Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Table of contents

- 1 Project data
- 2 Brief summary of results of sectional checks
- 3 Sectional checks
- 3.1 Section S 1
- 4 List of design members
- 5 List of reinforced sections
- 6 List of used materials

1 Project data

Project title	Amsterdam industrial
Author	Dave the Engineer
Date of creation	04.01 .2023
Version	23.0 .0 .3259

National code

National code	EN 1992-1-1:2014-12
Design working life	50 years

2 Brief summary of results of sectional checks

Section name	Design member	Reinforced cross- section	Value [\%]	Result status
S 1	M 1 (Beam)	R1	93,4	\checkmark

3 Sectional checks

3.1 Section S 1

3.1.1 Critical extreme S 1 - E 1

Design member	M 1
Reinforced cross-section	R 1

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

3.1.1.1 Load effects - internal forces

Load type	Combination type	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{V}_{\mathbf{y}}$ $[\mathbf{k N}]$	$\mathbf{V}_{\mathbf{z}}$ $[\mathbf{k N}]$	\mathbf{T} $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$
Total	Fundamental ULS	0,0	0,0	50,0	10,0	145,0	20,0
Total	Characteristic	0,0	0,0	0,0	0,0	120,0	0,0
Total	Quasi-permanent	0,0	0,0	0,0	0,0	100,0	0,0

3.1.1.2 Overall

Governing type of check	N_{Ed} $[\mathrm{KN}]$	$\mathrm{M}_{\mathrm{Ed}, \mathrm{y}}$ [kNm]	$\mathrm{M}_{\mathrm{Ed}, \mathrm{z}}$ [kNm]	$\begin{gathered} \mathrm{V}_{\mathrm{Ed}} \\ {[\mathrm{kN}]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{Ed}} \\ {[\mathrm{kNm}]} \end{gathered}$	Value [\%]	Check
Interaction	0,0	145,0	20,0	50,0	10,0	93,4	OK
Type of check	$\begin{gathered} \mathbf{N}_{\mathrm{Ed}} \\ {[\mathrm{kN}]} \end{gathered}$	$\mathbf{M E d}_{\mathrm{Ed}, \mathrm{y}}$ [kNm]	$\mathbf{M E d}_{\mathrm{Ed}, \mathrm{z}}$ [kNm]	$\begin{gathered} \mathrm{V}_{\mathrm{Ed}} \\ {[\mathrm{kN}]} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{Ed}} \\ {[\mathrm{kNm}]} \end{gathered}$	Value [\%]	Check
Capacity N-M-M	0,0	145,0	20,0			53,3	OK
Shear	0,0			50,0	10,0	24,3	OK
Torsion					10,0	32,2	OK
Interaction	0,0	145,0	20,0	50,0	10,0	93,4	OK
Stress Limitation	0,0	120,0	0,0			58,7	OK
Crack Width	0,0	100,0	0,0			56,3	OK

Limit value of the exploitation of the cross-section: 100,0 \%

Nonconformity

	Nonconformities
$\mathbf{4}$	Shear is resisted by concrete, shear reinforcement is required according to detailing provisions, see 6.2.2
$\mathbf{4}$	Check of interaction of shear and torsion acc. to 6.3.2 (5) is not satisfactory, therefore it was necessary to check ultimate capacity at interaction of all components of internal forces
	Uper or lower design value of internal forces of one of SLS combinations caused to happen concrete stress higher than concrete tensile strength (section is cracked). Based on code and calculation settings it is assumed that the concrete resists no tension in SLS checks for all combinations of current extreme. The assumptions for SLS checks in other extremes of current section are not influenced.

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer
1 The action of concrete in tension is excluded because the cracks appear, see clause 7.1 (2)

3.1.1.3 Capacity N-M-M

Results presented for combination : Fundamental ULS

$\mathbf{N}_{\text {Ed }}$ $[\mathbf{k N}]$	$\mathbf{M}_{\text {Ed, }}$ $[\mathrm{kNm}]$	$\mathbf{M}_{\text {Ed, }}$ $[\mathrm{kNm}]$	Type	Value $[\%]$	Limit $[\%]$	Check
0,0	145,0	20,0	Nu-Mu-Mu	53,3	100,0	OK

Design resistance of css subjected to bending and axial force

Type	$\boldsymbol{F}_{\text {Ed }}$	$F_{\text {Rd1 }}$	$\boldsymbol{F}_{\text {Rd2 }}$
$\mathrm{N}[\mathrm{kN}]$	0,0	0,0	0,0
$\mathrm{M}_{\mathrm{y}}[\mathrm{kNm}]$	145,0	271,9	$-250,4$
$\mathrm{M}_{\mathbf{z}}[\mathrm{kNm}]$	20,0	37,5	$-34,5$

Nonconformity

No nonconformities

Section N - Mres

Section N - My

Explanation

Symbol	Explanation
$N_{E d}$	Design value of the applied axial force caused by permanent and variable external load, and by secondary effects of prestressing
$M_{E d, y}$	Design value of the applied bending moment around y axis caused by permanent and variable external load, and by secondary effects of prestressing
$\mathrm{M}_{\mathrm{Ed}, \mathrm{z}}$	Design value of the applied bending moment around z axis caused by permanent and variable external load, and by secondary effects of prestressing
Type	Nu-Mu-Mu: Cross-sectional resistance is determined assuming proportional change of all components of acting internal forces (the eccentricity of normal force remains constant) until interaction surface is reached. The change of acting internal forces can be interpreted as the movement along the line connecting the origin of coordinate system (0,0,0) and the point of acting internal forces (NEd, MEdy, MEdz). Two points of intersection of the connecting line and interaction surface, which can be found,

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

	represent two sets of forces of resistance. Three resistance forces are determined in each point of intersection by the program: normal force capacity NRd, and capacities in flexure MRdy and MRdz
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
FEd $^{\text {The applied design force caused by external load (without effects of prestressing) }}$	
FRd1	First set of forces of resistance resulting from first point of intersection reached at interaction surface
FRd2	Second set of forces of resistance resulting from second point of intersection reached at interaction surface

3.1.1.4 Shear

Results presented for combination : Fundamental ULS

$\mathbf{V}_{\text {Ed }}$ $[\mathrm{kN}]$	$\mathbf{N}_{\text {Ed }}$ $[\mathrm{kN}]$	$\mathbf{V}_{\text {Rd }}$ $[\mathrm{kN}]$	Check zone	Clause	Value $[\%]$	Limit $[\%]$	Check
50,0	0,0	206,1	without reduction	$6.2 .3(3)$	24,3	100,0	OK

Design and resistance shear forces

$\mathbf{V}_{\text {Ed }}$ $[\mathrm{kN}]$	$\mathbf{V}_{\text {Rd, }}$ $[\mathrm{kN}]$	$\mathbf{V}_{\text {Rd,max }}$ $[\mathrm{kN}]$	$\mathbf{V}_{\text {Rdd, }}$ $[\mathrm{kN}]$	$\mathbf{V}_{\text {Rd,s }}$ $[\mathrm{kN}]$	$\mathbf{V}_{\text {Rd }}$ $[\mathrm{KNN}]$
50,0	75,4	418,1	593,5	206,1	206,1

Input values and intermediate results of shear design

n_{c}	$\begin{gathered} a_{\text {sw }} \\ {\left[\mathrm{mm}^{2} / \mathrm{m}\right]} \end{gathered}$	$\begin{gathered} \mathbf{A s I}^{2} \\ {\left[\mathrm{~mm}^{2}\right]} \end{gathered}$		$\begin{gathered} b_{w} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{z} \\ {[\mathrm{mm}]} \end{gathered}$		$\begin{gathered} \theta \\ {\left[{ }^{\circ}\right]} \end{gathered}$	$\begin{gathered} \alpha \\ {\left[{ }^{\circ}\right]} \end{gathered}$		$\begin{gathered} \sigma_{c p}^{*} \\ {[\mathrm{MPa}]} \end{gathered}$	$\begin{aligned} & \alpha_{\mathrm{cw}} \\ & {[-]} \end{aligned}$
2	449	1521		220	11	459		21,8			0,0	1,00
$\mathrm{C}_{\mathrm{Rd}, \mathrm{c}}$ [-]	$\begin{gathered} \mathbf{k} \\ {[-]} \end{gathered}$	$\begin{aligned} & \mathbf{k}_{1} \\ & {[-1} \end{aligned}$	$\begin{aligned} & \rho_{1} \\ & {[-]} \end{aligned}$	$\begin{gathered} \sigma_{\mathrm{cp}} \\ {[\mathrm{MPa}]} \end{gathered}$					$\begin{aligned} & \mathbf{v} \\ & {[-]} \end{aligned}$			
0,12	1,63	0,15	0,01	0,0			,		0,53			

Nonconformity

	Nonconformities
$\mathbf{1}$	Shear is resisted by concrete, shear reinforcement is required according to detailing provisions, see 6.2.2

Explanation

Symbol	Explanation
$V_{\text {Ed }}$	Design value of the applied shear force (with effect of prestressing)
$N_{\text {Ed }}$	Design value of the applied axial force (with effect of prestressing)
$V_{\text {Rd }}$	Final value of the design shear resistance
Check zone	Type of zone in which check is performed
Clause	The number of clause (type of method) used for shear check
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
$V_{\text {Rd, }, \mathrm{c}}$	The design shear resistance of the member without shear reinforcement
$\mathrm{V}_{\text {Rd,max }}$	The design value of the maximum shear force which can be sustained by the member, limited by crushing of the compression struts
$\mathrm{V}_{\text {Rd,r }}$	Limit value of design shear force considered without reduction by Beta factor acc. (6.2.2(6))
$\mathrm{V}_{\text {Rd, }}$	Design value of the shear force which can be sustained by the yielding of shear reinforcement
n_{c}	Number of branches of shear reinforcement

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

$\mathrm{a}_{\text {sw }}$	The cross-sectional area of the shear reinforcement per unit length
Ast	The area of the tensile longitudinal reinforcement
$\mathrm{b}_{\text {w }}$	The width of the cross-section in the centroid of css
d	Effective depth of the cross-section
z	The inner lever arm
θ	The angle between the concrete compression strut and the beam axis perpendicular to the shear force
a	The angle between shear reinforcement and the beam axis perpendicular to the shear force
$\sigma_{\text {cp }}{ }^{\text {c }}$	The mean compressive stress (measured positive) in the concrete due to the design axial force taking account of the reinforcement. σ cp* serves for determining acw (see. EN 1992-1-1, chap. 6.2.3 (3))
$\alpha_{\text {cw }}$	Coefficient taking account of the state of the stress in the compression chord
Crd,	Coefficient for calculation the design shear resistance of the member without shear reinforcement
k	Coefficient for calculation the design shear resistance of the member without shear reinforcement
k_{1}	Coefficient for calculation the design shear resistance of the member without shear reinforcement
ρ_{1}	Reinforcement ratio of the tensile longitudinal reinforcement
$\sigma_{\text {cp }}$	The mean compressive stress (measured positive) in the concrete cross-section due to the design axial force. $\sigma c p$ is limited to value $0,2 \cdot \mathrm{fcd}$ (EN 1992-1-1 chap. 6.2.2 (1))
$\sigma_{\text {wd }}$	Design stress of the shear reinforcement, see note 2 of clause 6.2.3 (3)
$\mathrm{V}_{\text {min }}$	Coefficient for calculation the design shear resistance of the member without shear reinforcement
v	Concrete strength reduction factor for the calculation of shear resistance
v_{1}	Concrete strength reduction factor for the calculation of shear resistance

3.1.1.5 Torsion

Results presented for combination : Fundamental ULS

$\mathbf{T}_{\mathbf{E d}}$ $[\mathbf{k N m}]$	$\mathbf{T}_{\mathbf{R d}}$ $[\mathbf{k N m}]$	Value $[\%]$	Limit $[\%]$	Check
10,0	31,0	32,2	100,0	OK

Design and resistance torsional moments

$\begin{gathered} \mathrm{T}_{\mathrm{Ed}} \\ {[\mathrm{kNm}]} \end{gathered}$	TRd, [kNm]	$\mathrm{T}_{\mathrm{Rd} \text {, max }}$ [kNm]	$\mathrm{T}_{\mathrm{Rd}, \mathrm{s}}$ [kNm]	$\mathrm{T}_{\mathrm{Rd}, \mathrm{sl}}$ [kNm]	T_{Rd} [kNm]
10,0	16,1	43,5	32,3	31,0	31,0

Input values and intermediate results of torsion design

$\mathbf{A}_{\mathbf{k}}$ $\left[\mathbf{m m}^{2}\right]$	$\mathbf{u}_{\mathbf{k}}$ $[\mathbf{m m}]$	$\mathbf{t}_{\text {eff }}$ $[\mathbf{m m}]$	$\mathbf{a}_{\text {sw }}$ $\left[\mathrm{mm}^{2} / \mathbf{m}\right]$	$\mathbf{A}_{\text {sl }}$ $\left[\mathbf{m m}^{2}\right]$	$\mathbf{A}_{\text {sp }}$ $\left[\mathbf{m m}^{2}\right]$	$\boldsymbol{\theta}$ $\left[{ }^{\circ}\right]$
66300	1280	90	224	1722	0	21,8

Nonconformity

No nonconformities

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Equivalent thin-walled section for torsion check

Explanation

Symbol	Explanation
TEd	Design value of the applied torsional moment (with effect of prestressing)
TRd	Governing design torsional resistance moment
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
Trd,	The design torsional cracking moment
TRd, max	The design torsional resistance moment
Trd,s	The design value of the torsional moment, which can be sustained by the yielding of torsion reinforcement
Trd,sl	The design value of the torsional moment, which can be sustained by the yielding of longitudal reinforcement
A_{k}	The area enclosed by the centre-lines of the connecting walls, including inner hollow areas
Uk	The perimeter of the area Ak
teff	The effective wall thickness
$\mathrm{a}_{\text {sw }}$	Cross-sectional area of the shear reinforcement per unit length used for torsion check
$\mathrm{A}_{\text {sl }}$	Area of longitudinal reinforcement inside of the stirrup, which is effective for torsion resistance
$\mathrm{A}_{\text {sp }}$	Area of prestressing reinforcement inside of the stirrup, which is effective for torsion resistance
θ	The angle between the concrete compression strut and the beam axis perpendicular to the shear force

3.1.1.6 Interaction

Results presented for combination : Fundamental ULS

\mathbf{N}_{Ed} $[\mathbf{k N}]$	$\mathbf{M}_{\mathrm{Edy}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathrm{Edz}}$ $[\mathbf{k N m}]$	\mathbf{V}_{Ed} $[\mathbf{k N}]$	\mathbf{T}_{Ed} $[\mathbf{k N m}]$	Value $\mathbf{V + T}$ $[\%]$	Value $\mathbf{V + T + M}$ $[\%]$	Value $[\%]$	Limit $[\%]$	Check
0,0	145,0	20,0	50,0	10,0	53,2	93,4	93,4	100,0	OK

Interaction check of shear and torsion (concrete)

$\mathbf{V}_{\text {Rd, }}$ $[\mathrm{kN}]$	$\mathbf{T}_{\text {Rd, }}$ $[\mathrm{kNm}]$	$\mathbf{V}_{\text {Rd, max }}$ $[\mathrm{kN}]$	$\mathbf{T}_{\text {Rd, max }}$ $[\mathrm{kNm}]$	Eq. 6.31 $[\%]$	Eq. 6.29 $[\%]$	Value $[\%]$	Limit $[\%]$	Check
75,4	16,1	418,1	43,5	128,3	35,0	35,0	100,0	OK

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer
Interaction check of shear and torsion (longitudinal reinforcement)

$\mathbf{A}_{\text {sI }}$ $\left[\mathbf{m m}^{2}\right]$	$\mathbf{F}_{\text {sI }}$ $[\mathbf{k N}]$	$\mathbf{F}_{\text {sl, lim }}$ $[\mathbf{k N}]$	Value $[\%]$	Limit $[\%]$	Check
2526	366,4	1176,9	31,1	100,0	OK

Interaction check of shear and torsion (shear reinforcement)

$\mathbf{a}_{\text {sw }}$ $\left[\mathbf{m m}^{2} / \mathbf{m}\right]$	$\mathbf{F}_{\text {sw }}$ $[\mathbf{k N}]$	$\mathbf{F}_{\text {sw, lim }}$ $[\mathbf{k N}]$	Value $[\%]$	Limit $[\%]$	Check
224	51,9	97,6	53,2	100,0	OK

Interaction check of shear, torsion, bending and normal force

$\mathbf{F}_{\mathbf{b}}$ $[\mathbf{k N}]$	$\boldsymbol{\Delta} \mathbf{F}_{\text {td, }}$ $[\mathbf{k N}]$	$\boldsymbol{\Delta} \mathbf{F}_{\text {td,t }}$ $[\mathbf{k N}]$	$\boldsymbol{\Delta} \boldsymbol{\varepsilon}_{\mathbf{s}}$ $[1 \mathrm{e}-4]$	$\boldsymbol{\Delta} \boldsymbol{\varepsilon}_{\mathbf{t}}$ $[1 \mathrm{e}-4]$	Extreme in bar	Value $[\%]$	Limit $[\%]$	Check
260,9	125,0	241,3	2,5	8,7	5	93,4	100,0	OK

Detailed check of reinforcement

Bar	$\mathbf{y}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\mathbf{z}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\boldsymbol{\Delta} \boldsymbol{\varepsilon}_{\text {st }}$ $[1 \mathbf{e}-4]$	$\boldsymbol{\varepsilon}$ $[1 \mathrm{e}-4]$	$\boldsymbol{\varepsilon}_{\text {lim }}$ $[1 \mathrm{e}-4]$	$\boldsymbol{\Delta} \boldsymbol{\sigma}_{\text {st }}$ $[\mathrm{MPa}]$	$\boldsymbol{\sigma}$ $[\mathrm{MPa}]$	$\boldsymbol{\sigma}_{\text {lim }}$ $[\mathrm{MPa}]$	Value $[\%]$	Check
5	-50	-300	11,1	25,5	450,0	147,6	435,1	465,9	93,4	OK

Nonconformity

	Nonconformities
$\mathbf{4}$	Check of interaction of shear and torsion acc. to $6.3 .2(5)$ is not satisfactory, therefore it was necessary to check ultimate capacity at interaction of all components of internal forces

Stress and strain distributions in the cross-section

Explanation

Symbol	Explanation
$N_{\text {Ed }}$	Design value of the applied axial force (with effect of prestressing)
$\mathrm{M}_{\text {Edy }}$	Design value of the applied bending moment around y axis (with effect of prestressing)

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

M ${ }_{\text {Edz }}$	Design value of the applied bending moment around z axis (with effect of prestressing)
$\mathrm{V}_{\text {Ed }}$	Design value of the applied shear force (with effect of prestressing)
TEd	Design value of the applied torsional moment (with effect of prestressing)
Value V+T	Utilization of the cross-section (for interaction of shear and torsion) related to the limit value
Value $\mathrm{V}+\mathrm{T}+\mathrm{M}$	Utilization of the cross-section (for interaction of shear, torsion and bending) related to the limit value
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
$\mathrm{V}_{\text {Rd, }}$	The design shear resistance of the member without shear reinforcement
T Rd, ${ }^{\text {c }}$	The design torsional cracking moment
$\mathrm{V}_{\text {Rd, max }}$	The design value of the maximum shear force which can be sustained by the member, limited by crushing of the compression struts
TRd,max	The design torsional resistance moment
Eq. 6.31	The value of the exploitation of the cross-section according to equation (6.31) EN 1992-1-1
Eq. 6.29	The value of the exploitation of the cross-section according to equation (6.29) EN 1992-1-1
Asl	Cross-sectional area of longitudinal reinforcement used for shear and/or torsion check. In case of torsion, it is area of reinforcement inside of the stirrup, which is effective for torsion resistance
Fsi	Tensile force due to shear and torsion in longitudinal reinforcement inside of the stirrup, which is effective for torsion resistance
$\mathrm{F}_{\mathrm{sl}, \mathrm{lim}}$	Limit value of tensile force in longitudinal reinforcement inside of the stirrup, which is effective for torsion resistance (Fsl,lim=Asl*fyd)
asw	The cross-sectional area (per unit length) of the most utilized stirrup leg due to shear and torsion
$\mathrm{F}_{\text {sw }}$	Tensile force (per unit length) in the most utilized stirrup leg due to shear and torsion.
$\mathrm{F}_{\text {sw, } / \mathrm{lm}}$	Load bearing resistance (per unit length) of the most utilized stirrup length due to shear and torsion (usually Fsw,lim=asw*fywd)
Fb	Resultant force in longitudinal reinforcement due to bending and normal force
$\Delta \mathrm{F}_{\mathrm{t}, \mathrm{s}}$	Additional tensile force in longitudinal reinforcement due to shear calculated as VEd * cote
$\Delta \mathrm{F}_{\text {tod }}$	Additional tensile force in longitudinal reinforcement due to torsion
$\Delta \varepsilon_{\text {s }}$	Additional tensile strain in the bar/tendon due to shear
$\Delta \varepsilon_{\text {t }}$	Additional tensile strain in the bar/tendon due to torsion
Extreme in bar	Number of the non-prestressed bar with the extreme value of the check
Bar	Number of reinforcement bar with the extreme value of the check
y_{i}	y-coordinate of the css component (fibre/bar/tendon...) related to the centroid of css
zi_{i}	z-coordinate of the css component (fibre/bar/tendon...) related to the centroid of css
$\Delta \varepsilon_{\text {st }}$	Additional tensile strain in the bar/tendon due to shear and torsion
ε	Strain in the bar/tendon due to shear, torsion and bending
Elim	Limit value of strain in the bar/tendon
$\Delta \sigma_{\text {st }}$	Additional tensile stress in the bar/tendon due to shear and torsion
σ	Stress in the bar/tendon due to shear, torsion and bending
- ${ }_{\text {im }}$	Limit value of the stress in the bar/tendon

3.1.1.7 Stress limitation

Stress limitation - short-term effect

Type of check	Component type	Index	$\boldsymbol{\sigma}$ [MPa]	$\boldsymbol{\sigma}_{\text {lim }}$ [MPa]	Value $[\%]$	Limit [\%]	Check
$7.2(3)$-Quasi	Concrete fibre	1	$-7,6$	$-13,5$	56,5	100,0	OK

Stress limitation - long-term effect

Type of check	Component type	Index	$\boldsymbol{\sigma}$ $[\mathrm{MPa}]$	$\sigma_{\text {lim }}$ $[\mathrm{MPa}]$	Value $[\%]$	Limit $[\%]$	Check
$7.2(5)$-Char	Reinforcement bar	5	234,8	400,0	58,7	100,0	OK

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Detailed check of concrete - short-term effect

Type of check	Fibre	$\begin{gathered} y_{i} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{z}_{\mathrm{i}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ {[\mathrm{kN}]} \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{kNm}]} \end{gathered}$	$\begin{gathered} \mathbf{M}_{\mathbf{z}} \\ {[\mathrm{kNm}]} \end{gathered}$	$\begin{gathered} \underset{\sim}{\sigma} \\ {[\mathrm{MPa}]} \end{gathered}$	$\begin{gathered} \sigma_{\lim } \\ {[\mathrm{MPa}]} \end{gathered}$	Value [\%]	Check
7.2(2)-Char	1	-225	252	0,0	120,0	0,0	-9,2	-18,0	50,9	OK
7.2(3)-Quasi	1	-225	252	0,0	100,0	0,0	-7,6	-13,5	56,5	OK

Detailed check of reinforcement - short-term effect

Type of check	Bar	$\mathbf{y}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\mathbf{z}_{\mathbf{i}}$ $[\mathbf{m m}]$	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$	$\boldsymbol{\sigma}$ $[\mathbf{M P a}]$	$\sigma_{\text {lim }}$ $[\mathrm{MPa}]$	Value $[\%]$	Check
$7.2(5)$-Char	9	50	-300	0,0	120,0	0,0	222,9	400,0	55,7	OK

Detailed check of concrete - long-term effect

Type of check	Fibre	$\mathbf{y i}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\mathbf{z}_{\mathbf{i}}$ $[\mathbf{m m}]$	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$	$\boldsymbol{\sigma}$ $[\mathbf{M P a}]$	$\boldsymbol{\sigma}_{\text {lim }}$ $[\mathbf{M P a}]$	Value $[\%]$	Check
$7.2(2)-$ Char	1	-225	252	0,0	120,0	0,0	$-5,3$	$-18,0$	29,4	OK
$7.2(3)$-Quasi	1	-225	252	0,0	100,0	0,0	$-4,4$	$-13,5$	32,6	OK

Detailed check of reinforcement - long-term effect

Type of check	Bar	$\mathbf{y}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\mathbf{z}_{\mathbf{i}}$ $[\mathbf{m m}]$	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$	$\boldsymbol{\sigma}$ $[\mathbf{M P a}]$	$\boldsymbol{\sigma}_{\text {lim }}$ $[\mathbf{M P a}]$	Value $[\%]$	Check
$7.2(5)-$ Char	5	-50	-300	0,0	120,0	0,0	234,8	400,0	58,7	OK

Creep coefficient

Way of assessment	$\mathbf{h}_{\mathbf{0}}$ $[\mathrm{mm}]$	$\mathbf{A}_{\mathbf{c}}$ $\left[\mathrm{mm}^{2}\right]$	\mathbf{u} $[\mathrm{mm}]$	\mathbf{t} $[\mathbf{d}]$	$\mathbf{t}_{\mathbf{0}}$ $[\mathbf{d}]$	$\mathbf{t}_{\mathbf{s}}$ $[\mathbf{d}]$	RH $[\%]$	Use $\mathbf{Y}_{\text {It }}$	$\boldsymbol{\varphi}\left(\mathbf{t}, \mathbf{t}_{\mathbf{0}}\right)$ $[-]$
Automatic	161	168800	2100	18250,0	28,0	7,0	65,0	No	2,03

Nonconformity

	Nonconformities
4	Upper or lower design value of internal forces of one of SLS combinations caused to happen concrete stress higher than concrete tensile strength (section is cracked). Based on code and calculation settings it is assumed that the concrete resists no tension in SLS checks for all combinations of current extreme. The assumptions for SLS checks in other extremes of current section are not influenced.
$\mathbf{4}$	The action of concrete in tension is excluded because the cracks appear, see clause 7.1 (2)

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Stress and strain distributions in the cross-section

Stress and strain distributions in the cross-section

Explanation

Symbol	Explanation
Type of check	The number of clause and the type of SLS combination used for the calculation of stress limitation
Component type	Specification of type of css component (concrete fibre/bar/tendon) with extreme value of the check
Index	Number of concrete fibre, reinforcement bar or tendon with the extreme value of the check
σ	Stress in css component (fibre/bar/tendon...) calculated for appropriate SLS combination
$\sigma_{\text {lim }}$	Limit value of the stress in css component (fibre/bar/tendon...) calculated for appropriate SLS combination
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
Fibre	Number of concrete fibre with the extreme value of the check

Project: Amsterdam industrial
Project number: 20231090
$\pi=\|$ StatiCa
Author: Dave the Engineer

y_{i}	y-coordinate of the css component (fibre/bar/tendon...) related to the centroid of css
zi	z-coordinate of the css component (fibre/bar/tendon...) related to the centroid of css
N	Normal force for appropriate SLS combination
My	Bending moment around y axis for appropriate SLS combination
M_{z}	Bending moment around z axis for appropriate SLS combination
Bar	Number of reinforcement bar with the extreme value of the check
h_{0}	The notional size $=2 \mathrm{Ac} / \mathrm{u}$, where Ac is the concrete cross-sectional area and u is the perimeter of that part which is exposed to drying
A_{0}	The cross-sectional area of the concrete
u	The perimeter of that part which is exposed to drying
t	The age of concrete at the moment considered
to	The age of concrete at loading
ts	The age of the concrete at the beginning of drying shrinkage (or swelling). Normally this is at the end of curing
RH	is the factor to account for relative humidity
Use Y It	Use long-term delayed strain estimation factor acc. to Annex B, clause B. 105 (103)
$\varphi(t, t)$	Calculated value of creep coefficient

3.1.1.8 Crack width

Crack width - short-term effect

Combination	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m} \mathbf{~}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$	$\mathbf{w}_{\mathbf{k}}$ $[\mathbf{m m}]$	$\mathbf{w}_{\text {lim }}$ $[\mathbf{m m}]$	Value $[\%]$	Limit $[\%]$	Check
Quasi	0,0	100,0	0,0	0,133	0,300	44,2	100,0	OK

Crack width - long-term effect

Combination	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$	$\mathbf{w}_{\mathbf{k}}$ $[\mathbf{m m}]$	$\mathbf{w}_{\text {lim }}$ $[\mathbf{m m}]$	Value $[\%]$	Limit $[\%]$	Check
Quasi	0,0	100,0	0,0	0,169	0,300	56,3	100,0	OK

Intermediate results and coefficients for crack width calculation - short-term effect

$\begin{gathered} \mathbf{x} \\ {[\mathrm{mm}]} \end{gathered}$	$h_{\mathrm{c} \text {,eff }}$ [mm]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{A}_{\mathbf{c}, \text { eff }} \\ {\left[\mathrm{mm}^{2}\right]} \end{gathered}$	$\mathbf{A}_{\mathrm{s} \text {,eff }}$ [mm^{2}]	$\begin{gathered} \mathrm{A}_{\mathrm{p}, \text { eff }} \\ {\left[\mathrm{mm}{ }^{2}\right]} \end{gathered}$	$\rho_{p, \text { eff }}$ [-]
110	155	538	34117	1005	0	0,03
$\begin{aligned} & \mathbf{k}_{\mathrm{t}} \\ & {[-]} \\ & \hline \end{aligned}$	$\begin{aligned} & \varepsilon_{s m}-\varepsilon_{\mathrm{cm}} \\ & {[1 \mathrm{e}-4]} \end{aligned}$	$\begin{aligned} & \mathbf{k}_{1} \\ & {[-]} \end{aligned}$	$\begin{aligned} & \mathbf{k}_{2} \\ & {[-]} \end{aligned}$	\mathbf{k}_{3} \mathbf{k}_{4} $[-]$ $[-]$		
0,60	5,8	0,80	0,50	3,40 0,43		
$\begin{gathered} c \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \varepsilon_{1} \\ {[1 \mathrm{e}-4]} \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ {[1 \mathrm{e}-4]} \end{gathered}$	$\mathbf{S}_{\mathrm{r}, \text { max }}$ [mm]	$\begin{gathered} \Phi \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \sigma_{s} \\ {[\mathrm{MPa}]} \end{gathered}$	
40	10,3	-2,3	228	16	185,8	

Intermediate results and coefficients for crack width calculation - long-term effect

$\begin{gathered} \mathrm{x} \\ {[\mathrm{~mm}]} \end{gathered}$	$\mathbf{h}_{\mathrm{c} \text {,eff }}$ [mm]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\mathbf{A}_{\mathrm{c}, \text { eff }}$ [mm^{2}]	$\mathbf{A}_{\text {s,eff }}$ [mm^{2}]	$\begin{gathered} \mathbf{A}_{\mathrm{p}, \mathrm{eff}} \\ {\left[\mathrm{~mm}^{2}\right]} \end{gathered}$	$\rho_{\mathrm{p}, \text { eff }}$ [-]
162	146	538	32114	1005	0	0,03
$\begin{aligned} & \mathbf{k}_{\mathbf{t}} \\ & {[-]} \\ & \hline \end{aligned}$	$\begin{gathered} \varepsilon_{\mathrm{sm}}-\varepsilon_{\mathrm{cm}} \\ {[1 \mathrm{e}-4]} \end{gathered}$	$\begin{aligned} & \mathbf{k}_{1} \\ & {[-]} \end{aligned}$	$\begin{aligned} & \mathbf{k}_{2} \\ & {[-]} \end{aligned}$	\mathbf{k}_{3} \mathbf{k}_{4} $[-]$ $[-]$		
0,40	7,6	0,80	0,50	3,40 0,4		
$\begin{gathered} \mathrm{c} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \varepsilon_{1} \\ {[1 \mathrm{e}-4]} \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ {[1 \mathrm{e}-4]} \end{gathered}$	$\mathbf{S r}_{\mathrm{r}, \text { max }}$ [mm]		σ_{s} [MPa]	
40	11,0	-4,1	223	16	195,7	

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Creep coefficient

Way of assessment	$\mathbf{h}_{\mathbf{0}}$ $[\mathbf{m m}]$	$\mathbf{A}_{\mathbf{c}}$ $\left[\mathbf{m m}^{2}\right]$	\mathbf{u} $[\mathrm{mm}]$	\mathbf{t} $[\mathbf{d}]$	$\mathbf{t}_{\mathbf{0}}$ $[\mathbf{d}]$	$\mathbf{t}_{\mathbf{s}}$ $[\mathbf{d}]$	RH $[\%]$	Use $\mathbf{y}_{\mathbf{Y t}}$	$\boldsymbol{\varphi}\left(\mathbf{t}, \mathbf{t}_{\mathbf{0}}\right)$ $[-]$
Automatic	161	168800	2100	18250,0	28,0	7,0	65,0	No	2,03

Nonconformity

Nonconformities

Upper or lower design value of internal forces of one of SLS combinations caused to happen concrete stress higher than concrete tensile strength (section is cracked). Based on code and calculation settings it is assumed that the concrete resists no tension in SLS checks for all combinations of current extreme. The assumptions for SLS checks in other extremes of current section are not influenced.

Stress and strain distributions in the cross-section

Results presented for

- Quasi-permanent combination
- Short-term stiffness calculation

Stress and strain distributions in the cross-section

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Explanation

Symbol	Explanation
Combination	Combination used for calculation including rsup or rinf coefficient acc. to 5.10.9
N	Normal force for quasi-permanent combination
My	Bending moment around y axis for quasi-permanent combination
M_{z}	Bending moment around z axis for quasi-permanent combination
Wk	The crack width calculated according to 7.3.4
Wlim	Limit value of crack width according to table 7.1 N
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
X	Depth of compression zone (position of neutral axis)
$h_{c, \text { eff }}$	Depth of effective tension area of the concrete surrounding the reinforcement or prestressing tendons (7.3.2 (3))
d	Effective depth of the cross-section
$\mathrm{A}_{\mathrm{c} \text {,eff }}$	Effective area of the concrete in tension surrounding the reinforcement or prestressing tendons
$\mathrm{A}_{s, \text { eff }}$	Effective area of reinforcing steel within effective area of the concrete
$A_{\text {p, eff }}$	Effective area of prestressing steel within effective area of the concrete
$\rho_{\mathrm{p} \text {,eff }}$	Ratio of the effective area of prestressing and reinforcing steel and effective area of the concrete in tension
k_{t}	Factor dependent on the duration of the load (7.3.4 (2))
k_{1}	Coefficient which takes account of the bond properties of the bonded reinforcement (7.3.4 (3))
k_{2}	Coefficient which takes account of the distribution of strain
c	Thickness of concrete cover of main longitudinal reinforcement
ε_{1}	Greater tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section
ε_{2}	Lesser tensile strain at the boundaries of the section considered, assessed on the basis of a cracked section
Sr,max	Maximum final crack spacing
Ф	Diameter of bar or equivalent diameter of bar for more diameters of bars within effective tension area of the concrete
$\sigma_{\text {s }}$	Maximum stress in the tension reinforcement assuming a cracked section
h_{0}	The notional size $=2 A c / u$, where $A c$ is the concrete cross-sectional area and u is the perimeter of that part which is exposed to drying
A_{c}	The cross-sectional area of the concrete
u	The perimeter of that part which is exposed to drying
t	The age of concrete at the moment considered
to	The age of concrete at loading
$\mathrm{t}_{\text {s }}$	The age of the concrete at the beginning of drying shrinkage (or swelling). Normally this is at the end of curing
RH	is the factor to account for relative humidity
Use Y lt	Use long-term delayed strain estimation factor acc. to Annex B, clause B. 105 (103)
$\varphi\left(\mathrm{t}, \mathrm{t}_{0}\right)$	Calculated value of creep coefficient

3.1.1.9 Detailing rules

Results presented for combination : Fundamental ULS

$\mathbf{N}_{\text {Ed }}$ $[\mathbf{k N}]$	$\mathbf{M}_{\text {Ed,y }}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\text {Ed, }}$ $[\mathbf{k N m}]$	Ratio [\%]	Ratio [\%sear	Governing $[\%]$	Limit $[\%]$	Check
0,0	145,0	20,0	91,7	100,0	100,0	100,0	OK

Check of detailing provisions of longitudinal reinforcement

Project: Amsterdam industrial
Project number: 20231090
$\square=\|$ StatiCa
Creatase yetembers estmates
Author: Dave the Engineer

Minimal reinf. ratio for longitudinal reinforcement (9.2.1.1 (1)) [\%]	1,01	0,15	15,0	OK
Maximal reinf. ratio for longitudinal reinforcement (9.2.1.1(3)) [\%]	1,50	4,00	37,4	OK
Minimal clear distance of longitudinal reinforcement (8.2 (2)) [mm]	23	21	91,7	OK
Maximal axial distance of longitudinal reinforcement $(9.2 .3(4))[\mathrm{mm}]$	214	350	61,0	OK

Check detailing provisions of shear reinforcement

Type	Value $_{\text {calc }}$	Value $_{\text {lim }}$	Ratio [\%]	Check
Minimal reinf. ratio for shear reinforcement (9.2.2 (5)) [\%]	0,20	0,09	43,0	OK
Maximal distance of stirrups (9.2.2 (6)) [mm]	350	383	91,3	OK
Maximal transversal distance of branches of stirrups (9.2.2 (8)) [mm]	150	383	39,1	OK
Minimum mandrel diameter of stirrup (8.3 (2)) [-]	4,00	4,00	100,0	OK

Input values and intermediate results for detailing

	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$			$\begin{gathered} \begin{array}{c} \mathrm{f}_{\mathrm{yk}} \\ {[\mathrm{MPa}]} \end{array} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{yd}} \\ {[\mathrm{MPa}]} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{ck}} \\ {[\mathrm{MPa}]} \end{gathered}$		
220	511	168800	151116	500,0	434,8	30,0	2,9	

Nonconformity

No nonconformities

Explanation

Symbol	Explanation
N_{Ed}	Design value of the applied axial force (with effect of prestressing)
$\mathrm{M}_{\mathrm{Ed}, \mathrm{y}}$	Design value of the applied bending moment around y axis (with effect of prestressing)
$\mathrm{M}_{\mathrm{Ed}, \mathrm{z}}$	Design value of the applied bending moment around z axis (with effect of prestressing)
Ratiolong	Critical ratio of calculated to limit value, which expresses detailing rules for longitudinal reinforcement
Ratioshear	Critical ratio of calculated to limit value, which expresses detailing rules for shear reinforcement
Governing	Governing ratio of calculated to limit value, which expresses detailing rules
Limit	Limit ratio representing detailing rules
Check	Result of the check
Type	Type of checked detailing provisions
Value calc	Calculated or input quantity, which expresses given detailing rule
Valuelim	Limit value of the quantity, which expresses given detailing rule
Ratio	Ratio of calculated or input quantity, which expresses given detailing rule, to its limit value

3.1.1.10 Response N-M-M

Results presented for combination : Fundamental ULS

$\mathbf{N}_{\text {Ed,tot }}$ $[\mathbf{k N}]$	$\mathbf{M}_{\text {Ed,ytot }}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\text {Ed,ztot }}$ $[\mathbf{k N m}]$	Concrete fibre	Extreme in bar	Value $[\%]$	Limit $[\%]$	Check
0,0	145,0	20,0	8	5	61,7	100,0	OK

Plane of strain

\mathbf{x} $[\mathbf{m m}]$	\mathbf{d} $[\mathbf{m m}]$	\mathbf{z} $[\mathbf{m m}]$	$\boldsymbol{\varepsilon}_{\mathbf{x}}$ $[1 \mathrm{e}-4]$	$\boldsymbol{\varphi}_{\mathrm{z}}$ $[1 \mathrm{e}-4]$	$\boldsymbol{\varphi}_{\mathrm{y}}$ $[1 \mathrm{e}-4]$
186	552	460	3,9	$-8,7$	$-33,4$

Forces in components of cross-section

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Component of css	\mathbf{N} $[\mathbf{k N}]$	$\mathbf{M}_{\mathbf{y}}$ $[\mathbf{k N m}]$	$\mathbf{M}_{\mathbf{z}}$ $[\mathbf{k N m}]$	\mathbf{A} $\left[\mathbf{m m}^{2}\right]$	$\mathbf{y}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\mathbf{z}_{\mathbf{i}}$ $[\mathbf{m m}]$
Concrete	$-260,9$	52,6	15,3	58273	59	202
Reinforcement in tension	315,7	81,7	1,1	1521	-4	-259
Reinforcement in compression	$-54,9$	10,6	3,5	1005	64	194
Total	0,0	145,0	20,0			

Detailed check of concrete

Fibre	$\begin{gathered} \mathbf{y i}_{\mathbf{i}} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{z}_{\mathbf{i}} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \varepsilon \\ {\left[1 e^{\varepsilon}-4\right]} \end{gathered}$	$\begin{gathered} \varepsilon_{\lim } \\ {[1 \mathrm{e}-4]} \end{gathered}$	$\begin{gathered} \sigma \\ {[\mathrm{MPa}]} \end{gathered}$	$\begin{gathered} \sigma_{\lim } \\ {[\mathrm{MPa}]} \end{gathered}$	Value [\%]	Check
8	225	252	-6,4	-35,0	-10,8	-20,0	53,9	OK

Detailed check of reinforcement

Bar	$\mathbf{y}_{\mathbf{i}}$ $[\mathbf{m m}]$	$\mathbf{z}_{\mathbf{i}}$ $[\mathrm{mm}]$	$\boldsymbol{\varepsilon}$ $[\mathbf{e}-4]$	$\boldsymbol{\varepsilon}_{\text {lim }}$ $[\mathbf{e}-4]$	$\boldsymbol{\sigma}$ $[\mathrm{MPa}]$	$\boldsymbol{\sigma}_{\text {lim }}$ $[\mathrm{MPa}]$	Value $[\%]$	Check
5	-50	-300	14,4	450,0	287,5	465,9	61,7	OK

Nonconformity

No nonconformities

Stress and strain distributions in the cross-section

Explanation

Symbol	Explanation
NEd,tot	Design value of the applied axial force (with effect of prestressing)
Med,ytot	Design value of the applied bending moment around y axis (with effect of prestressing)
Med, ztot	Design value of the applied bending moment around z axis (with effect of prestressing)
Concrete fibre	Number of the fibre with the extreme value of the check
Extreme in bar	Number of the non-prestressed bar with the extreme value of the check
Value	Utilization of the cross-section or its component (e.g. reinforcement bar) related to the limit value
Limit	Limit value of the exploitation of the cross-section
Check	Result of the check
x	Depth of compression zone (position of neutral axis)

Project: Amsterdam industrial
Project number: 20231090
$\pi=\|$ StatiCa
Author: Dave the Engineer

d	Effective depth of the cross-section
z	The inner lever arm
ε_{x}	Axial strain
φ_{z}	Tangent of the angle between 'z' axis and its perpendicular projection into plane of strain (around 'y' axis)
φ_{y}	Tangent of the angle between 'y' axis and its perpendicular projection into plane of strain (around 'z' axis)
Component of css	Type of component of the css N
M_{y}	The value of normal force resisted by component of the css
M_{z}	The value of bending moment around 'y' axis resisted by component of css
A	The value of bending moment around 'z' axis resisted by component of css
y_{i}	Area of css component (fibre/bar/tendon...)
z_{i}	y-coordinate of the css component (fibre/bar/tendon...) related to the centroid of css
Fibre	z-coordinate of the css component (fibre/bartendon...) related to the centroid of css
ε	Number of concrete fibre with the extreme value of the check
$\varepsilon_{\text {lim }}$	Strain in current css component (fibre/bar/tendon...) calculated for ULS
σ	Limit value of strain in css component (fibre/bar/tendon...)
$\sigma_{\text {lim }}$	Stress in css component (fibre/bar/tendon...) calculated for appropriate SLS combination
Bar	Limit value of the stress in css component (fibre/bar/tendon...) calculated for appropriate SLS combination
	Number of reinforcement bar with the extreme value of the check

4 List of design members

Design member M 1

Member type	Beam
Exposure class	XC3, XD1
Relative humidity	$65,0 \%$
Qinf $^{\text {Structural member importance }}$	Calculated
	Major

Flexural slenderness data

Clear distance between faces of the supports (5.3.2.2 (1)) \mathbf{m}	Width of supporting element (5.3.2.2 (1))		Support condition	
	Left $\mathbf{m m}$		Right $\mathbf{m m}$	Left

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

5 List of reinforced sections

Reinforced section R 1

Cross-section components

T-shaped cross-section (450 / 600 / 220 / 160mm), Material: C30/37
Cross-section characteristics

\mathbf{A} $\left[\mathbf{m m}^{2}\right]$	$\mathbf{S}_{\mathbf{y}}$ $\left[\mathbf{m m}^{3}\right]$	$\mathbf{S}_{\mathbf{z}}$ $\left[\mathbf{m m}^{3}\right]$	$\mathbf{I}_{\mathbf{y}}$ $\left[\mathbf{m m}^{4}\right]$	$\mathbf{I}_{\mathbf{z}}$ $\left[\mathbf{m m}^{4}\right]$	$\mathbf{C}_{\mathbf{g y}}$ $[\mathbf{m m}]$	$\mathbf{C}_{\mathbf{g z}}$ $[\mathbf{m m}]$	$\mathbf{i}_{\mathbf{y}}$ $[\mathbf{m m}]$	$\mathbf{i}_{\mathbf{z}}$ $[\mathbf{m m}]$
168800	0	0	5431325624	1605426667	0	0	179	98

Concrete cover related to cross-section edges

1	30 mm
2	30 mm
3	30 mm
4	30 mm
5	30 mm
6	30 mm
7	30 mm
8	30 mm

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

Longitudinal reinforcement $[\mathrm{kg} / \mathrm{m}]$	Shear reinforcement $[\mathrm{kg} / \mathrm{m}]$	Total mass $[\mathrm{kg} / \mathrm{m}]$	Reinforcement / m3 concrete $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
20	4	24	141

Longitudinal reinforcement

Bar	$\boldsymbol{\varnothing}$ $[\mathbf{m m}]$	Material	\mathbf{Y} $[\mathbf{m m}]$	\mathbf{Z} $[\mathbf{m m}]$
1	16	B 500B	165	204
2	16	B 500B	50	204
3	16	B 500B	-50	204
4	16	B 500B	-165	204
5	16	B 500B	-50	-300
6	16	B 500B	0	-300
9	16	B 500B	50	-300
10	16	B 500B	-62	-263
11	16	B 500B	62	-263
7	16	B 500B	-165	140
8	16	B 500B	165	140
12	10	B 500B	-65	-9
13	10	B 500B	-65	-161
14	10	B 500B	65	-161
15	10	B 500B	65	-9

Stirrups

Stirrup	$\begin{gathered} \varnothing \\ {[\mathrm{mm}]} \end{gathered}$	Material	Distance [mm]	Closed	Shear check	Torsion check	Diameter of mandrel
1	10	B 500B	350	Yes	Yes	Yes	4,00
2	10	B 500B	350	Yes	Yes	No	4,00
Stirrup	Vertex	$\begin{gathered} \mathbf{Y} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ {[\mathrm{~mm}]} \end{gathered}$				
1	1	-75	217				
1	2	-75	-313				
1	3	75	-313				
1	4	75	217				
2	1	-190	217				
2	2	-190	127				

Project: Amsterdam industrial
Project number: 20231090
Author: Dave the Engineer

2	3	190	127
2	4	190	217

6 List of used materials

Concrete

Name	$\begin{gathered} \mathrm{f}_{\mathrm{ck}} \\ {[\mathrm{MPa}} \end{gathered}$	$\begin{gathered} \stackrel{f_{c m}}{ } \\ {[\mathrm{MPa}]} \end{gathered}$	$\mathrm{f}_{\mathrm{ctm}}$ [MPa]	$\begin{gathered} \mathrm{E}_{\mathrm{cm}} \\ {[\mathrm{MPa} \mathrm{a}} \end{gathered}$	$\begin{aligned} & v \\ & {[-]} \end{aligned}$	Unit mass $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
C30/37	30,0	38,0	2,9	32836,6	0,20	2500
	$\varepsilon_{c 2}=20,01 \mathrm{e}-4, \varepsilon_{\mathrm{cu}}=35,01 \mathrm{e}-4, \varepsilon_{c 3}=17,51 \mathrm{e}-4, \varepsilon_{c u}=35,01 \mathrm{e}-4$, Exponent - $\mathrm{n}: 2,00$, Aggregate size $=16 \mathrm{~mm}$,Cement class: $\mathrm{R}(\mathrm{s}=0,20)$,Diagram type: Parabolic					

Explanation

Symbol	Explanation
$f_{c k}$	Characteristic compressive cylinder strength of concrete at 28 days
f_{cm}	Mean value of concrete cylinder compressive strength
$f_{c t m}$	Mean value of axial tensile strength of concrete
E_{cm}	Secant modulus of elasticity of concrete
ε_{c}	Compressive strain in the concrete at the peak stress fc
$\varepsilon_{\mathrm{cu}}$	Ultimate compressive strain in the concrete

Reinforcement Steel

Name	$\begin{gathered} \mathrm{f}_{\mathrm{yk}} \\ {[\mathrm{MPa}} \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{tk}} \\ {[\mathrm{MPa} \mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ {[\mathrm{MPa}]} \end{gathered}$	$\begin{aligned} & \mathbf{v} \\ & {[-]} \end{aligned}$	Unit mass $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
B 500B	500,0	540,0	200000,0	0,20	7850
	$f_{\mathrm{tk}} / \mathrm{f}_{\mathrm{yk}}=1,08, \varepsilon_{u k}=500,0$ 1e-4,Type: Bars,Bar surface: Ribbed,Class: B, Fabrication: Hot rolled,Diagram type: Bilinear with an inclined top branch				

Explanation

Symbol	Explanation
$\mathrm{f}_{\text {yk }}$	Characteristic yield strength of reinforcement
f_{tk}	Characteristic tensile strength of reinforcement
E	Modulus of elasticity of reinforcement steel
$\varepsilon_{\mathrm{uk}}$	Characteristic strain of reinforcement or prestressing steel at maximum load

