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1 Introduction 

1.1 Current structural concrete practice 

Today, powerful software is available for the design of concrete structures. Linear elastic finite 
element programs allow even complex structures to be analyzed in a relatively short period of 
time, and many of these programs include post-processing modules for automated dimensioning 
or the checking of reinforcement and concrete dimensions. State-of-the-art frame analysis pro-
grams feature modules providing automatic checks of ultimate load and serviceability criteria, 
including deformations and crack widths, based on sectional forces obtained from FE analysis. 
Such modules allow the user to efficiently dimension structures (or parts thereof) in cases where 
all static and geometric quantities vary only gradually and hence Bernoulli’s hypothesis of plane 
sections remaining plane applies. While one might argue that linear elastic calculations do not 
reflect the real behavior of concrete structures, these calculations usually yield safe designs, as 
further outlined in Chapter 2. 

However, the most critical parts of structures are typically regions where abrupt changes in 
geometry occur, or large concentrated loads are applied, such as corbels, deep beams, walls with 
openings, dapped beam-ends and frame corners. Since sectional design principles cannot be ap-
plied at these locations, which are known as discontinuity regions, semi-empirical design rules 
were used in the past for their dimensioning. Fortunately, these rules have been superseded 
mainly over the past decades by strut-and-tie models (Schlaich et al. 1987) and stress fields (Marti 
1985) , which are featured in modern design codes and frequently used by designers today. These 
models, further outlined in Chapter 2, are mechanically consistent, powerful tools that yield direct 
insight into load-carrying behavior and give the engineer control over the design, allowing the 
dimensioning of reinforcement while taking practical considerations into account. Note that stress 
fields can generally be either continuous or discontinuous, and that strut-and-tie models are a 
special case in terms of discontinuous stress fields (e.g., uniaxial stress inside a strut, with stress-
free concrete immediately next to it, and biaxially stressed concrete in the nodes at its ends). 

In spite of the evolution of computational tools over the past decades, stress fields and strut-
and-tie models are essentially still being used as hand calculations. This makes their application 
tedious and time-consuming since iterations are required, and several load cases need to be con-
sidered when dealing with real-life structures. Furthermore, the checking of concrete dimensions 
is based on semi-empirical, somewhat arbitrary rules for the effective concrete compressive 
strength, undermining the mechanical consistency of the methods, and it is impossible to verify 
deformation capacity – particularly with regard to reinforcement ductility. In addition, these 
methods are not suitable for checking serviceability criteria (deformations, crack widths, etc.). 
Hence, due to the lack of efficiency and the need to recur to other models for serviceability checks 
in any case, designers tend to favor linear elastic finite element wall analyses over strut-and-tie 
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models and stress fields, despite the often impractical and inefficient reinforcement layouts ob-
tained. The latter problem occurs because such linear elastic analyses completely neglect the non-
symmetric strength of concrete and the non-isotropic behavior (even in the case of orthogonal, 
isotropic reinforcement) of reinforced concrete during the calculation of internal forces, and only 
account for these effects in the post-processing stage, i.e., when dimensioning the reinforcement 
and checking the dimensions of concrete, which is typically carried out using yield conditions 
based on plasticity theory. 

While existing general non-linear FE programs overcome the aforementioned oversimplifi-
cations of linear elastic analysis and allow real structural behavior to be replicated providing 
correct mechanical models and material parameters are defined, these methods are not suitable 
for design purposes. The complexity of the implemented mechanical methods requires very high 
amounts of expertise and modeling time, while the results can be very sensitive to the choice of 
material parameters that were unknown during the design phase. Furthermore, the mechanical 
models implemented in non-linear FE analyses typically are not code-compliant, as their hypoth-
eses differ very significantly from those of classical reinforced concrete design (e.g., concrete 
tensile stresses often contribute to the resistance of the members in NLFEA) and the partial safety 
factor format cannot be applied. In consequence, non-linear FE analysis is only useful for research 
and assessment purposes. 

The tendency towards using either linear elastic wall calculations or general non-linear FE 
analysis, which is already strong today, is being fostered by the development of increasingly 
powerful and user-friendly programs for such analyses. As a result, it can be anticipated that the 
application of strut-and-tie models and stress fields will soon be limited to the realms of engi-
neering education unless equally user-friendly computer programs that allow efficient analysis 
based on strut-and-tie models and stress fields become available soon. Hence, in order to exploit 
the potential of stress fields and strut-and-tie models in terms of economical design and practical 
reinforcement layouts in the future, it is essential to develop computer programs that overcome 
their drawbacks without impairing their advantages of transparency and the control they provide 
over the design produced. 

1.2 Computer-aided truss models and stress fields 

Several attempts to develop programs for computer-aided truss modeling have been made over 
the past decades. Many existing applications implementing strut-and-tie models for specific re-
gions, such as corbels and pile caps, have had limited impact due to their restricted scope. Only 
a few tools, such as CAST (Tjhin and Kuchma 2002) and AStrutTie (2017), are more general and 
allow the design of arbitrary discontinuity regions. Although these applications are very interest-
ing, they have not found widespread application in engineering practice to date, presumably be-
cause the user has to devise an initial strut-and-tie model and assign a “correct” effective concrete 
compressive strength to each individual truss member or node. In spite of being implemented in 
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a computer program, this process is typically still time-consuming, affects user-friendliness and 
efficiency, and is somewhat arbitrary.  

These problems are avoided with the elastic-plastic stress field method (EPSF), developed by 
Fernández Ruiz and Muttoni (2007). The method achieves this by considering continuous stress 
fields rather than strut-and-tie models, and by determining the effective concrete compressive 
strength from transverse strains, as specified by modern design codes. This is similar as in com-
pression field analyses accounting for compression softening (Vecchio and Collins 1986; Kauf-
mann and Marti 1998). Basically, this method constitutes a simplified version of nonlinear finite 
element analysis. Contrary to general nonlinear FE calculations, however, only standard material 
parameters known at the design stage are required as input. The EPSF method yields excellent 
failure load predictions (Muttoni et al. 2015), but its user-friendliness is limited since it was not 
developed as a commercial program. Moreover, since it neglects tension stiffening, the EPSF 
method cannot be directly used for serviceability checks, nor can it be employed for elements with 
insufficient deformation capacity.  

1.3 The Compatible Stress Field Method 

This book presents the principles and a validation of the Compatible Stress Field Method (also 
referred to in the book as the CSFM), a new method for the design and assessment of concrete 
structures particularly suitable for so-called discontinuity regions, for which it overcomes the 
aforementioned limitations of classical design tools and existing computer-aided models while 
keeping the advantages of stress fields and strut-and-tie models: 

 Only material parameters that are perfectly known at the design stage are required 
as input, neglecting concrete tensile strength for equilibrium (ensuring code-compli-
ance). 

 A clear understanding of the force flow is provided. 

 The user has full control over the design. 

The CSFM, similarly as EPSF, consists of a simplified non-linear finite element-based con-
tinuous stress field analysis procedure that automatically computes the effective compressive 
strength of concrete. By considering equilibrium at stress-free cracks, simple uniaxial constitutive 
laws provided in concrete standards for concrete and reinforcement are implemented without the 
need for the additional material properties required to perform nonlinear FE analyses. This makes 
the CSFM suitable for engineering practice.  

While the concrete tensile strength is neglected in terms of strength (just as in standard struc-
tural concrete design), the CSFM accounts for its influence on members stiffness (i.e., tension 
stiffening) in order to cover all design code prescriptions, including serviceability, load-defor-
mation and deformation capacity aspects, which are not consistently addressed by previously 
formulated approaches.  
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The CSFM has been implemented in IDEA StatiCa Detail, a new user-friendly commercial 
software program developed jointly by ETH Zurich and the software company IDEA StatiCa as 
part of the DR-Design Eurostars-10571 project. Unless stated otherwise, all of the verifications 
included in Chapters 4, 5 and 6 were carried out with IDEA StatiCa Detail 9.1, which was released 
in October 2018. 

1.4 Outline 

Chapter 2 of this book provides an overview of the historical development and theoretical back-
ground of structural concrete design with strut-and-tie models and stress fields. This lays the 
groundwork for an in-depth presentation of the Compatible Stress Field Method in Chapter 3. 

Chapters 4, 5 and 6 cover the verification of the CSFM and its implementation in IDEA StatiCa 
Detail 9.1 software. Chapter 4 validates the proper numerical implementation of the mechanical 
models of the CSFM by means of the simple cases of pure tension, pure compression and pull-
out loading. Chapter 5 compares the results of the CSFM with code calculations for several ex-
amples, and Chapter 1 finally verifies the method by comparing analyses carried out using the 
CSFM with experimental results covering a wide range of applications.  

Finally, Chapter 7 summarizes and discusses the results obtained in the previous sections. 

1.5 Acknowledgments 

This work is part of the DR-Design Eurostars-10571 project and has received partial funding 
from the Eurostars-2 joint program with co-funding from the European Union Horizon 2020 re-
search and innovation program. The authors would like to express their gratitude to all the people 
who contributed to this book, from researching to sharing their ideas and experiences to editing 
the content of the manuscript: Petr Sevcik, Libor Michalcik, Rostislav Krc, Filip Svoboda, Petr 
Foltyn, Filip Adler, Lukas Juricek, Lukas Bobek and Roger Turland.
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2 Structural concrete design with strut-and-tie models 
and stress fields 

2.1 Introduction 

This chapter provides an overview of the historical development and theoretical background of 
structural concrete design with strut-and-tie models and stress fields in order to prepare the 
ground for the presentation of the Compatible Stress Field Method in the following chapter. 

2.2 Historical background 

Strut-and-tie models and stress fields are popular methods for the design, dimensioning and de-
tailing of concrete structures. They are particularly suitable for what are known as discontinuity 
regions, where abrupt changes in geometry and/or concentrated loads render Bernoulli’s hypoth-
esis of plane sections remaining plane inappropriate, meaning that the design of such regions 
cannot be based on a sectional analysis. Strut-and-tie models and stress fields are lower bound 
limit analysis methods based on the theory of plasticity, as opposed to kinematic or upper bound 
methods based on the same theory, such as the yield line method (Johansen 1962). 

The origins of limit analysis methods date back to the early days of reinforced concrete. For 
example, Ritter (1899) and Mörsch (1908-1920) sketched truss models and even stress fields to 
explain the load-bearing behavior of reinforced concrete (Fig. 2.1a-b); Ingerslev (1923) analyzed 
the failure mechanisms of slabs (Fig. 2.1c); Marcus (1932) designed slabs by sharing the load 
among orthogonal strips (Fig. 2.1d); and Rosenblueth (1955) visualized the equilibrium of mem-
brane elements using Mohr's circles (Fig. 2.2a) in a manner very similar to that of current com-
pression field approaches (Fig. 2.2b). However, these methods, particularly truss models and 
stress fields, did not become established as scientific methods and, consequently, were not widely 
used in the actual dimensioning of reinforced concrete structures. Instead, design codes were 
mainly based on the comparison of elastically determined stresses (e.g., principal tensile stresses 
in the webs of girders) to admissible values. When calculating elastic stresses, it was usually 
implicitly assumed that the loading history was exactly known, and those structural systems were 
free from residual stresses and restraints. This hardly ever applies in the case of real structures, 
as pointed out by Melan (1938): “Da […] die Reihenfolge der Belastungen willkürlich zu sein 
pflegt, hat die Frage nach einem Spannungszustand bei einer bestimmten Belastung keinen Sinn 
{Since [(…] the sequence of loading is typically arbitrary, asking for the state of stress under a 
certain load does not make sense}”. Melan’s observation is particularly true for concrete struc-
tures, where the initial stresses caused by the restraint of imposed deformations (such as shrinkage 
strains), construction stages and other factors, are indeed largely unknown. In spite of this, ad-
missible stress design continued to be used until the second half of the 20th century. It was only 
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through the advent of the theory of plasticity that truss models and stress fields, and limit analysis 
methods in general, were given a solid theoretical basis, opening the way for their implementation 
in design codes. 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 2.1. Early design methods for concrete structures: (a) Ritter (1899), explanation of 
Hennebique’s construction system with a truss; (b) Mörsch (1908) , truss model and stress field; 

(c) Marcus (1932), load sharing among orthogonal strips in a slab; (d) Ingerslev (1923), 
equilibrium at the rigid parts of a failure mechanism in a slab. 
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(a) 

  
(b) 

 
 

 
Fig. 2.2. Graphic design of membrane elements: (a) Rosenblueth (1955), equilibrium using 

Mohr’s circles; (b) current compression field approaches. 

2.3 Limit analysis methods 

2.3.1 Theorems 

Limit analysis methods solve the intrinsic problem of admissible stress design: If sufficient duc-
tility is ensured, the ultimate load is independent of residual stresses and restraints. Assuming 
perfectly plastic behavior and postulating the principle of maximum dissipation energy (or, equiv-
alently, applying the theory of plastic potential, i.e., convexity of the yield condition and orthog-
onality of the plastic strain increments to the yield surface), the following theorems can be derived 
(wording extracted from Marti (2013)): 

The lower bound theorem: Every loading for which it is possible to specify a statically admissible 
stress state (i.e., a stress state satisfying equilibrium and static boundary conditions) that does not 
infringe the yield condition is not greater than the ultimate load. 

The upper bound theorem: Every loading that results from equating the work of external forces 
for a kinematically admissible deformation state with the associated dissipation work is not less 
than the limit load. 

The application of these theorems leads to the so-called static and kinematic methods of limit 
analysis, which define lower and upper bounds for the ultimate load, allowing it to be bracketed. 
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If the upper and lower bound coincide, the actual ultimate limit load is found. In this case it is 
neither necessary to verify the existence of a statically admissible stress state for the governing 
deformation state, nor to identify a kinematically admissible deformation state for the governing 
stress state; this is known as the compatibility theorem. 

Fig. 2.3. Examples of modern lower bound solutions of limit analysis: (a) Truss model and (b) 
corresponding, statically equivalent stress field; (c) Hillerborg’s strip method; (d) yield 

conditions for slab and membrane elements. Adapted from Marti et al. (1999). 

(a) 

 
(b) 

 

(c) 

 

(d) 
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2.3.2 Application to structural concrete 

In the second half of the last century, pioneers like Nielsen (1984) and Thürlimann et al. (1983) 
dared to apply the theory of plasticity to reinforced concrete. They were, of course, fully aware 
of the limited ductility of concrete and even reinforcement. Therefore, they completely neglected 
the tensile strength of concrete and addressed further concerns regarding ductility by providing 
minimum reinforcement (to avoid its rupture at cracking) and using conservative limits for the 
effective concrete compressive strength, as well as upper limits for the reinforcement quantities 
and corresponding compression zone depths (to avoid brittle failures due to concrete crushing). 

Furthermore, they performed large-scale tests on structural elements to validate the results of 
limit analysis design, which was key to overcoming the initially fierce opposition that the pio-
neers of limit analysis were facing from many colleagues that were still advocating the use of the 
theory of elasticity. Later on, extensive investigations into the deformation capacity of structural 
concrete were carried out in order to determine the limits of applicability of limit analysis meth-
ods (e.g., Vecchio and Collins (1986), Sigrist (1995), Alvarez (1998), Kaufmann (1998), Marti 
et al. (1998), Hoang and Nielsen (1998)). The results of these investigations are partly reflected 
in current design codes, e.g. through limits for moment redistribution in hyperstatic girders, 
bounds for the inclination of compression struts or compressive stress bands and, in particular, 
detailed rules for the determination of effective concrete compressive strength.  

Fig. 2.4. Examples of modern upper bound limit solutions of limit analysis: (a)Yield line 
method; (b) failure mechanisms of beams and walls. Adapted from Marti et al. (1999). 

(a) 

 

(b) 
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Lower bound solutions (Fig. 2.3) provide a uniform basis for the safe design of concrete struc-
tures, and they often allow straightforward reinforcement design based on applied loads, includ-
ing the consistent dimensioning and detailing of reinforcement with respect to the overall flow of 
forces. These aspects make them suitable for application in engineering practice, and conse-
quently many provisions in modern design codes are based on lower bound limit analysis solu-
tions. While upper bound approaches (Fig. 2.4) have not reached the same level of acceptance in 
engineering practice, they are powerful tools for the strength assessment of existing structures 
(Marti et al. 1999). 

2.4 Strut-and-tie models and stress fields 

Strut-and-tie models and stress fields are popular tools in engineering practice because they yield 
direct insight into load-carrying behavior and allow the dimensioning of reinforcement according 
to practical considerations. They share a mechanical basis through plasticity theory and are con-
sistent with the lower bound theorem presented in the previous section. Hence, strut-and-tie mod-
els and stress fields typically result in conservative designs provided that sufficient deformation 
capacity is available. While they are commonly used for the design of discontinuity regions, they 
can essentially be applied for the dimensioning and detailing of any concrete region, and entire 
structures as well. 

 

Fig. 2.5. Examples of lower bound solutions for a T-beam with a post-tensioning cable: (a) 
Geometry and loads; (b) stress fields; (c) corresponding, statically equivalent strut-and-tie 

model. Figure adapted from Marti and Stoffel (1999). 

(b) 

(a) 

(c) 
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Fig. 2.3a, b and Fig. 2.5 show examples of statically equivalent stress fields and strut-and-tie 
models for beams with point loads and distributed loads, including a post-tensioning cable. In 
these examples, the dimensions are consistently linked to the concrete compressive strength for 
both the stress fields as well as the strut-and-tie models, which is a prerequisite to finding strict 
lower bound solutions. However, strictly linking the dimensions to the concrete strength may 
severely complicate calculations, as iterative procedures (or the solution of differential equations) 
are required to define the geometry. If concrete strut and node dimensions are only linked to the 
concrete compressive strength at selected, often obviously critical locations within the structure 
(as promoted, e.g., by Schlaich et al. (1987)), the design process is much simpler. While lacking 
the rigor of the strict solutions, this type of approach has certainly helped to popularize the equi-
librium-based analysis of discontinuity regions, as well as to extend their applicability to any kind 
of concrete region. In fact, simplified strut-and-tie models and stress fields strictly based on con-
crete compressive strength are best used as complementary tools when detailing concrete regions. 
Designers can typically start with simple strut-and-tie models of a structure and refine them when-
ever necessary by replacing the truss members with struts, ties, nodes, fans and arches with finite 
dimensions that respect the concrete compressive strength and the reinforcement layout, leading 
to stress fields. A detailed description of the basic elements of strut-and-tie models and stress 
fields can be found elsewhere (Marti 1985). 

Strut-and-tie models consider a rigid, ideally plastic behavior of the material, without any 
kinematic considerations. Hence, even when assigning approximate elastic stiffnesses to the 
struts and ties, serviceability criteria (deformations, crack widths, etc.) cannot be reliably verified 
by using these methods, and the verification of the ductility requirements can only be carried out 
based on empirical rules. Moreover, as these tools are typically applied as hand calculations, their 
use is tedious and time-consuming since iterations are required and several load cases need to be 
considered in real-life structures. All these drawbacks can be overcome when considering kine-
matic compatibility and assigning appropriate stiffness and ductility to the materials, as is per-
formed in the computer-aided stress field analysis presented in this book. 

2.5 Code provisions 

Strut-and-tie models are currently included in most design codes as a consistent tool for concrete 
detailing in general that is particularly suitable for use where a non-linear strain distribution ex-
ists. A brief summary based mainly on the provisions of ACI 318-14, EN 1992-1-1 and fib Model 
Code 2010 is given below. 

Ties 

The amount of reinforcement required in ties is typically designed neglecting concrete tensile 
strength and considering the design yield strength of the reinforcement: 

 yk
yd

s

f
f

γ
=  (2.1) 
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where fyk denotes the characteristic yield strength of the reinforcement and γs its safety coefficient. 

For ties representing the resultant of a tensile field with finite dimensions, the required rein-
forcement should be distributed over the entire tensile field. 

Struts 

The dimensioning of struts is carried out considering the effective concrete compressive strength 
as follows: 

 ,ck red c ck
cd

c c

f k f
f

⋅
= =

γ γ
 (2.2) 

where fck denotes the concrete cylinder characteristic strength, γc is the concrete safety coefficient 
and kc is a reduction factor that accounts for different phenomena, such as the softening effect of 
cracked concrete, the increase in concrete brittleness with strength, and long term loading effects. 

Table 2.1. Concrete compressive strength reduction factors for plastic analysis (kc) specified by 
different design codes for various states of stress. 

 
Undisturbed uni-
axial compression 

Tension normal to 
the direction of 

compression 

Tension oblique 
to the direction of 

compression 

 

   
EN 1992-1-1 
(fck=30 MPa) 
(fck=50 MPa) 

1.00 0.60·ν’ 

(0.53) 
(0.48) 

fib MC 2010 
(fck=30 MPa) 
(fck=50 MPa) 

1.00·ηfc 

(1.00) 
(0.84) 

0.75·ηfc 

(0.75) 
(0.63) 

0.55·ηfc 

(0.55) 
(0.46) 

SIA 262:2013 
(fck=30 MPa) 
(fck=50 MPa) 

1.00·ηfc 

(1.00) 
(0.84) 

0.80·ηfc 

(0.80) 
(0.67) 

0.55·ηfc 

(0.55) 
(0.46) 

EHE-08 1.00 0.70 0.60 
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The reduction of compressive strength is typically specified by design codes for different 
stress states with small variations depending on the compressive strength, as indicated in Table 
2.1. ACI 318-14 proposes a more complex classification to evaluate the softening level, which 
includes the presence or absence of a certain amount of transverse reinforcement. The application 
of these code provisions to real structures is challenging even for experienced designers, as some 
regions do not clearly fit the existing classifications. In this sense, it should be noted that some 
codes, e.g., EN 1992-1-1 , allow the use of alternative, more rigorous approaches. The Compati-
ble Stress Filed Method (CSFM) presented in this book is such an approach, as explained in the 
next chapter. 

Besides these provisions regarding the reduction factors for cracked concrete, design codes 
also allow the uniaxial concrete compressive strength to be increased when confinement condi-
tions can result in a triaxial compressive state. 

Nodal zones 

Just as with struts, the verification of nodal zones is code dependent. Design code provisions only 
cover simple cases concerning nodal areas. As an example, Fig. 2.6 illustrates the verification 
models included in EN 1992-1-1. 

 
(a) (b) (c) 

 
 

 

Fig. 2.6. Models for the verification of nodal zones according to EN 1992-1-1:  
(a) Compression node without ties; (b)-(c) compression-tension nodes with reinforcement 

provided in one and two directions, respectively. 

Further provisions 

Apart from the discussed verifications of the basic elements composing the models, additional 
guidelines usually need to be respected when conceiving stress fields and strut-and-tie models. 
These guidelines are specified in order to implicitly guarantee proper serviceability behavior and 
sufficient deformation capacity, which essentially are prerequisites for the application of plastic 
design methods like stress fields and strut-and-tie models. Among the guidelines which are typi-
cally specified are the following: 



14  |  COMPATIBLE STRESS FIELD DESIGN OF STRUCTURAL CONCRETE 

 

 Minimum reinforcement and detailing rules. 

 Minimum values for the angles between the struts and ties (e.g., according ACI 318-
14 at least 25º is required). 

 Reduced values for steel stresses compared to the design strength of the reinforce-
ment used for strength verifications (e.g., in EHE-08 a maximum stress of 400 MPa 
is specified, while for conventional European reinforcement with fyk=500 MPa the 
design yield strength is typically 435 MPa). 

 In order to limit the amount of plastic redistribution required, stress fields should not 
differ excessively from the cracked-elastic or uncracked stress field. 

While it is recommended that these guidelines be followed, it should be noted that they are 
somewhat arbitrary and based mainly on empirical observations. More importantly, they (i) do 
not always guarantee proper serviceability behavior (as in the case of, e.g., dapped-end beams, 
as reported by Mata-Falcón (2015)) and (ii) are not applicable to innovative materials with dif-
ferent properties from conventional concrete and reinforcement. 

When kinematic compatibility is introduced to these models, and the stiffness and ductility of 
the materials are defined by means of mechanically consistent models, these issues are solved, as 
serviceability aspects and deformation capacity can be directly verified. Such a model is pre-
sented in the following chapter.
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3 The Compatible Stress Field Method 

3.1 Scope of the method 

This chapter presents the principles of the Compatible Stress Field Method (also referred to here-
inafter as the CSFM), a method for computer-aided stress field design that allows the automatic 
design and assessment of structural concrete members subjected to in-plane loading, i.e., beams, 
walls and, in particular, discontinuity regions.  

The method consists of a compatible, FE-based stress field analysis. The classic stress field 
solutions discussed in Chapter 2 are complemented with kinematic considerations, i.e., the state 
of strain is evaluated throughout the structure. Hence, the effective compressive strength of con-
crete (see Section 2.5) can be automatically computed based on the state of transverse strain in a 
similar manner as in compression field analyses that account for compression softening (Vecchio 
and Collins 1986; Kaufmann and Marti 1998), or the EPSF method (Fernández Ruiz and Muttoni 
2007). Moreover, the CSFM considers tension stiffening, providing realistic stiffnesses to the 
elements and covering all design code prescriptions (including serviceability and deformation 
capacity aspects), which are not consistently addressed by previous approaches. As will be de-
scribed in Section 3.3, the CSFM uses exclusively common uniaxial constitutive laws provided 
by design standards for concrete and reinforcement. These are known at the design stage, which 
allows the partial safety factor method to be used. Hence, designers do not have to provide addi-
tional, often arbitrary material properties as are typically required for nonlinear FE-analyses, 
making the method perfectly suitable for engineering practice. 

To foster the use of computer-aided stress fields by structural engineers, these methods need 
to be implemented in user-friendly software environments. To this end, the CSFM has been ap-
plied in IDEA StatiCa Detail, a new user-friendly software tool developed jointly by ETH Zurich 
and the software company IDEA StatiCa within the DR-Design Eurostars-10571 project. In the 
program, the geometry and loading of the region of interest can be defined by itself (standalone 
use) or imported from other programs (e.g., frame corners from a frame analysis). Subsequently, 
users can specify the reinforcement layout based on experience or by making use of linear elastic 
stress trajectories and a topology optimization algorithm, both of which are implemented in the 
program as support tools (see Section 3.4.2). In the next step, the program adjusts the amounts of 
reinforcement that the user wants to be dimensioned, following the procedure described in Sec-
tion 3.4. The last step comprises the verification process (see Section 3.4.3), where the program 
performs ultimate limit state (ULS) and serviceability limit state (SLS) analyses for the different 
load combinations, carrying out all required checks, including deformations and crack widths.  

The details of the implementation of the CSFM into IDEA StatiCa Detail software are given 
in Section 3.6, which also provides additional details regarding the constitutive relationships for 
anchorage length verifications that were preliminarily introduced in Section 3.3. 
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3.2 Main assumptions and limitations 

The CSFM assumes fictitious, rotating, stress-free cracks that open without slip (see Fig. 3.1a) 
and considers the equilibrium at the cracks together with the average strains of the reinforcement. 
Hence, the model considers maximum concrete (σc3r) and reinforcement stresses (σsr) at the 
cracks while neglecting the concrete tensile strength (σc1r = 0), except for its stiffening effect on 
the reinforcement. The consideration of tension stiffening allows the average reinforcement 
strains (εm), and hence the overall stiffness, to be realistically captured. 

According to the assumptions of the model, the principal directions of stresses and strains 
coincide, and the behavior of the principal directions in the cracked state is decoupled except for 
the compression softening effect (see Section 2.5). This justifies the use of the simple uniaxial 
laws presented in the following sections. 

In spite of their simplicity, similar assumptions have been demonstrated to yield accurate pre-
dictions for reinforced members subjected to in-plane loading (Kaufmann 1998; Kaufmann and 
Marti 1998) if the provided reinforcement avoids brittle failures at cracking. Furthermore, ne-
glecting any contribution of the tensile strength of concrete to the ultimate load is consistent with 
the principles of modern design codes. 

 

Fig. 3.1 Basic assumptions of the CSFM: (a) Principal stresses in concrete; (b) stresses in the 
reinforcement direction; (c) stress-strain diagram of concrete in terms of maximum stresses 
with consideration of compression softening (for ε1>0 and ε3<0); (d) stress-strain diagram of 

reinforcement in terms of stresses at cracks and average strains; (e) compression softening law; 
(f) bond shear stress-slip relationship for anchorage length verifications. 
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However, the method is not suited for slender elements without transverse reinforcement, 
since relevant mechanisms for such elements as aggregate interlock, residual tensile stresses at 
the crack tip and dowel action – all of them relying directly or indirectly on the tensile strength 
of the concrete – are disregarded. While some design standards allow the design of such elements 
based on semi-empirical provisions, the CSFM is not intended for this type of potentially brittle 
structure. 

3.3 Constitutive models 

3.3.1 Concrete 

The concrete model implemented in the CSFM is based on the uniaxial compression constitutive 
laws prescribed by design codes for the design of cross-sections, which only depend on the con-
crete compressive strength. The parabola-rectangle diagram specified EN 1992-1-1 (Fig. 3.1c) is 
used by default in the CSFM, but designers can also choose a more simplified elastic-ideally 
plastic relationship. As previously mentioned, the tensile strength is neglected, as it is in classic 
reinforced concrete design. 

The effective compressive strength is automatically evaluated for cracked concrete based on 
the principal tensile strain (ε1) by means of the kc2 reduction factor, as shown in Fig. 3.1c-e. The 
implemented reduction relationship (Fig. 3.1e) is a generalization of the fib Model Code 2010 
proposal for shear verifications, which contains a limiting value of 0.65 for the maximum ratio 
of effective concrete strength to concrete compressive strength, which is not applicable to other 
loading cases. This compression softening law is consistent with the main assumptions (see sec-
tion 3.2) since it is also derived in terms of maximum stresses at the cracks. As outlined in Kauf-
mann et al. (2018), the reduction of the concrete compressive strength derived in terms of average 
stresses (i.e., accounting for the contribution of concrete tensile stresses to the strength), as is 
found in, e.g., the Modified Compression Field Theory (MCFT) by Vecchio and Collins (1986) 
(Fig. 3.1e), may be excessive when applied to models such as the CSFM, which consider maxi-
mum stresses at cracks (i.e., without any contribution from concrete in tension). 

Using default settings, the current implementation of the CSFM in IDEA StatiCa Detail does 
not consider an explicit failure criterion in terms of strains for concrete in compression (i.e., it 
considers a quasi-infinitely plastic branch after the peak stress is reached, which has a very large 
strain limit to merely ensure numerical stability, as described in Section 3.6.7). This simplifica-
tion does not allow the deformation capacity of structures failing in compression to be verified. 
However, their ultimate capacity is properly predicted when, in addition to the factor of cracked 
concrete (kc2 defined in Fig. 3.1e), the increase in the brittleness of concrete as its strength rises 
is considered by means of the ηfc reduction factor defined in fib Model Code 2010 as follows: 
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where kc is the global reduction factor of the compressive strength, kc2 is the reduction factor due 
to the presence of transverse cracking and fck is the concrete cylinder characteristic strength (in 
MPa for the definition of ηfc). Note that the use of this approach is consistent with classical strut-
and-tie models, where the effective compressive strength of the concrete is limited according to 
Eq. (3.1) without any consideration of deformations, i.e., allowing arbitrary, potentially very large 
strains in the struts and ties. 

Alternatively, an explicit concrete compression check, defined by the ultimate strain limit 
allowed by design codes (εcu2), can be set. In this case, the CSFM directly verifies the deformation 
capacity for structures failing in compression, and the use of a ηfc coefficient is not required. To 
prevent the strains from exhibiting local mesh size dependency, the strain limit should be imposed 
on an average strain calculated over a characteristic crushing band length. The characteristic 
crushing band length has to be set by the user, but a small value lying between the depth of the 
compression zone and the thickness of the section is recommended. In IDEA StatiCa Detail 9.1 
only advanced users can use this alternative approach, which involves manually defining the 
characteristic crushing band length in which the program should average the strains. The verifi-
cations presented in Chapters 4 and 5 were carried out considering an infinite plastic branch of 
concrete in compression, while in all the verifications of Chapter 6 a strain limit εcu2 = 3.5‰ was 
imposed over a crushing length equal to the thickness of the region. 

It should be noted that the concrete model used in serviceability analysis differs from that pre-
sented above (used for ultimate limit state), which enables it to consider the effect of long-term ac-
tions. The particularities of the model for serviceability verifications will be given in Section 3.5.3. 

3.3.2 Reinforcement 

By default, the idealized bilinear stress-strain diagram for the bare reinforcing bars typically de-
fined by design codes (Fig. 3.1d) is considered. The definition of this diagram only requires basic 
properties of the reinforcement to be known during the design phase (strength and ductility class). 
Whenever known, the actual stress-strain relationship of the reinforcement (hot-rolled, cold-
worked, quenched and self-tempered, …) can be considered. While an elastic-ideally plastic for-
mulation (as used in the EPSF method) could also be used, this would not allow the deformation 
capacity to be verified due to the lack of explicit failure criteria. 

Tension stiffening is accounted for by modifying the input stress-strain relationship of the 
bare reinforcing bar in order to capture the average stiffness of the bars embedded in the concrete 
(εm). The implementation of tension stiffening will be discussed in Section 3.3.4. 

3.3.3 Verification of anchorage length 

Bond-slip between reinforcement and concrete is introduced in the finite element model for ulti-
mate limit state load cases by considering the simplified rigid-perfectly plastic constitutive rela-
tionship presented in Fig. 3.1f, with fbd being the design value of the ultimate bond stress specified 
by the design code for the specific bond conditions. The details of the constitutive relationship 
that ensures the numerical stability of this model will be presented in Section 3.6.5. This is a 
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simplified model with the sole purpose of verifying bond prescriptions according to design codes 
(i.e., anchorage of reinforcement). The reduction of the anchorage length when using hooks, 
loops, and similar bar shapes can be considered by defining a certain capacity at the end of the 
reinforcement, as will be described in Section 3.6.5. It should be noted that a different bond shear 
stress-slip model is considered for tension stiffening (Section 3.3.4) and crack width calculations 
(Section 3.5). In such cases, the model considers average bond shear stresses instead of charac-
teristic values in order to capture the average behavior of the elements. 

3.3.4 Tension stiffening 

The implementation of tension stiffening distinguishes between cases of stabilized and non-sta-
bilized crack patterns. In both cases, the concrete is considered fully cracked before loading by 
default, but the initial uncracked stiffness can be taken into account for research purposes. 

 

Fig. 3.2 Tension stiffening model: (a) Tension chord element for stabilized cracking with the 
distribution of bond shear, steel and concrete stresses, and steel strains between cracks, 

considering average crack spacing (λ=0.67); (b) pull-out assumption for non-stabilized cracking 
with the distribution of bond shear and steel stresses and strains around the crack; (c) resulting 
tension chord behavior in terms of reinforcement stresses at the cracks and average strains for 

European B500B steel; (d) detail of the initial branches of the tension chord response. 

Stabilized cracking 

In fully developed crack patterns, tension stiffening is introduced using the Tension Chord Model 
(TCM) (Marti et al. 1998; Alvarez 1998) – Fig. 3.2a – which has been shown to yield excellent 
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response predictions in spite of its simplicity (Burns 2012). The TCM assumes a stepped, rigid-
perfectly plastic bond shear stress-slip relationship with τb = τb0 =2 fctm for σs ≤ fy and τb =τb1 = fctm 
for σs > fy. Treating every reinforcing bar as a tension chord – Fig. 3.1b and Fig. 3.2a – the distri-
bution of bond shear, steel and concrete stresses and hence the strain distribution between two 
cracks can be determined for any given value of the maximum steel stresses (or strains) at the 
cracks by equilibrium. Limiting σc1 to a maximum value of fct at the center between two cracks, 
the theoretical maximum value of the crack spacing of the chord, sr0, can be calculated as follows: 
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 (3.2) 

where Ø is the bar diameter and ρeff is the effective amount of reinforcement of the tension chord, 
calculated based on the procedure described in Fig. 3.3. 

For sr = sr0, a new crack may or may not form because at the center between two cracks σc1 = fct. 
Consequently, the crack spacing may vary by a factor of two, i.e., sr = λ sr0, with λ = 0.5…1.0. 
Assuming a certain value for λ, the average strain of the chord (εm) can be expressed as a function 
of the maximum reinforcement stresses (i.e., stresses at the cracks, σsr). For the idealized bilinear 
stress-strain diagram for the reinforcing bare bars considered by default in the CSFM, the follow-
ing closed form analytical expressions are obtained (Marti et al. 1998): 
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 (3.3) 

where Esh = (ft – fy)/(εu – fy /Es) is the steel hardening modulus. 

The IDEA StatiCa Detail implementation of the CSFM considers average crack spacing by 
default when performing computer-aided stress field analysis. The average crack spacing is con-
sidered to be 2/3 of the maximum crack spacing (λ = 0.67), which follows recommendations made 
on the basis of bending and tension tests (Broms 1965; Beeby 1979; Meier 1983). It should be 
noted that calculations of crack widths consider a maximum crack spacing (λ = 1.0) in order to 
obtain conservative values, as will be discussed in Section 3.5. 

The application of the TCM depends on the reinforcement ratio and hence, the assignment of 
an appropriate concrete area acting in tension between the cracks to each reinforcing bar is cru-
cial. It is not straightforward to determine the proper concrete area manually, and such an ap-
proach is also somewhat arbitrary in elements with complex geometries. To this end, an automatic 
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numerical procedure has been developed to define the corresponding effective reinforcement ra-
tio (ρeff) for any configuration, including skewed reinforcement. A detailed description of this 
procedure is beyond the scope of this document, but the basic method is illustrated in Fig. 3.3. It 
consists of the following steps: (i) definition of the maximum area of concrete that each reinforc-
ing bar can activate in tension when activated to fct (Fig. 3.3a); (ii) verification of the symmetry 
condition of the tensile concrete stresses caused by each reinforcing bar considering the interac-
tion with adjacent bars (as described in Fig. 3.3b); (iii) preliminary assignment of an effective 
concrete area to each reinforcing bar based on steps (i) and (ii), combined with simple geometric 
conditions (Fig. 3.3c); and (iv) redistribution of the concrete area among proximate, parallel re-
inforcing bars in order to ensure the same crack spacing for these bars. Assuming a uniform stress 
fct throughout the activated concrete area, the diameter of the maximum area of concrete in tension 
(Øc,eff) required in the first step follows from equilibrium: 

 ,
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c eff
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where Ø = bar diameter. 

 

Fig. 3.3 Effective area of concrete in tension for stabilized cracking: (a) Maximum concrete 
area that can be activated; (b) cover and global symmetry condition; (c) resultant effective area. 

Note that the condition of identical crack spacing for proximate bars (100 mm of distance 
being considered the threshold value by default), which approximately corresponds to the assign-
ment of a constant ratio Ø/ρeff  to proximate parallel bars (see Eq. (3.2)), allows the introduction 
of a clear, mechanically based criterion to the calculation of ρeff. While this condition is currently 
imposed separately on the different reinforcing directions, there is considerable potential for gen-
eralizing it to ensure the compatibility of the crack spacing between all the reinforcing bars in the 
model for each point of the structure. This problem has already been solved (Kaufmann 1998; 
Kaufmann and Marti 1998; Seelhofer 2010) for the particular case of homogenously reinforced 
membrane elements. However, these available mechanical models are not directly applicable to 
the general problems addressed by the CSFM. 

4 4

3
1

3
2 1

4 4

3
1

3
2 1

Area
neglected

Area
considered

Not
affected

Ø = ·Øc,eff k

4 4

3
1

3
2 1

(a) (b) (c)



22  |  COMPATIBLE STRESS FIELD DESIGN OF STRUCTURAL CONCRETE 

Non-stabilized cracking 

Cracks in regions with geometric reinforcement ratios lower than ρcr, i.e., below the minimum 
reinforcement amount for which the reinforcement is locally able to carry the cracking load with-
out yielding, lead to brittle failures at cracking unless their opening (i.e., the strains in the corre-
sponding region) is controlled by reinforcement in adjoining parts of the structure. The value of 
this minimum reinforcement is: 
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where fy = reinforcement yield strength; fct = concrete tensile strength; and n = Es / Ec = modular 
ratio. For conventional concrete and reinforcing steel, ρcr amounts to approximately 0.6%. 

For stirrups with reinforcement ratios below ρcr – which is frequently the case – cracking is 
considered to be non-stabilized and tension stiffening is implemented by means of the Pull-Out 
Model (POM) described in Fig. 3.2b. This model analyzes the behavior of a single crack by (i) 
considering no mechanical interaction between separate cracks; (ii) neglecting the deformability 
of concrete in tension; and (iii) assuming the same stepped, rigid-perfectly plastic bond shear 
stress-slip relationship used by the TCM. This allows the reinforcement strain distribution (εs) in 
the vicinity of the crack to be obtained for any maximum steel stress at the crack (σsr) directly from 
equilibrium. Given the fact that the crack spacing is unknown for a non-fully developed crack 
pattern, the average strain (εm) is computed for any load level over the distance between points 
with zero slip when the reinforcing bar reaches its tensile strength (ft) at the crack (lε,avg in Fig. 
3.2b), leading to the following relationships: 

 ( )

2 1

0

1

0

2

1

0

1

0

                            for  
2 1

1
2 2

     for  
1

b
sr

b
m sr y

b
s t y

b

sr yy b
sr y

s b sh
m sr y

b
t y

b

f
E f f

ff
f

E E
f

f f

τ
σ ⋅

τ
ε = σ ≤

  τ
⋅ + −  τ  

σ −  τ
σ + − +  τ  ε = σ >

 τ
+ − τ 

 (3.6) 

where Esh = (ft – fy)/(εu – fy /Es) is the steel hardening modulus. 

The proposed models allow the computation of the behavior of bonded reinforcement, which 
is finally considered in the analysis. This behavior (including tension stiffening) for the most 
common European reinforcing steel (B500B, with ft / fy = 1.08 and εu = 5%) is illustrated in Fig. 
3.2c-d. It can be observed that the consideration of tension stiffening does not affect the strength 
of the reinforcement, but increases its stiffness and significantly reduces its ductility. Still, tension 
stiffening might indirectly affect ultimate loads in certain cases, either negatively or positively: 
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(i) The reduction of the ductility of the reinforcement may limit the strength of members with 
low amounts of transverse reinforcement, as will be discussed in Chapter 6; and (ii) the higher 
stiffness due to tension stiffening results in lower transverse tensile strains imposed on the con-
crete in compression and hence, a less pronounced reduction in the concrete compressive strength, 
along with correspondingly higher ultimate loads in members where concrete crushing is govern-
ing. 

3.4 Reinforcement design 

3.4.1 Workflow and goals 

The goal of reinforcement design tools in the CSFM is to help designers determine the location 
and required amount of reinforcing bars efficiently. The following tools are available to help/ 
guide the user in this process: linear calculation, topology optimization, and area optimization. 

As will be described below, these reinforcement design tools consider more simplified con-
stitutive models than the models described in Section 3.3, which are used for the final verification 
of the structure. Therefore, the definition of the reinforcement in this step should be considered a 
pre-design to be confirmed and/or refined during the final verification step (see Section 3.5). The 
use of the different reinforcement design tools will be illustrated using the model shown in Fig. 
3.4, which consists of one end of a simply supported beam with variable depth, subjected to a 
uniformly distributed load. 

 

Fig. 3.4 Model used to illustrate the use of reinforcement design tools. 
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3.4.2 Reinforcement locations  

For regions where the reinforcement layout is not known beforehand, there are two methods 
available in the CSFM to help the user determine the optimum location of reinforcing bars: linear 
analysis and topology optimization. Both tools provide an overview of the location of tensile 
forces in the uncracked region for a certain load case. While it is considered good practice to 
place reinforcement close to the location of tensile forces to reduce the amount of reinforcement 
and required plastic redistributions (as previously proposed by Schlaich et al. (1987)), designers 
must interpret the results of these design tools and provide reinforcement layouts that also take 
into account other constraints (e.g. construction requirements). For instance, these tools typically 
provide diagonal tensile forces (e.g. to carry shear forces) but this inclined force might be typi-
cally resisted by a truss mechanism with orthogonal reinforcement.  

Linear analysis 

Linear analysis considers linear elastic material properties and neglects reinforcement as well as 
differences between concrete behavior in compression and tension. It is, therefore, a very fast 
calculation that provides a first insight into the locations of tension and compression areas. An 
example of such a calculation is shown in Fig. 3.5. 

 

Fig. 3.5 Results from the linear analysis tool for defining reinforcement layout  
(red: areas in compression, blue: areas in tension). 

Topology optimization 

Topology optimization is a method that aims to find the optimal distribution of material in a given 
volume for a certain load configuration. With this method, a given percentage of the volume is 
filled with material and the rest stays empty. This is achieved by iteratively redistributing the 
material inside the given volume until the optimal distribution (a shape inside the original vol-
ume) is found. 

The topology optimization implemented in IDEA StatiCa Detail uses a linear finite element 
model. Each finite element may have a relative density from 0 to 100 %, representing the relative 
amount of material used. These element densities are the optimization parameters in the optimi-
zation problem. 
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The resulting material distribution is considered optimal for the given set of loads if it mini-
mizes the total strain energy of the system that, since linear elastic behavior is considered, is equal 
to the complementary energy. By definition, the optimal distribution is thus also the geometry 
that has the largest possible stiffness for the given loads. 

The iterative optimization process starts with a homogeneous density distribution. In every 
iteration, the material is then redistributed slightly inside the given volume by changing the den-
sities of individual elements in order for the total strain energy to be decreased. This is done until 
the change in strain energy between iterations is small enough. The calculation is performed for 
multiple total volume fractions (20%, 40%, 60% and 80%), which allows the user to select the 
most practical result, as proposed by Konečný et al. (2017). 

The resulting shape consists of trusses with struts and ties and represents the optimum shape 
for the given load cases (Fig. 3.6). Of course, it is often not practical or economical to place 
reinforcing bars exactly within the proposed ties via topology optimization, so the designer must 
also take into account practical considerations when positioning reinforcement.  

 

Fig. 3.6 Results from the topology optimization design tool with 20% and 40% effective 
volume (red: areas in compression, blue: areas in tension). 

3.4.3 Amount of reinforcement 

Overview 

Once the layout of the reinforcing bars has been defined, the required areas must be determined. 
While topology optimization (Section 3.4.2) provides an insight into the relative amounts of re-
inforcement required in the different regions of the member (i.e., the thickness of ties is propor-
tional to tension force and therefore to the required area), this information is only qualitative and 
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does not take into account the reinforcement location chosen by the designer. Hence, the CSFM 
has been extended to include a tool called ‘rebar optimization’ (first released in IDEA StatiCa 
Detail 10.0) that helps the user with the dimensioning of the reinforcement, i.e., the determination 
of reinforcement areas in terms of the number of bars and their diameters. 

In the area optimization tool, the user first defines the bars for which the required area should 
be designed (in the case that not all the bars are to be optimized). Selected bars can be grouped 
for the optimization, meaning that the resulting area will be constant for each bar in that group. 
A simplified version of the compatible stress field analysis presented in Sections 3.2 and 3.3 is 
then used to iteratively load the structure, find the stresses in the reinforcements and adjust their 
areas to minimize the overall volume of reinforcement. The required reinforcement areas given 
by the optimization are presented to the user (Fig. 3.7), who can then adjust the number and 
diameters of bars in order to ensure that the available reinforcement area is higher than the re-
quired area. In many cases, using the area optimization tool can reduce the amount of reinforce-
ment used in the structure significantly without affecting its loading capacity. 

 

Fig. 3.7 Results from the area optimization design tool for longitudinal reinforcement: total 
required area, the required number of bars for the selected diameter, and the ratio between the 

required area and current area for the selected diameter. 

Definition of the optimization problem 

The aim of good reinforcement design is to minimize the overall volume of reinforcement (using 
a practical layout defined by the user, as described in Section 3.4.2) whilst keeping the structure 
in a state that is likely to satisfy all verification requirements (as will be defined in Section 3.5). 
However, it is necessary to prevent the optimization problem from being over-constrained, so it 
is convenient to only choose reinforcing bar stresses as constraints. This results in a relatively 
simple optimization problem which is easy to solve if a suitable algorithm is used. 

This described optimization problem can be expressed as follows: 
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subject to: 
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 ,s j tfσ ≤  (3.8) 

where ls,i is the length of the i-th reinforcing bar, As,i is the area of the i-th reinforcing bar, σs,j is 
the stress on the  j-th reinforcing bar and ft is the tensile strength of the reinforcement. 

Optimization algorithm 

In the algorithm used in the ‘area optimization’ tool (Fig. 3.8), the gradient of the cost function 
(the total reinforcement volume) with respect to the reinforcing bar section areas is calculated 
first. The value of this gradient is constant and does not need to be updated further on. Then, an 
FE analysis is computed for all the given load cases. The results of each load case may be differ-
ent, and therefore the constraint function values (steel stresses) are evaluated for all the load cases, 
and their gradients with respect to section areas are calculated. The values from all the load cases 
are then combined and serve as an input for the linear programming problem. 

 

Fig. 3.8 Simplified flowchart depicting reinforcement area optimization. 
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The problem is solved using the simplex method, which yields new section areas that are 
subsequently updated in the FE-analysis. This whole process is then repeated with the updated 
values until convergence is reached (i.e., the overall volume of reinforcement has been mini-
mized). 

A higher-order optimization subproblem could possibly be used instead of the linear program-
ming problem described above. However, using appropriate settings, approximation via a linear 
problem has been shown to behave sufficiently well while offering the important advantages of 
simpler implementation and the robustness and speed of the simplex algorithm. 

Note that the above description of the optimization is simplified. Additional logic had to be 
included in the algorithm in order to deal with cycling, non-convergence, etc. in particular. How-
ever, a more detailed description is beyond the scope of this document. 

Constitutive model 

As already stated, the FE analysis used in the reinforcement optimization tool contains simplifi-
cations in comparison to the constitutive model of the CSFM presented in Section 3.3, which is 
used to perform the final verifications (as discussed in Section 3.5). The simplifications are: 

 Tension stiffening in reinforcing bars is neglected, as it can only be computed when 
the amount of reinforcement and the diameters are defined. 

 The anchorage length is not verified; instead, the bars are connected directly to the 
concrete mesh by multi-point constraint elements. 

 The compression softening effect in concrete is neglected. 

These simplifications reduce the non-linearity of the FE analysis and smooth the optimization 
problem. This approach is justified since the design of the required reinforcement areas is often 
rather insensitive to the considered simplifications and the user will later perform a final verifi-
cation step (see Section 3.5) without these simplifications. 

Interpretation of results 

Once the optimized (required) areas have been estimated, the results are presented to the user. 
The interpretation of the results for longitudinal bars (see Fig. 3.7) includes the required number 
of bars for the selected diameter and the ratio between the required area and current area. 

For the case of stirrups, the required areas are presented in different zones, which are gener-
ated automatically from the spacing of the stirrups and limited by a predefined maximum length. 
The required and current areas of the stirrups in individual zones are displayed as areas per length. 
The presentation for each zone includes the required number of stirrups (considering the de-
signer’s selected diameter and number of branches) as well as the resultant stirrup spacing in 
order to provide the exact statically required number of stirrups and ratio between the required 
area and current area. 
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3.5 Verification of the structural element 

After the location and amount of reinforcement has been perfectly defined (either because it was 
known beforehand or because it has been defined using the aforementioned reinforcement design 
tools, see Section 3.4), the structural element has to be verified using Compatible Stress Fields, 
as described in Sections 3.2 and 3.3. It should be noted that two different analyses are performed: 
one for serviceability, and one for ultimate limit state load combinations. The serviceability anal-
ysis assumes that the ultimate behavior of the element is satisfactory and the yield conditions of 
the material will not be reached at serviceability load levels. This enables the use of simplified 
constitutive models for serviceability analysis (the simplifications with respect to the general 
models shown in Section 3.3 are given in Section 3.5.3) to enhance numerical stability and cal-
culation speed, though this requires designers to disregard the serviceability analysis if the ulti-
mate limit state verifications are not fulfilled. Therefore, it is recommended to use the workflow 
presented below, in which the ultimate limit state analysis is carried out as the first step. 

3.5.1 Safety format factor 

As outlined in Sections 3.1, 3.2 and 3.3, the CSFM is compliant with modern design codes. As 
the calculation models only use standard material properties, the partial safety factor format pre-
scribed in the design codes can be applied without any adaptation. In this way, the input loads are 
factored and the characteristic material properties are reduced using the respective safety coeffi-
cients prescribed in design codes, exactly as in conventional concrete analysis and design. 

By using appropriate user-defined combinations of partial safety factors, users can also com-
pute with the CSFM using the global resistance factor method (Navrátil et al. 2017), but this 
approach is hardly ever used in design practice. Some guidelines recommend using the global 
resistance factor method for non-linear analysis. Indeed, the use of the global resistance factor 
method might allow the failure mode of the structural element to be predicted more accurately. 
However, in simplified non-linear analyses (such as the CSFM), which only require those mate-
rial properties that are used in conventional hand calculations, most designers will prefer to use 
the partial safety format to ensure consistency with standard verifications. 

3.5.2 Ultimate limit state analysis 

To ensure a structural element has an efficient design, it is highly recommended that a preliminary 
analysis be run, which takes into account the following steps: 

 Choose a selection of the most critical load combinations. 

 Calculate only ultimate limit state load combinations. 

 Deactivate the bond model used to verify the anchorage length. 

 Use a coarse mesh (by increasing the multiplier of the default mesh size). 
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Such a model will calculate very quickly, allowing designers to review the detailing of the 
structural element efficiently and re-run the analysis until all verification requirements are ful-
filled for the most critical load combinations. As stated in Section 3.4, the result obtained from 
the reinforcement design tools should be considered merely a pre-design, and this might need to 
be adapted in this step. Once all the verification requirements of this preliminary analysis are 
fulfilled, it is suggested that the full set of ultimate load combinations be included, activating the 
verification of the anchorage length and using a finer mesh size (the mesh size recommended by 
the program). As the last step of the ultimate limit state analysis, the mesh size sensitivity of the 
results should be checked (though the model generally has a reduced mesh size sensitivity, as will 
be shown in Chapters 4 and 1 for some examples).  

3.5.3 Serviceability limit state analysis 

The serviceability analysis contains certain simplifications of the constitutive models presented 
in Section 3.3, which are used for ultimate limit state analysis. Namely, a perfect bond is assumed, 
i.e., the anchorage length is not verified at serviceability. Furthermore, the plastic branch of the 
stress-strain curve of concrete in compression is disregarded. These simplifications enhance the 
numerical stability and calculation speed and do not reduce the generality of the solution as long 
as the resulting material stress limits at serviceability are clearly below their yielding points (as 
required by standards). Therefore, the simplified models used for serviceability are only valid if 
all verification requirements are fulfilled. 

Long term effects 

In serviceability analysis, the long-term effects of concrete (creep, shrinkage, and aging of con-
crete) are considered using an effective infinite creep coefficient (φ, using a value of 2.5 by de-
fault) which modifies the secant modulus of elasticity of concrete (Ecm) as follows: 

 , 1
cm

c eff
E

E
ϕ

=
+

 (3.9) 

When considering long-term effects, a load step with all permanent loads is first calculated 
considering the creep coefficient (i.e., using the effective modulus of elasticity of concrete, Ec,eff) 
and subsequently, the additional loads are calculated without the creep coefficient (i.e., using 
Ecm). For short-term verifications, an additional separate calculation is performed in which all 
loads are calculated without the creep coefficient. Both calculations for long and short-term ver-
ifications are depicted in Fig. 3.9. 
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Fig. 3.9 Concrete stress-strain diagrams implemented for serviceability analysis: short- and 
long-term verifications. 

Crack width calculation 

The calculation of crack widths is up to now still a controversial topic. Various codes and litera-
ture provide a number of different approaches to its modeling, prediction, and design. It should 
be noted that the behavior of concrete in tension and the cracking behavior itself is imposed to 
numerous insecurities, such as e.g. environmental conditions, concreting process, curing, shrink-
age, creep, deformational restrictions, which are typically not included in the models to calculate 
crack widths. In spite of these uncertainties, the herein proposed approach, which is based on the 
Tension Chord Model has proven its soundness in various experimental validations (Burns 2012) 
in spite of its simplicity. 

While the CSFM yields a direct result for most verifications (e.g. member capacity, deflec-
tions…), crack width results are calculated from the reinforcement strain results directly provided 
by FE analysis following the methodology described in Fig. 3.10. A crack kinematic without 
sliding (pure crack opening) is considered (Fig. 3.10a), which is consistent with the main assump-
tions of the model (section 3.2). The principal directions of stresses and strains define the incli-
nation of the cracks (θr = θσ= θε). According to Fig. 3.10b, the crack width (w) can be projected 
in the direction of the reinforcing bar (wb), leading to: 
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where θb is the bar inclination. 
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Fig. 3.10 Crack width calculation: (a) Considered crack kinematics; (b) projection of crack 

kinematics into the principal directions of the reinforcing bar; (c) crack width in the direction of 

the reinforcing bar for stabilized cracking; (d) cases with local non-stabilized cracking 

regardless of the reinforcement amount; (e) crack width in the direction of the reinforcing bar 

for non-stabilized cracking. 

The component wb is consistently calculated based on the tension stiffening models presented 

in Section 3.3.4 by integrating the reinforcement strains. For those regions with fully developed 

crack patterns (see Section 3.3.4), the calculated average strains (m) along the reinforcing bars 

are directly integrated along the crack spacing (sr) as indicated in Fig. 3.10c, leading to: 
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Note that the effect of tension stiffening is included in the average strains (m), which were 

calculated considering an average crack spacing (λ = 0.67) as outlined in Section 3.3.4, thereby 

accounting for the average effect of tension stiffening on all results. On the other hand, in order 

to obtain safe values for the crack widths, a value of λ = 1.0 (maximum theoretical crack spacing) 

is used for the crack width calculations. Hence, in Eq. (3.11) crack spacings sr are calculated 

using λ = 1.0, and the strains obtained from the calculation (using λ = 0.67) are multiplied by a 
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For the case of tension stiffening assuming non-stabilized cracking (currently implemented 
for stirrups with geometric reinforcement ratios below ρcr), the crack width wb is calculated ac-
cording to the procedure illustrated in Fig. 3.10c based on the results of maximum stresses in the 
reinforcement (σsr), which in this case are more reliable than the average strains. This procedure 
is also applied to the calculation of crack widths in re-entrant corners with opening moments (Fig. 
3.10d), regardless of the fact that the tension stiffening model in the adjacent bars assumes stabi-
lized or non-stabilized cracking since the diagonal crack at these corners behaves mainly as a 
non-stabilized crack for service loads (Mata-Falcón 2015). 

3.6 Finite element implementation 

3.6.1 Introduction 

The CSFM considers continuous stress fields in the concrete (2D finite elements), complemented 
by discrete tension ties representing the reinforcement (1D finite elements). Therefore, the rein-
forcement is not diffusely embedded into the concrete 2D finite elements, but explicitly modeled 
and connected to them. A plane stress state is considered in the calculation model. It should be 
noted that while IDEA StatiCa Detail provides different templates for defining the structure (wall, 
beam…), the FE model (for the same geometry) will be identical, irrespective of the template. 

Several components are used to create the nonlinear finite element analysis model. There are 
several types of finite elements used to model concrete, reinforcement, and the bond between 
them, which are described in Section 3.6.5. Moreover, Section 3.6.2 presents existing models for 
modeling supports and to transfer loads. The geometric properties of the model are generated 
based on the user-defined structural member. As described in Section 3.6.3, some geometric mod-
ifications are done for the case of haunched cross-sections in both transverse and longitudinal 
directions. 

 

Fig. 3.11 Visualization of the calculation model of a structural element (trimmed beam)  
in IDEA Statica Detail. 
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Both entire walls and beams, as well as details (parts) of beams (isolated discontinuity region, 
also called trimmed end), can be modeled. In the case of walls and entire beams, supports must 
be defined in such a way that they result in an externally isostatic (statically determinate) or hy-
perstatic (statically indeterminate) structure. The load transfer at the trimmed ends of beams is 
modelled by means of a special Saint-Venant transfer zone (described in Section 3.6.4), which 
ensures a realistic stress distribution in the analyzed detail region. 

Rules and procedures for meshing concrete, reinforcement, bearing plates, loads and supports 
are given in Section 3.6.6. The solution procedure for the non-linear FEM problem, including the 
used load-control algorithm, is revealed in Section 3.6.7. This includes the description of the 
implementation and “stop criteria” for each structural component (concrete, reinforcement, and 
bond). The last point of this section (Section 3.6.8) addresses the presentation of results in IDEA 
Statica Detail and the ways of verification for ultimate limit states and serviceability limit states. 

3.6.2 Supports and load transmitting components 

The types of supports and components used for transferring load available in the CSFM are listed 
in Fig. 3.12. These components allow the modeling of most situations during the construction 
process, transportation, and service state. 

 

Fig. 3.12 Various types of support and load transfer components: (a)-(e) Supports, i.e., (a) point 
distributed, (b) bearing plate, (c) line support, (d) hanging, (e) patch support; (f)-(h) load 

transfer devices, i.e., (f) bearing plate, (g) hanging, (h) patch load. 

Point supports can be modeled in several ways in order to ensure that stresses are not localized 
in one point but rather distributed over a larger area. The first option is a distributed point support 
(Fig. 3.12a), which can either be placed on an edge with a defined width or inside a volume of 
concrete with a defined radius. The distributed point support is then connected by rigid elements 
to the nodes of the concrete mesh within the effective width (or radius). Patch support (Fig. 
3.12e), on the other hand, can only be placed inside a volume of concrete with a defined effective 
radius. It is then connected by rigid elements to the nodes of the reinforcement mesh within this 
radius. Therefore, it is required that a reinforcing cage be defined around this patch support. 

For the more precise modeling of some real scenarios, there are two other options for point 
supports. Firstly, there is point support with a bearing plate of defined width and thickness (Fig. 
3.12b). The material of the bearing plate can be specified, and the whole bearing plate is meshed 
independently. Secondly, there is hanging support available (Fig. 3.12d), which can be used for 
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modeling lifting anchors or lifting studs. Currently, there are four types of lifting anchors and one 
type of lifting stud available. 

Line supports (Fig. 3.12c) can be defined on edge (by specifying its length) or inside an ele-
ment (by a polyline). It is also possible to specify its stiffness and/or nonlinear behavior (support 
in compression/tension or only in compression).  

The introduction of loads into the structure can also be modeled in several ways. For point 
loads, a bearing plate (Fig. 3.12f) can be used similarly as point support, distributing the concen-
trated load onto a larger area. Patch loads (Fig. 3.12h) are placed inside the concrete with a certain 
effective radius and are connected by rigid elements to the nodes of nearby reinforcing bars. Also, 
lifting anchors or lifting studs can be modeled by a hanging load (Fig. 3.12g). The structure can 
also be loaded with line loads or by surface loads, representing, e.g., self-weight (which is not 
automatically considered in the analysis). 

3.6.3 Geometric modification of cross-sections 

In the case of beam cross sections that include haunches, the width of the finite elements used to 
model the haunch might be automatically reduced in comparison to the original width so that it 
is not larger than twice its depth plus the thickness of the adjacent wall. This is based on the 
assumption that a compression stress field would expand from the wall under an angle of 45° (see 
Fig. 3.13), so the aforementioned reduced width would be the maximum width capable of trans-
ferring loads. For those cases in which the geometry is not defined in the CSFM by means of a 
beam template (i.e., definition via a wall or general shape templates), the input width is not auto-
matically corrected to account for the shear lag effect when generating the finite element model. 
Therefore, designers should input the desired effective width in such cases. 

 

Fig. 3.13 Width reduction of a cross-section: (a) User input; (b) FE model – automatically 
determined reduced width of a flange. 
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Note that the method of determining the effective flange width for beams implemented in 
CSFM is different from the one stated in 5.3.2.1 EN 1992-1-1 (European Committee for Stand-
ardization, 2004). Besides geometry, Eurocode based effective flange width is explicitly affected 
by the span lengths and boundary conditions of a structure. Users can refine the default value of 
the flange width set in CSFM by inputting the geometry via a wall or general shape templates. 

In the case of haunches lying in the horizontal plane (Fig. 3.14), each haunch is divided into 
five sections along its length. Each of these sections is then modeled as a wall with a constant 
thickness, which is equal to the real thickness in the middle of the respective section. 

 

Fig. 3.14 Horizontal haunch: (a) User input; (b)  FE model – a haunch automatically divided 
into five sections. 

3.6.4 Load transfer at trimmed ends of beams 

In the case of details (parts) of members, support configurations that are unstable are admissible 
in IDEA StatiCa Detail (including the case of no supports). In such cases, it is also necessary to 
model the section representing the connection to the adjoining B-region, including internal forces 
at this section that satisfy equilibrium with the applied loads. In certain cases (e.g. when modeling 
beam support), these internal forces can be determined automatically by the program. 

Between this section and the analyzed discontinuity region, a Saint-Venant transfer zone is 
automatically generated in order to ensure a realistic stress distribution in the analyzed region. 
Half of the section’s depth is used as the width of this zone. As the only purpose of the Saint-
Venant zone is to achieve a proper stress distribution in the rest of the model, no results from this 
area are displayed in verification and no stop criteria are considered here. 

The edge of the Saint-Venant zone that represents the trimmed end of the beam is modeled as 
rigid, i.e., it may rotate, but must remain plane. This is accomplished by connecting all the FEM 
nodes of the edge to a separate node at the center of inertia of the section, using a rigid body 
element (RBE2). The internal forces of the element may then be applied at this node, as shown 
in Fig. 3.15. 
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Fig. 3.15 Transfer of internal forces at a trimmed end 

3.6.5 Finite element types 

There are several finite element types used to model concrete, reinforcement and the bond be-
tween them, which are described in the following sections. Concrete and reinforcement finite 
elements are first meshed independently and then connected using multi-point constraints (MPC 
elements). This allows the reinforcement to occupy an arbitrary, relative position in relation to 
the concrete. 

If anchorage length verification is to be calculated, bond and anchorage end spring elements are 
inserted between the reinforcement and the MPC elements. Their shape follows that of already 
meshed reinforcement elements, so no additional meshing needs to be done. 

 

Fig. 3.16 Finite element model: reinforcement elements mapped to concrete mesh using MPC 
elements and bond elements. 
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Concrete 

Concrete is modeled using quadrilateral and trilateral shell elements, CQUAD4 and CTRIA3. 
Four or three nodes respectively can define these. Only plane stress is assumed to exist in these 
elements, i.e., stresses or strains in the z-direction are not considered.  

Each element has four or three integration points, which are placed approximately at its quar-
ter points. At each integration point in every element, the directions of principal strains α1, α3 are 
calculated. In both of these directions, the principal stresses σc1, σc3 and stiffnesses E1, E2 are 
evaluated according to the specified concrete stress-strain diagram, as per Fig. 3.1. The stiffness 
matrix for each integration point can be assembled as follows: 

 ( )
( )
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3 33 1 3

, 0
0 ,

c
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 (3.12) 

It should be noted that the impact of the compression softening effect couples the behavior of 
the main compressive direction to the actual state of the other principal direction. The stiffness 
matrix is transformed to the global coordinate system and used to assemble the stiffness matrix 
of a given finite element. The stress components σx, σy, and τxy are then calculated for every inte-
gration point by rotating the principal stresses to the global coordinate system. Further use is then 
made of these values in the presentation of results, as is described in more detail in Section 3.6.8. 

Reinforcement 

Reinforcing bars are modeled by two-node 1D “rod” elements (CROD), which only have axial 
stiffness. These elements are connected to special “bond” elements that were developed in order 
to model the slip behavior between a reinforcing bar and the surrounding concrete. These bond 
elements are subsequently connected by MPC (multi-point constraint) elements to the mesh rep-
resenting the concrete. This approach allows the independent meshing of reinforcement and con-
crete, while their interconnection is ensured later. 

Anchorage length verification: bond elements 

As presented in Section 3.3.3, the anchorage length is verified by implementing the bond shear 
stresses between concrete elements (2D) and reinforcing bar elements (1D) in the finite element 
model. To this end a “bond” finite element type was developed. 

The definition of the bond element is similar to that of a shell element (CQUAD4). It is also 
defined by 4 nodes, but in contrast to a shell, it only has a non-zero stiffness in shear between the 
two upper and two lower nodes. In the model, the upper nodes are connected to the elements 
representing reinforcement and the lower nodes to those representing concrete. The behavior of 
this element is described by the bond stress, τb, as a bilinear function of the slip between the upper 
and lower nodes, δu, see Fig. 3.17. 
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Fig. 3.17 (a) Conceptual illustration of the deformation of a bond element; (b) stress-
deformation (bond slip) function. Note that as described in Section 3.3.3, the initial stiffness 

(Gb) is much higher than the hardening (GbRf → 0), see Fig. 3.1f. 

The elastic stiffness modulus of the bond slip relationship, Gb, is defined as follows: 

 
Ø

c
b g

E
G k=  (3.13) 

where kG is coefficient depending on the reinforcing bar surface (by default kG = 0.2),  
Ec is modulus of elasticity of concrete, taken as Ecm and Ø is the diameter of reinforcing bar. 

As stated in Section 3.3.3, the design values of the ultimate bond shear stress, fbd, provided in 
the respective selected design codes EN 1992-1-1 or ACI 318-14 are used to verify the anchorage 
length. The hardening of the plastic branch is calculated by default as Gb/105 (i.e., the default 
value of Rf is 1·10-5). 

Anchorage length verification: spring elements 

The provision of anchorage ends to the reinforcing bars (i.e., bends, hooks, loops…), which ful-
fills the prescriptions of design codes, allows the reduction of the basic anchorage length of the 
bars (lb,net) by a certain factor β (referred to as the ‘anchorage coefficient’ below). The design 
value of the anchorage length (lb) is then calculated as follows: 

 ( ) ,1b b netl l= − β  (3.14) 

The available anchorage types in the CSFM include: straight bar (i.e., no anchorage end re-
duction), bend, hook, loop, welded transverse bar, perfect bond and continuous bar. All these 
types, along with the respective anchorage coefficients β, are shown in Fig. 3.18 for longitudinal 
reinforcement and in Fig. 3.19 for stirrups. The values of the adopted anchorage coefficients are 
in accordance with EN 1992-1-1. It should be noted that in spite of the different available options, 
the CSFM just distinguishes three types of anchorage ends: (i) no reduction in the anchorage 
length, (ii) a reduction of 30 % of the anchorage length in the case of a normalized anchorage and 
(iii) perfect bond. 
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Fig. 3.18 Available anchorage types and respective anchorage coefficients for longitudinal 
reinforcing bars in the CSFM: (a) Straight bar; (b) bend; (c) hook; (d) loop; (e) welded 

transverse bar; (f) perfect bond; (g) continuous bar. 

 

Fig. 3.19 Available anchorage types and respective anchorage coefficients for stirrups. Closed 
stirrups: (a) Hook, (b) bend, (c) overlap; open stirrups: (d) hook, (e) continuous bar. 

The intended reduction in lb,net is equivalent to the activation of the reinforcing bar at its end 
at a percentage of its maximum capacity given by the anchorage reduction coefficient, as shown 
in Fig. 3.20a. 

 

Fig. 3.20 Model for the reduction of the anchorage length:  (a) Force in reinforcing bar along 
the anchorage length; (b) slip-anchorage force constitutive relationship.  



3. THE COMPATIBLE STRESS FIELD METHOD  |  41 

The reduction of the anchorage length is included in the finite element model by means of a 
spring element at the end of the bar (see Fig. 3.16), which is defined by the constitutive model 
shown in Fig. 3.20b. The maximum force transmitted by this spring (Fau) is: 

 au s ydF A f= β  (3.15) 

where β is the anchorage coefficient based on anchorage type, As is the cross-section of the rein-
forcing bar and fyd is the design value of the yield strength of the reinforcement. 

The elastic stiffness of the spring depends on the reduction of the anchorage length as well as 
on the stiffness of the bond finite element (Gb) of the adjacent reinforcing bar, and is defined by 
the following equation: 

 , ,Øu b net b b net g cK l G l k E= =β β  (3.16) 

where β is the anchorage coefficient based on anchorage type, lb,net is basic required anchorage 
length according to the considered standard, Ø is the diameter of reinforcing bar and Gb is the 
bond stiffness modulus of reinforcing bar. 

The hardening of the plastic branch is calculated from the elastic stiffness and the hardening 
coefficient KSN (which by default in IDEA StatiCa Detail takes a value of 1.0·10-2, as defined in 
Fig. 3.20b. 

The models for verifying the anchorage length are used only for ultimate limit state verifica-
tions. For serviceability limit states, the anchorage length is not verified (neither the bond nor the 
anchor end finite elements are used) and the reinforcement is connected directly to the concrete 
mesh using MPC elements. 

As a final remark, to avoid confusion, the bond and anchorage models described above are 
neither used for modeling tension stiffening (which is performed using a modified stress-strain 
characteristic of the reinforcement, see Section 3.3.4), nor for calculating crack spacings or crack 
widths (which is carried out as outlined in Section 3.5.3).  

3.6.6 Meshing 

All of the finite elements described in the previous chapter are implemented internally, and the 
analysis model is generated automatically without any need for proficient user interaction. An 
important part of this process is meshing. The mesh is generated in such a way that the calculation 
provides reliable results even for complex shapes. There are several rules for creating the mesh, 
which are stated below for the different elements. 

Concrete 

All concrete members are meshed together. A recommended element size is automatically com-
puted by the application based on the size and shape of the structure and taking into account the 
diameter of the largest reinforcing bar. Moreover, the recommended element size guarantees that 
a minimum of 4 elements are generated in thin parts of the structure, such as slim columns or thin 
slabs, to ensure reliable results in these areas. The maximum number of concrete elements is 
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limited to 5000, but this value is sufficient to provide the recommended element size for most 
structures. In the case that the maximum number of concrete elements is reached (i.e., the final 
element size is larger than the recommended one), a warning is provided to the user accompanied 
by the actual and recommended element size. Designers can always select a user-defined concrete 
element size by modifying the multiplier of the default mesh size. 

Reinforcement 

The reinforcement is divided into elements with approximately the same length as the concrete 
element size. Once the reinforcement and concrete meshes are generated, they are interconnected 
with bond elements (ULS) or directly by MPC elements (SLS), as shown in Fig. 3.16.  

Bearing plates 

Auxiliary structural parts, such as bearing plates, are meshed independently. The size of these 
elements is calculated as 2/3 of the size of concrete elements in the connection area. The nodes 
of the bearing plate mesh are then connected to the edge nodes of the concrete mesh using inter-
polation constraint elements (RBE3). 

Loads and supports 

Patch loads and patch supports are connected only to the reinforcement, as shown in Fig. 3.21. 
Therefore, it is necessary to define the reinforcement around them. Connection to all nodes of the 
reinforcement within the effective radius is ensured by RBE3 elements with equal weight. 

 

Fig. 3.21 Patch load mapping to reinforcement mesh. 

Line supports and line loads are connected to the nodes of the concrete mesh using RBE3 
elements based on the specified width or effective radius. The weight of the connections is in-
versely proportional to the distance from the support or load impulse. 
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3.6.7 Solution method and load-control algorithm  

A standard full Newton-Raphson (NR) algorithm is used to find the solution to the non-linear 
FEM problem. The implementation is almost identical to the one presented in Crisfield (1997). 

Generally, the NR algorithm often does not converge when the full load is applied in a single 
step. A usual approach, which is also used here, is to apply the load sequentially in multiple 
increments and use the result from the previous load increment to start the Newton solution of a 
subsequent one. For this purpose, a load control algorithm was implemented on top of the New-
ton-Raphson. In the case that the NR iterations do not converge, the current load increment is 
reduced to half its value, and the NR iterations are retried. This process is repeated until either (i) 
a minimum load increment size is reached – in this case, the solution is aborted, and the last 
converged result is exported; or (ii) the NR iterations converge – in this case, another load incre-
ment is added unless the full load is reached. 

A second purpose of the load-control algorithm is to find the critical load, which corresponds 
to certain “stop criteria” – specifically the maximum strain in concrete, the maximum slip in bond 
elements, the maximum displacement in anchorage elements and the maximum strain in reinforc-
ing bars. The critical load is found using the bisection method. In the case that the stop criterion 
is exceeded anywhere in the model, the results of the last load increment are discarded and a new 
increment of half the size of the previous one is calculated. This process is repeated until the 
critical load is found with a certain error tolerance. 

For concrete, the stop criterion was set by default to a 5% strain in compression (i.e., around 
an order of magnitude larger than the actual failure strain of concrete) and 7% in tension at the 
integration points of shell elements. In tension, the value was set to allow for the limit strain in 
reinforcement, which is usually around 5% without accounting for tension stiffening, to be 
reached first. In compression, the value was chosen to ensure numerical but does not allow for an 
explicit verification of concrete crushing (see Section 3.3.1). 

For reinforcement, the stop criterion is defined in terms of stresses. Since stresses at the crack 
are modeled, the criterion in tension corresponds to the reinforcement tensile strength 𝑓𝑓𝑡𝑡 (see Fig. 
3.2c), accounting for the safety coefficient (as per Section 3.5.1). The same value is used for the 
criterion in compression. 

The stop criterion in bond and anchorage elements is α·δumax, where δumax is the maximum 
slip used in code checks and α = 10. The multiplicator α can be changed in the advanced version. 
The large α value was chosen to ensure that the stop criteria in concrete and reinforcement are 
almost always applied first, and the criterion in the bond or anchorage is only reached in very rare 
cases. This way, if the reinforcement is being torn out of the concrete, this is clearly visible in the 
results. However, because of the almost horizontal nature of the hardening branch, even if the 
criterion is reached, this results in only a very small increase in the calculated critical load in 
comparison to the load at δumax. 
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Fig. 3.22 Constitutive relationship of bond and anchorage elements used for anchorage length 
verification: (a) Bond shear stress slip response of a bond element; (b) force-displacement 

response of an anchorage element. 

It should be noted that often the solution diverges before any of the stop criteria are reached, 
typically as a result of high compression softening within a concrete element. In such a case, a 
message warning about the divergence of the model is shown, and the results from the last con-
verged load level are displayed to the user. 

3.6.8 Results and verifications 

Presentation of results  

Results are presented independently for concrete and for reinforcement elements. The stress and 
strain values in the concrete are calculated at the integration points of shell elements. However, 
as it is not practical to output the data in such a manner, the results are presented by default in 
nodes (see Fig. 3.23). It should be noted that this representation might locally underestimate the 
results at compressed edges of members in cases where the finite-element size is similar to the 
depth of the compression zone. The results presented in the mesh nodes are minimum, maximum, 
or average values from adjacent gauss integration points in connected elements (see Fig. 3.23). 
The same applies to element presentations, but only gauss integration points from the respective 
element are considered here. In spite of the several possibilities of displaying the results provided 
by the solver, the IDEA StatiCa Detail user can only see the output of results in nodes. By default, 
the program presents the most restrictive results in nodes (minimum for compressive magnitudes 
and results of the compression softening value kc, and maximum for tensile values). 

The results for the reinforcement finite elements are either constant for each element (one 
value – e.g., for steel stresses) or linear (two values – for bond results). For auxiliary elements, 
such as elements of bearing plates, only deformations are presented. 
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Fig. 3.23 Concrete finite element with integration points and nodes: presentation of the results 
for concrete in nodes and in finite elements. 

Ultimate limit state verifications 

The different verifications required by specific design codes are assessed based on the direct 
results provided by the model. ULS verifications are carried out for concrete strength, reinforce-
ment strength, and anchorage (bond shear stresses). 

The concrete strength is evaluated in compression as the ratio between the maximum principal 
compressive stress σc3 and the limit value σc3,lim, where the latter depends on the concrete grade, 
the design code and the transverse strain. 

 3

3,lim

c

c

σ
σ  (3.17) 

The strength of the reinforcement is evaluated in both tension and compression as the ratio 
between the stress in the reinforcement at the cracks σsr and the specified limit value σsr,lim: 

 
,lim
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σ
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The anchorage length is evaluated independently as the ratio between the bond stress τb and 
the limit bond stress fbd according to the specified design code: 

 b

bdf
τ  (3.19) 

These verifications are carried out with respect to the appropriate limit values for the respec-
tive parts of the structure (i.e., in spite of having a single grade both for concrete and reinforce-
ment material, their actually used stress-strain diagrams differ in each part of the structure due to 
tension stiffening and compression softening effects).  
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The basic results and verifications (stress, strain and utilization = ratio calculated value / limit 
value, as well as the direction of principal stresses in the case of concrete elements) are displayed 
by means of different plots. Compression is generally presented in red and tension in blue. Global 
minimum and maximum values for the entire structure can be highlighted as well as minimum 
and maximum values for every user-defined part. In a separate tab of the program, advanced 
results such as tensor values, deformations of the structure and reinforcement ratios (effective 
and geometric) used for computing the tension stiffening of reinforcing bars can be shown. Fur-
thermore, loads and reactions for selected combinations or load cases can be presented. 

Serviceability limit state verifications 

SLS assessments are carried out for stress limitation, crack width and deflection limits. Stresses 
are checked in concrete and reinforcement elements according to the applicable code in a similar 
manner to that specified for the ULS in Eqs. (3.17) and (3.18). 

Deflections can only be assessed for walls or beams (isostatic or hyperstatic). In these cases, 
the absolute value of deflections is considered (compared to the initial state before loading) and 
the maximum admissible value of deflections must be set by the user. Deflections at trimmed 
ends cannot be checked since these are essentially unstable structures where equilibrium is satis-
fied by adding end forces and hence, the resulting deflections are unrealistic.  

Short-term uz,st or long-term uz,lt deflection can be calculated and checked against user-defined 
limit values: 
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Crack widths and crack orientations are calculated only for permanent loads, either short-term 
𝑤𝑤𝑠𝑠𝑠𝑠 or long-term 𝑤𝑤𝑙𝑙𝑙𝑙. The verifications with respect to limit values specified by the user according 
to the respective design code are presented as follows: 
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w
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As outlined in Section 3.5.3, there are two ways of computing crack widths. In the general 
case (stabilized cracking), the crack width is calculated by integrating the strains on 1D elements 
of reinforcing bars. The crack direction is then calculated from the three closest (from the center 
of the given 1D finite element of reinforcement) integration points of 2D concrete elements. 
While this approach to calculating the crack directions does not necessarily correspond to the real 
position of the cracks, it still provides representative values, and the resulting crack widths can 
directly be compared to the specified crack width requirements at the position of the reinforcing 
bar. 
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4 Basic validations 

4.1 Introduction 

This chapter validates the proper functionality of the material models presented in the previous 
chapter in the numerical methods used in the IDEA StatiCa Detail implementation of the Com-
patible Stress Field Method (CSFM). Basic cases of pure tension, pure compression, and pull-out 
loading are examined in order to verify the reinforcement, concrete, and bond models, respec-
tively. The results obtained by the CSFM are then compared to the theoretical material models 
upon which the implementation is based. 

4.2 Uniaxial tension including crack widths 

4.2.1 Case description 

In this section, the theoretical material models for tension stiffening and crack width calculation 
are compared to the CSFM results for a uniaxial tension chord. The Tension Chord Model (TCM), 
which was developed at the ETH (Sigrist 1995; Alvarez 1998) serves as the theoretical basis upon 
which the effects of tension stiffening are accounted for, and crack widths and crack spacing in 
sufficiently reinforced regions are determined (in regions where stabilized cracking can be devel-
oped, see Section 3.3.4). The initial uncracked behavior is considered in the theoretical calcula-
tion, while this effect is neglected in the CSFM for design purposes (see Section 3.2). For stirrups 
with very low reinforcement ratios (ρ<ρcr, where ρcr is the minimum reinforcement in direct ten-
sion according to Eq. (3.5)), the model known as the Pull-Out Model (POM) is implemented in 
the CSFM. Both models are described in Section 3.3.4. 

The virtual experimental setup illustrated in Fig. 4.1 was chosen in order to generate uniaxial 
tension loading in the area of interest. The reinforcement ratio varies from a value below ρcr up 
to 1.9 %. The complete load-deformation behavior is computed to verify the implementation both 
at the ULS and at the SLS. 

4.2.2 Modeling with the CFSM  

The CSFM model in Fig. 4.1 has a length of 5 m and a cross-section of 1.6 m x 0.2 m. The 
longitudinal reinforcement varies according to Table 4.2. The area of load application is provided 
with additional transverse reinforcement. However, the area of interest of the tension chord, 
which is marked in Fig. 4.1, is solely reinforced in the direction of loading. The RC member is 
supported at its top edge, where deformations in the x – and z – direction are restricted, and a line 
load is applied close to the bottom edge of the member. An SLS calculation is performed with a 
load that increases from 0 kN/m to the ultimate load qu. The verification of the anchorage length 
is deactivated, as anchorage is not of interest in this validation. All comparisons and calculations 
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are performed without considering safety factors, while default values are used for the remaining 
parameters. Values are given for the material parameters related to tensile behavior in Table 4.1, 
while the longitudinal reinforcement configurations for the four different test cases are shown in 
Table 4.2. 

Table 4.1. Model parameters. 

Parameters Theoretical model & 
CSFM model 

sE   [GPa] 200 

ykf    [MPa] 500 

ukf    [MPa] 540 

ukε   [‰] 50 

cE   [GPa] 32.8 

ctkf    [MPa] 2.9 

0bτ    [MPa] 2.9 

1bτ    [MPa] 5.8 
λ   [-] 0.67 

Table 4.2. Varying geometrical test parameters. 

Property Test 1 Test 2 Test 3 Test 4 

s∅  [mm] 10 14 18 22 
s [mm] 100 100 100 100 

sa  [mm2/m] 785 1539 2545 3801 

geoρ  [%] 0.39 0.77 1.27 1.90 

effρ  [%] crρ<  0.88 1.28 1.91 
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Fig. 4.1. CSFM model: tension chord and area of interest. 

4.2.3 Comparison with theoretical constitutive models 

In this section, the results from the CSFM model are compared to those provided by the theoret-
ical constitutive models that were taken as a reference for the implementation in the CSFM.  
Fig. 4.2 shows the stress-strain behavior of the tension chords. The blue lines represent the theo-
retical constitutive curves, while the black ones are CSFM results. The stress corresponds to the 
maximum stress at a crack, σsr, whereas the strain is the mean strain (i.e., the average over a crack 
element) in the tension chord, εsm. It can be seen that there is almost perfect agreement between 
the theoretical and CSFM results for loads above the cracking load considered in the theoretical 
model. For loads below this cracking load, the curves differ, which is due to the fact that the 
CSFM neglects the uncracked initial behavior and considers the structural elements to be fully 
cracked for any load state. 

Test 1 is a particular case, as it contains less than the required minimum reinforcement to 
avoid brittle failures when cracking under direct tension actions. Strictly speaking, the theoretical 
behavior expected during this test should be a brittle failure of the reinforcement right after crack-
ing. However, Test 1 is analyzed here for the particular case of cracks that are controlled by the 
main reinforcement and progress into regions with low amounts of reinforcement (e.g., bending 
cracks progressing into webs with a low amount of stirrups). In this context, the Pull-Out Model 
(see Section 3.3.4) is used as a theoretical comparison, assuming that the element is fully cracked 

Area of interest 

Linear support 

Linear load 
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before applying the loads. Therefore, both the theoretical and the CSFM results in Test 1 neglect 
the uncracked initial behavior of the elements and provide very similar results for any stress state. 

 

Fig. 4.2. Reference theoretical model (blue markers) and CSFM (black) curves for the 
reinforcement stresses at the cracks, σsr, versus the mean reinforcement strains for given 

reinforcement ratios, εm. 

A comparison of the crack widths as a function of the applied load is displayed in Fig. 4.3. 
The same color code as in Fig. 4.2 is used. The agreement between the theoretical constitutive 
models and the CSFM results is also excellent in this case. The divergence at small loads (at 
which the theoretical model assumes uncracked behavior) is again explained by the initially 
cracked state assumed in the CSFM for design purposes (e.g., the element might already be 
cracked due to shrinkage actions or previous load steps). The prediction of the crack spacing (see 
Table 4.3) in the CSFM is also consistent with the theoretical constitutive model. It should be 
noted that in Test 1, the cracking is non-stabilized, and, strictly speaking, a constant representative 
crack spacing cannot be defined. However, the POM implicitly assumes a constant crack spacing 
in this situation, lε,avg, which is equal to the distance between points of zero slip when the rein-
forcing bar reaches its tensile strength (see further information in Section 3.3.4).  
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Table 4.3. Mean crack spacing results (CSFM represents the calculation with the CSFM model 
and TCM is the reference theoretical constitutive model). 

Property Test 1 Test 2 Test 3 Test 4 
CSFM
rms  [mm] non-stabilized 

cracking 
262 233 190 

TCM
rms  [mm] 260 233 189 

 

 

Fig. 4.3. Reference theoretical model (blue markers) and CSFM (black) curves of load against 
crack width load for different reinforcement ratios  

(from left to right: ρeff [%] = {0.39, 0.77, 1.27, 1.90}).  

4.2.4 Mesh size sensitivity 

To study the influence of the mesh size on the results of tension elements, an analysis of the mesh 
size sensitivity was performed for Test 4. To this end, a comparison is made between the resulting 
curve of the maximum steel stresses (σsr) and the mean strains of the reinforcement (εm). Fig. 4.4 
shows the results from the CSFM for the computation with the default finite element mesh size 
(107 mm in this case), as well as half and double this default finite mesh size. The theoretical 
results for this test are also displayed in blue. The behavior of the bare reinforcement and Pull-
Out Model is included in Fig. 4.4 to serve as a reference. It can be observed that the calculations 
with different mesh size perfectly overlap with the theoretical reference value. Hence, for this 
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case of a stress field subjected to uniaxial and uniform tension, the results do not show any mesh 
size dependency. 

 

Fig. 4.4. Mesh size sensitivity for Test 4 (ρeff = 1.90 %) with the default mesh size compared to 
half and double mesh size. 

4.2.5 Conclusions 

The results obtained from the CSFM are in excellent agreement with the theoretical constitutive 
model described in Chapter 2. The following conclusions can be stated for this example: 

 The computed crack widths are in good accordance with the theoretical ones. How-
ever, the CSFM computes small crack widths even before the onset of cracking, as 
shown in Fig. 4.3. This is caused by the initially cracked behavior implemented in 
the CSFM for design purposes. Therefore, crack width predictions on uncracked (in 
reality) members will err on the side of caution, particularly in the case of small 
reinforcement ratios. 

 The effect of tension stiffening according to the Tension Chord Model and the Pull-
Out Model can be reproduced very well. In addition, as predicted by the reference 
theoretical constitutive models, the deformation capacity markedly decreases with 
the reduced reinforcement ratios. 

 Table 4.3 confirms that the crack spacing is also well captured by the CSFM. 

 Furthermore, this loading case consisting of uniaxial and uniform tension does not 
show any mesh size dependency. 
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4.3 Uniaxial compression 

4.3.1 Case description  

This section is dedicated to the validation of a reinforced concrete member subjected to pure 
compression. The aim of this virtual experiment is to validate the modeled concrete behavior 
under uniaxial compression. 

4.3.2 Modeling with the CSFM  

The model consists of a concrete wall with dimensions of 2.0 m x 1.0 m x 0.5 m. As seen in Fig. 
4.5, there is only reinforcement transverse to the direction of loading, namely Ø16 mm reinforc-
ing bars with a spacing of 50 mm, with one bar per layer. This reinforcement does not influence 
the overall behavior in the compression direction but ensures proper load distribution. More spe-
cifically, it mitigates local effects due to the spreading of the applied load that tends to generate 
transversal strains and consequently softens the response of the member. 

 

Fig. 4.5. Uniaxial compression model with reinforcement layout, supports, and loading. 

Unless stated otherwise, the default parameters of the software are used. C 30/37 concrete and 
B500B steel reinforcing bars with the properties listed in Table 4.4 were chosen for this valida-
tion. The safety factors in this example are set to default, i.e., they are considered according to 
EN 1992-1-1. 

Table 4.4. Model parameters. 
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Parameters Theoretical model & 
CSFM model 

sE   [GPa] 200 

ykf    [MPa] 500 

ukf    [MPa] 540 

ukε   [‰] 50 

cE   [GPa] 32.8 

ckf  [MPa] 30 

ctkf    [MPa] 2.9 

2cuε    [‰] 50 

ctε  [‰] 70 

 

4.3.3 Results and comparison to codes 

The estimates of strength and cause of failure obtained from the CSFM analyses are compared to 
the theoretical design values stated in EN 1992-1-1. The results are provided in Table 4.5. It can 
be observed that there is a very good agreement between the theoretical and CSFM results for the 
default mesh size. 

Table 4.5. Comparison of strength and failure mode for uniaxial compression. 

 CSFM – model EN 1992-1-1 

Failure load uq  9’939 kN/m 10’000 kN/m 

Failure mode 
Concrete crushing 

(divergence due to concrete 
strength being reached) 

Concrete crushing 

 

4.3.4 Mesh size sensitivity 

The sensitivity of the results to the mesh size is examined in Fig. 4.6. The model is evaluated for 
half of the default, the default, and twice the default mesh size. The default mesh size in this case 
is 77 mm. As can be seen, the ultimate capacity of concrete in compression is well predicted for 
the smaller mesh sizes, while an underestimation of about 10% for the coarsest mesh is observed. 
This is due to the transverse tensile strains caused by the introduction of load near the edge of the 
element (i.e., in this local region, there is no longer a uniaxial compressive stress state). Due to 
these transverse strains, the concrete is softened in the edge element. Hence, the greater the ele-
ment size, the larger the area affected by this softening, and the more substantial the difference 
to the theoretical value (which neglects these local effects). 
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Fig. 4.6. Mesh size sensitivity compression: calculated ultimate load vs. multiplier of the default 
mesh size. 

4.3.5 Conclusions  

The following conclusions can be stated regarding the behavior of CSFM models under uniaxial 
compressive stress states: 

 The predicted strength shows reasonable agreement with the reference code value. 
Furthermore, the failure mode can be captured properly by the CSFM analyses. 

 The variation of the mesh size shows that compressive strength predictions are not 
influenced by the mesh size within a reasonable range. Only at the largest mesh size, 
a moderately lower load prediction (10%) is obtained due to local softening near the 
edges, which has a higher influence for large elements. 

4.4 Pull-out of reinforcing bars 

4.4.1 Case description 

The following basic validation model explores the fundamental aspects of the CSFM for the ver-
ification of the anchorage length (see description in Section 3.3.3), which reflects the basic con-
stitutive laws implemented for the interface between concrete and reinforcement. To this end, a 
virtual pull-out test was conducted on a reinforcing bar embedded in concrete. 

4.4.2 Modeling with the CSFM  

The chosen model is a concrete block of the dimensions 1.0 m x 1.0 m x 0.2 m with a notch run-
ning from the bottom edge up to the middle of the specimen. The bottom edge is supported in the 
x- and z-direction, while the top left corner is supported in the x-direction. The geometry and 
reinforcement layout are shown in Fig. 4.7. 

[1/2x] [1] [2x]
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10000
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Fig. 4.7. Pull-Out Model in the CSFM with reinforcement layout, supports and loading. 

The same material properties as defined for the previous basic validation example are consid-
ered, i.e., the material properties are defined in Table 4.4. However, the tension stiffening effect 
is deactivated in this case in order to isolate the effect of the anchorage models. The safety factors 
are set to default in the CSFM, i.e., they follow the prescriptions of EN 1992-1-1. Unless stated 
otherwise, the default parameters are applied. 

In the virtual experiments, a reinforcing bar of diameter Ø = 8 mm or Ø = 16 mm embedded 
in the concrete block over a length of 0.5 m is subjected to a tensile force F. Depending on the 
reinforcing bar diameter, either bond or reinforcement rupture is decisive.  

4.4.3 Comparison with analytical results 

The results of failure load (Fu) and failure mode for the two analyzed diameters are summarized 
in Table 4.6. The predicted failure loads agree very well with the theoretical ones (i.e., within the 
limits of precision of the numerical methods used) for the two different diameters analyzed. 

The Pull-Out Model, with a reinforcement diameter of Øs = 8 mm at a tensile force equal to 
the design yield strength, is examined more closely. In Fig. 4.8 the steel stress and slip distribution 
over the embedment length are illustrated and compared to the analytical solution of the differ-
ential equation of slip (based on the considered rigid-ideally plastic bond stress-slip relationship). 
The minor differences that can be observed are due to the quasi-rigid (but not rigid-ideally plastic) 
numerical implementation of the bond stress-slip relationship in the CSFM, which is used to 
avoid numerical instability. 
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Table 4.6. Comparison of strength and failure mode for the virtual pull-out experiments. 

Bar diameter  CSFM EN 1992-1-1 

Øs = 8 mm 

Failure load 
uF  24.5 kN 23.6 kN 

Failure mode Steel rupture 
(reinf. strain limit reached) Steel rupture 

Øs = 16 mm 

Failure load 
uF  78.1 kN 75.4 kN 

Failure mode 
Bond failure 

(divergence due to bond strength 
reached along all the bar) 

Bond failure 

 

 

Fig. 4.8. Pull-out situation with Øs = 8 mm at F = 21.9 kN: (a) Steel stress; (b) slip 

 distribution over the embedment length. 

4.4.4 Mesh size sensitivity 

As in the two previous chapters, a mesh size sensitivity analysis was performed for the case of 
the pull-out test. The models were again evaluated for half of the default, the default, and twice 
the default mesh size. For both diameters of the reinforcing bars, a default mesh size of 25 mm 
was obtained. The sensitivity analysis results for the ultimate load are shown in Fig. 4.9. It can 
be seen that the mesh size has a marginal influence on the ultimate load for this loading case. 
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Fig. 4.9. Mesh size sensitivity for the predicted ultimate load for the Pull-Out Model of 
reinforcing bar with (a) diameter Øs = 16 mm and (b) Øs = 8 mm. 

4.4.5 Conclusions  

As in the previous basic validations, the pull-out analysis shows that the anchorage and reinforce-
ment failures predicted via CSFM analyses are very similar to the theoretical, analytical predic-
tions, again showing highly reduced mesh size sensitivity. The slip results are also in good agree-
ment with analytical predictions that consider a rigid-ideally plastic bond stress-slip relationship.
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5 Comparison with codes 

5.1 Introduction 

This chapter contains a detailed comparison of results from the traditional design of details and 
members based on several national standards with those obtained using the Compatible Stress 
Field Method (CSFM). In addition to traditional design methods, the CSFM was also compared 
to the cross-sectional analysis implemented in IDEA StatiCa RCS/Beam software for those ex-
amples suitable for this analysis (i.e., long members without concentrated loads). IDEA StatiCa 
RCS/Beam software provides a cross-sectional analysis which implements the typical hypotheses 
considered in structural design codes when analyzing long members (i.e., the internal forces are 
calculated assuming materials exhibit linear elastic behavior, and that plane sections remain 
plane, while the dimensioning of the cross-sections considers the non-linear behavior of the ma-
terials and neglects the contribution of concrete in tension). A more detailed description of the 
hypothesis of IDEA StatiCa RCS/Beam software is given in Appendix A.  

The first example (Section 5.2) compares the results obtained using strut-and-tie models 
(STM) to the results from the CSFM for the well-known example of a deep beam with a large 
opening (Schlaich et al., 1987), showing the potential of the CSFM when applied to discontinuity 
regions. The following topics are discussed in this example: 

 The influence of detailing (impact of the anchorage and amount of transverse rein-
forcement in the concrete strut).  

 The influence of the main model parameters with respect to the ultimate load and 
failure mode. 

 The verification of serviceability in the CSFM in order to examine to which extent 
the ULS verifications from STM are sufficient for this configuration. 

 The efficiency of using topology optimization (see Section 3.4) to design the posi-
tions and directions of reinforcement. 

The second example (Section 5.3) focuses on the ULS and SLS assessment of a simply sup-
ported long T-beam defined by Procházka (2006). In this example, the results of the CSFM are 
compared to analytical verifications by Procházka (2006), as well as to verifications with IDEA 
StatiCa Beam following the prescriptions of EN 1992-1-1. The influence of the different calcu-
lations in the following results was investigated: 

 Ultimate moment resistance. 

 Stresses, crack widths, and deflections in the SLS. 
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The third example (Section 5.4) is devoted to the verification of the correct implementation 
in IDEA StatiCa Detail of  ACI 318-14. A simply supported beam with a rectangular cross-section 
is analyzed and designed according to ACI 318-14, using IDEA StatiCa RCS, and then compared 
to the results obtained by the CSFM for the following quantities: 

 Ultimate design load. 

 Ultimate moment resistance. 

 Deflection at midspan. 

The last verification example (Section 5.5) shows the assessment of a 1D member, namely a 
simply supported T-beam extracted from the experimental work of Leonhardt and Walther 
(1963). The verification of the CSFM against the experimental results for this example will be 
shown in Section 6.2. In this example, the results of the CSFM are compared and verified against 
results calculated by beam and cross-sectional analysis, according to EN 1992-1-1. These anal-
yses were performed in IDEA StatiCa Beam/RCS. The following results are compared for the two 
procedures: 

 Ultimate moment resistance. 

 Stresses, crack widths, and deflections at the SLS. 

It should be noted that all the examples were analyzed in release version 9.1 of IDEA StatiCa, 
which implements the CSFM. A detailed description of the CSFM can be found in Chapter 3. 

5.2 Comparison between the CSFM and the strut-and-tie model 

5.2.1 Case description 

A deep beam with an opening designed by Schlaich et al. (1987) is analyzed with the CSFM in 
this section. The results are compared to the original design, which was produced using strut-and-
tie models (STM). The dimensions, reinforcement layout, and material properties of the deep 
beam are shown in Fig. 5.1 and Table 5.1. The member was designed for a factored load (i.e., 
design load = characteristic load multiplied by load factor) Fu = F = 3 MN. 

Schlaich et al. (1987) dealt with the problem of ULS design using STM by splitting the beam 
into a left and right part and then considering two completely different truss models for the left 
part, designing each of them to carry half of the acting load. Fig. 5.2 shows both strut-and-tie 
models for the left side of the deep beam: (a) orthogonal and (b) diagonal. The support reactions 
of 0.535 MN correspond to the share of each model (50%) of the total vertical reaction in the left 
support, i.e.: 

 
2.5 m 1.07 MN
7.0 mleft uR F= =  (5.1) 
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The diagonal truss model consists of ties T2 and T9 as well as corresponding struts, while the 
orthogonal truss model contains ties T1 and T3 to T8. Superposing these models for ULS design, 
Schlaich et al. (1987) proposed the reinforcement layout shown in Fig. 5.1 (b). 

 

Fig. 5.1 Deep beam: (a) Dimensions in [m]; (b) reinforcement layout. 

 

 Fig. 5.2 Strut-and-tie models, according to Schlaich et al. (1987): (a) Orthogonal; (b) diagonal. 

5.2.2 Modeling with the CSFM  

Seven different models of the region were created in IDEA StatiCa Detail to analyze the capabil-
ities of the CSFM when modeling discontinuity regions. The model corresponding to the dimen-
sions, materials, and reinforcement layout taken from Schlaich et al. (1987) is referred to as the 
base model or model No. 1. The topology and reinforcement layout of the base model are shown 
in Fig. 5.3. A basic anchorage type (straight bar) was used at the ends of all reinforcing bars in 
the base model. Models No. 2 to 4 simulated different anchorage conditions (see the description 
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in Table 5.2), while the remaining ones (No. 5 to 7) were used to optimize the location and amount 
of reinforcement (see Section 5.2.5). 

 

Fig. 5.3 CSFM model topology and the reinforcement layout (dimensions in [m]). 

The main material properties considered in the base model are listed in Table 5.1. These prop-
erties are either directly extracted from Schlaich et al. (1987) or EN 1992-1-1 in the case of prop-
erties not contained in the original study. The thickness of the bearing plate was not defined in 
Schlaich et al. (1987) – the study just assumed it to be sufficiently stiff – and was considered to 
be 100 mm for the CSFM models. 

Table 5.1 Material properties for the CSFM. 

Characteristic tensile strength of reinforcement ftk [MPa] 5402) 

Characteristic yield strength of reinforcement fyk [MPa] 5001) 
Partial safety factors for reinforcement γs [-] 1.151) 

Characteristic strain limit of reinforcement εuk [‰] 501) 
Modulus of elasticity of reinforcement Es [GPa] 2002) 

Characteristic concrete compressive strength fck [MPa] 25.51) 
Concrete strain when reaching the maximum strength εc2 [‰] 2.02) 

Partial safety factors for concrete γc [-] 1.51) 
1) Schlaich et al. (1987) 
2) Extracted from EN 1992-1-1 

 



5. COMPARISON WITH CODES  |  63 

5.2.3 Ultimate limit state design   

Base model results 

The modeling of the deep beam with the CSFM resulted in the compatible stress field model 
shown in Fig. 5.4a. The load-carrying mechanism and flow of forces can be easily derived by 
analyzing the compression fields (red) and ties (blue). The stress fields can be seen as generalized 
struts in which stresses are considered instead of force resultants. The ultimate load calculated by 
the CSFM for the base model was 2814 kN, which is 94% of the ultimate load (3000 kN) deter-
mined by Schlaich et al. (1987) using STM.  

(a) 

 
(b) 

 

Fig. 5.4 CSFM ultimate limit state verifications for model No.1: (a) Stress-flow at the ULS; 
(b) ratio between bond stresses and the ultimate bond strength of tie T1. 

The anchorage of the top bar of tie T1 (Fig. 5.2a) was identified as critical; see the ratio be-
tween the bond stresses and ultimate bond strength in Fig. 5.4b. The stress in this tie reached 
77.3% of its strength (83.5% of its yield stress) in the zone close to the anchorage, intersecting 
the governing (diagonal) strut. Therefore, the presence of high transversal strains in the reinforce-
ment might lead to a high reduction in the compressive strength (low effective concrete strength), 
as will be discussed below. 
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(a) 

 
(b) 

 

Fig. 5.5 Concrete behavior at ultimate limit state for model No.1: (a) Ratio of stress and 
strength; (b) concrete compressive strength reduction factor. 

In the CSFM the concrete strength reduction due to transversal cracking (compression soften-
ing effect) is automatically calculated based on the computed transverse tensile strains (see Chap-
ter 3 for more details). Schlaich et al. (1987) took this phenomenon into account by imposing a 
stress limit corresponding to a bottle shaped stress field for the diagonal strut at the right side of 
the deep beam (see Fig. 5.5a and Fig. 5.5b). The concrete stress limit considered by Schlaich et 
al. (1987) for this condition was 0.62·fcd. Schlaich et al. (1987) computed that the stress acting in 
the strut in the ULS is 0.48·fcd, which is lower than the considered stress limit. The reduction 
factor provided by EN 1992-1-1 for concrete struts in cracked compression zones is 0.54·fcd (for 
the given value fck=25.5 N/mm2), i.e. slightly lower than the value proposed in the original exam-
ple. Fig. 5.5b shows that the minimum stress limit calculated by the CSFM in the governing strut 
is 0.40·fcd in the zone close to its anchorage. It should be noted that this local value cannot be 
directly compared to the values proposed by Schlaich et al. (1987) and EN 1992-1-1, as these 
correspond to the average strength limits of the strut. 
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STM and the CSFM show good agreement of their results. Moreover, the results of both mod-
els are quite sensitive to the detailing of the reinforcement anchorage, the supports and the impo-
sition of load (nodal zones in general). The specific influence of the anchorage of the reinforce-
ment will be discussed below. 

Impact of reinforcement anchorage 

In the base model presented above (model No. 1), the bottom reinforcement was extended to the 
edges of the beam (assuming zero concrete cover) in order to guarantee proper anchorage length. 
A basic anchorage end was considered (zero reduction of the anchorage length as stated in EN 
1992-1-1. The reinforcement is usually made shorter in practice, but there is no specific infor-
mation in this respect in Schlaich et al. (1987). To investigate the impact of the reinforcement 
anchorage on the ultimate load predicted by the CSFM, the results of a sensitivity analysis con-
ducted for different anchorage length reductions (simulated by different end types, see Fig. 3.18 
and Fig. 3.19) are shown in this section. For this analysis, the reinforcement of ties T1 and T2 
was made 5 cm shorter with respect to the base model on the right side of the deep beam in order 
to fulfill the concrete cover requirement. As described in Table 5.2, model No. 2 considers no 
reduction in the anchorage length (as in the base model or model No. 1, but 5 cm shorter), while 
model No. 3 considers a 30% reduction (by applying a standard bend at the end of the bar) and 
model No. 4 considers fully anchored behavior (by applying a perfect bond at the end of the bar). 
Note that the different anchorage types are not distinguished in the result figures. They can, how-
ever, be viewed using the "real 3D" view option in the software. 

Table 5.2 Ultimate load from the CSFM and its ratio to the ultimate load determined by the 
STM for different anchorage conditions. 

Model No. 1 2 3 4 
Reduction lb 0% 

1) 0% 30% 100% 
ultimate load CSFM [kN] 2814 2619 3539 3626 

ultimate load CSFM/STM [%] 93.8 87.3 118.0 120.9 
1) Zero concrete cover 

The failure mode of model No. 2 differs clearly from that of models No. 3 and 4. In Model 
No. 2 the insufficient anchorage length triggers the failure for T1, as can be clearly seen in Fig. 
5.6. On the other side, models No. 3 and 4 fail due to concrete crushing below the top bearing 
plate despite the largest concrete compression softening is produced in the direct diagonal strut 
(see Fig. 5.7). The ultimate load predicted by the CSFM and its ratio to the ultimate load deter-
mined by Schlaich et al. (1987) are displayed in Table 5.2 for models No. 1 to 4. The results show 
that the proper anchorage of the bottom reinforcement governs the capacity of the deep beam. 
However, the load-bearing capacity cannot be increased by much above 3500 kN, even if the 
reinforcement anchorage is considered to be perfect. 
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Fig. 5.6 Stress/strength ratio in tie T1 at ULS for model No. 2. 

The differences in the anchorage models can be analyzed in more detail. IDEA StatiCa Detail 
software considers the anchorage length according to EN 1992-1-1 but it does not automatically 
apply a reduction of the anchorage length due to transverse compression, as allowed by EN 1992-
1-1 when significant transverse compressive stresses are acting and considered in Schlaich et al. 
(1987). The consideration of this effect leads to a reduction in the anchorage length of about 30%, 
as considered in model No. 3, presented above. This reduction (β = 0.3) can be achieved manually 
in the CSFM using a standard anchorage end (e.g., bends or hooks), see Fig. 3.18. 

 

Fig. 5.7 Concrete compression strength reduction factor at ULS for Model No. 3. 

5.2.4 Serviceability limit state analysis 

Schlaich et al. (1987) did not design this example of a deep beam with an opening for the SLS 
because STM only considers equilibrium conditions and, therefore, cannot be used for servicea-
bility checks. In this section, different serviceability verifications (stress levels, crack widths and 
deflections) performed by means of the CSFM are presented and discussed. Model No. 3 (see 
Table 5.2) was used to compute all serviceability verifications. 



5. COMPARISON WITH CODES  |  67 

The level of service load was estimated based on the known factored design ultimate load 
(Fu = F = 3 MN) and considering EN 1992-1-1 rules for load factors and combinations. The 
safety load factor was assumed to be γG = 1.35 for permanent actions, and γQ = 1.5 for variable 
actions. Furthermore, it was assumed that the ratio between permanent and variable service loads 
could be 1:2 and the combination factor for the variable action of a quasi-permanent combination 
ψ2 = 0.3. Considering the parameters above, the permanent component of the concentrated load 
was determined to be FG = 0.690 MN (a force representing the permanent SLS design load), and 
the variable component FQ = 1.379 MN (a force representing the variable SLS design load). It 
should be noted that these loads were obtained assuming the ultimate load corresponding to the 
STM design, but will be applied to a CSFM analysis that has a slightly different ultimate load. 

Stress limitation 

Fig. 5.8 shows the results of the ratio between concrete stress and the limit concrete stress  
(-15.3 MPa) for the characteristic combination. According to the results, it seems that the condi-
tion for concrete stress limitation at service loads is not satisfied, as the maximum concrete stress 
below the support (-16.2 MPa) is larger than the limit concrete stress. However, such local peaks 
of stresses should be carefully interpreted as they might be local artifacts produced by FE-analy-
sis, as will be discussed below. 

 

Fig. 5.8 The ratio between the stress and limit stress of concrete at the serviceability limit state. 

The results of the ULS analysis have already shown that very high local concrete strains in 
compression appear below the bearing plate. A similar effect appears in the calculation of the 
serviceability stresses because unrealistically large strains may result locally in the FE-analysis 
(known as stress singularity). This effect is particularly important given the fact that the CSFM 
does not consider a plastic limit for serviceability analysis. Therefore, SLS concrete stress veri-
fications should only be interpreted as having failed if the limit stress is exceeded in a large 
enough area (i.e., in area as wide as the structure’s thickness). When applying this criterion to the 
analyzed deep beam with an opening, it can be observed that the limit stress is exceeded in an 



68  |  COMPATIBLE STRESS FIELD DESIGN OF STRUCTURAL CONCRETE 

area significantly smaller than the thickness of the beam (0.4 m). Therefore, the stress-limitation 
specified in EN 1992-1-1 should be considered verified.  

Crack width 

The limit value for the crack width generally depends on the exposure class. A limit value of 
0.3 mm is usually considered in EN 1992-1-1 for the case of non-prestressed reinforced concrete 
and quasi-permanent load combinations. Note that the crack width predicted by the CSFM in this 
example is below the limit value: a maximum crack width of 0.129 mm is obtained (see Fig. 5.9), 
i.e., 43% of the limit value. It should be noted that the CSFM only computes crack widths at the 
reinforcing bars and cannot verify them at the diagonal strut in the right part of the deep beam. 
Also, note that all the plots of cracks represent the calculated cracking direction and the relative 
magnitude of the cracks. However, the plotted crack spacing is merely schematic, and does not 
correspond to the actual crack spacing calculated by the CSFM. 

(a) 

 

(b) 

 

Fig. 5.9 Crack width results: (a) Maximum crack width; (b) ratio between crack width and limit 
crack width (wlim=0.30 mm). 
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The inspection of the principal tensile strains ε1 in the concrete can help to identify the zones 
in which reinforcement should be provided to avoid excessive crack widths in unreinforced areas. 
When analyzing these results (see Fig. 5.10), it is clear that inadmissible crack widths could ap-
pear in the areas of (i) the diagonal strut, (ii) the vertical strut next to the opening, and (iii) the 
anchorage of ties T5 and T7. Therefore, it is recommended that at least a minimum amount of 
reinforcement be provided in these areas. 

 

Fig. 5.10 Distribution of principal strain ε1 in concrete for the applied portion of the load. 

Deflection 

The limit value of deflection is usually related to the span of the beam. The strictest deflection 
limit specified in EN 1992-1-1 corresponds to 1/500 of the span for quasi-permanent load com-
binations. The CSFM calculation for service loads (see Fig. 5.11) leads to a maximum deflection 
of 3.2 mm, which represents 23% of the span limit value/500. 

 

Fig. 5.11 The deflected shape of the deep beam. 
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5.2.5 Optimization of the locations and directions of reinforcing bars 

The design of the reinforcement of discontinuity regions is not a trivial task. The use of the to-
pology optimization method may be of great help in the reinforcement design of such details.  
A detailed description of the method can be found in Section 3.4 and in Konečný et al. (2017). 
The effectiveness of topology optimization in finding the most effective shape and the required 
amount of reinforcement is compared below with manual trial/error approximations. In both ap-
proaches, IDEA StatiCa Detail software was used. The following models will be discussed: 

 Model No. 3: Reinforcement proposed by Schlaich et al. (1987) 

 Model No. 5: Orthogonal reinforcement layout proposed by Schlaich et al. (1987) 
with a reinforcement amount manually optimized for the ULS. 

 Model No. 6: Diagonal reinforcement layout proposed by Schlaich et al. (1987) with 
a reinforcement amount manually optimized for the ULS. 

 Model No. 7: Reinforcement fully based on topological optimization. 

For the manual reinforcement design, the two strut-and-tie models displayed in  Fig. 5.2 (or-
thogonal and diagonal) were analyzed independently in the ULS. The reinforcement area of each 
model was “optimized” using the trial and error method. In this process, the area of the least 
utilized reinforcement was decreased via manual input and the ULS calculation with the CSFM 
was performed to check the load-bearing capacity of the region; this process was repeated until 
the load-bearing capacity was equal to the required designed load. The resulting reinforcement 
amounts calculated with the CSFM (based on ULS verifications only) for the layouts proposed 
by Schlaich et al. (1987) are displayed in Fig. 5.12. 

  

Fig. 5.12 Reinforcement layout proposed by manually optimized using the CSFM:  
(a) Orthogonal layout (model No. 5); (b) diagonal layout (model No. 6). 

It should be noted that the reinforcement positions and directions in Fig. 5.12 were obtained 
from the STM drawn up intuitively by Schlaich et al. (1987). The reinforcement obtained in this 
way is compared below with the reinforcement whose locations were determined via topology 
optimization (see the topology optimization results in Fig. 5.13). 

a) b) 
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Fig. 5.13 Reinforcement based on topology optimization (model No.7). 

Topology optimization produces results that show the areas of tension and compression that 
can appear in a concrete structure, but it does not enable the design of real reinforcing bars. After 
the reinforcement layout has been defined based on the topology optimization tool, the amount 
of reinforcement is optimized using the trial/error method (see Fig. 5.13). A lighter and thinner 
strip symbolizes the need for a lower amount of reinforcement. It should be emphasized that the 
designer should account for the detail of the nodal zones when proposing a reinforcement layout 
based on the results of topology optimization. For example, the reinforcement must be properly 
anchored; otherwise, any calculation based on this analysis will fail due to improper anchoring. 
The diagonal tie above the opening (the main tie corresponding to T2-T9 in the original strut-
and-tie model, see Fig. 5.2) has to be much longer than the tension zone marked by the topology 
optimization in order to guide the diagonal strut extending from the loading plate in the vertical 
direction. In the case that the main tie is shortened by 200 mm – but is still longer than the tension 
zone marked by topology optimization (see Fig. 5.14) – the concrete will fail in compression at 
the upper left corner of the opening when a CSFM analysis is performed (see Fig. 5.15). In such 
a case, the load-bearing capacity is only 74.4% of the design load. 

 

Fig. 5.14 Reinforcement layout based on topology optimization with the main tie  
shortened by 200 mm. 
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Fig. 5.15 The ratio between the stress and strength of concrete at the ULS for the reinforcement 
layout defined in Fig. 5.14. 

The efficiency of models No. 5 and 6 (manually optimized) can be compared with the results 
based on topology optimization (model No.7) in terms of total weights of bars (see Table 5.3). 
Model No. 3 (the model proposed by Schlaich et al. (1987)) is also included in this comparison, 
but the predicted load-bearing capacity is 18% higher than in the other cases and a direct com-
parison of the efficiency cannot be drawn. The total weight of the reinforcing bars in model No. 
3 was 458 kg, and the deflection of the deep beam calculated using the CSFM at the load level of 
3000 kN was 10.6 mm. Very similar values were obtained for models No. 5 and 6 – i.e., the 
orthogonal and diagonal reinforcement topologies proposed by Schlaich et al. (1987) but with 
manual optimization of the reinforcement amount using the CSFM, see Fig. 5.12a, b – as well as 
for the reinforcement fully based on topology optimization (Fig. 5.13). 

Table 5.3 Comparison of material consumption for different models 

Model No. 3 
(Schlaich) 

No. 5 
(Schlaich orthog-
onal + optimized) 

No. 6 
(Schlaich diago-
nal + optimized) 

No. 7 
(Topology op-

timization) 
ULS FR/FU

1) [%] 118.0 99.8 100.7 101.0 
Weight of rebars [kg] 458 338 190 190 

Deflection2) [mm] 10.6 12.6 146.8 13.4 
Note:  1) FR is the load-bearing capacity obtained via the CSFM, FU is the load taken from Schlaich et al. 

(1987); 2) Deflection at 3000 kN. 

 

The optimized diagonal truss model, No. 6 (see Fig. 5.2b), is optimal for the ULS, but results 
in very large deformations (large cracks appear, which results in a significant decrease in stiff-
ness). On the other hand, the model based on topology optimization (model No. 7) not only 
achieves the same minimal reinforcement weight but also results in a reasonable deflection of the 
deep beam at a load level of 3000 kN. It shows that the objective of topology optimization is not 
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to reach maximum load-bearing capacity but to maximize the global stiffness of the structure for 
a given load set. This is equivalent to minimizing the (complementary) strain energy, which is 
equal to the work done by external loads. 

Although the results yielded by the topology optimization method still require a degree of 
reflection and interpretation from an engineer, it is a fast and easy-to-use tool that can facilitate 
and speed up the task of reinforcement design significantly. Especially in cases of non-typical 
structures and/or multiple load cases, it can lead to results that would not otherwise be obvious if 
conventional methods were used. This can result in considerable savings not only in engineering 
time, but also in the amount of reinforcement steel. 

5.2.6 Conclusions 

Based on the explanations in Sections 5.2.3 and 5.2.5, model No. 3 can be considered the most 
suitable for ULS and SLS evaluations, as well as for the comparison of results obtained by the 
CSFM and STM. The latter represents the methodology currently recommended in structural 
concrete standards for the design of discontinuity regions, while the CSFM provides an innova-
tive approach. 

The ULS analysis shows an excellent agreement between the results obtained by STM and 
the CSFM, meaning that both methods are viable for load-bearing capacity verifications. How-
ever, the CSFM appears to provide more economical, yet safe designs. This can be attributed to 
the ability of the CSFM to exploit all the resistant mechanisms of a structure, which allows CSFM 
solutions to get closer to the exact solution according to limit analysis. At the same time, the study 
emphasizes the importance of modeling the details of the model properly (geometry of supports, 
application of loads, stiffness, anchorage). 

The example of a deep beam with an opening shows that a design using STM does not nec-
essarily guarantee that serviceability conditions are also satisfied. Therefore, the STM is of lim-
ited use for designing deep beams or other discontinuity regions under serviceability conditions. 
The example also proves the potential of using the topology optimization method to optimize the 
positions and directions of reinforcing bars even for complex geometries. 

5.3 A Eurocode-based beam analysis 

5.3.1 Case description 

The goal of this example is to verify the results of the CSFM for a simply supported T-beam 
subjected to a uniformly distributed load by comparison with the results of beam and cross-sec-
tional analyses carried out according to EN 1992-1-1: (i) An analysis with IDEA StatiCa Beam 
software; and (ii) an analytical solution provided by Procházka (2006). The main hypotheses of 
IDEA StatiCa Beam software can be found in Appendix A, A.1. 
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The characteristics of the T-beam (see Fig. 5.16 and Fig. 5.17) were extracted from Example 
No. 1.4 proposed in Procházka (2006). The span of the simply supported beam is 6 m. It is rein-
forced by 4∅20 longitudinal reinforcing bars throughout the whole length of the beam. The shear 
reinforcement consists of 2∅10/200 vertical stirrups located in the web of the cross-section. An 
overview of the material properties and safety coefficients is provided in Table 5.4. 

 

Fig. 5.16 Diagram of the beam geometry in IDEA StatiCa Detail. 

Table 5.4 Input data for the T-beam. 

Characteristic tensile strength of reinforcement ftk [MPa] 540 
Characteristic yield strength of reinforcement fyk [MPa] 500 

Partial factors for reinforcement γs  1.15 
Characteristic strain limit of reinforcement εuk [‰] 50 

Modulus of elasticity of reinforcement Es [GPa] 200 
Characteristic concrete compressive strength fck [MPa] 20 

Concrete strain when reaching the maximum strength εc2 [‰] 2.0 
Partial factors for concrete γc 1.5 

 

The dimensions of a cross-section with a wide flange were modified into those of an effective 
cross-section, following the default procedure for beams defined in Section 3.6.3. For the pur-
poses of this example, the results from both the effective (Fig. 5.17b) and full (Fig. 5.17a) cross-
sections were compared. Note that while models input via a beam template automatically account 
for the effective width with a default value that cannot be modified, users still can model such 
beam with a different effective width by defining the structural member with a wall or general 
templates (see Section 3.6.3). 



5. COMPARISON WITH CODES  |  75 

 

Fig. 5.17 T-shaped cross-section dimensions: (a) Full cross-section; (b) effective cross-section 
considered for CSFM calculations by default (dimensions in [mm]). 

This example considers a uniform line load with a permanent part, g = 8.2 kN/m, and a vari-
able part, q = 23.5 kN/m. These values of the loads are used in ULS fundamental, SLS character-
istic and SLS quasi-permanent combinations. 

5.3.2 Modeling with the CSFM 

The calculation model was created in IDEA StatiCa Detail (CSFM). The geometry was defined 
using three beam members in the Geometry tab, with segment lengths of 0.15 m, 6.0 m and 0.15 m 
(see Fig. 5.16). The beam material is concrete with strength class C20/25, as stipulated in EN 
1992-1-1. The beam is supported by distributed point supports at positions that are 0.15 m and 
6.15 m from the left-hand side of the beam. B500B material is used for the longitudinal reinforce-
ment and stirrups, see EN 1992-1-14. 

There are two load cases and three combinations defined in the example, with all load cases 
consisting of a line load as shown in Table 5.5. The combinations are defined according to  
EN 1992-1-1. The combination rule is controlled by partial factors shown in the rightmost column 
of Table 5.5. 

Table 5.5 Defined load cases and combinations. 

Check Name/Type Description 
No LC1/Permanent  g = 8.2 kN/m 
No LC2/ Variable  q = 23.5 kN/m 
Yes C1/ULS 1.35 LC1 + 1.5 LC2 
Yes C2/SLS Characteristic 1.0 LC1 + 1.0 LC2 
Yes C3/SLS Quasi-permanent 1.0 LC1 + 0.8 LC2 
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Basically, the user could use linear analysis (Fig. 5.16a) and/or topology optimization (Fig. 
5.16a) as well for this example. However, the results in this case of a simply supported beam are 
obvious (flexural and shear reinforcement are required). 

(a) 

 

(b) 

 

Fig. 5.18 Results of reinforcement design tools: (a) Linear analysis with mesh size multiplier = 
0.5; (b) topology optimization with mesh size multiplier = 0.5 and effective volume = 0.4  

(see the details of the calculation in Section 3.4.2). 

5.3.3 Ultimate limit state 

The ULS response of the structure and the checking of individual model components (concrete, 
reinforcement, anchorage) were carried out using design values for the material parameters (see 
Table 5.4). In the following, calculations of the ultimate moment resistance according to the two 
sectional analyses and the CSFM are presented and compared. Further verifications, such as the 
shear resistance or anchorage, are not discussed in this example. 

Ultimate moment resistance according to Procházka (2006) 

The analytical calculation of the ultimate moment resistance presented below was taken from 
Example No. 1.4 contained in Procházka (2006), which follows the main provisions of EN 1992-
1-1. 

The following geometric and material properties are used: 

d   distance of the flexural reinforcement to the upper edge, 

As =1257·10-6 m2  area of longitudinal reinforcement, 

beff = 1.81 m  effective width of the cross-section upper flange, 

fyd = 435 MPa  design yield strength of the reinforcement and 

fcd = 13.3 MPa  design concrete compressive strength. 
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The depth of the compression zone, x, is: 
6 3

3

1257 10 435 10 0.028 m
1.81 0.8 1.0 13.3 10

−⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
s yd

eff cd

A f
x

b fλ η
 (5.2)  

where λ and η are stress block factors defined in Fig. 5.19. 

The inner level arm, z, results in: 

0.5 0.41 0.5 0.8 0.028 0.399 m= − ⋅ ⋅ = − ⋅ ⋅ =z d xλ  (5.3) 

The ultimate moment resistance of the cross-section can then be calculated as follows: 
6 31257 10 435 10 0.399 218.2 kN·m−= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =Rd s ydM A f z  (5.4) 

 

Fig. 5.19 Bending verification extracted from Procházka (2006). 

Ultimate moment resistance according to IDEA StatiCa RCS 

This section presents an additional method to calculate the ultimate moment resistance by means 
of a cross-sectional analysis according to EN 1992-1-1. In this case, the ultimate moment re-
sistance is calculated in IDEA StatiCa RCS by means of the interaction diagram N, My, Mz. De-
tailed descriptions of the assumptions of the cross-sectional analysis carried out in IDEA StatiCa 
RCS are given in Appendix A, A.2.1. It should be noted that in this case a parabolic-rectangular 
stress block for concrete in compression is considered (see Fig. 5.20a), while the analytical cal-
culation in the previous section considers a simplified rectangular stress block. Furthermore, 
strain hardening of the reinforcement is considered here (see Fig. 5.20b). 
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    (a)      (b) 

 

Fig. 5.20 Stress-strain diagrams used in IDEA StatiCa RCS: (a) Concrete; (b) reinforcement.  

If the full width of the flange is considered in the calculation (similarly as for the analytical 
calculation presented in the previous section), the interaction diagram shown in Fig. 5.21a is ob-
tained (for Mz = 0). The ultimate moment resistance for the case of pure bending with this method 
is 232.5 kN·m. Note that this result is slightly higher (6%) than the analytical calculation shown 
in the previous section, due to the fact that this analysis considers the more refined constitutive 
relationships of the materials. If this analysis is performed considering the effective flange depth 
assumed by default in the CSFM (Fig. 5.17b), the ultimate moment resistance drops to 186.5 kN. 

 

Fig. 5.21 Results from IDEA StatiCa RCS considering the full width of the upper flange: 
(a) Interaction diagram; (b) strain distribution at the ultimate limit state; (c) stress distribution at 

the ultimate limit state. 
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Ultimate moment resistance according to the CSFM 

Two calculations were performed in the CSFM, one for the effective cross-section dimensions 
considered by default (reduced flange width – see Fig. 5.17b) and a second one for the full cross-
section dimensions (see Fig. 5.17a). 

The results considering the default effective flange depth are shown in Fig. 5.22. They reached 
100% of permanent load and 93.1% of variable load for combination C1/ULS. The ultimate mo-
ment resistance can be obtained as the moment at midspan associated with the resisted loads 
(198 kN·m). A second way to determine the ultimate moment resistance is to integrate the stress 
distribution over the cross-section in Fig. 5.23, which leads to approximately 187 kN·m. The 
difference between the two methods is caused by the approximation used in the stress integration 
over the cross-section. It should be noted that the reduction of the flange width leads to a very 
large compression zone depth, which results in a failure of the cross-section due to the failure of 
concrete in compression. 

 

Fig. 5.22 CSFM results at the ULS for the effective cross-section: (a) Stress field; (b) concrete 
compressive stresses; (c) reinforcement stresses. 
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Fig. 5.23 Stress-strain limit state distributions at midspan for the effective cross-section: (a) 
Concrete strains; (b) stresses in concrete and reinforcement. 

Calculations using the full flange depth were carried out at 100% of the design permanent 
load and 116% of the design variable load (the results are depicted in Fig. 5.24). The moment at 
midspan for the limit state loads was 233 kN·m, while the approximated integration of the cross-
section stresses at midspan led to a similar capacity of around 224 kN·m. It should be noted that, 
in this case, the compression depth is very small and the concrete is far from crushing. Instead, 
the beam failed due to the failure of the flexural reinforcement. 

 

Fig. 5.24 CSFM results at the ULS for the full cross-section: (a) Stress field; (b) concrete 
compressive stresses; (c) reinforcement stresses. 



5. COMPARISON WITH CODES  |  81 

Table 5.6 provides an overview of the prediction of the ultimate moment resistance with the 
different methods and assumptions of the effective flange width. This example of a conventional 
simply supported beam, which can be calculated with the CSFM as well as with simpler methods 
based on cross-sectional analysis, shows that the CSFM yields very similar results to cross-sec-
tional analysis methods. 

Table 5.6 Comparison of moments of resistance. 

Type of calculation 
Effective 

 cross-section 
[kN·m] 

Full 
cross-section 

[kN·m] 
Acc. to (Procházka 2006)  - 218.2 
IDEA StatiCa RCS 186.5 232.5 
CSFM 198.0 233.0 

5.3.4 Serviceability limit state 

The results obtained from the IDEA StatiCa Beam/RCS software were used to compare the cor-
rectness of SLS results in IDEA StatiCa Detail. In addition, the deflection results were compared 
with the analytic calculations from Procházka (2006). Only the serviceability results for the full 
cross-section model (Fig. 5.17a) were analyzed in the CSFM, as the consideration of this model 
allows comparing the results directly to the results given by the other methods. 

Stress limitation 

The stress limitation check at serviceability is provided for both, characteristic and quasi-perma-
nent combinations. 

The response under the characteristic combination in IDEA StatiCa RCS neglects the concrete 
tensile strength and considers linear stress-strain diagrams for concrete and reinforcement (see 
the more detailed description in the Appendix A, A.3.1 and A.3.2). The calculation was per-
formed twice – for the short-term response with the modulus of elasticity Ecm , and for the long-
term response with the effective modulus of elasticity Ecm / (1+ϕ), with a default value of ϕ = 2.5, 
see Fig. 5.25. 
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Fig. 5.25 Strain and stress distribution for a characteristic combination calculated  
in IDEA StatiCa RCS: (a) Short-term model; (b) long-term model. 

A description of the serviceability verifications in the CSFM can be found in Section 3.6.8. 
The calculation was also performed twice in this case. The first calculation was performed with 
permanent and variable loads as defined in Table 5.5, while in the second one, all loads were 
defined as permanent. The results of the CSFM are shown in Fig. 5.26, and a summary of the 
maximum results is compiled and compared to the reference method in Table 5.7. 

 

Fig. 5.26 Results from the serviceability stress limitation in the CSFM considering all loads as 
permanent: (a) Concrete stresses; (b) reinforcement stresses. 

Table 5.7 Comparison of the results for maximum stresses at serviceability (σc,st and σs,st are 
the concrete and reinforcement stresses assuming a short-term application of the total load, 

which may include long-term loads; σc,lt and σs,lt are the concrete and reinforcement stresses 
assuming a long-term application of the all loads). 

Type of calculation σc,st [MPa] σs,st [MPa] σc,lt [MPa] σs,lt [MPa] 
IDEA StatiCa RCS -7.1 290.4 -4.2 299.5 
CSFM -4.9 286.8 -4.7 287.6 
CSFM – all permanent -4.9 286.8 -3.4 296.4 
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Due to the low level of the long-term load (8.2 kN/m) compared to the short-term one 
(23.5 kN/m), in the default CSFM analysis there is no significant difference between the short- 
and long-term effects in the first calculation type, see the second line in Table 5.7. The consider-
ation in the CSFM of all loads as permanent (third line in Table 5.7), leads to lower long term 
concrete stresses, since the long-term concrete diagram is used for the full load. The short-term 
calculations are identical in both cases. 

In this example, we can observe that the stresses obtained via CSFM are always lower than 
the stresses obtained by IDEA StatiCa RCS. These differences cannot be explained by the small 
differences implemented in both approaches (compare the CSFM approach depicted in Fig. 3.9, 
and the method integrated in IDEA StatiCa RCS in Appendix A, A.3). Rather, the differences are 
related (i) to the coarse mesh automatically generated in the CSFM for this case; and (ii) to the 
fact that the CSFM results do not correspond exactly to the edge of the member but to the closest 
integration point (see also Section 3.6.8). Hence, by refining the finite element mesh, the results 
of the CSFM will converge to the results given by the IDEA StatiCa RCS (which represent the 
information at the edge of the element). 

Crack widths 

A crack width check is provided in the CSFM for the quasi-permanent combination in the vicinity 
of the reinforcement. Fig. 5.27 shows the crack width results obtained from the CSFM, as well 
as according to IDEA StatiCa Beam software (reference calculation of a cross-sectional analysis 
performed according to EN 1992-1-1. It can be shown that there is excellent agreement in the 
results from both procedures (below 10%), which can be explained as being due to the small 
differences between the models considered in both procedures. 

    (a) 

 
    (b) 

 

Fig. 5.27 Results of crack width verifications: (a) Crack direction and opening according to the 
CSFM; (b) calculation according to IDEA StatiCa Beam. 

Deflections  

The deflections resulting from the CSFM were compared with those from IDEA StatiCa Beam 
software as well as those given in Example 6.2 from Procházka (2006). It should be noted that 
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this example from Procházka (2006) is a continuation of the previously discussed example 1.4, 
which deals with the calculation of deflections of the same T-beam. The long-term deflection 
results are shown in Fig. 5.28, and a summary of the results at midspan can be found in Table 
5.8, showing a good agreement between all three methods (difference  ± 10%). The larger deflec-
tion provided by IDEA StatiCa Beam software was caused by its different approach to performing 
deflection analysis (see Appendix A, A.3). 

    (a) 

 
    (b) 

 

Fig. 5.28 Detailed deflection results according to: (a) CSFM; (b) IDEA StatiCa Beam. 

Table 5.8 Comparison of long-term deflection results at midspan. 

Type of calculation ∆lt [mm] 
Acc. to (Procházka 2006) 15.9 
CSFM 16.7 
IDEA StatiCa Beam 18.3 

5.3.5 Conclusions 

This chapter compared the results of the CSFM, a FE-based computer-aided stress field analysis 
method, with the results of cross-sectional analyses following the prescriptions of EN 1992-1-1. 
The structure under analysis is a simple supported T-beam that allows using simple cross-sec-
tional analyses as well as refined procedures such as the CSFM, which – other than the simple 
cross-sectional methods –  is also suitable for analyzing regions that are more complex. The cross-
sectional analysis results serving as a reference were extracted from analytical calculations re-
ported by Procházka (2006) and results provided by IDEA StatiCa Beam/RCS software. 

The CSFM predicts higher load-bearing capacity than the analytical cross-sectional analysis 
reported in Procházka (2006). This difference can be explained by the more conservative per-
fectly plastic stress-strain diagrams assumed for the concrete and reinforcing steel in Procházka 
(2006). However, a perfect match between the CSFM and IDEA StatiCa Beam/RCS results can 



5. COMPARISON WITH CODES  |  85 

be observed, which is expected since these two approaches consider very similar stress-strain 
diagrams for the materials used. 

With regard to SLS checks, small differences in the results can be observed, too. The differ-
ences in the compressive concrete stresses between the different methods are partially caused by 
slightly different positions of the integration points where the stresses are evaluated. When com-
paring stresses due to short-term effects at the serviceability limit state, greater differences in the 
stresses are observed. This is mainly due to the mesh sensitivity of these results in CSFM. A more 
detailed explanation is given in 3.6.8. 

There is good agreement in terms of crack width results between the CSFM and IDEA StatiCa 
Beam/RCS software. This excellent match is presumably caused by the fact that the analysis was 
performed on a slender beam, where bending cracks prevail. Larger divergence might be expected 
when analyzing shear cracks. The calculation of deflections also yielded reasonably good agree-
ments between the compared methodologies.  

Overall, the comparison of the results is highly satisfactory both at the ULS and at the SLS. 
The small observed differences correspond to variations in the assumptions of the calculation 
models, as already discussed above. 

5.4 Beam analysis according to ACI 318-14 

5.4.1 Case description 

The goal of this example is to verify the results obtained from the CSFM for an example of a 
rectangular simply supported beam proposed by Roberts (2003), following the prescriptions of 
ACI 318-14. The CSFM results are compared either to analytical calculations provided by Rob-
erts (2003) (SLS) or to the results from a conventional cross-sectional analysis performed with 
IDEA StatiCa Beam/RCS software following the prescriptions of ACI 318-14 (ULS and SLS).  

A concrete beam of rectangular cross-section corresponding to the “Full Beam Design Exam-
ple” included in Roberts (2003) was selected for comparison. The simply supported beam has a 
clear distance between the faces of the supports of 19 ft (see Fig. 5.29a). It is reinforced by lower 
longitudinal reinforcement 3 #5s throughout the whole length of the beam, additional 3 #5s in the 
midspan region of the beam and upper longitudinal 2 #7s throughout the whole length. Shear 
reinforcement is provided by stirrups #3s. An overview of the material properties and safety co-
efficients is shown in Table 5.9. Note that the input data are stated in imperial units. The partial 
factors for concrete and reinforcement are set to 1.0 since these factors are not used according to 
ACI 318-14. 
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    (a)     (b) 

 
 

Fig. 5.29 Beam geometry in IDEA StatiCa Detail: (a) Longitudinal section (dimensions in [ft]); 
(b) cross section (dimensions in [in]). 

Table 5.9 Input data for the beam. 

Specified yield strength of reinforcement fy [ksi] 60.0 
Partial factors for reinforcement γs 1.00 

Characteristic strain limit of reinforcement εuk [‰] 50.0 
Modulus of elasticity of reinforcement Es [ksi] 29’000 

Specified compressive strength of concrete f’c [ksi] 4.0 
Concrete strain when reaching the maximum strength εcu2 [‰] 2.0 

Modulus of elasticity of concrete Ec [ksi] 3’607 
Partial factors for concrete γc  1.0 

 

In the example, a uniform line load with a permanent part, self-weight (SW) and superim-
posed dead load (SDL), g = 2.375 kip/ft, and a variable part (live load LL), q = 2.65 kip/ft, is 
considered. These values of the loads are used in ULS fundamental and SLS combinations. 

5.4.2 Modeling with the CSFM 

The calculation model was created in IDEA StatiCa Detail (CSFM). The geometry was defined 
as a beam member with a length of 20 ft. The beam material was C4000, and the reinforcement 
material was Grade 60, as stated in ACI 318-14 and Table 5.9. The model included line supports 
placed at positions 0 ft and 19 ft from the beginning of the beam. 

Two load cases and three combinations were defined. The combinations were defined using 
the combination rules shown in Table 5.10. 
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Table 5.10 Defined load cases and combinations. 

Check Name/Type Description 
No DL/Permanent g = 2.375 kip/ft 
No LL/Variable q = 2.65 kip/ft 
Yes C1/ULS 1.2 DL + 1.6 LL 
Yes C2/SLS-Deflection 1.0 DL + 1.0 LL 
Yes C3/SLS-Deflection 1.0 DL + 0.5 LL 

 

5.4.3 Ultimate limit state 

In this section, calculations of the ultimate moment resistance according to a sectional analysis 
and the CSFM are presented and compared. Further verifications, such as of the shear resistance 
or the anchorage, are not discussed as they are not critical in this structural member. 

Ultimate moment resistance according to IDEA StatiCa RCS 

This section presents the results of a method to calculate the ultimate moment resistance by means 
of a cross-sectional analysis according to ACI 318-14. In this case, the ultimate moment re-
sistance is calculated in IDEA StatiCa RCS by means of the interaction diagram N, My, Mz (N and 

Mz are zero in this particular example). Detailed descriptions of the assumptions of the cross 
sectional analysis carried out in IDEA StatiCa RCS are provided in Appendix A, A.2. The con-
sidered stress-strain diagrams for concrete and reinforcement are shown in Fig. 5.30. 

 

Fig. 5.30 Stress-strain diagrams used in IDEA StatiCa RCS: (a) Concrete; (b) reinforcement. 

The calculated ultimate moment resistance with this method is 215.4 kip-ft (see Fig. 5.31a). 
Fig. 5.31b and c show the strain and stress distributions over the  depth of the cross-section at the 
ultimate limit state. 



88  |  COMPATIBLE STRESS FIELD DESIGN OF STRUCTURAL CONCRETE 

 

Fig. 5.31 Results from IDEA StatiCa RCS: (a) Interaction diagram; (b) strain distribution at the 
limit state of the reinforced cross-section; (c) stress distribution at the limit state of the 

reinforced cross-section. 

Ultimate moment resistance according to the CSFM  

The load-bearing capacity results determined with the CSFM are shown in Fig. 5.32. The calcu-
lation of combination C1 reached 100% of permanent load and 53.1% of variable load, which 
corresponds to a bending moment at midspan equal to 228.8 kip-ft. The concrete stresses are 
presented in Fig. 5.32b, which shows that the maximum stress in the compression zone at midspan 
is equal to the stress given by the cross-sectional analysis in IDEA StatiCa RCS (see Fig. 5.31c). 
Similarly, identical maximum stresses in the reinforcement are obtained in the CSFM (Fig. 5.32c) 
and IDEA StatiCa RCS (Fig. 5.31c) analyses. 

Table 5.11 provides an overview of the prediction of the ultimate moment resistance with a 
cross-sectional analysis and with the CSFM. This simple beam example, which can be calculated 
with the CSFM as well as with simpler methods based on cross-sectional analysis, shows that the 
CSFM yields very similar results to cross-sectional analysis methods (the CSFM provides a 6% 
higher prediction of the bending capacity), similarly as already shown for the previous example 
(Section 5.3).  
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Fig. 5.32 CSFM results at the ultimate limit state: (a) Stress field; (b) concrete compressive 
stresses; (c) reinforcement stresses. 

 

Table 5.11 Comparison of moments of resistance. 

Type of calculation Ultimate moment 
resistance [kip-ft] 

IDEA StatiCa RCS 215.4 
CSFM 228.8 
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5.4.4 Serviceability limit state 

In this chapter, analytical calculations of deflections provided by Roberts (2003) following the 
main provisions of ACI 318-14 are compared to deflections obtained by the CSFM (see Fig. 
5.33a, b, c). A creep coefficient φ = 2.5 is considered in long-term deflection in order to account 
for creep effects. The calculation of crack widths is not discussed in this example due to the fact 
that no direct crack width calculation is provided by ACI 318-14. 

Deflection according to analytical calculations 

ACI 318-14 proposes that deflections be estimated following the method stated in (Branson and 
Metz 1965), which considers the procedure of the effective moment of inertia (Ie). The effective 
moment of inertia, Ie, provides a transition between the upper and lower bounds of Ig (the moment 
of inertia of a gross concrete section) and Icr (the fully cracked moment of inertia). The transition 
depends on the ratio between the cracking moment (Mcr) and the acting moment (M), as follows: 

 ( )
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The moment of inertia of the rectangular gross concrete section, neglecting reinforcement, is: 
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where b is the width of the section and h is its depth. 

The fully cracked moment of inertia is calculated as follows: 
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where fr is the modulus of rupture (effective tensile strength) of concrete. 

To calculate the fully cracked moment of inertia, the distance from the top edge to the neutral 
axis, c, is calculated at midspan by solving the following quadratic formula: 
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where n = Es/Ec = 8.04 is the modular ratio, As = 1.86 in2 and A’s = 1.20 in2 are the cross-section of 
the tensile and the compressive reinforcement, respectively, while d = 21 in and d’ = 2.3 in are the 
respective distances of the tensile and compressive reinforcement to the upper edge of the beam. 
Eq. (5.8) yields a solution of c = 6.39 in. The fully cracked moment of inertia can be calculated 
as follows: 
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For the serviceability load combination C2, which considers dead as well as live loads (see 
Table 5.10), a bending moment M = 227 kip·ft is obtained at midspan. The effective moment of 
inertia for this combination can be calculated according to Eq. (5.5), leading to Ie = 4140 in2, i.e., 
a value very close to that of the fully cracked section. The short-term deflection for the load 
combination C2 can be calculated as follows: 
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where q = 5.025 kip/ft is the uniformly distributed load and ln = 19 ft is the beam span. 

The same procedure can be followed to calculate the deflection under sustained loads (load 
combination C3, see Table 5.10). In this load combination, it is assumed that 50% of the live load 
is permanent, which yields a bending moment at midspan M = 167 kip·ft and an effective moment 
of inertia Ie = 4170 in2 (similarly as for load combination C2, this is very close to the fully cracked 
inertia). The short-term deflection is also calculated in this case with Eq. (5.10), leading to 
∆st,C3 = 0.721 in. The long-term deflections, which include creep and shrinkage, ∆lt, are estimated 
in ACI 318-14 based on the short-term deflections as follows: 
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ρ

∆ = ∆
+

 (5.11) 

where ξ is a time-dependent factor that takes a value of 2.0 for a 5-year duration of loading and 
ρ’ is the geometric amount of the compression reinforcement at midspan, which takes a value of 
0.63% in this case. This yields a short-term load amplification factor of slightly above 1.5, and a 
long-term deflection of ∆lt,C3 = 1.091 in. 

 

Deflection according to the CSFM 

The results of deflections provided by the CSFM are shown in Fig. 5.33. Table 5.12 provides a 
comparison between the results of simplified analytical calculations and the results provided by 
the CSFM. The agreement between both approaches for this example is very good. 

Table 5.12 Comparison of deflections between hand calculations and the CSFM. 

Deflection  ∆st,C2 [in] ∆st,C3 [in] ∆lt,C3 [in] 
Acc. to Roberts (2003) 0.987 0.724 1.095 
CSFM 0.920 0.657 1.184 
Differences -7% -9% +9% 
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Fig. 5.33 CSFM deflection results: (a) Short-term deflection under dead and live loads 
(combination C2); (b) short-term deflection under sustained loads (combination C3); (c) long-

term deflection under sustained loads (combination C3). 

5.4.5 Conclusions 

This chapter considered a conventional beam of rectangular cross-section, comparing results ob-
tained from the CSFM (2D model) with those of analytical calculations performed according to 
ACI 318-14, as well as with cross-sectional analyses (1D models). Similarly as in the previous 
example, a slightly higher load-bearing capacity was obtained via the CSFM calculation. This 
can be explained by the fact that some more refined considerations are used in the CSFM (e.g., 
2D-problem, consideration of the actual reinforcement layout within the whole beam rather than 
just a section). 

The results in terms of the estimation of deflections differ by a maximum of 9%, which is 
again a very good match. Slightly smaller deflections were obtained by the CSFM calculation for 
short-term deflections, while for long-term deflections the CSFM estimates are slightly larger 
than the analytical calculations according to ACI 318-14. The slightly higher stiffness shown by 
the CSFM for short-term loads might be caused by the consideration in the CSFM of non-stabi-
lized cracking for the stirrups, which provides a higher stiffness than the consideration of stabi-
lized cracking. The lower stiffness of the CSFM in comparison with the analytical calculations 
according to ACI 318-14 might be explained by the consideration in Branson’s formulae (see Eq. 
(5.10)) of the effect of compression reinforcement on long-term behavior, a factor that is not 
explicitly considered in the CSFM. 
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The results from this code validation example are highly satisfactory, showing very good 
agreement between the CSFM and the more simplified cross-sectional analysis. The differences 
can be explained as being due to the differences in the assumptions of the different calculation 
models. 

5.5 Analysis of a T-beam in a four-point bending configuration 

5.5.1 Case description  

Beam TA9 is one of a seminal series of 18 experiments on simply supported T-beams published 
by Leonhardt and Walther (1963). All tested beams had the same cross-section and flexural rein-
forcement but differed in their web reinforcement (stirrups, bent-up bars and horizontal web re-
inforcement). The main purpose of the experiments was to investigate the load-bearing capacity 
in relation to web reinforcement. The objective of this section is to compare the results of the 
CSFM with a cross-sectional analysis based on current design code prescriptions (EN 1992-1-1) 
for one of these beams (TA9, with a bending failure). The reference cross-sectional analysis is 
carried out using IDEA StatiCa Beam software, whose main assumptions are described in Ap-
pendix A, A.1. For the purposes of this comparison to design codes, the model was adapted from 
the experimental results (e.g., safety coefficients were applied to the model). Therefore, it is not 
possible to directly compare the results of the CSFM to the experimental results. This comparison 
will be addressed in Section 6.2 for Specimens TA9, TA10, TA11 and TA12, covering a range 
of areas from bending to shear failures. 
 
 

 

Fig. 5.34 Diagram of beam geometry in the CSFM (dimensions in [m]). 

 

The geometry of Beam TA9 was extracted from Leonhardt and Walther (1963): A simply 
supported beam with a total length of 3.44 m and a clear distance between supports of 3.00 m 
(see Fig. 5.34). The beam was reinforced with longitudinal reinforcement, which was 6∅24 
in 2 layers at the bottom of the beam and 4∅10 at the top. Shear reinforcement was provided by 
vertical stirrups 2∅12 with 113 mm spacing, placed in the web of the cross-section. 
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In the CSFM, if a cross-section has flanges that are too wide, an effective cross-section with 
reduced flange width is considered by default in the calculation (see 3.6.3). While an effective 
cross-section would normally be considered by default in this case in the CSFM, in this section 
the cross-section dimensions were left unchanged compared to the TA9 geometry defined by 
Leonhardt and Walther (1963), see Fig. 5.35. A comparison of the influence of different effective 
widths of the upper flange can be found in Section 6.2. It should be noted that while in models 
input via a beam template the default value of the effective flange depth that cannot be modified, 
users can freely choose its value when defining the structural member with a wall or general 
templates (see Section 3.6.3). 

 

Fig. 5.35 T-shaped cross-section dimensions: (a) Cross-section of the specimen; (b) simplified 
cross-section used in the calculation model in the CSFM (dimensions in [mm]). 

The beam was loaded by a uniform line load, which represented the permanent part of the 
load g = 3 kN/m, and by two point loads representing the variable part q = 328 kN (see Fig. 5.36). 
These values of the loads were used in ULS fundamental, SLS characteristic and SLS quasi-
permanent combinations (see Table 5.12). 

5.5.2 Modeling with the CSFM  

The calculation model created in the CSFM contained a beam member (defined by the T-cross-
section specified in Fig. 5.35) of length 3.44 m. Two bearing plates with point supports were 
defined as well at both ends of the beam. 

Two load cases and three combinations were defined in IDEA StatiCa Detail. Permanent and 
variable loads were defined in separate load cases. The combinations were defined using the 
combination rules stated in Table 5.13. 
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Fig. 5.36 Beam TA9 loaded by: (a) Permanent load; (b) variable loads. 

 

Table 5.13 Defined load cases and combinations. 

Name/Type Description 
LC1/Permanent g = 3 kN/m 

LC2Variable Q = 2 x 164 kN 
C1/ULS 1.35 LC1 + 1.5 LC2 

C2/SLS Characteristic 1.0 LC1 + 1.0 LC2 
C3/SLS Quasi-permanent 1.0 LC1 + 0.3 LC2 
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The basic material properties were extracted from Leonhardt and Walther (1963). Table 5.14 
provides an overview of the most relevant data used in this example. 

Table 5.14 Input data for Beam TA9. 

Characteristic tensile strength of reinforcement ftk [MPa] 5482) 
Characteristic yield strength of reinforcement fyk [MPa] 4351) 

Partial factors for reinforcement γs  1.152) 
Characteristic strain limit of reinforcement εuk [‰] 302) 

Modulus of elasticity of reinforcement Es [GPa] 2002) 
Characteristic concrete compressive strength fck [MPa] 18.31) 

Concrete strain when reaching the maximum strength εc2 [‰] 2.02) 
Partial factors for concrete γc  1.52) 

1) Extracted from Leonhardt and Walther (1963) 
2) Extracted from EN 1992-1-1 

5.5.3 Ultimate limit state 

The design characteristics of the materials were used for the ULS check. The CSFM model and 
the IDEA StatiCa RCS/Beam model were created to be consistent with EN 1992-1-1 specifica-
tions for the ULS. The structural response predictions were evaluated and each component (con-
crete, reinforcement, anchorage) was checked for both models. The main results are outlined and 
compared below. 

Ultimate moment resistance according to IDEA StatiCa RCS/Beam 

The ultimate moment resistance calculated in IDEA StatiCa Beam was 311.8 kN·m. The limited 
deformation method (see the detailed description in Appendix A, A.2.2) was chosen to check the 
section in IDEA StatiCa RCS. The cross-sectional response for the design moment 
(MRd = 311.8 kN·m) is depicted in Fig. 5.37. 

 

Fig. 5.37 Response of the reinforced cross-section, strain and stress distribution at the limit state  
according to IDEA StatiCa RCS for MRd = 311.8 kN·m. 
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Ultimate moment resistance in IDEA StatiCa Detail   

The calculation of the C1 ULS combination attained 100% of permanent load and 99.7% of var-
iable load (see the summary results from the CSFM in Fig. 5.38), which corresponds to an ulti-
mate moment resistance for the governing midspan section of MRd = 311 kN·m. The approximate 
integration of the stress diagram presented in Fig. 5.39 for the cross-section at midspan leads to 
an estimation of the ultimate moment resistance of about 326 kN·m, slightly higher than the exact 
value. 

 

Fig. 5.38 Results from IDEA StatiCa Detail: (a) Summary of CSFM results; (b) stresses in 
concrete; (c) stresses in reinforcement. 

 

Fig. 5.39 Stress-strain distribution at the ultimate limit state. 
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Table 5.15 compares the main results from the CSFM and the cross-sectional analysis per-
formed by IDEA StatiCa RCS. The results show excellent agreement between both methods, with 
an almost identical prediction of the ultimate moment resistance. 

Table 5.15 Comparison of strains and stresses at the ultimate limit state. 

Approach εc,upper 
[1e-4] 

εc,lower 
[1e-4] 

σc 
[MPa] 

σs,upper 
[MPa] 

σs,lower 
[MPa] 

MRd 
[kN·m] 

IDEA StatiCa RCS -14.8 21.5 -11.4 -264.7 378.5 312 
CSFM -14.8 20.0 -11.3 -298.9 378.5 311 

 

5.5.4 Serviceability limit state 

Stress limitation 

Stress limitation checks are provided in the CSFM for characteristic and quasi-permanent com-
binations and for both short and long-term effects. The creep coefficient considered was ϕ = 2.5 
(default value in the CSFM, Section 3.6.8). The main results for a characteristic combination are 
illustrated in Fig. 5.40. 

 

Fig. 5.40 Results of serviceability stress calculations in the CSFM for a characteristic 
combination: (a) Short-term model; (b) long-term model. 

The response under the characteristic combination was also calculated in IDEA StatiCa RCS 
(see the main hypothesis in Appendix A, A.1), and the results are shown in Fig. 5.41. The results 
of both approaches are compared in Table 5.16, showing excellent agreement for both concrete 
and reinforcement stresses. 
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Fig. 5.41 Strain and stress distributions for a characteristic combination calculated  
in IDEA StatiCa RCS: (a) Short-term model; (b) long-term model. 

Table 5.16 Comparison of serviceability stress limits. 

Approach σc,st [MPa] σs,st [MPa] σc,lt [MPa] σs,lt [MPa] 
IDEA StatiCa RCS 11.9 241.3 8.3 256.2 
CSFM 11.9 234.1 8.4 251.4 

 

Crack widths 

A crack width check is provided in the CSFM for the quasi-permanent combination (as prescribed 
in EN 1992-1-1) in the vicinity of the reinforcement. Fig. 5.27 shows the crack width results from 
the CSFM as well as those obtained from IDEA StatiCa Beam software (reference calculation of 
a cross-sectional analysis performed according to EN 1992-1-1). The agreement is excellent. It 
should be noted that the presentation of crack spacings in the CSFM is just schematic and does 
not represent the crack spacing computed internally in the software.  

 

Fig. 5.42 Crack width verification results: (a) Crack direction and opening according to the 
CSFM; (b) calculation according to IDEA StatiCa Beam. 
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Table 5.17 Comparison of crack width results 

Approach w [mm] 
IDEA StatiCa Beam 0.031 

CSFM 0.026 

Deflections 

Short-term and long-term deflection results provided by the CSFM and by IDEA StatiCa Beam 
are presented in Fig. 5.43. The results at midspan are compared in Table 5.18, showing that the 
CSFM model exhibits significantly lower stiffness in comparison with the conventional cross-
sectional analysis performed with IDEA StatiCa Beam software. 

 
Fig. 5.43 Detailed deflection results: Short-term deflections in (a) CSFM and (b) IDEA StatiCa 

Beam; long-term deflection in (c) CSFM and (d) IDEA StatiCa Beam. 
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Table 5.18 Comparison of deflection results. 

Approach ∆st [mm] ∆lt [mm] 
IDEA StatiCa Beam 3.4 5.6 

CSFM 4.9 7.2 

 

It should be noted that the CSFM provides an excellent estimation of the experimental deflec-
tions for service loads (see Section 6.2); therefore, the deflections provided by the CSFM should 
be considered more accurate in this particular case. This might be explained by the better approx-
imation of the shear deformations in the CSFM. In this example of a relatively short beam (shear-
to-span to depth ratio in the order of 3.0), the contribution of the shear deformations to the total 
deflections is high. Hence, the CSFM predicts the deflections well, whereas a cross-sectional 
analysis in which the shear deformations are neglected tends to underestimate the deformations. 
However, for other examples of longer beams, where the contribution of shear deformations is 
very limited (see Sections 5.3.4 and 5.4.4), both approaches provide accurate results. 

5.5.5 Conclusions 

This chapter considered a simply supported T-beam, comparing the results obtained using the 
CSFM (2D model of the structure) with those of a cross-sectional analysis performed with IDEA 
StatiCa Beam/RCS software (1D model of the structure). The matching between ultimate limit 
state results is excellent, both for the prediction of the ultimate moment resistance as well as for 
the stress and strain results at midspan.  

The strain and stress distributions at the midspan section for the serviceability limit state are 
almost the same, as is the case with the ultimate limit state. The difference in crack width results 
is satisfactory. However, only stabilized cracks in the main bending reinforcement could be com-
pared. Unlike the previous two examples (both simply supported slender beams with a large shear 
span-to-depth ratio, which allows shear deformations to be neglected, assuming that plane sec-
tions remain plane and normal to the axis of the beam), this beam shows the influence of shear 
deformations in the deflections of the beam. In order to approximate the deformations properly 
in this example using a 1D model, it would be necessary to consider Timoshenko’s beam theory 
during the cross-sectional analysis. In the CSFM, the shear deformations are automatically taken 
into account (if the cross-section is meshed with an appropriate number of elements). Therefore, 
the CSFM is a general model that provides good results both for slender members as well as for 
deep members and discontinuity regions that cannot be modeled with conventional cross-sec-
tional analysis. 
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6 Experimental validation 

6.1 Introduction 

This chapter describes the validation of the Compatible Stress Field Method (CSFM) via the 
analysis of its ability to reproduce the real behavior observed in selected experimental campaigns 
from the literature. The analyzed experiments cover a wide range of structural typologies and 
failure modes. The validation comprises not only predictions of ultimate load, but also of load-
deformation response and, in some cases, crack widths. This strategy of conducting in-depth val-
idations for selected key experiments provides proofing that the CSFM works well for most of 
the cases to which it is applicable. 

The following groups of tests, comprising 29 experiments in total, have been studied for the 
validation of the CSFM: 

 Section 6.2 analyzes four-point bending tests conducted on T-Beams by Leonhardt 
and Walther (1963). The four selected experiments from this campaign differed in 
the amount of shear reinforcement employed. The result was a range of different 
observed failure modes ranging from bending to shear (information about the clas-
sification used for failure modes is given in Section 6.1.1). 

 Section 6.3 discusses tests performed on cantilever wall-type bridge piers by Bim-
schas (2010) and Hannewald et al. (2013). Three experiments are analyzed in this 
case. Each features different amounts of flexural reinforcement and shear slender-
ness (varying wall height). All of the selected experiments resulted in flexural failure 
(yielding of the reinforcement and local concrete crushing in the connection with the 
pier foundation), but the specimens showed different levels of deformation capacity. 

 Section 6.4 analyzes 17 shear tests carried out on beams during campaigns performed 
by Piyamahant (2002), Vecchio and Shim (2004) and Huber (2016). The tests cov-
ered a wide number of parameters, including different sizes, varying shear slender-
ness and differing amounts of shear and longitudinal reinforcement. The observed 
failure modes in these tests range from shear failures with and without rupture and 
the stirrups to bending failures and mixed shear-bending failures. 

 Section 6.5 describes the analysis of a series of tests on discontinuity regions, namely 
those conducted on concrete pier caps by Geevar and Menon (2018). The test pa-
rameters in this experimental campaign were the amount of reinforcement and the 
size of the load-bearing plates. The failure mode in all cases was concrete crushing 
of the diagonal strut from the support to the column. 

The mean material properties from the experiments were used in the CSFM without any safety 
coefficient in order to enable it to predict the mean experimental behavior. For all of the numerical 
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analyses, the modulus of elasticity (Es) of the reinforcement and the ultimate concrete compres-
sive strain (εcu) were set to 200 GPa and 3.5‰, respectively. An analysis using the default nu-
merical parameters described in Chapter 3 (implemented in IDEA StatiCa Detail software) was 
conducted for all tests. This default model is referred to as Model 0 (M0). While in IDEA StatiCa 
Detail an infinitely plastic branch of concrete in compression is considered by default, in all of 
the presented analyses concrete crushing was explicitly verified as described in Table 6.1. This 
allowed the deformation capacity of the members to be estimated for all possible failure modes. 
Analyses with parameters which are different from the default ones were also performed. This 
allowed the sensitivity of the results to the input numerical parameters and the suitability of the 
default values to be studied. The parameters in question (e.g., the type of tension stiffening 
modeling) differ from case to case, depending on their relevance. The influence of finite element 
mesh size was studied in all cases. 

6.1.1 Definition of failure modes 

In order to compare the observed failure modes in the experiments with those predicted by the 
CSFM, the failure modes are classified as follows: flexural (F), shear (S) and anchorage (A). It 
should be noted that none of the experiments covered in this chapter exhibited an anchorage 
failure. Table 6.1 defines different failure subtypes depending on whether flexural and shear fail-
ures are triggered by failure of the concrete or of the reinforcement. While yielding of the rein-
forcement does not represent a material failure, this is included as a failure subtype in combina-
tion with concrete crushing due to the importance of distinguishing concrete crushing failures 
without reinforcement yielding (very brittle) from those happening after the yielding of the rein-
forcement (which can exhibit a certain deformation capacity). 

Table 6.1. Definition of failure modes. 

F: Flexural failure   →  CC           or           CC+FY           or           FR 

S: Shear failure     →  CC           or           CC+SY           or           SR 

A: Anchorage failure 

FY, SY: Yielding of the flexural or shear reinforcement, respectively (in the CSFM when fy ≤ σsr < ft) 
FR, SR: Rupture of the flexural or shear reinforcement, respectively (in the CSFM when σsr = ft) 
CC: Concrete crushing (in the CSFM when ∣εc3∣ ≥ ∣εcu2∣=3.5‰ over a length equal to the thickness of the    
  region, or if the calculation diverges due to strain softening) 

6.2 Four-point bending tests on T-beams  

This section analyzes an experimental investigation involving four-point bending tests performed 
on T-beams by Leonhardt and Walther (1963). This experimental campaign comprised 18 tests 
conducted on reinforced concrete beams with constant geometry and varying reinforcement lay-
outs for the stirrups. Specimens TA9, TA10, TA11 and TA12 (with vertical stirrups and varying 
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reinforcement amounts) were chosen for comparison with results gained from the CSFM, since 
they cover a wide range of failure modes from shear to flexural. 

6.2.1 Experimental setup 

All of the investigated beams had the same geometry and reinforcement arrangements, as shown 
in Fig. 6.1. The beam span (spacing between the supports) was 3000 mm. The flanges had a width 
of 960 mm and a depth of 80 mm. The webs had a width of 160 mm, and the total depth of the 
beams was 440 mm. Each of the two applied loads (P/2) was applied at a distance of 1250 mm 
from the supports, which resulted in a spacing between loads of 500 mm. The flexural reinforce-
ment consisted of six reinforcing bars of 24 mm in diameter. Four longitudinal reinforcing bars 
with a diameter of 10 mm were placed in the flange. Open stirrups with hooked ends at the top 
(see Fig. 6.1a) were used as shear reinforcement; these were always placed at a spacing of st = 113 
mm. The only parameter that varied between specimens TA9, TA10, TA11 and TA12 was the 
diameter (Øt) of the stirrups, which led to different geometric reinforcement ratios (ρt,geo) (see 
Table 6.2). 

(a) 

 

(b) 

 

Fig. 6.1. Test setup, geometry and reinforcement of specimens TA9 – TA12: (a) Cross-section; 
(b) longitudinal view; (dimensions in [cm]; extracted from Leonhardt and Walther (1963)). 

Table 6.2. Relevant parameters of the analyzed specimens. 



106  |  COMPATIBLE STRESS FIELD DESIGN OF STRUCTURAL CONCRETE 

Specimen 
Øt  st  ρt,geo  

[mm] [mm] [%] 

TA9 12 113 1.25 (>ρcr = 0.71)) 
TA10 10 113 0.87 (>ρcr = 0.71)) 
TA11 8 113 0.55 (<ρcr = 0.71)) 
TA12 6 113 0.31 (<ρcr = 0.71)) 
1) ρcr calculated with Eq. (3.5) considering fct = 1.9 MPa. 

6.2.2 Material properties 

The material properties of the concrete and reinforcement used in the CSFM analysis are sum-
marized in Table 6.3. The modulus of elasticity (Es), the yield stress (fy) and the ultimate stress 
(ft) of the reinforcement as well as the compressive strength (fc) of the concrete are directly ex-
tracted from the experimental report (Leonhardt and Walther 1963). This report only provides 
the experimental stress-strain relationships of the reinforcing bars up to a strain of 12 ‰. The 
ultimate strain of the bare reinforcement (εu) is estimated based on the known experimental values 
(fy, ft and incomplete stress-strain relationships) and assuming a bilinear response. Fig. 6.2a illus-
trates this estimate for the case of Øt = 12 mm. The values obtained for the failure strain εu for all 
used diameters are given in Table 6.3. The compressive strain of concrete at peak stress (ɛc0, see 
Fig. 3.1c) is directly extracted from the experimental concrete stress-strain relationship (see Fig. 
6.2b). 

Fig. 6.2. Calculations based on the stress-strain relationships in Leonhardt and Walther (1963): 
(a) Ultimate strain ɛu of reinforcement  (e.g. for Øt = 12 mm); (b) concrete strain ɛc0. 
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Table 6.3. Material properties used in the CSFM analyses. 

Specimen 

Shear reinforcement Flexural reinforcement Concrete 

fy
1) ft

1) ɛu
2) fy

1) ft
1) ɛu

2) fc
1) ɛc0

3) 

[MPa] [MPa] [‰] [MPa] [MPa] [‰] [MPa] [‰] 

TA9 412 537 28 400 536 22.2 26.5 2.2 

TA10 420 538 36 400 536 22.2 26.5 2.2 

TA11 405 526 27 400 536 22.2 26.5 2.2 

TA12 435 570 29 400 536 22.2 26.5 2.2 

1) Directly extracted from Leonhardt and Walther (1963) 
2) Calculated as shown in Fig. 6.2a  
3) Calculated as shown in Fig. 6.2b 

 

6.2.3 Modeling with the CSFM 

The geometry, reinforcement, supports and loading conditions were modeled in the CSFM ac-
cording to the experimental setup (see Fig. 6.3a). Several numerical calculations were carried out 
using different values for the following parameters: 

 The multiplier of the flange depth (MFD), which is the inverse of the slope consid-
ered for the expansion of the compression field into the flange (see Figure 6.3) to 
account for the shear lag effect (see Section 3.6.3). The MFD coefficient was set to 
1.0 (default value in IDEA StatiCa Detail) and 3.0 (slightly above the recommenda-
tion of the fib Model Code 2010 for this specific configuration). These settings define 
the effective flange width (beff), which yield to beff = 350 mm and beff = 670 mm, re-
spectively (Figure 6.3b-c). 

 The consideration or not of potentially non-stabilized cracking in stirrups. When 
considered (by default), the Pull-Out Model (POM) defines tension stiffening in stir-
rups with geometric reinforcement ratios below (ρcr) (Eq. (3.5)), while the Tension 
Chord Model (TCM) is used for other bars and stirrups above (ρcr). When deac-
tivated, the models account for tension stiffening by means of the TCM in all cases.  

 The mesh size, which was 5 (the default value in IDEA StatiCa Detail for this par-
ticular example), 10 or 15 finite elements over the beam’s depth. The default mesh 
is very coarse in this geometry (i.e., designers should avoid using fewer than four 
finite elements in a cross section); therefore, only finer meshes than the default one 
are analyzed in this study. 

 The crack spacing coefficient (λ) was varied to consider minimum (λ = 0.5), average 
(λ = 0.67, default value) and maximum crack spacing (λ = 1.0). This parameter af-
fects the tension stiffening behavior of reinforcing bars with stabilized crack patterns 
(see Section 3.3.4). 
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Table 6.4 shows the parameters used in each numerical calculation (model M0 to M6). M0 
corresponds to the model with the default settings in the CSFM. As will be discussed in Section 
6.2.4, the default value of the multiplier of the flange depth was too conservative in this case and 
led to an excessively soft response. Therefore, the default value (MFD = 1; beff = 350 mm) was 
only used in M0. In the other models, the MFD was set to 3 (beff = 670 mm). 
 

Fig. 6.3. Example of modeling with the CSFM, Specimen TA9: (a) Input geometry; (b)-(c) 
effective cross section considered in the calculation for a flange depth multiplier of MFD = 1.0 

(beff = 350 mm) and MFD = 3.0 (beff = 670 mm); (dimensions in [m]). 

Table 6.4. Investigated numerical parameters (variations to M1 shaded). 

Model MFD1) (beff) Mesh size2) λ3) POM4) 

M0 (def.) 1 (350 mm) 5 0.67 Yes 
M1 3 (670 mm) 5 0.67 Yes 
M2 3 (670 mm) 10 0.67 Yes 
M3 3 (670 mm) 15 0.67 Yes 
M4 3 (670 mm) 5 0.67 No 
M5 3 (670 mm) 5 0.50 Yes 
M6 3 (670 mm) 5 1.00 Yes 

1) Multiplier of Flange Depth 
2) Number of elements over the beam’s height 
3) Crack spacing coefficient 
4) Pull-Out Model 

(a) 

 

(b) (c) 

     

1 
1 

1 
3 
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6.2.4 Comparison with experimental results  

This section provides comparisons between the experimental results and the ultimate loads and 
failure modes provided by the CSFM. In order to also verify the use of the CSFM for servicea-
bility behavior, the load-deformation response and crack patterns predicted by the numerical anal-
yses are compared with those from the tests. Furthermore, the measured and calculated crack 
widths are compared for specimens TA9 and TA12, which exhibited flexural and shear failures, 
respectively. 

Failure modes and ultimate loads 

Table 6.5 summarizes the ultimate loads measured in the tests (Pu,exp), the ultimate loads predicted 
by the CSFM (Pu,calc), and the respective failure modes. P denotes the total applied force. This 
table also provides the mean and the coefficient of variation (CoV) of the ratios between the 
measured and the calculated ultimate loads for each numerical model. Ratios above one denote 
conservative predictions of the ultimate load. As seen in Table 6.5, the basic failure modes in all 
CSFM analyses agree with the experimental results, but differences in the failure subtypes are 
observed in some cases for Specimen TA11, and in one case for TA12. The predictions of the 
ultimate loads given by the default model (M0) are very satisfactory, yielding slightly conserva-
tive results (12% on average) with a very small scatter among the analyzed beams. 

Table 6.5. Experimental and predicted ultimate loads (in kN) and failure mechanisms1). 

Specimen Test M0 M1 M2 M3 M4 M5 M6 

TA9 700 
F(CC+FY) 

651 
F(CC+FY) 

762 
F(CC+FY) 

735 
F(CC+FY) 

728 
F(CC+FY) 

762 
F(CC+FY) 

761 
F(CC+FY) 

764 
F(CC+FY) 

TA10 714 
F(CC+FY) 

620 
F(CC+FY) 

719 
F(CC+FY) 

705 
F(CC+FY) 

691 
F(CC+FY) 

719 
F(CC+FY) 

717 
F(CC+FY) 

722 
F(CC+FY) 

TA11 684 
S(CC+SY) 

610 
S(SR) 

642 
S(SR) 

618 
S(SR) 

619 
S(SR) 

636 
S(CC+SY) 

641 
S(SR) 

644 
S(SR) 

TA12 540 
S(SR) 

476 
S(SR) 

487 
S(SR) 

463 
S(SR) 

462 
S(SR) 

531 
S(CC+SY) 

486 
S(SR) 

489 
S(SR) 

,

u,exp

u calc

P
P

  mean 1.12 1.01 1.05 1.06 1.00 1.01 1.01 
CoV 0.03 0.08 0.09 0.08 0.06 0.08 0.08 

1) Abbreviations for failure modes according to Table 6.1  

 

The differences among the CSFM analyses can be easily analyzed in Fig. 6.4, where the ratios 
of experimental and calculated ultimate loads (Pu,exp/Pu,calc) are shown. Increasing the effective 
flange width from the default value (MFD = 1; beff  = 350 mm) in model M0 to the value specified 
by the fib (International Federation for Structural Concrete 2013) (MFD = 3; beff = 670 mm) in 
model M1 led to an increase in the ultimate loads (Fig. 6.4a). The influence of the flange width 
was very small in those tests where failure in shear occurred (TA11 and TA12), but significant 
(up to 14%) in the case of bending failures (TA9 and TA10). The consideration of an increased 
effective flange width (model M1) led on average to better results than with the default model, 
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but at the cost of a larger scatter. Hence, M1 is used in Fig. 6.4 as the reference model for the 
following comparative analyses. 

Fig. 6.4. Influence of numerical parameters on the ratio of measured to calculated ultimate 
loads: (a) Sensitivity to different multipliers of the flange depth (MFD); (b) consideration or not 

of the Pull-Out Model (POM) in the stirrups for low amounts of reinforcement; (c) mesh size 
sensitivity; (d) influence of different crack spacing coefficients (λ). 

The results of the consideration or not of potentially non-stabilized cracking in stirrups are 
shown in Fig. 6.4b. This parameter only affected the results for Specimens TA11 and TA12 (TA9 
and TA10 have a large amount of stirrups – ρt,geo > ρcr, see Table 6.2 – and therefore tension 
stiffening was accounted for by using the Tension Chord Model (TCM) regardless of this setting). 
In numerical model M1, the tension stiffening of TA11 and TA12 was modeled with the Pull Out 
Model (POM), but the TCM was used in M4. Using the POM or the TCM had a small impact on 
the strength predictions in this particular case (a maximum of 10% for TA12), since the amount 
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of stirrups is quite high in all cases. The consideration of the POM is more relevant when mod-
eling structural elements with a lower amount of stirrups, as will be discussed in Section 6.4. The 
influence of the mesh size and the crack spacing parameters on the ultimate load was very small 
in this case (the differences are below 5%, see Fig. 6.4c-d). 

Figures 6.5 to 6.8 show the resulting stress fields and the identification of failure modes. In 
Figures 6.5a to 6.8a, the observed failure modes are marked on top of the photos of the tested 
specimens (for TA10 the reported concrete crushing in bending is not marked since it is not evi-
dent in the photo). The failure modes predicted by the numerical model M1 are highlighted in 
Figures 6.5c to 6.8c, which show the stress fields at ultimate limit state, including the principal 
compressive stresses (σcr3) and the steel stresses (σsr) at the cracks. M1 corresponds to the default 
parameters, except for the effective flange width, which is based on the fib Model Code 2010 
(International Federation for Structural Concrete 2013). The predicted failure modes agree fairly 
well with the experimental observations, including their location. The model of Beam TA11 is 
slightly conservative since it predicts a failure of the stirrups, while only their yielding is reported 
in the experiments. The calculation of cracked regions and the magnitudes of the crack widths 
(represented by the length of the lines) at the onset of yielding are plotted in Figures 6.5b to 6.8b. 
The numerical parameters from M1 are also used in this case. The predicted cracked regions and 
crack orientations agree well with the experimental observations at failure in Figures 6.5a, 6.6a, 
6.7 and 6.8a. 

Fig. 6.5. Results for TA9: (a) Observed crack pattern at ultimate extracted from Leonhardt and 
Walther (1963); (b) calculated crack pattern at yielding and stress fields at ultimate for M1. 
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Fig. 6.6. Results for TA10: (a) Observed crack pattern at ultimate extracted from Leonhardt and 
Walther (1963); (b) calculated crack pattern at yielding and stress fields at ultimate for M1. 

Fig. 6.7. Results for TA11: (a) Observed crack pattern at ultimate extracted from Leonhardt and 
Walther (1963); (b) calculated crack pattern at yielding and stress fields at ultimate for M1. 
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Fig. 6.8. Results for TA12: (a) Observed crack pattern at ultimate extracted from Leonhardt and 
Walther (1963); (b) calculated crack pattern at yielding and stress fields at ultimate for M1. 

Load-deformation response 

Fig. 6.9 shows the measured load-deformation response as well as the calculated responses using 
the default numerical parameters (Model M0 with MFD = 1 and beff = 350 mm) and the increased 
flange width according to the fib Model Code 2010 (Model M1 with MFD = 3 and beff = 670 mm). 
The load-deformation responses predicted by the other analyzed models (M2 to M6) are very 
similar to those from model M1 and not shown here. The value of the load P corresponds to the 
total applied force and u corresponds to the deflection at midspan (see e.g., Fig. 6.5b). Leonhardt 
and Walther (1963) did not report complete load-deformation responses. Hence, the graphs con-
tain two grey horizontal lines: (i) a dashed line indicating the maximum load for which deflections 
were reported and (ii) a continuous line indicating the ultimate experimental load. 

A good agreement was found between the calculated load-deformation response and the ex-
perimental results in all tests within the range of the available measurement data. While the cal-
culation using default parameters (M0) is slightly too soft, the use of an increased flange depth 
(M1) provides an excellent agreement. The comparison of the predictions of the load-deformation 
response shows that it is possible to realistically capture very different deformation capacities, as 
obtained in the tests depending on the amount of shear reinforcement. 
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Fig. 6.9. Measured and calculated load-deformation response using the numerical models M0 and M1 
for: (a) TA9; (b) TA10; (c) TA11; (d) TA12 (dotted grey lines indicate the loads until which deflections 

are reported; continuous grey lines indicate the ultimate experimental loads). 
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Crack widths at service loads 

Fig. 6.10a-b compares the crack widths (w) predicted by the CSFM with the maximum values 
reported by Leonhardt and Walther (1963). Two tests with different failure modes are studied in 
this comparison: Test TA9 (flexural failure) and TA12 (shear failure). The crack widths were 
measured for the flexural reinforcement in TA9 and in the middle of the web in TA12 (see Fig. 
6.10c). As stated in Section 3.5.4, the models used to calculate crack widths are only valid if the 
reinforcement remains elastic. Hence, the crack width results in Fig. 6.10 are given only up to the 
yielding load. It should be noted that the first crack width measurement for specimen TA12 was 
performed after yielding. Hence, Fig. 6.10b does not show any measuring point, just the linear 
interpolation up to the first measurement. The predictions were carried out using the numerical 
models M1, M5 and M6, which only differ in the crack spacing coefficients used for the crack 
width calculation: λ = 0.67 (mean), λ = 0.5 (minimum) and λ = 1.0 (maximum). 

Fig. 6.10. Measured and calculated crack widths (w): (a) TA9; (b) TA12; (c) locations in which 
the crack widths are measured and computed. 
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The numerical results for TA9 predict the measured bending crack widths very well (see Fig. 
6.10a). The CSFM results for the maximum crack widths (M6 with crack spacing coefficient λ = 

1) agree excellently in this case with the observed maximum crack widths. As expected, a de-
creasing crack spacing coefficient (λ) leads to smaller crack widths. However, the crack widths 
calculated in regions with non-stabilized cracking (as in the web of TA12, see Fig. 6.10b) are 
independent of the crack spacing coefficient, since the calculation does not rely in this case on 
crack spacing (see Fig. 3.10e). The calculated crack widths in regions with non-stabilized crack-
ing should be interpreted as good estimates of the maximum expected crack widths. Fig. 6.10b 
shows the predicted crack widths in the web of TA12, which match the measured maximum crack 
widths fairly well. As already mentioned, only the range in which all reinforcement remains elas-
tic is shown, since only in this range the CSFM provides appropriate crack width results. 

6.2.5 Conclusions 

A good correspondence is found between the results from the CSFM and the experimental obser-
vations. The following conclusions can be stated: 

 The use of the default parameters in IDEA StatiCa Detail leads to slightly conserva-
tive estimates of ultimate loads, load-deformation response and failure modes.  

 The analysis of the sensitivity of the model to parameters different from the default 
ones shows that the most relevant parameter in this case is the considered value of 
the effective flange width. Designers can change the default width by inputting the 
geometry via a wall or general shape templates. The larger effective flange width 
provided by the fib Model Code 2010 leads to very accurate estimates of the exper-
imental ultimate loads, deflections and crack widths. 

 The consideration of tension stiffening by means of the Pull Out Model in the beam 
with the lowest amount of stirrups predicts an ultimate load that errs on the safe side 
by around 10%. When using the Tension Chord Model, the experimental failure 
mode cannot be properly captured. This mismatch can impact the accuracy of the 
ultimate load predictions particularly for low amounts of stirrups (as will be dis-
cussed in Section 6.4). 

 The crack spacing coefficient and the mesh size do not significantly affect ultimate 
loads and failure modes. The crack spacing coefficient only has a significant influ-
ence on the crack width results of those reinforcing bars in which the Tension Chord 
Model is used for tension stiffening.  

6.3 Cantilever wall-type bridge piers 

This section is dedicated to the simulation via the CSFM of the load-deformation response of 
three out of seven cantilever wall-type bridge pier experiments performed by Bimschas (2010) 
and Hannewald et al. (2013). These experiments were conducted under a vertical constant load, 
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combined with a cyclic (but quasi-static) horizontal force. The design and detailing of the speci-
mens was similar to that of existing bridge piers with seismic deficiencies. Specimens VK1, VK3 
and VK6 were selected for analysis with the CSFM. These specimens had different amounts of 
flexural reinforcement and shear slenderness (achieved by varying the height of the walls). It 
should be noted that the CSFM just aims at describing the envelope of the cyclic response (so-
called “backbone”) using a monotonic model. 

6.3.1 Experimental setup 

All piers were 1500 mm deep and 350 mm wide. The total height (H) of specimens VK1 and 
VK3 was 3700 mm, and that of VK6 was 4850 mm, see Fig. 6.11. The specimens stood on a stiff 
foundation block, which will not be modeled in the CSFM. 

Fig. 6.11. Geometry and reinforcement of the specimens: (a) Longitudinal view of VK1 (VK3 
was analogous to VK1 but had twice the flexural reinforcement); (b) longitudinal view of VK6; 

(c) cross-section of VK1, VK3 and VK6; (extracted from Bimschas (2010)  
and Hannewald et al. (2013); dimensions in [mm]). 
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In all tests, a constant vertical load of 1370 kN was applied to the top of the piers. After the 
vertical force was applied, the specimens were subjected to a horizontal cyclic load (V) applied 
quasi-statically at an effective height above the foundation block of Heff = 3300 mm in the case of 
VK1 and VK3 and Heff = 4500 mm for VK6. The application of the horizontal load was displace-
ment-controlled. The flexural reinforcement (vertical direction) consisted of continuous reinforc-
ing bars with a diameter of Øl = 14 mm distributed along the cross-section with a spacing sl of 130 
mm for VK1 and 90 mm for VK3 and VK6. The resulting geometric reinforcement ratios ρl,geo 
are summarized in Table 6.6. The flexural reinforcement was anchored at the foundation (anchor-
age length of 200 mm plus end hooks). All specimens had the same shear reinforcement (hori-
zontal direction) consisting of hoops of diameter Øt = 6 mm at a spacing of st = 200 mm. This 
resulted in a very low shear reinforcement ratio of ρt,geo = 0.08 % (which is below the critical 
reinforcement ratio according to Eq. (3.5)). The stirrup spacing was reduced to 75 mm at the 
region where load was applied (top of the pier). Relevant parameters are stated in Table 6.6. 

Table 6.6. Relevant parameters of the analyzed specimens. 

Specimen 
Øl sl  ρl,geo  H Heff 

[mm] [mm] [%] [mm] [mm] 

VK1 14 130 0.82 3700 3300 
VK3 14 90 1.23 3700 3300 
VK6 14 90 1.23 4850 4500 

 

6.3.2 Material properties 

Table 6.7 summarizes the material properties used in the CSFM analysis, which are based on the 
material tests carried out by Bimschas (2010) and Hannewald et al. (2013). The properties not 
provided in these reports (the ultimate strain of the flexural reinforcement ɛu and the concrete 
strength fc for VK6, as well as the concrete strain at peak load ɛc0 for all tests) were assumed to 
be as indicated in Table 6.7 (expected mean values for materials used). 

Table 6.7. Material properties used in the CSFM analyses. 

Speci-
men 

Shear reinforcement Flexural reinforcement Concrete 
fy

1) ft
1) ɛu

1) fy
1) ft

1) ɛu fc ɛc0
2) 

[MPa] [MPa] [‰] [MPa] [MPa] [‰] [MPa] [‰] 
VK1 518 681 84 515 630 1261) 351) 2 
VK3 518 681 84 515 630 1261) 341) 2 
VK6 528 680 84 521 609 1262) 342) 2 

1) Directly extracted from Bimschas (2010); Hannewald et al. (2013) 
2) Assumed value 
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6.3.3 Modeling with the CSFM 

The geometry, reinforcement, supports and loading conditions were modeled in the CSFM ac-
cording to the experimental setup (see Fig. 6.12). 

Fig. 6.12. Example of modeling with the CSFM: VK1 (dimensions in [m]). 

The foundation was not included in the model. To simulate the fixed-end support properly, 
the flexural bars were anchored outside of the concrete region and the anchorage length was not 
verified in the calculation. Several numerical calculations were carried out using different values 
for the following parameters: 

 The mesh size, which was 5, 15 (the default value in IDEA StatiCa Detail for this 
particular example) and 25 finite elements along the wall’s width. 

 The consideration or not of the tension stiffening effect. By default tension stiffening 
(TS) is considered in the CSFM. 

 The stress-strain relationship for the reinforcement. By default, a bilinear stress-
strain relationship is used in the CSFM. A refined analysis was also performed con-
sidering the actual stress-strain relationship of the reinforcement (cold-worked for 
the flexural and hot-rolled for the shear reinforcement) and accounting for the initial 
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uncracked stiffness. This refined behavior was simulated via a user-defined rein-
forcement stress-strain relationship. 

The parameters used in each numerical calculation (model M0 to M4) are summarized in 
Table 6.8. Model M0 corresponds to the default settings in the CSFM. 

Table 6.8. Investigated numerical parameters (variations to M0 shaded). 

Model Mesh size1) Tension stiffening Steel law 
M0 (def.) 15 Yes Bilinear 

M1 25 Yes Bilinear 
M2 5 Yes Bilinear 
M3 15 Yes Refined2) 
M4 15 No Bilinear 

1) Elements over the pier’s width 
2) The actual reinforcement stress-strain relationship and uncracked stiffness 

are accounted for. 

 

An example of the influence of the used parameters on the response of the reinforcement 
(including the tension stiffening effect) is illustrated in Fig. 6.13 for the flexural reinforcement. 
The consideration of the uncracked stiffness is reflected in the elastic part of these diagrams. 

Fig. 6.13. Stress-strain relationships of the flexural reinforcement in terms of average strains 
(i.e., considering the stiffening effect of concrete between cracks) for different parameters. 
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6.3.4 Comparison with experimental results 

The ultimate shear force (i.e., the horizontal applied load), the failure modes and the load-defor-
mation response determined by the CSFM are compared with the corresponding experimental 
results below. 

Failure modes and ultimate loads 

The ultimate shear forces predicted by the CSFM (Vu,calc) and measured in the experiments 
(Vu,exp), and the respective failure modes, are summarized in Table 6.9. This table also provides 
the mean and the coefficient of variation (CoV) of the ratios between measured and calculated 
ultimate loads for each numerical model. Ratios above one denote conservative predictions of the 
ultimate load. As seen from Table 6.9, the failure mechanisms of all tests were predicted well by 
the CSFM, independently of the used parameters. The default model M0 leads to slightly unsafe 
strength predictions (on average 5%): A minor issue, which can be solved by using a finer mesh. 

Table 6.9. Experimental and predicted ultimate shear forces (in kN) and failure mechanisms1). 

Specimen Test2) M0 M1 M2 M3 M4 

VK1 725 
F(CC+FY) 

744 
F(CC+FY) 

685 
F(CC+FY) 

778 
F(CC+FY) 

751 
F(CC+FY) 

720 
F(CC+FY) 

VK3 876 
F(CC+FY) 

963 
F(CC+FY) 

882 
F(CC+FY) 

1003 
F(CC+FY) 

913 
F(CC+FY) 

945 
F(CC+FY) 

VK6 658 
F(CC+FY) 

684 
F(CC+FY) 

642 
F(CC+FY) 

695 
F(CC+FY) 

681 
F(CC+FY) 

667 
F(CC+FY) 

,

u,exp

u calc

V
V

 mean 0.95 1.03 0.91 0.96 0.97 
CoV 0.03 0.03 0.04 <0.01 0.04 

1) Abbreviations for failure modes according to Table 6.1  
2) Calculated as average values of the push and pull direction of the first cycle of each load level (Bimschas 2010) 

 

The sensitivity of the strength predictions of the CSFM to the different analyzed numerical 
parameters is shown in Fig. 6.14 by means of the ratio of experimental to calculated ultimate 
shear forces (Vu,exp/Vu,calc). The strength predictions show a moderate mesh size sensitivity in these 
tests (see Fig. 6.14a). A decrease in mesh size leads to a decrease in the computed ultimate loads. 
However, the predicted failure modes remain insensitive to the considered mesh size (see Table 
6.9). The difference in the ultimate loads when using 5 (Model M2) or 25 (Model M1) elements 
over the width of the wall is up to 12%. Moreover, the ultimate load is nearly independent of the 
consideration or not of tension stiffening (see Fig. 6.14b), or the use of a refined stress-strain 
relationship for the reinforcement (see Fig. 6.14c). In the analyzed experiments, these effects only 
have a relevant influence on the stiffness of the members, as will be shown below.  
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Fig. 6.14. Influence of numerical parameters on the ratio of measured to calculated ultimate 
loads: (a) Mesh size sensitivity; (b) consideration or not of tension stiffening (TS); (c) default 

(bilinear) and refined reinforcement stress strain relationships. 

Fig. 6.15a-b shows the continuous stress field results in Specimen VK1 provided by the 
CSFM for two load steps (0.5Vu,calc and Vu,calc). These results were calculated using default nu-
merical parameters (M0). It can be seen that due to plastic redistributions, the compression field 
was significantly steeper (more inclined with respect to the vertical wall axis) at ultimate. The 
predicted failure mode (concrete crushing with yielding of the flexural reinforcement) is high-
lighted in Fig. 6.15b. The location agrees with the experimental observations (highlighted in Fig. 
6.15c, where it can be seen that the cyclic loading produced concrete crushing in both sides). 

 (a) (b) 

  
(c) 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

VK1 VK3 VK6

V u
,e

xp
/V

u,
ca

lc

M2 (5 FE) M0 (15 FE) M1 (25 FE)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

VK1 VK3 VK6

V u
,e

xp
/V

u,
ca

lc

M0 (with TS) M4 (without TS)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

VK1 VK3 VK6

V u
,e

xp
/V

u,
ca

lc

M0 (bilinear) M3 (refined)



6. EXPERIMENTAL VALIDATION  |  123 

Fig. 6.15. Results for VK1: (a)-(b) Calculated stress fields for M0 (default parameters) at 
0.5Vu,calc and Vu,calc respectively; (c) experimental crack pattern at ultimate load extracted from 

Bimschas (2010). 

Load-deformation response  

Fig. 6.16 shows a comparison of the calculated load-deformation response provided by the CSFM 
with the envelope (backbone) of the cyclic response of the experiments. The experimental re-
sponse was calculated as average values of the push and pull direction of the first cycle of each 
load level (Bimschas 2010). The numerical predictions were calculated using the following nu-
merical parameters: Default parameters (M0), refined stress-strain relationship of the reinforce-
ment (M3), and neglecting tension stiffening (M4). The reference experimental displacement u 
was obtained by subtracting the part due to anchorage slip from the total measured displacement 
at the height at which load was applied. This allows a direct comparison with the numerical results 
since the foundation is not modeled in the CSFM analysis. The contribution of anchorage slip 
was evaluated following the assumptions given in Bimschas (2010). 
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Fig. 6.16. Measured and calculated load-deformation response using different numerical 
parameters for: (a) VK1; (b)VK3; (c) VK6. 
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The results in Fig. 6.16 show that it is essential to account for tension stiffening if one needs to 
have a good estimate of a member’s stiffness. Both numerical calculations considering tension stiff-
ening (M0 and M3) fit the experimental results very well. However, the behavior was too soft when 
this effect was neglected (M4), particularly for VK1 and VK6. The consideration of the actual 
stress-strain relationship of the reinforcement (hot-rolled and cold-worked) and the uncracked stiff-
ness of the reinforcement (model M3) improved the already accurate load-deformation prediction 
obtained with the default parameters, leading to excellent agreement with the experimental data up 
to the peak load. The load-deformation response shows very small sensitivity to the analyzed range 
of finite element mesh sizes (the results for M1 and M2 are very similar to the results with a default 
mesh size and are not plotted in Fig. 6.16). Hence, it can be concluded that the mesh size only affects 
the load bearing capacity but not the deformations in this particular case. 

It should be noted that the CSFM does not account for the concrete softening after reaching 
peak load (instead, a code compliant plastic plateau is implemented). Clearly, the intention of the 
CSFM is not to capture the softening branch of the experiments. Still, it provides a good estimate 
of the deflection in the post-peak phase, during which a significant amount of load-bearing ca-
pacity is lost (i.e., to give a good estimate of the deformation capacity of the structural members). 
The results with default parameters (model M0) in Fig. 6.16 show that the numerical analyses 
detected the failure for a displacement at which the specimens had lost around 15% of their max-
imum strength. This is a good estimate of the deformation capacity and highlights the capabilities 
of the CSFM besides the implementation of simple and code-compliant constitutive relationships. 

6.3.5 Conclusions 

As in the tests analyzed in Section 6.2, a good agreement can be found between the predictions 
given by the CSFM and the experiments, showing that the model exhibits only a small sensitivity 
to changes in the parameters. The following conclusions can be stated: 

 Using the default parameters implemented in IDEA StatiCa Detail results in the CSFM 
slightly overestimating the ultimate load (by 5% on average), which might be attributed 
to the cyclic loading in the experiments causing progressive damage. Hence, the CSFM 
provides appropriate predictions of ultimate loads but also failure modes. 

 The CSFM predictions exhibit moderate changes when the size of the finite element 
mesh varies significantly. In this case, refining the default mesh leads to better esti-
mation of the ultimate loads. Therefore, it is highly recommended that the sensitivity 
of the model to changes in the mesh size should always be investigated. 

 The tension stiffening effect has no influence on ultimate load, but is essential for 
the proper estimation of deflections and deformation capacity. 

 Using a refined stress-strain relationship for the reinforcement and considering the 
uncracked stiffness of the walls leads to excellent deflection predictions. For design 
purposes, it is recommended that the default simplified bilinear relationship be used, 
as it also provides good estimates of deflections, slightly on the safe side. 
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6.4 Shear tests in beams with low amounts of stirrups 

This section discusses the use of the CSFM to analyze shear failures in beams with low amounts 
of stirrups. To this end, a selection of tests performed on simply supported reinforced concrete 
beams by Huber (2016), Piyamahant (2002) and Vecchio and Shim (2004) are analyzed. These 
tests comprised a wide number of parameters, including different sizes, shear slenderness and 
amounts of shear and longitudinal reinforcement. This section describes the analysis of 17 exper-
iments from these campaigns using the CSFM, exploring the ability of the CSFM to properly 
model very different failure modes ranging from shear failures with and without rupture of the 
stirrups to bending failures and mixed shear-bending failures.  

Experimental setupFig. 6.17 shows the geometry, test setups and reinforcement layouts of the 
analyzed experiments. Information on the shear reinforcement (diameter (Øt) , spacing (st) and 
geometric reinforcement ratio (ρt,geo)), the flexural reinforcement (number (nl) and diameter (Øl)) 
and  geometry (effective depth (d), shear slenderness (a/d) and width of the beams (b)) is pre-
sented in Table 6.10. Tests R1000m60 and R500m351 conducted by Huber (2016) had one-leg 
hooks, while in all other tests used two-leg closed stirrups. In the analyzed tests from Piyamahant 
(2002) the geometry and the flexural reinforcement were kept constant, while in the other two 
studies they were varied. 

 

Fig. 6.17. Test setup, geometry and reinforcement of specimens: (a) Huber (2016); (b) Vecchio 
and Shim (2004); (c) Piyamahant (2002); (dimensions in [mm]). 

Table 6.10. Relevant parameters of the analyzed specimens. 
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Specimen 
Øt st ρt,geo nl-Øl l d a/d b 

[mm] [mm] [%] [mm] [mm] [mm] [-] [mm] 

Huber (2016) 
R500m351 6 200 0.09  4-16 2800 460 3.0 150 
R500m352 4 200 0.08 4-16 2800 460 3.0 150 

R1000m60 12 400 0.09 2-30 
2-36 5600 920 3.0 300 

R1000m35 6 200 0.09 2-30 
2-36 5600 920 3.0 300 

Piyamahant (2002) 
T1 4 80 0.08 4-22 2070 359 3.0 400 
T2 4 100 0.06 4-22 2070 359 3.0 400 
T3 4 130 0.05 4-22 2070 359 3.0 400 
T4 4 180 0.03 4-22 2070 359 3.0 400 

Vecchio and Shim (2004) 

A1 6.4 210 0.10 2-25 
2-30 3660 457 4.0 305 

A2 6.4 210 0.10 2-25 
3-30 4570 457 5.0 305 

A3 3.7 168 0.04 2-25 
4-30 6400 457 1.4 305 

B1 6.4 190 0.15 2-25 
2-30 3660 457 4.0 229 

B2 6.4 190 0.15 2-25 
2-30 4570 457 5.0 229 

B3 3.7 152 0.06 2-25 
3-30 6400 457 1.4 229 

C1 6.4 210 0.20 2-30 3660 457 4.0 152 

C2 6.4 210 0.20 2-25 
2-30 4570 457 5.0 152 

C3 3.7 168 0.08 2-25 
2-30 6400 457 1.4 152 

6.4.1 Material properties 

The material properties of the shear reinforcement, the flexural reinforcement and the concrete 
used in the CSFM analysis are summarized in Table 6.11. Most of the material properties required 
for the CSFM analysis were available in the corresponding test reports. The values that had to be 
assumed are indicated in Table 6.11. 
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Table 6.11. Material properties used in the CSFM analyses. 

Specimen 

Shear reinforcement Flexural reinforcement Concrete 

Øt
1) fy

1) ft
1) ɛu

1) Øl
1) fy ft ɛu fc

1) ɛc0 

[mm] [MPa] [MPa] [‰] [mm] [MPa] [MPa] [‰] [MPa] [‰] 

Huber (2016)         

R500m351 6 569 638 31 16 5502) 5941) 502) 38 2.02) 

R500m352 4 653 712 49 16 5502) 5941) 502) 36 2.02) 

R1000m60 6 569 657 31 30 
36 5502) 5941) 502) 61 2.02) 

R1000m35 12 552 638 31 30 
36 5502) 5941) 502) 29 2.02) 

Piyamahant (2002)         

T1 4 
10 

350 
391 

457 
586 50 22 7181) 9851) 502) 42 2.02) 

T2 4 
10 

350 
391 

457 
586 50 22 7181) 9851) 502) 42 2.02) 

T3 4 
10 

350 
391 

457 
586 50 22 7181) 9851) 502) 42 2.02) 

T4 4 
10 

350 
391 

457 
586 50 22 7181) 9851) 502) 42 2.02) 

Vecchio and Shim (2004)         

A1 6.4 600 649 35 25 
30 

4451) 
4361) 

6801) 
7001) 502) 22.6 1.6 

A2 6.4 600 649 35 25 
30 

4401) 
4361) 

6151) 
7001) 502) 25.9 2.1 

A3 5.7 600 651 37 25 
30 

4451) 
4361) 

6801) 
7001) 502) 43.5 1.9 

B1 6.4 600 649 35 25 
30 

4451) 
4361) 

6801) 
7001) 502) 22.6 1.6 

B2 6.4 600 649 35 25 
30 

4401) 
4361) 

6151) 
7001) 502) 25.9 2.1 

B3 5.7 600 651 37 25 
30 

4451) 
4361) 

6801) 
7001) 502) 43.5 1.9 

C1 6.4 600 649 35 25 4451) 6801) 502) 22.6 1.6 

C2 6.4 600 649 35 25 
30 

4401) 
4361) 

6151) 
7001) 502) 25.9 2.1 

C3 5.7 600 651 37 25 
30 

4451) 
4361) 

6801) 
7001) 502) 43.5 1.9 

1) Directly extracted from test reports for all tests 
2) Assumed value 
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6.4.2 Modeling with the CSFM 

The geometry, reinforcement, support and loading conditions were modeled in the CSFM accord-
ing to the experimental setups. Fig. 6.18 shows the modeling of Test A3 from Vecchio and Shim 
(2004) as an example. 

Fig. 6.18. Example of modeling with the CSFM: Test A3 from Vecchio and Shim (2004) 
(dimensions in [m]). 

For each test, four numerical calculations were carried out using the following parameters: 

 The mesh size, which varied from 5 (default value for these particular examples), 
through 10 up to 20 finite elements over the beam depth. Since the default mesh is 
already very coarse, only finer meshes are analyzed in this study, and the mesh with 
10 elements was used except in M0. 

 The consideration or not of the tension stiffening effect. By default tension stiffening 
is considered in the CSFM. 

 The consideration or not of potentially non-stabilized cracking in stirrups. When 
considered (by default), the Pull-Out Model (POM) defines tension stiffening in stir-
rups (the geometric reinforcement ratios of all beams is below (ρcr) (Eq. (3.5), so the 
Tension Chord Model is never used). When deactivated, the models account for ten-
sion stiffening by means of the TCM. 

Table 6.12 shows the parameters used in each numerical calculation. M0 corresponds to the 
model with the default settings in the CSFM. 

Table 6.12. Investigated numerical parameters (variations to M1 shaded). 

Model Mesh size1) Tension stiffening for  
flexural reinforcement 

Tension stiffening for  
shear reinforcement 

M0 (def.) 5 TCM2) POM3) 
M1 10 TCM2) POM3) 
M2 20 TCM2) POM3) 
M3 10  deactivated deactivated 
M4 10 TCM2) TCM2) 

1) Elements over the beam’s depth 
2) Tension Chord Model 
3) Pull-Out Model 
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6.4.3 Comparison with experimental results 

This section contains comparisons between the ultimate loads and failure modes provided by the 
CSFM and the experimental results. In order to also verify the CSFM for serviceability behavior 
and deformation capacity, the load-deformation responses furnished by the model are compared 
with those from the tests for selected beams. 

Failure modes and ultimate loads 

Table 6.13 summarizes the ultimate shear forces measured in the tests (Vu,exp), the ultimate shear 
forces predicted by the CSFM (Vu,calc), and the respective failure modes. This table also provides 
the mean and coefficient of variation (CoV) of the ratios between the measured and the calculated 
ultimate loads for each numerical model. In all analyses (except M3, in which tension stiffening 
was neglected) a shear failure in the stirrups was predicted by the CSFM. This corresponds well 
with the failure mechanisms observed in the tests from Huber (2016) and Piyamahant (2002), but 
mismatches those observed in Vecchio and Shim (2004). The failure to capture the failure modes 
well led in this case to slightly conservative estimates of the ultimate load. Overall, the default 
parameters provide good strength estimates but slightly on the unsafe side (by 6% on average). 

The sensitivity of the strength predictions of the CSFM to the different analyzed numerical 
parameters is shown in Fig. 6.19 by means of the ratio of experimental to calculated ultimate 
shear forces (Vu,exp/Vu,calc). The ultimate load is markedly sensitive to the selected size of the finite 
elements (see Fig. 6.19 a). The maximum difference between the coarsest and finest mesh (M0 
and M2) amounts to 36% (Test 4 from Piyamahant (2002)), with an average difference around 
15%. The predictions using default parameters (5 finite elements over the beam’s height in model 
M0) slightly overestimate the experimental strength (around 5%). When refining the mesh to 10 
or 20 finite elements over the beam’s height (models M1 and M2, respectively), excellent strength 
predictions which are slightly on the safe side of the ultimate loads can be achieved. No changes 
in the failure modes were observed when varying the finite element mesh size. Even the results 
with the default mesh size are very satisfactory, considering that several experiments exhibited 
brittle shear failures, which are challenging to predict using design approaches. 

The way tension stiffening is considered has a highly relevant impact on the strength predic-
tions, as can be seen in Fig. 6.19 b-c. The consideration of tension stiffening in the stirrups by 
means of the POM (the default setting in the CSFM) leads on average to excellent agreement 
with the experimental results (see Fig. 6.19 b). However, neglecting tension stiffening leads to 
an average overestimation of the ultimate load of around 22% (see Table 6.12). When neglecting 
tension stiffening, the failure mode changes to flexural failure (see Table 6.12) and the observed 
shear failure modes are mismatched. The results are also very sensitive to the considered com-
pression softening relationship. As can be seen in Fig. 6.19 c, the use of the Tension Chord Model 
in the stirrups (model M4) instead of the Pull-out Model (model M1) provides slightly better 
results than when neglecting tension stiffening (model M3), but still strongly overestimates the 
ultimate loads by about 15% (see Table 6.12). Therefore, it can be concluded that the use of the 
Pull-Out-Model is crucial in these examples for the proper modeling of load-bearing behavior. 
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Table 6.13. Experimental and predicted ultimate shear forces (in kN) and failure mechanisms1). 

 Specimen Test M0 M1 M2 M3 M4 

Huber (2016) 

R500m351 106 
S(SR) 

109 
S(SR) 

98 
S(SR) 

97 
S(SR) 

146 
F(CC+FY) 

118 
S(SR) 

R500m352 109 
S(SR) 

116 
S(SR) 

103 
S(SR) 

101 
S(SR) 

137 
F(CC+FY) 

122 
S(SR) 

R1000m35 348 
S(SR) 

424 
S(SR) 

384 
S(SR) 

381 
S(SR) 

600 
F(CC+FY) 

457 
S(SR) 

R1000m60 402 
S(SR) 

548 
S(SR) 

484 
S(SR) 

476 
S(SR) 

639 
F(CC+FY) 

618 
S(SR) 

Piyamahant 
(2002) 

T1 227 
S(CC+SR) 

267  
S(SR) 

223 
S(SR) 

209 
S(SR) 

334 
F(CC+FY) 

300 
S(SR) 

T2 188 
S(CC+SR) 

250 
S(SR) 

209 
S(SR) 

191 
S(SR) 

319 
F(CC+FY) 

281 
S(SR) 

T3 191 
S(SR) 

235 
S(SR) 

189 
S(SR) 

176 
S(SR) 

305 
F(CC) 

264 
S(SR) 

T4 188 
S(SR) 

219 
S(SR) 

173 
S(SR) 

161 
S(SR) 

294 
F(CC) 

249 
S(SR) 

Vecchio and 
Shim (2004) 

A1 230 
S2)+F (CC) 

209 
S(SR) 

199 
S(SR) 

185 
S(SR) 

260 
F(CC+FY) 

234 
S(SR) 

A2 220 
S2)+F (CC) 

195 
S(SR) 

189 
S(SR) 

179 
S(SR) 

253 
F(CC+FY) 

218 
S(SR) 

A3 210 
F(CC) 

190 
S(SR) 

186 
S(SR) 

173 
S(SR) 

237 
F(CC+FY) 

214 
S(SR) 

B1 217 
S2)+F (CC) 

205 
S(SR) 

197 
S(SR) 

185 
S(SR) 

242 
F(CC+FY) 

227 
S(SR) 

B2 183 
S2)+F (CC) 

185 
S(SR) 

179 
S(SR) 

168 
S(SR) 

203 
F(CC+FY) 

201 
S(SR) 

B3 171 
F(CC) 

176 
S(SR) 

172 
S(SR) 

164 
S(SR) 

192 
F(CC+FY) 

191 
S(SR) 

C1 141 
S2)+F (CC) 

139 
S(SR) 

133 
S(SR) 

124 
S(SR) 

143 
F(CC+FY) 

153 
S(SR) 

C2 145 
S2)+F (CC) 

158 
S(SR) 

155 
S(SR) 

146 
S(SR) 

179 
F(CC+FY) 

173 
S(SR) 

C3 133 
F(CC) 

143 
S(SR) 

139 
S(SR) 

131 
S(SR) 

144 
F(CC+FY) 

146 
S(SR) 

 
,

u,exp

u calc

V
V

 mean 0.94 1.03 1.08 0.78 0.85 
 CoV 0.13 0.09 0.10 0.17 0.13 

1) Failure modes according to Table 6.1  
2) Mixed failure due to diagonal tension (without stirrup rupture) and concrete crushing in the compression zone 
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Fig. 6.19. Influence of numerical parameters on the ratio of measured to calculated ultimate 
loads: (a) Mesh size sensitivity; (b) consideration or not of tension stiffening (TS); (c) 

consideration of tension stiffening in the stirrups with the Pull Out Model (POM) or with the 
Tension Chord Model (TCM). 
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Fig. 6.20 shows the continuous stress field results (principal compressive stresses (σc) and 
steel stresses (σsr) at the cracks) for specimens A1 and A3 from Vecchio and Shim (2004), in 
which the predicted shear failures are highlighted. These results were calculated using the nu-
merical parameters M1 (default parameters, except for the mesh size, which is half of the default 
value). As can be seen from the stress fields, the compressive stress in the compression zone due 
to bending is in the plastic branch (99.5 %). However, due to the considered criteria for concrete 
crushing, the rupture of the stirrups occurs before concrete crushing happens. 

Fig. 6.20. Results for stress fields at ultimate for selected tests using M1 numerical parameters: 
(a) A1 (Vecchio and Shim 2004), including experimental crack patterns extracted from the test 
report; (b) A3 (Vecchio and Shim 2004), including experimental crack patterns extracted from 

the test report; (the figures are not to scale). 

Load-deformation response  

The calculated load-deformation responses obtained using the numerical parameters from M1 
(considering the TCM for the flexural reinforcement and the POM for the stirrups) and M3 (ne-
glecting any tension stiffening effects) are compared with the measured load-deformation re-
sponses in Fig. 6.21 for the Tests R500m352, T1, A1 and A3. The load V corresponds to the 
applied shear force and u corresponds to the deflection at midspan (see Fig. 6.20a). 
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Fig. 6.21. Measured and calculated load-deformation responses using different numerical 
parameters for: (a) R500m352 (Huber 2016); (b) T1 (Piyamahant 2002); (c) A1 (Vecchio and 

Shim 2004); (d) A3 (Vecchio and Shim 2004). 
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By taking into account tension stiffening effects, the experimental deflections can be pre-
dicted fairly well for the whole loading history, though the deflections at peak load are slightly 
underestimated. In particular, in Test A3 from Vecchio and Shim (2004), the observed plateau in 
the experiments due to yielding of the flexural reinforcement cannot be properly captured in the 
numerical analysis since the rupture of the stirrups is predicted first. Neglecting tension stiffening 
effects leads to the overestimation of the ultimate loads and deformations. These statements for 
the analyses without tension stiffening are also valid when using M4 parameters (the TCM used 
both in the stirrups and the flexural reinforcement). 

6.4.4 Conclusions 

The following conclusions can be stated regarding the comparison of the CSFM results and the 
observed behavior in the analyzed tests performed on simply supported beams with low amounts 
of stirrups: 

 The CSFM yields good estimates of the ultimate load, which is slightly overesti-
mated (on average by 5%) when using the default numerical parameters. It is difficult 
to capture combined failure modes due to shear and concrete crushing in bending; 
the CSFM predicts failures due to rupture of the stirrups, which leads to strength 
predictions that err on the conservative side. 

 The ultimate load predictions are somewhat sensitive to variations in the finite ele-
ment mesh size. The best predictions are obtained when the default finite element 
mesh is refined. Therefore, it is always recommended that the influence of the finite 
element size on the results be investigated when performing final verifications. 

 Neglecting tension stiffening leads to a very pronounced overestimation of the ulti-
mate load and deformation capacity. Even when modeling tension stiffening in the 
stirrups by means of the Tension Chord Model, the predicted ultimate load is clearly 
on the unsafe side. The best results are obtained when considering the effect of non-
stabilized cracking in the stirrups for low amounts of reinforcement by means of the 
Pull Out Model. This is the tension stiffening model implemented by default in the 
CSFM. 

6.5 Concrete pier caps 

This section addresses the analysis of discontinuity regions. The modeling of pier caps, which 
contain both static and geometric discontinuities, will be studied with the aid of an experimental 
study performed by Geevar and Menon (2018). Their study consisted of experiments on pier caps 
with four concentrated loads. The specimens were reinforced following standard rules used in 
design practice. Eight specimens were tested to investigate the influence of various parameters, 
such as the size of the bearing plates, the reinforcement layout, the geometry and the eccentricity 
of the applied loads. Given that the eccentricity of loading did not have a significant influence on 
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the behavior of the specimens in the experiments, only the specimens with constant geometry and 
no load eccentricity (S1, S2, S3, S4 and S5) were analyzed with the CSFM. 

6.5.1 Experimental setup 

Fig. 6.22a shows the geometry of the specimens. The dimensions and reinforcement were de-
signed at a scale of around 1:3.5 compared to typical pier caps used in bridge construction. To 
ensure stability while testing, the test setup was inverted with respect to the normal configuration 
of a pile cap. The specimens stood on four vertical supports (consisting of load cells, steel plates 
and thin neoprene pads) and were subjected to a vertical force at the top (see Fig. 6.22b). The 
vertical load was applied with zero eccentricity to Specimens S1, S2, S3, S4 and S5. The size of 
the loading plate (lb) varied in the tests, as indicated in Table 6.14. The reinforcement layout of 
the specimens is shown in Fig. 6.22c and the number and amount of reinforcing bars is detailed 
in Table 6.14. The layout was composed of primary reinforcement (As1), which was supplemented 
by additional reinforcement (As2) in Tests S3, S4 and S5. This reinforcement was fully anchored 
outside the zone of applied loads. The reinforcement also comprised distributed horizontal rein-
forcement (Ah with spacing sh) and distributed vertical reinforcement (Av). The distributed vertical 
reinforcement was observed to work mainly in compression and to not be effective. Therefore, 
this reinforcement was not modeled in the CSFM, as will be discussed in Section 6.5.3. 

Fig. 6.22. Experimental setup of the pier caps: (a) Geometry; (b) test setup; (c) reinforcement 
detail; (dimensions in [cm]). 
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Table 6.14. Relevant parameters of the analyzed pier caps. 

Specimen 
As1 As2 ρs,geo Ah sh  ρh,geo lb

  
[-] [-]  [-] [mm]  [mm] 

S1 9Ø10 - 0.32 4Ø4 75 0.13 130 
S2 13Ø8 - 0.29 6Ø4 58 0.26 145 
S3 13Ø8 13Ø8 0.58 6Ø4 58 0.26 145 
S4 13Ø8 13Ø8 0.58 4Ø4 58 0.17 145 
S5 13Ø8 13Ø8 0.58 6Ø4 58 0.26 170 

 

6.5.2 Material properties 

The material properties used in the numerical CSFM analyses are listed in Table 6.15. The 
strength ft and the ultimate strain εu of the reinforcement as well as the concrete strain ɛc0 were 
not given in the test report; plausible values were thus assumed for these parameters. 

Table 6.15. Material properties used in the CSFM analyses. 

Specimen 

main reinf. (As1, As2)  distributed reinf.(Ah) Concrete 
fy

1) ft
2) ɛu

2) fy
1) ft

2) ɛu
2) fc

1) ɛc0
2) 

[MPa] [MPa] [‰] [MPa] [MPa] [‰] [MPa] [‰] 

S1 620 670 50 605 653 50 31.2 2.0 

S2 631 681 50 605 653 50 35.7 2.0 

S3 631 681 50 605 653 50 30.1 2.0 

S4 631 681 50 605 653 50 34.9 2.0 

S5 631 681 50 605 653 50 34.1 2.0 

1) Geevar and Menon (2018) 
2) Assumed value 

 

6.5.3 Modeling with the CSFM 

The geometry, reinforcement, supports and loading conditions were modeled in the CSFM ac-
cording to the experimental setup. Fig. 6.18 shows the modeling of the S1 pier cap. It is assumed 
that the very thin (10 mm) neoprene plates do not allow significant horizontal deformation and 
therefore a fixed support is used in the horizontal and vertical directions. The load bearing plates 
are not arranged over the entire thickness of the pier caps (see Fig. 6.22a). Hence, the thickness 
in the CSFM analyses was set to be equal to the sum of the thickness of the load bearing plates 
(i.e., twice lb). By considering this, any positive triaxial confining effect due to the simultaneous 
spreading of the load in-plane and out-of-plane is implicitly neglected. As already indicated, the 
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distributed vertical reinforcement (Av) was not modeled since it works mainly in compression and 
does not have a significant influence on specimen behavior. The Tension Chord Model was used 
in all cases to capture the tension stiffening effects (no reinforcement modeled as stirrups). 

 

Fig. 6.23. CSFM model of S1 (dimensions in [m]). 

For each test, four numerical calculations were carried out using the following parameters: 

 The mesh size, which was 10 (the default value for this particular example) and 20 
finite elements along section A-A, as defined in Fig. 6.22c. 

 The consideration or not of the tension stiffening effect. By default, tension stiffen-
ing (TS) is considered in the CSFM (the Tension Chord Model is used for all bars in 
this particular case). 

 The strain limit for concrete crushing (εcu2), which was set to 2‰ and 3.5‰ (the 
default value used in other analyses in this chapter). 

The parameters used in each numerical calculation are summarized in Table 6.16. Model M0 
corresponds to the default settings in the CSFM. 

Table 6.16. Investigated numerical parameters (variations to M0 shaded). 

Model Mesh size1) εcu [‰] Tension stiffening 
M0 (def.) 10 3.5 Yes 

M1 20 3.5 Yes 
M2 10 3.5 No 
M3 10 2.0 Yes 

1) Number of finite elements along section A-A, as defined in Fig. 6.22c 
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6.5.4 Comparison with experimental results 

This section provides comparisons between the ultimate loads and failure modes provided by the 
CSFM and the studied experimental results. 

Failure modes and ultimate loads 

Table 6.17 summarizes the ultimate loads measured in the tests (Pu,exp) and predicted by the 
CSFM (Pu,calc), as well as the respective failure modes. The ultimate load Pu corresponds to the 
mean of the four reaction forces (i.e., a quarter of the total applied load). Table 6.17 also provides 
the mean and the coefficient of variation (CoV) of the ratios between the measured and the cal-
culated ultimate loads for each numerical model. Ratios above one denote conservative predic-
tions, while those below one indicate unsafe estimates of the ultimate load. 

In all of the numerical analyses, failure was triggered by concrete crushing (see Table 6.17). 
In the experiments, the failure was also due to concrete crushing, but it was preceded by a slight 
yielding of the main reinforcement (As1), which does not limit the ultimate load. While the yield-
ing of the reinforcement is not captured by the CSFM, this does not have a significant impact on 
the quality of the results. The default model M0 leads to slightly unsafe strength predictions (by 
4% on average). It should be noted that the predictions are clearly unsafe for specimen S5 regard-
less of the considered numerical parameters. These unsatisfactory results from the CSFM might 
be partially explained by the fact that the strength result from the experiment was abnormally 
low. In spite of S5 being similar to S4 but containing a 50% higher amount of transversal rein-
forcement and 20% larger loading plates, its strength is significantly lower than that of S4. This 
could either be an abnormal experimental result or just a consequence of the large scatter, which 
is expected in compressive failures of a strut. 

Table 6.17. Experimental and predicted ultimate loads (in kN) and failure mechanisms1). 

Specimen Test2) M0 M1 M2 M3 

S1 556 
CC+FY 

629 
CC 

610 
CC 

609 
CC 

568 
CC 

S2 767 
CC+FY 

840 
CC 

846 
CC 

811 
CC 

765 
CC 

S3 859 
CC+FY 

763 
CC 

770 
CC 

738 
CC 

689 
CC 

S4 902 
CC+FY 

828 
CC 

831 
CC 

803 
CC 

758 
CC 

S5 866 
CC+FY 

1085 
CC 

1086 
CC 

1044 
CC 

1003 
CC 

,

u,exp

u calc

P
P

 mean 0.96 0.96 1.06 0.99 
CoV 0.13 0.12 0.13 0.13 

1) Failure modes according to Table 6.1 
2) Mean of the measured loads at the four supports 
 

The disparities among the different CSFM analyses can be easily analyzed by means of the 
ratio of the experimental to the calculated ultimate load (Pu,exp/Pu,calc). The variation in the mesh 
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size and the consideration or not of tension stiffening do not significantly influence the ultimate 
loads (variations below 5%; see Fig. 6.24a-b). While the consideration of tension stiffening might 
impact the results in concrete crushing failures with transverse reinforcement (as it lowers the 
reinforcement strains and consequently increases the effective compressive strength), this is not 
the case here since the transverse strains remain very small and the compressive strength is hardly 
affected by the compression softening factor. The results are sensitive though to the considered 
ultimate compressive strain in the concrete (εcu2). Considering an ultimate strain of 2‰ (model 
M3) instead of the 3.5 ‰ in the default model, reductions of up to 10% of the predicted ultimate 
loads are obtained (see Fig. 6.24c). 

Fig. 6.24. Influence of numerical parameters on the ratio of measured to calculated ultimate 
loads: (a) Mesh size sensitivity; (b) consideration or not of tension stiffening (TS); (c) default 

(bilinear) and refined reinforcement stress-strain relationships. 
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Fig. 6.25a shows the continuous stress field results (principal compressive stresses (σc) and 
steel stresses (σsr) at the cracks) for specimen S1; the predicted failure mode and location are 
marked. These results were calculated using the default numerical parameters M0. The observed 
crack patterns at ultimate are shown in Fig. 6.25b. The predicted locations where concrete is 
expected to be crushed agree with the experimental observations. 

Fig. 6.25. Results for S1: (a) Calculated stress fiels for M0 at ultimate; (b) observed crack 
pattern at ultimate (extracted from Geevar and Menon, 2018). 

6.5.5 Conclusions 

A good correspondence between the results from the CSFM and experimental observations can 
be found for the case of the discontinuity regions analyzed in this section. The following conclu-
sions can be stated: 

 CSFM analyses using default numerical parameters provide appropriate estimates of 
ultimate loads and failure modes. However, the results show that local compressive 
failures in a strut cannot be predicted with the same accuracy as failures in which the 
strength is limited by yielding of the reinforcement. This was an expectable result, 
which is compensated for in design codes by the higher safety coefficient for con-
crete in compression than for reinforcement. 

 The variation in the mesh size and the consideration or not of tension stiffening do 
not significantly influence the ultimate loads in this case. 
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7 Conclusions 

This book presents the principles and validation of the Compatible Stress Field Method (CSFM), 
a new method for the computer-aided structural design of concrete structures. The CSFM targets 
the automated design and assessment of structural concrete members subjected to in-plane load-
ing. The method is applicable for conventional beams and walls, but is particularly suitable for 
discontinuity regions (e.g., corbels, deep beams, walls with openings, dapped beam-ends and 
frame corners), where abrupt changes in geometry and/or concentrated loads render Bernoulli’s 
hypothesis of plane sections remaining plane – and hence, sectional design methods and the cor-
responding, established tools for automated design – inappropriate. 

Since sectional analysis cannot be applied to discontinuity regions, designers today typically de-
sign them by using strut-and-tie models and stress fields. These models are powerful tools that 
yield direct insight into load-carrying behavior and give the engineer control over the design. 
However, stress fields and strut-and-tie models are essentially still being used as hand calcula-
tions. This is a bottleneck for the ongoing digitalization process of structural engineering: Dis-
continuity regions are present in every structural concrete member and, in most cases, decisive 
for a safe design. The CSFM aims at overcoming this unsatisfactory situation by introducing an 
easy to use software tool implementing the basic design concepts of strut-and-tie models and 
stress fields. 

The CSFM consists of a continuous, FE-based stress field analysis, which is used to assess 
the entire load-deformation behavior of concrete members. The basic concepts of classic strut-
and-tie models and stress fields are complemented with kinematic considerations, i.e., the state 
of strain is evaluated throughout the structure. Hence, the effective compressive strength of con-
crete, as a function of transverse strains, can be automatically computed. By considering equilib-
rium at stress-free cracks, simple uniaxial constitutive laws as provided in concrete standards for 
concrete and reinforcement are used, without the need for the additional material properties re-
quired to perform nonlinear FE analyses. This makes the CSFM suitable for design and assess-
ment in engineering practice and allows the partial safety factor method to be used for code-
compliant design. While the concrete tensile strength is not considered in terms of strength (just 
as in standard structural concrete design), the CSFM accounts for its influence on member stiff-
ness (i.e., tension stiffening) in order to cover all design code prescriptions, including servicea-
bility (deflections, crack widths, …), load-deformation and deformation capacity aspects, which 
are not consistently addressed by previously formulated approaches. The CSFM has been imple-
mented in IDEA StatiCa Detail, a new user-friendly commercial software tool that includes de-
sign aids for reinforcement design (location and amount). 

The results of a thorough validation of the CSFM were summarized in Chapters 4, 5 and 6. 
As expected, the results of the CSFM are in perfect agreement with the theoretical models it is 
based on for simple load cases (pure tension, pure compression and pull-out loading). These basic 
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comparisons (Chapter 4) include crack widths, concrete stresses, bond shear stresses and rein-
forcement stresses and strains. The mesh size sensitivity is very small for cases where reinforce-
ment failure or bond (anchorage length) are decisive. Failures due to concrete in compression 
show a certain mesh size dependency. This dependency is mainly caused by variations of the 
transverse strains for different finite element mesh sizes, which affects the compressive strength 
via the compression softening factor. 

A thorough comparison of results calculated by the CSFM with those obtained using conven-
tional design procedures, based on several national standards, was given in Chapter 5. For the 
classic example of a deep beam with an opening, the CSFM is in good agreement with strut-and-
tie models for ultimate limit state verifications. However, since the CSFM is able to exploit all 
the resistant mechanisms, it allows for a more refined estimation of the ultimate load and yields 
correspondingly higher predicted ultimate loads. This example also shows that the use of the 
CSFM in discontinuity regions allows verifying serviceability criteria, which cannot be evaluated 
consistently with stress fields or strut-and-tie models. Further examples examined in Chapter 5 
correspond to beams with rectangular and T cross-sections. These beams were analyzed with the 
CSFM and with simple cross-sectional analyses, following EN 1992-1-1 and ACI 318-14 design 
codes. The results provided by both approaches are very similar, in ultimate as well as in service-
ability limit states. The observed differences can be explained by slightly different assumptions 
of the constitutive models in the two approaches. These verifications for beams confirm that the 
CSFM is compliant with the design provisions given in building codes for members and regions 
where all static and geometric quantities vary only slightly (i.e., Bernoulli’s hypothesis of plane 
sections remaining plane applies). 

Chapter 6 studied the capability of the CSFM to reproduce the observed behavior (ultimate 
load, load-deformation response, crack widths, …) of selected experimental campaigns from the 
literature. The analyzed experiments were chosen to cover a wide range of failure modes. In all 
analyses with the CSFM, the sensitivity of the results to different values of the most relevant 
parameters of the model was investigated. This allowed checking the suitability of the default 
parameters defined in Chapter 3. The analysis of T-beams showed that the results are significantly 
sensitive only to the value of the effective flange width. The default value of this parameter in 
the CSFM provided slightly conservative estimations of the experimental ultimate loads and de-
flections. Designers might thus refine the default value of the effective flange (see Section 3.6.3) 
based on alternative recommendations to consider the shear lag effect in cases where the com-
pression zone depth is significant. The value provided by fib Model Code 2010 leads to very 
accurate estimations of the experimental ultimate loads, deflections and crack widths for the ex-
periments compared in this book. 

The analysis of cantilever wall-type bridge piers (shear walls) and pier caps in Chapter 6 aims 
at validating failures due to concrete crushing, which is a failure mode generally difficult to be 
captured precisely; this is the main reason why the safety coefficient for concrete compressive 
strength is higher than the one considered for the reinforcement. Despite this difficulty, the CSFM 
yields good estimations of the experimental ultimate loads and deflections. The estimations are 
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more accurate in cases where the main reinforcement reaches yielding (i.e., for the cantilever 
shear walls). Good estimations of the deformation capacity are obtained if the ultimate strain of 
concrete is verified, which is not activated by default in the software IDEA StatiCa Detail (an 
infinite plastic branch is considered for concrete in compression). The results show a moderate 
mesh size sensitivity for this failure mode: The ultimate loads obtained with the default finite 
element mesh size proposed by the CSFM varied up to 10% when the mesh size was doubled or 
halved. Similar results were obtained for the case of shear failures with low amounts of stirrups:  
The smaller the finite element mesh, the lower and more conservative the strength predictions by 
the CSFM. Hence, it is recommended to use initially a finite element mesh size equal to the 
default one or even coarser for quick analyses, but include in the final verifications an analysis 
with a finer mesh, in order to confirm that the mesh size sensitivity is within a reasonable range 
(as observed in the herein presented examples). 

The comparison with experimental results confirmed that the automatic, mechanically con-
sistent consideration of tension stiffening in the CSFM is perfectly suitable for realistically pre-
dicting the behavior. On one hand, it ensures reliable predictions of serviceability criteria: (i) De-
flections were overestimated when neglecting the stiffening effect of concrete tensile stresses 
between cracks; and (ii) the tension stiffening model implemented in the CSFM – yielding direct 
information on reinforcement stresses at cracks, crack spacings and average strains between 
cracks – was essential to obtain realistic predictions of crack widths. On the other hand, the vali-
dations proved that the consistent implementation of tension stiffening is also crucial for ultimate 
limit state verifications: (i) Other than models considering average stresses between cracks, the 
tension stiffening implemented in the CSFM does not modify the strength of the bare reinforce-
ment, but (ii) it stiffens its response, and (iii) reduces its deformation capacity. These combined 
features resulted in excellent predictions of the experimental results: The analyses of 17 tests of 
beams with low amounts of stirrup reinforcement (failing mostly in shear and including failures 
with rupture of the stirrups, see Section 6.4) showed that the CSFM provides excellent predictions 
when considering at least 10 finite elements over the depth of the beams. 

In particular, the CSFM analyses consistently captured failures by reinforcement ruptures 
caused by insufficient ductility observed in experiments, while significantly higher loads would 
have been predicted in these cases if tension stiffening was neglected (around 20% on average in 
the experiments evaluated in Section 6.4). In models neglecting tension stiffening, failures by 
diagonal concrete crushing would be predicted instead, which is however highly dependent on 
the specific compression softening relationships considered. Here, the approach implemented in 
the CSFM is more accurate and provides consistent results for a wide range of constitutive rela-
tionships. 

In the ultimate limit state, the stress fields obtained from the CSFM can be interpreted as 
solutions according to the lower-bound theorem of plasticity theory: They satisfy equilibrium and 
static boundary conditions, and do not infringe the “yield conditions”. Note that the yield condi-
tions are set in quotation marks since rather than using ideally plastic material laws, realistic 
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stress-strain relationships accounting for the limited ductility of reinforcement and concrete com-
pression softening are considered in the CSFM. However, using the peak stresses obtained in the 
final step of the CSFM analysis as material strengths, the stress fields would result in identical 
ultimate loads for ideally plastic behavior.  

In conclusion, the verifications carried out in this book, including (i) the validation of basic 
load cases; (ii) a comparison with codes and established design methods; and (iii) an extensive 
validation on experimental data demonstrate that the Compatible Stress Field Method is well 
suited for the reliable and transparent analysis of two-dimensional concrete structures of any ge-
ometry, subjected to arbitrary in-plane loads.  

In particular, the CSFM: 

 yields realistic predictions of the load-deformation behavior 

 maintains the advantages of classic stress fields and strut-and-tie models, such as 
control over the design and transparency 

 merely requires standard material parameters known in the design stage 

 is compatible with the design concepts of modern codes (e.g., neglecting the contri-
bution of the tensile strength of concrete to the strength) 

 provides all typically required validations in design, both in ULS as well as SLS 

 enables the designer to optimize the structure regarding reinforcement layout and 
quantities 

 is implemented in a user-friendly software application: IDEA StatiCa Detail.  

Based on these features, the CSFM enables designers to design or assess any concrete struc-
ture that can be modelled as two-dimensional elements subjected to on-plane loads more reliably 
and efficiently than using other design methods.  

Moreover, since optimization of the reinforcement is possible at little extra effort in design, 
the authors hope that the CSFM will foster the design of more economical and sustainable con-
crete structures in the future, reducing material use and greenhouse gas emissions. 
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Appendix A: Hypotheses of IDEA StatiCa RCS/Beam 
software 

A.1 Main hypotheses 

IDEA StatiCa Beam is a 1D FEM-based application enabling the modeling, design and checking 
of concrete beams according to the provisions for cross-sectional design included in structural 
concrete design codes. The geometry of the model is formed by a 1D bar element defined by a 
cross-section and its length. The assumptions of static analysis in IDEA StatiCa Beam are: 

 The cross-sections of the beam remain plane and perpendicular to the centerline after 
deforming (i.e., the Euler-Bernoulli hypothesis is used). 

 Materials exhibit linear elastic behavior (i.e., stiffness is constant). 

Besides internal forces, IDEA StatiCa Beam calculates deflections as well. The deflection 
calculation consists of a linear FE analysis with modified stiffness of the finite elements, in which 
second-order effects are neglected. The main assumptions of the deflection analysis are: 

 The stiffness of cracked sections is reduced. 

 The tension stiffening effect is considered according to EN 1992-1-1. 

 Creep effects are considered by means of an effective modulus of elasticity. 

 Shrinkage effects are neglected. 

 The stiffness of the cross-sections is calculated by RCS, a separate application in IDEA Stat-
iCa, which assumes strain compatibility between concrete and reinforcement. 

A.2 Calculation assumptions for ULS checks 

The main assumptions for ULS verifications are: 

 The tensile strength of concrete is neglected (all tensile stresses are transmitted by 
the reinforcement). 

 Concrete compressive stresses in a compression zone are calculated determined from 
the strains using stress-strain diagrams. 

 Reinforcement stresses are calculated from the strains using stress-strain diagrams. 

 For compressive concrete strains, an ultimate strain limit εcu2 (parabola-rectangle di-
agram for concrete under compression) or εcu3 (bi-linear stress-strain relation) is con-
sidered, see EN 1992-1-1. 
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 Strains of reinforcement are not limited in the case of ideally plastic idealization (no 
strain hardening). If strain hardening is considered, the strain is limited by εud, see 
EN 1992-1-1. 

 The state when at least one of the materials exceeds the ultimate limit strain (if εu is 
not limited, the concrete compressive strength is governing) is considered a limit 
state. 

Two well-known methods defined in the following sections can be used to check the ultimate 
limit state. 

A.2.1 Interaction diagram 

This method provides the cross-sectional ultimate strength in the form of an interaction surface 
or interaction diagram. The points, which define the ultimate limit state of the cross-section under 
analysis, are located on the interaction surfaces. The cross-sectional capacity can be determined 
as a ratio between the acting internal forces and the limit state forces. 

A.2.2 Response of the cross-section (method of limited deformation) 

This method (also known as the method of limited deformation) involves the determination of 
stress and strain distributions and the equilibrium of the cross-section when applying the acting 
internal forces. A plane of strain can be determined from equilibrium, and the strain anywhere in 
the cross-section can be calculated. The stresses in each fiber of the cross-section and in each 
reinforcing bar are calculated depending on the strain using the stress-strain diagram of the ma-
terials. 

A.3 Calculation assumptions for SLS checks 

Within the calculation of the serviceability limit states (i.e., stress limitations, crack widths and 
deflections), two states that only differ in the considered tensile strength of the concrete are ana-
lyzed: 

 The tensile strength of concrete is considered for uncracked cross-sections, but ne-
glected for cracked cross-sections. 

 The concrete tensile stress is limited by the tensile strength of the concrete at the 
time of crack formation, fct,eff, for uncracked cross-sections. 

 The concrete and the reinforcement stresses are directly proportional to the distance 
to the neutral axis (the materials are considered to exhibit a linear stress distribution). 

It should be noted that only stabilized crack patterns are considered when checking the crack 
width (compare to the consideration of non-stabilized cracking patterns in CSFM (Section 3.3.4). 

When calculating deflections, it is necessary to determine the varying stiffness of the beams 
along their length. To this end, IDEA StatiCa RCS focuses on analyzing and checking individual 
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cross-sections, not the whole beam. The stiffnesses of selected cross-sections are calculated in 
IDEA StatiCa RCS and then used to compute deflections in IDEA StatiCa Beam (see above).  

A.3.1 Stiffness for calculating short-term effects 

When calculating stiffnesses to obtain short-term deflections, a reinforced concrete section, 28 
days old with a secant modulus of elasticity (Ecm, i.e., without creep effects) is considered. The 
following stiffnesses are considered in the calculation: 

 The stiffness of an uncracked section (this stiffness is considered if no cracks occur). 

 The stiffness of a fully-cracked section (the compression zone, based on the strain 
plane calculated in the previous step, is considered when transformed cross-sectional 
characteristics of a reinforced section are calculated). 

 A distribution coefficient, ζ, is calculated according to Eq. (A.1): 

 
2

1 sr

s

σ
ζ β

σ
 

= −  
 

 (A.1) 

where β is a coefficient that takes account of the influence of the duration of the loading or of 
repeated loading on the average strain (β=1.0 for a single instance of short-term loading), σs is 
the stress in the tensile reinforcement calculated on the basis of a cracked section, and σsr is the 
stress in the tension reinforcement calculated on the basis of a cracked section under the loading 
conditions causing the onset of cracking. The resultant stiffness (I) is obtained using the distribu-
tion coefficient according to Eq. (A.2): 

 ( )1cr unE I E I E Iζ ζ ζ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ −  (A.2) 

where E·Icr is the stiffness of a fully-cracked section and E·Iun is the stiffness of an uncracked 
section. 

A.3.2 Stiffness for calculating long-term effects, including creep effects 

To obtain long-term deflections, a reinforced concrete section loaded at time t0 = 28 days with 
the following effective modulus of elasticity is considered: 
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where Ecm is the secant modulus of elasticity of concrete and ( )0,t tϕ ∞  is a creep coefficient cal-
culated for the design working life. Finally, a distribution coefficient, ζ, is calculated according 
to Eq. (A.1), with the difference that the β coefficient is set to β = 0.5 in this case because of 
long-term effects. The final stiffness is again obtained according to Eq. (A.2). 
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Notation 

Latin lower-case letters 
a shear span 
as cross-sectional area of reinforcement per meter 
b width of a cross-section; thickness of a member 
beff effective flange width 
d effective depth of a cross-section 
fbd design bond strength 
fc cylinder compressive strength of concrete 
fcd design value of concrete compressive strength  
fck characteristic compressive cylinder strength of concrete (at 28 days) 
fct axial tensile strength of concrete 
fct,eff axial tensile strength of concrete at time of crack formation 
fctm mean value of axial tensile strength of concrete 
ft tensile strength of reinforcement 
ftd design value of the tensile strength of reinforcement 
fy yield strength of reinforcement 
fyd design yield strength of reinforcement 
fyk characteristic yield strength of reinforcement 
h cross-section depth 
kc concrete strength reduction factor (due to the transversal strain state and increasing 

brittleness with strength) 
kc2 concrete strength reduction factor (due to the transversal strain state) 
l length of a member 
lb anchorage length; size of the loading plate 
lb,net basic anchorage length of the reinforcing bars 
lε,avg assumed distance between fictitious cracks in the pull-out tension stiffening model 

(POM) 
nl number of reinforcing bars of the flexural reinforcement 
qu Ultimate load at ULS 
sh spacing of the distributed reinforcement 
sl spacing of the flexural reinforcement 
sr crack spacing 
sr0 theoretical maximum value of the crack spacing 
st  spacing of the transverse reinforcement 
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u deflection 
utot total deflection 
w crack width 
wb projection of the crack width in the direction of a reinforcing bar 
x depth of the compression zone 
z lever arm of internal forces 

 

Latin upper-case letters 
Ah cross-sectional area of transversal horizontal reinforcement 
As cross-sectional area of reinforcement 
As1 cross-sectional area of the main reinforcement 
As2 cross-sectional area of the secondary reinforcement 
Asl cross-sectional area of longitudinal reinforcement 
Av cross-sectional area of transversal vertical reinforcement 
E modulus of elasticity 
Ec modulus of elasticity of concrete 
Ec,eff effective modulus of elasticity of concrete 
Ecm secant modulus of elasticity of concrete 
Es modulus of elasticity of reinforcement 
Esh hardening modulus of reinforcement 
F action in general; applied load or load effect 
Fau maximum force at the end of the reinforcement when using a normalized anchorage 

end 
FG permanent design load 
FQ variable design load 
Fsl force in the longitudinal reinforcement 
Fu ultimate design load 
Gb elastic stiffness of the bond-slip model implemented for anchorage length verifica-

tions 
H height of a member 
Icr second moment of area of fully cracked section 
Ka elastic stiffness of the force-slip model at the end of the reinforcement to implement 

reductions in the basic anchorage length 
L span 
M bending moment 
Mcr cracking moment 
MEd design value of the applied bending moment 
MRd design value of ultimate moment resistance 
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N normal (axial) force 
NEd design value of the applied normal (axial) force 
Pu,calc ultimate load predicted by the CSFM 
Pu,exp experimental ultimate load 
Vu,calc ultimate shear force predicted by the CSFM 
Vu,exp experimental ultimate shear force 

 

Greek lower-case letters 
β coefficient of reduction of the basic anchorage length of the reinforcing bars when 

using a normalized anchorage end 
δu bond slip (relative displacement between concrete and reinforcement) 
δumax axial displacement of the bond finite elements connecting the reinforcement and con-

crete, which represents the slip between both materials 
ε3 principal compressive strain 
εc2  concrete strain at reaching the compressive strength 
εcu2  ultimate compressive strain in the concrete 
εlt  strain due to long-term effects of load 
εm average strain of reinforcement 
εst  strain due to short-term effects of load 
εu limit strain value; strain of reinforcement at maximum load 
εud limit strain value of reinforcement in case of inclined plastic top branch  
εuk  characteristic strain of reinforcement at maximum load 
γc partial safety factor for concrete material properties 
γG partial safety factor for permanent actions 
γQ partial safety factor for variable actions 
γs partial safety factor for the material properties of the reinforcing steel 
ηfc concrete strength reduction factor (due to the increasing brittleness with strength, acc. 

to fib Model Code 2010) 
ϕ creep coefficient 
λ crack spacing coefficient (=sr/sr0), stress block factor 
θb orientation of the reinforcing bar 
θr crack orientation with respect to horizontal / longitudinal axis 
θε orientation of the strain field with respect to horizontal / longitudinal axis 
θσ orientation of the compressive stress field with respect to horizontal / longitudinal 

axis 
ρcr  minimum reinforcement ratio 
ρeff effective reinforcement ratio 
ρgeo geometric reinforcement ratio 
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ρh,geo geometric reinforcement ratio of the horizontal distributed reinforcement 
ρl,geo geometric reinforcement ratio of the flexural reinforcement 
ρs,geo geometric reinforcement ratio of the primary and additional reinforcement 
ρt,geo geometric reinforcement ratio of the transverse reinforcement 
σc concrete stress 
σc,lt  stress in concrete due to long-term effects of load 
σc,st stress in concrete due to short-term effects of load 
σc3r principal concrete compressive stress at the cracks 
σs reinforcing steel stress, stress in the tension reinforcement calculated on the basis of a 

cracked section 
σs,lt  stress in reinforcement due to long-term effects of load 
σs,st  stress in reinforcement due to short-term effects of load 
σsr reinforcing steel stress at the cracks 
σst  stress due to short-term effects of loads 
τb0 bond shear stress before yielding 
τb1 bond shear stress after yielding 
ξ time-dependent factor for sustained load  
ψ2 factor defining representative values of variable actions 
ζ distribution coefficient  

Greek upper-case letters 
Δ deflection 
Δcs deflection under sustained loads including creep 
ΔI,L deflection under service dead + live loads 
ΔI,SU ST deflection under sustained loads 

   
 

Special symbols 
# bar size according to imperial units in 1/8 of inches;  

e.g. #7 indicates reinforcing bar with diameter of 7/8’’ ≈ 22 mm 
 ′  foot (ft) – unit length in the imperial system of measurement 
 ″  inch (in) – unit length in the imperial system of measurement 
Ø diameter of reinforcing bar 
Øl diameter of flexural reinforcing bar 
Øt diameter of transverse reinforcing bar 
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Abbreviations 
B-region regions where plain sections remain plain after deforming 
CSFM Compatible Stress Field Method 
DL dead load 
D-region discontinuity region 
EPSF elastic-plastic stress field method  
MFD multiplier of the flange depth 
NLFEA non-linear finite element analysis  
POM Pull Out Model 
RCS Reinforced Concrete Section (appliaction IDEA StatiCa RCS) 
SLS serviceability limit states 
STM strut-and-tie models 
SW load due to self-weight 
TCM Tension Chord Model 
ULS ultimate limit state 
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This publication presents the principles and validation  
of the Compatible Stress Field Method (CSFM).  
This new method can be used for the design and assessment 
of any concrete structure subjected to in-plane loading, and 
is particularly suited for the dimensioning of “discontinuity 
regions” such as corbels, deep beams, walls with openings, 
dapped beam-ends, and frame corners. The CSFM represents 
a significant step forward for structural engineering practice, 
as it allows the efficient checking of all design code provisions, 
including serviceability, load-deformation and deformation 
capacity aspects even for concrete members with complex 
geometry. The method is based on Finite Element Analysis  
and uses only basic material parameters employed in standard 
structural concrete design.
The results of the CSFM for a set of verification examples are 
presented and discussed, during which the influence of the main 
parameters of the method and its underlying models are also 
covered. The results are compared to a wide range of analytical 
solutions, design code provisions and experimental results,  
and show good agreement with all of them.


