26 AUGUST — 30 AUGUST

ARDD THE 11th AGING RESEARCH & DRUG DISCOVERY MEETING

TAKING AIM AT AGING: XPRIZE HEALTHSPAN TEAM SUMMIT MAKES ITS DEBUT AT THE 11TH ARDD

UNIVERSITY OF COPENHAGEN

Register at agingpharma.org

#XPRIZEHealthspan #ARDD2024

Hosted at the 11th ARDD Meeting

THE PRIZE THAT PROVED OUR CONCEPT *

OCT 04, 2004 | \$10M

GALVANIZED NEW
ERA OF COMMERCIAL
SPACE TRAVEL

30 YEARS | 30 PRIZES | 30X IMPACT

Oc

Wendy Schmidt Oil Cleanup

2010 - 2011 \$1.4M Oh

Wendy Schmidt Ocean Health

2013 - 2015 \$2M So

Shell Ocean Discovery

2015 - 2019 \$7M R

Rainforest

Active \$10M Wf

Wildfire

Active \$11M Nc

NRG Cosia Carbon

2015 - 2020 \$20M Cr

Carbon Removal

Active \$100M Ai

IBM Watson Ai

2016 - 2020 \$5M Aa

ANA Avatar

2018 - 2022 \$10M Qa

Quantum Applications

Active \$5M

Wa

Water Abundance

2016 - 2018 \$1.75M Fb

Feed the Next Billion

Active \$15M Ws

Water Scarcity

Active \$119M Ag

Archon Genomics

Canceled \$10M Ns

Nokia Sensing

2012 - 2014 \$2.25M Qt

Qualcomm Tricorder

2012 - 2017 \$10M Nm

Next Gen Mask

> 2020 \$1M

Rt

Rapid COVID Testing

2020 - 2021 \$6M Pr

Pandemic Response

2020 - 2021 \$500K Healthspan

Hs

Active \$101M

Gle

Global Learning

2014 - 2019 \$15M Bb

Barbara Bush Fo Adult Literacy

2015 - 2019 \$7M Cc

arbara Bush Fdr Adult Literacy Comm. Comp.

2015 - 2019 \$1M An

Anu + Naveen Jain Women's Safety

> 2016 - 2018 \$1.2M

Rr

Rapid Reskilling

2020 - 2023 \$5M DI

Digital Learning

2021 - 2023 \$1M A

Ansari

1996 - 2004 \$10M NI

Northrop Grumman Lunar Landing

2006 - 2009 \$2M GI

Google Lunar

2007 - 2018 \$40M Pa

Progressive Automotive

2008 - 2010 \$10M

6 HEALTH DOMAIN PRIZES

Nokia Sensing

2012 - 2014 \$2.25M Qt

Qualcomm Tricorder

2012 - 2017 \$10M Nm

Next Gen Mask

> 2020 \$1M

Rt

Rapid COVID Testing

2020 - 2021 \$6M Pr

Pandemic Response

2020 - 2021 \$500K Hs

Healthspan

Active \$111M

HEVOLUTION	CHIP WILSON / SOLVE FSHD	
PETER H. DIAMANDIS, MD	CHRISTIAN ANGERMAYER	
CARL B. BARNEY	BLUNDY FAMILY	
KAS BORDIER	CHARLIE & LORIE EPSTEIN	
DANA & ROB HAMWEE	DANIEL KRIZEK	
NANCY & HOWARD MARKS	ELEANOR & HOWARD MORGAN FAMILY FOUNDATION	
CHRIS OUWINGA	CHRISTIAN PENEFF	
SENEGENCE	MARK S. SIEGEL	
TODD WANEK	SERGEY YOUNG	

ENDPOINTS COMMITTEE

PATRICK
MAXWELL, MD
Regius Professor,
Head of the School of
Clinical Medicine,
University of Cambridge

STEVE AUSTAD,
PHD
SR Scientific Director,
AFAR
Endowed Chair of Healthy
Aging, UAB

TOM RANDO, MD, PHD Director, UCLA Broad Stem Cell Research Center

LUIGI FERRUCCI, MD, PHD Scientific Director, National Institute on Aging

PETER H. DIAMANDIS, MD

MEHMOOD KHAN, PHD

ADVISORY BOARD MEMBERS & TECHNICAL CONSULTANTS

- Alberto Aparicio, PhD, Bioethicist, Asst Professor, University of Texas Medical Branch
- Steven Austad, PhD, Endowed Chair in Healthy Aging and Distinguished Professor of Biology, University of Alabama Birmingham
- Nir Barzilai, MD, Director of the Institute for Aging Research at the Albert Einstein College of Medicine
- Daniel Belsky, PhD, Assc Professor of Epidemiology at Columbia University Mailman School of Public Health, Butler Columbia Aging Center
- Eva Chin, PhD, Executive Director, SOLVE FSHD
- Steven Cummings, MD, Director, San Francisco Coordinating Center
- Peggy Cawthon, University of California San Francisco, Co-Director San Francisco Coordinating Center
- William J. Evans, PhD, Associate Professor of Epidemiology in the Robert N. Butler Columbia Aging Center
- Luigi Ferrucci, MD, PhD, Scientific Director at the National Institute of Aging
- Aubrey de Grey, PhD, Founder, President and Chief Science Officer of LEV Foundation
- George Kuchel, MD, CM, FRCP, AGSF, Professor of Medicine, Travelers Chair in Geriatrics and Gerontology at University of Connecticut
- Michael Kyba, PhD, Professor in the Department of Pediatrics, School of Medicine at University of Minnesota
- Morgan Levine, PhD, Principal Investigator at the Altos Labs San Diego Institute of Science
- Patrick Maxwell, MD, Regius Professor of Physics and Head of the School of Clinical Medicine at University of Cambridge
- Thomas Osborne, MD, Executive Director, VA Convergence Center
- Graham Pawelec, MA, PhD, FGSA, Professor of Experimental Immunology, University of Tübingen
- Thomas Rando, MD, PhD, Director, UCLA Broad Stem Cell Research Center
- Nicholas Schork, MD, Deputy Director and Professor of Quantitative Medicine at The Translational Genomics Research Institute (TGen)
- Risa Starr, MBA, MPH, CEO, Longevity Biotech Association
- Erwin Tan, Director of Thought Leadership and Health at AARP
- Roland J. Thorpe, Jr., PhD, MS, Deputy Director of the Hopkins Center for Health Disparities Solutions
- Alex Zhavoronkov, PhD, Founder and CEO of Insilico Medicine
- Perminder S. Sachdev, AM, MD, PhD, FRANZCP, FAHMS, Scientia Professor of Neuropsychiatry, UNSW Sydney

HEVOLUTION

Join the movement **□** in **□ □ X** f xprize.org

XPRIZE HEALTHSPAN OVERVIEW

JAMIE JUSTICE, PHD XPRIZE Healthspan

NICHOLAS SCHORK, PHD Translational Genomics Research Institute (TGen)

EVA CHIN, PHDSOLVE FSHD

P-12

INAUGURAL TEAM SUMMIT STED AT AGING RESEARCH & DRUG DISCOVERY (ARDD) 26 AUGUST 2024

Join the movement in D X f xprize.org

OUR GLOBAL POPULATION IS AGING

This should be cause for celebration, but innovative solutions to address age-related health declines are

URGENTLY NEEDED

AGING HAS A DISTINCT BIOLOGY

This biology can be targeted by therapeutics to **EXTEND LIFESPAN AND HEALTHSPAN** in animal models

TRANSLATIONAL GAP

Promising therapeutics are being developed and tested in the lab, but public perception, poor alignment and testing guidelines, and unclear regulatory pathways are **BARRIERS TO**CLINICAL TRANSLATION

THE MISSION OF XPRIZE HEALTHSPAN

- Provide proof of concept that biological aging is a target for therapeutic development.
- Create a global research network in healthspan and aging research by identifying and aligning labs, companies, and researchers
- Stimulate important investments in longevity, biology of aging, and biotech
- Develop methodologies for measuring healthspan in early-stage trials
- Build public awareness and new therapeutic options for persons aging with FSHD

Join the movement in D X f xprize.org

TESTING & JUDGING

The WINNING TEAM

must demonstrate that their therapeutic treatment restores muscle, cognitive, and immune function in older persons. The therapeutic treatment must take 1-year or less.

Awarding of the best team will be indexed to improvements in function relative to agerelated declines expected over:

- 10 years (\$61M);
- 15 years (\$71M);
- Or 20 years (\$81M)

TESTING & JUDGING

QUALIFYING SUBMISSION

Research & Development

Milestone 1:

- **\$10M**
- \$2M FSHD

SEMI-FINALS

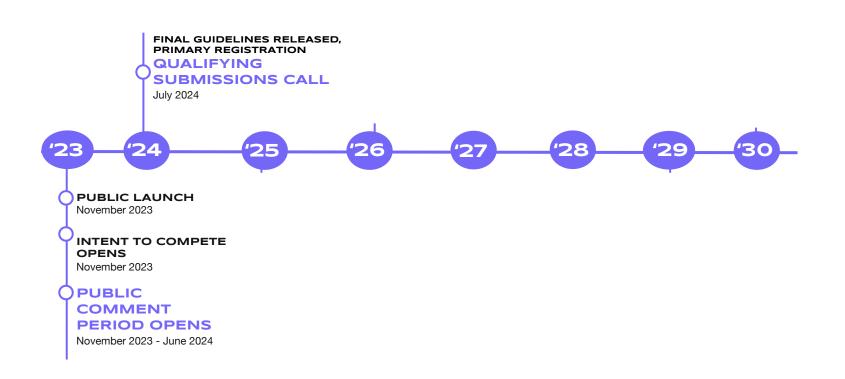
Proof-of- Concept Clinical Studies

Milestone 2:

\$10M

FINALS

1-year Clinical Trials in Older Adults


Grand Prize:

- Up to \$81M
- \$8M FSHD

P-21

KEY MILESTONES

TEAM REGISTRATION OVERVIEW

TEAMS PREREGISTERED

COUNTRIES

QUALIFYING SUBMISSION

DUE 20 DECEMBER 2024!

PURPOSE: first formal opportunity for teams to demonstrate their ability to compete in the \$101M competition

QUALIFYING SUBMISSION

Research

& Development

Milestone 1:

- \$10M
- \$2M FSHD

Approximately 12 pages

Summary	.1pg
Team	2pg
Environment and Clinical Centers	. 2pg
Technical Application	5pg
Study Timeline	. 1pg
Scalability / Accessibility	. 1pg

+ Human Subjects Safety, Resourcing Plan, Biohazard

SEMI-FINALS TESTING & JUDGING

SEMI-FINALS

Proof-of- Concept Clinical Studies

Milestone 2:

• \$10M

EARLY STAGE / PROOF-OF-CONCEPT CLINICAL STUDIES

Typically short (less than 30-60 days), small (5-20 people receive active intervention), and relatively inexpensive studies that are used to help design and justify larger clinical trials

For XPRIZE Healthspan Semifinals, these trials are used to indicate readiness for Finals and feasibility of approach

OUR TOP CONCERN: SAFETY

All competing teams will be required to have:

- Their studies reviewed and approved by an IRB, either institutional or central
- A data and safety monitoring plan
- A medical oversight plan
- Risk minimizing plan

Teams are required to communicate occurrence of adverse events to XPRIZE

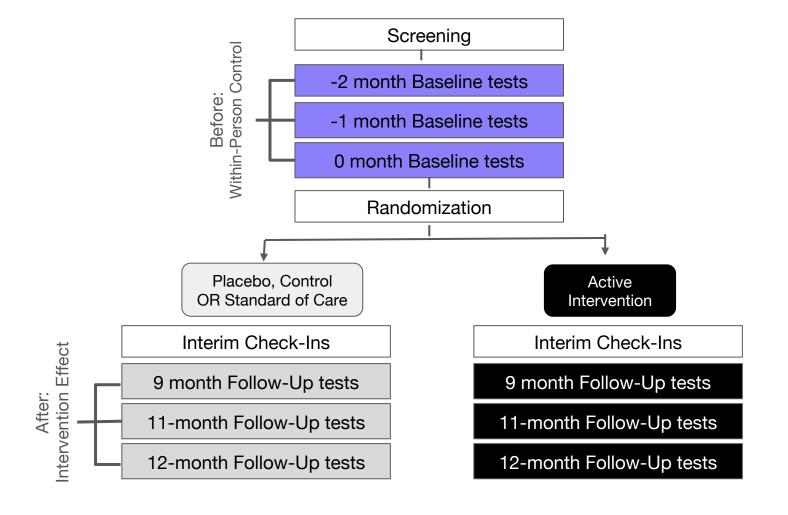
Join the movement in D X f xprize.org

FINALS

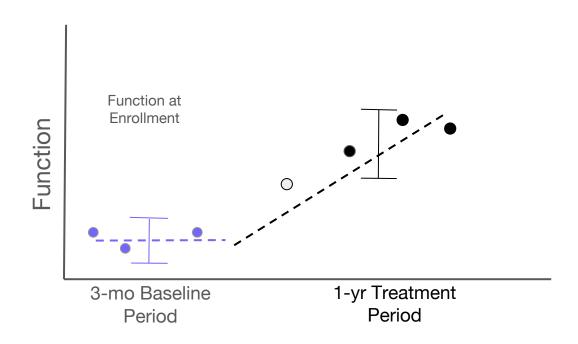
1-year Clinical Trials in Older Adults

Grand Prize:

- Up to \$81M
- \$8M FSHD

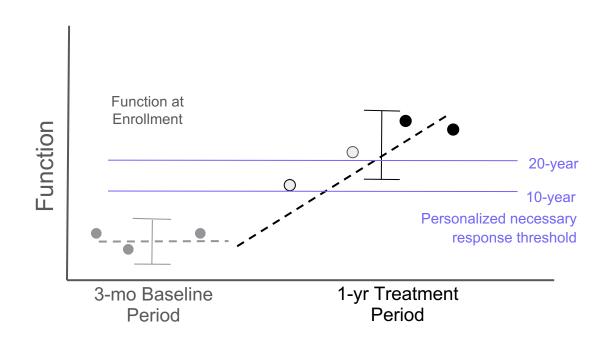

POPULATION: Persons aged 50-80 years who are free of life-threatening major disease or disability

INTERVENTION: Team discretion. Safety is priority.

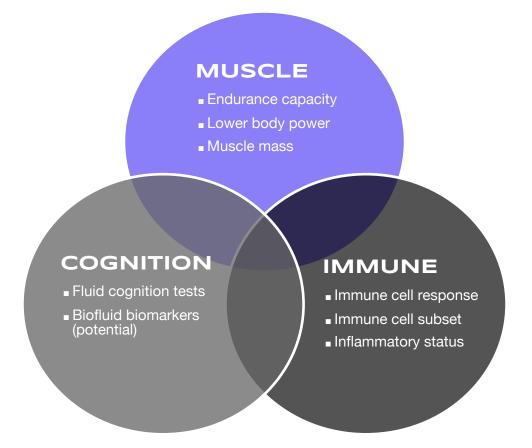

CONTROL: Required, but specifics depends on intervention

OUTCOMES: Improvement in muscle, cognitive, AND immune function

TIME: Follow-up testing one year after therapeutic start



SINGLE CROSSOVER DESIGN WITH PERSONALIZED RESPONSE THRESHOLDS



SINGLE CROSSOVER DESIGN WITH PERSONALIZED RESPONSE THRESHOLDS

MUSCLE					
Subdomain	Туре	Optimal Measure	Acceptable Measure		
Endurance Capacity	Function	Cardiopulmonary Exercise Test (peak VO ₂)	6-min Walk Distance400m Walk Time		
Lower Body Power	Function	Knee Extensor Power	1-Repetition Maximum		
Muscle Mass	Biospecimen or Imaging	Urinary D3 Creatine Dilution	CT muscle volumeMRI muscle volume		

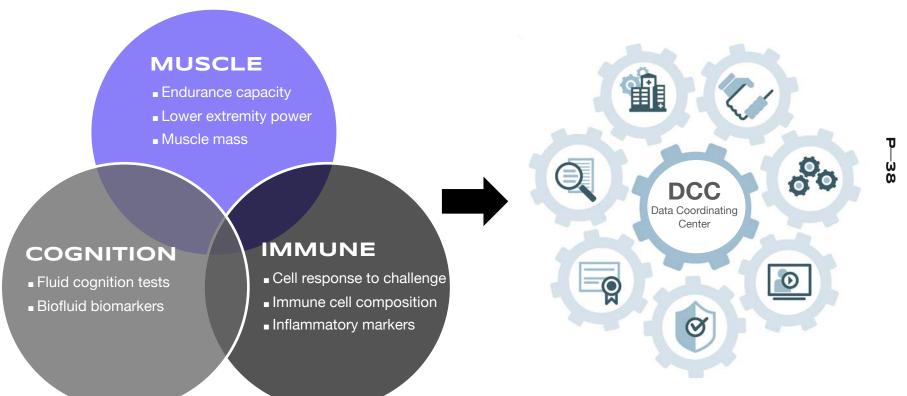
Muscle Summary Score – exceed threshold for % improvement in 2 out of 3 measures

COGNITIVE						
Subdomain	Туре	Optimal Measure	Acceptable Measure			
Cognitive Summary Score	Function	NIH Toolbox Fluid Composite (executive function, attention and processing speed, working memory)	CanTab / Cambridge Cognition (executive function, attention and processing speed, memory)			

Cognitive Summary Score – exceed threshold for % Fluid Cognition Composite OR improvements in >50% of selected cognitive function tests

NOTE: Additional tests could be named (e.g. sensory, mood). Biofluid-based biomarkers may be measured at a central lab should these be clinically validated for use in trials by time of Finals start

HOW TO WIN: HEALTHSPAN GRAND PRIZE


IMMUNE				
Subdomain Type		Optimal Measure	Acceptable Measure	
Response to challenge	Biospecimen	Ex vivo naïve immune response to a new stimulus (e.g. yellow fever)	Cellular mediated immune response in stimulated PBMCs or response to vaccine	
Immune cell composition	Biospecimen	IMM-AGE Score	CD4+ : CD8+ ratio and lymphocyte : neutrophil ratio	
Inflammatory status	Biospecimen	'Multikine' multiplexed assays (e.g. SASP Index)		

Immune Summary Score – exceed threshold for % improvement in 2 out of 3 measures.

NOTE: IMMUNE ASSAYS LISTED ARE NOT FINAL. We will provide Standard Operating Procedures for biospecimen collections and assays will be performed centrally using banked specimen.

HOW TO WIN: HEALTHSPAN GRAND PRIZE

INTELLECTUAL PROPERTY & TEAM DATA

- Each Team must own or hold appropriate license rights to all technologies, methods, resources, and Intellectual Property included in competition
- Teams will retain ownership of their Intellectual Property they bring to the Competition
- All proprietary details submitted to XPRIZE by teams will remain strictly confidential unless clearly and specifically noted
- Data generated in pursuit of prize and submitted to the XPRIZE DCC for judging is held by XPRIZE. Teams may retain copy of their data and use for publications, patent filings related to their therapeutic, and commercialization, but must adhere to XPRIZE marketing and communications best practices.

Join the movement in D X f xprize.org

QUALIFYING SUBMISSION

PURPOSE: first formal opportunity for teams to demonstrate their ability to compete in the \$10M FSHD Bonus Prize competition

QUALIFYING SUBMISSION

Research

& Development

Milestone 1:

- **\$10M**
- \$2M FSHD

Approximately 12 pages

Summary	1pg
Team	
Environment and Clinical Centers	2pg
Technical Application	5pg
Study Timeline	1pg
Scalability / Accessibility	1pg

+ Human Subjects Safety, Resourcing Plan, Biohazard

HOW TO WIN: \$10M FSHD BONUS PRIZE

FSHD Bonus Prize will focus on Facioscapulohumeral Muscular Dystrophy (FSHD) and will culminate in adjudication of the final bonus prize based on testing interventions in clinically approved genetically tested FSHD individuals aged 50-80 years

MUSCLE

- Muscle fat fraction, fibrosis, muscle mass or novel biomarkers
- Functional tests

The winning FSHD Bonus Prize team should show:

- a 10% reduction in muscle fat fraction, fibrosis or increased muscle mass using best practices in biomedical imaging OR an acceptable muscle-derived or circulating biomarker
- **AND** a 20% improvement in at least 3 of the functional tests, as deemed appropriate for the therapeutic intervention

HEALTHSPAN & FSHD BONUS PRIZES

- Teams may register to compete in one or both prize tracks: FSHD Bonus Prize and XPRIZE Healthspan
- Qualified Teams competing in the Healthspan Competition can transfer to the FSHD Bonus track at no additional registration fee, but must submit a letter of intent to transfer to XPRIZE for review by the FSHD Judging Panel
- Judging Panels for XPRIZE Healthspan and the FSHD Bonus Prize are independent of one another

XPRIZE.ORG/PRIZES/HEALTHSPAN

XPRIZE HEALTHSPAN TEAM

JAMIE
JUSTICE,
PHD
Executive Director

LAUREN
PIERPOINT,
PHD
Technical Lead

JESSICA YOON Prize Manager

DANIELLE
LEEDEMAN
Integrated
Marketing
Manager

ANNIKA ANDERSON Team Relations Manager

LAURA
GOETZ, MD
Medical Deputy
(Consultant)

ANNETTE BRINSON Executive Assistant

SUSAN EMMERSVP, Alliances &
Sponsorships,
Advancement

ELAINE HUNGENBERGSVP, Partnerships &
Impact

PETER H.
DIAMANDIS, MD
Founder, Chairman of
the Board, XPRIZE

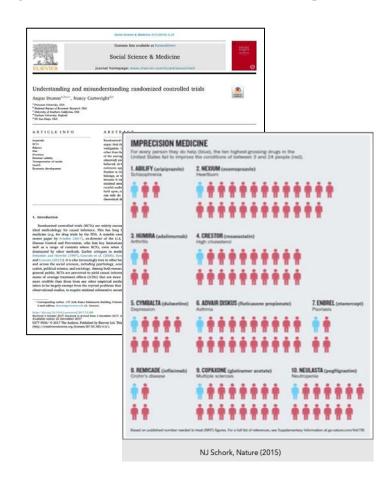
HEVOLUTION

XPRIZE Healthspan Study Design: Simple Crossover with Personalized Response Thresholds

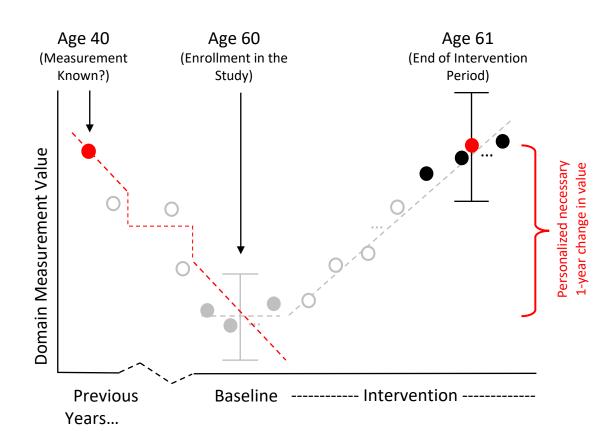
Nicholas J. Schork, Ph.D.

TGen, a part of The City of Hope National Medical Center; UCSD; Scripps Research; SJHC; Seraphina Therapeutics

- 1. Basic study designs
- 2. Personalized thresholds
- 3. Counting responders
- 4. Additional issues


XPRIZE Study Design: A Balance of Practicality, Fairness, Vision, and Rigor

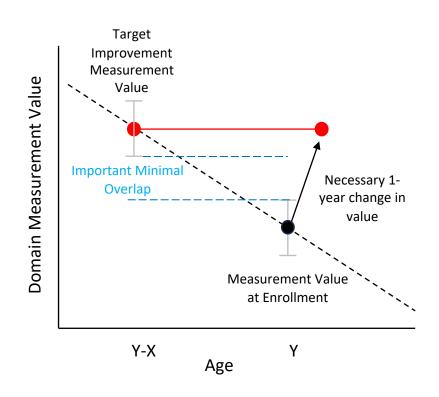
- Traditional RCTs are ideal for some inquiries, not so good for others
- Randomization doesn't always achieve the desired effect
- Matching subjects in Real Word Evidence (RWE) settings is being taken seriously by academics, pharma, and regulatory agencies
- Vetting 'precision' medicines requires complementary approaches
- Important distinctions in clinical trials for precision medicine:


N-of-1 crossover and aggregated N-of-1 crossover trials Single Case Experimental Designs (SCEDs) and aggregated SCEDs Platform-based RCTs (test a platform precision medicine tech) The use of personalized thresholds to interpret responses

XPRIZE Health Design:

Crossover design with personalized thresholds as response criteria Count responders to determine efficacy Covariates and control groups can be considered in assessing efficacy Meta-analyses of the trials can be pursued to find distinguishing characteristics of the most efficacious interventions

Personalized Response Thresholds and Criteria

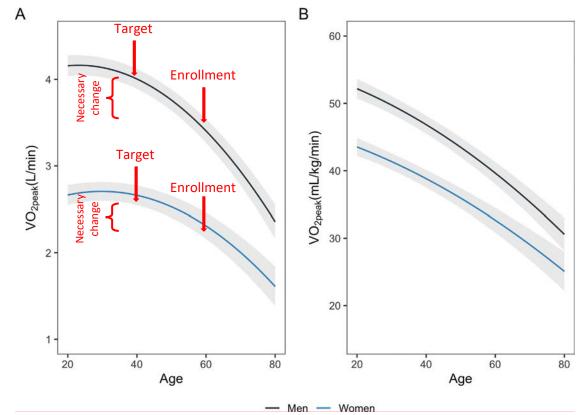


- Averages of 3 measurements pre and post intervention
- Multiple component measurements in each domain

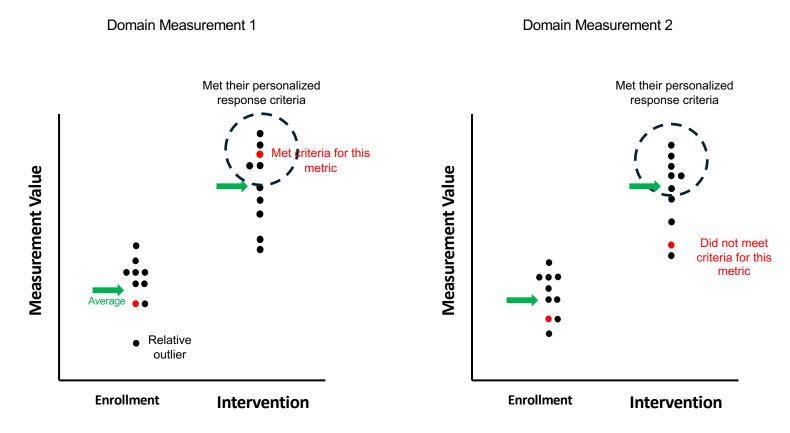
Questions:

- What specific domain measures?
- What data will be used to define appropriate 'younger' target values for individual participants?
- What covariates should be considered (sex? ancestry? etc.?)
- 21-year vs. 20-year change? Change from *enrollment* value...

Overlap in Measurement Variability at Target Ages Determines Ease of Response



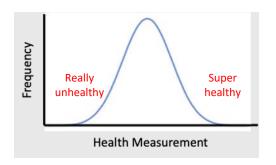
Questions:


- What data can be used to define errors?
- What is an acceptable difference between enrollment and target measurement errors?
- How will the overlap affect power?

Example Personalized Response Threshold Data and Determination: VO2 Peak

Counting Individual Responders vs. Looking at Average Measurement Changes

To be considered a responder a participant must meet personalized criteria for the different domains


Use of Control Groups and Potential for Biased Enrollment

Control Groups

Outcome	Control	Intervention
Responders	$\mathbf{f}_{r,c}$	f _{r,i}
Non-	f _{n,c}	$\mathbf{f}_{n,i}$
responders		

- Want to see $f_{r,l} >> f_{r,c}$
- Control rates from epi data defining thresholds
- Placebo or natural history study data?
- Exercise as a control intervention?

Biased Enrollment

- Enrolling super healthy people means they need to get even healthier on the intervention (-10/20 years?)
- Reducing multiple morbidities may be difficult if pathological remodeling has occurred

Additional Analysis Methods/Constructs That Could Be Exploited:

- Random Effects meta-models aggregated all trial data
- Meta-analyses of trial results summaries
- Competition-wide control of type I error rates (e.g., Bonferroni correction)

How Long Does it Take to Remodel the System and Induce Health Benefits?

Hopres Advances in Geriatric Medicine and Research

G Open Access

Received: 30 December 2021

Accepted: 24 March 2022 Published: 29 March 2022

Copyright © 2022 by the

author(s). Licensee Hapres.

4.0 International License.

London, United Kingdom. This is

an open access article distributed

under the terms and conditions

of Creative Commons Attribution

agmr.hapres.com

Does Modulation of an Epigenetic Clock Define a Geroprotector?

Nicholas J. Schork 12.4, Brett Beaulieu-Jones 2.3, Winnie Liang 2, Susan Smalley 2.4, Laura H. Goetz 1.2

- 1 Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), 445 North Fifth Street, Phoenix, AZ 85004, USA
- 2 Net.bio Inc. Los Angeles, CA 90403, USA
- 3 Department of Biomedical Informatics, Harvard University, Cambridge, MA
- 4 Department of Psychiatry and Biobehavioral Sciences. The University of California Los Angeles, Los Angeles, CA 90095, USA
- * Correspondence: Nicholas I, Schork, Email: nschork@tgen.org.

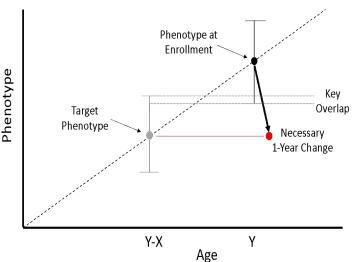
ABSTRACT

There is growing interest in the development of interventions (e.g., drugs, diets, dietary supplements, behavioral therapies, etc.) that can enhance health during the aging process, prevent or delay multiple age-related diseases, and ultimately extend lifespan. However, proving that such 'geroprotectors' do what they are hypothesized to do in relevant clinical trials is not trivial. We briefly discuss some of the more salient issues surrounding the design and interpretation of clinical trials of geroprotectors, including, importantly, how one defines a geroprotector. We also discuss whether emerging surrogate endpoints, such as epigenetic clocks, should be treated as primary or secondary endpoints in such trials. Simply put, geroprotectors should provide overt health and disease prevention benefits but the time-dependent relationships between epigenetic clocks and health-related phenomena are complex and in need of further scrutiny. Therefore, studies that enable understanding of the relationships between epigenetic clocks and disease processes while simultaneously testing the efficacy of a candidate geroprotector are crucial to move the field forward.

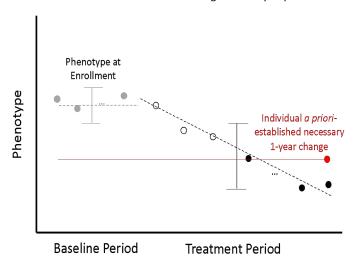
KEYWORDS: geroprotectors; the geroscience hypothesis; clinical trials; epigenetic clocks; biomarkers

INTRODUCTION

The development of drugs, diets, activities, etc. that sustain health throughout the aging process, increase vitality and ultimately enhance longevity has been on the minds of humans for centuries [1-3]. Not only is this interest rooted in an innate individual desire to live a long and healthy life, but, more generally, there is a growing consensus among biomedical scientists that by identifying interventions that modulate some basic


- What about acute vs. long term health benefits?
- Aging rate measurements (e.g., epigenetic clocks, omics-based clocks, functional rate of decline, etc.) could reflect geroprotector benefits
- If a geroprotector works, it must have a ripple effect on ALL or MOST systems that, when compromised, lead to morbidities and mortality
- How long it takes before a geroprotector sinks in, slows, e.g., the clock, and ultimately remodels relevant systems for the better are crucial questions!
- Without observable acute effects on clinically-relevant measures, what is the long-term (however defined) mechanism of action (MOA)?

"In fact, the question of how long it might take for a geroprotector to induce health benefits could lead to the almost comical, yet likely true, claim that one could literally die of age-related diseases while waiting for their geroprotector to induce its favorable effects!" (page 7)


Adv Geriatr Med Res. 2022;4(1):e220002. https://doi.org/10.20900/agmr20220002

Simple Crossover Design with Personalized Response Criteria

Figure 1. Schematic for Defining Target Improvements in the 3 Domains.

Figure 2. Schematic Depicting the Repeated Measurements on Individuals and Their Use in Determining Necessary Improvements

Key Elements:

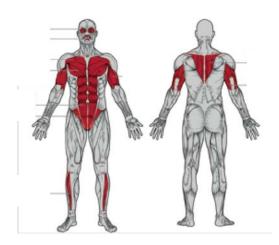
- Need to define the necessary change for each person: an x-year reduction based on population data or a percent change?
- Individuals must show measurement values equal to/less than their necessary 1-year change for each (?) domain to count as responders
- Control groups (using randomization?) to establish expected frequency of spontaneous responders (all controls should be equal)
- No advantages for enrolling super healthy or super unhealthy people since each enrollee has a personalized target improvement of x years based on their phenotype at enrollment
- Balance feasibility and rigor using stringent necessary, and unlikely spontaneous, changes for each individual; controls for covariate effects
- Winner based on statistical comparisons with control group frequencies and also greatest relative frequency of responders?

HEVOLUTION

SOLVE FSHD

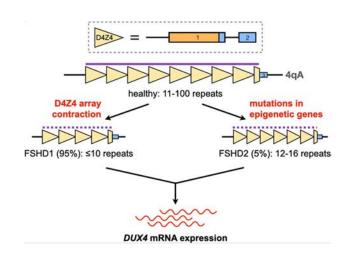
Unwilling to Let Muscular Dystrophy Beat Him, Lululemon Founder Commits \$100M to Research

Published: Mar 09, 2022 By Vanessa Doctor, RN


Our Mission

- We are mission-focused on finding a cure for FSHD by 2027
- Seeking to accelerate the pace of innovation and remove barriers to finding a cure using cutting-edge technologies and traditional approaches
- Supporting our partners through strategic investments, our internal drug development experience, and access to a world class global scientific and drug development network

WHAT IS FSHD?

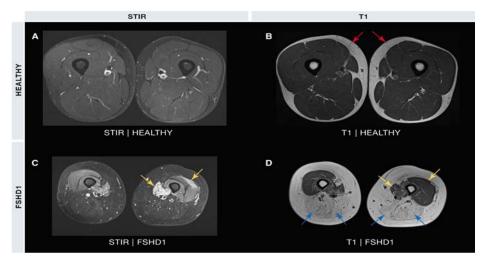

FSHD is a Rare Form of Muscular Dystrophy

Progressive muscle degeneration and weakness leads to an inability to lift objects, groom oneself and walk

FSHD is Heterogeneous

- · Genetic and epigenetic causes
 - Deletions from D4Z4 region of chromosome 4
 - Hypomethylation of DNA in region

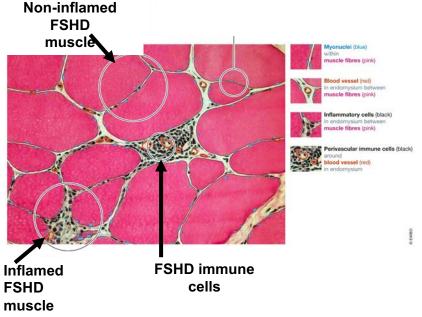
Aberrant DUX4 expression results in FSHD



Hallmarks of FSHD Pathology

FSHD is characterized by inflammation and fat infiltration in muscle

- FSHD muscle is characterized by STIR (Short Tau Inversion Recovery) positive MRI images indicating inflammation and bright T1 images reflecting fat infiltration
- Heterogeneity between and within muscles



Hallmarks of FSHD Pathology

FSHD is characterized by inflammation and fat infiltration in muscle

Overlapping muscle pathology with sarcopenia

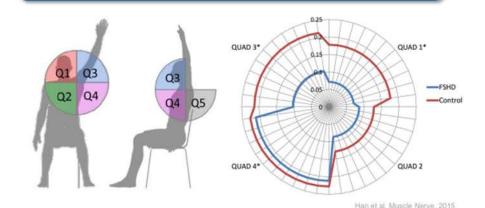
UNDERSTANDING FSHD

FSHD BONUS PRIZE CRITERIA

A Bonus Prize of \$8,000,000 will be awarded to the First Place Team

Must demonstrate an improvement from baseline that exceeds:

- A 10% reduction in muscle fat fraction using an appropriate imaging method OR an acceptable muscle-derived or circulating biomarker
- A 20% improvement in at least 3 functional tests from relevant clinical outcomes assessment, such as, but not limited to:
 - 6 minute walk test (6 MWT)
 - Gait speed (GS)
 - Grip test (GT)
 - Knee extensor maximum voluntary contraction (MVC)
 - Timed up and go (TUG)
 - Revised Upper Limb Module (RULM)
 - FSHD-COM (complete test or select components)
 - Reachable Workspace (RWS)
 - Novel functional endpoint as a clinical outcome assessment for FSHD

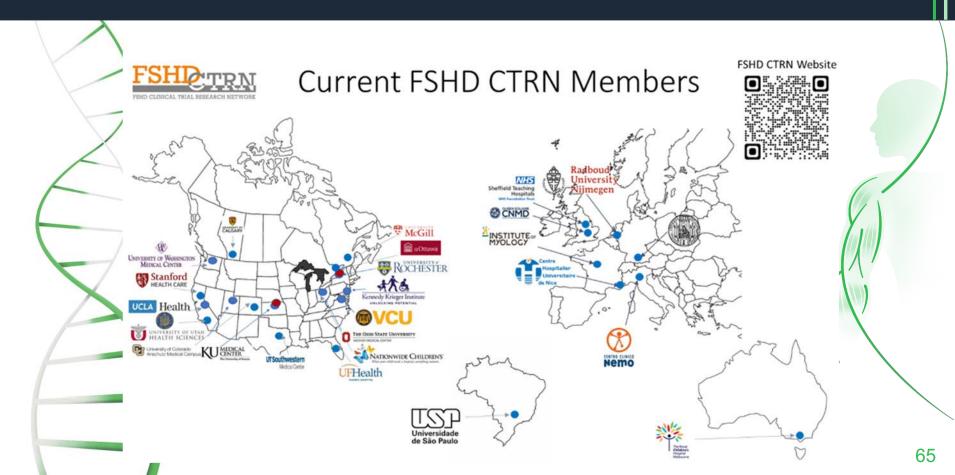

FSHD BONUS PRIZE CRITERIA FSHD Composite Outcome Measure

	ITEM	Score 0	Score 1	Score 2	Score 3	Score 4	Reference
LEG FUNCTION	Sit to stand	≤1 sec	1.1-2 sec	2.1-3 sec	>3 sec	Unable	18,19
	6 MWT	≥650 m	649-518 m	517–386 m	385-254 m	≤253 m	20,21
	Self-selected gait speed	≥139 cm/sec	138.9-123 cm/sec	122.9-107 cm/sec	106.9-89 cm/sec	<88.9 cm/sec	23,24
	Go 30'	≤4 sec	4.1–8 sec	8.1-12 sec	>12 sec	Unable	25,7
	Ascend/descend stairs	≤2 sec	2.1-4 sec	4.1-6 sec	>6 sec	Unable	9,25,7
ARM/SHOULDER FUNCTION	Shoulder Abduction (R/L)	2kg weight above head	Antigravity	≥ 90 degrees	<90 degrees	<45 degrees	9,26,25
	Shoulder Forward Flexion (R/L)	2kg weight above head	Antigravity	≥ 90 degrees	<90 degrees	<45 degrees	26,25,9
	Elbow Flexion (R/L)	3kg weight	Antigravity	≥90 degrees	<90 degrees	<10 degrees	26,25,9
	Don/doff Coat	≤10 sec	10.1–15 sec	15.1-20	>20	Unable	27
TRUNK FUNCTION	Pick up a penny from floor	≤2 sec	2.1-4 sec	4.1-6 sec	>6 sec	Unable	27
	Sit up with feet held	Able to do fully	Able to rise >45 degrees	Able to bring shoulders off	Only able to lift head off	Unable	2
	Supine to sit	≤3 sec	3.1-6 sec	6.1–9 sec	>9	Unable	2,33
HAND FUNCTION	Hand Grip Force Men	Both ≥ 35 kg	1 side <35 kg	1 side < 25 kg, or 2 sides < 35 kg	1 side < 20 kg, or 2 sides < 25 kg	1 side < 15 kg, or 2 sides < 20 kg	6,7,29,30
	Hand Grip Force Women	Both ≥ 23 kg	1 side <23 kg	1 side < 17 kg, or 2 sides < 23 kg	1 side < 14 kg, or 2 sides < 17 kg	1 side < 11 kg, or 2 sides < 14 kg	6,7
BALANCE	TUG: Timed up and Go	<6 sec	6-8 sec	8.1-10 sec	10.1–12 sec	<12 sec	32,33


Reachable Workspace Enables Quantification of Disease Progression

RWS measures global upper extremity function

- Reachable Workspace (RWS) is a quantification of upper limb motion utilizing a contactless sensor-based system
- RWS is evaluated using a series of protocol-directed arm motions (with and without weights) assessing Relative Surface Area (RSA) across five quadrants (Q1-Q5)
- RSA has been shown to correlate with abilities to perform activities of daily living (e.g., eating, self-care)


FSHD natural history demonstrates a ~3% RWS decline year over year

- Demonstrated sensitivity to disease progression in FSHD and in Duchenne/Becker muscular dystrophy
 - A longitudinal study in a FSHD patient population* exhibited annual declines in RWS of ~3% (measured Q1-Q4) compared to baseline

FSHD BONUS PRIZE RESOURCES Clinical Trial Research Network

FSHD IS PRIMED FOR INNOVATION

- Well Characterized Disease Biology
 - Putative cause of FSHD is increased expression of DUX4
- 2 Tractable Target
 - DUX4 expression is well suited for inhibition
- 3 Engaged Patient and Physician Community
 - · Global patient advocacy groups, respected KOLs
- 4 Potential for Rapid Clinical Development
 - Existing and growing patient registries
 - Established regulatory pathway
- 5 Sizeable Commercial Opportunity
 - No current standard of care

CONTACT US

erchin@solvefshd.com

600-21 Water Street Vancouver, B.C. V6B 1A1

HEVOLUTION

MEASURING MUSCLE, COGNITIVE, AND IMMUNE FUNCTION

STEVE
CUMMINGS, MD
UCSF

PERMINDER
SACHDEV, MD
University of New
South Wales

GEORGE
KUCHEL, MD
University of
Connecticut

Muscle Endpoints

Steve Cummings, MD

San Francisco Coordinating Center
California Pacific Medical Center Research Institute
Dept. of Epidemiology and Biostatistics,
U.C. San Francisco

Optimal Endpoint Measurements

Subdomain	Туре	Optimal Measure
Endurance Capacity	Function	Cardiopulmonary Exercise Test (peak VO ₂) ³²
Lower Body Power		Knee Extensor Power or rate of torque development (RTD)35
Muscle Mass	Biospecimen or Imaging	Urinary D3 Creatine Dilution ^{37, 38}

Acceptable Endpoint Measurements

Subdomain	Туре	Optimal Measure	Acceptable Measure
Endurance Capacity	Function	Cardiopulmonary Exercise Test (peak VO ₂) ³²	 6-min Walk Distance³³ 400m Walk Time³⁴
Lower Body Power		Knee Extensor Power or rate of torque development (RTD) ³⁵	1-Repetition Maximum ³⁶
Muscle Mass	Biospecimen or Imaging	Urinary D3 Creatine Dilution ^{37, 38}	 CT muscle volume^{39, 40} MRI muscle volume³⁸

Competitors will be expected to use optimal measurements unless an exception is made because the optimal measurement is not feasible

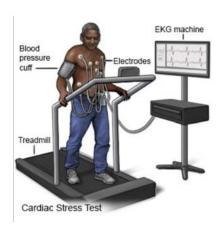
Sources of Data

Baltimore Longitudinal Study of Aging (BLSA)

- Longitudinal study since 1958, now ~1600 ages 20+
- Periodic intensive measurements of muscle

Study of Muscle Mobility and Aging (SOMMA)

 879 participants age 70+ years with muscle biopsies to assess mitochondrial function, and extensive measurements of muscle and mobility

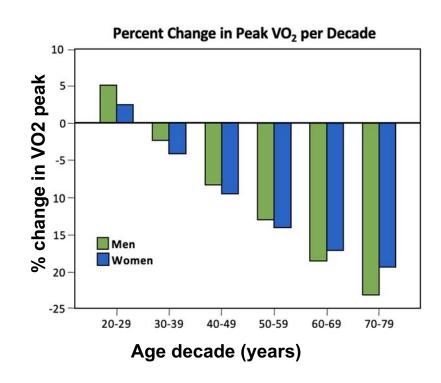

Endurance capacity

Optimal: VO₂ peak

Acceptable: 400m and 6-minute walks

VO₂ Peak*

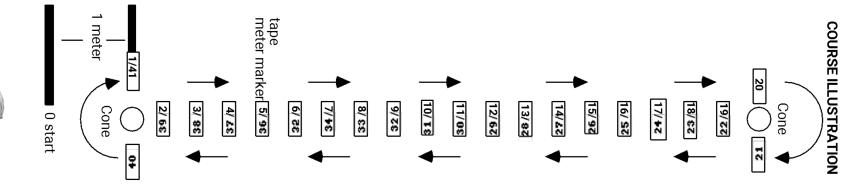
- Measures oxygen consumption during standard standard exercises
- Treadmill or cycle
- Increasing intensity to maximum tolerable level
- Predicts disability & mortality



^{*}Similar to VO₂max

VO₂ Peak Declines With Age

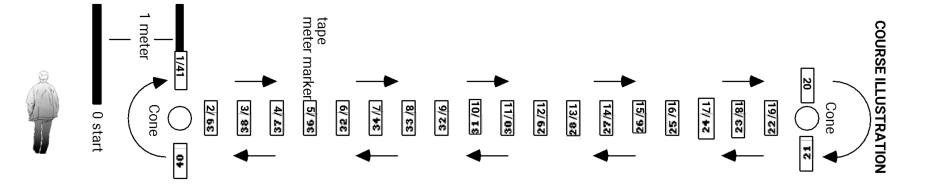
- Women and men ages 21 to 87 years from BLSA
- Median 8 years follow-up
- The rate of decline in VO2 peak increases with age

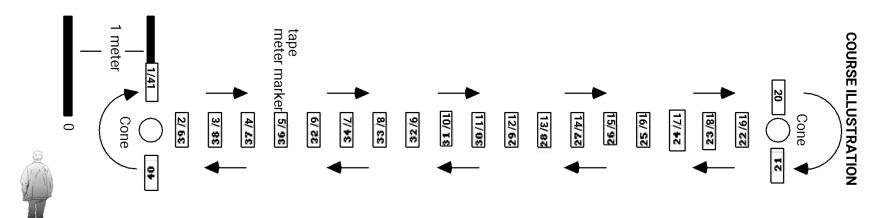


Treatment Target for VO₂ Peak

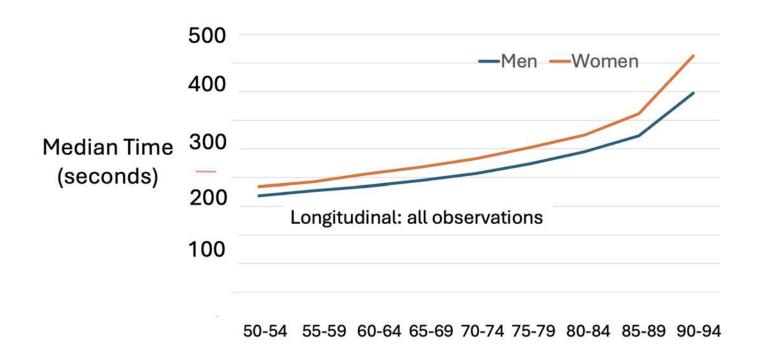
- VO₂ peak declines ~20% over 10 years
- Goal of 10-year restoration of function: Gain ~ 20% VO₂ peak
- Meta-analysis: Over 60 years old, exercise training >20 weeks results in ~ 16% improvement in VO₂ peak

400m Walk Time


- For example, 10 circuits of a 40-meter course
- Fast 400m walk: As fast as you can safely walk
- Time required to complete 400 meters

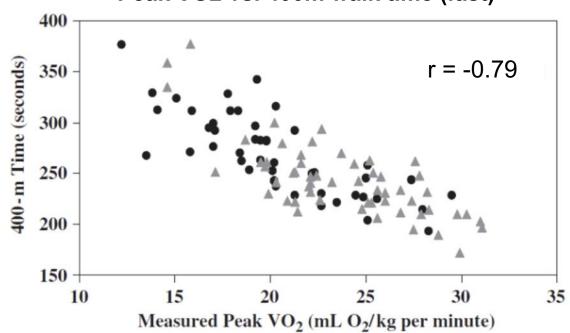

400m Walk Time

- Mobility disability: inability to walk 400m in 15 minutes
- Common endpoint of clinical trials



6-minute Walk Distance

- How far can you walk in 6 minutes
- Commonly used as and endpoint in studies and trials for cardiopulmonary disease



Fast 400m Walk Time Increases With Age

Optimal vs. Acceptable Measure

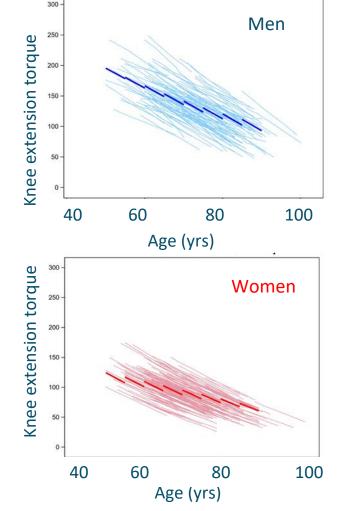
Peak VO2 vs. 400m walk time (fast)

Lower Body Power

Optimal: Power

Acceptable: Strength

Muscle Power and Strength


- Muscular power is the ability to exert maximal force quickly
- Muscular strength is the ability to exert maximal force
- Must be measured by a leg dynamometer*

^{*}Hand-held dynamometers are poorly reproducible and depend on examiner and participant effort

Power and Strength Decrease with Age

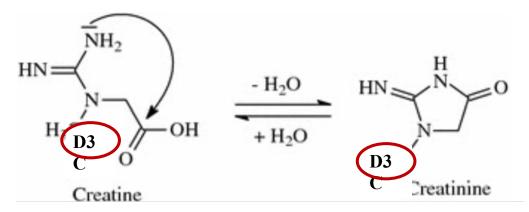
- Longitudinal data from BLSA
- Men are stronger than women but percent change per decade is similar
- 15% change in peak torque per decade
- 20-year goal XPRIZE goal: about 30% improved power

Muscle Mass

Optimal: D3 Creatine Dilution (D3Cr)

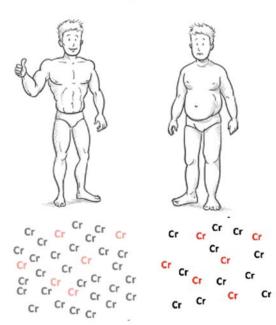
Acceptable: Leg muscle volume by MR or CT

What is D3 Creatine Dilution?


Creatine in Muscle is Converted to Creatinine

- Creatine from diet is taken up in muscle
- Creatine is involved in transfer of P to generate ATP
- 98% of creatine is in skeletal muscle
- ~1.7% of creatine is converted to creatinine excreted in urine

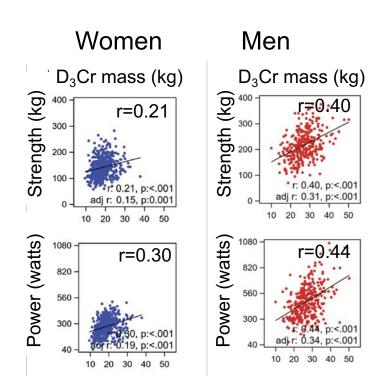
$$HN = N$$
 $H_{3}C$
 OH
 $H_{2}O$
 $HN = N$
 $H_{3}C$
 $HN = N$
 $H_{3}C$
 $HN = N$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$
 $H_{3}C$


The D3Cr Dilution Assay Estimates Total Skeletal Muscle

- Label Creatine with deuterium (D3)
- Drink a dose of D3Creatine
- D3 Creatinine is excreted in urine.
- Specimen of urine taken at ~3 days

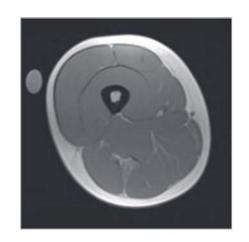
The D3Cr Dilution Assay Estimates Total Skeletal Muscle Adapted from Peggy Cawthon

- Label Creatine with deuterium (D3)
- Drink a dose of D3Creatine
- D3 Creatinine is excreted in urine
- Specimen of urine taken at ~3 days
- A higher ratio of Cr to D3 Cr indicates higher muscle mass



More muscle ratio D3:total

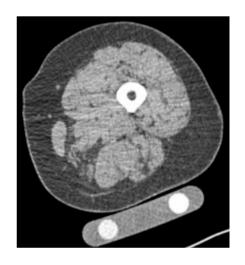
Less muscle2
ratio D3:total


Total Muscle Mass by D3Cr

- Total skeletal muscle mass by D3Cr is associated with leg power and strength
- Skeletal muscle mass by D3Cr is associated with disability, falls, fractures...

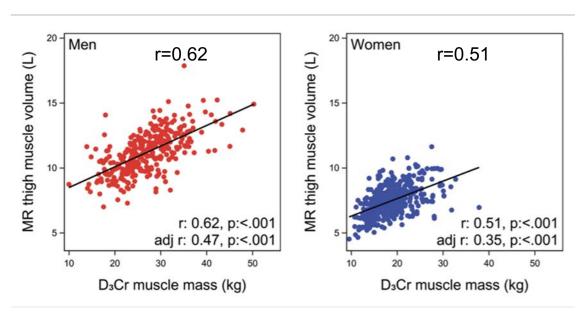
Muscle Volume

MR

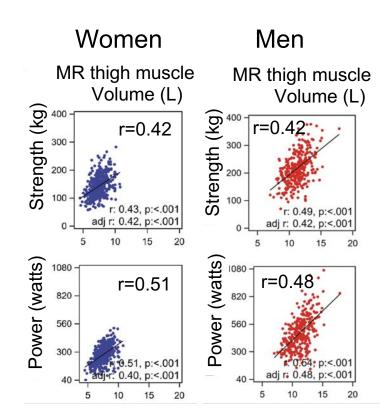


25 year-old woman

74 year-old woman


CT

Optimal vs. Acceptable Endpoint


Muscle mass by D3Cr vs. muscle volume by MR

Men and women ≥ 70 years old (SOMMA Study)

MR Thigh Muscle Volume

Total thigh muscle volume is also associated with leg power and strength

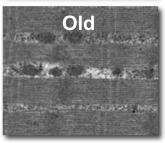
Interrelationships Between Optimal Measurements

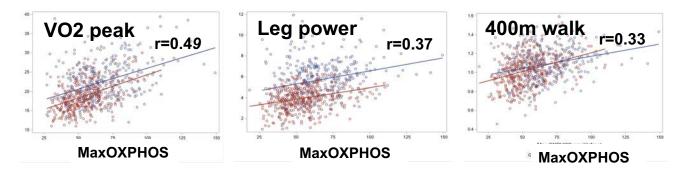
The Optimal Measurements are Moderately Correlated with Each Other

- VO₂peak and leg power
- VO₂peak and D3Cr
- Leg power and D3Cr

r = 0.55 (men & women)

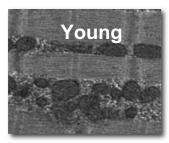
r = 0.44 (men), 0.31 (women)

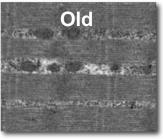

r = 0.44 (men), 0.30 (women)

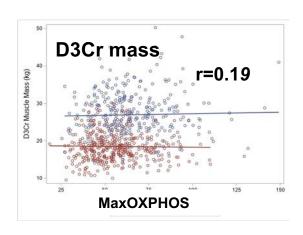


Functional Endpoints Share an Association with Mitochondrial Function in Muscle Biopsies

Mitochondria mass & function decline with age






- MaxOXPHOS is a measure of maximum capacity of mitochondria to consume O2 (generate ATP)
- From muscle biopsies in the vastus lateralis in SOMMA

However, Muscle Mass by D3Cr is Weakly Associated with Mitochondrial Function

Mitochondria mass & function decline with age

Summary

- The muscle endpoints decline, often at increasing rate, with age
- Achieving 10-year targets may involve 10-25% improvements, depending on the measure and age
- They are moderately intercorrelated. A treatment might influence 2 or 3 in concert
- Mitochondrial function may contribute to all of the measurements except skeletal mass by D3Cr

Thank You

Peggy Cawthon Lily Lui

Eleanor Simonsick Luigi Ferrucci

Bill Evans U.C. Berkeley Duke University

HEVOLUTION

ASSESSMENT OF COGNITION

Never Stand Still

Faculty of Medicine

Centre for Healthy Brain Ageing (CHeBA)

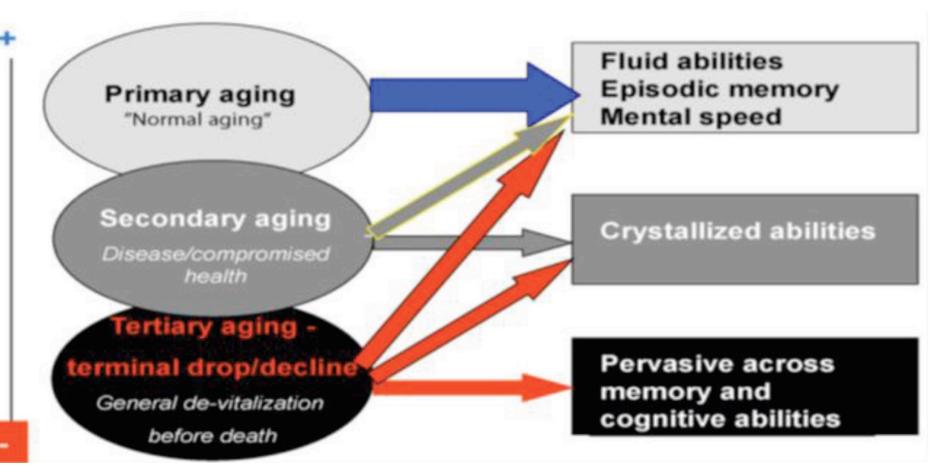
Perminder Sachdev

Centre for Healthy Brain Ageing (CHeBA), **University of New South Wales & Neuropsychiatric Institute**, **Prince of Wales Hospital** Sydney, Australia

p.sachdev@unsw.edu.au

MAIN POINTS

- Why cognition?
- Which aspects of cognition?
- The challenges in measuring cognition
- Suggested measures
- Addressing confounds
- Secondary markers of brain aging

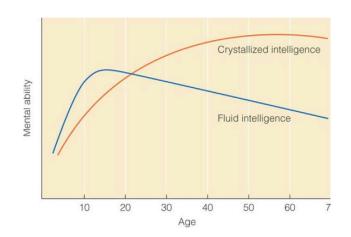


MAIN POINTS

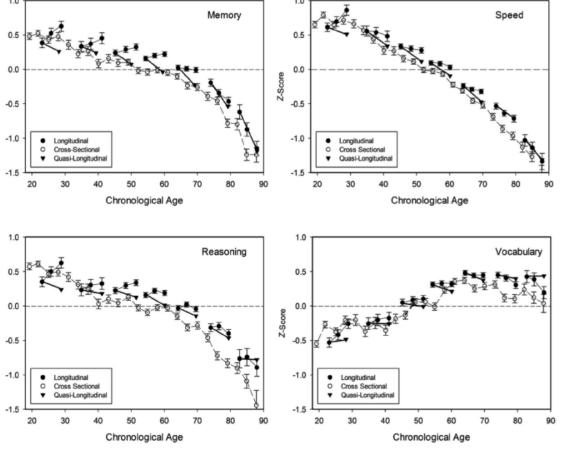
Why cognition?

- Interest is in brain aging
 - Ageing-related changes
 - Age-related changes (pathology related)
- Functionally, most relevant (and the best studied) is age-related change in cognition.
- What is normal cognitive ageing?
 - Cross-sectional data cohort effects
 - Longitudinal data practice effects

Birren and Cunningham model


Crystallized and fluid intelligence

Crystallized intelligence


- Refers to skills, ability, and knowledge that is overlearned, well-practiced, and familiar
- Examples: vocabulary and general knowledge
- Crystallized abilities remain stable or gradually improve at a rate of 0.02 to 0.003 standard deviations per year through the sixth and seventh decades of life

Fluid intelligence

- Refers to abilities involving problem-solving and reasoning; includes innate ability to process and learn new information, solve problems, and attend to and manipulate one's environment.
- Examples: executive function, processing speed, memory, and psychomotor ability.
- Many fluid cognitive abilities, especially psychomotor ability and processing speed, peak in the third decade of life and then decline at an estimated rate of −0.02 standard deviations per year.

Cadar 2019

until about age 65 v

Means and standard errors of the crosssectional and three-occasion longitudinal data and estimates of quasi-longitudinal relations in four cognitive domains.

Both cross-sectional and quasilongitudinal comparisons indicate modest declines for memory and reasoning abilities until about age 65 when the decline accelerates, and nearly linear declines in speed from the decade of the 30's, with an increase followed by modest decline after the 60's for vocabulary.

Salthouse T, 2019

MAIN POINTS

- Why cognition?
- Which aspects of cognition?

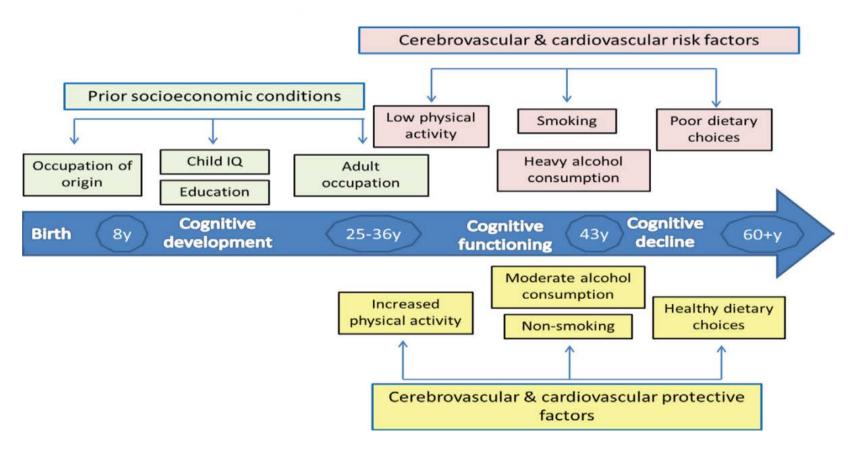
Cognitive domains of interest

- Executive function
- Processing speed
- Working memory
- Psychomotor speed
- Episodic memory

Global composite

- In order to determine if a candidate therapeutic solution is successful, the improvements must reflect percent changes in the value to offset 10-20 years decline (e.g. as if they were 10-20 younger, functionally speaking). In addition, these improvements must be individual-specific and occur across all three domains (muscle, cognitive, AND immune).
- A before/after design that requires that the individual changes during the treatment period

MAIN POINTS


- Why cognition?
- Which aspects of cognition?
- The challenges in measuring cognition

Challenges

- Demographic factors
 - Age, Sex, Education, Ethnic Background
- Language (& cultural fairness)
- Practice effects
- Normative data (its availability, and quality)
- Administration (e.g. training of staff, setting)
- Confounds (depression, poor effort, etc.)
- Confounded by type of intervention

Influencing factors across the life course

MAIN POINTS

- Why cognition?
- Which aspects of cognition?
- The challenges in measuring cognition
- Suggested measures

		• ,	
Recommend or Covariate • Sensory status	Function and Self- Report	 NIH Toolbox Sensory Assessments for visual acuity, pain, audition 	
RecommendMood	Questionnaire	 NIH Toolbox Emotion assessments for sadness, psychological well-being stress and self efficacy 	CanTab / Cambridge Cognition (emotional bias test)
		old for % Fluid Cognition Composite (alter ts in 2 of 3 tests" approach as muscle and	-

CONSIDERATIONS: The therapeutic solution cannot contain an active intervention that includes activities similar to the assessment

Team solutions cannot include practice sessions of NIH Toolbox, CanTab, or other cognitive training programs judged to be

NIH Toolbox Fluid Composite

processing speed, working

(executive function, attention and

Optimal Measure

memory)

Subdomain

Score

Cognitive Summary

measures above. For example:

Type

Function

similar in scope that may permit transfer of skills.

Measuring cognitive function

Acceptable Measure

CanTab / Cambridge Cognition

processing speed, memory)

(executive function, attention and

NIH TOOLBOX

https://nihtoolbox.org/domain/cognition/

- Total Cognition Composite, Fluid Composite: includes
 - Dimensional Change Card Sort, (Executive)
 - Flanker Inhibitory Control and Attention, (Attention)
 - Picture Sequence Memory (Form A), (Episodic memory)
 - List Sorting Working Memory, and (Working memory)
 - Pattern Comparison Processing Speed tests (Processing speed)

Toolbox -Fluid	Good test-retest reliability & convergent validity w gold standard tests	Proprietary, but not very costly
composite	Feasible in older adults & clinical samples	Small practice
	Available in 6 languages, measurement invariance across minority & majority ethnicities, norms available adjusted for ethnicity	effects (recommend double baseline)
	Assocn with biomarkers (tau, MTL vols)	
	Preliminary support for clinical trial endpoints	
,	Good test-retest reliability & convergent validity with	Proprietary, high
composite	gold standard tests	costs
	Feasible in older adulst & clinical samples	Variable findings
	Available in 15+ languages	for practice effects –
	Language neutral as no verbal requirements, minimal association with language	moderate PEs after 3 months
	Assocn with biomarkers (CSF AD profile)	on subtests
	FDA cleared as endpoint for clinical trials	

	1) Symbol Digit Modalities	Good reliability	Small practice effects, alternate versions available
	Test	Brief. Oral version available if motor limitations.	
		Non-proprietary	
		Minimal CALD effects	
Attention &		MCIDs vs CDR-SB available	
processing		Sensitive to biomarkers (incident lacunes)	
speed	2) Digit Symbol	Good reliability	Proprietary, costly
	Substitution - Coding	Brief	Small practice effects
		Sensitive to biomarkers (AD)	
		FDA cleared as endpoint for clinical trials	
	1) TMT B	Good test-retest reliability	(should administer TMT A first but very brief)
		Minimal practice effects	CALD issues – not appropriate for character-based langua
		Brief, non-proprietary	(Color Trails Test could be considered as alternative)
		High acceptance/consensus as gold standard	
		measure of executive function	
		MCIDs vs CDR-SB available	
Executive		Sensitive to biomarkers (incident lacunes)	
function	2) Stroop Colour-word	Good test-retest reliability	Multiple versions available – some proprietary eg D-KEFS
	interference	Minimal practice effects	Need to administer 2 other subtests (colour, word) to con
		MCIDs vs CDR-SB availableSensitive to biomarkers	interference score (brief tests)
		(incident lacunes)	
	1) RAVLT	Multiple measures e.g. total recall, delayed recall	Moderate practice effects (typical of memory measures),
		Good reliability for 2 sub measures above	versions
		Available in multiple languages and norms well-	Longer duration and need to factor in the delay interval
		characterised	Vulnerable to CALD effects (though some measures only
		Non-proprietary	affected)
Memory		Sensitive to AD biomarkers	
	2) CVLT	Multiple measures e.g. total recall, delayed recall	Proprietary
		Good reliability for 2 sub measures above	Longer duration and need to factor in the delay interval
			Moderate practice effects (typical of memory measures)

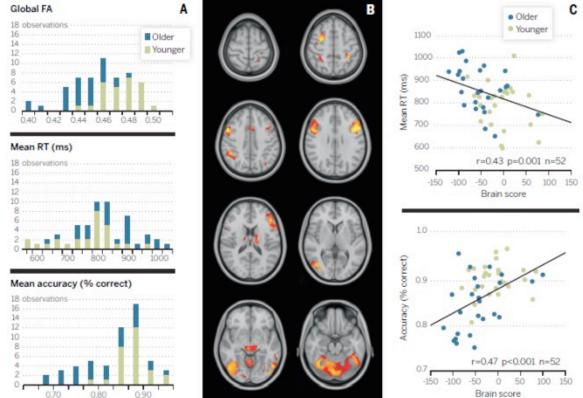
MAIN POINTS

- Why cognition?
- Which aspects of cognition?
- The challenges in measuring cognition
- Suggested measures
- Addressing confounds

- The NIH Toolbox Emotion tests include four major domains: Psychological Well-Being, Stress and Self-Efficacy, Social Relationships and Negative Affect.
- The NIH Toolbox Emotion Battery, recommended for ages 8+, consists of tests of Positive Affect, General Life Satisfaction, Emotional Support, Friendship, Loneliness, Perceived Rejection, Perceived Hostility and Self-Efficacy. For ages 18+, the battery also includes tests of Meaning and Purpose, Instrumental Support, Sadness, Perceived Stress, Fear, and Anger.

MAIN POINTS

- Why cognition?
- Which aspects of cognition?
- The challenges in measuring cognition
- Suggested measures
- Addressing confounds
- Secondary markers of brain aging



Neuroimaging

- Gray matter volume
- Whole brain volume
- White matter lesions
- Diffusivity measures
- Functional MRI measures
- Brain age various measures

White matter microstructure, task-related gray matter activation, and

working memory performance in young and old adults

Molecular markers

- Markers of neurodegeneration (NfL, GRAP, Tau, pTau, etc.)
- Markers of neuroinflammation
- Markers of BBB integrity, etc.
- Epigenetic markers (e.g., epigenetic clock)

Conclusions

- 1. Choose robust measures appropriate for the population being studied.
- 2. Measure the domains of fluid intelligence most affected by normative cognitive ageing
- 3. Address confounds
- 4. Can include secondary measures as supportive evidence

HEVOLUTION

Immune Aging in Geroscience-Guided Trials

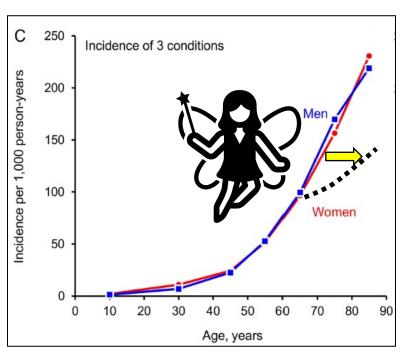
George A. Kuchel, MD CM, FRCP, FAAAS

Professor and Travelers Chair in Geriatrics and Gerontology
Director, UConn Center on Aging
Director, UConn Older Americans Independence (Pepper) Center
Director, NIH SenNET KAPP-Sen Tissue Mapping Center
mPI, NIA Translational Geroscience Network
kuchel@uchc.edu

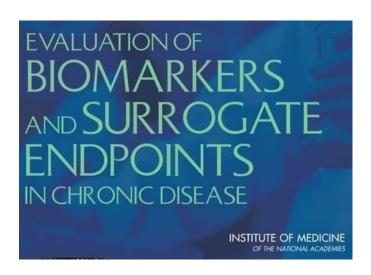
XPRIZE Healthspan Team Summit 11th Aging Research & Drug Discovery Meeting Copenhagen, 8/26/2024

Disclosures

- Funding from NIH (NIA, NIAID, NINR, NCI, Common Fund) and PCORI
- Voting member of ACIP (Advisory Committee on Immunization Practices) at CDC
- **No** relevant commercial disclosures



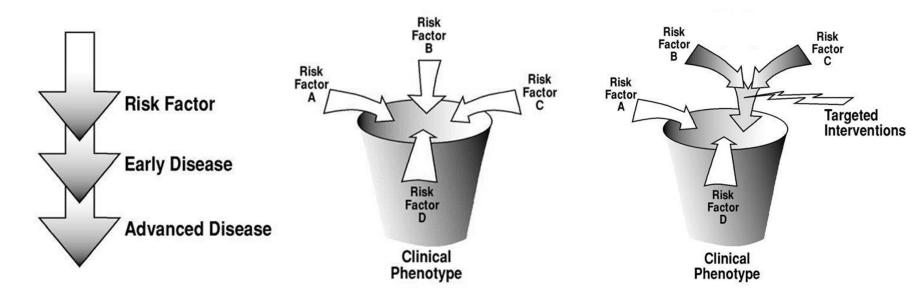
Moving Gerotherapeutics from an Idea to Reality



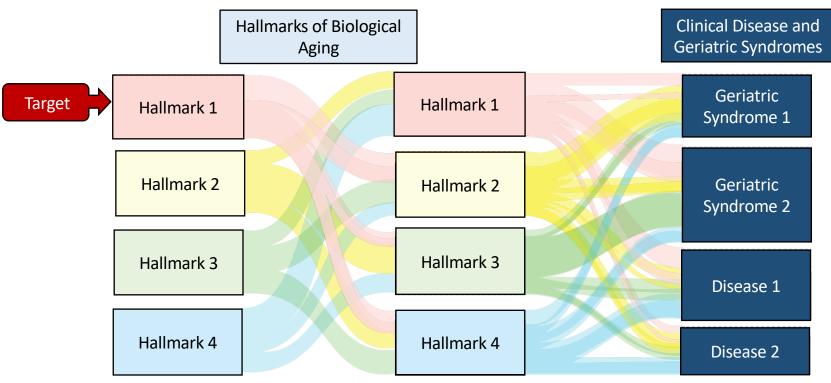
St Sauver JL et al. BMJ Open 2015

Traditional View of Disease Biomarkers

Biomarker

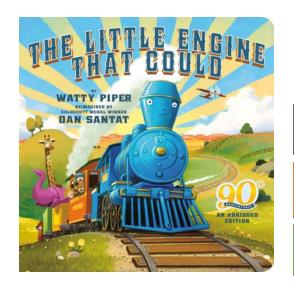

A characteristic (e.g. cholesterol level) that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to an intervention (2010).

Biomarkers and Multifactorial Complexity of Aging



Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept
Inouye SK, Studenski S, Tinetti ME, and Kuchel GA. <u>JAGS</u>. 2007

Biomarkers and Multifactorial Complexity of Aging



Espinoza, Justice, Newman, Pignolo and Kuchel; Chapter 40 Applied Clinical Geroscience, Hazzard's Geriatric Medicine and Gerontology, 8th edition

Biomarkers for Geroscience-Guided Clinical Trials

Targeting Aging with Metformin (TAME) study design overview

Age 65-80 AND
Gait speed 0.4-1.0 m/sec OR Age-related disease (CVD, cancer, MCI)

Inclusion Criteria

n = 3000 Double b

Double blind placebo-controlled trial

(Clinical) Time to incidence of any major age-related disease:

MI, stroke, cancer, CHF, MCI/dementia, or death.

Primary Outcome

(Functional) Time to incidence of disability: Major decline in mobility or cognitive function, onset of severe ADL limitation.

Secondary Outcome

(Biological) Change in metformin levels and biomarkers of aging and age-related diseases.

Tertiary Outcomes

GeroScience (2018) 40:419 436 https://doi.org/10.1007/s11357-018-0042-y

REVIEW ARTICLE

A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup

Jamie N. Justice : Luigi Ferrucci · Anne B. Newman · Vanita R. Aroda · Judy L. Bahnson · Jasmin Divers · Mark A. Espeland · Santica Marcovina · Michael N. Pollak · Stephen B. Kritchevsky · Nir Barzilai · George A. Kuchel

Role of Immune Aging within XPRIZE Competition

Immune Function Outcomes: Improvement from baseline that exceeds personalized response thresholds in 2 out of 3 biospecimen-based biomarker categories as measured by central XPRIZE laboratories.

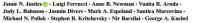
Specific assay decisions will be determined in 2026, but may include:

- cytokine/multikine assays
- immune cell composition (e.g. IMM-AGE)
- ex vivo naïve immune response to a new stimulus

Circulating Humoral Biomarkers for Geroscience-Guided Clinical Trials

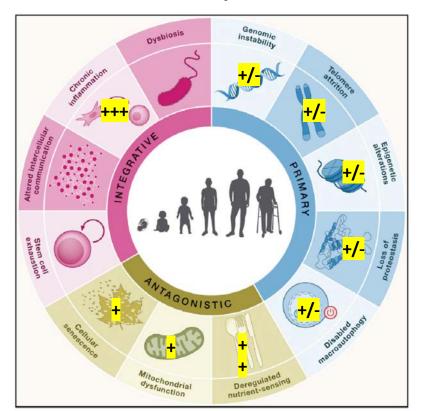
Biomarker		Underlying Biologic Process & Role
IL-6, CRP TNFRII		Inflammation & Intercellular Signaling Interleukin 6 (IL-6) is a proinflammatory cytokine and Tumor Necrosis Factor-a RII is a TNF —a receptor involved in acute-phase response. C-Reactive Protein (CRP) is an acute phase protein produced in response to inflammation. Cytokine dysregulation is a driver of pathophysiologic processes leading to disease, functional decline, frailty, and death.
GDF15	*::	Stress Response & Mitochondria Growth Differentiating Factor 15 (GDF15) is a member of the TGF-8 superfamily robustly associated with mortality, cardiovascular events, cognitive decline and dementia. GDF15 is increasingly recognized in mitochondrial dysfunction, and as a biomarker of aging.
IGF-1 Insulin	Hy.	Nutrient Signaling Disruption of the insulin' insulin-like growth factor (IGF-1) signaling pathway is implicated in longevity in animal models. In humans, IGF-1 and fasting insulin are responsive to caloric restriction, and low IGF-1 in growth hormone receptor deficiency conveys disease protection.
Cystatin-C	G J	Kidney Aging Cystatin C, an extracellular inhibitor of cysteine proteases, is a marker of renal disease and aging, It is an independent risk factor for all cause and CVD-related mortality, and multi-morbidity, and higher levels are consistently associated with poor physical function and cognition.
NT-proBNP	-14 4 4/4	Cardiovascular Health B-type natriuretic peptides (BNP, NT-proBNP) are secreted in response to cardiomycoyte stretching to decrease vascular resistance. NT-proBNP has a greater-half life and accuracy compared with BNP and is used to diagnose and establish prognosis for heart failure.
HGBA1c	0.11	Metabolic Aging Glycated hemoglobin (hemoglobin A1c, HGBA1c) is formed in a non-enzymatic glycation pathway and is a marker for 3-mo average plasma glucose. High HGBA1c reflects poor glucose control, and in older nondiabetics is strongly associated with death, chronic disease, and functional decline.
Molecular Signature		Epigenetic, Interdependent, Multi-Omic Data intensive molecular platforms can explore global changes in epigenetic, transcriptomic, proteomic and proteostasis, and small metabolite signatures. These approaches may better capture complex and multifactorial processes underlying aging.

Criteria for Selection:


- 1. Measurement reliability and feasibility
- 2. Relevance to aging
- 3. Robust and consistent ability to predict all-cause mortality, clinical and functional outcomes
- 4. Responsiveness to intervention being tested

GeroScience (2018) 40:419-436 https://doi.org/10.1007/s11357-018-0042

REVIEW ARTICLE



A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup

Need to Study Immune Aging in Cells

+ Ability to obtain measurements using serum or plasma that can provide insights into underlying biology of aging

Need to Study Immune Resilience

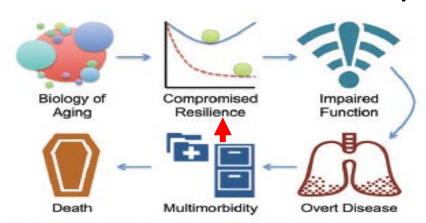
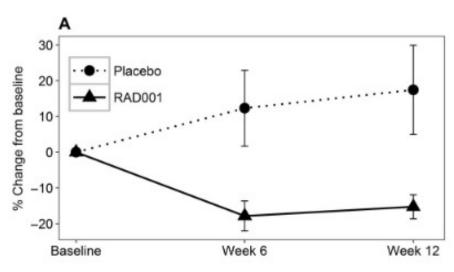



Figure 1. Aging, physical resilience, health span and life span. The geroscience hypothesis posits that the fundamental biology of aging ultimately drives chronic disease, multimorbidity, and death. Robust resilience to a health stressor in early-to-mid-life (solid line) may be indicative of healthy aging. In contrast, compromised resilience (dashed line) may signal advanced aging, before the emergence of static signals of organ or physiological dysfunction. Early-to-midlife resilience may be predictive of health span and life span.

Decreased PD1-positive CD4+ T cells in mTOR inhibition

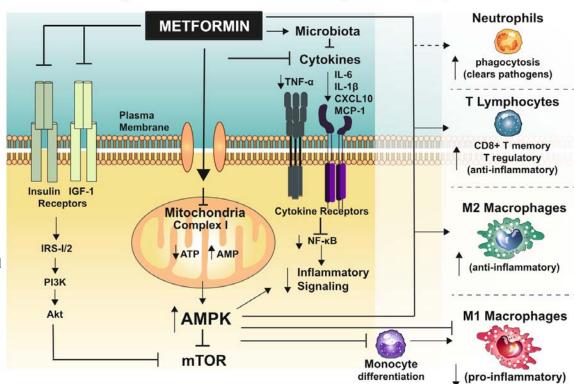
mTOR inhibition improves immune function in the elderly

Joan B. Mannick, ¹* Giuseppe Del Giudice, ² Maria Lattanzi, ² Nicholas M. Valiante, ³
Jens Praestgaard, ⁴ Baisong Huang, ¹ Michael A. Lonetto, ¹ Holden T. Maecker, ⁵ John Kovarik, ⁶
Simon Carson, ⁷ David J. Glass, ¹ Lloyd B. Klickstein ¹

Science Translational Med. 2014

Vaccination Efficacy With Metformin in Older Adults (VEME)

Metformin Mitigates Chronic Pro-inflammatory Immune Response


Jenna Bartley, PhD
Assistant Professor,
UConn Center on Aging,
Department of Immunology
UConn Pepper Scholar

Justice et al. Geroscience 2021

Heterogeneity of Immune Resilience

nature immunology

Article

https://doi.org/10.1038/s41590-023-01717-5

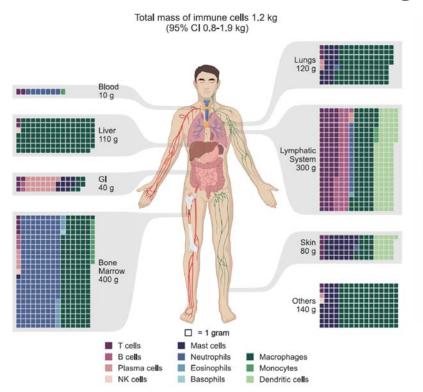
Distinct baseline immune characteristics associated with responses to conjugated and unconjugated pneumococcal polysaccharide vaccines in older adults

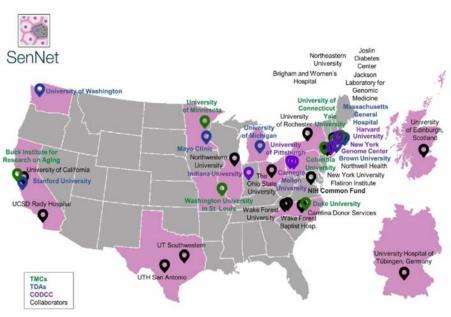
Received: 21 April 2023

Sathyabaarathi Ravichandran ® ¹¹¹, Fernando Erra-Diaz ® ¹.8¹¹,

Onur E. Karakaslar ® ¹.9¹, Radu Marches¹, Lisa Kenyon-Pesce², Robert Rossi ® ¹,

Damien Chaussabel ® ¹, Djamel Nehar-Belaid ® ¹, David C. LaFon³,


Virginia Pascual ® ⁴, Karolina Palucka¹, Silke Paust ® ¹⁵, Moon H. Nahm³,


George A. Kuchel ® ², Jacques Banchereau¹¹¹⁰ & Duygu Ucar ® ¹.6.7 ⋈

Limitations, Challenges and Opportunities

Lee et al. Nature Aging 2022

Sender et al. PNAS 2023

Conclusions

- Measures of immune aging may help guide gerotherapeutic trials
- Humoral (serum- or plasma-derived) biomarkers are easiest and best validated, yet they offer more limited biological information
- Cell-based immune measures and potential for deeper biological insights
- Moving beyond the "baseline" and importance of addressing resilience
- Remarkable multidimensional heterogeneity
- Don't let the perfect become the enemy of the good!

HEVOLUTION

Join the movement in D 🖸 🗶 f xprize.org

REGULATORY, ETHICS, AND SAFETY

LAURA GOETZ, MD XPRIZE Healthspan

ALEXANDER
"ZAN" FLEMING,
MD
Kinexum

BART VAN DER SCHUEREN, MD, PHD University of Leuven

ALBERTO
APARICIO, PHD
University of Texas
Medical Branch

HEVOLUTION

Join the movement **□** in **□ □** X f xprize.org

INVESTOR'S SESSION

YIANNI
PSALTIS, PHD
Exponential Ventures

ALEX COLVILLE age1

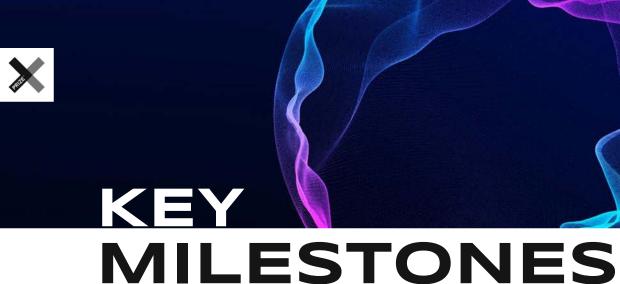
MARC BERNEGGER Maximon

LADA NUZHNA Impetus Grants

HEVOLUTION

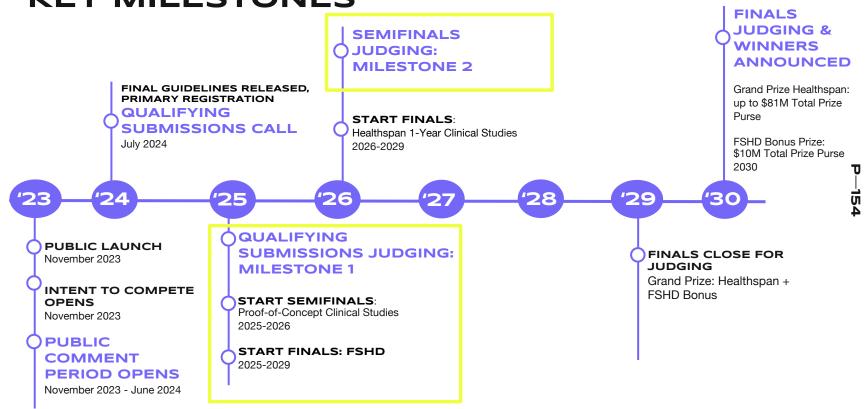
Join the movement **☼ in ▶ ♂** X **f** xprize.org

WHAT'S NEXT



LAUREN
PIERPOINT,
PHD
XPRIZE Healthspan

BRIANNA STUBBS, PHD Buck Institute on Aging


ו עט ע

7-15

KEY MILESTONES

+ Annual Team Summits Years 1-7 and Biomarker Summits Years 1-3 + Town Halls, Alumni Network and Partnership Activities

7-155

PURPOSE: first formal opportunity for teams to demonstrate their ability to compete in the \$101M Healthspan competition and \$10M FSHD Bonus Prize

DUE 20 DECEMBER 2024!

QUALIFYING SUBMISSION

Research & Development

Milestone 1:

- \$10M
- \$2M FSHD

Approximately 12 pages

Summary	.1pg
Team	
Environment and Clinical Centers	. 2pg
Technical Application	5pg
Study Timeline	. 1pg
Scalability / Accessibility	. 1pg

+ Human Subjects Safety, Resourcing Plan, Biohazard

QUALIFYING SUBMISSION

Research & Development

Milestone 1:

- **\$10M**
- \$2M FSHD

RESEARCH TYPES: What types of preliminary evidence can be submitted?

- Secondary research
- Preclinical studies in animals
- Clinical observations in patient populations
- In silico research

TEAMS MUST SUBMIT A QUALIFYING APPLICATION FOR XPRIZE HEALTHSPAN AND FSHD BONUS PRIZE

QUALIFYING SUBMISSION

Research & Development

Milestone 1:

- **\$10M**
- \$2M FSHD

Qualifying Submission	XPRIZE Administrative Review	XPRIZE Judges Review	Milestone 1 Award Ceremony
20 December, 2024	January 2025	March 2025	2 nd Quarter 2025 (exact dates pending)

QUALIFYING SUBMISSION

Research & Development

Milestone 1:

- **\$10M**
- \$2M FSHD

JUDGING QS / MILESTONE 1

Judges will evaluate:

- Team
- Environment & Clinical Center(s)
- Scientific Rationale & Preliminary Data
- Approach to Semi-Finals Testing
 - Study Design
 - Ethical Issues
 - Data Management & Statistical Analyses
 - Sample Size Justification
- Study Timeline
- Scale & Accessibility

TESTING & JUDGING

40 TEAMS

Research

& Development

Milestone 1:

- \$10M
- \$2M FSHD

SEMI-FINALS

Proof-of- Concept Clinical Studies

Milestone 2:

\$10M

FINALS

1-year Clinical Trials in Older Adults

Grand Prize:

- \$81M
- \$8M FSHD

10 TEAMS

8 FSHD TEAMS ADVANCE TO FINALS

P-160

SEMIRINALS TESTING

161

SEMI-FINALS TESTING

SEMI-FINALS

Proof-of- Concept Clinical Studies

Milestone 2:

• \$10M

EARLY STAGE / PROOF-OF-CONCEPT CLINICAL STUDIES

Typically short (less than 30-60 days), small (5-20 people receive active intervention), and relatively inexpensive studies that are used to help design and justify larger clinical trials

For XPRIZE Healthspan Semi-Finals, these trials are used to indicate readiness for Finals and feasibility of approach

SEMI-FINALS TESTING

PURPOSE: Early-stage/proof-of-concept trials

- Show feasibility of approach
- Engage clinical center
- Refine recruitment
- Develop study methods
- Evaluate dosing, formulation, route of administration
- Regulatory approvals
- Demonstrate safety
- Generate supporting data for future Finals clinical trials
- Go/No-Go

SEMI-FINALS TESTING & JUDGING

SEMI-FINALS

Proof-of- Concept Clinical Studies

Milestone 2:

• \$10M

EARLY STAGE / PROOF-OF-CONCEPT CLINICAL STUDIES

April 2026: Data Submission & Finals Application

At the end of Semi-Finals, teams will submit:

- 1. Recruitment / enrollment reports
- 2. Analyses and data reports
- 3. De-identified data set
- 4. Finals application

SEMI-FINALS TESTING & JUDGING

SEMI-FINALS

Proof-of- Concept Clinical Studies

Milestone 2:

• \$10M

JUDGING SEMI-FINALS / MILESTONE 2

Judges will evaluate:

- Team and clinical center readiness.
- Regulatory approvals
- Recruitment reports
- Ability to collect, manage, and submit data
- Preliminary data & Semi-Finals study reports
- Adherence to timeline
- Initial estimates of safety and human subjects protections

TESTING & JUDGING

40 TEAMS

QUALIFYING SUBMISSION

Research

& Development

Milestone 1:

- \$10M
- \$2M FSHD

SEMI-FINALS

Proof-of- Concept Clinical Studies

Milestone 2:

• \$10M

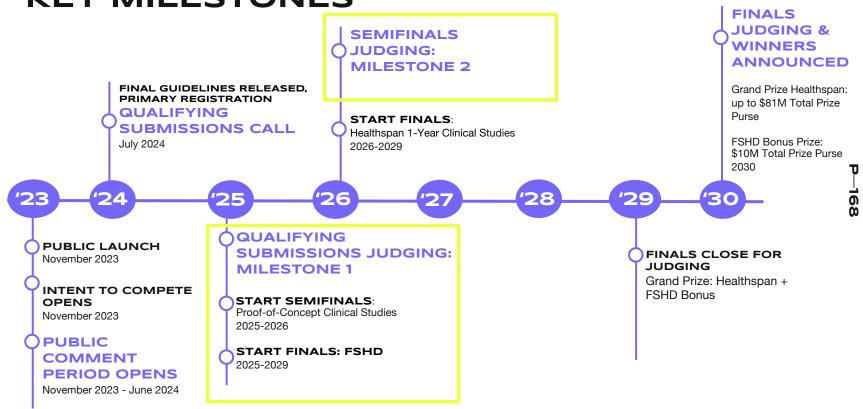
FINALS

1-year Clinical Trials in Older Adults

Grand Prize:

- **\$81M**
- \$8M FSHD

10 TEAMS


8 FSHD TEAMS ADVANCE TO FINALS

7-166

NEXT STEPS

KEY MILESTONES

+ Annual Team Summits Years 1-7 and Biomarker Summits Years 1-3 + Town Halls, Alumni Network and Partnership Activities

INTERESTED IN PARTICIPATING?

VISIT XPRIZE.ORG/HEALTHSPAN

ENGAGE WITH US AS A TEAM

EMAIL

Healthspan@xprize.org

SLACK

Pre-registered teams can join our community

OFFICE HOURS

Host bi-weekly for preregistered teams

CONNECT

Find partners and resources

WORKSHOP

Learn about all things Healthspan

HEVOLUTION

Case Study Insights: Clinical Study Design for XPRIZE Healthspan

XPRIZE Healthspan Team Summit
Monday 26th August 2024
Brianna Stubbs, PhD & John Newman MD, PhD
Buck Institute for Research on Aging
Novato, California USA

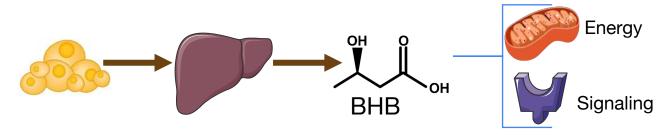
Disclosures

HVMN Inc: stock

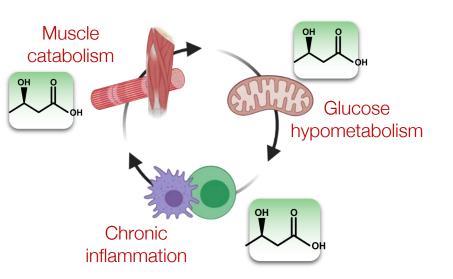
BHB Therapeutics, Ltd: stock options

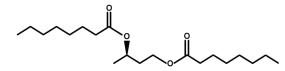
Selah Therapeutics, Ltd: Co-founder, stock options

Live better longer.


Considerations for Pilot Geroscience Clinical Trials

- Feasibility of recruitment and endpoints at your site
- Demonstrate safety, tolerance and feasibility in older adult population
- Identify differences in PK or PD in older adults
- Population selection
- Endpoint selection clinically meaningful functional outcomes and biomarkers linked to aging

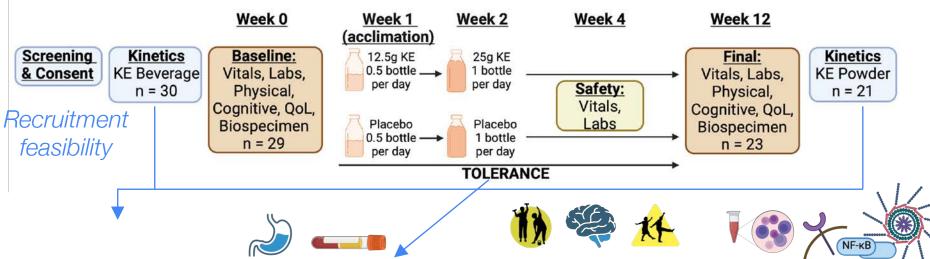

Case study: pilot study of ketone esters – 2022-23 enrollment

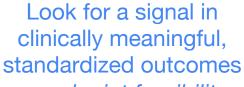

Long-Term Goal: Test Ketones in Frailty Without Diet Changes

Frailty

Ketone Ester

Pilot needed to fill key gaps...


- Safety: longest study 28 days
- Safety, tolerance and feasibility: No study in older adults
- Mechanistic clues: No study of aging biology


Geroscience Proof of Concept, Pilot Study of Ketone Ester

Randomized, double-blind, placebo-controlled pilot trial of n = 30 healthy older adults

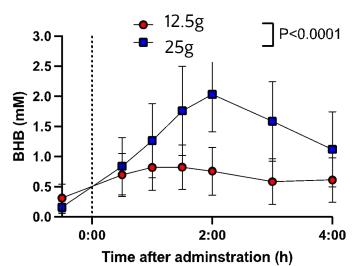
Confirm kinetics in the target (older) population

Specifically test safety and tolerability* in target population +retention

+ endpoint feasibility

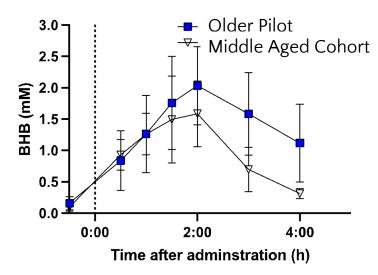
Mechanistic biomarker outcomes

^{*} Primary outcome


Pilot Demonstrated Safety and Tolerance in Older Adults

- Successfully enrolled n = 30 subjects within ~6 months
 - 1:1 male: female ratio. Median age = 75.8 (65 89)y. 90% white.
- Primary outcome: "Proportion of subjects with moderate-severe <u>dizziness</u>, <u>headache</u> or <u>nausea</u> >1 day after 2 weeks of dose escalation (week 3 onward)"
 - PLA = 1/14 (one subject dropped out within 2 weeks)
 - KE = 2/14 (all subjects completed at least 3 weeks)
- Total side effects were low and not different KE vs Placebo
- No serious adverse events
- 6 subjects did not complete:
 - **KE= 2/14** [1 = GI issues, 2 = GI issues, h/o pancreatitis (PI withdrew)]
 - Placebo = 4/15 [1 = Pre-existing cholesterol trend (Pl withdrew), 2 = Low energy, 3 = Gl issues, 4 = Tiredness and low mood]
- No changes in key safety labs: lipids, liver function, acid:base balance
- No changes in vital signs: weight, heart rate, blood pressure seated and standing)

Pilot illustrated older adult specific PK


Pilot Study BHB PK Data

Pre-print of PK data

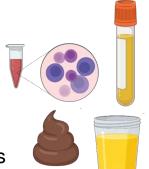
Pilot vs Middle Aged Cohort

Older Adult Pilot: Median Age <u>76</u> (65-89) Middle Age: Median Age <u>51</u> (30-65)

Middle aged cohort: Stubbs et al., Toxicol Res Appl 2023 https://doi.org/10.1177/23978473231197835

Pilot Secondary and Exploratory Analyses Ongoing

Chronic inflammation and senescence:


- Immunophenotyping
- MS Proteomics (SASP)*
- Cytokines
- Microbiome*

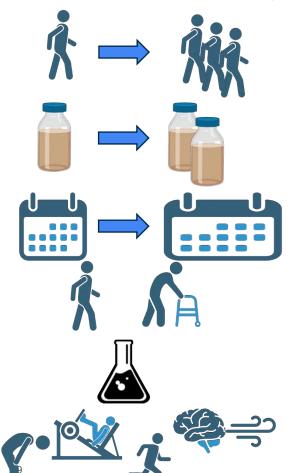
Energetics:

- PBMC bioenergetics
- GC/MS Metabolomics
- NMR, GC/MC Lipidomics

Aging biomarkers:

- Belsky BioAge
- DNAm epigenetic clocks
- TAME consortium biomarkers

No signal in physical, cognitive or quality of life outcomes


- Small sample size
- Healthy population
- Limited duration

^{*}Signal of target engagement in early data

Changes from Pilot to Follow-Up

Expanded sample size – multisite*

* Addition of a coordinating center
Increased diversity

Daily to BID dosing (25g) Favorable tolerability and safety

12 weeks to 20 weeks
Favorable adherence, no dropout after 4 weeks

Gait speed inclusion criteria 0.6-1.0 m/s 13/29 pilot participants

Additional mechanistic insights Muscle biopsy, deep immune phenotyping

Composite vigor-frailty outcome
Capture key elements of the frailty syndrome

Composite Primary Outcome for Follow-Up Pre-Frail Study

1RM leg press strength Weakness

Fried Frailty Phenotype

6 Minute Walk Test Fatigue/slowness/ inactivity

Digit Symbol Substitution Test **Slowness**

Pittsburgh Fatiquability Scale **Fatigue**

Muscular Vigor Fitness Non-fatigable Sarcopenic Frailty

Energetic

Vigor to Frailty As a Continuum—A New Approach in the Study of Muscle, Mobility, and Aging Cohort

Anne B. Newman, MD, MPH, 1.*. Terri L. Blackwell, MA, Theresa Mau, PhD, 2.3. 10 Peggy M. Cawthon, PhD,^{2,3} Paul M. Coen, PhD,⁴ Steven R. Cummings, MD,^{2,3} Frederico G.S. Toledo, MD,5 Bret H. Goodpaster, PhD,4 Nancy W. Glynn, PhD,10 Russell T. Hepple, PhD, 60 and Stephen B. Kritchevsky, PhD700

Summary

Pilot studies establish the foundation for follow up work:

- Safety in older adults
- Tolerance and feasibility
- Older adult specific PK and PD
- Early signs of mechanism
- Early signs of clinical efficacy

Collaborators:

John Newman, MD, PhD

Birgit Schilling, PhD

Eric Verdin, MD

Jeff Volek, PhD, RD

Jenna Bartley, PhD

George Kuchel, MD

Peggy Cawthon, PhD

Thank you!

Newman Lab

Thelma Garcia, PhD*

Laura Alexander, RN*

Kirsten Chiu

Ester Hernandez*

Sid Madhavan

Nikki Moreno

Mitsunori Nomura, PhD

Chatura Senadheera*

Wendie Silverman-Martin, RN*

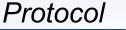
Elizabeth Stephens* (*clinical team)

Current Funding:

NIA K01 AG078125

NIA R01 AG081226

CDMRP - W81XWH-22-1-0867


Buck Institute Intramural Funds

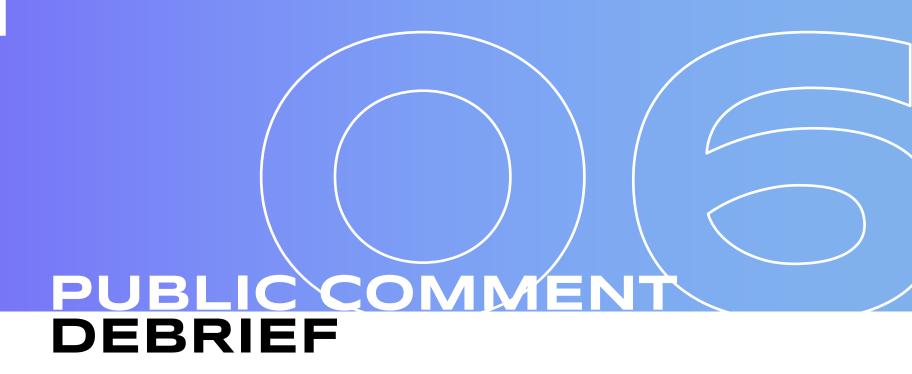
Buck Institute Impact Circle

Dr. James Johnson

Tolerability/ safety data

Kinetic data

Buck bstubbs@buckinstitute.org
@BriannaStubbs


Live better longer.

HEVOLUTION

Join the movement in D 0 X f xprize.org

PUBLIC COMMENT DEBRIEF

JAMIE JUSTICE, PHD XPRIZE Healthspan

STEVE AUSTAD, PHD University of Alabama Birmingham

Academy of Health & Lifespan Research; Albert Einstein College of Medicine

NIR BARZILAI,

THOMAS
RANDO, MD,
PHD
UCLA and Stanford
Medicine

HEVOLUTION

Visit us at our booth or office hours this week

