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1. Ultimate limit state (ULS) 

1.1. Bending with or without axial force 

1.1.1. Methods for sectional capacity check 

Two well-known methods can be used to check ultimate limit state. The first one will give us 
the cross sectional ultimate strength in the form of a interaction area or an interaction diagram 
(in the case of bending moment in one direction). Cross-sectional capacity can be determined 
as ratio of acting internal forces to limit state forces. The second one is finding equilibrium in 
cross section, where we are looking for the actual behaviour of the loaded section, the use of 
materials in terms of stresses and insight into the vulnerabilities of the section. 
 

Both of these methods are based on assumptions which are outlined below.  

1.1.2. General design assumptions 

1. Strain  in reinforcement and concrete shall be assumed directly proportional to the 
distance from the neutral axis (plane sections remain plane). 

2. Interaction of reinforcement and concrete is ensured by concrete and reinforcement 

compactness (strain  supports the strain in concrete adjacent fibres are the same).

 

Fig. 1.1 – Strain stress 

1.1.3. Calculation assumptions for Ultimate Limit State - ULS 

1. Tensile strength of concrete is neglected (all tensile stresses are transmitted by 
reinforcement). 

2. Concrete compression stresses in compression zone are calculated in relation to 
strain calculated from stress-strain diagrams. 

3. Reinforcement stresses are calculated in relation to strain from stress-strain 
diagrams. 
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Figure 1. 2 –Stress-strain design diagram for reinforcing steel with inclined top branch 

4. Compressive concrete strain with an ultimate strain limit cu2 (Parabola-rectangle 

diagram for concrete under compression) and cu3 (Bi-linear stress-strain relation), 
see tab. 3.1 and art. 6.1.7 [2]. 

5. Compressive strain of reinforcement is without limitation in case of horizontal 

plastic top branch, in case of inclined plastic top branch the strain is limited ud, see 
art. 3.2.7 (2) [2]. 

6. As a limit state is considered the state when at least one of the materials exceeds 

the ultimate limit strain (if u is not limited, the compressed concrete is governing). 

1.1.4. Interaction diagram creating 

 

The first option is to check cross-section by interaction 
surface (interaction diagram). Explanation is provided on 
sample of the interaction surfaces for reinforced square 
section from the example in figure 1.3. On the interaction  
surfaces are located points defining ultimate limit state of 
examined cross-section. The interaction surface is  
drawn from the points (N, My, Mz), which are determined 
by stress integration in the cross section, which is  
achieved limit strain in one of the materials.  
From 3D dimensional interaction surface can be derived 
2D interaction diagram, which is a closed curve, which 
corresponds to the stress of constantly rotated neutral axis. 

 

 

 

 

Fig. 1.3 – Reinforced cross-
section 
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For case of symmetrical cross-section around y-axis the interaction diagram is symmetrical 
around plane N-My. Identically, for case of symmetrical cross-section around z-axis the 
interaction diagram is symmetrical around plane N-My. In case of cross-section reinforced by 
at on surface only we receive a flattened shape of interaction diagram. 

 

Fig. 1.4 – Interaction surface shows failure conditions for all load cases of normal force and 
bending moments 

Stresses  N -Mz 

Stresses  N -My 

Constantly 
rotated neutral 
axis. 
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Fig. 1.5 – Interaction surface for cross-section with single symmetric reinforcement 

 

As mentioned earlier, points defining ultimate limit state are received from stress integration.  
Fig. 1.6 displays Strain at the ultimate limit state. 

 

Fig. 1.6 - Strain distributions at the ultimate limit state (taken from [2]) 
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Fig. 1.7 – Interaction diagram shows cross-section failure under normal force and bending 
moments (taken from [1]) 

 

Respecting 2D diagram problem (closed curve laying on interaction surface) we can find out 
the strain plane is passing through neutral axis and critical point [y, z, ], which is considered 
as critical point R.  Point [y, z] defines point in cross-section with value of strain at the 
ultimate limit state. Neutral axis inclination is constant for all points of 2D diagram. 

In case that the compressive stress in concrete is critical for design, the point R is matching to 
farthest compressed concrete fibre or to limiting point C – see Fig. 1.6. However, this can be 
applied only if that section is made from one type of concrete - not such as mixed cross-
section.    

In case that the tensile stress in reinforcement is critical for design (strainud is exceeded at 
the ultimate limit state for one or more bars), there must be fulfilled condition that for the 
given strain plane the value ud  is not exceeded at any other bar. 
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Point E – theoretical  full use of tensile reinforcement 

 

Point D 

 

 

 

Fig. 1.8 – Optimal use of cross-section material  
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Point B – Dividing case for failure by compressed concrete and tensile reinforcement (optimal use of cross-
section materials) 

 

The pivot point C (see - Figure in code) 

 

Point A  – theoretical full use of  compressed concrete and reinforcement    
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Fig. 1.9 – Characteristic strain plane positions calculated for purpose of interaction diagram 
(computed by program IDEA RCS) 

 

The picture above shows that the diagram can be divided into two parts: the part where the 
failure is caused by tensile force and the part which failures by compressed force. Boundary 
points correspond to the case of Figure 1.9, where the extreme inclination of the strain plane 
also can be seen. When drawing an interaction diagram the plane strain inclination of cross 
section is changing in this interval, while we search the point R, see above. Based on 
that defined plane we figure out the integration to get the stress at the ultimate limit state. 

 

1.1.5. Cross-section check subjected to axial force and bending moment 

The check of cross-section subjected to axial force and bending moment inheres in proving 
that checked stresses (combination Nd, Mzd, Mzd) are located inside or on the surface 
interaction area. This can be done by different methods. The following example demonstrates 
the check of our rectangular cross-section subjected to forces Nd = -500 kN, Myd = 120 kNm, 
Mzd = 100 kNm. 

1.1.5.1. Method NuMuMu 

 

 
Section of diagram (Myd - Mzd) 

 
To define resistance of cross-section we assume proportional changes in all  internal forces 
components (the eccentricity of the normal force remains constant) until the achievement 
of interactive surfaces. The change of involved internal forces can be interpreted  
as moving along a line connecting the start coordinate system (0,0,0) and the  point defined by 
the internal forces (NEd, MEd,y, MEd,z). The two intersections of this line with the interaction  
surface, which can be found, represent two sets of forces at the ultimate limit state. 
At each intersection the program determines three forces at the limit state: the design axial 
force resistance NRd and the corresponding design moment resistance MRdy, MRdz. 

Fu1 

Fu2 
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1.1.5.2. Method NuMM 

To define resistance of cross-section we assume constant bending moments (which is equal to 
the active design moments) and a gradual changes in normal force until the achievement 
of interactive surface. The change of involved internal forces can be interpreted as moving in 
vertical plane along the line connecting the point (0, MEd,y, MEd,z) and the  point defined by 
the acting internal forces (NEd, MEd,y, MEd,z). The two intersections of this line with 
the interaction surface, which can be found, represent two sets of forces at the ultimate limit 
state. At each intersection the program determines three forces at the limit state: the 
design axial resisting force NRd and (corresponding) acting design moments MEd,y a MEd,z. 

 

 
 

Section of diagram (Myd - Mzd) 

 

1.1.5.3. Method  NMuMu 

To define resistance of cross-section we assume constant normal force (which is equal to 
the acting design normal force) and proportional changes in bending moments until the 
achievement of interactive surface. The change of involved internal forces can be 
interpreted as moving in horizontal plane along the line connecting the point (NEd,0,0) and 
the  point defined by the acting internal forces (NEd, MEd,y, MEd,z). The two intersections of 
this line with the interaction surface, which can be found, represent two sets of forces at the  
ultimate limit state. At each intersection the program determines three forces at the limit 
state: the design resisting moments MRdy, MRdz and (corresponding) acting design normal 
force NEd. 

Fu1 

Fu2 
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Section of diagram (Myd - Mzd) 

 

1.1.1. Finding section response 

Another possibility to check cross-section is through finding cross-section response (i.e. 
Strain and stress distribution from acting internal forces). This method is also known as a 
method of limit deformation. The level of acting stresses in each fibre (in the case of plane 
bending in each layer) in each reinforced bar is calculated depending on the strain of the 
Stress-strain diagram of the material. 
Finding the cross-section response is figure out using numerical method specified in [6]. 
The principle consists in the gradual load increment of the section by the unbalanced 
components of a not-transferred forces. Those are obtained by integrating the stress over the 
section using Stress-strain diagrams. If the stress value can be found for the strain in the 
Stress-strain diagram, see Figure 1.10 (a), the calculated stress is correct assuming linear 
elastic material. In cases (b) and(c), the stress for a 
linear calculation reaches unrealistic values, and part (b) or entire value (c) cannot be 
transmitted by material. 
 

 

Fu1 
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Integrating not-transferred stresses we get not-transferred internal forces and their resultants 
should be added to the internal forces of variable loads, see Figure 1.11 

 

This calculation 
method requires the use 
of numerical methods for 
integrating the stress over 
the cross section 
area and for nonlinear 
analysis equilibrium 
equations in the section. 
Iteration is terminated at  
the time when 
the convergence criteria  
are met.  

 

𝐹௘ − 𝐹௜

𝐹௘
≤ 𝑚𝑎𝑥{, } 

where  Fe  is section load, 

 Fi  is section response (internal forces calculated on base of strain plane). 

If a is approximate (approximated) value and a b is exact (true) value, then absolute deviation 
is  given by following equation 

  = |𝑏 − 𝑎| 

Relative deviation is given by following formula: 

 = ฬ
𝑏 − 𝑎

𝑏
ฬ 

In most programs, you can set these convergence criteria (default values are 1% as relative  
error, 100 N, 100 Nm as the absolute error of normal force and moments). So if we have the 
input of N = 0 kN, My = 100 kNm, Mz = 0 kNm  

 

Fig. 1.10 – Not-transferred stresses in Stress-strain diagrams [4] 

 

Fig. 1.11 – Not-transferred inner forces [4] 
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and integrated forces after iteration N = - 0.07 kN, My = 100,5 kNm, Mz = 0.02 kNm, the 
evaluation will be as follows. 

With respecting the N and Mz are equal to 0, comparison with absolute deviation can be done, 
which is satisfying in our case  

The value of normal force 100N> | 70 | N 
The value of the bending moment Mz 100Nm> | 20 | Nm 
The value of the bending moment My 

 = ฬ
𝑏 − 𝑎

𝑏
ฬ =

100 − 100,5

100
= 0,005 < 0,01 

With respect to satisfying comparison to relative deviation, the comparison to absolute 
deviation is not needed. 

 

1.1.2. Cross-section check by response 

In the case of finding a balance in cross section, plane strain is known. From the plane strain 
we can calculate strain anywhere in section, then the stress or inner forces in reinforcement 
bars, cross-section or its parts using Stress-strain diagrams of the materials. The calculated 
stress and strain values we compare with the limit strain value from stress-strain diagrams of 
used materials. 
The advantage of this method is that we get a complete image about the stress and strain 
values in the section of the internal forces acting on the cross-section. 
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1.2. Shear 
With respect to fragile failure the Shear check is one of the important checks of reinforced 
concrete section. 

1.2.1. Calculation procedure 

Calculation of shear resistance is composed of several basic parts. At first we should 
analyze whether the bending cracks occur or not in checked location. If any, use the 
calculation according to EN 1992-1-1[2], Article 6.2.2 (1). Otherwise, we determine 
whether it is plane concrete or poorly reinforced concrete, then proceed in accordance 
with EN 1992-1-1 Article 12.6.3.  

For reinforced uncracked concrete (without shear reinforcement) we check according to EN 
1992-1-1 Article 6.2.2 (2).  

For Elements, where is required shear reinforcement we check according to Article 6.2.3 [2]. 

 
Fig. 1.12 - Process diagram for shear check 
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1.2.2. Shear resistance of members without shear reinforcement 

1.2.2.1. Shear resistance of members in cracked bending zones (art. 
6.2.2 (1) [2]) 

Shear resistance of reinforced concrete members without shear reinforcement subject to 
bending moment is given by:  

𝑉ோௗ,௖௠ =  𝐶ோௗ.௖𝑘 (100 𝜚௟𝑓௖௞)
ଵ

ଷൗ  𝑏௪𝑑, 

Which was defined on the base of tests executed on representative number of simple beams in 
case of failure by shear force. Since the above resistance may be zero for elements without 
longitudinal reinforcement ( l), for poorly reinforced members was derived equations. Since 
the above resistance may be zero for members without longitudinal reinforcement (l), for the 
poorly reinforced members was determined equation. 

𝑉ோௗ,௖ ≥  𝜐௠௜௡𝑏௪𝑑. 

For shear resistance with influence of normal force was determined equation 

𝑉ோௗ,௖௡ =  𝑘ଵ𝜎௖௣ 𝑏௪𝑑 

Shear resistance in its complete expression which is corresponding with EN 1992-1-1 art. 
6.2.2 (1) 

𝑉ோௗ,௖ =  ቂ𝐶ோௗ.௖𝑘 (100 𝜚௟𝑓௖௞)
ଵ

ଷൗ + 𝑘ଵ𝜎௖௣ቃ 𝑏௪𝑑 

With minimum of 

𝑉ோௗ,௖ =  ൫𝜐௠௜௡ + 𝑘ଵ𝜎௖௣൯𝑏௪𝑑 

where CRd,c = 0,18 / c, 

k  cross-section height factor 𝑘 = 1 + ට
ଶ଴଴

ௗ
< 2,0;  with d in mm, 

l  reinforcement ratio for longitudinal reinforcement 𝜚௟ =
஺ೞ೗

௕ೢௗ
≤ 0,02, 

fck  characteristic compressive cylinder strength of concrete at 28 days, 
k1  = 0,15, 
cp = NEd / Ac < 0,2 fcd  v MPa, 
bw  smallest width of the cross-section in the tensile area, 
d  effective depth of a cross-section, see 1.2.4.2, 
min minimal equivalent shear strength min = 0.035 k3/2 fck1/2. 

1.2.2.2. Shear resistance of members in cracked bending zones (art. 
6.2.2 (2) [2]) 

Shear resistance of members in uncracked bending zones can be determined from Mohr 
circle. Into equation 

𝜎ଵ,ଶ =
𝜎௫ + 𝜎௬

2
± ඨቀ

𝜎௫ − 𝜎௬

2
ቁ

ଶ

+ 𝜏௭
ଶ 

We substitute x =cp a z = VRd,c S / (I bw) and figure out VRd,c and get equation corresponding 
with formula given in EN 1992-1-1 art. 6.2.2 (2) 
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𝑉ோௗ,௖ =  
𝐼 𝑏௪

𝑆
ට𝑓௖௧ௗ

ଶ + 𝛼௟𝜎௖௣𝑓௖௧ௗ 

where I is the second moment of area, 
bw  is the width of the cross-section at the centroidal axis 
S is the first moment of area above and about the centroidal axis, 
fctd  design axial tensile strength of concrete in MPa, 

cp is the concrete compressive stress at the centroidal axis due to axial  
                        loading and/or prestressing, 

l transmission length factor, usually 1,0. 
 
In relation with the above it should be noted that in areas without bending cracks the  
resistance VRd ,c  can be significantly higher than in cracked areas according to 
Article 6.2.2 (1) [2], see Figure 1.13. This figure clearly shows that although the shear force is 
checked at its extreme (which does not produce cracks), need not necessarily ensure that 
it will be transferred along the whole beam length. It is due to a change in the method of 
calculating the shear resistance of the concrete. On the safe side, of course, the shear 
resistance can be considered according to Article 6.2.2 (1) [2] also in places where  
cracks will not occur. 
 

 
Fig. 1.13 – Shear resistance comparison before and after the cracks occurred 

 
To the expression of VRd, c  according to Article 6.2.2 (2) must also be noted that in 
the general case should be based on check at the fibre of the extreme principal concrete 
tensile stress in zone of normal compressive stress, but not at the centre of gravity of the 
section. At this point it is necessary to calculate the cross-sectional  
characteristics (S and bW). To determine the maximum principal stress 1 in program 
IDEA RCS we draw a line through the centre of gravity in the direction of the 
resultant shear forces. This line we divide to 20 sectors. On this line we will present 
more characteristic points (points of the cross-section polygon, centre of gravity, the 
neutral axis). Within these points, we calculate S, bwx yz a 1.  At the point of 
maximum principal tensile stress we will calculate the shear resistance. 
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Shear force before applying the reduction factor  required by Article 6.2.2 (6) must satisfy 
the extra condition 
 

𝑉ாௗ ≤ 0,5 𝑏௪𝑑 𝜐 𝑓௖ௗ 

where   = 0,6 ቂ1 −
௙೎ೖ

ଶହ଴
ቃ kde fck je v MPa, 

 

1.2.2.3. Shear resistance of members without reinforcement or lightly 
reinforced (art. 12.6.3 [2]) 

Shear resistance for plain or lightly reinforced concrete can be determined from formula:  

𝜏௖௣ ≤ 𝑘 𝑉ாௗ 𝐴௖௖⁄ , 

Where cp we substitute by 

𝑓௖௩ௗ = ට𝑓௖௧ௗ,௣௟
ଶ + 𝜎௖௣𝑓௖௧ௗ,௣௟ 𝑝𝑟𝑜 𝜎௖௣ ≤ 𝜎௖,௟௜௠  

or 

𝑓௖௩ௗ = ට𝑓௖௧ௗ,௣௟
ଶ + 𝜎௖௣𝑓௖௧ௗ,௣௟ − ቀ

ఙ೎೛ିఙ೎,೗೔೘

ଶ
ቁ

ଶ

 𝑝𝑟𝑜 𝜎௖௣ > 𝜎௖,௟௜௠ . 

Partial values used above formula are given by:  

𝜎௖௣ =
𝑁ாௗ

𝐴௖௖
  

𝜎௖,௟௜௠ = 𝑓௖ௗ,௣௟ − 2ට𝑓௖௧ௗ,௣௟൫𝑓௖௧ௗ,௣௟ + 𝑓௖ௗ,௣௟൯ , 

 
where fcd,pl  Design compressive strength  for plain or lightly reinforced concrete, 

fctd,pl  Design axial tensile strength of plain or lightly reinforced concrete, 
fcvd  Design shear resistance under concrete compression. 

1.2.3. The resistance of members with shear reinforcement (art. 6.2.3 [2]) 

Calculation of reinforced concrete members resistance with shear reinforcement is based on 
the truss analogy method with variable-angle diagonals. The basis of this method is the 
balance of forces in the triangle determined by the strut force (diagonal),  
the shear reinforcement force (stirrup) and longitudinal reinforcement force. 
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Fig. 1.14 – Principe of Truss analogy for member under shear load 

Cross-section under shear load is broken by cracks at an angle , from this reason the concrete 
diagonal with same angle as shear forces is resisting to the shear force. Compressive force 
of the diagonal can be expressed as 𝑉ாௗ sin 𝜃⁄ . This force must be transferred by 
concrete surface, perpendicular to the compression diagonal 𝑏௪𝑧 cos 𝜃. The concrete tension 
stress in the compression diagonal is then equal  

𝜎௖ =
௏ಶ೏

௕ೢ௭ ୱ୧୬ ஘ୡ୭ୱ ఏ
=

௏ಶ೏

௕ೢ௭
(tan 𝜃 + cot 𝜃)  

Substituting 𝜎௖ = 𝛼௖௪𝜈ଵ𝑓௖ௗ a 𝑉ாௗ = 𝑉ோௗ,௠௔௫ and expressing 𝑉ோௗ,௠௔௫ we get equation for  
shear resistance of diagonal 

𝑉ோௗ,௠௔௫ =  𝛼௖௪ 𝑏௪ 𝑧 𝜈ଵ 𝑓௖ௗ/(cot 𝜃 + tan 𝜃).  

To balance the vertical force component in compression diagonal the shear reinforcement will 
be used. The size of the vertical force is based on the diagonal compressive 
stress in the concrete area which is corresponding to one single stirrup - 𝜎௖𝑏௪𝑠 sinଶ 𝜃.  Limit 
stirrup force is given as𝐴௦௪𝑓௬௪ௗ 𝑠⁄ .  

Inserting 𝜎௖, comparing with the limit force in the reinforcement, after modifications we get 

𝐴௦௪𝑓௬௪ௗ

𝑠
=

𝑉ாௗ

𝑧
tan 𝜃 

Then expressing 𝑉ாௗ as 𝑉ோௗ௦ we get resistance of cross-section with vertical shear 
reinforcement  

𝑉ோௗ,௦ =  
஺ೞೢ

௦
𝑧 𝑓௬௪ௗ cot 𝜃. 

The longitudinal shear force is transferred by longitudinal reinforcement and it can be 
determined as 𝑉ாௗ cot 𝜃. Derivation of formulas above can be found in [4]. 

By program IDEA RCS is possible to check only members with vertical shear reinforcement. 
In general following equations can be used: 
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𝑉ோௗ,௦ =  
𝐴௦௪

𝑠
𝑧 𝑓௬௪ௗ (cot 𝜃 + cot 𝛼)sin 𝛼 

𝑉ோௗ,௠௔௫ =  𝛼௖௪ 𝑏௪ 𝑧 𝜈ଵ 𝑓௖ௗ(cot 𝜃 + cot 𝛼)/(1 + cotଶ 𝜃) 

Where Asw is the cross-sectional area of the shear reinforcement, 
s is the spacing of the stirrups, 
fywd is the design yield strength of the shear reinforcement, 

bw is the minimum width between tension and compression chords. For the 
calculation of resistance VRd,max is needed to reduce this value to nominal 
cross-section width in case, that cross-section is weakened by ducts 

 𝑏௪,௡௢௠ =  𝑏௪ − 0,5 Σ𝜙 𝐹𝑜𝑟 grouted metal ducts, 

 𝑏௪,௡௢௠ =  𝑏௪ − 1,2 Σ𝜙 For non − grouted ducts, 

  = 0,6 pro fck ≤ 60MPa or 0,9 − 𝑓௖௞ 200⁄  pro fck > 60MPa, 

cw is a coefficient taking account of the state of the stress in the compression  
            chord. 
 

Load cp = 0 0 < cp≤0,25 fcd 0,25 fcd < cp≤0,5 fcd 0,5 fcd < cp≤1,0 fcd 

Coefficient cw 1.0 1+cp/fcd 1,25 2,5(1 - cp/fcd) 

Tab. 1-1 Determining coefficient cw 

Angle  is the angle between the concrete compression strut and the beam axis 
perpendicular to the shear force. The limiting values of cot 𝜃 for use in a Country may be 
found in its National Annex. The recommended limits are given by expression 
1 ≤  cot 𝜃 ≤ 2,5.   
Choosing the size of the angle  can affect the value of the resistances. Dependence 
of resistances is visible in Figure 1.15. The figure shows that with increasing of 
angle  the resistance VRd,max  is increasing, and resistance VRd,s is decreasing. 
Resistance VRd,c is constant, since it is based on the truss analogy method. 
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Fig. 1.15 – Dependency between shear resistance and angle  

1.2.4. Cross-section characteristics calculation 
for shear 

To calculate the shear is important to calculate the cross-
sectional variables affecting 
the shear resistance. These variables are particularly 
resistant shear section width bw, the effective width d and lever 
arm z. The code [2] gives these values directly correlated with 
the actual bending stress. But the problem is to determine these 
values when the direction of the resultant bending moments (or 
more accurately the direction of the resultant of section 
resistance) is significantly different from the direction of the 
resultant shear forces. In this case, the EC2 code doesn’t 
provide any recommendations. 

1.2.4.1. Cross-section width resisting to 
shear bw 

In the IDEA RCS program calculates the cross-section width 
resisting to shear in the direction perpendicular to the resultant 
of shear forces. Depending on the article in the Eurocode 
this width is calculated as: 
-  The smallest width of the section between the resultant of 
compressive concrete and tensile reinforcement in the 
direction perpendicular to the resultant of 
shear forces for article 6.2.2 (a) and 6.2.3 (1) 
- The section width in a direction perpendicular to the resultant 
of shear forces in the checked point according to 
article 6.2.2 (2) 

0

50

100

150

200

250

300

350

400

21 26 31 36 41 46

sh
ea

r r
es

is
ta

nc
e 

   
[k

N
]

Angle  []

VRdc

VRds s=0.2m

VRds s=0.15m

VRds s=0.10m

Vrdmax

VRds s=0.24m

Fig. 1.16 – Bending acting 
perpendicularly to shear force 



Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Brno, 3. 12. 2010 

                                                                                                                                 Page 24 

1.2.4.2. Effective depth of a cross-section  

Effective depth is usually defined as the distance of most compressed concrete fiber to 
the centre of gravity of reinforcements. Because it is directly related to the bending, the 
distance is given as perpendicular projection to the gravity line of the plane strain.  

This definition can be clarified so that instead of centre of gravity of the tensile reinforcement 
is used the position of the reinforcement resultant of forces. During the development the 
IDEA RCS program the problem was solved, how to define the effective depth of the cross-
section, for which the plane of bending loads doesn’t correspond with the direction of the 
resultant shear forces. Therefore, the effective depth is defined as the distance 
of most compressed concrete fibre  to the resultant forces in the tensile reinforcement  (based 
on bending stress) and in the direction of the resultant shear forces, see Figure 1.17. 

Exceptional cases will occur if we are not able to determine the compressed fiber or resultant 
in the tensile reinforcement. In this case, we recommend using value 0.9 h (90% of section 
depth in the direction of the resultant shear forces). This value, the user can define in the 
IDEA RCS program by setting of code variables 

1.2.4.1. Lever arm of internal forces 

 
The lever arm of internal forces is in 6.2.3 (3) [2]  
defined as "distance between tension and compression 
chords”.  The code does not define how to proceed when  
the plane of acting bending moment is different from 
direction of the resultant shear forces. Therefore, 
as for the case of the effective depth, we 
define the distance in the direction of 
the resultant shear forces. Also here, we can face a 
similar exception cases, for example, the 
whole section is under compression, etc. In this case, we 
take value 0.9 d (90% of the effective section 
height). This value, the user can set in the 
IDEA RCS program by setting of code variables. 
 

 

Dependence between bending plane inclination and the 
resultant of shear force is clearly visible in Figure 1.18  
and Figure 1.19.  
With increase of inclination the values of 
effective height, lever arms and related resistances 
are decreasing. The limit state is 90°. 
For this inclination the lever arm of internal forces 
cannot be calculated, consequently the lever arm is equal 
to zero. In this case, is considered the value specified in 
the setting of code variables. By this, there is a jump at 
the end of the chart. This study proves the 
recommended maximum for inclination about 20°. 

 

 

Fig. 1.17 – Principle of defining 
effective depth and lever arm for 
shear check 
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Fig. 1.18 - Dependence between effective depth, lever arm to the bending plane inclination 
                 and the resultant of shear forces 

 

Fig. 1.19 - Dependence between  resistance Vrds to the bending plane inclination 

                 and the resultant of shear 

During testing the RCS  program, the study about dependency of  shear resistance to 
changing the normal force was proceeded. Resistance VRd,max is affected only by the 
coefficient cw, see Fig. 1.20. Fig. 1.21 shows a constant value of resistance VRds.  
For VRdc resistance, the decreases cause increasing of normal force. The blue curve in Fig. 
1.21 shows the resistance VRdc with neglecting the influence of cracks and it was 
calculated using the formula in section 6.2.2 (1) [2]. Jump in transition between pressure and 
tension is caused by contributed tensile reinforcement. Red curve respects the 
influence of crack and till the moment of first crack from bending the resistance decreases. It 
is calculated using the formula in section 6.2.2 (2) [2]. After the first crack occurred the 
dependency curve is same as for 6.2.2 (1) [2]. 
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Fig. 1.20 – Dependency curve of shear resistance VRd,max to normal force 

 

 

Fig. 1.21 – Dependency of shear resistances VRd,c a VRd,s to normal forces 

1.3. Torsion 

1.3.1. Calculation assumptions 

The behaviour of reinforced concrete section subjected to torsion can be divided into two  
categories - before and after the time when the cracks may first be expected to occur  

Before a crack the cross-section behaves about as an elastic material. Torsion stress can be 
expressed by formula 

𝜏 =  
்ಶ೏

ௐ೟
  where Wt je sectional module in torsion. 

Cracks in the unreinforced member due to principal tensile torsion stress are also ultimate 
limit state. The behaviour of reinforced concrete section subjected to torsion can be described 
on the basis of a thin-walled closed section, see Fig. 1.22. Determination of thin-walled cross-
section dimensions is described in caption 1.3. 
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Fig. 1.22 – Equivalent thin-walled cross-section 

1.3.2. Calculation procedure 

The process of reinforced concrete check for torsion is very similar to the check for 
shear. First of all, we check the concrete resistance. If the concrete check is satisfying, 
the reinforcement can be designed using the detailing rules. Otherwise, we need to verify the 
reinforcement and compressive diagonal resistance by calculation. 

.  

Fig. 1.23 - Process diagram for torsion check 

1.3.3. Resistance 

Shear flow in wall of thin-walled cross-section under torsion can be expressed as: 

𝜏௧𝑡௘௙ =  
்ಶ೏

ଶ஺ೖ
 , 

Shear force in wall of thin-walled cross-section can be expressed as: 

𝑉 = 𝜏௧𝑡௘௙𝑧 , 

Where  Shear flow in wall, 
tef  is the effective wall thickness, 
z  is the side length of wall, 
TEd is the torsion moment, 
Ak  is the area enclosed by the centre-lines of the connecting walls, including inner 

hollow areas. 
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Torsion cracking moment, which may be determined by setting fctd to previous expression. 
Thus we get  expression for the resistance in torsion without torsion reinforcement.  

𝑇ோௗ,௖ = 2𝐴௞𝑡௘௙𝑓௖௧ௗ , 

where fctd  design axial tensile strength of concrete 

 

Fig. 1.24 – Principles of Truss analogy for member under torsion moment 

The member resistance with torsion reinforcement is composed from the resistance of 
compressive concrete diagonals which is based again on truss analogy method. Compressive 
stress in diagonal can be expressed with help of shear force in wall of thin-walled cross-
section on wall surface which is in consideration, i.e. 

𝜎௖ =

೅ಶ೏೥

మಲೖ ౩౟౤ ഇ

௭ ௧೐೑ ୡ୭ୱ ఏ
=

்ಶ೏

ଶ஺ೖ௧೐೑ ୱ୧୬ ఏ ୡ୭ୱ ఏ
 . 

Substitution of 𝜎௖ = 𝛼௖௪𝜈𝑓௖ௗ and 𝑇ாௗ = 𝑇ோௗ,௠௔௫ and expressing of 𝑇ோௗ,௠௔௫ we get equation 
for compressive diagonal resistance 

𝑇ோௗ,௠௔௫ = 2 𝜈 𝛼௖௪ 𝑓௖ௗ 𝐴௞ 𝑡௘௙ ୱ୧୬ ఏ ୡ୭ୱ ఏ , 

where   = 0,6 pro fck ≤ 60MPa or 0,9 − 𝑓௖௞ 200⁄  for fck > 60MPa, 
cw coefficient which takes account the state of compressive stress in compression 

chord, 
fcd  design value of concrete compressive strength 

the shear reinforcement resistance subjected to torsion is again based on stress in compression 
diagonal. The stirrup force is equal to stress in compressed diagonal on the area which 
corresponds to the particular stirrup line, i.e. 

𝐴௦௪𝑓௬௪ௗ =
𝑇ாௗ

2𝐴௞𝑡௘௙ sin 𝜃 cos 𝜃
 𝑡௘௙ 𝑠 sinଶ 𝜃 =

𝑇ாௗ  𝑠

2𝐴௞ cot 𝜃
  

Substituting 𝑇ாௗ = 𝑇ோௗ,௦ and expressing 𝑇ோௗ,௦ we get equation 

𝑇ோௗ,௦ = 2𝐴௞
஺ೞೢ௙೤ೢ೏

௦
 cot 𝜃  . 

If the longitudinal and shear reinforcement quantity is known, we can define angle  by 
expression 
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tanଶ 𝜃 =

𝐴௦௪𝑓௬௪ௗ

𝑠
𝐴௦௟𝑓௬ௗ

𝑢௞

 

Substitution for 𝑇ோௗ,௦ we get 

𝑇ோௗ,௦ = 2𝐴௞ට
஺ೞೢ

௦
𝑓௬௪ௗ 

஺ೞ೗

௨ೖ
 𝑓௬ௗ , 

Where 
 Asw shear reinforcement area, 

s  is the radial spacing of stirrups of shear reinforcement, 
fywd  is the effective design strength of the shear reinforcement, 
Asl longitudinal reinforcement area 
uk  is the outer circumference of the cross-section, 
fywd  is the effective design strength of the longitudinal reinforcement. 
 

The force in longitudinal reinforcement can be deducted from The shear force in a wall of a 
section subject to a pure torsional moment, which is give as 

𝑉 =
்ಶ೏

ଶ஺ೖ
𝑢௞. 

That force is transformed to longitudinal direction and we get  

𝐹௟ =
்ಶ೏௨ೖ

ଶ஺ೖ  ୲ୟ୬
. 

 

The permitted range of the values for angle  is similar to shear check, i.e. 1 ≤  cot 𝜃 ≤ 2,5. 
Dependency between resistances can be seen on Figobr. 1.25. The picture shows that 
with increasing the angle  is growing the resistance TRd,max, is decreasing resistance TRd.s and 
resistance TRd,c is constant, since it is not based on the truss analogy method. 

 
obr. 1.25 - Závislost únosnosti průřezu v kroucení na úhlu  
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1.3.4. Calculation of cross-section characteristics for torsion 

To check the cross-section for torsion is necessary to establish so-called equivalent thin-
walled closed section. In determining the dimensions of the equivalent thin-walled cross-
section is assuming a rectangular shape. For the true area of rectangle states A = bh and for 
the circumference of rectangle u = 2 (b +h).  
Using these two equations can provide alternative thin rectangle-shaped 
area and circumference of the original cross-section. Solving two equations with 
two unknowns get 

𝑏 =
ି௨±√௨మିଵ଺஺

ିସ
   a ℎ =

(௨ିଶୠ)

ଶ
. 

The wall thickness of the effective cross-section can be define from circumference and section 
area as  

𝑡 = A u⁄  

Then the area and circumference defined by centre line of the effective cross-section: 

𝐴௞ = (h − t) (b − t)   

𝑢௞ = 2൫(h − t) +  (b − t)൯. 

The problem with this method is for cross-section of type T with a wide plate when the 
overall area and circumference is taken to calculate the dimensions (including this plate). In 
the future versions of IDEA RCS program, the selection of the most massive cross-section 
part will be enabled, which will be used to check the torsion. 
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1.1. Interaction 
The term "interaction" in this case means the interaction of shear, torsion, bending and 
normal force. 

  

1.1.1. Interaction shear and torsion 

The resistance of member subjected to shear and torsion interaction is composed of 
several parts. The resistance of concrete can be expressed as (6.31) in Article 6.3.2 (5) [2] 
௏ಶ೏

௏ೃ೏,೎
+

்ಶ೏

்ೃ೏,೎
≤ 1,0.  

If the above condition is satisfied then only minimum shear reinforcement is required 
according to rules in article 9.2.1.1) Shear and torsion interaction will be carried out by 
concrete.  If the above condition is not satisfied, the shear and longitudinal reinforcement 
must be verified. 

Longitudinal reinforcement force from shear and torsion can be expressed by 

𝐹௦௧௟ =
௏ಶ೏

୲ୟ୬ ఏ
+

்ಶ೏ ௨ೖ

ଶ ஺ೖ ୲ୟ୬ ఏ
, 

Particular force component are derived in 1.2.3 and Chyba! Nenalezen zdroj odkazů.. The 
force must be less than 

𝐹௦௧௟,௠௔௫ = Σ𝐴௦௟𝑓௬ௗ. 

Force in shear reinforcement from shear and torsion can be expressed as  

𝐹௦௧௪ = ቀ
௏ಶ೏

௡೎ ௭
+

்ಶ೏

ଶ ஺ೖ
ቁ tan 𝜃, 

Which must be less than 

𝐹௦௧௪,௠௔௫ = 𝐴௦௪𝑓௬௪ௗ. 

The last condition for the resistance of the concrete struts is  given by expression (6.29) 
according to art. 6.3.2 (4) v [2] 

௏ಶ೏

௏ೃ೏,೘ೌೣ
+

்ಶ೏

்ೃ೏,೘ೌೣ
≤ 1,0. 

where: 
TEd         is the design torsional moment 
VEd         is the design transverse force 
TRd,max     is the design torsional resistance moment 
VRd,max    is the maximum design shear resistance 

1.1.2. Interaction shear, torsion and bending 

The resistance of member subjected to shear, torsion and bending effects is also based 
on truss analogy method.  The reinforcement designed on bending must carry out also shear 
and torsion. As stated above, the longidutinal reinforcement force from shear and torsion is 
equal to: 

𝐹௦௧௟ =
௏ಶ೏

୲ୟ୬ ఏ
+

்ಶ೏ ௨ೖ

ଶ ஺ೖ ୲ୟ୬ ఏ
. 
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The algorithm used in the RSC program will transfer that force to the strain of 
reinforcement. That strain we will add to strain from bending and verify ultimate limit state 
checks. 
Further studies were done to compare methods which taking into account the effect of 
shear on the longitudinal reinforcement. 

 

 
Fig. 1.26 – Without shear influence 

 
Fig. 1.27 - Shifting the moment curve according to 9.2.1.3 [2]  

 
Fig. 1.28 - Additional tensile force from shear is added as load effect  
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Fig. 1.29 - Additional tensile force from shear is added as strain into reinforcement (used in 
RCS program) 
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2. Serviceability limit state (SLS) 

2.1. Calculation assumptions for Serviceability limit state  
The following assumptions are applied in the calculations according to caption 7.2 Stress 
limitation, 7.3.4 Crack width calculation, 7.4 Deflection control EN [2] 
 

Within the calculation the serviceability  limit state we deals with two states that differ only in 
the tensile strength of concrete 

1. Uncracked cross-section 
a. the tensile strength of the concrete is not ignored. 
b. Concrete stress is directly proportional to the distance to neutral axis (linear 

stress distribution). 
c. Reinforcement stress is directly proportional to the distance to neutral axis 

(linear stress distribution). 
d. Concrete tensile stress is limited  by value fct,eff according to art. 7.1 (2) [2]. 

 
obr. 2.1 – Uncracked section 

2. Fully cracked cross section 
a. the tensile strength of the concrete is ignored. 
b. Concrete stress is directly proportional to the distance to neutral axis (linear 

stress distribution). 
c. Reinforcement stress is directly proportional to the distance to neutral axis 

(linear stress distribution). 

 
Fig. 2.2 - Cracked cross-section 
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2.2. Stress limitation check 
Stress limitation check introduces Eurocode as one of the new checks in civil 
engineering. (At old Czech national code CSN 736 207 it is called as check of 
allowable stress). The check is based on general assumptions acc. to 
cap. 2.1, where two states of cross-section are resolved. Uncracked section (the tensile 
strength of the concrete is not ignored) and fully cracked section  (the tensile strength of the 
concrete is ignored). The solution with ignored concrete tensile strength is 
considered under the assumptions of article 7.1 (2) EN. It should be noted that the 
checks differs from the check of allowable stress CSN 736207 mentioned above. 

 
When calculating the stress and deflections it is considered uncracked section, if the tensile 
stress in bending does not exceed fct, eff. The value of fct, eff   can be considered as fctm or fctm,fl  
provided that in calculating the minimum tensile reinforcement was used the 
same value. When calculating the crack width and and tensile strengthening it is used fctm 
value. 
 

As part of this check we deals with four basic cases in terms of stress limit 

1) 7.2 (2) Compressive stress in members exposed to environments of exposure classes XD, 
XF and XS should be limited: 

|௖| ≤ 𝑘ଵ𝑓௖௞         k1=0.6, 

 

2) 7.2 (3) The stress in the concrete under the quasi-permanent loads is limited: 

|௖| ≤ 𝑘ଶ𝑓௖௞         k2=0.45, 

 

3) 7.2 (5) Tensile stresses in the reinforcement under the characteristic combination of loads 
shall be limited: 

|௦| ≤ 𝑘ଷ𝑓௬௞         k3=0.6, 

 

7.2 (5) Where the stress is caused by an imposed deformation, the tensile stress should not 
exceed: 

|௦| ≤ 𝑘ସ𝑓௬௞         k4=1, 

 

Where   
             values k1, k2, k3, k4 for use in a Country may be found in its National Annex. The 
             recommended values are 0,8; 1 and 0,75 respectively, 
𝑓௬௞   characteristic yield stress of the reinforcement, 
fck   characteristic cylinder strength fck determined at 28 days. 

2.3. Crack control 
Within the checks of structure in terms of cracks control according to [2] may be possible to 
do a few calculations.  

- Minimum reinforcement are as 7.3.2. 
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- Control of cracking without direct calculation 7.3.3 
o Maximum bar spacing, 
o Maximum bar diameters. 

- Calculation of crack widths 7.3.4. 
 

Calculation of crack widths is the most precise from all mentioned above. Calculations of 
Minimum reinforcement areas 7.3.2 and Control of cracking without direct calculation 7.3.3 
are based on Calculation of crack widths 7.3.4. For this reason, we will further follow only the 
crack width calculation according to7.3.4.  

2.3.1. Crack width wk calculation 

Basic assumptions to calculate the crack width are mentioned in 2.1. 

The crack width, wk  may be calculated from Expression: 

𝑤௞ = 𝑠௥,௠௔௫(௦௠ − ௖௠)    

Where according to definition in [2]  

 sr,max  is the maximum crack spacing; 

sm  is the mean strain in the reinforcement under the relevant combination of     
                        loads, including the effect of imposed deformations and taking into account the  
                        effects of tension stiffening. Only the additional tensile strain beyond the state    
                        of zero strain of the concrete at the same level is considered, 

cm is the mean strain in the concrete between cracks. 

 

Following deduction will give us the basic: 

௦௠ = ௦ଶ − ௦ = ௦ଶ − 
௦௥

 

sm calculates IDEA RCS program as a difference between strain of reinforcement in the 
crack and strain of reinforcement, which express the influence of concrete between 
cracks, 

cm is calculated as strain in concrete providing that concrete tensile strength is neglected.  

 

𝑤௠ = ௠𝑠௥,௠ 

𝑤௠ = (௦௠ − ௖௠)𝑠௥,௠ 

 

Average crack width 

𝑤௞ = 𝑠௥,௠௔௫(௦௠ − ௖௠) =  𝑠௥,௠௔௫(௦ଶ − 𝑘௧௦௥ − 𝑘௧௦௥ଵ) =  𝑠௥,௠௔௫൫௦ଶ − 𝑘௧(௦௥ଵ + ௦௥)൯    

𝑤௞ = 𝑠௥,௠௔௫(௦ଶ − 𝑘௧௦௥ଶ), 

where

s2 is the strain in the reinforcement under the relevant combination of loads providing 
that tensile concrete strength is neglected, 
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sr2 is the strain in the reinforcement under the relevant combination of loads at the 
moment of first appearance of cracks providing that tensile concrete strength is 
neglected. 

 

𝑁௥ = 𝑓௖௧௠(௧)(1 + ௘)  ௥ =
ேೝ

஺ೞ
=

ேೝ


  ௥ଶ =

ேೝ

ாೞ
=

௙೎೟೘(೟)

ாೞ

ଵାಶ


  

௦௠ − ௖௠ = ቀ
ೞ

ாೞ
−

௞೟௙೎೟೘(೟)(ଵାಶ)

ாೞ
ቁ 

ೞି௞೟

೑೎೟,೐೑೑

೛,೐೑೑
ቀଵା೐೛,೐೑೑ቁ

ாೞ
≥ 0,6

ೞ

ாೞ
  

If we modify the formula and use notation in accordance with the standard, we can see that  
value sm- sm  matches with the formula in the code. 

2.3.2. The maximum crack spacing sr,max 

The next caption will discuss the maximum distance between the cracks sr,max. Given 
that one of the most decisive influences on the crack width is the distance between the 
reinforcement bars, there are two cases of calculating the maximum distance between the 
cracks. You can see in the picture 

 

1) In situations where bonded reinforcement is fixed at reasonably close centres within 
the tension zone (spacing  5(c+/2)), the maximum final crack spacing may be 
calculated from Expression (see Fig. 7.2): 

 

𝑠௥,௠௔௫ = 𝑘ଷ𝑐 + 𝑘ଵ𝑘ଶ𝑘ଷ/
௣,௘௙௙

 , 

Where 
    is the bar diameter. Where a mixture of bar diameters is used in a section, an 
equivalent diameter, eq, should be used. For a section with n1 bars of diameter 1 and n2 bars 
of diameter 2, the following expression should be used: 
 

 
௘௤

=  
௡భభ

మା௡మమ
మ

௡భభା௡మమ
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c is the cover to the longitudinal reinforcement; 
k1 is a coefficient which takes account of the bond properties of the bonded  
            reinforcement: 

= 0,8 for high bond bars 
= 1,6 for bars with an effectively plain surface (e.g. prestressing tendons); 
 

k2 is a coefficient which takes account of the distribution of strain: 
= 0,5 for bending 
= 1,0 for pure tension. 
 
For cases of eccentric tension or for local areas, intermediate values of k2 
should be used which may be calculated from the relation: 
k2 = (1 + 2)/21,         
 
Where 1 is the greater and 2 is the lesser tensile strain at the boundaries of the 
section considered, assessed on the basis of a cracked section 
 

2) Where the spacing of the bonded reinforcement exceeds 5(c+/2) (see Figure 7.2 in 
the code) or where there is no bonded reinforcement within the tension zone, an upper 
bound to the crack width may be found by assuming a maximum crack spacing 

 

𝑠௥,௠௔௫ = 1,3 − (ℎ − 𝑥) . 

 

2.3.3. Parameters needed for calculation p,eff  used in formulas.  

 
Ac,eff   is the effective area of concrete in tension surrounding the reinforcement or 
            prestressing tendons of depth hc,ef, where hc,ef is the lesser of 2,5(h - d), (h - x)/3 or 
            h/2 (see Figure 7.1 in EN code); 

As reinforcement area laying in the area Ac,eff;    
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2.4. Deflection control 
Deflection control can be done two ways  

– either by limitation of ratio span/depth according to 7.4.2 [2] 
– or by comparing calculated deflection with limit value according to 7.4.3 [2]. 

2.4.1. Cases where calculations may be omitted  

A simple method that can be used for reinforced concrete beams or slabs in civil engineering 
buildings is based on the control of the span ratio to the effective depth of the cross-
section  to limit ratio of the span to the effective height d, where d is calculated as 

d123tab, 
 

where 
1   is 0,8 for flanged sections where the ratio of the flange breadth to the rib breadth 

exceeds 3, 
2  is 7/leff (leff in meters, see 5.3.2.2 (1) [2]) For beams and slabs, other than flat slabs,   
            with spans exceeding 7 m, which support partitions 
            liable to be damaged by excessive deflections, 
3  is 8,5/leff (leff  in meters) For flat slabs where the greater span exceeds 8,5 m, and  
            which support partitions liable to be damaged by excessive deflections. 
 
tab is calculated using these formulas 
 

௟

ௗ
= 𝐾 ቈ11 + 1,5ඥ𝑓௖௞

బ


+ 3,2ඥ𝑓௖௞ ቀ

బ


− 1ቁ

య

మ
቉   𝑖𝑓  ≤ 

଴
   (7.16. a) 

௟

ௗ
= 𝐾 ൤11 + 1,5ඥ𝑓௖௞

బ

ିᇲ
+

ଵ

ଵଶ
ඥ𝑓௖௞ට

ᇲ

బ

൨    𝑖𝑓  > 
଴
    (7.16. b) 

 
where 
l/d  is the limit span/depth, 
K  is the factor to take into account the different structural systems, 
0  is the reference reinforcement ratio 

଴
= ඥ𝑓௖௞10ିଷ, 

 is the required tension reinforcement ratio at mid-span to resist the moment  
           due to the design loads (at support for cantilevers), 
´  is the required compression reinforcement ratio at mid-span to resist the  
           moment due to design loads (at support for cantilevers), 
fck  is in MPa units. 
 

Expressions (7.16.a) and (7.16.b) have been derived on the assumption that the steel stress, 
under the appropriate design load at SLS at a cracked section at the mid-span of a beam or 
slab or at the support of a cantilever, is 310 MPa, (corresponding roughly to fyk = 500 MPa)  
 
Where other stress levels are used, the values obtained using Expression (7.16) should be 
multiplied by 310/s. It will normally be conservative to assume that: 
 
310 / s = 500 /(fyk As,req / As,prov)        (7.17) 
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where 
s  is the tensile steel stress at mid-span (at support for cantilevers) under the design load    
            at SLS, 
As,prov  is the area of steel provided at this section, 
As,req  is the area of steel required at this section for ultimate limit state. 
 

Within RCS program is better to calculate s directly, than to do a design of required 
reinforcement area As,prov . Calculation is much faster, precise and effective in that case. 

Values of K for use in a Country may be found in its National Annex Recommended values of 
K are given in Table 7.4N. Values obtained using Expression (7.16) for common cases (C30, 

s = 310 MPa, different structural systems and reinforcement ratios  = 0,5 % and  = 1,5 %) 
are also given  
 
Table 7.4N – Basic ratios of span/effective depth for reinforced concrete members without axial 

Compression 

 

2.4.2. Checking deflections by calculation 

Deflection control by calculation can be used for single (statically determinate)  
structures. We perform direct calculation by substituting the stiffness to 
analytically derived formulas, which are calculated as stiffness in extremely loaded 
beam sections. 
Further, general methods based on FEM, which can determine the deflection of the 
general, computational models under general loading. The simplest method is just one step 
linear calculation with modified stiffness of the finite elements. Stiffness can be determined 
by the RCS program, see below. Other methods are nonlinear, reflecting not only 
the nonlinear behaviour of concrete, plasticity as well as second order effects. However, 
these methods are iterative, time consuming and not always guaranteed convergence. All 
of the above mentioned methods, however, include the calculation of the stiffness, which 
the RCS program provides. 
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2.4.2.1. Calculating the stiffness of uncracked cross-section 

Assumptions: 

a) According to assumptions 2.1 – uncracked cross-section, 
b) It is taken into account the secant value for the modulus of elasticity Ecm 
 
Axial stiffness             E AxI = Ai Ecm, 
Bending stiffness             E IyI = Iyi Ecm, 
Bending stiffness             E IzI = Izi Ecm, 

where  Ai is idealized cross-section area (concrete tensile strength is not neglected), 
 Iyi, Izi moment of inertia related to centre of gravity of idealized cross-section  
                       (concrete tensile strength is not neglected) 

2.4.2.1. Calculating the stiffness of fully cracked cross-section 

Assumptions: 

a) According to assumptions 2.1 – cracked cross-section.  
b) It is taken into account the secant value for the modulus of elasticity Ecm 
 
Axial stiffness E AxII = Ai Ecm 

Bending stiffness E IyII = Iyi Ecm 

Bending stiffness E IzII = Izi Ecm 

where  Ai is idealized cross-section area (concrete tensile strength is ignored), 

Iyi,Izi moment of inertia related to centre of gravity of idealized cross-section 
(concrete tensile strength is ignored). 

2.4.2.2. Calculating the final stiffnesses 

Resulting stiffness corresponds to the intermediate state between the state without cracks 
2.4.2.2 and state with fully developed cracks 2.4.2. The elements loaded mainly to flexure 
the corresponding assumption of behaviour is expressed by relation (7.18) [2]: 

 = II + (1 -  ) I , 
 

where   
  is the deformation parameter considered which may be, for example, a 

strain, a curvature, or a rotation, 
I, II  are the values of parameter above calculated for state without cracks and with 

fully developed cracks, 
  is a distribution coefficient (allowing for tensioning stiffening at a section)     
            given by Expression (7.19): 
 

 = 1 −  ቀ
ೞೝ

ೞ
ቁ

ଶ

,          

 
  = 0 for cross-sections without cracks, 

  is a coefficient taking account of the influence of the duration of the loading 
or of repeated loading on the average strain: 
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= 1,0  for a single short-term loading, 
= 0,5  for sustained loads or many cycles of repeated loading, 

s is the stress in the tension reinforcement calculated on the basis of a 
            cracked section, 
sr  is the stress in the tension reinforcement calculated on the basis of a 
            cracked section under the loading conditions causing first cracking. 

 
For loads with a duration causing creep, the total deformation including creep may be 
calculated by using an effective modulus of elasticity for concrete according to Expression 
(7.20): 
 

𝐸௖,௘௙௙ =
ா೎೘

ଵା(ஶ,௧బ)
 , 

 
where  (,t0) is the creep coefficient relevant for the load and time interval (see 3.1.4). 
 
Long-term stiffnesses can be calculated from following articles 2.4.2.1, 2.4.2.2 a 2.4.2.3, the 
only difference is that the secant modulus Ecm is replaced by an effective modulus Ec,eff   
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2.5. Parametric study made for crack width  
Pro následující parametrické studie jsme využili příklad dle Fig. 2.2. Tento příklad je taktéž 
řešen ve sborníku verifikačních příkladů, kde je rovněž popis zadání příkladu. 

 

2.5.1. First cracking and crack width in relation to load 

Within this study, we focused on the analysis of crack width according to the change of 
internal forces. The study was aimed primarily to verify the results of the IDEA 
RCS program on extensive set of input values. Study results may also serve for a 
deeper understanding of the connections in the calculation of crack width according to ČSN 
EN [2]. 

The change of internal forces is done in range 5 – 195 kNm, and always in combination with 
the normal force N = 100kN to -500kN. The curve of crack width is almost linear, and 
curves are similar. The increase in normal force of constant growth is reflected in the 
constant increase in crack width.  

 

Fig. 2.3 – Parametric study - influence N, M on crack width 

 

2.5.1. First cracking and crack width in relation to tensile reinforcement 
area 

In this study, the bending moments were changed from 0 to 195 kNm. As we can see from the 
chart, the crack width decreases when increasing the reinforcement area. By increasing the 
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area of reinforcement decreases the stress in the reinforcement, which leads to a reduction in 
crack width. Increasing the width of the crack is almost linear with an expanding moment.  

 

 

Fig. 2.4 – Parametric study – influence reinforcement area to crack width 

 

2.5.2. First cracking and crack width in relation to bar diameter change 

 

In the last parametric study, we focused only on the change reinforcement bar profile, while 
the cover  and reinforcement area are kept. From the graph you can see a positive 
impact of the bar diameter decreasing on crack width.  
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Fig. 2.5 - Parametric study – influence of crack width to bar profile diameter 
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3. Analysis of compression reinforced concrete members 

3.1. General 
Uncertainties in geometry and position of loads and second order effects can be taken into 
account on analyzed structure in meaning of linear elastic analysis of deformed structure or 
nonlinear analysis of deformed structure or by first order linear analysis with influence of 
geometric imperfections and second order effects according to  EN 1992. In following 
text, we describe methods that can be applied for the cross-section checks of compression 
members by IDEA RCS program. 

3.2. Effective length 
length used to account for the shape of the deflection curve; it can also 
be defined as buckling length, i.e. the length of a pin-ended column with constant normal 

force, having the same cross section and buckling load as the actual member. 

 

Fig. 3.1 - Examples of different buckling modes and corresponding effective lengths for 
isolated members (taken from [1]) 
For compression members in regular frames, the effective length 𝑙଴ can be determined in the 
following way according to article. 5.8.3.2 (3) [1], expressions (5.15) and (5.16): 

 Braced members (see Fig. (f), where the translation in restraints at ends 1 and 2 is 
prevented) 

𝑙଴ = 0,5 𝑙 ⋅ ඨ൬1 +
𝑘ଵ

0,45 + 𝑘ଵ
൰ ⋅ ൬1 +

𝑘ଶ

0,45 + 𝑘ଶ
൰. 

 Unbraced members (see Fig. 3.1 (g)) 

𝑙଴ = 𝑙 ⋅ 𝑚𝑎𝑥 ቐඨ1 + 10 ⋅
𝑘ଵ ⋅ 𝑘ଶ

𝑘ଵ + 𝑘ଶ
 ;  ൬1 +

𝑘ଵ

0,45 + 𝑘ଵ
൰ ⋅ ൬1 +

𝑘ଶ

0,45 + 𝑘ଶ
൰ቑ. 

k1, k2 are the relative flexibilities of rotational restraints at ends 1 and 2 respectively, 
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𝑘 = (𝜃/𝑀) ∙ (𝐸𝐼/𝑙), 

where θ je  is the rotation of restraining members for bending moment M, 

 EI is the bending stiffness of compression member. 

The RCS program makes possible to input effective lengths directly, cases from a) to d) as 
shown in Fig. 3.1 is possible to calculate. 

3.3. Geometric imperfections  
The effect of imperfections must be taken into account in ULS and need not be considered 
for  SLS. 

3.3.1. Calculation procedure  

Inclination θi according to EN 1992-1-1 art. 5.2 (5), expression (5.1) 

𝜃௜ = 𝜃଴ ∙ 𝛼௛ ∙ 𝛼௠, 

where θ0     is the basic value. The recommended value is 1/200. The minimum value is  
                   1/300, 

 αh is the reduction factor for length or height 𝛼௛ = 2/√𝑙 a 2/3 ≤ 𝛼௛ ≤ 1, 

 αm is the reduction factor for number of members  𝛼௠ =

ඥ0,5(1 + 1/𝑚), 

 l is the length or height [m], (according to effect which is under consideration), 

 m is the number of vertical members contributing to the total effect. 

Accordingly EN 1992-2, art. 5.2 (105) [2], the inclination is defined as: 

𝜃௜ = 𝜃଴ ∙ 𝛼௛, 

where θ0 is the basic value, the recommended value is 1/200 

 αh is the reduction factor for length or height 𝛼௛ = 2/√𝑙 a 𝛼௛ ≤ 1 

 l is the length or height [m]. 

 

For isolated members, the effect of imperfections may be taken into account in 

two alternative ways a) or b) 

a) As an eccentricity 𝑒௜ = 𝜃௜𝑙଴/2, where l0 is the effective length (in this way the effect 
of imperfections is taken into account in program IDEA RCS) 

b) As a transverse force Hi 
 For unbraced members 𝐻௜ = 𝜃௜  𝑁 

Cantilever: 𝑀௜ = 𝑁 𝑒௜ = 𝑁 𝜃௜
௟బ

ଶ
= 𝐻௜

௟బ

ଶ
 

 For braced members 𝐻௜ = 2 𝜃௜  𝑁, where N is Normal force 

Hinge supports: 𝑀௜ = 𝑁 𝑒௜ = 𝑁 𝜃௜
௟బ

ଶ
= 𝐻௜

௟బ

ସ
. 

 

For structures, the effect of the imperfections may be represented by transverse forces,  



Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Brno, 3. 12. 2010 

                                                                                                                                 Page 49 

 𝐻௜ = 𝜃௜(𝑁௕ − 𝑁௔)  Effect on bracing system 
 𝐻௜ = 𝜃௜(𝑁௕ + 𝑁௔)/2  Effect on floor diaphragm 
 𝐻௜ = 𝜃௜𝑁௔   Effect on roof diaphragm 

where Na and Nb are axial forces. 

RCS program  is the program for the check of one section, hence it is impossible to 
distinguish cases of isolated members and structures. Therefore, the effect 
of imperfections is considered fundamentally as the eccentricity, which is obtained from 

the inclination  𝜃௜ from vertical𝑒௜ =
ఏ೔௟బ

ଶ
. 

 
The minimum eccentricity under Article 6.1 (4) code [2] for the ultimate limit state can be 
applied either to the resistance (by reducing the interaction diagram) or the load. This is the 
case for RCS, where the eccentricity 𝑒଴  is taken into account for eccentricity  
including geometric imperfections, 𝑒଴ாௗ = max(𝑒௟௜௡ + 𝑒௜;  𝑒଴), 

𝑒଴ = max(ℎ/30;  20 𝑚𝑚), where h is the height of the section. 

3.4. Second order effects 
Additional action effects caused by structural deformations. When calculating the deflection it 
should be taken into account the possibility of cracks in concrete and nonlinear  
material properties, or take these effects into account by reducing stiffness in the method 
of nominal stiffness.  

3.4.1. Neglecting second order effects 

Second order effects may be ignored if: 

1. they are less than 10 % of the corresponding first order effects (5.8.2 (6) [1]). 
2. the slenderness is below a limit slenderness, 𝜆 < 𝜆௟௜௠ (5.8.3.1 (1) [1]). 
3. Vzpěrná únosnost budovy jako celku je větší než celkové svislé zatížení (5.8.3.3  [1]) 

a kapitola Chyba! Nenalezen zdroj odkazů. tohoto textu. 

Program RCS controls condition 1 and 2 and if they are fulfilled, the second order effects can 
be neglected. 

3.4.2. Stiffness criterion for isolated members 

Limit stiffness, which determines the border between slender and non-slender members is 
given by expression, art. 5.8.3.1 (1), expression (5.13) [1] 

𝜆௟௜௠ = 20 ⋅ 𝐴 ⋅ 𝐵 ⋅ 𝐶/√𝑛, 

Where 

 𝐴 = 1/൫1 + 0,2𝜑௘௙൯ (if φef  is not known, A=0,7 may be used), 

 𝐵 = √1 + 2𝜔 (if ω is not known, B=1,1 may be used), 

 𝐶 = 1,7 − 𝑟௠ (if rm is not known C=0,7 may be used), 

 𝜑௘௙ effective creep ratio, 

 𝜔 = 𝐴௦𝑓௬ௗ/(𝐴௖𝑓௖ௗ) mechanical reinforcement ratio, 

 𝐴௦ is the total area of longitudinal reinforcement, 

 𝐴௖ concrete section area, 
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 𝑛 = 𝑁ாௗ/(𝐴௖𝑓௖ௗ) relative normal force, 

 𝑟௠ = 𝑀଴ଵ/𝑀଴ଶ moment ratio, 

 𝑀଴ଵ, 𝑀଴ଶ the first order end moments, |𝑀଴ଶ| ≥ |𝑀଴ଵ|. 

In the following cases, rm should be taken as 1,0: 

 for braced members in which the first order moments arise only from or predominantly 
due to imperfections or transverse loading 

 for unbraced members in general 

3.4.3.  Slenderness of isolated members  

The slenderness ratio is defined as follows   

𝜆 =
௟బ

௜
, 

where l0 is effective length 

 i is the radius of gyration of the uncracked concrete section. 

The Code states that for the slenderness ratio calculation it should be considered 
uncracked concrete section. Usually in practice, the reinforcement of cross-section is not 
available when we check the stiffness. Using an ideal section for calculating the radius of 
gyration would be possible to avoid the calculation of second order effects in a broader class 
of problems. Results of the study for the particular case of the column shows that in case of an 
ideal cross-section slenderness limit is reached on the reinforcement ratio 0.29, in case of the 
concrete section from the level 0.33, see Figure3.2. The RCS program is considering concrete 
section on the safe side. 

 

 

Fig. 3.2 – Comparison of slenderness for concrete and idealized cross-section 

3.4.4. Global second order effects in buildings  

Global second order effects in buildings may be ignored if the building buckling strength is 
more than overall vertical load, according to art. 5.8.3.3 [1], expression (5.15): 
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𝐹௏,ாௗ ≤ 𝑘ଵ ⋅
𝑛௦

𝑛௦ + 1,6
⋅

∑ 𝐸௖ௗ𝐼௖

𝐿ଶ
, 

Where 

 FVE,d je is the total vertical load (on braced and bracing members), 

 ns is the number of storeys, 

 L is the total height of building above level of moment restraint, 

 Ecd is the design value of the modulus of elasticity of concrete, 

 Ic is the second moment of area (uncracked concrete section) of bracing  
                          member(s). 
The recommended value is 0,31 of k1 is 0,31. 
Expression above is valid only if all the following conditions are met: 
 

 torsional instability is not governing, i.e. structure is reasonably symmetrical 
 global shear deformations are negligible (as in a bracing system mainly consisting of 

shear walls without large openings) 
 bracing members are rigidly fixed at the base, i.e. rotations are negligible  
 the stiffness of bracing members is reasonably constant along the height 
 the total vertical load increases by approximately the same amount per storey 

 

The option to neglect global second order effects in buildings is not available in RCS 
program. 

 

3.4.5. Creep 

The effect of creep maybe taken account in a simplified way by means of an effective creep 
ratio art. 5.8.4 (2), expression (5.19) 

𝜑௘௙ = 𝜑(ஶ,௧଴)𝑀଴ா௤௣/𝑀଴ாௗ, 

Where 

 𝜑(ஶ,௧଴)      is the final creep coefficient according, 

 𝑀଴ா௤௣ is the first order bending moment in quasi-permanent load combination  
                          (SLS), 

 𝑀଴ாௗ is the first order bending moment in design load combination (ULS). 

The effect of creep may be ignored, i.e. 𝜑௘௙ = 0 may be assumed, if the following three 

conditions are met: 

 𝜑(ஶ,௧଴) ≤ 2, 
 𝜆 ≤ 75, 

𝑀଴ா /𝑁ாௗ ≥ ℎ, kde h is the cross section depth in the corresponding direction. 

 

If the conditions for neglecting second order effects according to 5.8.2 (6) or 5.8.3.3 are only 
just achieved, it may be too unconservative to neglect both second order effects and creep, 
unless the mechanical reinforcement ratio (𝜔, see 5.8.3.1 (1)) is at least 0,25 



Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Brno, 3. 12. 2010 

                                                                                                                                 Page 52 

Therefore, when the RCS  program calculates the effective creep ratio equal to zero, while the 
second order effects are less than 10% of first order effects (i.e. they can be neglected), it 
is advisable to increase the degree of mechanical reinforcement over the value 0.25. 

3.4.6. Methods of analysis 

The code introduces these calculation methods for second order effects: 

 General method, based on non-linear second order analysis includes geometrical 
nonlinearity  

 Method based on nominal stiffness, see 3.4.7. 
 Method based on nominal curvature, see 3.4.8. 

 

Fig. 3.3 – Second order effects displayed in interaction diagram 

3.4.7. Method based on nominal stiffness (5.8.7 [1]) 

The method defines the stiffness in way that the recalculated first order bending moments can 
be used for check at the ultimate limit state, i.e. to include the second-order effects. The 
method considers the influence of geometric nonlinearity but assumed a linear behaviour 
of the material. 

The following model may be used to estimate the nominal stiffness of slender compression 

members with arbitrary cross section (art. 5.8.7.2 (1) [1]): 

𝐸𝐼 = 𝐾௖𝐸௖ௗ𝐼௖ + 𝐾௦𝐸௦𝐼௦, 

Where 

 Ecd is the design value of the modulus of elasticity of concrete, 𝐸௖ௗ = 𝐸௖௠/𝛾௖ா , 
           𝛾௖ா = 1,2, 

 Ic is the moment of inertia of concrete cross section, 

 Es is the design value of the modulus of elasticity of reinforcement, 

Is is the second moment of area of reinforcement, about the centre of area of the 

                   concrete, 

 Kc is a factor for effects of cracking, creep etc, etc., 

 Ks is a factor for contribution of reinforcement. 

The following factors Ks a Kc may be used in Expression (5.21), provided ρ ≥ 0,002: 

𝐾௦ = 1, 
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𝐾௖ = 𝑘ଵ𝑘ଶ/(1 + 𝜑௘௙), 

Where 

 𝜌 = 𝐴௦/𝐴௖ je is the geometric reinforcement ratio 

 As is the total area of reinforcement, 

 Ac is the area of concrete section, 

 𝜑௘௙ is the effective creep ratio 

 𝑘ଵ = ඥ𝑓௖௞/20 is a factor which depends on concrete strength class, fck in MPa, 

 𝑘ଶ = 𝑛 ⋅ 𝜆/170 is a factor which depends on axial force and slenderness, 𝑘ଶ ≤ 0,2, 

 𝑛 = 𝑁ாௗ/𝐴௖𝑓௖ௗ is the relative axial force, 

 𝜆 is the slenderness ratio, see 3.4.3. 

As a simplified alternative, provided ρ ≥ 0,01, the following factors may be used: 

𝐾௦ = 0, 

𝐾௖ = 0,3/(1 + 0,5𝜑௘௙). 

The simplified alternative may be suitable as a preliminary step, followed by a more accurate 
calculation, for example design of reinforcement. 

Second order moment 

𝑀ଶ = 𝑀଴ாௗ

𝛽

(𝑁஻/𝑁ாௗ) − 1
, 

kde 𝑀଴ாௗ        is the first order moment with influence of imperfections, 

 𝛽 is a factor which depends on distribution of 1st and 2nd order moments, 

 𝑁ாௗ is the design value of axial load, 

 𝑁஻ is the buckling load based on nominal stiffness, 𝑁஻ =
గమாூ

௟బ
మ . 

The total design moment, including second order moment, may be expressed as given in art. 
5.8.7.3 (1), expression (5.28) [1] 

𝑀ாௗ = 𝑀଴ா + 𝑀ଶ = 𝑀଴ாௗ ൤1 +
𝛽

(𝑁஻/𝑁ாௗ) − 1
൨, 

For isolated members with constant cross section and axial load, the second order moment 

may normally be assumed to have a sine-shaped distribution 

𝛽 = 𝜋ଶ/𝑐଴ 

Where 

𝑐଴ is a coefficient which depends on the distribution of first order moment (for instance, 
𝑐଴ = 8 for a constant first order moment, 𝑐଴ = 9,6 for a parabolic and 𝑐଴ = 12 for a symmetric 
triangular distribution etc.). 

3.4.8. Method based on nominal curvature (5.8.8 [1]) 

The method defines the curvature corresponding to deflection under second order effects. This 
method is primarily suitable for isolated members with constant normal force. 
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The design moment according to art. 5.8.8.2 [1] 

𝑀ாௗ = 𝑀଴ாௗ + 𝑀ଶ, 

Where 

 𝑀଴ா   is the 1st order moment, including the effect of imperfections, 

 𝑀ଶ = 𝑁ாௗ𝑒ଶ is the nominal 2nd order moment, 

 𝑁ாௗ is the design value of axial force, 

 𝑒ଶ = ቀ
ଵ

௥
ቁ 𝑙଴

ଶ/𝑐 is the deflection from second order effects, 

 1/𝑟 is the curvature, 

 𝑙଴ is the effective length, see 3.2, 

 𝑐 is a factor depending on the curvature distribution, for constant cross- 
                                    section, c =10 (≈π2) is normally used. 

Curvature for members with constant symmetrical cross sections (incl. reinforcement), the 
following expression may be used 

1/𝑟 = 𝐾௥ ⋅ 𝐾ఝ ⋅ 1/𝑟଴, 

Where 

 𝐾௥  is a correction factor depending on axial load, 

 𝐾ఝ is a factor for taking account of creep, 

 1/𝑟଴ = 𝜀௬ௗ/(0,45 𝑑), 

 𝜀௬ௗ = 𝑓௬ௗ/𝐸௦, 

 𝑑 is the effective depth, 𝑑 = (ℎ/2) + 𝑖௦, If all reinforcement is not concentrated  
                       on opposite sides, but part of it is distributed parallel to the plane of bending, 

 𝑖௦ is the radius of gyration of the total reinforcement area. 

Coefficient Kr should be taken as 

𝐾௥ = (𝑛௨ − 𝑛)/(𝑛௨ − 𝑛௕௔௟) ≤ 1, 

Where 

 𝑛 relative axial force, 𝑛 = 𝑁ாௗ/(𝐴௖𝑓௖ௗ), 

 𝑛௨ = 1 + 𝜔 , 

 𝑛௕௔௟ is the value of n at maximum moment resistance; the value 0,4 may be used  

 𝜔 mechanical reinforcement ratio, 𝜔 = 𝐴௦𝑓௬ௗ/(𝐴௖𝑓௖ௗ), 

 𝐴௦ total reinforcement area, 

 𝐴௖ concrete section area. 

Coefficient K is defined as 

𝐾ఝ = 1 + 𝛽𝜑௘௙ ≥ 1, 

Where 

 𝜑௘௙ effective creep coefficient, see Chyba! Nenalezen zdroj odkazů., 
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 𝛽 = 0,35 + 𝑓௖௞/200 − 𝜆/150 , 

 𝜆 slenderness ratio, see 3.4.3, 

3.4.9. Comparing the nominal stiffness method and nominal curvature 
method 

For the verification and stabilization reasons of above simplified methods is given following 
comparison. 

 

Fig. 3.4 – Input of structure for comparing of simplified methods 

Figure 3.5, Figure 3.7 and Figure 3.9 shows the dependency of the second-order effects on the 
axial force. It was assumed a constant linear eccentricity 20, 100 and 200 mm. At 
the method of nominal stiffness after reaching the critical force the structure will 
be unstable and the method is terminated. The Figure 3.6, Figure 3.8 and Figure 3.10 shows 
the resistance of cross-section and the linear eccentricity is drawn and the 
corresponding second order effects calculated by simplified methods 

 

 

Fig. 3.5 – Influence between Axial forces to second order effects for constant linear 
eccentricity 20 mm 
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Fig. 3.6 – Design internal forces for constant linear eccentricity 20 mm 

 

 

Fig. 3.7 – Influence of axial force to second order effects for constant linear eccentricity 100 
mm. 
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Fig. 3.8 – Design internal forces for constant linear eccentricity 100 mm  

 

 

Fig. 3.9 – Influence of axial force to second order effects for constant linear eccentricity 200 
mm. 
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Fig. 3.10 – Design internal forces for constant linear eccentricity 200 mm 

On the Fig. 3.11 the influence of second order effects and final eccentricity on reinforcement 
ratio is shown. Member is loaded by constant axial force  1000 kN and bending moment 50 
kNm. 

 

Fig. 3.11 – Dependency of second order effects on reinforcement ratio  
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Size effect of bending moment on the eccentricity with a constant axial force of 1000kN.  
Figure 3.12 shows that second order effects quantified by the nominal curvature 
method depend on the size of the bending moment. 

 

Fig. 3.12 – Dependency of second order effects on reinforcement ratio 

Both methods are compared on the following pictures. 
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Fig. 3.13 – Simplified method comparison, square column, see Fig. 3.2 
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Fig. 3.14 - Simplified method comparison, dependency on bending moment, bridge pier, 
length 27 m 

 

Fig. 3.15 - Simplified method comparison, dependency on axial force, bridge pier, length 27 
m 

3.4.10.  Biaxial bending (5.8.9 [1]) 

The following provisions apply when simplified methods are used.. according to 5.8.9 (2) the 
imperfection Imperfections need to be taken into account only in the direction where they will 
have the most unfavourable effect. It means into direction of the bigger eccentricity of normal 
force. 
 
Principe of recalculation of normal force position is given in Remark. 

No further check is necessary if the slenderness ratios satisfy the following two conditions 
given in [1] art. 5.8.9 (3), expressions (5.38a) and (5.38b) 

y/z 2 and z/y 2 

and if the relative eccentricities ey/h a ez/b (see Fig 5.8 [2]) satisfy one the following 
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conditions:  
௘೤/௛೐೜

௘೥/௕೐೜
≤ 0,2 or 

௘೥/௕೐೜

௘೤/௛೐೜
≤ 0,2 

Where 

 b, h are the width and depth of the section; 

 𝑏௘௚ = 𝑖௬√12 aℎ௘௚ = 𝑖௭√12 for an equivalent rectangular section;  

 y, z are the slenderness ratios l0/i  with respect to y- and z-axis respectively;  

 iy, iz are the radiuses of gyration with respect to y- and z-axis respectively; 

 ez = MEdy / NEd; eccentricity along z-axis; 

 ey = MEdz / NEd; eccentricity along y-axis; 

 MEdy is the design moment about y-axis, including second order moment; 

 MEdz is the design moment about z-axis, including second order moment; 

 NEd is the design value of axial load in the respective load combination. 

If the condition of Expression (5.38) is not fulfilled, biaxial bending should be taken into 

account including the 2nd order effects in each direction. 

From stated above can be concluded, that if the section is symmetrical and loads are almost 
same in both directions,  we must check bending at all directions. 

 

Remark: Recalculation of normal force location 

Recalculation in z-direction (for bending moment My). Analogically, there are defined 
expressions for z-direction. 

Basic eccentricity including imperfection effects: 
If the following expression is valid 
yz,  
then 
eoz,1 = eiz + ezmax(h/30, 20mm), 
in other case minimum eccentricity is taken account 
eoy,1 = eymax(h/30, 20mm) 
 
eoz,2 = ez + max(eiz,eiy) . ez/ (ez

2+ ey
2)0,5max(h/30, 20mm) . ez/ (ez

2+ ey
2)0,5 

 
Resulted basic eccentricity: 
eoz = max(eoz,1, eoz,2) 

 

Where 

  ey, ez basic eccentricity of normal force 

eiz, eiy eccentricity from imperfections 
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Second order effects eccentricity: 
If the expression  
yz,  
Then 
e2z,1 = e2z, 
In other case it is not taken account 
e2z,1 = 0 
 
e2z,2 =max(e2z,e2y) . ez/ (ez

2+ ey
2)0,5 

 
Total second order eccentricity: 
e2z = max(e2z,1, e2z,2) 

 
Where 
  ey, ez basic normal force eccentricity 

e2z, e2y second order eccentricity 
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