

 Classification: Confidential

Bancontact Payconiq Company

SEPA Rulebooks
Scheme Manuals
Remote Domain
46D0 – Schedules 1, 2, and 3 – News 64
Mobile App Security Guidelines

Android, iOS
Newsletter 64

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 2 of 36

 Classification: Confidential

COPYRIGHT

This document is confidential and protected by copyright.

Its contents must not be disclosed or reproduced in any form whatsoever without the prior written
consent of Bancontact Payconiq Company sa/nv.

Except with respect to the limited license to download and print certain material from this document for
non-commercial and personal use only, nothing contained in this document shall grant any license or
right to use any of Bancontact Payconiq Company sa/nv’s proprietary material.

AUTHORS

This monthly newsletter is written by NVISO Labs, experts in mobile security, on behalf of Bancontact
Company sa/nv.

ABOUT NVISO

NVISO is a consultancy firm exclusively focusing on IT security. NVISO has a very clear sector focus
with several references in the financial and governmental sectors. The Research and Development
department of NVISO is NVISO Labs, whose goals are to allow our people to increase their skills and
knowledge, to come up with innovative service offerings, to contribute to the security community, and
to give valuable insights to our clients.
The fundamental values of NVISO are client satisfaction, focus, entrepreneurship, innovation, and ability
to adapt. Our mission is to be an innovative and respected partner for our clients. For more information,
we are happy to refer you to our website: https://www.nviso.be.
If you want to stay up to date with our latest research and other activities of NVISO Labs, we refer you
to our blog: https://blog.nviso.be

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 3 of 36

 Classification: Confidential

Table of Contents

Table of Contents 3

1 Summary of security impacts 4

2 Malware and vulnerability details 5

2.1 iOS 5
FaceTime bug [1.N64.1] 5

2.2 Android 7
ANDROIDOS_ANUBISDROPPER [2.N64.1] 7

3 Case study – Attacking OWASP’s CrackMe Level 3 10

3.1 Introduction 10

3.2 Analyzing the application 10

3.3 Instrumenting the application 14

3.4 Final thoughts 23

4 Operating systems updates 24

4.1 iOS security update 24

4.2 Android security update 24

5 Mobile security news 25

5.1 Mobile operating system security 25
Beauty Camera apps send users Pornographic content and collect their pictures. 25
Spyware disguises as Android applications on Google Play. 26
Flaw found in the popular application ES File Explorer for Android 27
Three years overdue: Google patches Chrome for Android to fix vulnerability. 28
Hackers could potentially abuse Siri shortcuts, introduced in iOS 12 29
Facebook and Google use Certificate loophole on iOS to launch data gathering apps. 29
Google developing native biometric authentication in Android Q 30

5.2 General security news 31
Top malware threats for December 2018 31
38% of smartphones using facial recognition are unlockable using a photo. 31
Android 50 times more likely to be infected with malware compared to iOS 32
Malware dubbed Redaman uses debt to prey on banking victims in Russia 32

6 Mobile platform statistics 34

6.1 OS market shares 34

6.2 Android 35

6.3 iOS 36

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 4 of 36

 Classification: Confidential

1 Summary of security impacts

January was quite a month for mobile security. Starting with Android and the Google Play Store.

Two malicious apps on the Google Play Store have been found that are using the Anubis Banking
Malware and a clever way to evade detection.

Spyware has also been found on several apps in the store stealing clipboard items, call logs and even
SMS conversations.

Some beauty camera applications have also been reported to send users to pornographic websites and
stealing their pictures.

Finally concluding the Android section of this month’s newsletter, researches have illustrated that out of
100 tested phones using facial recognition, 42 of them could be beaten by simply using a printed
photograph.

In the camp of Apple this month, a bug in facetime was discovered, allowing users to spy on other users
even before they answer the call.

The iPhones of activists, diplomats and rival foreign leaders have been hacked by a team of former U.S.
government intelligence operatives working for the United Arab Emirates with the help of a sophisticated
spying tool called Karma.

Apple has also released its first patch of 2019 fixing a decent number of CVE’s.

In the case study this month, we are pushing our reverse-engineering skills to the limit as we crack
OWASP’s Level 3 CrackMe. This CrackMe contains multiple anti-reversing and anti-instrumentation
controls that should make it difficult to figure out the correct flag. We have already looked at Level 1
(Newsletter 53) and Level 2 (Newsletter 61) in previous newsletters.

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 5 of 36

 Classification: Confidential

2 Malware and vulnerability details

2.1 iOS

FaceTime bug [1.N64.1]

Overall risk Medium Impact Medium Likelihood Low

Summary
A flaw in FaceTime allowed an attacker to place a call to someone and listen to their microphone even
if they did not pick up. It also allowed an attacker to capture video from the device’s camera and was
not just affecting iPhone and iPad but also Macs.

Details

Figure 1 - FaceTime Group Chat (source)

The bug relied entirely on a feature of iOS 12.1 called Group FaceTime, older versions of iOS or macOS
were not affected by this bug.

The exploit followed the following chain of events:

1. The attacker places a call to the victim
2. While the call was still ringing, the attacker would need to bring up the “Add Person” screen
3. The attacker adds himself to the call a second time; doing this invokes the Group FaceTime,

and caused the microphone of the victim to activate, even if the victim did not pick up.

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 6 of 36

 Classification: Confidential

To capture video of the target, there were two known techniques involved:

• One technique was to hope that the recipient pressed the power button on the phone to “decline”
the call, in which case the camera would turn on.

• The other technique was to join the call from another device, which would also turn on the
victim’s camera.

Judging by the nature of this exploit, we can assume that FaceTime is already sending data when the
FaceTime request is received. This is most likely to make FaceTime have a fast response time, because
all the buffers are filled with audio and video. But by implementing this system, there was a disregard of
potential security consequences.

The flaw essentially boils down to the fact that there was a logical error in the system which tricks
FaceTime into thinking that the victim and the attacker are the same person (since the attacker joins the
conversation twice)

At most however, the attacker would get about a minute of spying, since facetime does not ring forever.
The attack was also not stealthy, since it required the attacker to call the victim, thus announcing himself
to the victim.

The bug has been disclosed publicly on twitter by the user @BmManski, who is not a cybersecurity
specialist, but a regular user, which makes this extra painful for Apple since the issue has not been
disclosed through the dedicated channels.

Mitigation
Apple has temporarily disabled Group facetime functionalities to make sure the exploit cannot be
abused. A statement has been released that Apple aims to fix the issue in iOS patch 12.1.4

Source:

https://techcrunch.com/2019/02/07/update-to-ios-12-1-4-to-re-enable-group-facetime/

https://blog.malwarebytes.com/101/2019/01/apples-facetime-privacy-bug-allowed-possible-spying/

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 7 of 36

 Classification: Confidential

2.2 Android

ANDROIDOS_ANUBISDROPPER [2.N64.1]

Overall risk Low Impact High Likelihood Low

Summary
Two malicious applications have been found in the Google Play Store recently, called “Currency
Converter” and “BatterySaveMobi”. The two applications are disguised as useful applications but are
carriers of the “Anubis” payload, a well-known banking malware.

Figure 2 - The Malicious apps (Source)

The battery app had more than 5000 downloads before it was taken down and the currency converter
was downloaded for about 500 times.

Details
Anubis is a very disrupting banking malware which does not rely on a fake overlay like the traditional
overlays but has a built in keylogger to capture keystrokes. Anubis could also be used as a ransomware.
It uses the aserogeege.space domain as command and control server, but besides aserogeege, Anubis
also uses eighteen other domains.

The domains that are being used have switched IP addresses six times since October 2018 (which was
the last Anubis campaign). This shows us just how active this malware is.

The apps use a clever way to try and evade detection. As a user moves, their device generates some
amount of motion data. The developer of these malicious apps used this knowledge to try and fool
emulator sandbox environments, commonly used to detect malware, since these typically don’t generate
such motion data.

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 8 of 36

 Classification: Confidential

Figure 3 - The motion tracking algorithm (Source)

If the apps don’t detect any motion data, the malicious code will simply not run, thus evading detection.
If the apps detect motion data, they assume that they’re running on a genuine device, and their malicious
code will run. When running, the apps will try to trick users into downloading the payload APK with a
fake system update.

Figure 4 - The fake system update (Source)

The developers of these applications attempt to hide the command and control server by encoding it in
Telegram and Twitter webpage requests. By parsing the HTML content of the response, the device gets

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 9 of 36

 Classification: Confidential

registered on the server. The server will then react to the application with an APK command which will
drop the Anubis payload in the background.

Figure 5 - The encoded server URL (Source)

The latest data from TrendMicro shows that Anubis has been distributed to ninety-three countries and
targets over three hundred financial apps to farm account details. Anubis can use the victims contact
list to send spam messages and trick others to install the application, thus creating the means to spread
itself.

Mitigation
The infected applications have been removed from the Google Play Store.

In order to prevent Anubis from stealing credentials, we advise developers to take biometric security
into account such as fingerprint access. Additionally, adding strong device binding can help prevent
easy account takeovers.

End-users should be cautious of any application that asks for banking credentials and be sure that they
are legitimately linked to their bank.

More information can be found on the TrendMicro blog:

https://blog.trendmicro.com/trendlabs-security-intelligence/google-play-apps-drop-anubis-banking-
malware-use-motion-based-evasion-tactics/

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 10 of 36

 Classification: Confidential

3 Case study – Attacking OWASP’s CrackMe Level 3

In order to provide training material for Mobile Security consultants, OWASP has created a series of
CrackMe’s with increasing difficulty. The CrackMe’s are applications that ask the user to enter a
password and it will tell the user if that password is correct or not. The goal is thus to reverse engineer
the application and figure out the correct password.

3.1 Introduction

This month, we are looking at the most difficult OWASP CrackMe: Level 3. This CrackMe contains
multiple anti-reversing and anti-instrumentation checks that should make it difficult to figure out the
correct flag. We have already looked at Level 1 (Newsletter 53) and Level 2 (Newsletter 61) and while
those CrackMe’s did give us a few hurdles to get around, they weren’t too difficult yet. However, with
the same toolset and a little bit more time, we will be able to extract the correct password from the Level
3 app.

As always, our trusted setup is the following:

• Nexus 5 with LineageOS
• Magisk as the rooting method
• Frida installed through MagiskFridaServer

The CrackMe itself can be found on the OWASP MSTG GitHub and can be installed on the device
through adb install.

3.2 Analyzing the application

Opening the APK in JadX-GUI gives us a quick overview of the application. We can see that there is not
a lot of Java code, and that the application itself is not obfuscated.

Figure 6 - an overview of the application

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 11 of 36

 Classification: Confidential

The entry method (onCreate) performs the following actions:

1. Call verifyLibs()
2. Call init() with a password
3. Start an AsyncTask that keeps running until a debugger is detected. When the task stops, the

application exits.
4. Check if the application is rooted
5. Create a new CodeCheck instance. This class is used in the verify() method to see if the entered

password is correct.

Additionally, hidden away at the end of the decompiled file, we can see that a static constructor is used
to load a native library (“foo”). This code will be run even before the onCreate method is executed.

Figure 7 - loading foo

Let’s look at the different controls implemented in the onCreate method. At the very least, there is root
detection, debugger detection and resource integrity protection

Debugger detection
The debugger detector uses a continuously running AsyncTask instead of a one-time-check. The
advantage with this type of check is that we can’t attach a debugger after the application has performed
its startup routine. Of course, we can still get around this by using the techniques we used for the Level
2 app: Changing the SMALI code or hooking Debug.isDebuggerConnected with Frida. However, the
anti-debugging code shouldn’t hinder our analysis, as Frida doesn’t use the Java debugger functionality.

This control is a basic way of implementing 8.3 from OWASP’s MASVS:

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 12 of 36

 Classification: Confidential

Root detection control
The root detection looks basic:

Figure 8 - The root detection method

There’s a test for the “su” binary being on the path of the application, a test for test-keys in the build tags
and some file checks for typical files belonging to popular rooting methods. Magisk should easily be able
to get past these checks. However, even after enabling Magisk Hide, the application shows a popup
about root being detected, and the application is automatically closed:

This is unexpected behavior, and we will have to find out what exactly is going wrong.

Root detection is covered in 8.1 of OWASP’s MASVS:

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 13 of 36

 Classification: Confidential

Resource Integrity Control
JadX-GUI does a good job of reversing the verifyLibs method, and much information can easily be
deduced:

Figure 9 - The verifyLibs method

Based on the names of the variables and the strings from the error message, we can guess that the
application calculates a Cyclic Redundancy Check (CRC) which is a basic hashing method to verify that
the resources are unaltered. This CRC code is calculated for all the included binaries, and the
classes.dex file itself. This means that if we have to modify classes.dex (SMALI code) or one of the
shared libraries (ARM code), we will also have to modify this verifyLib method, as the application won’t
accept any modified resources. This control is part of OWASP’s MASVS1:

Since the verifyLibs() code (which is part of classes.dex) actually verifies its own integrity, it would be
impossible to include the correct CRC directly in the code, as this would create a loop. Updating the
CRC string in the code would modify the CRC of classes.dex, which would have to be updated in the
code, …

To prevent this from happening, the code takes the CRC code from the APK file itself and compares it
to the CRC code of the unpackaged classes.dex file on the file system. This means that this check will
only fail if the classes.dex or one of the SO files is modified directly on the file system. If we would
repackage the application, the checks would not be triggered, since the CRC code of the APK itself
would automatically be updated.

Surprisingly, the application is complaining that the CRC of the classes.dex file is not correct, even
though we didn’t modify it. This is unexpected behavior, but we can get around this by modifying the
behavior of the showDialog method. After all, this method forces the application to close, but if we just
make sure that the showDialog method doesn’t do anything, nothing will happen when either the root
detection or the CRC checks fail.

	

1 https://github.com/OWASP/owasp-masvs/blob/master/Document/0x15-V8-
Resiliency_Against_Reverse_Engineering_Requirements.md#impede-dynamic-analysis-and-tampering

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 14 of 36

 Classification: Confidential

Figure 10 - The showDialog function causes the application to exit

3.3 Instrumenting the application

Disabling tamper detection
Let’s hook the rooting methods with Frida and do the same for the showDialog function so that it doesn’t
do anything:

Figure 11 - Altering the application behaviour using Frida hooks

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 15 of 36

 Classification: Confidential

Running the application with the injected code does not have the expected result, as it crashes even
before our Frida code is executed:

Figure 12 - The app crashes before Frida gets a chance

Running the same command a few times eventually prints out our Hooks, but even then, the application
crashes:

Figure 13 - The hooks are printed after a few attempts

This could mean that there is a race condition between Java and the native library that is loaded, but it’s
still not possible to say if the application crashes on purpose as a result of it detecting Frida, or if we are
facing some kind of bug related to Frida. After all, dynamic instrumentation is pretty complex, and many
things can go wrong.

On the upside, we can see that the checkRoot methods did not trigger the popup window, so the CRC
check is probably responsible for the root checks. 	

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 16 of 36

 Classification: Confidential

Examining the native library
The application is built for all platforms, so we can choose which native library we want to examine. For
this case study, we will take the x86 version and load it into IDA Pro. After using apktool to decompose
the APK, we can find the x86 library in the /lib/x86 folder.

Browsing around the .so file, we can see that there is a static initializer method that gets called when
the library is loaded:

Figure 14 - The initializer of the shared library

This method initializes some variables to 0 and spawns a new thread which will run sub_30B0. Let’s
take a closer look at that method:

Figure 15 - sub_30B0 method

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 17 of 36

 Classification: Confidential

It’s easy to follow the logic of this method. It opens /proc/self/maps, and searches for any line containing
either ‘frida’ or ‘xposed’. The maps file contains all the mapped memory regions of the application, and
any injected framework is likely to be included in the list. Since we are using Frida, it will no doubt detect
the injected library and quit the application through the goodbye() method.

This control is mentioned as 8.6 in the MASVS:

There are three basic options to get around this control:

• We modify the name of the Frida library
• We modify the code and repackage the application
• We change the code at runtime using Frida.

Renaming the library should be the easiest approach, but Frida doesn’t support automated renaming
yet, and the library’s name is currently hardcoded in a few locations, making it an inconvenient solution.
The next best thing is using Frida to modify the behavior at runtime and using Frida to get around anti-
Frida behavior sounds like fun.

We can hook into the “strstr” function, which is part of libc and figure out if it is detecting the Frida library
somewhere:

Figure 16 - Using Frida to hook into the strstr function

Using Frida’s Interceptor class, we can have a function called when entering and exiting the strstr
method. We can keep track of when the method would return true, and then change the return value
once the method returns.

After this, we can finally use the application and test some input:

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 18 of 36

 Classification: Confidential

Figure 17 - The application functions again

Extracting the password
The entered password is passed to CodeCheck.check_code() which then passes it to the native bar
method:

Figure 18 - The check_code method

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 19 of 36

 Classification: Confidential

In IDA, the CodeCheck.bar method looks as follows:

Figure 19 - The native Codecheck_bar method

This is a little bit cryptic, but with a little bit of deduction, we can figure some stuff out:

• The arguments for a JNI method are a pointer to the JNI environment, the object and any
additional arguments that the method receives

• The v5 variable starts at -1 and is updated each iteration in the while loop
• There is a check for something to equal 24, and then there is a while loop that stops when the

v5 counter has reached 24. Most likely, the correct password is 24 characters long.
• In the while loop, the applied logic is v3 == v7 ^ v4, for each character in the variables.
• v4 is a reference to the pizza variable that has been configured by the application earlier through

the MainActivity.init method. The variable might have undergone a transformation, so let’s find
out the actual value when the password is compared

• The v7 value is populated from within the sub_FC0 function.

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 20 of 36

 Classification: Confidential

With a little bit of renaming, we end up at the following:

Figure 20 - The modified method with some comments to keep track of the code

To solve this, we need to figure out the xorkey and the secret that is generated by the complex_method.
We can use the same Interceptor class to hook onto the complex_method, but since it’s not exported,
we must figure out where it is loaded into memory. Unfortunately, we can’t use the offsets of the x86
binary, as the application will load the armv7 binary on the device, resulting in different offsets

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 21 of 36

 Classification: Confidential

The same CodeCheck_bar function in the armv7 binary looks as follows:

Figure 21 - The CodeCheck_bar function in the amv7 binary

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 22 of 36

 Classification: Confidential

The offset of complex_function is now 0xE80 (hence the name ‘sub_E80’) and the xorkey, byte_7028,
is located at offset 0x7028. We can use this knowledge to print out the content of v11 after sub_E80 has
been called, and the value of byte_7028 once the code is executed:

Figure 22 - Attaching to the complex_function

When the complex_function is called, we remember the location of the given pointer. When the function
exits, the pointer will contain the correct secret and we can print it, together with the xorkey.

One little trick here is that we actually have to use the address 0xE81, as the least significant bit of the
address determines whether the code is in Thumb or ARM mode. Since the code is in Thumb mode, we
have to set it to 12.

Finally, there is a setTimeout around the Interceptor code, as we need to wait for the library to be loaded,
otherwise we won’t get a valid value from Module.findBaseAddress.

Running this hook, together with all the other ones results in the following execution:

Figure 23 - Printing the xorkey and the secret key

2 https://www.frida.re/docs/javascript-api/#interceptor

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 23 of 36

 Classification: Confidential

We can see that the xorkey is still a repetition of the word “pizza”, so it hasn’t been altered since it was
initialized. The secret key is a random hexadecimal string without any other obvious meaning.

As a final step, we have to XOR the xorkey with the secret key in order to get the actual password:

Figure 24 - XOR the xorkey and secret key

Running this script prints the flag:

Figure 25 - The resulting password of the previous operation

3.4 Final thoughts

This application has incorporated much more anti-reverse engineering controls than the Level 2 version.
In fact, the application has also implemented additional security controls which we have not
circumvented because they did not interfere with our specific approach towards extracting the password.
For example, the AsyncTask described in the beginning of this case study was never triggered, since
we were never using the any Java debugging techniques.

If it is important to impede the comprehension of your application, it is important to cover a vast array of
controls, each targeting different possible entry points into the application. Having strong anti-reverse
engineering controls comes down to:

• Having many of them. The more hurdles, the more likely the attacker will give up
• Being creative. Implementing custom or lesser known controls will for example prevent default

Frida scripts from working.

Of course, obfuscation and anti-reverse engineering controls are never a substitute for real security and
their usage depends much on the type of application. A good example of this is Pokemon Go, which
has implemented very strong controls to prevent people from cheating in the game and using bots to
gather Pokemon. As it is nearly impossible to separate a normal user from a bot based on the data
received by the backend, Niantec has put much effort into preventing users from understanding how the
communication with the backend works.

More information on the different controls implemented by the Level 3 Uncrackable can be found in
chapter 8 of OWASP’s MASVS.

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 24 of 36

 Classification: Confidential

4 Operating systems updates

4.1 iOS security update

Apple released one security software update for its mobile devices this month, iOS 12.1.3

iOS 12.1.3 bundles patches for Apple KeyStore, Bluetooth, Kernel, Web Kit, Facetime… and fixes a
multitude of vulnerabilities including remote code execution and escalation of privilege attacks.

Some of the noteworthy vulnerabilities fixed are listed below:

• Apple KeyStore CVE-2019-6235: A sandboxed process may be able to circumvent sandbox
restrictions

• Bluetooth CVE-2019-6200: An attacker in a privileged network position may be able to use
Bluetooth for code execution

• Core Media CVE-2019-6202/6221: Malicious applications may be able to do privilege escalation
• Keyboard CVE-2019-6206: Password autofill may fill in passwords after they were cleared

manually
• Safari Reader CVE-2019-6228: maliciously crafted web content could lead to cross site scripting

The full list can be found in the patch notes via the following URL:

https://support.apple.com/en-us/HT209443

4.2 Android security update

The Android security team fixed 27 vulnerabilities in their January security updates. Two of the bugs
were assigned a critical risk, one is a system RCE flaw which could enable remote attackers to execute
arbitrary code within the context of privileged processes by using specially crafted files. The second
critical risk vulnerability was found in a closed-source component of Qualcomm but could not be directly
exploited.

Google did not find any indication that the bugs have been exploited or abused in the wild.

All other 25 bugs were classified as High and have been patched. Most of the vulnerabilities were found
in system and kernel components.

Out of all these bugs, 13 were privilege escalations, 8 were information disclosures and the remainders
are part of closed source components and could not be exploited.

More information can be found on the January 2019 security bulletin:

https://source.Android.com/security/bulletin/2019-01-01

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 25 of 36

 Classification: Confidential

5 Mobile security news

5.1 Mobile operating system security

Beauty Camera apps send users Pornographic content and collect their pictures.

Figure 26 - The malicious camera applications (Source)

TrendMicro has discovered that in several Android beauty camera apps (some of which have been
downloaded millions of times) there is an option built in to access remote ad configuration servers which
means the application can change behaviour on the fly.

The apps push several full screen advertisements to the victim when they unlock their devices, including
malicious ads such as pornography and fraudulent content. Some of these apps also redirect to phishing
websites that ask the user for personal information such as phone numbers or addresses.

Figure 27 - Example of the pop ups mentioned (Source)

For more information please see TrendMicro’s blogpost:

https://blog.trendmicro.com/trendlabs-security-intelligence/various-google-play-beauty-camera-apps-
sends-users-pornographic-content-redirects-them-to-phishing-websites-and-collects-their-pictures/

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 26 of 36

 Classification: Confidential

Spyware disguises as Android applications on Google Play.
TrendMicro has discovered spyware (ANDROIDOS_MOBSTSPY) which
was embedded in some games that were on the Google play store in
2018. Some of these games have been downloaded over 100.000 times
from users all over the world. Google has already removed the malicious
games from the Play Store.

The apps that were infected are Flappy Birr Dog, FlashLight, HZPermis
Pro Arabe, Win7imulator, Win7Launcher and Flappy Bird

The Spyware was capable of stealing information such as the user’s
location, SMS conversations, call logs and clipboard items. When the
application is launched, the malware checks if the device has internet
access, which will then parse an XML configuration file from its command
and control server.

The malware will then collect device information such
as language, country and device manufacturer, after
which the device is registered on the Server and waits
for instructions. The C&C can then send many different
commands, such as collecting call logs, monitoring
SMS conversations, or collecting other forms of
sensitive information, which can then be uploaded to
the C&C.

The malware is also capable of displaying phishing
screens for Facebook and Google to attempt to trick the
user into giving up their credentials

For more information please see the TrendMicro
blogpost:

https://blog.trendmicro.com/trendlabs-security-intelligence/spyware-disguises-as-Android-applications-
on-google-play/

Figure 29 - File Upload options of the malware
(Source)

Figure 28 - One of the infected
applications (Source)

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 27 of 36

 Classification: Confidential

Flaw found in the popular application ES File Explorer for Android
A security researcher nicknamed “fs0c131y” has found a flaw in the app called ES File Explorer, which
has been downloaded over 500 million times.

Figure 30 - The vulnerable application (Source)

Every time a user launches the application, it starts a local HTTP server on port 59777, which is publicly
accessible. Through this endpoint, an attacker can send a JSON payload to the target cell phone, which
will trigger remote code execution in the context of the application. As the application is a File Manager,
this means the attacker would have access to any file that is world-readable on the device.

curl --header "Content-Type: application/json" --request POST --data
'{"command":"[my_awesome_cmd]"}' http://192.168.0.8:59777

example of JSON payload as part of the proof of concept on github.

The vulnerability has been patched by the developer after it caught the developer’s attention via a
twitter post:

Figure 31 - The twitter post disclosing the vulnerability (Source)

The full exploit can be found on the following website:

https://github.com/fs0c131y/ESFileExplorerOpenPortVuln

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 28 of 36

 Classification: Confidential

Three years overdue: Google patches Chrome for Android to fix vulnerability.

Figure 32 - Chrome for Android (Source)

Google has finally gotten around to patching a three-year-old vulnerability in its Chrome for Android
browser. The vulnerability was an information disclosure vulnerability which revealed the phone model
and build.

The security researchers at Night watch Cybersecurity identified the vulnerability back in May 2015 but
Google did not address the threat.

The information disclosed is in the user-agent header, which is used whenever a user visits a website

Figure 33 - User-agent header of Nexus 6 (Source)

The fact that the user-agent header identifies the operating system and its version is not unique. This
follows generally what many other browsers have been doing on desktop and mobile. The problem is in
the build tag. A build tag can identify both the device name and its firmware build. For many devices,
this can be used to gather information not only about the device itself, but also the carrier on which it is
running and from what country the user is, which then could be used to identify the device security patch
level, providing insight into which exploits could potentially be used against the targeted device.

Source:

https://wwws.nightwatchcybersecurity.com/2018/12/25/chrome-browser-for-Android-reveals-hardware-
information/

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 29 of 36

 Classification: Confidential

Hackers could potentially abuse Siri shortcuts, introduced in iOS 12
Siri shortcuts, a new function introduced by Apple in iOS
12, could be abused by hackers, according to security
researchers at IBM.

The shortcuts are meant to provide faster access to
applications and features, automating common tasks, and
can be enabled by third party developers. Because of the
apps’ capability to perform complex tasks, it also introduced
potential security risks according to John Kuhn, senior
threat researcher at IBM.

Using out of the box shortcut functionality, code can be
executed to have Siri tell the victim that their information
has been collected and that a ransom needs to be paid.
Furthermore, an attacker could automate data collection
from the device, such as stored videos, pictures, IP address
and potentially even geolocation.

One more harmful attack would be to use the shortcut app as a spambot, automating a message to be
sent to the victim’s entire contact list, containing a download with the same malicious shortcut, causing
a spread of the malware.

The entire blogpost can be found on the following URL:

https://securityintelligence.com/hey-siri-get-my-coffee-hold-the-malware/

Facebook and Google use Certificate loophole on iOS to launch data gathering apps.

Figure 35 – Facebook and Google are watching (Source)

Apple’s Developer Enterprise Program (ADEP) has been abused by Google and Facebook in order to
install invasive data gathering applications outside of the respective organisations.

The program allows developers to distribute applications used in the corporation internally without
having to pass the App Store review process, which means the application can be launched with more
permissions than would be allowed by other applications downloaded from the App Store.

TechCrunch revealed that users starting from just 13 years old got compensated via gift cards to install
a so-called research application from Facebook, which could collect messages as well as continuously
track the location of users.

Facebook has shut down the iOS version of the application since the reveal, but that did not stop Apple
from revoking all of the enterprise certificates of both Facebook and Google, which also stopped the
deployment of legitimate internal apps, as they use the same certificates.

Figure 34 - Siri shortcuts (Source)

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 30 of 36

 Classification: Confidential

Facebook is using the same tactics on Android, but Google has not responded to the question of whether
the application breaks any of Googles policies.

In a recent article, also by TechCrunch, it was reported that Google has shut down its own research app
called “Screenwise Meter” which used the same loophole as the Facebook app.

The TechCrunch posts can be found here:

https://techcrunch.com/2019/01/30/googles-also-peddling-a-data-collector-through-apples-back-door/

https://techcrunch.com/2019/01/29/facebook-project-atlas/?guccounter=1

Google developing native biometric authentication in Android Q

Figure 36 - Android Q Biometrics(Source)

According to the XDA-Developers portal, Google is developing native support for a secure biometric
authentication feature, closely resembling Apple’s face ID.

The feature is rumoured to be released in Android Q. Mishaal Rahmad points to “dozens of strings and
multiple methods, classes and fields related to facial recognition in the framework, System UI and
Settings APKs" of a leaked Android Q build

Figure 37 - Strings found in the leaked build of Q (Source)

The leaked build also includes a lot of other features, such as a system-wide dark theme, which will
work with apps that don’t come with a native dark mode.

Source :

 https://www.xda-developers.com/Android-q-face-id-rumor/

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 31 of 36

 Classification: Confidential

5.2 General security news

Top malware threats for December 2018
Check Point published their “Global Threat Index” for December 2018.The index investigates the most
common malware variants and trends of cyber criminals.

Researchers saw “Smoke Loader” rise to the top 10 after a boost in activity mainly in Japan and Ukraine,
Smoke Loader is commonly used as an enabler for other malware such as Panda Banker, AZORult Info
stealer, …

Despite cryptocurrencies becoming less valuable in 2018, crypto mining makes up half of the top 10 list
and fills the top 4 positions with Coinhive remaining the most prevalent malware for over one year now,
impacting 12% of organizations worldwide.

The top 10 list is as follows:

1. Coinhive
2. XMRig
3. Jsecion
4. Cryptoloot
5. Emotet
6. Nivdort
7. Dorkbot
8. Ramnit
9. Smokeloader
10. Authedmine

The full list can be found here:

https://blog.checkpoint.com/2019/01/14/december-2018-most-wanted-malware-smokeloader-crypto-
malware-ransomware/

38% of smartphones using facial recognition are unlockable using a photo.
The Dutch consumer confederation “Consumentenbond” has
tested 110 smartphones using facial recognition software to
unlock the phone. 42 of them could be unlocked using a photo
of the user’s face.

Samsung, Huawei, Sony these are just a few of the brands that
were vulnerable to this exploit, it’s worth noting that not all the
devices produced by these manufacturers can be exploited by
this flaw, it usually involves the low/mid-grade smartphones.

The full results can be found on the following website:

https://www.consumentenbond.nl/veilig-
internetten/gezichtsherkenning-te-hacken#no1

Figure 38- Facial recognition in a picture (Source)

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 32 of 36

 Classification: Confidential

Android 50 times more likely to be infected with malware
compared to iOS
Nokia’s latest threat intelligence report has revealed that Android devices
are 50 times more likely to be infected with malware than Apple devices.
According to the whitepaper, Android is responsible for about 47% of all
the observed malware infections, Windows pc’s make up about 36% and
IoT 16%. Apple’s iPhone wins the race with a share of less than 1%.

 The full report can be found here:

https://pages.nokia.com/T003B6-Threat-Intelligence-Report-2019.html

Malware dubbed Redaman uses debt to prey on banking victims in Russia
Russian speakers beware, since a new malware campaign is targeting you by using threats of debt
and missing payments.

The round of attacks, researched by the Palo Alto security team, was tracked over the last four months
of 2018.

The attack vector is large and involves mass distribution of spam and phishing mails using titles that
could cause panic such as “Debt due Wednesday”. The message keeps changing but they all have a
common theme; they want to trick the recipient into opening the attached archive.

Figure 40 - Flow chart for infections from Redaman banking malware from September through December of 2018.

(Source)

Figure 39 - Nokia's Threat Report (Source)

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 33 of 36

 Classification: Confidential

Upon execution a Trojan will launch a
scan to check if the program is
running in a sandbox or not. If the
malware uncovers files or directories
that suggest virtualization or
sandboxing, the executable exits. If
the machine appears to be legitimate,
the windows executable will drop a
DLL file in the PC’s temp folder and
create a randomly named folder in the
ProgramData directory, it will then
shift the DLL to this folder and use a
random file name. The DLL will create
a windows task which triggers every
time the user logs into the machine to
maintain persistence.

Redaman uses a hooking system to
monitor browsing activity. The goal is
to steal banking credentials and other data which could compromise the victim’s funds or enable the
attacker to commit identity theft.
Source:
https://unit42.paloaltonetworks.com/russian-language-malspam-pushing-redaman-banking-malware/

Figure 41 - The Windows task (Source)

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 34 of 36

 Classification: Confidential

6 Mobile platform statistics

6.1 OS market shares

Figure 42: Mobile OS market shares for January 2019. (Source)

Compared to last month’s OS market share numbers, we can see a small move towards Android
adoption, away from iOS. The Android adoption rates have increased with 1,71 percentage points, while
the iOS adoption rates have decreased by 1,14 percentage points. The difference between the two
previous differences can be seen in the “Other” operating systems, which has slightly increased
compared to last month. Among the “Other” operating systems are Linux, Bada and Symbian. The
shares of the Windows phone OS and Series 40 OS systems remain mostly unchanged this month.

Android
70,64%

iOS
28,15%

Windows Phone OS
0,06%

Series 40
0,05%

Other
1,03%

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 35 of 36

 Classification: Confidential

6.2 Android

Figure 43: Android OS fragmentation of October 2018. (Source)

No new information on Android OS fragmentation has been published by Google since the three
previous newsletters. The data displayed above was collected during a 7-day period ending on October
26, 2018.

User adoption rates of the older Android versions remain fairly stable from September to October. The
number of devices running Android versions lower than 5.0 all changed no more than 0.2%. It is worth
noting that all changes of these versions are decreases of user adoption rates.

Looking at the more recent versions of Android, starting at version 5.1, we see that users continue to
migrate to the newest versions. Adoption rates of Android Oreo increased with a total of 2,3% while the
adoption rates of Android Marshmallow, Nougat and older dropped with the same amount.

Confidential

 Newsletter 64
 Copyright Bancontact Payconiq Company nv/sa
 Page 36 of 36

 Classification: Confidential

6.3 iOS

Figure 44: iOS fragmentation in January of 2019. (Source)

Similar to the previous three months, iOS users continue to shift towards the newest iOS 12 versions.
Since the stable release of iOS 12 in mid-September, almost three quarters of all iOS users have
installed it. iOS 12.x has seen an increase this month of 4,36%

Many of the users currently operating on iOS 12 have switched over from iOS 11, as can be noticed in
the iOS 11 adoption rates. iOS 11 is down from 17,37% to 13,91% this month

The number of users operating on the older iOS versions have remained fairly stable compared to last
month.

(End of document)

Other
0,27%

iOS 7.X
0,20%

iOS 8.X
3,37%

iOS 9.X
1,29%

iOS 10.X
3,68%

iOS 11.X
13,91%

iOS 12.X
77,36%

