

Project data

Project name	Box girder diaphragm according to EN
Project number	Project-08/16/2021
Author	Jason Smith
Description	Box girder diaphragm solved by CSFM (Compatible stress field method)
Date	8/16/2021
Design code	EN

Materials

Concrete

Name	f_{ck} [MPa]	f _{ctk,0.05} [MPa]	f_{ctm} [MPa]	E _{cm} [MPa]		
C30/37	30.0	2.0	2.9	32836.6		
	ε _{c2} = 20.0 1e-4, ε _{cu2} = 500.0 1e-4, Diagram type: Parabolic Creep coefficient: 2.50					

Reinforcement

Name	f_{yk} [MPa]	k [-]	E _s [MPa]	Unit mass [kg/m ³]	ε _{uk} [1e-4]	Surface		
B 500B	500.0	1.08	200000.0	7850	500.0	Ribbed		
	$\varepsilon_{st} = 500.0 \ 1e-4, \ \varepsilon_{sc} = 500.0 \ 1e-4,$							

DRM1

Geometry

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Overview table

Name	Туре	Properties	Position
D1	Diaphragm	Two-way bridge; B: 11.25 m; H: 2.00 m; bu1: 1.50 m; bu2: 4.50 m; bu3: 4.50 m; bf: 3.25 m; bl: 3.50 m; bw: 0.00 m; bw1: 1.00 m; bw2: 0.00 m; h1: 0.00 m; hf1: 0.07 m; hf2: 0.11 m; hf3: 0.11 m; hf4: 0.07 m; tf1: 0.20 m; tf2: 0.50 m; T: 1.50 m; Material: C30/37	
O1	Opening	Circular; D: 0.80 m	M: D1; IP: 0; MP: 1; X: 6.00 m; Z: 1.00 m
DPS1	Distributed point support	X; Z; W: 0.60 m; Partially loaded area: Yes; Thickness: 0.70 m; Inclination: 63.4 m	M: D1; Edge: 1; From beginning; X: 0.70 m
DPS2	Distributed point support	Z; W: 0.60 m; Partially loaded area: Yes; Thickness: 0.70 m; Inclination: 63.4 m	M: D1; Edge: 1; From end; X: 0.70 m

Nonconformities

1	DPS1 The resistance of the partially loaded area is increased according to the ratio of the design distributed area and the loaded area stated in EN 1992-1-1 (6.7) This functionality allows to transfer all loads from the model to the supports. It cannot precisely describe the stress state over a partially loaded area. It is necessary to provide hand-calculation for assessment of the partially loaded area.
<u>^</u>	DPS2 The resistance of the partially loaded area is increased according to the ratio of the design distributed area and the loaded area stated in EN 1992-1-1 (6.7) This functionality allows to transfer all loads from the model to the supports. It cannot precisely describe the stress state over a partially loaded area. It is necessary to provide hand-calculation for assessment of the partially loaded area.

Loads

C1, C2

C3

Combination

Name	Туре	Content
C1	ULS	1.35*LC1 + LC2 + 1.35*LC3
C2	SLS - Characteristic	LC1 + LC2 + LC3
C3	SLS - Quasi-permanent	LC1 + LC2

Reinforcement

Scheme of reinforcement

Concrete: C30/37; Steel: B 500B

Results

Summary

Overview table

Check item	Combination	Increment						
ULS	C1	P100.0%, V100.0%			Strength of reir	nt	O	
Ch	Item	Utilization						
Strength of concrete	D1	σc/σc,lim: 55	.9%				O	
Strength of reinforcement RO			εs/εs,lim: 10.8%, σs/σs,lim: 76.9%					
Anchorage length	WF1	тb/fbd: 99.8%					⊘	
SLS	C3 (LT)	P100.0%, V	/100.0%		Crack width			
Check item	Combination	Incre	Increment		itical check	ltem	Utilization	
Stress limitation	C2 (ST)	P100.0%, V100.0% 7		7.2(5	5)	RO1	74.2%	0
Crack width	C3 (LT)	P100.0%, V	100.0%	w/wli	m	WF1	69.1%	0

ULS - Summary

Stress flow

Above yield	Compression	Explanation
		Thickness proportional to force

Summary of reactions and applied loads: C1, Load increment: P100.0%, V100.0%

Туре	F _x [kN]	F _z [kNm]	M _y [kNm]
Summary of reactions	0.0	6107.1	36594.2
Summary of applied load	0.0	-6107.0	-36593.5
Check of equilibrium	0.0	0.1	0.7

ULS - Strength

Detailed concrete strength results: C1, Load increment: P100.0%, V100.0%

Member	X [m]	Z [m]	σ _c [MPa]	ε _c [1e-4]	k _{c2} [-]	σ _c /σ _{c,lim} [%]	
D1	5.00	0.00	-11.2	-6.7	1.00	55.9	OK
D1	5.76	0.68	0.0	0.0	0.63	0.0	OK

Detailed reinforcement strength results: C1, Load increment: P100.0%, V100.0%

Member	X [m]	Z [m]	σ _s [MPa]	ε _s [1e-4]	σ _s /σ _{s,lim} [%]	ε _s /ε _{s,lim} [%]	
RO1	6.22	1.41	361.0	14.9	76.9	10.8	OK
WF1	8.18	1.36	275.2	10.2	58.6	8.1	OK
WF1	8.18	1.50	277.1	10.6	59.0	7.9	OK
DPS1	4.27	0.72	191.3	6.7	40.7	4.4	OK
GB8	6.36	1.56	177.3	6.5	37.8	3.6	OK
DPS2	7.59	0.72	149.4	4.6	31.8	3.0	OK
GB1	5.58	1.94	176.4	7.1	37.6	3.0	OK
GB8	5.64	1.86	170.1	6.9	36.2	2.7	OK
GB1	5.86	1.95	175.1	7.3	37.3	2.7	OK
GB6	8.04	0.50	130.1	3.0	27.7	2.3	OK
GB3	3.75	1.43	118.5	3.1	25.2	2.0	OK
GB4	8.11	1.40	104.6	2.3	22.3	1.5	OK
GB7	5.10	0.05	-126.3	-6.3	26.9	1.4	OK
GB5	5.32	0.39	101.0	1.9	21.5	1.4	OK
GB7	7.33	0.20	38.8	0.3	8.3	0.1	OK
GB2	1.72	1.83	11.2	0.1	2.4	0.0	OK

Concrete stress/strength ratio

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Concrete principal stress σ_c

Concrete principal strain ϵ_c

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Directions of principal stresses

Compressive strength reduction factor kc2

Reinforcement strain/limit strain ratio - $\epsilon_s/\epsilon_{s,lim}$ [%]

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Reinforcement stress/strength ratio - $\sigma_s/\sigma_{s,lim}$ [%]

Reinforcement strain - ϵ_s [1e-4]

ULS - Anchorage

Detailed anchorage results: C1, Load increment: P100.0%, V100.0%

Member	X [m]	Z [m]	т _b [MPa]	F _a [kN]	F _{tot} [kN]	F _{tot} /F _{lim} [%]	т _b /f _{bd} [%]	
WF1	3.53	1.90	3.0	0.3	44.3	50.4	99.8	OK
WF1	8.48	1.11	-3.0	0.3	44.3	50.4	99.8	OK
WF1	8.18	1.50	0.1	0.3	213.3	59.0	4.5	OK
WF1	5.08	0.10	-0.2	0.3	-78.7	21.8	6.8	OK
WF1	3.97	0.85	2.1	0.3	156.9	83.5	99.5	OK
RO1	5.89	1.81	3.0	0.1	15.0	50.3	99.8	OK
RO1	5.55	0.30	-3.0	0.1	16.1	50.3	99.8	OK
RO1	6.22	1.41	3.0	0.1	81.7	76.9	99.8	OK
RO1	6.41	0.78	-0.6	0.1	-12.1	11.4	18.7	OK
GB3	4.03	1.41	-3.0	0.7	95.2	50.4	99.8	OK
GB3	3.47	1.46	2.4	0.7	-6.0	0.8	80.5	OK
GB3	3.75	1.43	0.5	0.7	182.4	48.2	15.9	OK
GB3	3.04	1.50	-0.2	0.7	-19.9	2.8	5.5	OK
GB3	3.89	1.42	-0.9	0.7	95.2	50.4	30.8	OK
GB4	7.98	1.39	3.0	0.7	94.1	50.4	99.8	OK
GB4	8.53	1.45	-2.4	0.7	92.2	12.8	77.7	OK
GB4	8.11	1.40	0.4	0.7	161.0	43.1	13.6	OK
GB4	8.81	1.49	-0.2	0.7	-19.8	2.7	6.2	OK
GB5	5.01	0.04	3.0	71.4	-108.3	11.5	99.8	OK
GB5	3.59	1.55	-2.1	71.4	93.3	10.0	70.2	OK
GB5	5.32	0.39	1.1	71.4	203.2	21.5	36.6	OK
GB5	4.67	0.27	-0.5	71.4	-154.4	16.4	17.9	OK
GB5	3.17	1.89	2.6	71.4	129.7	26.0	85.5	OK
GB8	3.50	1.56	2.6	0.1	239.2	10.4	84.6	OK
GB8	8.50	1.56	-2.0	0.1	436.0	18.9	65.8	OK
GB8	6.36	1.56	-0.1	0.1	870.4	37.8	2.5	OK
GB8	2.93	1.56	-0.1	0.1	-30.1	1.3	3.4	OK
GB6	8.42	1.31	-2.5	67.8	191.0	20.2	81.5	OK
GB6	8.18	0.97	2.2	67.8	127.8	13.5	72.8	OK
GB6	8.04	0.50	1.5	67.8	261.5	27.7	49.1	OK
GB6	7.33	0.27	-0.2	67.8	-81.9	8.7	7.2	OK
GB7	4.82	0.05	-1.9	72.9	-382.7	16.6	61.4	OK
GB7	7.32	0.05	1.1	72.9	-155.0	6.7	36.8	OK
GB7	7.33	0.20	0.8	72.9	190.6	11.3	26.1	OK
GB7	5.10	0.05	-0.1	72.9	-620.0	26.9	2.0	OK
GB1	8.81	1.88	1.6	0.0	26.3	1.8	52.3	OK
GB1	3.19	1.88	-1.2	0.0	143.5	9.7	39.8	OK
GB1	5.58	1.94	0.2	0.0	554.2	37.6	6.2	OK
GB1	11.20	1.82	0.0	0.0	0.4	0.2	0.2	OK
GB2	2.00	1.83	0.4	0.1	16.0	6.0	14.8	OK
GB2	0.74	1.86	-0.1	0.1	21.8	1.5	2.9	OK
GB2	1.72	1.83	0.0	0.1	35.2	4.4	0.5	OK

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Member	X [m]	Z [m]	т _b [MPa]	F _a [kN]	F _{tot} [kN]	F _{tot} /F _{lim} [%]	т _b /f _{bd} [%]	
GB2	0.18	1.88	0.0	0.1	0.7	0.3	0.6	OK
GB2	1.86	1.83	0.2	0.1	33.4	6.3	6.2	OK
DPS1	4.27	0.72	0.0	0.0	240.4	40.7	0.0	OK
DPS1	5.09	0.12	0.0	0.0	-116.3	19.7	0.0	OK
DPS2	7.59	0.72	0.0	0.0	187.8	31.8	0.0	OK
DPS2	6.78	0.12	0.0	0.0	-45.3	7.7	0.0	OK

Bond stress check value - τ_b/f_{bd} [%]

Force check value - F_{tot}/F_{lim} [%]

Total force in the bar - F_{tot} [kN]

Bond stress - τ_b [MPa]

Settings

Creep coefficient

Type of input	Creep coefficient
Input by user	2.5

SLS - Stress

Detailed concrete stress results: C3, Load increment: P100.0%, V100.0%

Member	X [m]	Z [m]	Critical check	σ _c [MPa]	σ _{lim} [MPa]	σ _c /σ _{lim} [%]	
D1	7.00	0.00	7.2(3)	-5.9	13.5	43.8	OK

Detailed reinforcement stress results: C2, Load increment: P100.0%, V100.0%

Reinforcement	X [m]	Z [m]	Critical check	σ _s [MPa]	σ _{lim} [MPa]	σ _s /σ _{lim} [%]	
WF1	5.72	0.55	7.2(5)	182.0	400.0	45.5	ОК
RO1	6.22	1.41	7.2(5)	296.6	400.0	74.2	ОК
GB2	1.86	1.83	7.2(5)	11.1	400.0	2.8	ОК
GB5	5.32	0.39	7.2(5)	86.1	400.0	21.5	ОК
GB6	8.04	0.50	7.2(5)	102.7	400.0	25.7	ОК
GB7	7.33	0.20	7.2(5)	34.6	400.0	8.6	ОК
GB8	6.21	1.56	7.2(5)	136.7	400.0	34.2	OK
GB1	5.58	1.94	7.2(5)	125.0	400.0	31.3	ОК
GB3	3.89	1.42	7.2(5)	97.6	400.0	24.4	ОК
GB4	7.98	1.39	7.2(5)	90.6	400.0	22.7	ОК
DPS1	4.27	0.72	7.2(5)	130.0	400.0	32.5	ОК
DPS2	7.59	0.72	7.2(5)	108.2	400.0	27.0	ОК

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Concrete stress

Concrete stress check

Reinforcement stress - σ_s [MPa]

Reinforcement stress check

SLS - Crack

Detailed crack results: C3, Load increment: P100.0%, V100.0%, w_{lim}=0.300 mm

Member	X [m]	Z [m]	w [mm]	w/w _{lim} [%]	
WF1	3.98	1.25	0.207	69.1	ОК
DPS1	4.27	0.72	0.134	44.8	OK
DPS2	7.59	0.72	0.112	37.4	OK
GB8	5.93	1.56	0.087	29.1	ОК
GB1	6.56	1.94	0.060	20.0	ОК
GB6	8.18	0.97	0.048	16.2	ОК
RO1	6.14	1.50	0.042	14.1	OK
GB3	3.89	1.42	0.042	13.9	ОК
GB4	7.98	1.39	0.036	12.0	ОК
GB5	3.43	1.78	0.025	8.2	ОК
GB7	4.26	0.05	0.003	0.9	ОК
GB2	1.86	1.83	0.001	0.4	OK

Intermediate crack results

Member	ε _{cm} [1e-4]	<mark>ε</mark> m [1e-4]	s _r [mm]	Φ [mm]	Ρ_{eff [%]}	w _b [mm]	θ _r [-]	θ _b [-]
WF1	0.0	6.1	265	14	1.30	0.161	2.46	1.57
DPS1	0.0	2.9	315	20	1.56	0.091	2.40	0.00
DPS2	0.0	2.4	315	20	1.56	0.076	0.74	0.00
GB8	0.0	2.7	323	25	1.90	0.087	1.56	0.00
GB1	0.0	3.3	181	20	2.69	0.059	1.73	-0.02
GB6	0.0	0.4	341	16	1.16	0.013	0.69	0.96
RO1	0.0	3.0	140	12	2.09	0.042	1.60	0.00
GB3	0.0	1.1	211	14	1.63	0.022	2.48	-0.09
GB4	0.0	0.8	225	14	1.53	0.018	0.64	0.12
GB5	0.0	0.5	193	16	2.03	0.010	2.61	-0.96
GB7	0.0	0.1	161	25	3.73	0.002	2.53	0.00
GB2	0.0	0.1	186	20	2.62	0.001	2.18	-0.03

Note: There are TCM intermediate values displayed in the table above. Adequate POM values are not available in current version of the program.

Crack width - w [mm]

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Crack width check

SLS - Deflection

Detailed deflection results: C2, Load increment: P100.0%, V100.0%

Member	X [m]	Z [m]	u _{z,st} [mm]	u _{z,lt} [mm]	Δu _z [mm]	u _z [mm]	
D1	0.00	1.93	-4.8	-4.0	-2.2	-6.2	OK
D1	0.00	1.73	-4.8	-4.0	-2.2	-6.2	OK

Deflection

Bill of material

Items numbering

Fabric reinforcement tables

Parameter	Value
Index	К1
Φ X/Y [mm]	14 / 14
Material	B 500B
Number of items	5
Total area [m2]	22.50
Bar spacing X/Y [mm]	150 / 150
Weight of one item [kg]	363
Assigned to wall	-all-

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Brief reinforcement bar table

Index	Φ [mm]	Material	Items	Length [mm]	Weight [kg]	Total length [m]
1	20	B 500B	48	1361	3	65.33
2	12	B 500B	16	1399	1	22.39
3	12	B 500B	16	1300	1	20.80
4	20	B 500B	10	1959	5	19.59
5	16	B 500B	20	2630	4	52.59
6	16	B 500B	20	2655	4	53.09
7	16	B 500B	20	2660	4	53.20
8	16	B 500B	20	2665	4	53.31
9	16	B 500B	20	2671	4	53.42
10	16	B 500B	20	2676	4	53.52
11	16	B 500B	20	2682	4	53.63
12	16	B 500B	20	2687	4	53.74
13	25	B 500B	10	3815	15	38.15
14	25	B 500B	10	3839	15	38.39
15	25	B 500B	30	7000	27	210.00
16	20	B 500B	10	10400	26	104.00
17	14	B 500B	10	4830	6	48.30
18	14	B 500B	10	4580	6	45.80

Detailed reinforcement bar tables

Parameter	Value	Shape
Index	1	
Φ [mm]	20	
Material	B 500B	
Number of items	48	1361
Length [mm]	1361	
Weight [kg]	3	
Total length [m]	65.33	
Parameter	Value	Shape
Parameter Index	Value 2	Shape
Parameter Index Φ [mm]	Value 2 12	Shape
Parameter Index Φ [mm] Material	Value 2 12 B 500B	Shape
ParameterIndexΦ [mm]MaterialNumber of items	Value 2 12 B 500B 16	Shape 1399
ParameterIndexΦ [mm]MaterialNumber of itemsLength [mm]	Value 2 12 B 500B 16 1399	Shape 1399
ParameterIndexΦ [mm]MaterialNumber of itemsLength [mm]Weight [kg]	Value 2 12 B 500B 16 1399 1	Shape 1399

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Parameter	Value	Shape
Index	3	
Φ [mm]	12	
Material	B 500B	
Number of items	16	1300
Length [mm]	1300	
Weight [kg]	1	
Total length [m]	20.80	

Parameter	Value	Shape
Index	4	
Φ [mm]	20	
Material	B 500B	
Number of items	10	1959
Length [mm]	1959	
Weight [kg]	5	
Total length [m]	19.59	

Parameter	Value	Shape
Index	5	
Φ [mm]	16	
Material	B 500B	
Number of items	20	2184
Length [mm]	2630	
Weight [kg]	4	
Total length [m]	52.59	

Parameter	Value
Index	6
Φ [mm]	16
Material	B 500B
Number of items	20
Length [mm]	2655
Weight [kg]	4
Total length [m]	53.09

	Shape
320	2209

Parameter	Value	Shape
Index	7	
Φ [mm]	16	
Material	B 500B	
Number of items	20	2214
Length [mm]	2660	
Weight [kg]	4	
Total length [m]	53.20	

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Parameter	Value	Shape
Index	8	
Φ [mm]	16	
Material	B 500B	
Number of items	20	2220
Length [mm]	2665	
Weight [kg]	4	
Total length [m]	53.31	

Parameter	Value
Index	9
Φ [mm]	16
Material	B 500B
Number of items	20
Length [mm]	2671
Weight [kg]	4
Total length [m]	53.42

	Shape	
000		
320	2225	

Parameter	Value	
Index	10	
Φ [mm]	16	
Material	B 500B	
Number of items	20	320
Length [mm]	2676	
Weight [kg]	4	
Total length [m]	53.52	

Parameter	Value
Index	11
Φ [mm]	16
Material	B 500B
Number of items	20
Length [mm]	2682
Weight [kg]	4
Total length [m]	53.63

	Shape	
320	2236	

Parameter	Value	Shape
Index	12	
Φ [mm]	16	
Material	B 500B	
Number of items	20	2241
Length [mm]	2687	
Weight [kg]	4	
Total length [m]	53.74	

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Parameter	Value		Shape	
Index	13			
Φ [mm]	25			
Material	B 500B			
Number of items	10	125	3251	125
Length [mm]	3815			
Weight [kg]	15			
Total length [m]	38.15			

Parameter	Value
Index	14
Φ [mm]	25
Material	B 500B
Number of items	10
Length [mm]	3839
Weight [kg]	15
Total length [m]	38.39

Parameter	Value	Shape
Index	15	
Φ [mm]	25	
Material	B 500B	
Number of items	30	7000
Length [mm]	7000	
Weight [kg]	27	
Total length [m]	210.00	

Parameter	Value	Shape
Index	16	
Φ [mm]	20	
Material	B 500B	
Number of items	10	5198 5198
Length [mm]	10400	
Weight [kg]	26	
Total length [m]	104.00	

Parameter	Value	Shape
Index	17	
Φ [mm]	14	
Material	B 500B	714
Number of items	10	3968
Length [mm]	4830	
Weight [kg]	6	
Total length [m]	48.30	

Project:	Box girder diaphragm according to EN
Project no:	Project-08/16/2021
Author:	Jason Smith

Parameter	Value	Shape
Index	18	
Φ [mm]	14	
Material	B 500B	1213
Number of items	10	3219
Length [mm]	4580	
Weight [kg]	6	
Total length [m]	45.80	

Overview table

Φ [mm]	12	14	16	20	25
Total length of Φ [m]	43.19	94.11	426.51	188.92	286.54
Weight per meter of Φ [kg/m]	1	1	2	2	4
Total weight of Φ [kg]	38	114	673	466	1104
Total weight of bars [kg]	2395				
Total weight of fabric reinforcement [kg] 1813					
Total weight [kg] 4208					
Volume of concrete [m3] 16.16					
Reinforcement weight per volume unit of concrete [kg/m3]		260			

Explanation

Symbol	Explanation
f _{ck}	Characteristic compressive cylinder strength of concrete at 28 days
f _{ctk,0.05}	Characteristic axial tensile strength of concrete 5% quantile
f _{ctm}	Mean value of axial tensile strength of concrete
E _{cm}	Secant modulus of elasticity of concrete
ε _c	Compressive strain in the concrete at the peak stress fc
ε _{cu}	Ultimate compressive strain in the concrete
f _{yk}	Characteristic yield strength of reinforcement
Es	Modulus of elasticity of reinforcement steel
ε _{uk}	Characteristic strain of reinforcement or prestressing steel at maximum load
Properties	W - Width; H - Height; T - Thickness; L - Length; r - Radius; α - Inclination
Position	M - Master; MP - Master point; IP - Insert point
σ_{c}	The extreme value of compressive stress σc of concrete of selected subregion.
k _{c2}	Compressive strength reduction factor kc2
$\sigma_c/\sigma_{c,lim}$	The ratio of concrete stress and concrete strength. It presents the level of material utilization with respect to concrete strength.
σ_{s}	Maximum stress along the length of reinforcement bar.
ε _s	Maximum strain along the length of reinforcement bar.
$\sigma_{s}/\sigma_{s,lim}$	The ratio of stress and strength of the reinforcement. It presents the level of material utilization with respect to reinforcement strength.
$\epsilon_s/\epsilon_{s,lim}$	The ratio of strain and limit strain of the reinforcement. It presents the level of material utilization with respect to limit strain
т _b	Bond stress on the surface of reinforcement bar.

Symbol	Explanation
F _a	The anchorage force. It is developed at the ends of the bars due to hooked anchorage.
F _{tot}	Total force developed along the length of the bar. It consists of the anchorage force due to hooked anchorage and bond force, which integrates bond stresses acting on the surface of the bar.
F _{tot} /F _{lim}	The ratio of total force in the bar and limit value of the force. It presents the level of utilization of the rebar. The limit value of the force is calculated as the minimum of two values: (a) the force calculated as the sum of ultimate anchorage force and the force developed from the end of the bar to the point of interest assuming ultimate bond strength, (b) the ultimate strength of the bar.
т _b /f _{bd}	The ratio of bond stress and ultimate bond strength for selected (group of) bars and applied portion of the load. It shows the level of utilization with respect to ultimate bond strength between the rebar and adjacent concrete.
Creep coefficient	Final value of creep coefficient at time interval (t0 = 28 days, tinf = design working life)
w	Total crack width including effect of creep.
ε _{cm}	the mean strain in the concrete between cracks
٤ _m	the mean strain in the reinforcement under relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tension stiffening. Only the additional tensile strain beyond the state of zero strain of the concrete at the same level is considered
s _r	mean value of axial tensile strength of concrete
Φ	diameter of reinforcing bar
$ ho_{eff}$	effective reinforcement ratio
w _b	calculated crack width
θ _r	inclination of the cracks (the angle between the global coordinate system and the crack direction)
θ _b	bar inclination (the angle between the global coordinate system and the axis of reinforcement bar)
u _{z,st}	Immediate deflection caused by total load, calculated with short-term stiffnesses.
u _{z,lt}	Long-term effects of long-term load.
Δu _z	Deflection increment caused by variable load.
uz	Total deflection including effect of creep.

Calculation presumptions

- Minimum amount of reinforcement resisting at least the tensile stresses prior cracking has to be provided in cracked zones.
- It is assumed that a transverse rebar or adequate overlap is provided to enable full anchorage of the stirrups.
- The analysis and code checks are performed for support conditions as specified in the project. No change of supports in construction/service stages is considered.
- The crack width is checked in the vicinity of the reinforcement only. No control of cracking is performed in non-reinforced zones.
- The presentation of crack spacing is schematic only. It does not represent the crack spacing computed for the calculations.