INTEGRIA HEALTHCARE SYMPOSIUM 2015

Clinical Practitioner Pearls Perspectives

An Experience-Based Approach to Patient Care

24+25 OCTOBER MELBOURNE

Clinical Pearl:

('klīnīkəl pûrl) 1. A straightforward and meaningful piece of clinical advice

. Clinically relevant information based on experience

Table of Contents

SESSION 5

The Cardiometabolic Continuum: The Nutritional Medicine Perspective

Dr Bradley McEwen

SESSION 6

Clinical Keys for Personalised Dietary Prescribing in the 21st Century Dr Elizabeth Steels

SESSION 7

Natural Solutions for Neurological Health and Cognition: New Answers to Old Questions

Professor Kerry Bone

SESSION 8 Case Study Panel Discussion

Inspiring people to live better lives through natural healthcare

INTEGRIA HEALTHCARE SYMPOSIUM 2015

Clinical + Practitioner Pearls + Perspectives

An Experience-Based Approach to Patient Care

24+25 OCTOBER MELBOURNE

Clinical Pearl: ('klınık_əl pûrl)

 A straightforward and meaningful piece of clinical advice

. Clinically relevant information based on experience

Session 5

The Cardiometabolic Continuum: The Nutritional Medicine Perspective

Dr Bradley McEwen

PhD, MHSc (Hum. Nutr.), Grad. Cert HSc (Hum. Nutr.), BHSc., N.D (Adv.), D.B.M., D.Hom., D.Nutr., D.S.M., D.R.M.

Inspiring people to live better lives through natural healthcare

Leading Causes of Death, Australia – Selected Years: 2004, 2008, 2013							
	2004	1	2008	3	2013	3	
Cause of death	Number	Rank	Number	Rank	Number	Rank	↑↓↔
Ischaemic heart diseases	24,576	1	23,813	1	19,766	1	\leftrightarrow
Dementia and Alzheimer disease	4,606	5	8,172	3	10,993	2	1
Cerebrovascular diseases	12,041	2	11,979	2	10,549	3	\downarrow
Trachea, bronchus and lung cancer	7,264	3	7,956	4	8,217	4	\leftrightarrow
Chronic lower respiratory diseases	5,785	4	6,255	5	7,148	5	\leftrightarrow
Diabetes	3,599	8	4,181	6	4,328	6	1
Colon, sigmoid, rectum and anus cancer	4,126	6	4,125	7	4,234	7	\leftrightarrow
Blood and lymph cancer (including leukaemia)	3,820	7	3,887	8	4,094	8	\leftrightarrow
Heart failure	2,823	11	3,363	9	3,244	9	1
Prostate cancer	2,761	12	3,031	11	3,112	10	1
© 2015 Dr Bradley McEwen PhD, Integria Healthcare						⊇tis ₂	

Leading Causes of Death, Australia – Selected Years: 2004, 2008, 2013

	2004		2008	8	2013		
Cause of death	Number	Rank	Number	Rank	Number	Rank	↑ ↓↔
Diseases of the urinary system	2,896	10	3,235	10	2,987	11	\downarrow
Breast cancer	2,661	13	2,789	12	2,892	12	\leftrightarrow
Pancreatic cancer	1,978	15	2,289	14	2,558	13	\downarrow
Intentional self-harm	2,098	14	2,340	15	2,520	14	1
Influenza and pneumonia	3,381	9	1,760	17	2,493	15	1
Skin cancers	1,573	16	1,857	15	2,209	16	\downarrow
Hypertensive diseases	1,340	18	1,833	16	2,150	17	\downarrow
Accidental falls	873	20	1,461	20	1,920	18	1
Cardiac arrhythmias	1,229	19	1,550	18	1,892	19	Ļ
Cirrhosis and other diseases of liver	1,386	17	1,509	19	1,772	20	\downarrow
Total deaths	90,816		97,385		99,078		1
© 2015 Dr Bradley McEwen PhD, Integria Healthcare							

Activation of Platelets at Sites of Vascular Injury

Offermanns S. Circ Res. 2006; 99(12): 1293-304

SLIDE 25

letabolism	Abbreviations: DHF, dihydrofolate; DHFR, dihydrofolate; DNMT, DNA methyltransferase; dUMP, deoxyuridine monophosphate; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SAM, S-adenosylmethionine; HRT, serine hydroxymethyltransferase; THF, tetrahydrofolate; THF, tetrahydrofolate; TS, thymidylate synthase
nd Folic Acid N	Folic Acid DHR DHR DHR DHR DHR DHR DHR DHR
MTHFR ar	Methionine Synthesis R SAM-Mediated Methylations Methionine SAM SAM SAM SAM SAM Mathionine Mathionine SAM Mathionine Math

SLIDE 40

integria HEALTHOCARE

Tests for Cardiometabolic Syndrome				
Test	Reference range	Reason (\uparrow = increased, \downarrow = decreased)		
Glucose (mmol/L)	Fasting: 3.0-5.4 Random: 3.0-7.7	 ↑ Hyperglycaemia, Diabetes (fasting: > 7.0 mmol/L, 2 hours postprandial > 11.1 mmol/L) ↓ Hypoglycaemia, potential "overdose" of medication 		
Fasting insulin (mU/L)	<5 during hypo glycaemia; 4-10 after 8 hour fast	 ↑ levels and ↑ insulin/glucose ratios are found with pancreatic islet beta cell hyperplasia or insulinomas. Non-insulin dependent diabetes and insulin therapy may also give high levels. To identify self-administration of insulin as a cause of hypoglycaemia, C-peptide assay is also required. 		
HbA1c (%)	< 6.5	≥ 6.5% diagnostic of diabetes *HbA1c levels < 8% indicate "good" control		
https://www.rcpa.edu.au/Library	/Practising-Pathology/F	RCPA-Manual/Home		
© 2015 Dr Bradley McEwen PhD, Integria Healthcare				

Tests for Cardiometabolic Syndrome				
Test	Reference range	Reason (\uparrow = increased, \downarrow = decreased)		
CRP (mg/L) hsCRP (mg/L)	< 5 High sensitivity assays (hs-CRP): Low risk: < 1.0 Average risk: 1.0-3.0	 ↑ acute phase response or active disease in chronic inflammatory disorders. Increased risk of cardiovascular risk in primary prevention populations In patients at risk for myocardial infarction (MI), and without other causes of an acute phase response, the presence of slightly elevated or even high normal hs-CRP indicates a greater risk of MI 		
Homocysteine (µmol/L)	5-15	 ↑ risk factor for atherosclerosis and vascular disease. Research found ↑ risk factor for thrombosis in people <40 years of age. ↑ with low levels of folate, B12, B6. MTHFR? 		
© 2015 Dr Bradley McEwen PhD, Integria Healthcare				

Test	Reference range	Reason (\uparrow = increased, \downarrow = decreased)
Triglycerides (mmol/L)	< 1.7	↑ CVD, diabetes, nephrotic syndrome, hypothyroidism, pancreatitis, alcoholism, oral contraceptive use or corticosteroid medication
Lipoprotein (a) (g/L)	< 0.2	Lipoprotein (a) (Lp (a)) is an independent risk factor for atherosclerosis. ↑ Lp (a) is associated with increased vascular risk. May be indicated in the assessment of a patient with premature coronary or cerebral arterial disease, especially if there is a suggestive family history.
		ramily history.

Test Re rar	eference nge	Reason (↑ = increased, ↓ = decreased)
Total cholesterol (mmol/L) < 4	4	↑ risk of coronary artery disease in all age groups. The cause may be primary (familial hypercholesterolaemia and other genetic disorders) or secondary (associated with e.g., biliary obstruction, hypothyroidism, nephrotic syndrome) Levels are reduced for up to 8 weeks with acute illness (e.g., myocardial infarction, acute infection)

Tests for Cardiometabolic Syndrome				
Test	Reference range	Reason (\uparrow = increased, \downarrow = decreased)		
HDL (mmol/L)	Female: 1.0-2.2 Target: > 1.0 Male: 0.9-2.0 Target: > 1.0	↓ associated with an increased risk of atherosclerotic vascular disease		
LDL (mmol/L)	2.0-3.4 Target: < 2.5	 ↑ associated with an increased risk of atherosclerotic vascular disease. LDL levels are reduced for up to 8 weeks with acute illness (e.g. myocardial infarction, acute infection) 		
https://www.rcpa.edu.au/Library/Practising-Pathology/RCPA-Manual/Home				

Tests for Cardiometabolic Syndrome: a note on HDL sub-fractions

- In a prospective study, HDL2 showed a stronger inverse association with ischemic heart disease risk than did HDL3.
- There are reports that levels of both HDL2 and total HDL were inversely associated with the risk of acute myocardial infarction
- This suggests that these forms of HDL may play a protective role in ischemic heart disease.
- The role of HDL3 remains ambiguous, although small, dense HDL3 has been shown to protect low-density lipoprotein (LDL) from oxidative stress.

integria 51

Hsieh JY, Chang CT, Huang MT et al. Anal Chem. 2013; 85(23): 11440-8

© 2015 Dr Bradley McEwen PhD, Integria Healthcare

Tests for Cardiometabolic Syndrome Reason (\uparrow = increased, \downarrow = decreased) Test Reference range ↑ acute phase response, CVD. ↓ reduced production of fibrinogen (liver Fibrinogen (g/L) 1.5-4.0 disease, inherited deficiency), disseminated intravascular coagulation (DIC), fibrinolysis 50-200% of the level in pooled Levels of Factor VIII and VWF increase with normal Von Willebrand exercise, stress and endogenous or exogenous plasma, Factor (VWF) sometimes oestrogen expressed as 0.5-2.0 U/mL https://www.rcpa.edu.au/Library/Practising-Pathology/RCPA-Manual/Home integria 52 © 2015 Dr Bradley McEwen PhD. Integria Healthcare

Tests for Cardiometabolic Syndrome				
Test	Reference range	Reason (\uparrow = increased, \downarrow = decreased)		
Calcium (mmol/L)	2.10–2.60	 ↑ Hyperparathyroidism, Vitamin D or Vitamin A toxicity. ↓ Hypoparathyroidism, Renal failure, Osteomalacia or Rickets. 		
Sodium (mmol/L)	135–145	 ↑ occurs in a small percentage of patients on diuretic therapy, particularly the elderly. Severe hyperlipidaemia or hyperproteinaemia may cause 'pseudohyponatraemia'. ↓ fluid retention (dilutional hyponatraemia) is seen in renal and cardiac disease 		
Potassium (mmol/L)	3.5–5.2	 ↑ acidosis, tissue damage, renal failure, mineralocorticoid deficiency. ↓ in association with loop or thiazide diuretic therapy, vomiting or diarrhoea, alkalosis 		
https://www.rcpa.edu.au/Library/Practising-Pathology/RCPA-Manual/Home				

Tests for Cardiometabolic Syndrome			
Test	Reference range	Reason	
MTHFR		Homozygous individuals with the MTHFR C677T mutation have increased homocysteine levels in the presence of low folate stores	
Waist:hip ratio	Females: < 0.8 Males: < 0.9	Waist-hip ratio (WHR) has been found to be a dominant risk factor for predicting cardiovascular death in Australia	
Waist circumference	Females: > 80 cm Males: > 94 cm	Waist circumference was a better predictor of metabolic syndrome as compared to other obesity indices such as BMI, WHR, and waist height ratio in both men and women Cut-off value of 99.5 cm for men and 91 cm for women has the highest sensitivity and specificity to predict the development of metabolic syndrome	
Bener A et al. <i>J Obes</i> . 2013; 2013: 269038			
© 2015 Dr Bradley McEwen PhD, Integria Healthcare			

Name of Fish	Amount of Omega-3 FA (mg/100g)	Amount of Omega-3 FA (mg/150g Serve)	Amount of fish consumption required to Provide 1 g Omega 3 FA per day		
Atlantic Salmon	2252	3380	44		
Ocean Trout	921	1380	108		
Australian Salmon	476	714	210		
Rainbow Trout	415	627	241		
Red Snapper	357	533	280		
Deep Sea Cod	340	510	294		
Garfish	327	489	306		
John Dory	315	473	317		
Barramundi	276	415	362		
Coral Trout	270	408	370		
Southern Bluefin Tuna	230	345	435		
Coral Trout Southern Bluefin Tuna Soltan SS, Gibson RA. Asia Pa	270 230 ac J Clin Nutr. 2008; 17 (3): 385-90	408 345	370 435		

Vitamin C and E	
 Vitamins C and E exert their individual biochemical effects in water or lipid phases, respectively 	
 They can interact with each other at the level of interphases, developing the synergistic effects of restoring α-tocopherol from α-tocopheroxyl radical 	
Rodrigo R, Libuy M, Feliu F et al. <i>Biomed Res Int.</i> 2013; 2013: 437613 © 2015 Dr Bradley McEwen PhD, Integria Healthcare	17

Magnesium and Metabolic Syndrome

- Magnesium intake of 150 mg/day is approximately equivalent to:
 - 56 g of dry roasted almonds
 - one cup of cooked spinach
 - 1.5 cup of beans
 - two cups of brown, long-grained cooked rice
 - three medium baked potatoes with skin
 - five medium bananas
 - six tablespoons of peanut butter per day

Ju SY, Choi WS, Ock SM et al. *Nutrients*. 2014; 6(12): 6005-19 © 2015 Dr Bradley McEwen PhD, Integria Healthcare

integria 125

Final take home message	
 Nutritional medicine plays an essential role in the management of cardiometabolic syndrome, cardiovascular disease and diabetes Lifestyle factors also play major roles in the management of cardiovascular disease 	
© 2015 Dr Bradley McEwen PhD, Integria Healthcare	51

INTEGRIA HEALTHCARE SYMPOSIUM 2015

Clinical Practitioner Pearls Perspectives

An Experience-Based Approach to Patient Care

24+25 OCTOBER MELBOURNE

Clinical Pearl: ('klınık_əl pûrl)

1. A straightforward and meaningful piece of clinical advice

. Clinically relevant information based on experience

Session 6

Clinical Keys for Personalised Dietary Prescribing in the 21st Century

Dr Elizabeth Steels PhD, BSc. (Hon.), Grad.Dip Nutrition, Grad.Cert Education

Inspiring people to live better lives through natural healthcare

integria HEALTH CARE

Type of Study	Duration-Diets-Daily Dose	Techniques Used	Results	Author
Animal	6 weeks, 10 rats for each group:	FISH (caecal)	B-juice AP extracts:	Sembries at al.
(Wistar rats)	Control diet or	Plate count (feaces)	Total SCFA, acetate and propionate: ↑, pH: 1	(2003) [24]
	5% apple pomace (AP) 1B-juice colloids extract		Bacteroidaceae: † (faeces)	
	(54.3% soluble and 2.6% insoluble fiber) or		Alcohol AP extract	
	5% AP 4B-juice colloids extract, rich in soluble fiber		Total SCFA and butyrate: †, pH: 1	
	(78.3% soluble and 1.8% insoluble) or		Bacteroidaceae: † (faeces)	
	5% alcohol AP extract, rich in insoluble fiber (22.9%		Eubacterium rectale: † (caecal)	
	soluble and 73 3% insoluble)			
Animal	4 weeks, 12 rats for each group:	Plate count	Total SCFA and acetate: †, pH: 1	Sembries et al.,
(Wistar rats)	Control diet or		Lactobactllus: †, Bifidobacterium: †	2006 [25]
	Extraction juice from apple pomace		Primary bile acids and neutral sterols: †	
			Secondary bile acids: 1	
Animal	4 weeks, 8 rats for each group:	qPCR	Apple:	Licht et al.,
(Fischer rats)	Control diet or		Butyrate ↑, pH: ↓, Bacteroides spp: ↓	2010 [26]
	10 g apple or		Apple pectin:	
	7% apple pectin		Butyrate ↑, pH: ↓, Bacteroides spp: ↓, Clostridhan coccoides: ↑	
Animal ex wvo	Granny Smith apple fermented in vitro from faeces	qPCR	Firmicutes, Bacteroidetes, Enterococcus, Enterobacteriaceae,	Condezo-Hoyos et al.,
(mice)	from diet induced lean (control) and obese mice.		Escherichta coli and Bifidobacterium abundances from obese mice	2014 [118]
			tended to be similar to lean mice after apple fermentation.	
Human	2 weeks, 8 subjects:	Plate count	Bifidobacteria: †	Shinohara et al.,
	2 apples		Clostridia: L. Enterobacteritaceae: L	2010 [27]
Human	4 weeks, 23 subjects:	qPCR	No changes in bacteria composition.	Ravn-Haren et al., 2012
	Control: period of restricted diet or		pH: 1	[15]
Randomized,	550 g whole apples or			
single blinded,	22 g apple pomace or			
controlled,	500 ml clear apple juice or			
crossover	500 ml cloudy apple juice			10
†: signific Koutsos	ant increase; 1: significant decrease; SCFA: short A, Tuohy KM, Lovegrove JA. Nutrients. 20	chain fatty acids; FI 15; 7 : 3959-3998	SH: fluorescence in situ hybridization; qPCR: quantitative polymo	erase chain reaction.

Type of Study	Duration-Diets-Daily Dose	Techniques Used	Results	Author
Animal	6 weeks, 10 rats for each group:	FISH (caecal)	B-juice AP extracts:	Sembries et al.
(Wistar rats)	Control diet or	Plate count (feaces)	Total SCFA, acetate and propionate: 1, pH: 1	(2003) [24]
	5% apple pomace (AP) 1B-juice colloids extract		Bacteroidaceae: † (faeces)	
	(54.3% soluble and 2.6% insoluble fiber) or		Alcohol AP extract:	
	5% AP 4B-juice colloids extract, rich in soluble fiber		Total SCFA and butyrate: 1, pH: 4	
	(78.3% soluble and 1.8% insoluble) or		Bacteroidaceae: † (faeces)	
	5% alcohol AP extract, rich in insoluble fiber (22.9%		Eubacterium rectale:	
	soluble and 73.3% insoluble)			
Animal	4 weeks, 12 rats for each group:	Plate count	Total SCFA and acetate: ↑, pH: ↓	Sembries et al.,
(Wistar rats)	Control diet or		Lactobacilius: 1, Bifidobacterium: 7	2006 [25]
	Extraction juice from apple pomace		Primary bile acids and neutral sterols: 1	
			Secondary bile acids: ↓	
Animal	4 weeks, 8 rats for each group:	qPCR	Apple	Licht et al.,
(Fischer rats)	Control diet or		Butyrate: 1, pH: 4, Bacteroides spp: 4	2010 [26]
	10 g apple or		Apple pectin:	
	7% apple pectin		Butyrate: 1, pH: 4, Bacteroides spp: 4, Clostridium coccoides: 7	
Animal ex vivo	Gramy Smith apple fermented in vitro from faeces	qPCR	Firmicutes, Bacteroidetes, Enterococcus, Enterobacteriaceae,	Condezo-Hoyos et al.,
(mice)	from diet induced lean (control) and obese mice.		Escherichia coli and Bifidobacterium abundances from obese mice	2014 [118]
			tended to be similar to lean mice after apple fermentation.	
Human	2 weeks, 8 subjects:	Plate count	Bifidobacteria: 1	Shinohara et al.,
	2 apples		Clostridia: L. Enterobacteriaceae: L	2010 [27]
Human	4 weeks, 23 subjects:	qPCR	No changes in bacteria composition.	Ravn-Haren et al., 2012
	Control: period of restricted diet or		pH: 4	[15]
Randomized,	550 g whole apples or			
single blinded,	22 g apple pomace or			
controlled,	500 ml clear apple juice or			
PLUCEDEDE	500 ml cloudy and anice			

cence in sum hyponoization; qPCK: quantitative polymerase chain reaction. : signincari increase, \downarrow : signincari occrease; och A. short chain lany actos, rishr. muores Koutsos A, Tuohy KM, Lovegrove JA. Nutrients. 2015; 7: 3959-3998

SLIDE 25

integria HEALTH CARE

integria

Clinical Keys for Personalised Dietary Prescribing in the 21st Century with Dr Elizabeth Steels

Gene Name	Function / Comments
FABP4	fatty acid binding protein 4, adipocyte, adipocyte fatty acid binding protein P2 (aP2); regulator of toxic lipid-induced ER stress; is secreted from adipocytes and influences hepatic glucose homeostasis
UCP1	uncoupling protein 1; major determinant of brown adipocytes (BAT), involved in adaptive thermogenesis by acting as an uncoupler of mitochondrial oxidative phosphorylation
PLIN1	perilipin 1; hormonally-regulated protein on the surface of fat droplets; phosphorylated by PKA and then directs PKA-activated hormone-sensitive lipase (HSL) to diacylogycerides in the droplets
-	Adipocytokines
Gene Name	Function / Comments
ADPN	adiponectin; also known as adipoQ for adipocyte, C1q and collagen-domain containing protein
	Lipogenesis
Gene Name	Function / Comments
ACACA	acetyl-CoA carboxylase 1 (ACC1); acetyl-CoA carboxylase-α (alpha); major rate-limiting enzyme of fatty acid synthesis
ELOVL4	elongation of very long-chain fatty acids-like 4; required for the synthesis of very long chain saturated fatty acids; also required for very long chain polyunsaturated fatty acid synthesis that are unique to retina, sperm, and brain
LXRA	liver X receptor a (alpha)
ME1	malic enzyme 1; involved in the pathway by which acetyl-CoA is transported out of the mitochondria as citrate, converts cytosolic malate to pyruvate while also generating NADPH
SCD1	stearoyl-CoA desaturase 1, (delta) Δ ⁹ -desaturase

	RG
	n
Ā	HL
	HEA

Gene Name	Function / Comments
FABP4	fatty acid binding protein 4, adipocyte, adipocyte fatty acid binding protein P2 (aP2); regulator of toxic lipid-induced ER stress; is secreted from adipocytes and influences hepatic glucose homeostasis
UCP1	uncoupling protein 1; major determinant of brown adipocytes (BAT), involved in adaptive thermogenesis by acting as an uncoupler of mitochondrial oxidative phosphorylation
PLIN1	perilipin 1; hormonally-regulated protein on the surface of fat droplets; phosphorylated by PKA and then directs PKA-activated hormone-sensitive lipase (HSL) to diacylglycerides in the droplets
	Adipocytokines
Gene Name	Function / Comments
ADPN	adiponectin; also known as adipoQ for adipocyte, C1q and collagen-domain containing protein
	Lipogenesis
Gene Name	Function / Comments
ACACA	acetyl-CoA carboxylase 1 (ACC1); acetyl-CoA carboxylase-α (alpha); major rate-limiting enzyme of fatty acid synthesis
ELOVL4	elongation of very long-chain fatty acids-like 4; required for the synthesis of very long chain saturated fatty acids; also required for very long chain polyunsaturated fatty acid synthesis that are unique to retina, sperm, and brain
LXRA	liver X receptor α (alpha)
ME1	malic enzyme 1; involved in the pathway by which acetyl-CoA is transported out of the mitochondria as citrate, converts cytosolic malate to pyruvate while also generating NADPH
SCD1	stearoyl-CoA desaturase 1, (delta) Δ^9 -desaturase

Nutrigenomics: Fatty Acids

Marx N, Duez H, Fruchart JC, et al. *Circ Res.* 2004; **94**(9): 1168-78

SLIDE 84

	Lipid Binding & Transport / Lipoproteins
Gene Name	Function / Comments
APOA2	apolipoprotein A-II; primary apoprotein of HDL; activates hepatic lipase
APOE	apolipoprotein E; important for recognition of lipoprotein particles by the LDL receptor; essential for metabolism of triglyceride-rich lipoproteins
CD36	leukocyte differentiation antigen 36; also known as fatty acid translocase, FAT; is a lipoprotein scavenger receptor as well as a membrane fatty acid transporter
LDLR	LDL receptor
LIPC	hepatic lipase, hepatic triglyceride lipase (HTGL); synthesized by heptocytes and bound to hepatic endothelial surfaces via heparin sulfate proteoglycans (HSPGs); catalyzes hydrolysis of fatty acids at the sn1 position of phospholipids and of mono-, di-, and triacy/glycerides associated with a variety of lipoproteins
LRP1	LDL receptor-related protein 1
LPL	lipoprotein lipase, bound to vascular endothelial cell surfaces; predominantly expressed in cardiac and skeletal muscle and adipose tissue; catalyzes hydrolysis of fatty acids at the sn1 and sn2 positior of phospholipids and of mono-, di-, and triacydglycerides associated with a variety of lipoproteins
OLR1	oxidized LDL (oxLDL) receptor; also identified as the endothelial oxLDL receptor: LOX-1
FATP1	fatty acid transport protein 1; very long-chain acyl-CoA synthetase family member 4 (ACSVL4); solute carrier family 27, member 2 (SLC27A1); integral membrane protein involved in uptake of long-chain and very long-chain fatty acids along simultaneous with CoA activation
FATP2	fatty acid transport protein 2; very long-chain acyl-CoA synthetase (VLACS); solute carrier family 27, member 2 (SLC27A2); integral membrane protein involved in uptake of long-chain and very long- chain fatty acids along environment acade with CoA activation

N	utrigenomics: Fatty Acids
	Glucose Homeostasis
Gene Name	Function / Comments
G6PC	glucose-6-phosphatase, catalytic
GPD1	glycerol-3-phosphate dehydrogenase 1, cytosolic; enzyme of glycerol-phosphate shuttle used to transfer cytosolic NADH into the mitochondria; also involved in the synthesis of triglycerides in adipose tissue
GCK	glucokinase
PEPCK	phosphoenolpyuvate carboxykinase
PDK4	pyruvate dehydrogenase kinase 4; expressed in all tissue but with highest levels cardiac and skeleta muscles
Marx N	Duez H, Fruchart JC, et al. <i>Circ Res.</i> 2004; 94 (9): 1168-78
© 2015	Integria Healthcare, Dr Elizabeth Steels

Nutrigenomics: Fatty Acids

	Lipid Binding & Transport / Lipoproteins
Gene Name	Function / Comments
APOA2	apolipoprotein A-II; primary apoprotein of HDL; activates hepatic lipase
APOE	apolipoprotein E; important for recognition of lipoprotein particles by the LDL receptor; essential for metabolism of triglyceride-rich lipoproteins
CD36	leukocyte differentiation antigen 36; also known as fatty acid translocase, FAT; is a lipoprotein scavenger receptor as well as a membrane fatty acid transporter
LDLR	LDL receptor
LIPC	hepatic lipase, hepatic triglyceride lipase (HTGL); synthesized by heptocytes and bound to hepatic endothelial surfaces via heparin sulfate proteoglycans (HSPGs); catalyzes hydrolysis of fatty acids at the <i>sn</i> 1 position of phospholipids and of mono-, di-, and triacylglycerides associated with a variety of lipoproteins
LRP1	LDL receptor-related protein 1
ГЪГ	lipoprotein lipase, bound to vascular endothelial cell surfaces; predominantly expressed in cardiac and skeletal muscle and adipose tissue; catalyzes hydrolysis of fatty acids at the <i>sn</i> 1 and <i>sn</i> 2 position of phospholipids and of mono-, di-, and triacylglycerides associated with a variety of lipoproteins
OLR1	oxidized LDL (oxLDL) receptor; also identified as the endothelial oxLDL receptor: LOX-1
FATP1	fatty acid transport protein 1; very long-chain acyl-CoA synthetase family member 4 (ACSVL4); solute carrier family 27, member 2 (SLC27A1); integral membrane protein involved in uptake of long-chain and very long-chain fatty acids along simultaneous with CoA activation
FATP2	fatty acid transport protein 2; very long-chain acyl-CoA synthetase (VLACS); solute carrier family 27, member 2 (SLC27A2); integral membrane protein involved in uptake of long-chain and very long-chain fatty acids along simultaneous with CoA activation

Marx N, Duez H, Fruchart JC, et al. Circ Res. 2004; 94(9): 1168-78

integria HEALTH CARE

integria HEALTH CARE

Food groups (servings/day)	Factor 1" Prudent	Factor 2" Western
Vegetables	0.71	0.03
Fruits	0.60	-0.01
Whole grain products	0.53	0.21
Non-hydrogenated fat	0.46	0.02
Refined grain products	-0.45	0.39
Desserts	-0.01	0.80
Sweets	0.09	0.77
Beer	0.01	-0.03
Coffee	0.06	0.15
Poultry	-0.004	-0.06
Red meat	-0.11	0,11
Potatoes other than French fries	0.09	0.16
Processed meat	-0.10	0.33
Legumes	0.15	0.13
Tea	0.08	-0.02
High-fat dairy products	0.13	0.13
Low-fat dairy products	0.27	0.07
Eggs	0.27	-0.05
Cream soup	-0.11	0.12
Pizza	-0.23	-0.03
Fish and other sea food	0.28	-0.03
Fruit juices	-0.14	0.02
Nuts	0.26	0.06
Vegetable juices	0.12	0.05
Condiments	0.18	0.06
Snacks	-0.11	0.18
Saturated fat (butter and lard)	0.04	0.06
Variance explained (%)	12.96	10.62
*Exploratory factor analysis using the FACTOR procedure Factor loading > 0.30 or < -0.30 are marked in bold.		
Bouchard Mercier A Paradis AM Pudkow	skal et al <i>Nutr I</i> 2013: 12 : 24	

Food groups (servings/day)	Factor 1* Prudent	Factor 2* Western
Vegetables	0.71	0.03
Fruits	0.60	-0.01
Whole grain products	0.53	0.21
Non-hydrogenated fat	0.46	0.02
Refined grain products	-0.45	0.39
Desserts	-0.01	0.80
Sweets	0.09	0.77
Beer	0.01	-0.03
Coffee	0.06	0.15
Poultry	-0.004	-0.06
Red meat	-0.11	0.11
Potatoes other than French fries	0.09	0.16
Processed meat	-0.10	0.33
Legumes	0.15	0.13
Tea	0.08	-0.02
High-fat dairy products	0.13	0.13
Low-fat dairy products	0.27	0.07
Eggs	0.27	-0.05
Cream soup	-0.11	0.12
Pizza	-0.23	-0.03
Fish and other sea food	0.28	-0.03
Fruit juices	-0.14	0.02
Nuts	0.26	0.06
Vegetable juices	0.12	0.05
Condiments	0.18	0.06
Snacks	-0.11	0.18
Saturated fat (butter and lard)	0.04	0.06
Variance explained (%)	12.96	10.62

SLIDE 106

integria HEALTH CARE

Clinical Keys for Personalised Dietary Prescribing in the 21st Century with Dr Elizabeth Steels

Clinical Keys for Personalised Dietary Prescribing in the 21st Century with Dr Elizabeth Steels

INTEGRIA HEALTHCARE SYMPOSIUM 2015

Clinical Practitioner Pearls Perspectives

An Experience-Based Approach to Patient Care

24+25 OCTOBER MELBOURNE

Clinical Pearl: ('klınıkəl pûrl)

1. A straightforward and meaningful piece of clinical advice

. Clinically relevant information based on experience

Session 7

Natural Solutions for Neurological Health and Cognition: New Answers to Old Questions

Professor Kerry Bone BSc. (Hons.), Dip.Phyto, FNIMH, FNHAA, MCPP, FANTA

Inspiring people to live better lives through natural healthcare

Meyer U. Neuropsychopharmacol Biol Psychiatry 2013; 42: 20-34

integria

SLIDE 11

Brain and Immunity

Brain and Immunity

Blaylock RL. Surg Neurol Int 2013 Sep; 4: 118

SLIDE 12

Brain and Immunity

SLIDE 13

SLIDE 19

MIND Diet Component Servings and Scoring			
Diet Component	0	0.5	1
Green Leafy Vegetables	\leq 2 serving/wk	> 2 to < 6/wk	≥ 6 servings/wk
Other Vegetables	< 5 serving/wk	5 to < 7 wk	≥ 1 servings/d
Berries	< 1 serving/wk	1/wk	≥ 2 serving/wk
Nuts	< 1/mo	< 1/mo to < 5/wk	≥ 5 servings/wk
Olive oil	Not primary oil		Primary oil used
Butter	> 2 T/d	1-2/d	< 1 T/d
Cheese	7 + servings/wk	1-6/wk	< 1 serving/wk
Whole Grains	< 1 serving/d	1-2/d	≥ 3 servings/d
© 2015 MH 300 Kerry Bone, Int	egria Healthcare		Integria 25

MIND Diet and CD				
Diet Component		0.5	oring 1	
Fish (not fried)	Rarely	1-3/mo	≥ 1 meals/wk	
Beans	<1 meal/wk	1-3/wk	> 3 meals/wk	
Poultry (not fried)	< 1 meal/wk	1/wk	≥ 2 meals/wk	
Red Meat and products	7 + meals/wk	4-6/wk	< 4 meals/wk	
Fast fried foods	4 + times/wk	1-3/wk	< 1 time/wk	
Pastries and sweets	7 + servings/wk	5-6/wk	< 5 servings/wk	
Wine	>1 glass/d	1/mo-6/wk	1 glass/d	
Total Score			15	
Morris MC, Tangney CC, Wang Y et al.	Alzheimers Dement 2015 Jun 15; [E	Epub ahead of print]		
© 2015 MH 300 Kerry Bone, Integria	Healthcare		Integria 26	

Table 1. Fatty acid composition of coconut oil, showing percentage of total fat Name Saturated/unsaturated MCFA Caproic acid (6:0) 0.6 Saturated MCFA Caproic acid (6:0) 0.6 Saturated MCFA Caproic acid (6:0) 0.6 Saturated MCFA Caproic (10:0) 6.4 Saturated MCFA Lauric (12:0) 48.5 Saturated MCFA Myristic (14:0) 17.6 Saturated MCFA Palmitic acid (16:0) 8.4 Saturated MCFA
Name% Total fatSaturated/ unsaturatedMCFA LCFACaproic acid (6:0)0.6SaturatedMCFACaproic (8:0)0.8SaturatedMCFACapric (10:0)6.4SaturatedMCFALauric (12:0)48.5SaturatedMCFAMyristic (14:0)17.6SaturatedMCFAPalmitic acid (16:0)8.4SaturatedMCFA
Caproic acid (6:0) 0.6 Saturated MCFA Caprylic (8:0) 0.8 Saturated MCFA Capric (10:0) 6.4 Saturated MCFA Lauric (12:0) 48.5 Saturated MCFA Myristic (14:0) 17.6 Saturated MCFA Palmitic acid (16:0) 8.4 Saturated MCFA
Caprylic (8:0) 0.8 Saturated MCFA Capric (10:0) 6.4 Saturated MCFA Lauric (12:0) 48.5 Saturated MCFA Myristic (14:0) 17.6 Saturated MCFA Palmitic acid (16:0) 8.4 Saturated MCFA
Capric (10:0) 6-4 Saturated MCFA Lauric (12:0) 48-5 Saturated MCFA Myristic (14:0) 17-6 Saturated MCFA Palmitic acid (16:0) 8-4 Saturated MCFA
Lauric (12:0) 48-5 Saturated MCFA Myristic (14:0) 17-6 Saturated MCFA Palmitic acid (16:0) 8-4 Saturated MCFA
Myristic (14:0) 17-6 Saturated MCFA Palmitic acid (16:0) 8-4 Saturated MCFA
Palmitic acid (16:0) 8.4 Saturated MCFA
Stearic acid (18:0) 2.5 Saturated LCFA
Linoleic acid (18:1) 6.5 Unsaturated LCFA
Linolenic (18:2) 1.5 Unsaturated LCFA

erse Risk Facto	ors	
	AD	CVD
Midlife hypertension	×	\checkmark
Diabetes	✓	✓
Hyperlipidaemia	✓ (midlife)	\checkmark
Smoking, current	✓	\checkmark
Head injury	✓	×
Obesity	✓(midlife)	\checkmark
Age	\checkmark	\checkmark
Homocysteine	\checkmark	\checkmark

SLIDE 41

SLIDE 44

SLIDE 46

SLIDE 47

integria HEALTHOCARE

SLIDE 55

A													
Study or subgroup	EGb 76	50 SD	Total	Placeb	SD SD	Total	Weight	SMD IV random 95% CI		SMD	m 95	% CI	
Herrschaft et al ¹³	-2.2	3.5	200	-0.3	3.7	202	14.4%	-0.53 (-0.73, -0.33)					
Ihl et al ³⁶	-1.4	2.8	202	0.3	2.7	202	14.4%	-0.62 (-0.82, -0.42)		-9-			
Kanowski et al ^{33,34}	-2.1	3.1	105	-1	3.1	98	14.0%	-0.35 (-0.63, -0.08)			-		
Le Bars et al ^{30,31}	-0.3	5.35	136	1	5.32	134	14.2%	-0.24 (-0.48, -0.00)		-	-		
Napryeyenko et al ³⁵	-3.2	2.3	198	1.3	2.4	197	14.2%	-1.91 (-2.15, -1.67)					
Nikolova et al14	-2.2	3.6	196	-2	4	201	14.4%	-0.05 (-0.25, 0.14)			-		
Schneider et al ^{sz}	1.3	5.5	170	0.9	5.6	174	14.3%	0.07 (-0.14, 0.28)			+		
Total (95% CI)			1,207			1,208	100.0%	-0.52 (-0.98, -0.05)		-	•		
Heterogeneity: Tau ² =0.3	8; Chi ² =189	.27, df=	6 (P<0.	00001);	F=97%					-	1		
Test for overall effect: 7=	2 18 (P=0 /	121							-2	-1	u		2

	PD	RD	Level of evidence		
Intervention	(depression)	(mania)	Depression	Mania	
Omega-3	~		A	D	
N-Acetylcysteine	~		В	C	
BCAA		~	?	B	
Inositol	\checkmark		С	?	
Choline	~	~	С	C	
Folic acid	~		В	C	
Magnesium	~	~	С	Α	
Chelated minerals	~		В	C	

			Perc	ent prevalence	Reference
	Blocking AuAb	Binding AuAb		Control	
			Blocking	Binding	
NTD (n=12)	-	75	-	10	1
NTD (n=103)	17	30	13	33	11
CFD (n=28)	89	-	0	-	13
RS (n=33)	24	1.2	-		13
LFA (n=25)	76		0	-	14
ASD (n=93)	60	44	-	-	1
ASD (n=75)	46		3	-	10

INTEGRIA HEALTHCARE SYMPOSIUM 2015

Clinical + Practitioner Pearls + Perspectives

An Experience-Based Approach to Patient Care

24+25 OCTOBER MELBOURNE

Clinical Pearl: ('klınıkəl pûrl)

1. A straightforward and meaningful piece of clinical advice

. Clinically relevant information based on experience

Case Study Panel Discussion

Inspiring people to live better lives through natural healthcare

initial Recommendat	ions	
Herbal tablets providing:	Daily Dose	
Silybum marianum (St Mary's Thistle) Extract equivalent to dry seed	8.1 g (providing 96 mg silybin)	
Schisandra chinensis (Schisandra) Extract equivalent to dry fruit	4.0 g	
Rosmarinus officinalis (Rosemary) Extract equivalent to dry leaf	2.0 g	
Herbal tablets providing:	Daily Dose	
Echinacea angustifolia and Echinacea purpurea root blend	27.6 mg alkylamides	
Herbal tablets providing:	Daily Dose	
Vitex agnus-castus (Chaste Tree) Extract equivalent to dry fruit	3.0 g	

Week 4 Follow-Up Recommendations		
Herbal tablets providing:	Daily Dose	
Silybum marianum (St Mary's Thistle) Extract equivalent to dry seed	8.1 g (providing 96 mg silybin)	
Schisandra chinensis (Schisandra) Extract equivalent to dry fruit	4.0 g	
<i>Rosmarinus officinalis</i> (Rosemary) Extract equivalent to dry leaf	2.0 g	
Herbal tablets providing:	Daily Dose	
Echinacea angustifolia and Echinacea purpurea root blend	13.8 mg alkylamides	
Herbal tablets providing:	Daily Dose	
Vitex agnus-castus (Chaste Tree) Extract equivalent to dry fruit	3.0 g	
© 2015 Integria Healthcare		integria

We Re	ek 4 Follow-Up commendations		
	Adrenal Liquid Herbal Blend – 15 mL	per day	
	Rehmannia 1:2	45 mL	
	Withania 1:1	30 mL	
	Echinacea Premium 1:2	20 mL	
	Licorice High Grade 1:1	5 mL	
		100 mL	
© 2015 Int	egria Healthcare		INTEGRIZE 18

Week 8 Follow-Up Recommendations		
Herbal tablets providing:	Daily Dose	
Silybum marianum (St Mary's Thistle) Extract equivalent to dry seed	8.1 g (providing 96 mg silybin)	
Schisandra chinensis (Schisandra) Extract equivalent to dry fruit	4.0 g	
Rosmarinus officinalis (Rosemary) Extract equivalent to dry leaf	2.0 g	
Herbal tablets providing:	Daily Dose	
Echinacea angustifolia and Echinacea purpurea root blend	27.6 mg alkylamides	
© 2015 Integria Healthcare		integria

Neek 8 Follow-U	р	
Recommendatio	ns	
Adrenal Liquid Herbal Blend -	- 15 mL per day	
Rehmannia 1:2	45 mL	
Withania 1:1	35 mL	
Ginger 1:2	15 mL	
Licorice High Grade 1:1	10 mL	
	100 mL	
Female Support Tonic Liquid	Herbal Blend – 15 mL per da	У
Chaste Tree 1:2	80 mL	
Dong Quai 1:2	25 mL	
	105 mL	
		20110-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
015 Integria Healthcare		integr

Herbal tablets providing:	Daily Dose
Silybum marianum (St Mary's Thistle) Extract equivalent to dry seed	8.1 g (providing 96 mg silybin)
Schisandra chinensis (Schisandra) Extract equivalent to dry fruit	4.0 g
<i>Rosmarinus officinalis</i> (Rosemary) Extract equivalent to dry leaf	2.0 g
Herbal tablets providing:	Daily Dose
Echinacea angustifolia and Echinacea purpurea root blend	27.6 mg alkylamides

Week 8 F Recomm	ollow-Up endations		
Adrenal Liqui	d Herbal Blend – 15 ml	_ per day	
Rehmannia 1:	2	45 mL	
Withania 1:1		35 mL	
Ginger 1:2		15 mL	
Licorice High (Grade 1:1	10 mL	
		100 mL	
Female Supp	ort Tonic Liquid Herbal	Blend – 15 mL per day	
Chaste Tree 1	:2	80 mL	
Dong Quai 1:2		25 mL	
		105 mL	
© 2015 Integria Healthcare			

Week 24 Follow-Up Recommendations		
Herbal tablets providing:	Daily Dose	
Silybum marianum (St Mary's Thistle) extract equivalent to dry seed	8.1 g (providing 96 mg silybin)	
Schisandra chinensis (Schisandra) extract equivalent to dry fruit	4.0 g	
Rosmarinus officinalis (Rosemary) extract equivalent to dry leaf	2.0 g	
Herbal tablets providing:	Daily Dose	
Echinacea angustifolia and Echinacea purpurea root blend	13.8 mg alkylamides	
Herbal tablets providing:	Daily Dose	
Vitex agnus-castus (Chaste Tree) extract equivalent to dry fruit	1.0 g	
© 2015 Integria Healthcare		integria

Week 24 Follow-Up Recommendations				
Herbal tablets providing:	Daily Dose			
<i>Vitis vinifera</i> (Grape Seed) extract equivalent to dry seed	14.4 g (102 mg procyanidins)			
<i>Centella asiatica</i> (Gotu Kola) extract equivalent to dry leaf	10.0 g (200 mg triterpene derivatives)			
<i>Ginkgo biloba</i> (Ginkgo) extract equivalent to dry leaf	4.0 g (4.8 mg ginkgolides and bilobalide)			
General Tonic Liquid Herbal Blend -	- 15 mL per day			
Rehmannia 1:2	35 mL			
Withania 1:1	30 mL			
Dong Quai 1:2	30 mL			
Licorice High Grade 1:1	5 mL			
	100 mL			
© 2015 Integria Healthcare		integria		

Iron (μmol/L) 12.3 10-30 Transferrin (g/L) 3 1.7-3.0 Total iron binding 66 45-80	Daseline	
Transferrin (g/L)31.7-3.0Total iron binding6645-80	12.3	lron (µmol/L)
Total iron binding 66 45-80	3	Transferrin (g/L)
capacity (TIBC) (µmol/L)	66	Total iron binding capacity (TIBC) (μmol/L)
Saturation (%) 20 15-45	20	Saturation (%)
Ferritin (µg/L) 56 15-200	56	Ferritin (µg/L)

Investigation	າຣ			
Thyroid Function				
TSH Free T4 Free T3	* 4.98 10.5 3.7	mIU/L pmol/L pmol/L	(0.40-3.50) (9.0-19.0) (2.6-6.0)	
Comment Elevated TSH. If thyroid rep compliance is assured, the r may be indicated. <u>Thyroid Antibodies</u> (Immulite Methods)	lacement dosag raised TSH level	e has not ch suggests th	nanged recently and nat increased dosage	
Thyroglobulin Ab Thyroid Peroxidase Ab	<20 * 622	IU/mL IU/mL	(0-40) (0-35)	
Comment High levels of thyroglobuli	n and thyroid p o's disease. Lo	eroxidase a wer levels hyroid dise	antibodies are can occur in	
characteristic of Hashimot clinically normal persons a				

investigations			
Random Urine Iodine			
U-Creatinine Urine iodine	1.4 48	mmol/L ug/L	
Comment WHO classification of iodine defici	ency:Urir	ne lodine levels	
Not lodine deficient: Mild lodine deficiency: Moderate lodine deficiency:	> 100	ug/L urine 100 ug/L urine 19 ug/L urine	
To convert lodine ug/L to lod	< 20 ine nmol/	ug/L urine L	
$ug/L \times 7.88 = nmol/L$			
© 2015 Integria Healthcare			integria

Inve	stigations		
	Forcal pathogen PCR		
	Share Specimen Type	Faces	
	Specimen Type	Faeces	
	Bacteria:		
	Campylobacter species	Not Detected	
	Salmonella species	Not Detected	
	Shigella species	Not Detected	
	Yersinia enterocolitica	Not Detected	
	Aeromonas species	Not Detected	
	Parasites		
	Giardia lamblia	Not Detected	
	Cryptosporidium species	Not Detected	
	Dientamoeba fragilis	Not Detected	
	Entamoeba histolytica	Not Detected	
	Blastocystis species	Not Detected	
	Faeces Examination		
	Specimen	2	
	Collection date	07-Jan-2015	
		Francisco	
	Appearance	Formed	
	Concentrate	No ova, cysts of parasites seen.	
			in line in
© 2015 Integri	a Healthcare		Integria

05 0111	
Vitamin D	74 nmol/L (51-140)
Comment According to 1 Australia and defined as:	the Position Statement 'Vitamin D and health in adults in New Zealand' MJA, 196(11):686-687, 2012, Vitamin D status is
	Mild Deficiency 30 - 49 nmol/L Moderate Deficiency 12.5 - 29 nmol/L
Cortisal	Mild Deficiency 30 - 49 nmol/L Moderate Deficiency 12.5 - 29 nmol/L Severe Deficiency <12.5 nmol/L
<u>Cortisol</u>	Mild Deficiency 30 - 49 nmol/L Moderate Deficiency 212.5 - 29 nmol/L Severe Deficiency <12.5 nmol/L 337 pmol/L (138-650)

Investiç	gations				
Heavy Metals Serum Copper Blood Lead Blood Lead Comment In the absence lead level to b With occupati (50.0 ug/dL), from further e	e of occupational e e less than 0.48 u onal exposure, if t NSW Workcover C xposure until level	13 0.05 1.0 exposure, Ni mol/L (10.0 he blood lea Code of Prac falls below	umol/L umol/L ug/dL ug/dL). d level exc tice recomi 1.90 çmol/	(12-22) mmendation is for eeds 2.40 umol/L mendation is remo /L (40.0 ug/dL).	r blood oval
© 2015 Integria Healthcar	e				Integria 38

Investigati	ons
HLA DR/DQ Genotyping for	Coeliac Disease
Specimen type Method	EDTA blood Detection of sequence-specific oligonucleotides (Gen-Probe).
HLA-DR DRB1	3, 4 03, 04
HLA-DQ HLA-DQA1 HLA-DQB1	2, 8 03, 05 02, 0302
Interpretation	Genotype susceptible for coeliac disease detected. Heterozygous for the DRB1*03-DQA1*05-DQB1*02 (DQ2) and DRB1*04-DQA1*03-DQB1*03 (DQ8) haplotypes. The presence of the DQ2 and DQ8 antigens confers increased susceptibility to coeliac disease for patient.
© 2015 Integria Healthcare	integria

Initial Recommendations	Daily Dose	Rationale
<i>Rehmannia glutinosa</i> (Rehmannia) Tyrosine Iodine	3 tabs	Foundational formula for hypothyroidism and adrenal support
Rehmannia glutinosa (Rehmannia) Bupleurum falcatum (Bupleurum) Hemidesmus indicus (Hemidesmus)	3 tabs	Autoimmune management
Selenium (as selenomethionine) 150 mcg	1 tab	Top up selenium levels due to thyroid antibodies Support thyroxine synthesis
Zinc amino acid chelate Zinc ascorbate Vitamin C	1 tab	Support thyroxine synthesis Support immune function
<i>Glycyrrhiza glabra</i> (GutGard®) <i>Brassica oleracea var. italica</i> sprout (BroccoPhane®) Glutamine Vitamin A	1 tsp BID	Gut repair post long-term gluten exposure (gene positive, linked to Hashimoto's) Support Fe absorption
Iron (as ferrous bisglycinate) Folic acid Cyanocobalamin (vitamin B12) Pyridoxal-5-Phosphate (activated B6)	1 tab	Support optimal iron status (subclinical anaemia) Support immune function
Vitamin D3 1000IU	5 sprays	Support optimal D3 levels (deficient) Support immune function 40

Initial Recommendations	Daily Dose	Rationale
<i>Rehmannia glutinosa</i> (Rehmannia) Tyrosine Iodine	3 tabs	Foundational formula for hypothyroidism and adrenal support
Rehmannia glutinosa (Rehmannia) Bupleurum falcatum (Bupleurum) Hemidesmus indicus (Hemidesmus)	3 tabs	Autoimmune management
Selenium (as selenomethionine) 150 mcg	1 tab	Top up selenium levels due to thyroid antibodies Support thyroxine synthesis
Zinc amino acid chelate Zinc ascorbate Vitamin C	1 tab	Support thyroxine synthesis Support immune function
<i>Glycyrrhiza glabra</i> (GutGard®) <i>Brassica oleracea var. italica</i> sprout (BroccoPhane®) Glutamine Vitamin A	1 tsp BID	Gut repair post long-term gluten exposure (gene positive, linked to Hashimoto's) Support Fe absorption
Iron (as ferrous bisglycinate) Folic acid Cyanocobalamin (vitamin B12) Pyridoxal-5-Phosphate (activated B6)	1 tab	Support optimal iron status (subclinical anaemia) Support immune function
Vitamin D3 1000IU SLIDE 40	5 sprays	Support optimal D3 levels (deficient) Support immune function

6 Week Follow	v-Up		
Thyroid Hormones and Antibodies	Baseline	Week 6	Reference Range
TSH (mIU/L)	4.98	2.91	0.40-3.50
Free T4 (pmol/L)	10.5	13.3	9.0-19.0
Free T3 (pmol/L)	3.7	3.7	2.6-6.0
Thyroglobulin Ab (IU/mL)	<20	Not assessed	0-40
Thyroglobulin Peroxidase Ab (IU/mL)	622	Not assessed	0-35
Vitamin D	Baseline	Week 6	Reference Range
25(OH)D3 (nmol/L)	74	112	51-140
© 2015 Integria Healthcare			inte

6 Week Fol	llow-Up	•	
Random Urine Iodine	Baseline	Week 6	Reference Range
U-Creatinine (mmol/L)	1.4	2.7	
Urine iodine (µg/L)	48	623	>100
Iron Studies	Baseline	Week 6	Typical Reference Range
Iron (µmol/L)	12.3	21.3	10-30
Transferrin (g/L)	3	5	1.7-3.0
Total iron binding capacity (TIBC) (μmol/L)	66	70	45-80
Saturation (%)	20	28	15-45
Ferritin (µg/L)	56	87	15-200
2015 Integria Healthcare			integri

Initial Recommendations	Daily Dose	Rationale
<i>Rehmannia glutinosa</i> (Rehmannia) Tyrosine Iodine	3 tabs	Foundational formula for hypothyroidism and adrenal support
Rehmannia glutinosa (Rehmannia) Bupleurum falcatum (Bupleurum) Hemidesmus indicus (Hemidesmus)	3 tabs	Autoimmune management
Selenium (as selenomethionine) 150mcg	1 tab	Top up selenium levels due to thyroid antibodies Support thyroxine synthesis
Zinc amino acid chelate Zinc ascorbate Vitamin C	1 tab	Support thyroxine synthesis Support immune function
<i>Glycyrrhiza glabra</i> (GutGard®) <i>Brassica oleracea var. italica</i> sprout (BroccoPhane®) Glutamine Vitamin A	1/2 tsp	Gut repair post long-term gluten exposure (gene positive, linked to Hashimoto's) Support Fe absorption
Iron (as ferrous bisglycinate) Folic acid Cyanocobalamin (vitamin B12) Pyridoxal-5-Phosphate (activated B6)	1 tab	Support optimal iron status (subclinical anaemia) Support immune function
Vitamin D3 1000IU	2 sprays	Support optimal D3 levels (deficient) Support immune function 45

Initial Recommendations	Daily Dose	Rationale
<i>Rehmannia glutinosa</i> (Rehmannia) Tyrosine Iodine	3 tabs	Foundational formula for hypothyroidism and adrenal support
Rehmannia glutinosa (Rehmannia) Bupleurum falcatum (Bupleurum) Hemidesmus indicus (Hemidesmus)	3 tabs	Autoimmune management
Selenium (as selenomethionine) 150mcg	1 tab	Top up selenium levels due to thyroid antibodies Support thyroxine synthesis
Zinc amino acid chelate Zinc ascorbate Vitamin C	1 tab	Support thyroxine synthesis Support immune function
<i>Glycyrrhiza glabra</i> (GutGard®) <i>Brassica oleracea var. italica</i> sprout (BroccoPhane®) Glutamine Vitamin A	1/2 tsp	Gut repair post long-term gluten exposure (gene positive, linked to Hashimoto's) Support Fe absorption
Iron (as ferrous bisglycinate) Folic acid Cyanocobalamin (vitamin B12) Pyridoxal-5-Phosphate (activated B6)	1 tab	Support optimal iron status (subclinical anaemia) Support immune function
Vitamin D3 1000IU SLIDE 45	2 sprays	Support optimal D3 levels (deficient) Support immune function

FSH (mIU/L) 4.98 2.91 1.08 0.40-3.50 Free T4 (pmol/L) 10.5 13.3 14.1 9.0-19.0 Free T3 (pmol/L) 3.7 3.7 4.2 2.6-6.0 Thyroglobulin Ab (IU/mL) <20 0-40 0-40	Thyroid Hormones and Antibodies	Baseline	Week 6	Week 12	Reference Range
Free T4 (pmol/L) 10.5 13.3 14.1 9.0-19.0 Free T3 (pmol/L) 3.7 3.7 4.2 2.6-6.0 Thyroglobulin Ab (IU/mL) <20	TSH (mIU/L)	4.98	2.91	1.08	0.40-3.50
Free T3 (pmol/L) 3.7 3.7 4.2 2.6-6.0 Chyroglobulin Ab (IU/mL) <20	Free T4 (pmol/L)	10.5	13.3	14.1	9.0-19.0
Chyroglobulin Ab (IU/mL) <20	Free T3 (pmol/L)	3.7	3.7	4.2	2.6-6.0
Thyroglobulin Peroxidase	Thyroglobulin Ab (IU/mL)	<20			0-40
Ab (IU/mL) 622 121 0-35	Thyroglobulin Peroxidase Ab (IU/mL)	622		121	0-35