mi ff rff 54D 20 202904 mi ff rff 54D 20 16 49306 mi ff rff 02 20 21 20 16 49306 mi ff rff 080				RS-232/UART		
15 227.99004 mij FF FF FF FF	15 -29.0	075004 ms	FF 02	SAS		
19 22.20000 mi [F] 06 91 22.20000 mi [F] 07 20 20.20000 mi [F] 02.201 20 20.20000 mi [F] 00.0000 20 20.20000 mi [F] 00.0000						
19 22.454004 ms [Ff Q2 5F4 05 Ff 20.280600 ms [Ff Ff Ff IS 37/D 02.270 21 21. 47.89004 ms [Ff Ff F2 1 032 00 00 22. 16.495004 ms [Ff F USB 2.0 06				-		
20 -20.286004 ms FF FF FF I SVID 02.20.21 21 -17.804004 ms FF FF 21 I 03.20.00 00.00 21 -16.495004 ms FF FF USB 2.0 06 06	18 -22.2			SPI		
21 -17.804004 ms FF FF 21 03 20 00 22 -16.495004 ms FF 00 06				5)(10)		
22 -16.495004 ms FF 058 210 06						
	22 -16.4			USB 2.0		
	1 10.1			USB 3.0		

Figure 1. View product web pages to see if the protocol you are interested in is supported on a particular scope.

Figure 2. Try out a protocol application on your oscilloscope to better determine its capabilities.

1. What protocols are supported and to what degree? (Cont.)

Do you need to look at simultaneous decode of more than one serial bus (Figure 3)? How easy is it to set up decode of multiple buses, navigate between buses or change which bus is being used as the trigger source?

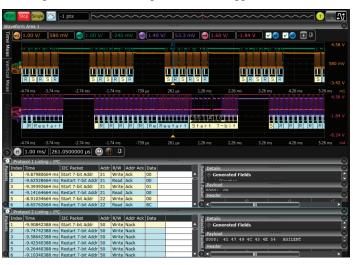


Figure 3. Keysight Infiniium scopes support simultaneous, time-correlated decode of up to 4 serial buses.

Check with your oscilloscope vendor to determine which serial buses they support with a protocol application. You will need the information to meet current needs and plan for future needs.

Serial Bus Protocol	Infiniium Oscilloscope Family			
	S-Series	90000 Series	90000 X-Series	
CAN and CAN .dbc symbols	\checkmark	\checkmark	\checkmark	
Ethernet 10GBase-KR		\checkmark	\checkmark	
FlexRay	\checkmark	\checkmark	\checkmark	
HDMI	Up to 740 Mbps	\checkmark	\checkmark	
² C	\checkmark	\checkmark		
JTAG	\checkmark	\checkmark	\checkmark	
LIN	\checkmark	\checkmark	\checkmark	
MIPI	\checkmark	\checkmark	\checkmark	
PCIe	\checkmark	\checkmark	\checkmark	
RS-232/485/488	\checkmark	\checkmark	\checkmark	
SAS		\checkmark	\checkmark	
SATA	Up to 1.5 Gbs	\checkmark	\checkmark	
SPI	\checkmark	\checkmark	\checkmark	
SVID		\checkmark		
USB		\checkmark		
Xaui		\checkmark	\checkmark	
8B/10B	\checkmark	\checkmark		

2. How easy is it to set up protocol decode?

Engineers excel at problem solving. Anytime too much brain power or time is required for a task, engineers will find another less taxing method of attacking a problem. Setting up a oscilloscope to take a protocol measurement should take you a minute or less.

To configure the scope for protocol decode, select which channels are probing specific serial signals and set the threshold value to determine when the signal is high and when it is low.

Although the concept seems simple enough, when you set up protocol decode for a serial bus with 3, 4 or 5 signals, the task becomes more complex than originally anticipated. If decode is set up for multiple simultaneous serial buses, the task becomes even trickier.

Keysight Technologies, Inc. offers "Auto Setup" for decode (Figure 4). After you assign channels, Auto Setup works a bit like autoscale. Auto Setup determines the correct threshold level for each signal and scales the timebase appropriately. This feature is particularly effective for users who don't often make decode measurements or set up of multiple decodes simultaneously.

Protocol Decode Setup	Protocol Decode Setup
🗹 On	✓ On
Protocol Manual	Protocol
I ² C Setup	MIPI M-PHY UniPro
Address Format	Data Source 1
7/10-bit Addr	Channel 1
Data Source (SDA)	Data Source 2
Channel 1	Channel 2
Clock Source (SCL)	Data Source 3
Channel 2	Channel 3
	Data Source 4
	Channel 4
	Symbol Display Format
	K/D Codes
	O Label
	🛛 🔵 8-bit
	🔵 🔵 10-bit
F ' A A A A A A A A A A	Descramble
Figure 4. Auto Setup lets you set up protocol decode on one or mo	
buses in less than 30 seconds.	Electrical IDLEs are present

3. How is the protocol decode displayed?

Although all vendors provide some level of decode, decode quality varies dramatically. Start by displaying protocol decode for the bus you are interested in on the oscilloscope you are considering.

Decode on waveforms is the most common method of displaying protocol packets (Figure 5). Packet content is aligned in time with parametric signal detail.

Keysight colorizes packets to make it easier to determine packet sequence even with larger timebase settings when packet detail is too compressed to see detail.

Figure 5. Decode on waveforms enables you to see time-aligned packets with the serial signal sources, but requires you to zoom in to see packet detail.

Figure 6. Keysight colorizes packets to make it easier to determine packet sequence.

Some vendors decode the entire acquisition memory, while others decode only what is on screen. Decoding only on-screen information can cause problems. If the entire packet isn't displayed on-screen, the oscilloscope won't decode any of the packet, or worse, decode it incorrectly. To correct the problem, users are forced to create a main display with all acquisition memory and a second zoom window to show decode detail, as shown in Figure 7.

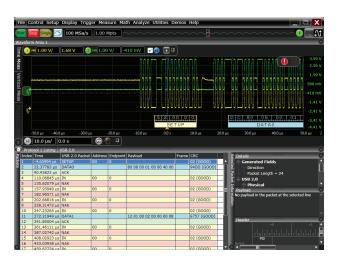
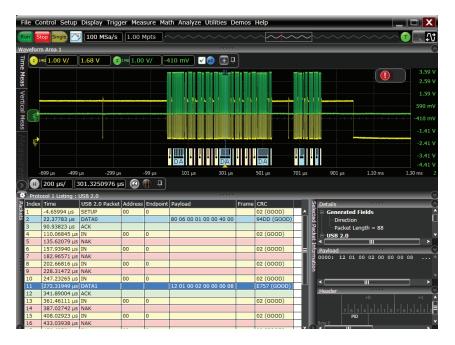



Figure 7. Zoom in on detail in the waveform area while protocol packets from off-screen capture is still shown in the listing area.

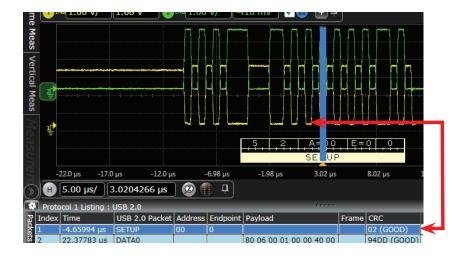
3. How is the protocol decode displayed? (Cont.)

Most vendors also offer a lister that will display decode of sequential packets. Listings let users see the flow of packets in a more condensed format (Figure 8).

Unlike decode in waveform areas, listings show packet detail independent of timebase settings. But be aware that listing detail can vary greatly from vendor to vendor and scope to scope. Are lister rows colorized to match waveform decode color for rapid transition between physical and protocol layers?

When evaluating protocol decode on oscilloscopes that incorporate a lister, ensure that your vendor provides time alignment between each row in the lister and signals in the waveform display. With time alignment, users can move between physical layer and packet layer quickly and with confidence (Figure 9).

Some vendors provide listers with minimal or no time alignment with signal detail.



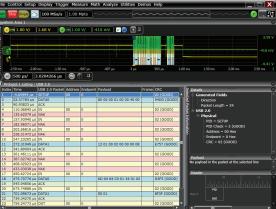

Figure 9. Time-aligned markers on Infiniium oscilloscopes track in the listing when moved in the waveform area or track in the waveform area when a new row of the lister is highlighted, as shown in this SPI example.

Figure 8. Infiniium protocol listers let you move quickly between physical and protocol layer with the advantage of seeing packet detail in the lister while zoomed out, as shown in this USB example.

3. How is the protocol decode displayed? (Cont.)

Does your oscilloscope allow different views of packet content?

Here's an example of Keysight's Infiniium protocol viewer. In addition to seeing packet detail, users can see specified packet content in different formats. For example, see data packet payloads and packet detail in the header section as it would appear in a databook.

Does your oscilloscope allow the listers to go full screen to display a greater number of packets at once? Infiniium oscilloscopes allow users to determine how much of the display to dedicate to the lister versus the waveform area.

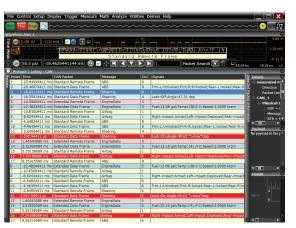


Figure 10. Packet details, payload, and header show additional info for the packet highlighted by the blue alignment bar.

Figure 11. Infiniium oscilloscope with full screen lister.

On Infiniium oscilloscopes, a Demo Center stores saved files that can be quickly loaded into the scope for all supported protocol decodes. You can rapidly evaluate how decode is displayed for your particular protocol.

Protocol

Proto

Figure 12. Connect to a live target or use built-in previously captured signals to evaluate decode and trigger capability for a specific protocol application.

4. What type of packet triggering and searching is standard or incorporated in the protocol application?

Determining when to have the oscilloscope trigger and begin acquiring packets is critical for debug. Traditional edge, width and pattern trigger are not sufficient for packet triggering. Oscillocope vendors typically bundle packet-based triggers with each decode application. These packet-based triggers can be implemented in software or hardware, and knowing this level of detail is important if you plan to trigger on infrequent events.

Hardware-based serial packet triggers are implemented in hardware—typically an FPGA—and run in real time. The vendor implements a real-time state machine that tracks incoming packet content. When a specified condition is met, this hardware interacts with the scope's trigger circuitry. For single-shot protocol acquisitions that require a trigger, hardware-

based triggering is a requirement (Figure 13).

Software-based serial packet triggers are implemented in software. After each acquisition, the software analyzes the acquired packets and determines if any meet the trigger condition. If so, the oscilloscope displays the acquired signals. Alternatively, if the software searches the decoded packets and doesn't find the specified trigger condition, the oscilloscope discards the acquisition without display and acquires a new acquisition, starting the process again.

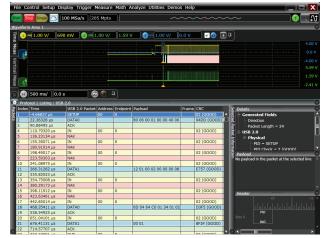
Software-based triggering has significant dead time between acquisitions, which makes it likely it will miss trigger conditions that occur infrequently. As memory depth increases, so does processing time, making dead time between acquisitions for software-based triggering even larger.

Given the superiority of hardware-based protocol triggering, why would a protocol app offer only software-based triggering? It's likely that hardware-based triggering for that specific protocol wasn't developed.

Pull up a serial trigger on your vendor's oscilloscope for the protocol you are working with. See what types of packet-based triggering are available and whether the trigger is implemented in hardware or software.

Trigger	? 🗙
Sequence(A→B)	Sweep
Edge Then Edge A10110 Shortcuts Timeout Window	 Auto Triggered
	Conditioning
Protocol	Trigger Action
p1:I ² C Search	Thresholds
Туре	Clear Trigger Settings
Start	
Start	Save/Load Trigger Setup
Stop Start 7-bit Addr	
Restart 7-bit Addr	
² C 7-bit Addr	
Start 10-bit Addr	
Restart 10-bit Addr	
10-bit Addr	

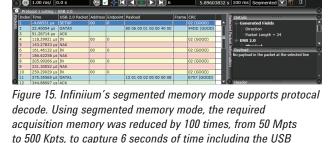
Figure 13. Hardware-based protocol triggers will absolutely enable the oscilloscope to trigger on a specified condition no matter how infrequent or brief the specified event is, with minimal latency between successive triggers. Shown is an USB enumeration trigger example.


5. How much memory does your scope support for packet capture?

Capturing a sufficient number of protocol packets is

critical for effective debug. Oscilloscopes acquire asynchronously and therefore use memory more quickly than dedicated protocol analyzers or state-based logic analyzers. For this reason, scope users with protocol analysis needs benefit greatly from deep-memory oscilloscopes. To maximize memory and display utilization, check to see if your scope vendor allows you to set memory depth, sample rate and timebase independently. This capability makes it dramatically easier to capture and view protocol signals with full memory depth.

Oscilloscopes ship with a fixed amount of standard memory and users enable optional acquisition memory. To get a first order approximation of how many packets you can acquire in a single run, you can do a quick calculation by using the required sample rate for a specific bus coupled with the oscilloscope's time-base and optional memory. Most oscilloscope vendors have channel interleaving, which doubles memory depth only when 2 of the 4 analog channels are used. For example, Keysight Infiniium oscilloscopes ship with 50 Mpts memory standard on 4 channels or 100 Mpts standard on 2 channels. Users can enable optional memory to 400 Mpts on 4 channels and 800 Mpts on 2 channels (Figure 14).


Serial traffic often incorporates periods of dense activity followed by relatively long periods of dead time. Using the oscilloscope's segmented memory mode enables you to capture significantly longer periods with the same amount of memory. Each segment is started when the oscilloscope sees a specified trigger condition. For example, the trigger might be when a USB device enumerates a number of packets are sent, each with a SETUP packet. Using segmented memory, this sequence of events can be captured using 100 times less memory (Figure 15).

Check to make sure your oscilloscope vendor supports decode in segmented memory mode.

590 mV 💿

enumeration sequence.

) 🔽 💿 🗊 🕂

Figure 14. How much memory does your scope have? In this example, Infiniium S-Series used 100 Mpts memory sampling at 100 MSa/s to capture over 2 full seconds of USB traffic, including a USB enumeration sequence in its entirety.

6. If using mixed-signal oscilloscope for protocol analysis, what else should you consider?

Mixed Signal Oscilloscopes (MSOs) are a great choice for protocol analysis for several reasons. First, they free up analog channels for viewing other system activity. Second, if you are viewing more than one serial bus, MSOs offer additional channels, unlike digital storage oscilloscopes with only four channels. Third, some vendors have more standard MSO acquisition memory than is available on the analog channels, enabling capture of additional packets when the MSO digital channels are used rather than the scope's analog channels (Figure 16).

This may be surprising, but many vendors do not support segmented memory with MSO digital channels. This means that the MSO channels cannot provide protocol decode when you use segmented memory mode. Be sure to see if your oscilloscope vendor supports segmented memory on the MSO channels.

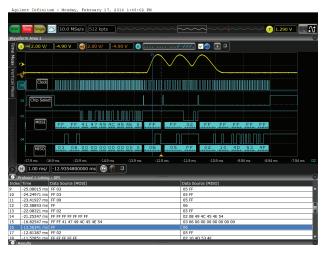


Figure 16. Check with your oscilloscope vendor to see if acquisition memory is shared between analog and digital channels or if each has separate acquisition memory. If separate, see how much memory, is available for MSO channels. For example, Keysight Infiniium MSO digital channels offer separate acquisition memory, with 128 Mpts of memory on digital channels versus 20 Mpts standard on analog channels.

Figure 17. MSO channels are a great choice for protocol triggering and decode, as shown in this SPI example.

Conclusion

Adding protocol analysis capabilities to a oscilloscope enables you to debug a wider range of issues faster. Evaluating both specific protocol applications and the scope's underlying ability to effectively perform packet-based triggering and decode will help you select the scope that best meets your needs.

Keysight encourages oscilloscope users to compare Infiniium protocol trigger and decode capabilities and performance with any other oscilloscope on the market.

Only Keysight Infiniium offers the following combination of protocol features:

- Auto setup
- Time-alignment marker between waveforms and lister
- Color-coded lister rows
- Multi-tab protocol viewer
- Decode of off-screen acquisition
- Independent setting of sample rate, timebase, and memory depth
- Deepest memory for capturing more packets up to 1 Gpt/ch)
- Full screen lister
- Demo center with pre-saved waveforms for rapid evaluation
- Free 14-day trial license
- Decode of up to 4 serial buses with lister selection
- Fast update rate with decode
- Extensive packet searching
- Decode support with segmented memory (including MSO channels)
- Standard MSO memory (128 Mpts)

Keysight Technologies Oscilloscopes

Multiple form factors from 20 MHz to >90 GHz | Industry leading specs | Powerful applications

Related literature

Keysight Infiniium S-Series Oscilloscopes (500 MHz to 8 GHz), Data sheet 5991-3904EN

Keysight Infiniium 90000A Series Oscilloscopes (2.5 GHz to 13 GHz), Data sheet 5989-7819EN

Keysight Infiniium 90000 X-Series Oscilloscopes (13 GHz to 33 GHz), Data sheet 5990-5271EN

Evaluating Oscilloscope Fundamentals, Application note 5989-8064EN

To download these documents, insert the publication number in the URL:

http://cp.literature.keysight.com/litweb/pdf/xxxx-xxxxEN.pdf

Product web site

For the most up-to-date and complete application and product information, please visit our product web site at:

http://www.keysight.com/find/s-series

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/quality

Keysight Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

Keysight Solution Partners

www.keysight.com/find/solutionpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with solution partner convenience.

www.keysight.com/find/s-series

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia 1 800 629 485 China 800 810 0189 Hong Kong 800 938 693 India 1 800 112 929 Japan 0120 (421) 345 080 769 0800 Korea Malaysia 1 800 888 848 1 800 375 8100 Singapore Taiwan 0800 047 866 Other AP Countries (65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	0800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)

United Kingdom

For other unlisted countries: www.keysight.com/find/contactus (BP-06-06-14)

0800 0260637

This information is subject to change without notice. © Keysight Technologies, 2014 Published in USA, August 4, 2014 5990-8359EN www.keysight.com